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PREFACE 

Although the study.of switching circuits had previously drawn 

some attention, my interest was really sparked by attendance at a 

short course on the Design·of Digital Control circuits sponsored by 

Bell Telephone Laboratories at Murray Hill, New Jersey, August 24 

through September 4, 1953. The following year I had the privilege 

of teaching a course on this subject in the School of Electrical 

Engineering at Oklahoma.Agricultural and Mechanical College. Occa-' 

sionally, I saw reference to the use of diodes in switching circuits 

but no statement of how to include them in the mathematical treat­

ment of the circuits. Mr Kirby B. Austin, Director of Research at 

AHied Control Company, once remarked to me that he had greatly 

reduced the number of relays needed in a particular switching prob­

lem by introducing diodes into the circuit. I decided that an 

interesting and useful study would be the development of a form of· 

Boolean algebra with which to handle switching circuits containing 

diodes. 

The mathematical basis of a four-valued Boolean algebra 

developed in this thesis will, I hope, be a useful tool for ana­

lyzing and simplifying switching circuits which include diodes, 

Although the use of this algebra or of matrices for very simple cir­

cuits may not be justifiable, it seems that the techniques offer a 

mathematical discipline which should be valuaple for analyzing more 
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complex circuits. 

I am indebted to members of the staff of Bell Telephone Labora­

tories who arranged for the short course on the Design of Digital 

Control Circuits and who inspired my interest in the subject. Sincere 

thanks are due Professor A. Naeter for making it possible for me to 

teach a course in switching circuits in his department. Work on a 

relay codtract under the supervision, of Professor Charles F. Cameron 

made it possible for me to learn a great deal about relays as ele­

ments of switching circuits. Special tha~ks are due my adviser, Dr. 

Herbert L. Jopes, for his patience with my periods of inactivity and 

for his stimulation of the completion of this work. 
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CHAPTER I 

INTRODUCTION 

In 1857, George Boole1 published the original presentat;on of 

the algebra of logic. Since then, 1118;ny mathe~ticians have extended 

his investigations. Susanne K. Langer2 l.ists a number o~ publications 

on the subjecf. Ip 1938,.Claude E. Shannon3 appli~d Boolean al.gebra 

to relays aFd switching circuits. In addition to a number of journal 

articles, two books4 ' 5 have, to a great extent, been based on the 

application of JJ¥1thematical logic toswitching circuits. 
. . 

This fonn of 1!1f!themattcs is ideal for an:analysis of on~off 

devices: switches, relays, counters, multivibrator~, and dial tele-

phone ~ystems. Any electric.!!-1 cir9uit that has two possible states 

can be analyzed in terms of this algebr{l of,l.ogic, whether the two 

states are em~rgized and de~nergi:zed, magl\etized positively and 
.• ! 

1George Boole~ ~ Ittv~stigation, of _the Laws ~ Thought (London, 
1 857). 

2 Susanne K. Langer,~ Introduction~ Symbolic Logic (2d ed., 
New York, 1.953), pp. 356-3q0. · 

·. I , 

3 Claude E: Shannon, "A Symbol!~ Analysis of Relay and Switching 
Circuits," AIEE.'.rransactio~s, LVII (1938), 713-723. -.--- . . 

. 4 R. K. Richards, Arithmetic Operations in Diiital Computers 
(New York, 1955). · · · 

5William Keister, A •. E. Ritchie, ands. H. Washburn, The Design 
of switching Circuits (New York, 1951). 
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magnetized negatively, or conducting and non-conducting. 

In recent years an increasingly popular circuit element has been 

the diode, a device that conducts very well in one direction but has 

almost no conduction in the opposite direction. For many years diodes 

have been used as rectifier~ to obtain unidirectional current from 

alternating-current sources. Highly efficient "solid-state" diodes of 

the germanium or silicon type that require no filament voltage have 

greatly stimulated the development of diode circuitry. Diodes have 

proved to be particularly useful in digital romputer circuits. 

When an attempt is mad~ to apply ordinary Boolean algebra to 

diode switching circuits, a serious difficulty arises. The algebra 

allows two possible states, and a diode is either conducting or not 

conducting at any given instant, but a thorough analysis must some-

how handle circuit elements that conduct well in both directions, 

elements that do not conduct in either direction, and diodes that 

conduct well in one direction but not in the other. 

Mathemati~al analysis of diode circuits has recently been 

studied by a few authors. Lee and Chen6 have applied a three-valued 

propositional logic introduced by Post7 to switching circuits, but their 

work deals with three possible values of output voltage, for example, 

instead of treating the bilateral conduction of diodes as a special kind 

of circuit. Allowable voltage states are negative, zero, and positive, 

6 C. Y. Lee and W. H. Chen, "Several-Valued Combinational Switching 
Circuits," AIEE Transactions, LXXV, pt. I (1956), 278-283. 

7 E. L. Post, "Introduction to a General Theory of Elementary Pro­
positions, 11 American Journal of Mathematics, XLIII (1921), 163-185. 



so that a trinary arithmetic can be handled instead of the usual bi-

nary arithmetic . Yokelson and Ulrich8 have shown how to solve for 

values of resistors and voltages to be used with diodes in logic cir-

cuits, but they have not applied an algebra of logic to the di odes . 

A rectifier algebra has been developed by Schaefer9 using a Vb for 

"the more positive of a orb" and a Ab for "the more negative of a 

orb. " His a l gebra "is not the ordinary numerical algebra taught in 

high school, nor is it the Boolean algebra used for relay circuits . 

It is, rather, something of a union of the two . 11 10 The method is 

particularly useful when more than one voltage source is to be con-

sidered, but it does not handle combinations of diodes with ordinary 

on-off devices. 

A study of the problem revealed that it would be useful to have 

an algebra adapted to regular switching circuits or diodes or both . 

In order to develop such an algebra, it seemed vital to understand 

the fundamental concepts of ordinary Boolean algebra more thoroughly 

than the average electrical engineer has done . Chapter II of this 

thesis covers the mathematical background necessary for a proper 

understanding . On this foundation, the third chapter develops the 

theory of the Boolean algebra of order two, that is, the two-valued 

logic with which ordinary switching circuits can be analyzed . In 

addition to the two standard binary operations universally used, 

8 B. J. Yokelson and W. Ulrich, "Engineering Multistage Diode 
Logic Circuits," AIEE Transactions, LXXIV, pt . I (1955), 466-475 . 

9 David H. Schaefer, "A Rectifier Algebra," AIEE Transactions, 
LXXIII, pt. I (1955), 679- 682. 

10 Ibid . , p . 679 . 
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other binary relations are evaluated. Based on a few postulates and 

definitions, several theorems involving the various binary relations 

are tabulated. 

Chapter IV develops the Boolean algebra of order four as the di­

rect union of two two-valued Boolean algebras. Twenty operational 

tables are developed for the four-valued algebra. Except for the 

number of allowable digits, the new algebra does not negate the two­

valued postulates and theorems. It is, rather, an extension of the 

old algebra to allow two more elements. Based on nine new dual pos­

tulates, in addition to the postulates and theorems of the two-valued 

algebra, a number of new theorems are tabulated. 

A brief coverage of the application of two-valued algebra to 

conventional switching circuits is included as a basis for under­

standing the application of four-valued logic to circuits that include 

diodes, different kinds of voltage sources, and polarized relays. As 

an illustration of how present two-valued techniques can be expanded 

to include four allowable states, the use of matrices is discussed. 

It appears to the author that the four-valued Boolean algebra 

herein developed is a sound mathematical basis for analysis of 

switching circuits which include unilateral devices. The technique 

should prove to be particularly valuable in the rapidly expanding 

fields of digital computers and automatic controls. 

4 
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CHA:i?TER II 

THE MATHEMATICAL .BASIS OF BOOLEAN ALGEBRAS ''· .·. . . - : . . . . 

Classesl 

The words "class" and •rset" are us~d interchangeably to refer to 

a collectioh .of .objects which have a common property. Any property 

defines a class, namely, the class .of all objects which have that prop-

perty. Conversely, any class determines a property by virtue of the 

fact that an object is said to have a particular property if and only 

if it belongs to the corresponding .class. The objects are called the 

elements of the .class, The combination of signs x.E C means "xis an 

element of C11 or "the element Xis in the class C". Mathematically; 

one may consider as a valid set .one which contains no elements what-

soever, This would be called the empty, null, or void set. When a 

cl,';!.ss C is defined by an .enumeration of all f_ts elements (for example, 

a, b, and c), it is designated by enclosing the elements within braces 

as follows. C .= (a,b,c}. 

Classes may in turn be considered as elements .of other classes. 

Any higher class is defined by pointing out .the lower classes which 

belong to it. One restriction must be applied, however, in order to 

avoid logical contradictions. No class may belong to its .own elements, 

lGarrett Birkhoff and Saunders Mac Lane,!!_ .Survey of Modern 
Algebra (rev. ed,, New York, l 953) J pp. 29-:-34. 
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Thus, the 1tclass of all classes n is not considered val:i.:d . A set A is 

called a subset, or subclass, of set B if and only if every element of 

A is also an element of B. The set A is then said t-0 be included or 

contained in set B. This relationship is expressed symbolically by 

A~ B or B ~ A. Class A is equal to class B if and only if A is a sub­

set .of Band Bis a subset ,of A. If A is a subset .of B but A is not 

equal to B, A is called a proper subset of B, designated A< B. The 

null set O is considered to be a subset of every set. The universal set 

I is the .class which includes all subclasses and elements involved in a 

particular problem. If, for example, the elements under discussion were 

specific people, they might be classified into l&rger sets according to 

a particular property . The universal set would then include all people 

of all classes . The inclusion relation satisfies the following laws. 

Reflexive : A~ A for all A. 

Antisynnnetric : If A~ Band B ~ A, then A= B. 

Transitive ; If A ~ Band B ~ c, then A ~ C. 

The intersection .of two sets A and Bis written An B = C and con­

sists of all elements which are in both A and B but not in one .of them 

alone . The symbol n is frequently referred to as 1tcap 11 • C is the 

greates t set included in both A and B. 

The .union of two sets E and Fis written E v F = G and consists of 

all elements which are in E or in For in both E and F. The symbol u 

is f requently referred to as ri,.cup". G is the smallest set which con­

tains all elements of E and all elements of F. 

Correspondence 

A correspondence a ~ b is a- rul e which prescribes for each element 

a of class A a c-0rresponding element b of another class B. Two types of 
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correspondence are possible) a many- to-one and a one-t-o-one. In a many-

to-one correspondence there is at least -0ne element bin the class B 

which corresp-0nds to two or more elements a 1 J a 2 ) etc.) in A. Such a 

correspondence is designated with a single-headed arrow: a-. b . In a 

one-to-one correspondence) each element of B corresponds to ,one and only 

one element in A. F.or this relationship) a double-headed arrow is used: 

a .. b. Arrows are also used to show correspondences between sets: A-. B 

or A~ B. For finite sets) a correspondence is sometimes designated by 

writing each element of the first set on one line) writing corresponding 

elements of the second set in appropriate positions underneath on a 

second line, and enclosing both lines within parentheses , Thus, for the 

letters and digits of a modern .telephone dial, the many-to-one corre-

spondence would be written as follows, 

( ABC DEF G HI J KL MN OP RS TU V W X Y Z) 
· 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 0 

When class Bis included in class A, a many-to-one correspondence 

A -. Bis called a single-valued transformation and a one-to ~one cor-

respondence A ~ Bis called a ~-to-one transformation. A one-to-one 

transformation on a finite set is called a permutation. 

Relationship 

Elements of a set may be "related" to each other in many ways. 

For example) element a may equal element b of the same set. This 

relationship is universally expressed as a= b. In the set of inte-

gers, element a might be an integral divisor of b, written a I b. 

Such relationships between two elements are called binary relations 

because two elements are involved. These binary relations might, in 

grneral, be expressed by the symbol p. pis a binary relation f-0r a 
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class C if, for two elements a and b of c, either a stands in the 

relation p to b (in symbols, a p b) or a .does not stand in the .relation 

p to b. 

An equivalence relation is a binary relation a p b which satisfies 

the following laws. 

Reflexive: a pa for all a of the class C. 

Symmetric : If a p b, then b pa for all elements a and b of C. 

Transitive: If a p band b pc, then a pc for all a, b, and c 

of C. 

Obviously , the equivalence relation .is satisfied by equality of numbers 

and by congruence of triangles. The sign - is customarily used for the 

general equivalence relation . 

Binary Operations 

A binary operation on a class C is a rule which assigns to each 

pair of elements of Ca unique element .of C. For example, in the class 

of intergers, 2 + 3 = 5 symbolically assigns the number 5 to the pair 

of numbers 2 and 3 when the binary operation is+. In 2•3 = 6, the 

binary operation is the product, symbolized by•. Using the symbol o 

for any binary operation, a ob= c uniquely defines c. A set with 

such an equality relation between its elements is called an ~perational 

system. If the equivalent .of any couple of an operational system Sis 

itself an element .of s, the system is said to be closed. 

In general, the order of the elements involved in the binary 

operation will need to be observed, since a ob might not be equal to 

boa. A binary operational system in which a ob== boa is called 

commutative. The following axiom is assumed for the equality relation 

in an operational system. 

8 
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Substitution Principle 

In an operational equation) any one of the elements may be replaced 

by its equivalent, and any couple, triple, or n--ttiple may be replaced by 

its equivalent. If ai .= a 2 and bi = b2 , then ai o bi = ai o b2 = a 2 o b1 

= a2 o b2 • If a o b = c, then .c o d = (a o b) o d, Since, by the sub­

stitution .principle, a binary operational system can produce expressions 

like (a ob) o c:::: e, one may define a trinary operational system as one 

in which a rule assigns to each triple .of elements a unique element. 

A set of rules for n .elements .would define an n.a.ary operationaJ: .. system, 

A couple, triple, or n-:tuple substituted for its equivalent must 

be enclosed within parentheses to indicate that the entire .expression 

is acted upon .in the same manner as its equivalent. Usually an .oper­

ational sign .is required between.elements of a binary operational ex­

pression, although by custom .the. operational sign for multiplication 

is frequently omitted in algebraic expressions, Thus, xy = x•y. 

Frequently a binary relation will be indicated by constructing an 

operational table. In such a table, the elements .of a set are listed 

both as column headings and at the left of the rows. The bin,;1.ry re­

lation is indicated at the upper left. For x.o y = z, xis a row 

heading, y is a column heading, and z is the listing in the body .of the 

table in the appropriate .. row and column. 

TABLE. I 

A BINA.RY OPERA,TIONAL TABLE. 

0 CJ. C2 C3 C4 

Cl. Cl. C2 Cs C4 

C2 C2 Cl;C4 Cs 

C,2 C3 C4 Cl. C2 

c4 C4 C3 C2 CJ. 
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Table I indicates the following equivalences: 

C10 C1 :::, C1. C1 0 C2 = C2 C1 0 Cs :: Cs Ci. 0 c4 = C4 

c2 0 C1 ·=· C2 C2 .0 C2 =- C1 C2 0 Cs C4 C2 0 C4 = Cs 

C3 0 CJ. = C3 C3 0 C2 = c4 C3 0 C3 = C1 C3 0 C4 = C2 

C4 0 C1 -= C4 C4 0 C2 = C3 C4 0 C3 = C2 C4 0 C4 = C1 

The main cliagonal, as in a determinant, is a straight line drawn through 

the .upper left element and the lower right element. Obviously, the array 

will .be symmetrical a,bout .the main diagonal if and only if the .system 

is commutative. An .operational system Smay be indicated by listing 

the binary operation and the elements in parentheses following the 

letter assigned to the system, Thus, the system tabulated above would 

be S(o, c1., c2 , cs, c4 ). If the binary system were definitely under­

stood, the listing might .omit the .operational sign and ·be shown as 

S (c1 , c2 , c3 , c4 ). 

Isomorphisms and Homomorphisms 

An isomorphism.exists between two binary operational systems 

S1 (o, a 1 , bi, ••. ) and S2 (Gl, a2 , b2 , ••• ) if and only if there 

exists a one-to-one correspondence, '8 1 ""· S2 , between their elements 

such that ai o b 1 = c 1 implies a 2 ,Gl b2 = c2 , and vice versa. 

A homomorphism.exists between .two binary operational .systems 

Si(o, a 1 , b 1 , ••• ) and S2 (Gl, a 2 , b2 , ••• ) if and only if there 

.exists a many-to-one correspondence) Si ,-i,.. S2 , from S1 to the whole .of 

S2 such that a 1 o b 1 = c 1 implies a2 Gl b2 = c2 , and vice versa. 

If S2 ~ s-1 , the isomorphism S1 - S2 is called .an automorphism 

and the homomorphism S1 ~ S2 is called .an .endomorphism. 

Groups 

A group G is a binary operational system which satisfies the 
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following axioms. 

1. G is a non-empty set of elements a, b, c, ••• which is 

closed under a single-valued binary operation x o y = z, x., b, z, e G. 

2. The binary operation satisf.ies the associative law. 

x o (y o z) = (x o y) o z for all x,; y, z. 

3. With respect to the binary operation, there is an identity 

element i e G which satisfies the identity law. x o i = i ox= x 

for all x. 

4. For each element x in G there is an inverse element x- 1 also 

in G which satisfies the inverse law. x o x- 1 = x- 1 ox= i for each 

x and some element x·i of G. 

