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Abstract

Background: Modelling the environmental niche and spatial distribution of pathogen-transmitting arthropods
involves various quality and methodological concerns related to using climate data to capture the environmental
niche. This study tested the potential of MODIS remotely sensed and interpolated gridded covariates to estimate
the climate niche of the medically important ticks Ixodes ricinus and Hyalomma marginatum. We also assessed
model inflation resulting from spatial autocorrelation (SA) and collinearity (CO) of covariates used as time series of
data (monthly values of variables), principal components analysis (PCA), and a discrete Fourier transformation.
Performance of the models was measured using area under the curve (AUC), autocorrelation by Moran’s I, and
collinearity by the variance inflation factor (VIF).

Results: The covariate spatial resolution slightly affected the final AUC. Consistently, models for H. marginatum
performed better than models for I. ricinus, likely because of a species-derived rather than covariate effect because
the former occupies a more limited niche. Monthly series of interpolated climate always better captured the climate
niche of the ticks, but the SA was around 2 times higher and the maximum VIF between covariates around 30
times higher in interpolated than in MODIS-derived covariates. Interpolated or remotely sensed monthly series of
covariates always had higher SA and CO than their transformations by PCA or Fourier. Regarding the effects of
background point selection on AUC, we found that selection based on a set of rules for the distance to the core
distribution and the heterogeneity of the landscape influenced model outcomes. The best selection relied on a
random selection of points as close as possible to the target organism area of distribution, but effects are variable
according to the species modelled.

Conclusion: Testing for effects of SA and CO is necessary before incorporating these covariates into algorithms
building a climate envelope. Results support a higher SA and CO in an interpolated climate dataset than in
remotely sensed covariates. Satellite-derived information has fewer drawbacks compared to interpolated climate for
modelling tick relationships with environmental niche. Removal of SA and CO by a harmonic regression seems
most promising because it retains both biological and statistical meaning.

Keywords: Ixodes ricinus, Hyalomma marginatum, Climate niche, MODIS, CliMond, WorldClim, Spatial
autocorrelation, Collinearity
Background
Ticks are important vectors of pathogens to humans
[1,2]. Most of the tick’s life cycle is spent in the environ-
ment, where ticks develop, moult, and quest actively for
a host [3]. Temperature has a central role in the regula-
tion of the tick life cycle, including the development of
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the moulting stages (or oviposited eggs) and the periods
in which ticks quest for a host in the vegetation. During
the winter, low temperatures prevent rapid development,
so development progresses slowly until temperatures in-
crease in spring. At northern latitudes, temperature is
the main driving factor of the length of the tick life cycle
by regulating the duration of developmental processes.
The requirements of temperature for development are
species-specific and commonly prevent the spread of
ticks farther north, where total cumulative degrees in a
year are too low to allow complete development.
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Mortality depends on water losses, which are regulated
by the relative humidity and the air saturation deficit.
During questing, ticks lose water that they normally re-
gain by descending at intervals to the litter zone where
they can reabsorb water vapour from the atmosphere
[4,5]. When the ticks are hydrated, they ascend to the
vegetation. The seasonal activity of ticks is characterised
by several cycles of ascending and descending move-
ments in the vegetation, regulated by temperature and
water loss. Therefore, the energy reserves of the tick plus
its abilities to retain water, together with air water con-
tent and temperature, are the factors regulating the
questing and survival of ticks in the field.
Such tight dependence of ticks on climate traits makes

them susceptible to meteorological changes, which in
turn affects their periods of activity, development, and
mortality and expansion into new zones or retreat from
colonised areas [6,7]. Some of these shifts in distribution
have been reported from field studies [8,9]. In other
cases, associations between climate and prevalence rates
of tick-transmitted pathogens have been proposed based
on empirical grounds [10] or meta-analyses of published
data [11]. However, the effect of the projected climatic
trends over the rather complex life cycle of ticks and the
dynamics of tick-transmitted pathogens are still poorly
understood and subject to debate. Although a change in
climate might play an important role in certain geo-
graphic regions, for much of Europe, non-climatic fac-
tors, such as host population dynamics, are becoming
increasingly important in the recorded spread of the tick
Ixodes ricinus [7]. Similar explanations have been hy-
pothesized for the increase in prevalence rates of other
tick-transmitted pathogens, in particular those carried
by the tick Hyalomma marginatum [12].
Methods of species distribution modelling have been ap-

plied to arthropods of medical importance to understand
the factors limiting their distribution [13-15]. These quan-
titative tools combine observations of species occurrence
with environmental features [15] and are increasingly
applied to produce coherent estimates of distribution pat-
terns of mosquitoes [2], sandflies [16], and ticks [7,17].
The covariates of climate and vegetation with which these
arthropods are associated can be used to gain information
about the effects of future climate scenarios or even recent
trends [18]. Because this information can be produced on
a timely basis, with internally consistent data sources, it is
a useful tool for resource managers, policy makers, and
scientists interested in tracking recent changes across
large administrative or environmental scales. These mo-
dels are becoming increasingly popular in mapping the
expected environmental variables that limit the physio-
logical response of an arthropod vector [16].
Although some studies have emphasised the suitability

of yearly averaged covariates involving temperature and
rainfall, in the interpretation of the climate niche of the
target arthropod [7,14], others have used sets of vari-
ables at monthly intervals or the orthogonal trans-
formation of a time series of covariates, via principal
component analysis (PCA) or Fourier transformation
[19,20]. It has been explicitly indicated [21] that the set
of covariates chosen to explain the abiotic habitat ought
to have a clear biological meaning, describing adequately
the biological and ecological constraints of the species in
the spatial range to be modelled. Without this biological
background, numerous variables can produce models
with highly reliable matching distributions that are only
statistically relevant. Although there is a tendency to
consider that these potential distributions represent the
probable geographical range, they must be regarded only
as the characterization of the range of abiotic conditions
(corresponding to non-living factors in the environment)
under which the organism may survive [16]. These so-
called “suitability maps” or “potential distribution species
models” are interpretations of a similarity measure of
the abiotic conditions at each pixel of the map with the
conditions at the known range of the species. These
maps are actually a projection into the spatial range of
the inferences made on such a niche of the organism.
Without a model aimed at describing every process of
the life cycle of the target organism, it is necessary to
carefully select the minimum set of covariates that ad-
equately describe, without inflation, the variables driving
the observed distribution.
A common problem in modelling the abiotic niche of

arthropod vectors is the lack of assessment of the sta-
tistical issues derived from spatial autocorrelation (SA)
and collinearity (CO) of the covariates. SA is the spatial
co-variation of properties between records used for cali-
bration of models [22] violating standard statistical tech-
niques that assume independence among observations.
SA thus arises from multiple points of “presence” for the
organism to be modelled, not randomly distributed over
the space [23]. Patterns of species distributions may be
spatially autocorrelated because of population dynamics
and historical factors, including closely clustered surveys
that lead to the observed pattern of occurrence [24]. SA is
thus a spatially related problem that leads to an overesti-
mation of the sample size, inflating the statistical signifi-
cance of the measured spatial relationships and increasing
the likelihood of false positives (type I errors, [25]).
The problem of SA in the determination of the tick

abiotic niche can be stated as follows. Consider a region of
several square kilometres (i.e., representing a small frac-
tion of its complete spatial range) where tick-transmitted
pathogens are a concern and where active surveys for ticks
are commonly carried out. The tick will be collected in
such a range where the spatial variability of the climate
covariates is low because it is a relatively small territory.
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These collections represent, however, a significant frac-
tion of the complete distribution range of the tick, as
reported, and contribute to populate the dataset of pre-
sences with closely located records having very similar
abiotic “preferences”. This method biases the perceived
niche of the tick because the tick has not been randomly
collected in the context of the complete dataset. An
additional problem is expected to arise when covariates
are gridded interpolations of climate from recording
stations. Consider the same territory for which only a
few climate-recording stations exist. Even the best per-
forming methods will interpolate a few points as a sur-
face of data where large areas have almost the same
values for the covariate. These surfaces are later used to
know the niche at which ticks have been collected,
which will result in a significant number of records in
the tick presence dataset having similar values for the
climate covariates and biasing our capture of its climate
niche.
CO is a statistical phenomenon in which two or more

covariates in a multiple regression model are highly cor-
related and presents a problem related to the internal
structure of the covariates used to explain the distri-
bution of the records. In our application, the typical
situation involves the use of time series of covariates
that are strongly correlated (e.g., the temperature in one
month is expected to be very similar to the values of the
following month). CO is thus a spatio-temporal problem
originated in the structure of the covariates and not in
the records used for calibration. A special situation
exists when covariates are grid interpolations of climate
point records. In this case, the problems are magnified
because the interpolation algorithms use a set of
Figure 1 AUC values of the models for either Ixodes ricinus or Hyalom
pseudo-absence records and trained with several sets of interpolated clima
and relative humidity (RH), and temperature and rainfall in either the CliMo
the WorldClim dataset (BIO). All the datasets were used at a spatial resoluti
discrete, irregularly spaced sites (the meteorological
stations), and the temporal series of covariates will ex-
hibit a high CO compared with the regularity and the
continuity of remotely sensed measurements.
To take full advantage of the available resources, re-

searchers need to know the extent to which different
variables selected to drive the models may affect the
final outcome. This study is aimed at identifying the op-
timal set of abiotic variables describing the environmen-
tal niche of the two prominent ticks Ixodes ricinus and
Hyalomma marginatum. It was not a goal to evaluate
the accuracy of different algorithms in producing dif-
ferent results or to produce ready-to-use maps. The
overall aim rather was to gain a general knowledge of
the main variables driving the distribution of these ticks
and to identify some procedural gaps in the selection of
the covariates because they are commonly targeted to
sketch predictive maps applied to the improvement of
human health. We explicitly sought to demonstrate that
(i) no single method exists to produce the best map for
ticks, (ii) covariates producing the best performing
model have high colinearity and spatial autocorrelation,
therefore rendering conclusions unreliable, and (iii) that
the transformation of time series of covariates produce
satisfactory results and remove most of the internal
problems of covariates.