Groups are not necessarily commutative. A group whose binary 

operation satisfies the law x o y =yo xis called a commutative or 

Abelian group. 

The binary operatioqal system of Table I, page 9, satisfies the 

four axioms and is, therefore, a group. In this group the identity 

element is c 1 and each element is its own inverse. The group is 

commutative. 

It can be shown2 that, in any group, xa =band ay = b have the 

unique solutions x = ba-i and y = a-ib. A binary associative oper­

ational system in which xa "'band ayi= b ai;e not always solvable is 

called a .!emigroup. 

Groups of Transformation 

On page 7 it was stated that when class Bis included in class 

A,a many-to-one corresponqence A~ Bis called a single-valued 

2 Birkhoff and Mac Lane, p. 127. 



transformation, and a one-to-one correspondence A~ Bis called a one­

to-one tranaformation. For example, ( ~ ; T ! ) is a single-valued 

transformation, and (:;~~)is a one-to-one transformation. An 

operational system of transformations involves a concept of equality 

and a binary operation. Two transformations, t and u, are equal if 

and only if they have the same effect on every element of the set S 

on which they operate. xt = xu for every x € S, By definition, the 

binary operation (indicated as the product tou or tu) of two trans-

formations is the result of performing them in succession, first t, 

then u, x(tu) = (xt)u. 

It can be shown3 ' 4 that the algebra of transformations has the 

following properties. Multiplication of transformations obeys the 

associative law. (tu)v = t(uv). The identity transformation ti is 

12 

the correspondence which leaves every element x of the set S unchanged. 

xti = x for every x € S. tit= tti = t for all t. When the transforma-

tions are one-to-one, the inverse oft is that transformation t- 1 which 

carries xt back into x. Then xtt- 1 = x for all x of Sand tt-1 = t- 1 t 

= ti. The non-void set T of transformations is a group if the set is 

closed under multiplication and the inverse t- 1 of every element t of 

Tis in T. 

Symmetries 

Group theory is the foundation of a consequential algebra of 

symmetry, Geometrically, a symmetry implies a transformation by means 

of a rigid motion of translation, rotation,· or reflection, which 

3 Birkhoff and Mac Lane, pp. 120-123. 
4 Stephen A. Kiss, Transformations on Lattices and Structures of 

Logic (New York, 1 94 7), pp. 28-30. 
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maintains distances betweeq any two poin~s and carries the figure so 

transformed into itself. for example, consider the square of Figure 1. 
·, 

DI 

/ 

H 
/ 

'/ 
/ 

" V 

Fig. 1. Axes of Reflection and Angles of Rotation of a Square. 

This square is shown in a positic>n rotated fprty-five degrees counter-

clockwise from the positioq usually shown5 in modern algebra textbooks. 

It was intentionally displaced so that the figure will show certain 

relations characteristic of lattice structures, which will be discusse4 

later. 

For Figure 1, tqe sylllilletries are as follows: 
·( ... 

5Birkhoff and Mac Lan~, p. 118. 



I= the identity transformation= ( ci c2 cs c4 ) 
Ci C2 C3 C4 

H = a reflection in the H axis = ( Ci C2 C3 C4) 
C2 Ci C4 C3 

V = a reflection in the V axis = ( Ci C2 C3 C4) 
C3 C4 Ci C2 

o = ( Ci R• = a 180 rotation about th~ center 
C4 

D = a reflection in the D diagohal: ( Ci C2 C3 C4) 
. Ci C3 C2 C4 

R = a 90° clockwise rotation around the center= ( ci c2 cs c4) 
. . C2 C4 Ci C3 

R" = a 270° clockwise rotation around the ce11ter = ( CC3i C2 Cs C4 ) 
Ci C4 C2 

D1 = a reflection ill the D' diagonal= ( ci c2 c3 c4) 
C4 C2 C3 Ci 

A multiplication table for the group of synunetrical transfo;rma-

tions of the square is shown in Table II. This table can be checked 
', 
TABLE II 

MULTIPLICATION TABLE FOR TRANSFORMATIONS OF A SQUARE. 

0 I }I V R' D R R" o• 

I I H V R' D R R" D' 

H H I R' V R"· D' D R 

V V R• I H R D D• R" 

R• R• V H I D' R" R D 

D D R R" D' i H V R• 

R R D D' R". V R' I H 

R" R" D' D R H I a• V 

D' D• Rut R D R' V H I 

by listing for each transformation the two lines of corresponding 

elements within parentheses, then listing the resultant correspond-

ence by tracing each element through its two transformations. 

14 
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Most of the gro~p properties can be read directly from Table II. 

For ·insta~ce, the exis~ence of an identity implies that some row must 

be a replica of the top heading and that the corresponding column must 

be a replica of the left heading. Obviously, I is the identity element. 

The possibility of solving the equation ay = b indicates that the row 

opposite a must contain the entry b. Since the solution is unique, b 

must occur only once in th~s rowi A group is conunutative if and only 

if its operational table is synunetrical about the main diagonal. Ob-

viously, the group shown in Table II is not conunutative. The set 

( I,H, V ,·R'), however, is commutative and is itself a gr~up. 

Subgroups 

A non-empty subset Kofa group G is a subgroup of G if the pos-

tulate of closure is satisfied; that is, if xy is in K whenever x and 

y are in K. Thus, the subset (I,H,V,R') is a commutative subgroup of 

the non-conunutative group (I,H,V,R',D,R,R",D'). The intersection 

Kn L of two subgroups Kand L of a group G is a subgroup of G. The 

union K v L of two subgroups Kand L of a group G is a subgroup of 

G. e,7 

Isomorphism and Automorphism of Groups 

Any two groups, or any .tw9 binary operational systems, G1 

(o,a1 ,b1 , ••• ) and G2 (GJ,a2 ,b2 , ••• ) are i.somorphic if and only if 

there is a one-to-one correspondence a 1 ~ a2 J:?etween their elements 

6 K' 33 iss, p. • 
7 Birkhoff and Mac Lane, p. 141. 
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isomorphism between the transformation subgroup T(o,I,H,V,R') of Table 

II and the group G(o,c 1 ,ca,c3 ,c4} of Table I. I -& c1 , H -& c2 , V ~ c3 , 

R',.. C4. 

An automorphism ta of a group G is a one-to-one transformation 

on G such that (x o y)ta = (xta) o (yta) for all x and yin G. The 

automorphisms of any group G themselves form a group. 

Rings 

A group or a semigroup is a system having only a single binary 

operation defined between pairs of elements. A ring, however,.:i-ias 

two binary operations, usually called addition and multiplication. 

A ring Risa set of elements (a,b,c, ••. ) with two binary operations 

satisfying the following axioms. 

1. The elements of R form a cormnutative group under additidn. 

X + y = y + X. 

2. The set R is closed under multiplication. xy = z, z € R 

for all x and y. 

3. The set R is associative under multiplication. x(yz) = (xy)z. 

4. Multiplication is distributive over addition. x(y + z) = 

xy + xz, (x + y)z = xz + yz, 

5. The substitution principle is valid for multiplication. 

If xy = z, then zw = xyw. 

If xy = yx for every x and y of R, the ring is connnutative. It 

can be shown8 that rings also have the following properties. The 

associative law of addition holds. x + (y + z) = (x + y) + z. The 

equation a+ x =bis solvable for all a and b of R. There is a 

8 Kiss, pp. 49-51. 
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unique zero element, the identity of addition, such that x + 0 = x for 

all x. The product of any element and zero is zero. xO = 0 for all x. 

There are negative elements such that -x + x = x + (-x) = 0 and -(-x) = 

x for all x. 

Division Rings 

A division ring is a ring which has a unity element 1 and in which 

every non-zero element x has an inverse x-1 such that xx-1 = x-1x = 1. 

It can be shown9 ,1o that a division ring also has the following prop-

erties •. A division ring has no divisors of zero. A division ring is. 

a ring which has at lea$t two elements, the non-zero elements of which 

form.a group under multiplication. It is, therefore, closed under 

multiplication. The equations ax.= band ya= bare solvable whenever 

a is not equal to zero. The cancellation laws are valid; that is, 

there are unique solutions for ax= band ya= b when a is not equal 

to zero. A division ring may or may not be commutative. A conunu-

tative division ring is called a field. A subset Sofa ring R is 

said to be a subring of R if and only if Sis a ring with re~pect to 

the operations of addition and multiplication in R. 

Direct Unions 

Direct unions are compound .systems obtained from two or more 

operational systems. The direct product P = G X Hof two groups 

G(a1,a2,•••,am) and H(b1,b2, •• ,,bn) is an operational system of order 

mn, the elements of which are ordered couples (ai,bj) in which the 

Si€ G and bj € H. Two couples are equal if and only if their corre-

9 Kiss, pp. 52-56. 
10Birkhoff and Mac Lane, pp. 126-127. 
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sponding components are equal. (ai,bj) = (ak,b£) if and only if ai = 

ak and bj = bt· The product of two couples is defined by the equation 

The direct product P of the groups G and H contains the subgroups 

G8 and H8 isomorphic with G and H, respectively. Every element of P 

is expressible as a permutable product of an element of G8 by an 

element of H8 • The system of Pis closed under multiplication 

because G and Hare closed. Because multiplication is associative 

in the groups G and H, the associative law is valid in P. The 

identity element of Pis (i 1 ,i2 ), where i 1 and i 2 are the identity 

elements of G and H, respectively. The inverse of (ai,bj) is 

(ai· 1 ,bj-1 ), because (ai- 1 ,bj- 1 )(ai,bj) = (i 1 ,i2), 

The direct sum S = R1 + R2 of two rings R1 and R2 is the set 

of all pairs (a,b) with a in R1 and bin R2 • The two operations in 

PartiallyQrdered Systems 

The inclusion relatjon for sets stated on page 6 is a specific 

example of the broader concept of a partially ordered system which 

has the same general properties as the set inclusion. A partially 

ordered system Pis any set with a binary relation~ between ele-

ments of the set, which satisfies the reflexive, anti-synunetric, 

and transitive laws. By a< bis meant that a is included in b, 

but a is not equal to b. In other words, a is properly included 

in b. 

Least and Greatest Elements 

By a least element·of a partially ordered system Pis meant 
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an element O satisfying the relation O ~ p for all p of P. By a great-. 

est element of Pis meant an element u satisfying the relation p ~ u 

for all p of P. The element bis said to cover the element a if 

a< band if a< x <bis possible for no x € P; that is, if there 

is no element between a and b. The elements a and bare said to be 

linked to each other if and only if a covers b orb covers a. In a 

partially ordered system. in,which coverage and linkage relations exist, -.-. 
and in which there is a least element o, an element is called an atom 

if and only if it covers zero, 

Duality 

The duality principle states that any theorem which is true in 

every partially ordered system remains true if the symbols~ and~ 

are interchanged throughout the statement of the theorem. A partially 

ordered system Pis called self-dual if and.only if its dual system 

Pd is obtained by a one-to-one transformation on the elements of P. 

Diagrams of Partially Ordered Systellls 

The relations of a partially ordered system can be illustrated 

by geometrical diagrams, Each element of the system is represented 

by a small circle so placed that the circle for a is above that for 

b., with respect to a horizontal line, whenever a> b. Then a line is 

drawn between a and b if a covers b, This line represents the link 

between the two points. When b covers a, c covers b, d covers c, 

0 1" • , and n covers (n - 1), then the element a is said to be con-

nected ton by an ascending chain of links, and n is connected to a 
,; 

by\a descending chain of links. Since links are always drawn between 
I 
·:1 thy circles of two elements to indicate coverage and since one of the 
I 

circles in a coverage rel~tion must be highei than the other, no link 
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is ever drawn horizontally. Two elements on a diagram are connected by 

a chain if and only if there is an inclusion relationship between them. 

A chain must be either ascending or descending; a combination of both 

rising and falling lines does not represent a chain. 

Figure 2 shows a number of diagrams for partially ordered systems. 

In Figure 2(a), a is covered by b. In (b), d covers band c; band c 

cover a. In (b) there is an ascending chain from a to d through b, 

and another through c. In this same diagram, b does not cover c, nor 

does c cover b. The diagram of (c) could be obtained by rotating (b) 

180°. Obviously, (c) is the dual of (b), since for (b) a & b, a & c, 

b & d, c & d, and for (c) a~ b, a~ c, b ~ d, c ~ d. One system can 

be obtained from the other by the transformation t = (:: ~: )· 
The two are self-dual systems. 

The system diagrammed in Figure 2(d) is not self-dual. Its dual 

would be obtained by rotating the diagram 180°, but since there is no 

transformation which will transform the diagram and its dual into each 

other, the system is not self-dual. 

Figure 1, page 13, the diagram for the symmetries of the square, 

has the following coverages: c4 covers c2 , c4 covers c3 , c2 covers c1 , 

Lower and Upper Bounds 

By a lower bound of a subset X of a partially ordered system P 

is meant an element a€ P satisfying the relation a & x for all x € X. 

The greatest lower bound is a lower bound including all other lower 

bounds. The upper bound of a subset X of a partially ordered system 

Pis an element b € P satisfying the relation x & b for all x € X. 

The least upper bound is an upper bound included in all other upper 
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bounds. To illustrate, Table III shows the subsets, lower bounds, and 

upper bounds of Figure 2 (b) • 

TABLE III 

SUBSETS AND LOWER AND u·PPER BOUNDS OF THE PARTIALLY 
ORDERED SYSTEM SHOWN IN FIGURE 2 (b) • 

Lower Upper 
Subsets Bounds .Bounds 

, (a} a a 
(b} b b 
{c} C C 

{d} d d 
(a,b} a b 
(a,c} a C 

(a,d} a d 
(b,c) a d 
(b,d} p d 
(c,d) c d 
(a,b,c) a d 
(a,b,d) ·a d 
(a,c,d) a d 
{b,c,d) a d 
{a,b,c,d) a d 

Since, in each case shown in Table III, _there is only one lower 

bound, it .is the greatest l~w~r bou,nd/. The upper bound is also the 

least upp~r bound •.. Th~ fact that there is not always only one lower 

bound is shpWn i-r 'rable IV; which lists some of, the subsets of Figure 

2 (e). 

TABLE IV 

SOME SUBSETS AND BOUNDS FOR THE SYSTEM SHOWN IN FIGURE 2(e). 

Greatest Least 
Lower Lower Upper Upper 

Subsets Bounds Bounds Bounds Bounds 
' . 

(a,b) a a b,e,£,h b 
(b,c,d) a a h h 
(e,g} a,c C h h 
(b,d,f} a a '£,h f 
(c,e} a,c C 

) e,h e 

It will be observed that the system diagranuned in Figure 2 (d) 



does not have a greatest lower bound, When a greatest lower bound 

exists, it is unique. If a least upper .bound exists, it is unique. 

Chains and Lengths of Chains 

A partially ordered system Pis called a simply ordered system, 
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or chain, if and only if either x ~ y or x ~ y for all arbitrary 

elements x and y. The number of links in a chain is called the length 

of the chain. For example, any of the ascending chains from a to h 

of Figure 2(e) has three links. In this diagram there are six ascend­

ing chains from a to h. Designated by a succession of elements, they 

are (a,b,e,h), (a,b,f,h), (a,c,e,h), (a,c,g,h), (a,d,f,h) and 

(a,d,g,h), The Jordan-Dedekind chain condition11 is that all chains 

between fixed points have the same length. Although this condition 

is satisfied for all diagrams of Figure 2, not all finite partially 

ordered systems.satisfy it. 

Lattices 

A lattice is defined as a partially ordered system in which any 

two elements x and y have a greatest lower bound and a least upper 

bound. In any lattice, the greatest lower bound of elements a and b 

is denoted an b, and the least upper bound is indicated by av b. 

For lattices, a·~ bis called the meet of a and band coincides with 

the set-theoretical definition of the intersection An B of two sets, 

as stated on page 6, The set-theoretical union Au B of two sets 

corresponds to the lattice-theoretical definition of au b, called 

the join. 

Two lattices Land La are dual if they are dual when considered 

11 Kiss , p . 7 8 , 



24 

as partially ordered systems. Since every inclusion relation x ~ y 

in L becomes x ~yin Ld, then operational table of L becomes the 

v operational table of Ld, .and the v operational table of L becomes 

then operational table of Ld. 

It can be shown12 ' 13 that all lattices obey the following 

operational laws. 

Idempo~ent: x n x = x and xv x = x 

Commutative: x n y = y n x and xv y = y v x 

Associative: (x n y) n z = x n (y n z) and (x v y) v z = x v (y v z) 

Absorptive: x "'· (x v y) = x and x v (x n y) = x 

!!.!!_-Distributive: x ""' (y n z) = (x n y) n (x n z) and 

XV (y V z) = (x Vy) V (x V z) 

Semidistributive: x n (y v z) it (x n y) v (x n z) and 

x v (y n z) :ii (x v y) n (x v z) 

4-Element Semidistributive: (xv y) n (u v v) ~ (x nu) v (y n v) 

and (x n y) v (u n v) ~ (xv u) n (y v v) 

Semimodular: If z ~ x, then x n (y v z) ~ (x n y) v z, and 

if z ii: x, then x v (y n z) ~ (x v y) n z 

A modular lattice is a lattice which satisfies the following 

modular laws. 

If z ~ x, then x n (y v z) = (x n y) v z, and 

if z ~ x, then xv (y n z) =(xv y) n z. 

It will be noted that the modular laws are like the semimodular 

laws except for the presence of the= signs in the modular laws. 

A visual check to determine whether a finite lattice is modular 

12Birkhoff and Mac Lane, pp. 552-354. 
isKiss, pp. 81-83. 
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is to look at its diagram. If the lattice is modular, it satisfies 

the Jordan-Dedekind chain condition; that is, all chains connecting 

each pair of fixed points must have the same length. For example, 

Figure 3 shows the diagram of a non-modular lattice. The left chain 

from a tog contains four links; the right one, only three. 

g 

f 

d 
C 

Fig.,3. Diagram of a Non-Modular Lattice. 

Distributive Lattices 

A distributive lattice is a lattice which satisfies the 

following dual distributive laws. 

x n (y v z) = (x n y) u (x ,.. z) and x v (y n z) = (x u y) n (x v z) • 

A distributive lattice is always modular. A chain is a distributive 

lattice. 

Complements 

In set-theoretical considerations, the complement14 X of Xis 

the set of all elements not in X. X n X = O. Xu X = U, the 

universal set. In a lattice with a· least element O and a greatest 

14The symbols NX and X' can be used for the complement of X. 
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element u, the complement x of an element xis an element such that 

x n x = 0 and xv x = u. The complement of xis x. = This is · X = X. 

known as the involution law. u is the complement of 0. In a dis-

tributive lattice, complements (when they exist) are unique and satisfy 

the involution law and the following two dualization laws. 

(x n y) =xv y and (xv y) = x n y 
Boolean Algebras 

A Boolean algebra is·a pistributive lattice which contains a 

least element O and a greatest element u, with O, x, u for all x 
l 

and with a complement x for each element x. 

Isomorphi.sms ~ Automorphisms . of Binary Operational Systems 

As indicated on page 10; an isomorphism exists between two 

binary operational systems Si (o, a1., bi, • • . ) and S2 (EB, .a2 , b2 , • 

• ) if and only if there exists a.one-to-one correspondence, S1 * S2 , 

between their elements sueh that.a1. o b1 = c1. implies a2 EB b2 =c2 • 

,,,. 

A one-to-one correspondence implies a one-to-one transformation 

t frpm S1 to S2 , If a1. o b1 = ci, then (a1. • ,b1 )t = c1 t. That is, 

a1t EB b1 t = c1 t, or (a1 ° bl)t = a1 t EB bit. If t-1 denotes the 
,,, 

inverse. o.f t, the equation becomes a1 • b1 = (a1 t EB b1 t)t-1 • 
I 

Now .assume that. the ele~ents of S1 have the s~.me symbols as 

those of S2 • That is, the two binary operational systems are 

S1 (o, a, b, •• , ) and S2 (e, a, b, ••• ). This does not require 

that a .. a and b * b. The one-to-one correspondences may be a* p, 

b..,. a, c * h, etc., where elements on the left are in S1 and elements 

on the right are in S2 • Now a O b= (at EB bt)t-1 , where a and b 

are any elements of S1 and are also elemei:its of S2 • Substitution 

of ft-1 for a and gt-1 for b yields ft-1 o gt-1 • Multiplic~ti?n of 

both sides of the equation by t results inf EB g = (ft-1 o gt-1)t. 



It can be shown15 that, given a set t 1 , t 2 , and t 3 , ••• of one-

to-one transformations on a binary operational system S with opera-

tional signs o1 , o2 , o3 , •.• of the transformed systems S1 , S2 , 

S3 , , , ., and given t 1 t 2 = t 3 , the operational equation a o1 b = c 

in S1 is transformed into an operational equation in S3 by trans~ 

forming by t 2 all the terms, including o1 • at2 o3 bt2 = ct2 • An 

automorphism is defined16 as an isomorphism of a group with itself. 

~-Preserving Transformations of Lattices 

A link-preserving transformation on a lattice Lis a one-to-

one transformation ton L such that if any two elements a and b 

are linked in L, then their corresponding elements at and bt are 

linked in the transformed lattice Lt• The synunetries of the 

square are examples of link-preserving transformations. For the 

lattice of Figure 1, page 1:3, the link-preserving transformations 

are the same as the synnnetries of the square. 

I= ( C1 C2 C3 C4) H = ( C1 C2 C3 C4) V = ( C1 C2 c_s 
'?4) 

C1 C2 C3 C4 C2 C1 C4 c~ C3 C4 C1 C2 

I. ( Cl Ca C3 C4) D = ( C1 C2 Cs C4) R = ( c1 C2 ~s C4) R•= 
C4 Cs C2 C2, C1 C3 C:2 C4 C2 C4 C1 ca 

R.''= ( Cl 
C2 C3 C ) D'= ( CJ. 

C2 cs C4) 
' c: . , Cs C1, C4 ·c Ca cs C1 ' 4 

A lattice L is transformed :l.nto a dual lattice Ld by a 

duality transformation td• A duality transformation td changes 

every relation a, b of L into a relation a~ bin Ld, trans-

forming an ascending chain into a descending chain, and vice 

versa. The duality transformations for the lattice of Figure 

15Kiss, p. 94. 
,ieBirkhoff .and Mac Lane, p. 147. 
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are R1 and D1 , 

Direct Unions of Lattices 

1 The direct union AX B of two partially ordered systems A and B 

is the system C whose elements are the ordered couples (a,b), where 

a is any element of A and bis any element of B. An equality and 

four ordering relations are defined as follows. 

(ai,bi) = (a2,b2) if and only if ai = a2 and bi= b2. 

(ai,b1 ) ~ (a2 ,b2 ) if and only if ai ~ a2 and bi~ b2. 

(a1 ,bi)-< (a2 ,b2 ) if and only if a 1 ~ a2 and b1 ~ b2, 

(a1 ,bi) >- (a2 ,b2) if and only if a1 ~ a2 and b1 f b2 . 

(a1 ,bi) ~ (a2,b2 ) if and only if ai ~ a2 and b1 ~ b2 • 

For each of the four relations pin the direct union of two 

partially ordered systems there is a dual relation Pd such that 

if c1 p c2, then c2 Pd c1 , Thus,~ and~ are dual relations, and 

-<and>- are dual relations, The elements ci, c2, . , . of the 

direct union c =AX B of two partially ordered systems A and B 

obey the three laws for the inclusion relation stated on page 6. 

The direct union C =AX B of two lattices A and Bis a 

lattice with four single-valued binary relations,~,-<,>-, and~. 

An operation is carried out component by component, in then 

system of the components if the~ relation is involved, in the v 

system if~ is involved. There is a one-to .. one correspondence 

between the relations and the operations. The four operations 

are designated in Table V. 

For example, if a1 ~ a2 in lattice A and b1 ~ b2 in lattice 

B, the operational tables for A and Bare shown in Table VI. 

The elements of Care defined as ordered couples of the elements 

28 



29 

The table for the o operation of C shown in Table VII can then be 

determined as indicated by the following calculations. 

TABLE V 

RELATIONS AND OPERATIONS FOR THE DIRECT UNION OF TWO LATTICES, 

Relations Corresponding 
Relation between elements Corresponding operations between 

in C of A and between operation in C elements of A and 
elements of B between elements of B 

~ = (~,~) 4+ 0 = (n,n) 

-< = (~,~) -8' l = (n,v) 

>- = (~,~) * T = (v,n) 

~ = ,~,~) * + = (v,v) 

TABLE VI 

OPERATIONAL TABLES FOR LATTICES .A ~D B._ 

A: a ai a:;i <;J a l. a2 - B: n bi b2 V bi b2 

ai 81 ai al. al. a2 bi bi bi b J. bi b2 

a2 ai a2 a2 a2 a.e b:a bi b2 b2 b2 b2 
(a) (b) 

TABLE VII 

THE 0 OPERATIONAL TABLE FOR C =AX B. 

0 CJ. C2 cs c4 

I 

Cl. ci, Cl CJ. C1 
Cl:i Cl c2 CJ. c2 
C3 CJ. CJ. C3 C3 
C4 CJ. C:a C3 C4 

CJ. 0 CJ. = (a1,b1) 0 (a1,b1) = (a1 n ai, b{ n bi) = (ai~b1) =. CJ. 
,. 

Ci • C2 = (ai,b1) .. (ai b2) = (a1 n a1, bin b2) = (a1,h1) = CJ. 

CJ. • C3 = (a1,bi) • (a2,b1) = (a1 n a2, bin bi) = (a1,bi) = CJ. 



c2 ° c4 = (ai,b2) 0 (a2,b2) = (ai "" a2, b2 n b2) = (ai,b2) = c2 

cs• cs= (a2,bi) 0 (a2,bi) = (a2 n a2, bin bi)= (a2,bi) = cs 

c3 ° c4 = (a2,b1) • (a2 ,b2) = (a2 n a2, b1 n b2) = (a2,b1) = cs 

c4 ° C4 = (a2,b2) • (a2,b2) = (a2 n a2, b2 n b2) = (a2,b1) = c4 

It can be showni7 that all fqur of the op~rational systems 

of the unio~ of two lattices are idempotent, associative, and 

commutative. Since they are commutative, c4 ° c1 = ci • c4, 

for exampl~, so c4 • ci need not be Cflculated if ci • c4"is 

already known. 

The entries for the operational tables for the three other 
! ' ' ' ' l 

operations of C =AX B can be calculated in a similar manner. 

They are shown in Table VIII. 

TABLE VIII 

THE !, 1·,, AND + OPERATIONAL TABLES FOR C = A X B. 

J. T Ci C2 Cs C4 

C1 Ci C1 Cs C3 

+ C1 C2 C3 C4 

' C'i ' C1 C2 C3 C4 

Diagrams for A and B are shown in Figure 4 (a) and (b), respec­

tively; relations for Care indicated in (c) through (f), 

17Kiss, p. 104. 
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(a) (b) (c) 

(d) (e) 

(f) 

Fig. 4, Lattice Diagrams for A, B, and C = A ~ B .• 
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The four ordering relations of Care all shown in Figure 4 (c), 

provided different directions are assigned for ascending chains. For 

the ;a relation, the ascending dir~_ption is, as usual, from bottom to 

top. For-<, it is from left to right, but right to left for>-. For 

~, it. is fr:om top to bottom. 

Obviously, the four distinct relations for Care transforma-

tions of each other. All are link-preserving transformations. The 

direct union of two transformations ti and t 2 on the elements of 

two systems A and Bis the couple (t1 ,t2 ) having for components a 

transformation on each of the two systems. The couple operates 

on C =AX B. For the systems of A and B, let t 1 =I= ( ai a2) 
.. ai a2 

or ( :~ :: ) an~ let t 2 = R• = ( =~. :~) or ( :~ :~ )· Then the . 

following transformations apply to C. 

(ti, ti) = ( (:~ :~, (:~ ::) ) = ( ~~ ~= ~= 
(ti, t2) = c c:~ ::), (:! :D ) = c ~~ ~~ ~= 
(t2, ti) = ( (aa2i a2\ (b1 b2)) ( ci 

\: al1.)' \bi b2 .. = . cs 

(t2, t2) = .. ( (:~ :~), (:! :~) ) = ( ~! 
The ~~rect union (t1 ,t2 ) of transformations ~n tw~ partially 

ordered systems A and Bis called a principal transformation on 

C =AX B if and only if each of the transformations ti and t 2 is 

either the identity transformation or a duality transformation. 

The transformations above are principal tr,an.sformations, since.: R.• 
) 

·is a duality transformation. As indicated on page -14,; four other 
• ' I • 

transfo~tions are possible: D, a, a.", and D•. These can not 

.be .obtained as. the couple of two .identity or dual transformations 

on A and· B. 



CHAPTER III 

THE BOOLEAN ALGEBRA OF ORDER TWO 

The most conunon Boolean algebra is that of order two. This 

algebra contains only two elements and is, therefor~ a natural de­

velopment for the algebra of logic in which a statement is either 

true or false; no other values seem possible. Mathematically, 

however, more elaborate systems can be developed to include four, 

eight, or more elements. 

Basic Theory £!!!£_-Valued Boolean Algebra 

This algebra is the set of two elements. Since the null set 

0 is considered to b.e. a subset of every set, let one of the ele­

ments be designated by O and the other by 1. Thus, the Boolean 

algebra of order two, B = (0,1), is a complete.1y ordered system. 

Since O is a subset of 1 but is not equal to 1, it is a proper 

subset. Thus, 0 < 1 and 1 > o, but the more g.eneral :ii and iit: 

will be used. 

Two binary operations,... and v can be applied to the two 

elements of B, assigning to each pair (O,O), (0,1), (1.,0), and 

(1,1) a unique element of B. The element chosen for each pair 

might appear to be quite arbitrary, but the choices are deter­

mined by the .. characteristics of the system. 

Bis. a partially ordered system since it satisfies the re­

flexive, antisymmetric, and transitive laws. I.t contains a 

. 33 
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least element O and a greatest element 1. 1 covers O. 0 is the 

greatest lower bound, and 1 is the least upper bound of the set. B 

thus satisfies the conditions given on page 23 for a lattice. More-

over, Bis a chain, as defined on page 23. It is a distributive 

lattice, as explained on page 25. Since the meet x n y of two ele-

ments of a lattice is their greatest lower bound, 0 n 1 = 1 n O = O. 

Since the join xv y of two elements of a lattice is their least 

upper bound, 0 v 1 = 1 v O = 1 • The greatest lower bound of O and 

0 is O; therefor~ 0 n O = 0. Similarly, 1 n 1 = 1. The least 

upper ba@nd of O and O is O; of 1 and 1, 1. Therefore, 0 v O = O, 

and 1 v 1 = 1. These values are indicated in Table IX. 

TABLE IX 

THE n AND v OPERATIONAL TABL~S FOR THE BOOLEAN ALGEBRA OF ORDER TWO. 

0 

0 1 

0 0 
0 1 

(a) 

V 

0 

0 

0 1 
1 1 

(b) 

The diagram for the lattice of Bis given in Figure 5 (a). 

Since there is only one chain joining the two elements, the lattice 

is modular. By definition of the complement on page 26, 0 is the 

complement of 1, and 1 is the complement of O. 

I : r 
(a)' (b) 

Fig. 5. Diagrams of Two-Element Lattices. 
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The two link-preserving transformations are :I=(~~) and.R• =, 

(~ ~)· I is the identity transformation. R1 transforms the lattice 

of B, shown in Figure 5 (a_), into the lattice shown in Figure 5 (b). 

The R' transformation is the negative transformation of logic. Thus, 

R•x =-x for each x € B. The inverse t- 1 of a transformation t satis-

fies the equation tt-1 = ti, the identity transformation. Thus R•-1 

= R1 • Since R1R1 = I, -(-x) = x. The negative of an element is its 

complement~ -x = x. 

In logic, the intersection or meet n is called a conjunction 

and is frequently represented by the ampersand1 & or by the multi­

plication sign2 o, which is frequently omitted between the two ele-

ments it connects. x o y = xy = x n y = x & y = 11x and y" • The 

union or join vis qalled a disjunction and is alternately repre-

sented1 ' 2 by V or by the+ sign3 • x + y =xv y = x Vy= "x or 

y or both". In most electrical engineering literature the.o and 

+ signs are preferr~d. 

Other ,inary Operations 

Special symbols have been used4 for vkrious combinations 

which can be expressed with the negation and the+ and• signs. 

The "zero conditional" x +- y'is used.for x o y. The dual "one con-·.. ' ' ,' 9.. 

ditional. iv -x-.y=x+y. 
1 ' 

The "reversed zero conditional" x +- y 
;··". ' '' 0 .. 

I -

x .o y, and the "reversed one conditional" x ..-. y equals x + y. 
1 ' ' ' 

1D. Hilbert and W. Ackermann·; Grundztrge der theoretischen 
Logic (2d ed., Berlin, 193$). 

2A. ?,l. Whitehead and B. Russell, Principia Mathematica (2d ed., 
vols. I, II, III, Cambridge, 1925-27). · · 

3c. I. Lewis and c. H, Langford, Symbolic Logic (New York, 
1932). . . 

. 4Stephen A. Kiss, Transfdrnµitions ,2!!. Lattices· and Structures 
of Logic (New York, 1947), pp. ii~-125. .-



X +- y = 
0 

~ 

X +- y = X + y::: X + y = X _. Y• 
1 1 

The 11 zero biconditional" x * y, also written as x 'X._Y,. can be ex­
o 

pressed as · (x o y) + (i o y), . Its dual, the "one biconditional" 
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- ( -) (- + ) The "stroke systems 11 of She,ffer5 
X 4+ y = X X y = X + y O X Y , 

1 

are the negations of the o and+ systems. The "one stroken, x I y = 
,·., 

- (x O y) = (;ic • y), means "not both x and y"', a proposition which 

is false if and only if both x and y are true. The ntwo stroke", 

x 11 y - = - (x + y) = (x + y), means 11neither x nor y", a proposition 

which is true if and only if both x and y are false. Table X lists 

the operational tables for the Yarious binary relations. 

Duals and Negatives 

A distinction should be made between the dual of an expression 

and the negative (or complement) o! an expression. Following the 

discussion on pages 26 and 27, the two binary systems for B, the 
•• ,i. • 

Boolean algebra of order two, are B1 (o,0,1) and B2 (+,0,1), A one-

to-one correspondence between the systems implies a one-to-one 

transformation t from B1 to B2 • If x o y = z, then (x • y)t = zt. 