Results
Effects of data source
Models for either I. ricinus or H. marginatum produced
high AUC values, ranging from 0.7 to 0.9 (Figure 1).
Worst results (lowest AUC) were consistently produced
for I. ricinus using the set of remotely sensed covariates,
ma marginatum. Models were built against a set of 10,000 random
te, using both temperature and saturation deficit (SD), temperature
nd or WorldClim sets (rainfall) or the set of “Bio” variables derived from
on of 0.1°.
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in comparison with those for H. marginatum with the
same sets of covariates. The resolution of the MODIS
imagery had an influence in the results, with AUC values
higher at lower resolution. Models based on monthly
values of MODIS-derived data produced the highest
AUC for the set of remotely sensed information. Models
based on PCA and harmonic regression had almost
similar AUC values for both resolutions of remotely
sensed products. However, interpolated climate datasets
produced high AUC values without important diffe-
rences between species. Interpolated climate covariates
also produced similar results for both species of ticks in
terms of AUC (Figure 1), with slight differences among
the different datasets used. The three sets of CliMond
based on relative humidity, saturation deficit, and rainfall
performed in similar terms. ROC curves for every model
are included in Supplementary material.

Background selection
The selection of the background affected the reliability
of the models for I. ricinus, producing consistently
higher AUC values if built against a background of
points recorded as close as possible to its recorded dis-
tribution. Such a background represents the lowest
range of the fuzzy membership function. Models built
with a random background had an AUC about 12–15%
lower than that with the optimal selection of the back-
ground points (Figure 2). This result was also observed
for H. marginatum, but the relevance of the choice of
the background points to the final AUC was less. The
AUC of models for H. marginatum with a random selec-
tion of the background was only 2–4% lower than the
optimal strategy of background choice (Figure 3).
Figure 2 AUC values of the models for Ixodes ricinus. Pseudo-absence
different membership values of the background or randomly distributed ov
variables from MODIS imagery, at either 0.05° or 0.1° of spatial resolution. C
other layers of NDVI (“Monthly”), the reduction of these monthly values by
the coefficients of a harmonic regression (“Harmonic”) involving eight cova
Spatial autocorrelation and collinearity
Models developed for I. ricinus had lower values of SA,
as measured by Moran’s I, than those for H. mar-
ginatum. This result was consistently obtained for each
dataset of covariates (Figure 4). The lowest autocor-
relation values were obtained when PCA or harmonic
regression covariates of the MODIS datasets were used.
The resolution influenced SA value, and covariates of
smaller resolution had higher Moran’s I values when
transformed by a harmonic regression. However, PCA
transformations and monthly data had similar SA values.
Higher values for Moran’s I were obtained for the
monthly set of MODIS covariates. Interpolated climate
datasets had consistently higher values of Moran’s I for
each modelled species and every transformation (humi-
dity, saturation deficit, or rainfall).
Values of VIF are included in Table 1 as the measure

of CO of covariates. VIF was low for the MODIS
monthly data transformed after PCA or harmonic re-
gression, for both 0.05° and 0.1° of spatial resolution.
Maximum values of VIF among any two of the MODIS-
derived covariates was as low as 2.1 (theoretical upper
limit being around 10). However, the set of monthly
MODIS values displayed maximum VIF values of 177
and 189 for the resolutions 0.05° and 0.1°, respectively,
meaning that at least two covariates of the series were
highly correlated. Highest average VIF values were found
for the monthly series of interpolated climate. The “Bio”
series of layers derived from the WorldClim dataset
displayed a mean VIF of 3.5, but several covariates were
highly correlated between them, with maximum VIF
values up to 196, some 20 times higher than the thresh-
old indicative of a high CO.
records were either a set of 10,000 random records, or selected at
er the target territory. Models were trained with remotely sensed
ovariates are the 12 monthly layers of surface temperatures and 12
a principal components analysis (“PCA”) involving six covariates, and
riates.



Figure 3 AUC values of the models for Hyalomma marginatum. Pseudo-absence records were either a set of 10,000 random records, or
selected at at different membership values of the background or randomly distributed over the target territory. Models were trained with
remotely sensed variables from MODIS imagery, at either 0.05° or 0.1° of spatial resolution. Covariates are the 12 monthly layers of surface
temperatures and 12 other layers of NDVI (“Monthly”), the reduction of these monthly values by a principal components analysis (“PCA”) involving
six covariates, and the coefficients of a harmonic regression (“Harmonic”) involving eight covariates.
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Discussion
This study evaluated the use of different sets of infor-
mative variables (covariates) to estimate the climate
suitability for two tick species with relevance for human
health. We sought to provide a comparison of the
suitability of several sets of climate covariates regarding
the statistical issues of CO and SA [26-32]. We did not
consider land features that might affect the abundance
of hosts, which are necessary for the tick’s blood meal
[33], or climatic extremes (cold spells, heat waves) that
could limit tick survival. We thus focused on the estima-
tion of systematic errors rather than on producing the
best map of the expected distribution of these ticks’
ranges, as a preliminary step to computing the probable
distribution of these species.
Figure 4 Moran’s I values for the sets of records of either Ixodes ricin
Although correlative models capture the distribution of
a given organism in the n-dimensional environmental
niche, the production of a “risk map” is only a projection
from the environmental space into the geographical one.
Both remotely sensed and interpolated climate datasets
have advantages and disadvantages in the capture of such
a niche. The first category has a high temporal resolution
but a relatively short running period (typically since the
years 1983 or 2000, according to the sensor), but satellite
data must be corrected to remove clouds, ice, or artifacts
[34]. Moreover, estimators of the saturation deficit are not
easily available in the satellite products, although reports
estimated the humidity component from standard NDVI
imagery [35,36]. The interpolated climate datasets are eas-
ily available and free of contaminations like clouds or ice.
us or Hyalomma marginatum.