That is, xt + yt = zt, or (x o y)t = xt + yt, Similarly, (x + y)t- 1 

= ~t-1; yt-i, 

If t = R' =(~, 6), t- 1 =R1 • OR• = Q = 1. 1 R1 = 1 = o. 

(x • y)R* = xR' + yR' • (x • y) =it+ Y 7 X I y. Thus the nega-

tive of (x • y) is (x y). As indicated in Table X, each value 

of the function x I 'y is the negative. of the corresponding value' 

for x • y. If, however, every element of the operational table 

5 H. M. Sheffer, 11A Set of Five Independent Postulates for 
Boolean Algebras, 1·1 Transactions of the American Mathematical 
Society, XIV (l 913), 481-488. - - . 



TABLE X 

OPERATIONAL T~LES FOR VARIOUS BINARY RELATIONS OF 

BOOLEAN ALGEBRA OF ORDER TWO. 

X o y 

0 0 

0 0 0 

0 1 
(a) 

-X -+ y = X o y 
0 ,, 

-+ · 0 1 
0 

0 0 1 

1 0 0 
(c) 

-X +- y = X o y 
0 

~

, 
9 

~·· ~ ~ 
, (e) 

xxy= 

<~ • ; > + <x o y > 

~ 
(g) 

X I y = 

x+y 

+ -o 1 

0 0 1 

1 
(b) 

-
X -+ y = X + y l. ,,, 

~ r~ : 
1 0 1 

(d) 

-X +- y = X + y 

1
~+-"0 1 

0 1 0 

1 1 1 
(£) 

-xxy= 

(x + y) 0 (x + y) 

(x • y) = x + y (x + y) = ~ • y 
1 · · o .. 11 o 1 

0 

1 1 0 
(i) 

0 1 0 

0 0 
(j) 
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for x o y were changed, including column and row headings as well as 

the value of the function, Table XI(a) would result. If this table 

is rearranged to put column and row headings in their customary lo-

cations, the resultant Table XI(b) is seen to be the table for the+ 

relation. 

TABLE XI 

RESULT OF ,CHANGING EVERY ELEMENT OF TABLE X(a), 

INCLUDING COLUMN AND ROW HEADINGS. 

The expression x + y is called the dual of x o y. Note that, 

in the dual expression, any literal element is not replaced by its 

negative, b~t a O is replaced by 1 and vice versa. x o 1 = x 

would have as its dual x + 0 = x. 0 o y = o, and 1 + y = 1. If 

0 and 1 were not interchanged in going from an expression to its 

dual, incorrect equations would result. 

The rule, then, is that to write the dual of a Boolean algebra 

expression, + and o must be interchanged and O and 1 must be i.nter-

changed in the original expression. To write the negative, or 

inverse, of an expression, take its dual and then change each 

variable to its inverse. Table XII shows dual and negative re~ 

lations. 

Postulates and Theorems for the ±.and ~.Operations. 

Table XIII lists postulates and definitions for two-valued 

Boolean algebra, using only the+ and o binary operations. Once 

38 
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TABLE XII 

DUAL AND NEGATIVE EXPRESSIONS. 

ExEression Dual Nesative 

X o y X + y X I y 

X-;;- y X -+ y X +- y 
1 l. 

X +- y X,.... y X -+ y 
0 1 l. - -xxy x:>.<y X ).< y 

xxy ., :,, xxy x .. x y 

X I y XII y X o y 

X -+ y X -+ y X ,._ y 
l. 0 0 

X +- y 
l. 

x;y xcry 

-xxy xxy xxy 

XII y X I y X + y 

TABLE XIII 

POSTULATES AND DEFINITIONS FOR TWO-VALUED BOOLEAN ALGEBRA 

[P1] X = 0 or X = for all x € B 

[P2a] X = 1 if X = 0 [P2b] X = 0 if X = 1 

[P:Sa] X + 0 = 0 + X = X [P:Sb] X • 1 = • X = X 

[P4a] X + 1 = 1 + X = 1 (P4b] X o 0 = 0 • X = 0 
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these postulates and definitions are established, the theorems of 

Table XIV can be proved. It will be noticed that most of the list-

ings in Tables XIII and XIV are in pairs. As indicated on page 19, 

any theorem that is true in a partially ordered system remains true 

if the symbols~ and i: are interchanged throughout the statement of 

the theorem. That is, if a particular equality is proved to be true, 

its dual expression is also true. 

A method of proof expecially useful for two-valued Boolean 

algebra is proof by perfect induction6 • The procedure is to test 
'\. 

the theorem by means of the postulates for all possible values of 

the variables. This is not difficult, since each variable has only 

two possible values. 
n 

Even if n variables are involved, only 2 

possible combinations need to be tested. T7a, for example, can be 

. -
proved by first letting x = 1. Then, by P2b, x = O. Substitution 

of these values for x and x gives the expression 1 + O, which, by 

either P3a or P4a, must equal 1. Next, let x = 0. By P2a, x = 1. 

The resultant expression O + 1 must equal 1, again by P3a or P4a. 

Since the theorem has been shown to be true for all possible values 

of x, the theorem must always be true. 

Theorem T7a could have been proved by reference to the theory 

on page 34 where the u operational table, Table IX (b), was deve-

loped, since the u and+ symbols are used interchangeably for the 

union or join. 

E\rilliam Keister, A. E. Ritchie, and S. H. Washburn, The 
Design 2f Switching Circuits (New York, 1951)1 p. 72, 



TABLE XIV 

taEOREMS FOR TWO-VALUED BOOLEAN ALGEBRA 
' _, 

[ T1] (x) = x 

[T2a] 0 + 0 = 0 

[T3a] + 0 = 

[T4a] + 1 = 

[T5a] 0 + 1 = 

[T6a] X + X = X 

[T7a] X + X = 1 

[T8a] X + y = y + X 

[T2b] 

[T3b] 

[T4b] 

[T5b] 

[T6b] 

[T7b) 

[T8b] 

[T9a] (x + y) + z = x + (y + z) [t9b] 

.[T10a) (x o y) + z = (x + z) 0 (y + z) 

[T10b] (x + y) 0 z = (x oz)+ (y oz) 

[ Tl 1 a] (x + y) = X o y [T11 b] 

-

0 1 = 1 

0 0 = 0 

0 0 0 = 0 

0 0 = 0 

X 0 X = X 

xo O X = 0 

· X 0 o y = Y" 0 X 

(x o y) 0 Z = X 

- -(x 0 y) = X + y 

-

• (y • 

- -[T12a] (x + y + z) = X o y 0 Z [T12b] (x o yo z) = X + y + Z 

[T13a] x.+ (x o y) = x 

[T14a] (x o y) + y = x + y 

[T13b] X o (x + y) = X 

[T14b] (x + y) o y = x o y 

. [ T 15a] (x o y) + (x • z) = (x + z) o (x + y) 

[ T1 5b ] (x + y) . o (x + z) = (x o z) + (x o y) 

[ T16a] (x .o y) + (y o z) + (z o x) = (x o y) + (z o x). 

[T16b] (x + y) o (y + z) o (z + x) = (x + y) o (z + .x) 
(T17a] (x o y) +(yo z) + (z ox)= (x + y + z) o (x + y + ;) 
[ T17b] (x + y) o (y + z) o (z + x) = .(x o y o z) + (x • y • z) 
[ T18a] (x ., y) + (y o z) + (z o x) = (x + y + z) o (x + y + z) 
[T18b] (x + y) o (y + z) o (z + x) = (x o y • z) + (x • y o z) 

41 

z) 



Previously proved theorems may, of course, be used in proof of 

other theorems. Thus, if one were to prove theorem T15b by perfect 

induction, as indicated in Table XV, h~ n:dght use T2 through TS in 

arriving at values for the fourth, fifth, and sixth columns, ins.tead 

of going back to basic postulates. 

TABLE XV 

PROOF BY PERFECT INDUCTION THAT (x + y) • y = x o y. 

X y y x+y (x + y) • y X o y 

0 

0 

1 

.1 

0 

1 

0 

1 

0 0 

.1 1 

0 

Postulates and Theorems for Other Binary Operations • 

0 

0 

0 

1 

. As indicated on pages 55 and 56, the other binary operations 

for two-valued Boolean algebra can be expressed in terms of the+ 

0 

0 

0 

1 

and o operations and negatives. These relations are shown in Table 

XVI. With the equations of Tables XIII, XIV, and XVI, it is possi-

ble to prove a great many theorems, some of which are shown in 

Table XVII. 

TABLE XVI 

42 

POS;UY:,ATES FOR OTHER BINARY OPERATIONS FOR TWO-VALUED BOOLEAN ALGEBRA, 

[P5a] - ['P5b] -x-+y=:x• y x-+y=x+y 
0 l 

['PSa] - [P6b] -X +- y • X 0 y X +- y = X + y 
0 l 

[P7a] (x • y) + <x • y) [P7b] - (x + y) • ex+ Y> XX y = XXY= 

[P8a] X I Y.= (x • y) [P8b] X II y = (x + y) 
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If one has a good working knowledge of the+ and o operations and 

the definitions of the other operations in terms of+ and o, he will 

probably prefer to prove the theorems of Table XVII in terms of these 

two operations. For example, T35a states (x ~ y) ~ (x ~ z) = x ~ 
· · 0 0 0 0 

(y ~ z). Formal proof of this theorem could proceed as indicated. in 
0 

Table XVIII. Proof by perfect induction is shown in Table XIX, using 

values from the operational Table X(c), which are the values given 

in the (a) parts of T20 thrbugh T23. 

It is not necessary to prove all theorems in terms of the+ and 

0 operations. Table XX shows a proof of T41a using previous theorems 

dealing solely with the -0 oper~tion. 



[T19a] 

[T20a] 

[T21a] 

[T22a] 

[T23a] 

[T24a] 

[T25a] 

[T26a] 

[T27a) 

[T28a] 

ET29a) 

[T30a) 

[T31a] 

[T31b] 

[T32a) 

[T33a) 

[T34a) 

[T35a) 

[T35b) 

[T36a] 

[T37a] 

[T.38a] 

[T39a] 

[T40a] 

[T41a] 

. TABLE XVII 

THEOREMS FOR OTHER BINARY OPERATIONS 

OF TWO-VALUED BOOLEAN ALGEBRA. 

(X O y) = X +- y 

0 -+ 0 = 0 
0 

0-+1=1 
0 

-+ 0 = 0 
0 

..., 1 = 0 
0 

X -+ 0 = 0 
0 

-
X -+ 1 = X 

0 

x-+x=O 
0 

X -il' X = X 
Q -X -+ X = X 
0 

X-il'y:=y+-X 
0 0 

[T19b] 

[T20b] 

(T21b] 

[T22b] 

[T23b] 

[T24b] 

[T25b] 

[T26b] 

[T27b] 

[T28b] 

[T29b] 

(x -+ y) ..., z = (x + y.) o z [ T30b] 
0 0 

(x -+ y) -+ z = (x o z) + (y o z) 
0 0 

(x ..., y) ..., z = (x + z) o (y + z) 
J. J. - -X-+ (y-+ z) := X o yo z 

0 0 

X-+ 
0 

(y -+ z ) = y -+ (x -+ z ) 
o P, o 

[T32b] 

[T33b] 

[T34b] X -+ 
0 

(y -+ z) = (x + y) -+ z 
0 · · 0 

(x -+ y) -+ (x -+ z) = x -+ 
0 0 0. -0 

(x -+ y) ..., (x ..., ' z) = x -+ 
1 J. l J. - -X -+ y = X +- y 

0 0 

(y ..., z) 
0 

(y -+ z) 
,l 

[l'36b] 

(x -+:'y) 4 z = (x II y) II z [T37b] 
,0 0 

(x -+ y) = X +- y 
J. 0 

-+ 1 = 1 
J. 

-+ 0 = 0 
1 

0 -+ 1 = 
J. 

0 -+ 0 = 
1 

X -+ 1 = 1 
.l 

x -+ 0 = x 
1 

X -+ X = 1 
J. -

X-+ X = X 
1 

X _., X = X 
J. 

X -+ Y = y +- X 
1 J. 

I 

(x -+ y) -+ z = (x o y) + z 
1 l 

- -
X -+ (y -+ z) = X + y + Z 

l 1 

X-+ 
.1 

X-+ 
l 

(y -+ z) 
l 

(y -+ z) 
J. 

- -

= y -+ (x -+ z) 
1 l 

= .(x o y) -+ z 
J. 

x...,y=x+-y 
l J. 

(x -+ y j" -+ z = (x I y) I z 
. 1 J. 
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X -+ (y -+ Z) = X -+ (y +- :zi) [ T38b ] 
0 0 O O :: 

X -+ (y -+ z) = X -+ (y +- z). 0 

(x-+ y)-+ X = X [T39b] 
0 , 0 . 

(X -+ y) -+ y = X o y ,( T40b) 
0 0 

X-+ (y-+ x) = 0 [T41b] 
0 0 · · 

J. J. 1 J. 

(X -+ y) . -+ X = X 
J. J. 

(X -+ y) -+ Y = X + y 
J. J. . 

X -+ (y -+ X) = 1 
1 1 



(T42a] 

(T43a] 

[ T44a] 

(T45a] 

(T46a] 

[T47a] 

[T48a] 

[T49a] 

[T50a] 

( T51 1a] 

(T52a] 

(T53a] 

[T54a] 

[T55a] 

[T56a] 

(T57a] 

(T58a] 

[T59a] 

[T60a] 

[T61a] 

[T61b] 

[T62a] 

[T6:3a] 

[T64a] 

[T65a] 

[T66a] 
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TABLE XVII (Continued). 

x ~ (x ~0 y) = x o y 
0 

X ~ (y +- z) = X o yo z 
0 0 

(x +- y)-+ Z: (x + y) 0 Z 
0 0 

(x ~ y) ~ z = (z ~ y) -+ x 
l O l 0 

(x +- y) ~ z = z +- (y ~ x) 
0 0 0 0 

(x +- y) ~ z = (x -+ y) ~ z 
0 0 0 0 

X ~ (X o y) = 0 
0 

(x o y) ~ (y o x) = O 
0 

(X +- y) = X ~ y 
0 . l 

0 +- 0 = 0 
0 

0 +- 1 = 0 
0 

+- 1 = 0 
0 

-(X .... y) +- Z = X o y o Z 
0 0 

x +- (y +- z) = x o (y + z) 
0 0 

-X +- (y +- z) = X o y + X o Z 
0 0 

(T42b] 

['.t;43b] 

[T44b] 

[T45b] 

[T46b) 

[T4 7b] 

[T48b] 

[T49b] 

[T50b] 

[T51b] 

[T52b] 

[T53b] 

[T54b) 

[1'55b] 

[T56b] 

[ T57b] 

[T58b] 

[T59b] 

[T60b] 

x +- (y +- z) = (x + y) o (x + z) 
l l 

X +- (y +- z) = X II (y II z ) 
0 0 

(x +- y) +- X = 0 
0 0 

(X +- y) +- y :: X o y 
0 0 

(x ~ y) ... z = x " y " z 
0 0 

[T62b] 

[T6:3b] 

[T64b] 

(T65b] 

[T66b] 

-X ~ (X ~ y) = X + y 
l l 

- -
X ~ (y +- z) = X + y + Z 

l l 

(x +- Y) ~ Z : (x O Y) + Z 
l . l 

(x ~ y) ~ z = 
. 0 l 

(z ~ y) ~ X 
0 l 

(x +-' y) ~ z 
l. l 

= z +- (y ~ x) 
l l 

<x ... y) .~. z 
l l 

= (x ~ y) ~ z 
l l 

X ~ (x + y) = 
l 

(x + y) ~ (y + x) = 
l 

(X +- y) = X ~ y 
l 0 

+- 1 = 
l 

+- 0 = 
l 

0 +- 1 = 0 
l 

0+-0=1 
l 

x+-x=1 
l 

X+-X=X 
l 

x+-y=y~x 
l l - -(X +- y) +- Z = X + y + Z 

l l 

x +- (y +- z) = x + (yo z) 
l J,. 

x+-y=x~y 
l l 

X +- (y +- z ) = X I (y I z ) 
l l 

(X +- y ) +- X = 1 
l l 

(X +- y) +- = X + y 
l l - -(x ~ y) +- Z = X + y + Z 
l l 
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TABLE XVII (Continued). 
~ 

[T67a] 

[T68a] 

[T69a] 

[T70a] 

X +- (X-+ z) = X o (y + z) 
0 0 

[T67b] 

[T68b] 

[T69b] 

[T70b] 

X +- (y-+ z) = X + (yo z) 
J. J. - . -

(x -+ y) +- z = x -+ (y +- z) 
0 0 0 0 

(x -+ y) +- Z = X -+ 
J. . J. J. 

(y +- z) 
J. 

-(x -+ y) +- z = z -+ (y +- x) o - o ·o o 
(x -+ y) +- z = z -+ 

J. J. J. 
(y +- x) 

J. 