Table 1 Mean, minimum, and maximum values of the
variance inflation factor (VIF) as a measure of the
collinearity observed in the different sets of variables

Set VIF: Average (Min/Max)

Harmonic regression MODIS 0.1° 1.2 (1.0/3.3)

Harmonic regression MODIS 0.05° 1.1 (1.0/3.2)

Monthly variables MODIS 0.1° 8.2 (2.0/189.1)

Monthly variables MODIS 0.05° 8.3 (2.1/177.4)

PCA MODIS 0.1° 1.2 (1.1/2.2)

PCA MODIS 0.05° 1.1 (1.0/2.1)

WorldClim 12.2 (3.0/196.0)

WorldClim (Bio) 3.5 (1.0/125.4)

CliMond (Temperature + Rainfall) 12.1 (3.6/126.1)

CliMond (Temperature + RH) 12.4 (4.1/128.4)

CliMond (Temperature + SD) 13.5 (4.0/119.5)

The mean VIF averages such values for every pair-to-pair comparison between
variables. Minimum and maximum values result from the absolute minimum
and maximum comparisons: a high maximum VIF reflects high collinearity
between, at least, two layers of covariates. A value of VIF = 10 is considered as
the allowable maximum.
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These products are commonly available as the long-term
average for the period 1960–1990 for the complete world,
at different resolutions, and include estimations of water
availability in the air, which are important for explaining
tick activity and mortality rates [37]. A number of
modellers have argued strongly for the use of predictors
that are ecologically relevant to the target species [38-41].
It has been stated that the ‘use of automated solutions to
predictor selection … should not be seen as a substitution
for preselecting sound eco-physiological predictors based
on deep knowledge of the bio-geographical and ecological
theory’ [27, pp: 1681–1682]. In this context, the use of
different variables describing the water content of the air
(e.g., humidity or rainfall) has not affected the final out-
come. However, these results have been obtained in the
framework of a high CO of the covariates and are difficult
to interpret.
It is important to mention that no single approach

exists for the capture of climate niche of these species of
ticks, at least with the two target species and the dif-
ferent sets of covariates used in this study. First, there is
a clear effect derived from the species, which has been
observed for remotely sensed information, but not for
interpolated climate covariates. I. ricinus is a species co-
lonizing a large area of the western Palearctic and thus
reported under a large variety of environmental condi-
tions [42]. A certain degree of adaptation of the tick
populations to the regional climate conditions should
therefore be expected, something that cannot be cap-
tured by the modelling algorithms because they work on
the basis of the niche conservatism [43]. H. marginatum
is a Mediterranean species, colonizing only the relatively
warm and dry environments of the Mediterranean basin
[17]. It is thus expected that adaptation to regional
environmental conditions is lower than for I. ricinus
because of the narrower region occupied in the environ-
mental niche [17]. We ignore why this effect is not
observed in the datasets of interpolated climate.
Studies simulating sets of pseudo-absences to train the

models have tried to assess how the strategy of choice of
background may influence the predictive abilities of
models for organisms [43,44]. A large experiment [45]
showed that a potential drawback of models generated
with random pseudo-absences is that they might coin-
cide with locations where the species actually occurs.
This coincidence would strongly affect the calculation of
the probability of presence in the model. Consequently,
the models generated with random pseudo-absences are
expected to have poorer fit [46]. The selection of the
background is different for each target species and may
depend upon the biology of each organism and the
abiotic features of the territory to be modelled. For
I. ricinus, a species that occupies a large portion of the
available climate niche in the target region, the choice of
a background near the recorded distribution of the tick
(low membership probability) produced always better
models, with a difference of about 12–14% of AUC
values over the random background. For H. mar-
ginatum, which is restricted to a smaller volume of the
available climatic conditions, such a choice of back-
ground affected model reliability in only 2–4% of AUC
values. The selection of the background points from the
n-dimensional distribution of the organism in its climate
niche, and not from the spatial structure of its distri-
bution, might be an interesting method to improve our
understanding of the factors driving such distribution
[47], a method that has not been addressed here.
Some sets of covariates tested for this study yielded

high values of both SA and CO (as the Moran’s I and
VIF). It was expected that the sets of interpolated
climate resulted in higher SA values because these data
are gridded interpolations of climate stations, with ef-
fects that are greater in regions where a low density of
points is available, introducing uncertainties into the
predictions. CO was also expected to be higher in
datasets involving monthly covariates because each va-
riable is correlated with others. Some studies [26,27,48]
have recommended incorporating a term for SA into the
analysis. However, this method has been criticized [29]
because models that incorporate a SA term reflecting
environmental rather than biological spatial structure
could not be applied to other situations. Other ap-
proaches have involved the detection of autocorrelation
among covariates before the modelling exercises, drop-
ping the highly correlated covariates from the final
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modelling approach [49]. This method, however, might
remove the most biologically important covariates be-
cause it is an automated solution that disregards the a
priori ecological significance of covariates.
It seems, thus, that a single solution for the capture of