X +- (y-+ z) = X +- (y +- z) 
0 0 0 0 

X +- (y-+ z) = X +- (y +- ~) 

[T71a] (x X y) = x X y 

[T72a] 0 XO= 0 

[T73a] 0 X 1 = 1 

[T74a] XO = 1 

[T75a] 1 x 1 = O 

[T76a] XX X = 0 

[T77a] XX X = 1 

[T78a] XX X = 1 

J. J. J. 

[T71b] (x X y) = x X y 

[ T72b ] 1 X 1 = 1 

[T73b] XO= 0 

[T74b) 0 X 1 = 0 

[T75b] 0 XO= 1 

(T76b] XX X = 1 

[T77b] XX X = 0 

... -[T78b] XX X = 0 

J. 

[T79a] X X y = (x + y) 0 (x + y) [T79b] X X y = (x O y) + (x O y) 
- -[T80a] XX y = y XX [T80b] X~Y=YXX 

[T81 a) x X (y X z) = (x ·x y) X z [T81 b] x X (y X z) = (x X, y) X z 

[T82a] 

[T82b] 

[T83a] 

[T85b] 

(x X y) X z = (x • y o z) + (x o y o z) + (x o y • z) + (x O Y O z) 

ex x y > x z -= ex + y + z > • ex + y + z > • ex + y + z > • 
(x + y + z) 

(x X y) X z = (x + y + z) • (x + y + z) • (x + y + z) • (x _+ y + z) 

ex x y) x z = ex" y. z) + ex. y. z) + ex. y. z> + (x O y O z) 

[T84a] (x X y) X z = (x X y) X z [T84b] (x ~ y) X z = (x X y) X z 

[T85a) 

[_T86a] 

[T87a] 

[T88a) 

[T89a) 

- -xxy=.xXy 

(x X y) X X = y 

(x X y) X y = X 

(x X y) X x = y 

(x X y) X y = x 
.!'i 

[T85b] 

[T86b] 

[T87b] 

[T88b) 

[T89b] 

- - - -xxy=xxy 

(x X y) X x = y 

(x x y) X y = x 

(x X, y) x x = y 
(x x y) x y = x 



TABLE XVII (Continued). 

[T90a) x X (y X z) = (x X y) X z [T~Ob] x X (y X z) = (x X y) X z 

[T91a] 

[ T91 b] 

[T92a] 

[T92b) 

[T93a] 

[T93b] 

-(x ~ y)_x z_ = (x o y 0 z) + (x 0 y 0 z) + 
(x 0 y 0 z) 

(x ~ y)_x z_= (x + y + z) 0 (x + y + z) 
(x + y + z) 

(x ~ y) _x z_ = (x + y + z) 0 (x + y + z) 
(x + y + z) 

(x ~ y)_x z_ = z) + - z) (x o y 0 (x o y 0 

(x o y 0 z) 

(x O y) X (x O Z) : X O (y X Z) 

(x + y) X (x + z) = x + (y X z) 

0 

0 

+ 

<x 0 y oz)+ 

6~ + y + z) 0 

(x + y ,+ z) 0 

<x 0 y 0 z) + 

[T94a] (x O y) X (x X y) = x + y [T94b] (x + y) X (x X y) = x o y 

[T95a] 

[T95b] 

[T96a] 

[T96b) 

[T97a] 

[T97b) 

[T98a] 

[T98b) 

(T99a] 

[T99b] 

[T100a] 

(T100b] 

[T101a] 

(x + y + z). X (x + y + z) = 0 
-(x 0 y 0 z) X (x 0 y 0 z) = 1 

[ x+ (y 0 z) ] X [ (x + y) 0 (x + z) 

[ X 0 (y + z) J x r (x 0 y) + (x o z) 

(x ; y) X (x i y) 

(x -+ y) X (x -+ z ) 

= X """ (y X z) . 0 

= x -+ (y x z) 
l . l l 

(x -+ z ) X (y -+ z ) 
0 0 

= <x x y) ... z 
0 

(x ..,. z > x (y ... z) = (x X y) -+ z 
l l l 

[ X -+ (y -+ z) 
0 0 

[ X -+ (y -+ z) 
l l. 

] X [ (x + y) -+ z ] = 0 
0 

] X [ (x o y) -+ z ] = 1 
l 

] = 0 

] = 1 

(x ¢' y) X z = 
.{i•yoz) 

(IK • y o Z ) + (X o y o Z ) + (x O Y O z) + 

(xi y) X z = (x + y + z) o (x + y + z) • (x + y + z) o 

(x+y+z) 

(x I y) = x • y [T101b] (x II y) = x + y 

[T102a) 0 0 = 1 [T102b) II 1 = 0 

[T103a] 0 1 = 1 [T10:Sb) II 0 = 0 

[T104a] 0 = 1 [T104b] 0 II , )= 0 

[T105a] 1 = 0 [T105b] 0 II 0 = 1 
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, . .,._:,. ~ -

[T106a] x Ix= x 
[T107a] x Ix= 1 

[T108a] x I~= y Ix 

TABLE XVII (Continued). 

[T106b] X n X = X 
[T107b] x II x = 0 

[T1 OSb ] x II y = Y II x 

[ T1 09a] (x I y) I z = (x • y) + z [ T1 09b] (x II y) II z = (x + y) 0 z 
[.T11 Oa] x (y I z) = x + (y O z) [ T11 Ob] x II (y II z) = x O (y + z) 

[T111a] x I ; = x + y [T111b] i II;= x o y 
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[ T112a] (x I y) (x y) = x O y [ T112b] (x II y) IJ (x II y) = x + y 

[ T11 3a] (x x) (y y) = x + y [ T11 3b) (x II x) II (y II y) = x O y 

[ T114a] x I [ y I (y I y) ] = x [ T114b] x II [ y II (y II y) = x 
[ T115a] [ x j (y I z) ] I [ x I (y I z) ] = x O (y + z) 
r T11 sb 1 [ x 11 . <Y II z > 1 11 r x 11 : <Y II 2; > 1 = x + <; • i > 

[ T11 6a] [ x I (y I ~ ) ] I [ x I . (y I z) ] ~ [ (y . I Y) I 'x ] 
[ . (z · I z ) I x ] . 

[ T11 6b ] [ x II (y II z ) ] II [ x II (y II z) ] = [ (y II Y) II x ] II 
[ (z II z) II x ] 

[ T11 7 a] (x II y) I z = x + y + z 
[ T11 Sa] x I (y I z) = x + y + z 

[T11 7b] (x I y) II z. = x • y • z 
[T11 Sb) ~ II (y I z) = X •. y O z 

. . 

[T119a] (x II y) I z = ~ I (y II z) [T119b] (x I y) II z = x II (y I z) 

[T120a] 

[T120b] 

[T121a] 

[T121b] 

[T122a] 

[T122b] 

[T123a] 

[T123b] 

[ T124a] 

(x -+ y) o (x -+ z) = x -+ (y • z) 
0 0 0 

(x -+ y) + (x -+ z) = x -+ (y + z) 
1 1 1 

(x 6 z ) • (y O ; ) = (x + y) .. i z 

(x ~ z) + (y -+ z) = , (x ,. • y) -+ z 
1 1 + 

' I 

(x -+ y) + (x -+ z) = x -+ (y + z) 
0 0 0 

(x -+ y) • (x -+ z ) = x -+ (y • z) 
l 1 l 

(x -+ Z ) + (y -+ Z ) = (x O y) -+ Z 
0 0 · 0 

(x -+ z) • (y -+ z) = (x + y) -+ z 
1 1 1 

(x-+ y) + (y-+ x) = x X y T124b 
0 0 

(x -+ y) • (y -+ x) = x x y 
1 1 
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TABLE XVIII 

PROOF OF THEOREM T35a BY USE OF POSTULATES AND THEOREMS. 

(x - Y) -+ (x -+ Z) = (x O Y) - (x - Z) 
0 0 0 0 0 

X y z 

0 0 0 
0 0 1 
0 0 
0 1 1 
1 0 0 

0 1 
0 
1 

= <i o y) - <x o z ) 
0 

= <x o y) o <i o z ) 

= ci + y) 0 (x O Z ) 

: (x + y) ' 0 (x' 0 Z) 

= X o (i o , Z ) +' y o (X o Z) 

: (x Ox) 0 Z + (y Ox) 0 Z 

= o o z + 6 o x) o z 

= o + Cy • x) • z 

= (y 0 x) 0 z 

= (x 0 y) 0 z 

= X 0 (y 0 z) 

=x- (y 0 z) 
0 

= X-+ (y - z) 
0 0 

TABLE XIX 

PROOF OF THEOREM T35a BY PERFECT 

X - y X -+ Z y - z (x-+ y) -+ 
0 0 0 0 0 

0 0 0 0 
0 1 1 1 
1 0 0 0 
1 1 0 0 
0 0 0 0 
0 0 1 0 
0 0 0 0 
0 0 0 0 

INDUCTION. 

(x-+ z) x-
0 0 

[P5a] 

[P5a] 

[P5a] 

[T11 b] 

[T1 ] 

[T10b) 

[T9b] 

[T7b] 

[P';l:b] 

[P3a] 

[TSb] 

[T9b] 

[Ppa] 

(P5a] 

(y -+ z) 
0 

0 
1 
0 
0 
0 
0 
0 
0 
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TABLE XX 

PROOF OF THEOREM Tl4a BY USE OF PREVIOUSLY PROVED THEOREMS. 

x ; (y ; x) = y ; (x ; x) 

=y-+(O) 
. 0 

= 0 

[T33a] 

[T26a] 

[T24a] 



CHAPTER IV 

THE BOOLEAN ALGEBRA OF ORDER FOUR 

The Direct Union of~ Two-Valued Boolean Algebras 

On pages 28 and 29, it has been shown that the direct union AX B 

of two lattices A and B .is a lattice C with four binary operations O , 

l, T, and+, as shown in Table Von page 29. The elements of C = 

Ax Bare defined as ordered couples of A and B. If A= (0,1) and 

B = (0,1), the elements of Care c1 = (O,O), c2 = (0,1), c3 = (1,0), 

and ~4 .=. (1,1). Table VII is the• operational table for c, and Table 

VIII (c) is .th.e + operational table for C, It will be noted that if 

c2 and c3 are omitted from these tables, the results would be those 

shown in Table XXI. A comparison of Table XXI(a) and (b) with Table 

TABLE XXI 

THE• AND+ OPERATIONAL TABLES.,OR. EiEMENTS c1 AND c4 OF C =AX B. 

0 Ci C4 + Cl C4 

Cl. Cl CJ. CJ. C1 C4 

C4 CJ. C4 C4 C4 C4 

(a) (b) 

X (a) and (b) shows a one-to-one correspondence c·~1 ~4 ), as might be 

expected stnce c1 is the couple (O,O) and c4 = (1,1), CJ. may there-

fore be represented by the symbol O and c4 by 1. Let 9 represent c2 = 

(0, 1) and 4> rept:esent c3 = (1 ,O). Then the four operational tables 

for C become those shown in Table XXII. ··The direct union of two two-

valued Boolean algebras is frequently represented as B2 , with B 
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standing for the Boolean algebra of order two. 

TABLE XXII 

THE 0 , +, l, AND T OPERATIONAL TABLES FOR B2 = (O,e,4>,1}. 

o o e <1> + o e <1> 

0 0 0 0 0 

e o e o e 
<I> 0 0 <I> <I> 

1 o e , 1 

(a) 

1 o e , 

o o e o e 
e e e e e 
<1>' o e <1> 

1 e e 
(c) 

o o e <1> 

e e e 
<I> <I> . 1 <I> 

(b) 

T O 9 <I> 

0 0 0 <I> <I> 

e o e <1> 

<I> <I> <I> <I> <I> 

<I> 1 <I> 1 

(d) 

As indicated on page 29, an operation is carried out component 

by component. The operation° in the four-valued system represents 

o in both of the two-valued systems. l represents• in the first 

two-valued lattice,+ in. the second. T indicates+ in the first, o 

in the second, whereas+ in the four-valued system implies+ in each 

of the two-valued systems. The following calculations show how the 

! table can be determined. 

0 l O = (0, 0) l (0, 0) = (0 • 0, 0 + 0) = (0, 0) = 0 

o 1 e = (O , o ) 1 (O , 1 ) = (O •. o , o + 1 ) = co , 1 ) = e 

0 l <I> = . (0 , 0) l (1 , 0) = (0 • 1 , 0 + 0) = (O, 0) = 0 

o 1 1 = (O , o ) 1 (1 , 1 ) = (O • 1 , o + 1 ) = co , , ) = e 

e 1 o = (O , 1 ) 1 (O , o ) = (O • o , 1 + o ) = (O , 1 ) = e 

e 1 e = (O , 1 ) 1 (O , 1 ) = (O • o , 1 + 1 ) = (O , 1 ) = e 

e 1 <1> = (O , 1 ) 1 (1 , o) = (O • 1 , + o) = co, 1 ) = e 
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e l 1 = (O, 1) l (1 , 1) = (0, 0 

1 ' 

41 l O = (1 ,o) 1 (O,O) = (1 0 o, 

41 l e = (1 ,O) l (0, 1) = (1 0 o, 

41 l 41 = (1, O) l (1,0) = (1 0 1 , 

cl> l 1 = (1 ,O) l (1 , 1) = (1 0 1' 

l O = (1 , 1) l (0 ,O) = (1 0 o, 

l a = (1, 1) l (0, 1) = (1 0 o. 

l cl> = (1 , 1 ) l (1 ,O) = (1 0 1 , 

l 1 = (1 , 1 ) l (1 , 1) = (1 0 1 , 

L4ttice Considerations 

Figure 6 shows lattice diag.r~ms 

1 

0 

(a) 

e =· (0,1) 

1 + 1) = (0, 1) = e 

0 + O) = (O,O) = 0 

0 + 1) =· (0, 1) = e 

0 + 0) = (1 , 0) = 41 

0 + 1) = (1 , 1) = 1 

+ q) = (0, 1) = e 

+ 1) = (0, 1) = e 

+ 0) = (1 , 1) = 1 

1 + 1) = (1 , 1 ) = 1 

0,t B,. t.qe two-valued Boolean 

= (1, 1) 
,';,' 

0 = '(O,O) 

(b) 

41 =· (1 ,O) 

Fig. ,6. ~iagrams of Two- and ]lour-Valued Lattices. 

algebra, and of B2 , the four-valued Boolean algebra. Since B2 is a 
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lattice, it obeys the idempotent, conunutative, associative, absorptive, 

self-distributive, and semidistributive laws stated on page 24. 

Since B2 satisfies the Jordan-Dedekind chain condition, it is a modular 

lattice and follows the modular laws stated on page 24. 

Transformations of B2 

Using the symbols O, 9, $, and 1 for c1 , c2 , c3 , and c4 , respec-

tively, the link-preserving transformations of B2 indicated .on page 27 

are as shown in Table XX.III. The duality transformations are R' and 

TABLE XX:I!:t 

LINK-PRESERVING TRANSFORMATIONS FOR B2 • 

I _ /09$1) 
- \09$1 

D = (09$1) 
\0$91 

H = (09$1) 
\901$ 

R = (09$1) 
· \910$ 

V = (09$1) 
\$109 

R"= (09$1) 
\$019 

R'= (oe,1\ 
\1'90) 

D'= (oe,1) 
\19$0 

D1 • As indicated on page 32, the principal transformations are I, H, 

v, and R1 • Table II, page 14, shows that I, H, V, R', D, and D1 are 

self-inverse; that is, t•I+ = I. Rand R", however, are not self-

inverse. 

Obviously, xI = x, since I is the identity transformation. Con-

sistent with the use of R1 as the negative transformation for B, the 

Boolean algebra of order ~wo, R1 can be considered the negative trans­

formation for B2 • 0 = 1, e = ,, $ = e, 1 = 0. On page 36, the zero 

biconditional x X y was d~fined for Bas (x • y) + (x • y), Since the 

•and+ operations as well as negation exist in B2 , the same definition 

for xx y can be used for B2 • Using this definition and the• and+ 

operational tables shown in Table XXII(a) and (b), the values of x X y 

for B2 can be determined, These values are indicated in Table XXIV. 

Close examination of Tabl~s XXIII and XXIV will reveal the following 



equalities~ xI = x XO= xol + xoO = x; xH = x X 9 = xoell + x 0 e; 

xv= x X ell= xoe + xoc!I; and xR' = x X 1 = xoO + xo1 = x. 

TABLE XXIV 

THE X OPERATIONAL TABLE FOR B2 , 

X O 9 ell 

o o e ci, 

e e o 1 e11 

ci, ci, o e 
ci, e o 

Relationship of~ and B2 

The union of two lattices, Boolean algebras of order two, into 
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the lattice of B2 certainly does not invalidate the postulates and 

theorems previously presented for the two-valued.Boolean algebra, B. 

Postulate P1 still applies to B, but two new elements 9 and ci, must be 

introduced for B2 • Both Band B2 have 1 as the least upper bound and 

0 as the greatest lower bound. In both systems, therefore, postulates 

P3a, P3b, P4a, and P4b must be true. Comparison of Figure 6(a), the 

lattice diagram for B, with Figure 6(b), the one for B2 , shows that 1 

covers O in both cases. The R1 transformation, rotation of Figure 6(b) 

180@, interchanges O and 1 in either Bo; B2 • P2a and P2b are true 

for either B or a2, but for B2 there must be added the negatives for 

the additional elements, x = ell if x = e, and x = e if x = ell, All 

theorems of Table XIV can be proved true for B2 as well as for B. 