the environmental niche of ticks is not straightforward.
Remotely sensed information should be preferred to in-
terpolated climate. However, in situations of a large
number of pixels contaminated by water vapour, the use
of interpolated climate should be considered, together
with an explicit assessment of the CO of the residuals to
check for inflation of the models. Monthly covariates of
satellite-derived information had the highest values of
VIF, but these values were clearly lower than the inter-
polated climate, including the set of “Bio” variables.
Nevertheless, the models built upon the transformation
of the original time series either by the coefficients of a
harmonic regression or a PCA produced the best re-
moval of SA and CO, as already reported [20]. The
preferred method to infer the abiotic niche of these
arthropods should be ideally based on a transformation
of the original time series, extracting the raw temporal
values in a series of uncorrelated covariates. It has been
reported, however, that the PCA reduction of a time
series lacks its intuitive meaning [21]. In contrast, a har-
monic regression retains the terms about the amplitude
and seasonality of each time component and is therefore
easier to interpret. We advocate the use of the coeffi-
cients of a harmonic regression, which represent a sum-
marized description of the climate niche of the organism
while retaining the ability to explain seasonal trends with
a few parameters. Moreover, the selection of variables
derived from purely physical traits, like elevation, will
contribute to inflate the results of the model by further
CO with the raw climate features like the temperature.
The inclusion of elevation is a common procedure in the
building of correlative models, which cannot help in the
interpretation of the niche of the organisms and will
falsely inflate the predictive abilities of models [50].

Conclusions
Several conclusions emerged from this study, and prob-
ably the most important is that no one method exists to
elaborate maps of risk for arthropods of medical interest.
Interpolated gridded climate covariates do not seem to
be adequate tools for such a modelling exercise, even if
they output high AUC values, because issues of SA and
CO that may affect the reliability of the inference of the
niche under some conditions. This also applies to time
series of data (i.e. monthly intervals) that are obviously
correlated, either for gridded or remotely sensed cova-
riates. We might recommend the coefficients of a
harmonic regression applied to the monthly series of
remotely sensed information about LST and NDVI
because they are uncorrelated covariates explaining the
complete series. It is also important to investigate the ef-
fects of high-resolution features other than climate co-
variates (such as landscape composition or presence and
abundance of suitable hosts) in the performance of the
models. There is not a single method to select the back-
ground in presence-only models. There is an urgent
need to adopt protocols to include real absence records
of the ticks and to turn to statistical methods that can
express the relationships of biological distributions with
biologically meaningful climate covariates. It is con-
cluded that procedures aimed to capture the distribution
of arthropods with medical interest might be better
focused on the inference about the climate niche, instead
to simply project on the geographical distribution.
Methods
Explanatory variables and data preparation
The selection of the explanatory variables is a critical
step in the inference and projection of the climate niche
of an organism. In the case of ticks, additional complica-
tions arise because rain has little influence on the tick
life cycle at large scales. The tendency is to correlate
empirical observations on tick phenology with rainfall
patterns; however, the factors affecting such phenology
are temperature, relative humidity, and saturation deficit
[4,51], and rainfall probably is adequate only at regional
scales but unreliable for large patterns of variation. In
the case of remote sensing, the Normalized Derived
Vegetation Index (NDVI) is a variable that better cap-
tures the reported distribution of some species of ticks
[37,52] because it is considered as a proxy for water
availability.
We tested several sets of abiotic covariates at different

resolutions and processed with different methodologies.
Table 2 includes a list of the sets of raw abiotic variables
and the further processing to obtain the variables driving
the models. We used a set of MODIS satellite-derived,
Land Surface Temperature (LST) and NDVI, at a spatial
resolution of 0.05° (LST/NDVI A) or 0.1° (LST/NDVI B),
obtained at a temporal resolution of either 8 (A) or 30
days (B), for the years 2000–2011. LST/NDVI A cor-
responds to the product MOD11C2, available at https://
lpdaac.usgs.gov/products/modis_products_table (accessed
May 2011) and contains the quality layers necessary to ad-
equately assess the effects of clouds and aerosols on the
image. Quality flags were addressed by removing pixels
that were catalogued by MODIS as being obscured by
clouds, water, or null/non-valid measurements. For every
8-day interval of the 2000–2011 period, we used only the
pixels marked as “perfect”, “optimal”, and “valid but mo-
derately affected by water vapour”, which yielded a set of
monthly composites of either LST or NDVI. The monthly

https://lpdaac.usgs.gov/products/modis_products_table
https://lpdaac.usgs.gov/products/modis_products_table


Table 2 List of the datasets used in this study and the transformations carried out and applied to modelling purposes