Operational tables for B2 (e.g., Table XXIV) are true for B if only 

the elements O and 1 are considered, Relationships involving e and ell 

do not, of course, apply to B, 

Binary Relations and Transformations 

As indicated on pages 26 and 27 , if there is an isomorphism between 
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two groups S1 = (o, a, b, ••• ) and S2 = (e, a, b, ••• ) with the 

-1 -1 same elements a, b, ••• , a ob= (at (D: bt}t , or f Ea g = (ft o 

gt- 1 )t. If t.is a principal transformation in B2 , it is self-inverse, 

and for every ordering relation o of B2 there is a relation p such 

that x p y = [ (xt) o (yt} ]t. 

For example, let o be the O operation. x p 1 y = [ (xt) 0 (yt)]t. 

Now if tis the identity transformati~n I, xt 1 = xI = x X y =. x. 

x p11 y = (xI O yI)I = (x .o y)I = x O y. Therefore, Pu.= 0 • If 

t =:'° H,. xt2 = xH = x X 0 = (x•cl>) + (xoe). The following steps show 

the .deta.iled development of a resultant expression. Notice that, for 

. s~mplicity, the • symbol is omitte.d be.tween two elements it connects. 

Thus, xy =:= x o y. 

X P12 Y = .(xH O yH)H 

= [ (xcl> + xe) 0 (ycl> + y9) ]H 

= [ (xcl>) (ycl> + ye) + (xe.) (ycl> + ye) ]H 

= [ (xcl>) (ycl> ), + (x<I>) (ye) + (xe).(ycl>) + 

= [ (xcl>) (cl>y) + (xcl>) (Sy) + (xe) (4'y) + 

(xe) (ye) ]H 

(xe) (ey) ]H 

[T10b] 

[T1 Ob] 

(T8b] 

= [ (xcl>cf>)y + (x4>0)y + (x9cl>)y + (x99)y:]H :[T9p] 
. ., ' . 

= [(xcf>)y + (xO)y + (xO)y + (x9)y]H [Table XXII(a)] 

= [ (x.cl>)y + .o + 0 + ,(x9)y]H [Table XXII(a)] 

= .[ (xcl>)y + (xe)y]H [Table XXII(b)] 

= [xycl> + xy9]H [T9b) 

= (xycl> + xy9)4> + (xycl> + xy9)9 [Table XX.IV] 

= (xycl> + xy9) cl> + (xycl>) o (xy9) 8 [ T11 a] 

= (xycl> + xy8)cl> +. (x +.Y + i) (x + y + 9)9 [T12b] 

= (xycl> + xy8)cl> + (x + y + i)(x + y + 9)~ [T1] 

= (xycl> + xye)cl> + (x + y + 0) (x + y + cl>)8 [Table XXIII for' R1 ] 



= (xy<I> <I> + xye <I>) + (x + y + e )(x + y + <I>) e 

= (xy<I> + xyO) + (x + y + e) (x + y + <I>) e 

= xy<I> + 0 + (x + y + e ) (x + y + <I>) e 

= xy<I> + (x + y + e) (x + y + ,<I>) e 

= xy<I> + (x + y + e ) [ e (;ic + y + <I>) ] 

= xy<I> + [ (x + y + e) e ] (x + y + <I>) 

= xycl> + e (x .j.. y + e) (x + y + <I>) 

= xy<I> + e(x + y + <I>) 

= xy<I> + (x + y + 4>)9 

= xy<I> + xe +ye+ 4>9 

= xy<I> + xe +ye+ O 

= xy<I> + xe + ye 

= xy<I> + xy<I> + xe + ye 

= (xe + xy<I>) + (ye+ xy<I>) 

= x(e + y<I>) + y(e + x<I>) 

= x(y + 9) + y(x + 9) 

= xy + xe + yx + ye 

= xy + xe + xy + ye 

= xy + xy + xe + ye 

= xy + xe + ye 

=:= xy + (x + y)e 
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[T1 Ob] 

[Table XXII (a)] 

[Table XXII (a)] 

[Table XXII (a)) 

[T8b] 

[T9b] 

[T8b] 

[T13b] 

[T8b] 

[T10b] 

[Table XX.II (a)] 

[Table XXII (b)] 

[T6a) 

[T8aJ 

[T10b] 

[T14a] 

[T10bj 

[T8b] 

[T8a] 

[T6a] 

[T1 Ob] 

By perfect induction, the expression xy + (x + y)e can be shown 

to be equal to x l y, the operational table for which is Table XXII(c). 

Other expiessipns can be similarly derived by letting o be 0 , X, -+, 4-, 
0 0 

or I, with t as any of the four principal transformations, The re-

sults .9btainedfrom the twenty possible combinations are listed in 

Table XXV. Ten of the expressions are identical to ones already 



0 

0 

0 

0 

0 

X 

X 

X 

X 

... 
0 

... 
0 

... 
0 

.... 
0 

+-
0 

+-
0 

+-
0 

TABLE XXV 

EXPRESSIONS DERIVED FROM x p y = [(xt) o (yt)]to 

t 

I 

H 

V 

R' 

I 

H 

V 

I 

H 

V 

R' 

I 

H 

V 

R' 

I 

H 

V 

R' 

[(xt) o (yt)]t 

X o y 

xy + (x + y)e 

(x + y) (xy + 4>) 

X + y 

- -xy + xy 

(x + y) (x + y) e + (x + y) (x + y )4> 

(xy + xy + 4>) (xy + xy + e) 

(x + y) (x + y) 

.. 
xy 

xy + ex + y)e 

<x + y > <xy + , > 

-X + y 

xy 

xy + (x + y)e 

(x + y) (xy + 4>) 

-
X + y 

(xy) 

<i + Y > <xy + 4> > 

xy + <x + y)e 

(x + y) 

Operational 
Expression 

X o y 

X l y 

X T y 

x+y 

XX y 

X )I;: y 

X " y 

-xxy 

X-+ y 
0 

X '* y 

x~y 

X -+ y 
1 

X +- y 
0 

X 11; y 

x~y 

X +- y 
J. 

X I y 

X lL y 

X lr y 

XII y 
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defined for B: o, +, x, x, -+, ..... , .._, .._, I, and 11, The l and T oper­
o 1 0 J. 

ations for B2 have already been indicated in Table.XXII. Eight new 

expressions are indicated in Table XXV: ~' ~, ~, ~, ~, ~,[,and[. 

All of them involve either e or$ or both and thus, along with 1 and 

T, apply to B2 only. Dual and negative relationships .for. the twenty 

binary relations of B2 are listed in Table XXVI. 

Operational tables for each of the twenty binary relations of B2 

can be worked out from their definitions in terms of o and+ by ref-

erence to Table XXII(a) and (b). Results are shown in Table XXVII. 

Although all postulates of Table XIII except P1 apply to B2 as 

well as to B, further postulates or definitions are needed for B2 , 

These are listed in Table XXVIII, With the aid of these and the 

postulates and theorems of Tables XIII and XIV, innumerable theorems 

for B2 can be proved. Some of them are listed in Table XXIX. It 

will be noted that they are listed in dual pairs, where a dual ex-

pression is obtained in a manner similar to that used for B. Dual 

binary relations are interchanged, 0 and 1 are interchanges, and e 

and~ are interchanged. 
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TABLE XXVI 

DUAL AND NEGATIVE EXPRESSIONS OF B2 • 

Expression 

x 1 y = xy + (x + y)e 

x T y = (x + y) (xy + <I>) 

X + y 

- -x X y = xy + xy 

X ~ y = (x + y)(x + y)9 + (x + y)(x +y)<I> 

X ~ y = (xy + xy + <l>)(xy + xy + 8) 

XX y = (x + y)(x + y) 

X; ye:: Xy 

X -:l' y = xy + (X + y)9 

x ~ y = <x + y)(xy + $) 

-X _. y = X + y 
1 

X +- y = Xy 
0 

x ~ y = xy + (x + y)e 

x ~ y = (x + y) (xy + <I>) 

-
xiy=x+y 

x I y = (xy) = x + y 
xi y = <x + y)(xy + <I>) 

X rr Y = xy + (X +y)8 

X II y = (x + y) = xy 

Dual Negative 

X + y X I y 

xTy xlJ.y 

xly x[y 

X O Y X II Y 
- = 

xxy xxy 

X !t y X '.:f: y 

x:ty x::t:y 

xxy xxy 

X ~ y X +- y 
1 l. 

x-=l>y x~y 

x-::f!,y x+.y 

X ~ y X +- y 
0 0 

X +- y X 4 y 
J. J. 

X II Y X O Y 

x}y xly 

X lL y X T y 

X I y X + y 
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TABLE XXVII 

OPERATIONAL TABLES FOR B2 • 

0 o e ·ci, 1 X o e c1> .... 
0 

o e c1> 1 4-
0 

o e c1> 1 o e c1> 

0 0 0 0 0 0 o e c1> 0 o e c1> , 0 0 0 0 0 0 1 1 1 1 
e o e o e e e o 1 c1> e 0 0 cl> cl> e e o e o e 1 cl> 1 cl> 

cl> 0 0 cl> cl> cl> c1> 1 o e cl> o e o e cl> 4>4>00 cl> 1 1 e e 
1 o e ., 1 1 ' 1 ,e o 1 0 0 0 0 1 1 c1> e o 1 , c1> e o 

(a) (b) (c) (d) (e) 

l o e c1> 1 :t o e c1> 1 '* o e c1> 1 * o e c1> 1 1l o e • 1 

0 o a o e 0, e o 1 c1> 0 e e 1 1 0 a o e o 0 1 cl> 1 41 
e a e e e e o e c1> , e o a c1> 1 a a e e e e cl> cl> cl> cl> 

cl> o e c1> 1 cl> 1 cl> 9 0 cl> a e e a cl> 1 cl> 9 0 cl> 1 c1> e o 
1 a e 1 1 1 c1> 1 o e 1 o a o a 1 1 1 e a 1 cl> cl> 0 0 

(£) (g) (h) (i) (j) 

T o e c1> 1 " o a c1> 1 .:J o e c1> 1 ~ o e c1> 1 lf o e c1> 1 

0 0 0 cl> cl> 0 c1> , o a 0 cl> 1 cl> 1 0 cl> cl> 0 0 0 1 1 a e 
e o a c1> 1 e 1 c1> a o a cl> cl> cl> cl> 9 1 c1> e o a 1 c1> e o 
cl> cl> cl> cl> cl> cl> 0 9 cl> 1 cl> o e c1> 1 cl> cl> cl> cl> cl> cl> e e e e 
1 cl> 1 cl> 1 1 e o , c1> 1 0 0 cl> cl> 1 1 cl> 1 cl> 1 a o a o 

(k) (.t) (m) (n) (o) 

... 
II + o e c1> X o e c1> 1 .... o e c1> 1 4- o a c1> 1 o a c1> 1 

1 1 

0 0 9 cl> 1 0 1 cl> 9 0 0 1 1 1 1 0 c1> e o 0 1 c1> e o 
9 a a 1 1 a cl> 1 0 9 a cl> 1 cl> 1 e 1 a e e cl> cl> 0 0 
cl> cl> 1 cl> 1 cl> e o 1 c1> cl> a a 1 1 cl> 1 4> 1 cl> cl> e o a o 
1 1 1 1 1 1 o e c1> 1 1 o e c1> 1 1 1 1 1 1 1 0 0 0 0 

(p) (q) (r) (s) (t) 



TABLE XXVIII 

POSTULATES AND DEFINITIONS FOR FOUR-VALUED BOOLEAN ALGEBRA 
" 

[P5a] 0 = (0 ,0) [P5b] 1 = (1, 1) 
,. 

[P6a] a = (O, 1) [P6b] cl>= (1 ,0) 

[P7] X = 0, Or X = 9 1 or x = cl>, or x = 1 f~r-all·x e B2 , 

[P8a] i = ci, if x = a [P8b] X = 9 if X = cl> 

[P9a] x l y = xy + (x + y)e (P9b] X Ty= (x + y) (xy + cl>) 

[P10a] x }I:: y = (x + y)(x + y)9 + (X + y)(x + y)$ 

[ P1 Ob] x ,: y = (xy + xy + cl>) (xy + xy + 9) 

[P11a) X-!- y = xy + (x + y)9 

[P12a) x 4- y = xy + (x + y)e 

[ P1 5a] X lL y = (x + y) (xy + cl>) 

[ P11 b] X ~ y = (x + y) (xy + cl>) 

[ Pl 2b] x .- y = (x + y) (xy + 4>) 

[P15b] X lf y = iy + (~ + y)9 

TABLE XXIX 

THEOREMS FOR B2 

[T125a) 0 • a = o [T125b] 1 + cl> = 1 

[T126a] 0 
0 ' = 0 [.Tl 26b] 1 + e = 1 

[T127a] e • 0 = 0 [T127b] ct, + 1 = 1 
!,: 

... 

.[Tl 28a] .e 0 a = e [T128b] ' + 4> = ' 
(T129a] e •· cl> = 0 [T129b] , + e = 1 

. .... •" 

.[T150a] e •. 1. = .e [T150b] 4> + 0 = • 

[T151a) cl>· • 0 = 0 ~T151b] e + 1 = 1 
... " 

[T152a] cl> • e = o [T152b) e + • = 1 ,, 
.. 

[T153a] ' • cl>·= ' [T155b] e + e.= e 
" - ,,., 

[T1Ma] ' . 1 = cl> (T154b] e + o = e 
.. 

[T155a] 1 • e = e [T155b] 0 + ct, = ' 
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[T137a] 0 X 9 = 9 

[T138a) 0 X <I>= <I> 

[T139a] 

[T140a] 

[T141a] 

[T142a] 

[T143a] 

[T144a] 

[T145a] 

[T146a) 

(T147a] 

[T148a] 

[T149a] 

[T150a) 

(T151a] 

[T152a) 

(T153a] 

[T154a] 

[T155a] 

[T156a) 

[T157a) 

[T158a] 

[T159a] 

[T160a] 

9 X O = 9 

9 X 9 = 0 

9 X <I> = 1 

9 X 1 = <I> 

<I> X 9 = 1 

<I> X 1 = 9 

1 X 9 = <I> 

X <I> = 9 

o ... 0 = e 
0 

9 -+ 0 = 0 
0 

9-+9=.0 
0 

9-+<l>=<I> 
0 

0 -+ 1 = <1> 
0 

<l>-+9=9 
0 

<I> -+ <I> = 0 
0 

il>-+1=9 
0 

-+ 0 = o 
0 

-+ <I> = 0 
0 

TABLE XXIX (Continued) 

(T137b] X <I> = <I> 

-[ Tl 38b] 1 x 0 = 0 

[Tl 39b] 

[T14pb] 

[T141b] 

[Tl 42b] 

[T143b] 

[T144b] 

[T145b] 

[T146b] 

[T14 7b] 

[T148b] 

[T149b] 

[T150b] 

[T151b] 

[Tl52b] 

[T153b] 

[T154b] 

[T155b) 

[TJ56b] 

[T157b) 

[T158b] 

[T159b] 

[T160b) 

-
<l>X1=<1> 

<l>X<l>=1 

<I> X 9 = 0 

9 X 1 = 9 

9 X <I> = 0 

-
9 X 9 = 1 

... 
9 X O = <I> 

o x <1> = e 

<I> -+ 1 = 
1 .. 

<I> -+ <I> = 
' 1 

<l>-+9=9 
1 

e -+ <I> = <I> 
1 

9-+9=1 
1 

9-+0=<1> 
.1 

0-+<1>=1 
1 

0 -+ 9 = 
1 
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T~LE XXIX (Continued) 
··-

[T161a] 0 +- 9 = 0 [T161b] 1+-4>=1 
0 1 

[T162a] 0 +- 4> = 0 [T162b] 1+-9=1 
0 1 

[T163a] 0 +- o = s [T163b] 4> +- 1 = 4> 
0 1 

[T16~a] 8+-8=0 [T164b] 4> +- 4>, = 1 
0 1 

[T165a] 8+-4>=8 [T165b] 4> +- 9 = 4> 
0 1 

-
[T166a] 9+-1=0 [T166b] 4> +-- 0 = 1 

0 1 

[T167a] 4>+-0=4> [T167b] 0 - 1 = 0 0 1 ·· 

[T168a] 4>+-9=4> [T168b] 9+-4>=9 
0 1 

[T169a] 4>-+-4>=0 [T169b] 9+-9=1 
0 1 

•' 

[T170a] 4>-+-1=0 ['r170b] 9+-0=1 
0 1 

, .. 

[T171a] 1+-9=4> . [T1 71 b] 0+-4>=9 
0 1 

. 
[T172a) 1+-4>=9 [T172b] 0+-9=4> 

0 1 

[T173a] 0 9 = 1 '[T1 73b] 1 II c() = 0 

[T174a] 0 I 4> = 1 [T174b] 1 II 0 = o 

[T175a] 9 I 0 = 1 [T175b] ' II 1 = 0 

[T176a] 9 I 9 = 4> [T176b] ' II , = 9 

[T177a) .e I 4> = 1 [T177b] t II 9 = 0 

[T178a] 9 I 1 = c() [T178b] ' II o = e 
... 

[T179a] 4> I 0 = 1 [T179b] e 11 1 = 0 

, I s 11 

.. 
[T180a] 9 = 1 [T180b] c() = 0 

. 
[T181a] 4> I c() = 9 [T181b) e II 9 = 4> 

[T182a] 4> I 1 = .9 tT182b] 0 II 0 = c() 

[T183a] 1 I 9. = 4> .[T.183b] o 11 ' = e 

[T184a] 1 I 4> = 8 [T184b) o II 9 = 4> 
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.TJ,\.BLE XXIX (Continued) 

[T185a] 0 l O = 0 [T185b] T 1 = 1 

[T186a] o 1 9 = a [T186b] T <I>= <I> 

[T187a] 014>=0 [T187b] 1 T 9 = 1 

[T188a] o 1 1 = 9 [T188b] 1 TO = <I> 

[T189a] 9 l o = a [T189b] <I> T 1 = <I> 

[T190a] a 1 9 == 9 [T190b] <I> T <I>= <I> 

[T191a] 914>=9 [T191b] <I> T 9 = <I> 

[T192a] 9 1 1 = e [T1 92b] <I> T 1 = <I> 

[T193a] 4' l O = 0 [T193b] 8 T 1 = 1 

[T194a) <1> l e = 9 [Tl 94b] 8 T <I>= <I> 

[T195a] cl> l <I> = <I> [T195b] a T 9 = a 

[T196a] <I> l 1 = 1 [T1 96b] 8 T O = 0 

[T197a] 1 1 o = 9 [T197b] 0 T 1 = <I> 

[T198a] 1 1 9 = e [T198b] 0 T <I>= <I> 

[T199a) 1 <I> = 1 [T199b] 0 T 8 = 0 

[T200a] 1 1 1 = 1 [T200b] 0 TO = 0 

[T201a] .O-:t0=8 [T201b] 1 ~ 1 = <I> 

[T202a] o -± a = e [T202b] 1 .:i.; <I> = cl> 

[T203a) 0 -:I?- <I> = 1 [T203b] 1 ~ 9 = o 

[T204a] 0-± 1 = 1 [T204b] 1~0=0 
! 

[T205a) e-± o = o [T205b] <l>.:f1 =1 

[T206a] a -± a = e (T206b] <I> -=F <I> = <I> 

[T207a] 8 '* <I> = <I> [T207b] cfl ~ e = a 

(T208a] 8 -* 1 = 1 [T208b] <1>-=FO=O 

(T209a] <I> -± 0 == .9 [T209b] 9-=F1=<1> 
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TABLE XXIX (Continued) 

[T210a) <1>-*9=9 [T210b] 9.:. cl> = cl> 

[T211a] cl> '* cl> = 9 [T211b] 9 .:J. 9 = cl> 

[T212a] <1>-*1 =9 [T212b) 9 ~ 0 = cl> 

[T213a] 1 -* 0 = 0 [T213b] 0 ~ 1 = 1 

[T214a] 1 -* 9 = 9 [T214b] 0 ~cl>= cl> 

~T215a] 1 -* cl> = 0 [T215b] 0~9=1 

[T216a) 1-*1=9 [T216b] 0 .:J. 0 = cl> 

[T2l7a] 0 * 0 = 9 [T217b) , • 1 = cl> 

[T218a] 0 * 9 = 0 [T218b) 1 ~ cl> =, 

[T219a) 0 *cl>= 9 [T219b) 14f-9=cl> 

[T220a) 0 * 1 = 0 [T220b) 1~0=.1 

[T221a) 9 11:- 0 = 9 [T221b) cl>~ 1 = cl> 

[T222a] 9 * 9 = 9 (~222b) cl>~ cl>= cl> 

[T223a) 9 * c1> = .9 [T223b] cl>~ 9 = cl> 

[T224a) 0 * 1 = e [T224b) cl>~ 0 = cl> 

[T225a] cl>t-0=1 [T225b] 9 ~., = 0 

[T226a] cl>* 9 = cl> [T226b) e ~ c1> =. e 

[T227a] ci, *cl>= e [T227b] e ~ 9 = ci, 

[T228a] cl>*, = 0 [T228b] 9 ~ 0 = 1 
' ' ' 

[T229a] 1 * 0 = 1 [T229b] 0 ~ 1 = 0 
-

[T230a] 1 *· e = 1 [T230b] 0 ~cl>= 0 

[T231a] 1,t-cl>=9 (T231b] o ~ e = c1> 
,, . 

"' 

[T232a] 1 *, = a (T232b] 0 ~ 0 = cl> 

[T233a] o ~ o = e [T233b] 1,t1=cl> 

[T234a] o ~a= o [T234b] , ~ cl> = 1 
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TABLE XXIX (Continued) 

[T235a] Ox<l>=1 [T235b] 1 ~ e = o 

[T236a] 0 :t 1 = <I> [T236b) 1 ~ o = e 

. [T237a] e :t o = o [T237b] <I> ~ 1 = 1 

[T238a] e }I.': e = e [T238b] ti> ~ <I> = <I> 

[T239a] 8:t<l>=tl> [T239b] <1> ~ e = e 

[T240a] 8:i:1=1 [T240b] <I>~ 0 = 0 

(T241a] <l>i:0=1 [T241b] e :SI: 1 = o 

[T242a] <I> :>t e = <I> [T242b] e ~ <1> = e 

[T243a] <I> :t <I> = e [T243b] e ~ e = <1> 

[T244a] <l>:t1=0 [T244b] 851':0=1 

[T245a] 1:k'.0=<1> [T245b] o ~ 1 = e 

[T246a] 1:t8=1 [T246b] 0 % <I>= 0 

(T247a) 1:t<l>=O [T247b] o ~ e = 1 

[T248a] 1:t1=8 [T248b] 0 % 0 = <I> 

[T249a] OlL0=1 [T249b] 1lf1=0 

[T250a] OlLB=<I> (T250b] -1 lf <1> = e 

[T251a] OlL<1>=1 [T251 b] 11fe=O 

[T252a] 0 JL 1 = <I> [T252b] 11f0=8 

[T253a] elLO=<I> [T253b] <1>lf1=8 

[T254a] elLe=<I> (T254b] <I> 1f ci, = a 

[T255a] 9 lL cj) = <I> [T255b] ci,1fe=e 

[T256a] elL1=<1> [T256b] <1>lfo~e 

[T257a] <I> lL O .;, 1 [T257b] e1f1=0 

[T258a) cj) lL 9 = cj) [T258b) e1fci,~e 

[T259a] ci, lL ci, = e [T259b] e1fe=<1> 

[T260a] ct>lL1=0 [T260b] e1fo=1 
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TABLE XXIX (Continued) 

[T,261a] 11L0=4' [T261b] 0 ·ir 1 = e 

[T262a] 11Le=, [T262b] Olf4>=9 

[T265a] 11Lt70 [T265b] 01f9=1 

[T264a] 11L1=0 [T264b] olfo=1 

[T265a] X l y = y.l X [T265b] xTy=yTx 

[T266a] X ~ y = y :).t X [T266b] X !ii! y = y " X 

[T267a] X 1L y = y 1L X [T267b] xlfy=ylfx 

[T268a] e 1 x = e [T268b] 4' T X = 4' 
.. 

[T269a] 4' l X = .X [T269b] e T x = x 

[T270a] 9 j.'. X = X [T270b] 4' " X = X 

[T271a] X )t 9 = X (T2.71b] X " 4' = X 

[T272a] ·.- [T272b] -4' j.'. X = X 0 " X = X 

[ '1;275a] -X )t: 4' = X [T275b] X" 9 :,X 
... 

[T274a] 9 -i' X = X [T274b] ,-.x=x 

[T275a] x '* e = e [T275b] X .:J;4' = 4' 

[T276a] 4' ':t X = 9 [T276b] 9=FX=4' 
~ 

[T277a] X ':t 4' = X [T277b] X -. 9 = X 

[T278a] e * x = e [T278b] 4).-x:4' 
. 

'" 
[T279a] Xt'9=X (T279b] x~4'=x 

I 

[T280a] 4' t X = Jr; [T2e~b] 9 .: X = X 

- ,. 

,[T281a] X t' 4' = 9 [T281b]. x.:0=4' 

[T282a] e1Lx=4' [T282b] ,lfx~e 

[T285a] X 1L 9 = 4' [T283b] x1f4>~e 

[T284a] t1Lx=x [T284b] e 1f x = x 

[T285a] X 1L 4' = ,x [T285b] x 1f e = :i 
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TABLE XXIX (Continued) 

" 
[T?86a) X l X = 9 [T286b] X T ; = 4' 

- ,. 

[T287a] X :lie X = 0 [T287b] XIX=' 
,. 

[T288a] X :iC X = 4' [T288b] X f X = 0 
,,. 

[T289a] X ':It' X = 9 [T289b] X .::J. X = 4' 

[T290a] X ':It' X =,X [T290b] X =f X = X 

[T291a] XtX=9 [T291b] x+x=4' 
,. .. 

[T292a] XtX=X [T29.2b] X.+ ~ = X 

[T293a] X 1L X = X [T293b] X 1f X ,;.. ~ 

[T294a] X 1L X = ' [T294b] x 1f x ,;. a 

[T295a] (x + y) (xy + 9) = x l y [T295l;>) xy + (x + y),i, = x T y 
.. 

[T296a] xy, + (x + y}9 = x l y [T296b] (x + y + 9)(xy + 41) = x Ty 

[T297a] (x + y + 4')(xy + 9) = x l y 

[T297b] xy9 + (x + y)4' =.x'T y 

[T298a] (xy + xy),i, + (xy + xy)9 = X ;it y 

[T298b] [ (x + y)(x + y) + 9]((x + y)(~ + y) + 4'] = X !l y 

[T299a] [(x ~ y)(x + y) + $l[(x + y)(x + y) + 0] ,;_Xi y 

[T299b] (xy + xy)9 + (xy + xy)4' = x·" y 

[T300a] (x + y) (xy + 9) = x ':It'. y [T300b] ;y + .,(x + y)$ = X _,. y 

[T301a] xy$ + (X + y)9 = X -:It- y [T301b1 ex+ y + a> ciy + ,> = x ... y 

[ T302a] (x + · y + 4') (xy + 9) = X "2" y 

[T302b] xy9 + (x +·y)(jl = x·~ y 

[T303a) (x + y) (xy +·9) --= x * y [T:3031:>] xy + (x + y)4' = x + y 

[T304a] ;;, + (x + y)9 = x * y 

[T305a] (x + y + $)(xy + 9) = x 1l- y 

[ T3.0!;>b) xye + (x +: y), = x · + y 

[T306a] xy + .(~ + y)~ = X 1L y [T306b] .(~ + y) (~y + 9) = x lf. y 
. . . •, 

[T30?°a] xy9 + (x + y),i, ,:;. X 1L y [T307b] -(~ + y + 4') (~y ·.,_ 8) = X -lf y 



TABLE XXIX (Continued) 

[T308a] (x + y + 9)(xy + 4>) = X [ y 

{t,3Q8b] Xy<l> + (X + y)9 = X 1r y 

(T309a] (x l y)e = (x + y)e [T309b] (x T y) + 4> = xy + 4> 

(T310a] (x l y)<l> = xy<l> [T310b] (x Ty)+ 9 = x + y + 9 

[T311a] (x l y) + 9 = xy + 9 [T311b] (x T y)4> = (x + y)4> 

[T312a] (x l y) + <I> = x + y + 4> [T312b] (x T y)9 = xye 

[T313a] 

[T313b) 

[T314a) 

[T314b) 

[T315a] 

[T315b] 

[T316a) 

[T316b] 

[T317a] 

[T31 7b) 

[T318a) 

[T318b] 

[T319a] 

[T31 9b] 

[T320a] 

[T320b] 

[T321a] 

[T321b] 

(T322a) 

[T322b) 

[T323a] 

[T323b) 

<x :t y > e = <x + y Hx + y > e = <x x y > e 

(x ~ y) + 4> = xy + xy + 4> = (x X y) + 4> 

(x ~ y) 4> = (x + y (i + y) 4> = (x X y) 4> 

<x ~ y > + e = xy + xy + e = <x x y > + e 

(x ~ y) + 9 = (x + y)(x + y) + 9 = (x X y) + 9 

<x ,:: y)<l> = (xy + xy)<1> = <x x y)4> 

<x :t y > + 4> = <x + ; > <x + y > + 4> = <x x y > + <1> 

(x 51:: y)9 = (xy + xy)9 = (x X y)e 

(x ~ y) 9 = (x + y) e = (x -+ y) 9 
1 

(x ~ y) + 4> = xy + 4> = (x-+ y) + 4> 
0 

(x -:I!- y)<I> = x.ycl> = (x -+ y)cl> 
0 

(x ~ y) + e = x + y + e = (x-+ y) + e 
. 1 

(x ~ y) + e = xy + 9 = (x-+ y) + 9 
0 

(x ,i, y)<I> = (x + y)cl> = (x -+ y)cl> 
1 

(x ~ y) + 4> = x + y + 4> = (x 1 y) + 4> 

(x ~ y)e = xye = (x-+ y)e 
0 

(x 11; y) e = (x + y) e = (x +- y) e 
J. 

(x + y) + 4> = xy + 4> = · (x +- y) . + 4> 
. 0 

(x 11; y) <I> = xy<I> = (x +- y) 4> · 
'. . 0 

(x + y) + e = x + y + e = (x +- y) + e 
... • . J. 

(x t y) + 9 = xy + 9 = (x +- y) + 9 
. .0 

(X + y)4> = (x + y)4> = (x +- y)cl> 
J. 
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[T324a] 

[T324b] 

.TABLE XXIX (Continued) 

(x 4- y) + $ = x + y + $ = (x +- y) + $ 
1 

(x + y) a = xye = (x +- y) a 
. 0 

[T325a] (x l y)x = (y .+ e)x [T325b] (X Ty)+ X = y$ + X 

[T326b] (x T y)x = (y + $)x [T326a] (x l y) + x = y$ + x 

[T327a] 

[T327b] 

[T328a] 

(T328b] 

[T329a] 

[T329b] 

[T330a] 

[T330b] 

(x ~ y)x = (y4i + y9)x 

(x ~ y) + x = (y + a) (y + , ) + x 

(x :t y) + x = (y + $) (y + 9) + x 

(x ~ y)x = (ye + y4l)x 

(x ~ y)y = 6~, + x9)y 

(x ~ y) + y .= (x + a} (x + (j)) + y 

(x :t y) + y = (x + $) (x + 9) + y 

(x ~ y)y = (xe + x$)y 

[T331a] (x ~ y)x = xye [T331b] (x + y) + x = x + y + $ 

[T332a) (x ~ y) + x = x + y + e [T332b] (x + y)x = xy$ 

[T333a) (x ~ y)y = (x + ~)y [T333b) (x + y) + y = x$ + y 

[ T334a) (x ~ y) + y = xe + y [T334b) . (x + y)y = (x + $)y 

[T335a) (x 4- y)x = (y + e)x [T335b) (x + y) + x = y$ + x 

[T336a) (x -!I:- y) + x = y$ + x [T336b] (x + y)x = (y + $)x 

[T337a) (x -!I:- y)y = xye [T337b] (x ~ y) + y = x + y + $ 

[T338a] (x t y) + y = x + y + a [T338b) (x + y)y = xy$ 

[T339a) (x lL y)x = xy$ [T339b] (x 1f y) + x = x + y + a 

[T340a] (x lL y) + x = y + y + , [T340b] (x lf y)x = xye 

[T341 a] (x lL y)y =! xy(!) ['l.'341b) ·ex lf y) + y = x + y + 9 

[T342a) (x lL y) + y = x + y + 4l [T342b) (x lf y)y = xye 

[T343a) (x l y) (x II y) = 0 .. [T343b] (x Ty) + (x I y) = 1 

[T344a] (x l. y) (x I y) = (x X y)9 

[T344b] (x T y) + (x /I y) = (x X y) + $ 
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TABLE XXIX (Continued) 

[ T345a] (x l y) + (x I y) = 1 [ T345b] (x T y) (x II y) = 0 

[T346a] 

[T346b] 

[T347a] 

[T347b] 

[T348a] 

[T348b] 

(x l y) + (x II y) = (x x y) + e 

(x T y) (x I y) = (x X y) <I> 

(x X y) (x X y) = (x X y) <I> 

(x x y) + (x " y) = (x x y) + e 

(x X y) + (x ~ y) = (x X y) + <I> 

(x x y) (x :lk'. y) = (x x y) e 

[T349a] . (x ~ y) (x ~ y) = 0 

[T350a] (x * y) (x -+ y) = 0 
0 

(T349b] 

[T350b] 

[T351 a] (x I y) (x 11. y) = x 11. y [T351b] 

[T352a] (x I y) + (x 1f y) = x I y [T352b] 

(x ~ y) + (x +- y) = 1 
1 

(x + y) + (x -+ y) = 1 
1 

(x II Y) + (x lf Y) = x lf y 

(x II y) (x 11. y) = x II y 
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CHAPTER V 

THE APPLICATION OF BOOLEAN ALGEBRA OF ORDER TWO 
TO SWITCHING CIRCUITS 

Basic Considerations 

Two-valued Boolean algebra is a natural mathematical basis for 

switching devices. A one-to-one correspondence exists between on-off 

electrical devices and the true-false propositions of mathematical 

logic. Claude E. Shannon first applied Boolean algebra to electrical 

circuits in a thesis for the Master of Science degree from the Massa-

chusetts Institute of Technology. An abstract of this thesis was 
1· 

presented as a paper at a meeting ,.ot the American Institute of Elec-

trical Engineers, June 20-24, 1938, and later was published by that 

organization1 • 

Two different viewpoints are possible with on-off devices, One 
' ' 

can consider the circuit from the standpoint of transmission; either 

it conducts perfect;y or it does n<;>t conduct at all. The alternate 

approach, used by Shannon, ts to think in terms of "hindrance," where 

hindrance equals zero if a switch is closed and equals one if the 

switch is open •. This notation nas been, followed by some colleagues2 

of Shannon at .tleU Telephone Laborcu~uries. The current trE!nd, however, 

lclaude E. Shannon, "A S)fttlb6lic Analysis or Relay and Switching 
Circuits," A!EE Trans<l:lctions, LVII (19:38), 713-723. 