Set Which variables Resolution Time Covariates

MODIS LST and NDVI 0.05° and 0.1° 2000–2011 Monthly values: 24 variables

MODIS LST and NDVI 0.05° and 0.1° 2000–2011 Principal components of the monthly datasets: 6 variables

MODIS LST and NDVI 0.05° and 0.1° 2000–2011 Coefficients of harmonic regression of monthly values: 8 variables

WorldClim Temperature and rainfall 10´ 1960–1999 Monthly values: 24 variables

WorldClim Temperature and rainfall 10´ 1960–1999 Transformation of monthly values into “Bio variables”: 19 variables

CliMond Temperature and relative humidity 10´ 1960–1999 Monthly values: 24 variables

CliMond Temperature and saturation deficit 10´ 1960–1999 Monthly values: 24 variables

The basic set of data included the MODIS series of monthly values of Land Surface Temperature (LST) and Normalized Derived Vegetation Index (NDVI), as well as
the interpolated gridded monthly climate data of temperature and rainfall or temperature, rainfall, and water saturation deficit.
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composites were obtained by the maximum pixel value of
the 8-day products for such months.
LST/NDVI B is based on the MODIS product MOD11C2

and is available at http://neo.sci.gsfc.nasa.gov/Search.html
(accessed December, 2011). This product has a smaller
resolution than the original (0.1° instead of 0.05°) but is
available as a ready-to-use set of monthly data, with the
pixel contamination by water already removed by the
MODIS team. The use of the data already processed by
the MODIS processing team ensures its quality, signifi-
cantly reduces the time for processing, and provides a
clean set of data that can be directly used to feed the mod-
elling chain of processes. We specifically tested it to check
if its smaller resolution could affect the performance of
the models.
These two products were used in three different ways:

(1) averaged monthly values for the years 2001–2011
(12 variables for LST and 12 for NDVI); (2) the ortho-
gonal transformations by PCA of the original series of
data (the first 3 components for LST and the first 3 axes
for NDVI, explaining 88.2% and 87.9% of the original
variance, respectively); and (3) the coefficients of a har-
monic regression of the series of data against time.
Harmonic regression is a mathematical technique used

to decompose a complex signal into a series of indi-
vidual sine and cosine waves, each characterized by a
specific amplitude and phase angle [53]. In the process,
a series of coefficients describe the cyclical variation of
the series, including the seasonal behaviour. A variable
number of components can be extracted, but only a few
terms are in general necessary to describe annual,
semi-annual, and smaller components of the seasonal
variance. Such a procedure is similar to the trans-
formation of a time series by a Fourier analysis [20], in
which the harmonics of the series produce values for the
maximum, phase, and period of the series. The har-
monic regression was applied on the average of the 8- or
30-day MODIS images of LST or NDVI. The harmonic
regression model used in this study was defined as
follows:
Y ¼ β0 þ cT þ
Xn
i¼1

Ai sin
2πi
s

T

� �
þ ϕi

where Y is the value of LST or NDVI, B0 is the offset, c
is the trend, Ai is the amplitude of the ith oscillation, ϕ
is the phase component of the ith oscillation, s is the
fundamental frequency, and T is the time-dependent
variable. We performed both the PCA transformations
and the harmonic regressions in R [54] and the package
“raster” version 2.0-08 [55]. Four coefficients for LST
and four for NDVI were used for model fitting because
the addition of more terms did not significantly improve
the fitting of the original series.
We also included monthly values of temperature and

moisture obtained from two sets of interpolated grid-
ded climate data, namely WorldClim [56] (available at
http://www.worldclim.org) and CliMond [57] (http://
www.climond.org). The former does not include data on
the water content of the air but includes precipitation, and
the latter includes both precipitation and relative humidity
estimates. Although methods to interpolate the tempe-
rature are the same in both sets of data, the interpolation
of the humidity features may differ. Therefore, we used
both sets of data, namely temperature and precipitation,
as available from WorldClim, and temperature and hu-
midity, as available from CliMond. Details on the prepa-
ration of the datasets are available in references [56,57],
respectively. In short, they include averaged monthly
values for temperature and moisture (either precipitation
or relative humidity) for the period 1960–1990, obtained
from ground climate stations and interpolated thin-plate
smoothing splines, using elevation, latitude, and longitude
as independent variables.
We further processed the values of relative humidity

as available in CliMond to obtain estimates of the satu-
ration deficit because of the importance of such a feature
in the life cycle processes of the ticks [51]. Monthly fea-
tures of both sets were downloaded and used at a spatial
resolution of 0.1° from their respective web sites
(accessed February, 2012). We also used a set of variables

http://neo.sci.gsfc.nasa.gov/Search.html
http://www.worldclim.org/
http://www.climond.org/
http://www.climond.org/
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derived from the main WorldClim dataset, which are
called “Bioclimatic” variables and include information
derived from the main monthly dataset. The bioclimatic
variables represent annual trends (e.g., mean annual tem-
perature, annual precipitation), seasonality (e.g., annual
range in temperature and precipitation), and extreme or
limiting environmental factors (e.g., temperature of the
coldest and warmest months and precipitation of the wet
and dry quarters). Interpolated climate covariates were
not processed for further orthogonal transformations.
Model building and comparison
For each species, models were developed with the sets of
environmental covariates and a set of data point loca-
tions where the species has been observed in the western
Palearctic. The ‘Maximum Entropy Approach’ using the
MaxEnt computer program for modelling species geo-
graphic distributions (v.3.3.3k [58]) was employed to ge-
nerate models for the species studied. The algorithm
generates inferences from incomplete information, esti-
mating a target probability distribution by finding the
probability distribution of maximum entropy, subject to
a set of constraints that represent the incomplete infor-
mation about the reported distribution. This is a ma-
chine learning modelling method, which has recently
gained attention for its favourable performance in com-
parison to other modelling methods [59]. We did not
address a comparison of the reliability of the different
Figure 5 The spatial distribution in the western Palearctic of the com
Hyalomma marginatum (blue dots) used to train the models.
modelling algorithms, and other methods using presence-
only data are available [59].
We used the reports of tick surveys as input data to

train the models. These reports were previously com-
piled from different sources [17] and include 4,908 re-
cords of I. ricinus and 698 records of H. marginatum
with a reliable geolocation. Figure 5 includes the spatial
distribution of these data points in the target territory.
More than 98% of the records were originally recorded
for the period 1970–2010; however, some of the oldest
records for I. ricinus were originally reported in the
years 1910–1925. These records represent 1.5% of the
total dataset and could affect the reliability of the cap-
tured niche because the periods of time of tick reporting
and preparation of the climate dataset do not overlap
[17]. This small fraction of old records was removed
from the dataset before further analysis.
For each species, models were developed with every set

of environmental covariates together with the set of data
point locations where the species had been observed. We
used quadratic and product terms to handle the non-
linear response of ticks to climate covariates and to allow
relationships among covariates to be included [49]. We
explored a range of regularization parameters according
to published recommendations [59] to choose a final
regularization parameter (2 for both species to be mo-
delled). Sampling bias was not addressed because of the
inherent difficulties in its calculation on a historical
dataset of records where no sampling effort was specifically
piled records of the ticks Ixodes ricinus (black dots) and
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included. Models were trained with 70% of records and
evaluated against the remaining 30%. The modelled distri-
butions were evaluated for predictive performance using
the area under the receiver operating characteristic (ROC)
curve to assess the agreement between the presence–
absence records and the model predictions [60]. Model
reliability was determined by calculating the area under the
curve (AUC) such that a curve that maximizes sensitivity
for low values of the false-positive fraction is considered a
good model. The AUC represents a reliable important
metric for evaluating diagnostic procedures, providing a
single measure of model reliability, independent of any par-
ticular choice of threshold value [60]. Since its first pro-
posal as an appropriate method to estimate the accuracy of
species distribution models, reports have described its use
in this field of research [61-63]. However, other studies
have criticised its indiscriminate application [45,64]. We
calculated and compared AUC using the R package pROC
[65]. Additional file 1: Figure S1 and Additional file 2:
Figure S2 include the ROC curves for the models.
Additional file 3: Figure S3 and Additional file 4: Figure S4
include maps of the climate similarity for either Ixodes
ricinus or Hyalomma marginatum in the target territory.

Selection of pseudo-absences
The lack of a set of negative (absence) records—a usual
bias in surveillance information—makes it necessary to
compute pseudo-absences, which are randomly selected
over the background of the target territory. The mode-
lling software selects a random set of background points;
however, the wide range of environmental conditions
under which pseudo-absences can be located might se-
verely alter/bias the outputs of the calculations [66,67].
We elaborated on a method to select a background,
comparing the AUC values obtained by the default ran-
dom selection of absences provided by MaxEnt software
against those built employing a customized, ad-hoc ap-
proach that select negative records from the background
Figure 6 The membership function used to select the background to
marginatum (B). The tone from blue to red shows the degree of member
landscape heterogeneity and distance to known records of the target tick.
on the basis of criteria with ecological meaning. To do
so, a grid with cells at a resolution of 0.01 degrees was
created for the study area, and the probability for each
pixel to be selected as background was calculated on a
cell-by-cell basis. The rationale is that each cell of the
grid has a probability to be a “background site”, which
depends on both the distance to the nearest record of
the target organism and the terrain ruggedness. The ter-
rain ruggedness is defined as the difference in elevation
between adjacent cells in a digital elevation grid covering
the area of study. This is a standard definition (Topo-
graphic ruggedness index [68]) aimed to produce an
evaluation of how variable the terrain in the cell is. A
digital elevation model at a resolution of 1 km (obtained
from http://www.worldclim.org, accessed December
2011) was used to compute the landscape heterogeneity,
using a script for ArcGIS Desktop (ESRI, Redlands, CA,
USA) available at http://arcscripts.esri.com (Topographic
ruggedness index, accessed January, 2012).
A fuzzy membership operator was applied to the

distance-to-presences and terrain ruggedness variables
to derive for each cell the probability to be selected as
background. Mean and maximum distances within each
set of records were the values of 0% and 100% of mem-
bership for “distance”. Mean and 75th percentile values
of ruggedness were the values of 0% and 100% of mem-
bership for “ruggedness”. If the target cell is “far” from a
cell where the organism has been recorded, the tick is
probably absent in the candidate cell, and that cell has a
high probability of being a background site. The pro-
bability of being background decreases as terrain rug-
gedness increases, meaning that the target cell may
contain populations of the tick not yet surveyed. Figure 6
provides a visual explanation of the values of back-
ground membership, ranging from 0 to 1, for either
I. ricinus (2A) or H. marginatum (2B) over the target
territory. We produced models with background points
based on different degrees of membership to the
train the models for Ixodes ricinus (A) and Hyalomma
ship to the background (pseudo-absence) records and is based on the

http://www.worldclim.org/
http://arcscripts.esri.com/
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background, from 0.1 to 0.9, and each combination of re-
motely sensed covariates. Models were also built using a
set of 10,000 randomly selected background points and
compared against the models built with background
points selected as described before. The influence of back-
ground selection on AUC values was done only for the set
of remotely sensed covariates and their transformations.

Assessing spatial autocorrelation and collinearity
We assessed the SA and CO of the sets of explanatory
variables used in this study. The effect of SA on linear
regression significance values has been tested using arti-
ficially generated variables with known spatial structures
[69-71]. A common procedure to cancel the effect of the
spatial structure of species occurrences is to incorporate a
term for SA into the analysis [26,27,48], usually a measure
of contagion that encompasses the effect of spatial neigh-
bourhood in the statistical test. However, spatial patterns
observed in the residuals could just as well result from
failure to include an important autocorrelated predictor in
the model [28] as much as from a real biological process.
As a result, models that incorporate a SA term reflecting
environmental rather than biological spatial structure will
hardly be applicable to other situations [29].
On the other hand, it has been reported that CO does

not affect MaxEnt performance (i.e., the predicted distri-
bution range of the target species) but can hinder model
interpretation (i.e., obstruct the decision about the co-
variates driving the distribution of the target species)
[30]. The focus here is not the reliability of MaxEnt as
affected by CO but to demonstrate that such a spatial ef-
fect exists in the sets of covariates most commonly used
to map the distribution of arthropods that affect human
health. In most cases, it is important to know how each
variable influences the presence of the modelled species
and, subsequently, which variables have the greatest
influence on the model and in what manner these va-
riables influence species occurrence [31]. Caution must
be used when assessing this importance because a strong
CO can influence results by implying greater importance
for one of two or more highly correlated variables.
We used the Moran’s I for the model residuals to

assess the SA of the covariates, separately for each set of
covariates and respective transformations, the different
spatial resolutions, and the two sets of tick records used
to train the models [71]. We computed Moran’s I with
the module “Autocorr” in Idrisi for Windows (V14) on
the first lag only so that the algorithm scans through the
whole image of model residuals and looks at each cell and
its immediate neighbours. Moran’s I ranges between −1
and +1, where +1 means absolute and 0 no spatial auto-
correlation. A negative index could indicate some kind of
regular pattern. We assessed CO of the covariates with
the variance inflation factor (VIF), which is a measure of
correlation between pairs of variables [72]. Values of
VIF > 10 denote a potentially problematic CO within the
set of covariates, indicating that these covariates should be
carefully evaluated in model development [32]. VIF was
calculated for every combination of covariates and their
orthogonal transformations and resolutions. Results are
presented as the mean, minimum, and maximum values
of VIF found in every pair combination of covariates
among each set.

Additional files

Additional file 1: Figure S1. ROC curves for the models built with
different sets of remotely sensed variables and selecting the background
according to the membership values of a fuzzy logic set of rules. The
comparison with the ROC curves as obtained by a random selection of
the background is included. A, B, C, D: Hyalomma marginatum; E, F, G, H:
Ixodes ricinus. The sets of remotely sensed variables are as follows:
Harmonic regression from MODIS data at 0.05° (A, E) and 0.1° (B, F);
monthly values of the MODIS series (C, G) and a transformation by a
principal components analysis over the monthly series of values of
MODIS at 0.1° (D, H).

Additional file 2: Figure S2. ROC curves for the models built with
different sets of interpolated gridded climate. A: Hyalomma marginatum.
B: Ixodes ricinus.

Additional file 3: Figure S3. Maps of climate similarity in the target
territory (from 0 to 100) for Ixodes ricinus produced by four different sets
of variables. A: WolrdClim using 12 months of averaged temperatures
and 12 months of averaged precipitation; B: MODIS monthly values,
using 12 months of LST and 12 months of NDVI. C: Transformation of
MODIS monthly values by a harmonic regression (Fourier transformation)
using the first coefficients of LST and the first 5 coefficients of NDVI. D:
PCA transformation (3 axes) of MODIS monthly values.

Additional file 4: Figure S4. Maps of climate similarity in the target
territory (from 0 to 100) for Hyalomma marginatum produced by four
different sets of variables. A: WolrdClim using 12 months of averaged
temperatures and 12 months of averaged precipitation; B: MODIS
monthly values, using 12 months of LST and 12 months of NDVI. C:
Transformation of MODIS monthly values by a harmonic regression
(Fourier transformation) using the first coefficients of LST and the first 5
coefficients of NDVI. D: PCA transformation (3 axes) of MODIS monthly
values.
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