· 2Williami<eister, A. E ~ Ritchie, and S. H. Washburn, ~ Design 
2f Switching Circuits (New York, 1951). · 
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seems to be to consider circuits in terms of transmission. Bennett, 3 

Caldwell, 4 Huffman, 5 Richards, 6 and Serrell,7 to name a few authors of 

recent publications, all use O for an open circuit and 1 for a closed 

circuit. This symbolism has also been used in a number of articles 

written by people at Bell Telephone Laboratories, including Hohn and 

Schissler, 8 Karnaugh,9 and Washburn.1° In ~his thesis, the idea of 

transmission will be used, with O representing an open circuit or a 

de-energized relay, and with 1 symbolizing a closed circuit or an ener-

gized relay. 

As indicated on pages 33 and 34, the algebra of logic has two 

fundamental binary operations, the meet and the join. The• symbol 

is used almost exclusively in switching circuits for the meet, and the 

+ symbol is used for the join. In electrical circuits, two elements 

may be connected either in series or in parallel. The choice of O for 

an open circuit and 1 for a closed circuit dictates that the• symbol 

3 W. S. Bennett, "Minimizing and Mapping Sequential Circuits," 
AIEE Transactions, LXXIV, pt. I (1955), 443-447. 
~~ 4s. H. Caldwell, "The Recognition and Identification of Sym­
metric Switching Functions," AIEE Transactions, LXXIII, pt. I (1954), 
142-147. 

5D. A. Huffman, "The Synthesis. of Sequential Switching Circuits, 
Part I," Journal of the Frank!f.,n Institute, CCLVII 0954), 161-190. 

6R. K. Richards, Arithmeyic Operations in Digital Computers (New 
York, 1955). · 

7 Robert Serrell, "Elements of Boolean Algebra for the Study of 
Information-Handling Systems," Proceedings ~ the m., XLI (1953), 
1366-1380. . 

8Franz E. Hohn and L. Robert Schissler, 11Boolean Matrices and 
the Design of Combinational Relay Switching Circuits," Tlie Bell 
System Technical Journal, XXIV (1955), 177-202. - -

9M. Karnaugh, "The Map.Method for Systhesis of Combinational 
Logic Circuits," AIEE Transactions, LXXII, pt. I (1953), 593-599. 

ios. H. Washburn, "An Application of Boolean Algebra to the 
Design of Electronic Switching Circuits," AIEE Transactions, LXII, 
pt.· I (1953), 380-388. -
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must be used for a series circuit and the+ symbol for a parallel 

circuit. The postulates of Table XIII can now be interpreted as indi-

cated in Table XXX. 

TABLE XXX 

CIRCUIT INTERPRETATIONS OF TABLE XIII. 

[P1] x = 0 or x = 1 for all x € B 

Any two-valued switching circuit must be either open or 

closed at any given instant. 

[P2a] X = 1 if X = 0 

If a given circuit is open, the negative of the circuit is 

closed. 

[P2b) X = 0 if X = 1 

If a given circuit is closed, the negative of the circuit is ~) 
1] 

/) , , 
open. u 

[P5a] X + 0 = 0 + X = X 

A circuit in parallel with an open circuit in either order, 

is the same as the original circuit alone. 

[P5b) x•1=1•x=x 

A circuit in series with a closed circuit, in either order, 

is the same as the original circuit alone. 

[P4a] x+1=1+x=1 

A circuit in parallel with a closed circuit, in either order, 

is the same as a closed circuit, regardless of the state of 

transmission of the original circuit. 

[P4b) X • 0 = 0 ° X = 0 

A circuit in series with an open circuit, in either order, 

is the same as an open c"trcuit, regardless of the state of 

transmission of the original circuit. 
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Circuit Schematic Diagrams 

Various ways have been used for representing switching circuits 

schematically. Shannon11 uses the symbolism of Figure 7(a) to indicate 

the circuit Xab from a to b, but does not regularly use the subscripts 

because it is assumed that Xab = Xba• Figure 7(b) is his schematic 

for X and Yin series, and Figure 7(c) represents X and Yin parallel. 

Keister, Ritchie, and Washburnl2 indicate a relay with "make" contacts 

that are closed when the relay is energized by a schematic like that 

of Figure 7 (d). Figure 7 (e) illustrates a relay with "break" contacts 

which open when the relay is energized. Karnaugh13 uses the simplified 

schematic of Figure 7(f) for make contacts and that of Figure 7(g) for 

break contacts. Washburn14 uses the symbolism of Figure 7(h), (i), 

and (j) for "and", "or", and ''not" circuitry. 

Following the scheme used by Shannon, but without the circles 

indicating terminals, Figure 8 shows some equivalent circuits based 

on selected theorems from Table XIV. In some instances, the right-

hand circuit is obviously simpler; in others, the same numbers of 

contacts are requireq but the circuits are arranged differently. 

Circuit diagrams for the ten different binary relations for 

Boolean algebra of order two are shown in Figure 9. Because all opera-

tions can be expressed in terms of •,+,and negation, it seems there 

is little to be gained by using the other binary symbols. No known 

author has employed them in the study of switching circuits. Use of 

llShannon, p. 714. 
12Keister, Ritchie, and Washburn, pp. 12-14. 
13Karnaugh, p. 596. 
1 4washburn, p. 381. 
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~x]-
Elo 

Xab 
ob X o------0 y 0-- -Ly.·· 0 0 ~ 

(a) (b) (c) 

(d) 

>< 
X y 

(£) (g) 

(h) (i) (j) 

Fig. 7 Schematic Symbols for Switching Circuits. 
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[Tl 3a] x + (x • y) = x [ T 1 3b ] X • (x + y) = X 

-x{x}=-X··-
y 

(b) 

[ T14a] (x O y) + y = x + y [T14b] (x + y) • y =X O y 

ry~ = lxl-{~Ly-=-. x-' y-

Lx----ys Ly- _;--J 
(c·j·;· (d) 

[ Tl Sa] (x O y) + (y O z) + (z • x) = (x + y + z) • (x + y + z) 

(e) 

[ Tl Sb] (x + y) • (y + z) 0 (z + lt) = (x • y • z) + (x • y O z) 

-[:X:K:J- = -c:=:=:J-
(f) ' 

Fig. 8. Circuit Diag~ams for Some Theorems of Table XIV. 

\ 



r----x---y---o 

X • y 
(a) 

o...---- X --- y ---0 

o---x ---y ---0 

X +- y = X O y 
0 

(e) 

- -x X y = xy + xy 

(g) 

-

~~~ y 

x I y = (x • · y) = x + y 
(i) 

~xy 
y 

X + y 
(b) 

-
x~y=x+y 

l 
(d) 

-
X +- y = X + y 

l 
(f) 

~~HXJ-
y . I y 

X X y = (x + y) (x + y) 
(h) ... 

o---x --- y -. ---<O 

x II y = (x + y) = x • y 

(j) 

Fig. 9 Circuit Diagrams for Ten :S'ina:i:'y Relations. 
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-the x operation and its negative X does, however, offer considerable 

brevity. Moredver, these two circuits are frequently encountered in 

... 
practice. x X y, for example, is a circuit which is 1 wpen xis 1 and 

y is 1 or when xis O and y is O, but not when both are 1 or both are 

0. This is the situation desired in control of a light from two dif-

ferent locations, where 1 may represent a tqggle switch thrown in the 

"up" position and O indicates that it is in the "down" position. The 

same effect will be accomplished by using the x connection, where the 

light will be on if one switch is up and the other is down but not when 

both are up or both are down. The x relation is the "exclusive either 

-or"l.5 of mathematical logic. This relation is encountered in binary 

addition for digital computers, where the sununation output should be 

1 if either of the two inputs is 1, but not if both inputs are 1. 

Huffman16 uses the EB symbol for this "cyclic addition", but this symbol 

has been used on page 10 of this thesis as a general binary opera-

tional sign, so its use for the "exclusive or" will be avoided. 

No attempt has been made in this chapter to cover thoroughly 

the field of two-valued switching circuits, since books and peri-

odicals have handled the subject adequately. This thesis has devel-

oped the mathematics of Boolean algebra of order two from an approach 

that is somewhat different from that used by the average electrical 

engineer. Such an approach is necessary for an understanding of the 

mathematical development of the Boolean algebra of order four. This 

chapter serves to illustrate the application of two-valued Boolean 

algebra to ordinary switching circuits, so that the reader will be 

l.5 Paul Rosenbloom, Th~ Elements of Mathematical Logic (New York, 
1950). 

l.6 Huffman, p. 163. 
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able to understand more readily the application of four-valued Boolean 

algebra in the following chapter. 



CHAPTER VI 

THE APPLICATION OF BOOLEAN ALGEBRA OF ORDER FOUR 
TO SWITCHING CIRCUITS _ 

Unilateral Devices 

As indicated in the preceding chapter, it is possible to have 

between two points, p and q, a circuit that can be considered to be a 

perfect conductor. To such a circuit, the number 1 can be assigned. 

There may be between p and q a circuit that can be considered a perfect 

insulator. It would be given a value of 0. Of course, it is possible 

to have between p and q a resistance of almost any ohmic value, but 

such resistances are not considered to enter into switching circuits. 

There is, however, a type of circuit that may be included in the 

switching-circuit field, that is, a circuit which is, to all practical 

purposes, a perfect conductor in one direction and a perfect insulator 

in the other direction. Current may, for example, flow readily from 

q top but not from p to q. Thermionic diodes are .conductors of this 

type. If the anode of such a diode is negative with respect to its 

cathode, no appreciable conduction takes place. With the opposite 

polarity, the diode conducts relatively well. Actually some leakage 

current may flow when the anode is negative and the diode will show 

a few ohms of resist.ance when the anode is positive, but in relation 

to other circuit components it may usually be thought of as a perfect 

diode. The recently developed silicon a.nd germanium diodes have similar 

82 



85 

characteristics. 

The ordinary mathematics. of switching circuits will not ha~dle 

such devices. Conductance from p to q would be O, but conductance 

from q top would be 1. The circuit may be considered as an ordered 

couple (0,1), where the first element represents conductance from p 

to q an~ the second, the conductance from q .top. Figure .10(c) shows 

the conventional symbol for a diode, connected so that it ,will readily 

conduct positive current from q top but not from p to q. This might 

be visualized as shown in Figure .10 (d) where two directions are indi-
. ·~ . 

cat·ed, the top lead for current from p to q, the bottom for current 

from q top. The diode so connected could be assigned a value of e, 

the symbol assigned to the couple (0, 1) on .Page 51 • If connections 

to the diode were reversed, as shown in Figure 10(e), 41 = (1,0) would 

represent the conductance. An open circuit.would be indicated by O = 

(0 ,O) and a closed circuit by 1 = (1, 1). 

Reference Direction 

It is obvious that to express the circ~·it element shown in Figure 

10(c), for example, a reference direction needs to be established. 

Since it is customary in electronic circuitry to have input terminals 

at the left and output terminals at the right, a simple-x can be used 

for the conductance of Figure 11 (a), implying a left~to-right reference 

direction. Thus, in Figure 11 (b) the conductance is labeled as 9 = 

(0,1) implying that left-to-right conductance is O and right-to-left 

is 1. If, then, in.goin~ from left to right through a network, one 

first encounters the perpendicular line of a diode, it is labeled e. 

If the direction from left to right is with the arrow, conductance is 

labeled 41, In cases where a left-to-right direction is not clear, 
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po oq p q 

0 = (0 ,O) 

(a) (b) 

p o------<f:Jl------<O q p q 

e = (O, 1) 

(c) (d) 

p 01----~ei..i-·----o q p q 

~ = (1 ,O) 

(e) (f) 

pn----'---------eq p· 

= (1 , 1 ) 

~) ~) 

Fig. 10. Possible Circuits betweenp and q. 
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X 0 ~ 0 

X = €) = (0, 1) 

(a) (b). 

1 .1 2 

l 
X12 9 =X12 a b 

l -3 2 2 

. (c) (d) {e) 

Fig. 11. Illustrations of Reference Directions. 

--{> 

~ X 0 0 

X = .9 

(a) (b) 

1 

1 
J 

Jx12 ·9 = X12 a b 

l 
2 2 

(c) (d) (e) 

Fig. 12, Alternate Scheme. for Indicating Re~erence Direction~ 



86 

points at the two ends of each diode should be numbe~ed so that the 

direction from the lower number to the higher number can be used as a 
,' 

reference direction. This is indicated in Figure 11 (c) and (d). For 

the bridge circuit of Figure 11 (e), by this lower~to-higher scheme, v 

= e, w = 1, x = $, y = o, and z = e. An alternate scheme.for indi-

eating reference direction is to draw an arrow beside each circuit 

element, as spown in Figure 12. 

In tracing through possible paths from input to output, it is 

sometimes necessary to go in a direction opposite to the reference 

direction. Under those circumstances, an underscore will be placed 

below the letter for the circuit element. Thus, for the bridge of 

Figure 11 (e) or Figure 12(e), the conductance from a to b =Cab= vy 

+ wz + vxz + 'W!!_Y· In terms of circuit values, Cab= 9•0 + 1•9 + 9•$•9 

+ 1 •9•0, It will be observed that the underscore operation does not 
" 

change the values of O and 1 but does interchange"9 and$, = 

(o 0 $ 1) 
\_0 $ 0 1 · • 

By reference to Table XXII (a) and (b) or to Table XXVII (a) and 

(p), the value of the conductance Cab can be simplified, Cab= 9•0 + 

1 •9 + 9·~·9 + 1 •9•0 = 0 + 9 + 0 + 0 = 9, The bridge, then, is equiva-

lent to a single diode between a and b, with a connected to the cath-

ode, indicated by the perpendicula! line. 

Schematic Diagrams of Binary Relations for B2 

Circuit diagrams for the twenty binary relations of Table XXVII 

are shown in Figures 13 and 14. Those shown on the top and bottom 

lines of both figures are also applicable to B, since neither 9 nor~ 

is included as a definite circuit element. These ten are identical to 

those for B shown in Figure 9. The remaining ten are reasonably com-

plex circuits. Therefore, if such connections are frequently encoun-
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(c) 

X-Y 

X T y 

(e) 

X 
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(g) 

0 

X y 

X y 

,x X y 

(b) 

x}{~ .-
y y 

-x}{: 
y y 

X :)t y 

(d) 

x-y X-Y 

X-Y X-Y 

X ,t: y 

(f) 

X . X· 

y y 

-x~y 

(h) 

\ 
( 

Fig. 15. Circuit Diagrams for Eight Binary Relations for B2 • 

87 



88 

-
0-- X --.·y --0 0--- X -- y ---e 
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Fig. 
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X '* y 

(d) 

X-· - y 

x~y 

(g) 
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y 

X -+ y 
1 

(j) 

14. Circuit 
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y 
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(h) 
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-
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X JL y 
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X 

y 

X lf y 

(i) 

-o---x -- y ---E) 

X II y 

(1) 

Binary Relations for B2 
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tered, the shorthand symbolism would p~ w~ll _worth adopting.. If such 

circuits are rarely encountered, little would be gained by the use of 

symbols other than • and +. The use of un.idirectional devices in 

switching circuits has not a~ yet been thoroughly exploited. It is 

hoped that the development of this four-valued logic will facilitate 

their use. Possibly then such relations as x t y will prove to be 

more important than is presently apparent. 

Representation of Voltage 

The four elements of B2 can be used to represent different kinds 

of voltages. As with conductance, various ~gnitudes are not con-

sidered. If a voltage is to be used to operate a relay or a lamp, 

for example, eithet there is eno~glt.voltage or not enough for·satis­

faftory operation. Boolean algebra can, how~ver, distinguish a posi-

tive voltage from a negative one. 

As with conductance, it is necessary first to establish a refer-

ence direction, most conveniently done by means of an arrow. The 
' 

voltage then can be considered as a couple, where ~he first .element 

of the couple is 1 if the voltage Will tend to ii;erid current in the 

diri!ction'of the arrow and the seco~d element is 1 if the voltage 

will tend to send current in a direction opppsite to that of the· 
' 

arrow. In each case, the value of the element is O i~ it is not 1. 

Figure 15 illustrates ihe notation. As is custotnarY, the battery 

symbol designates a d-c source, with a ~hort line for the negative 

terminal an.d a long line for the positive one, Si.rice V = (1 , 1) = 1 

must represent a voltage that will tend to send current in either 

direction, attd l>ecaµse equal current.s simultaneou~ly floWitlg in both 

dir.ections would produce a net effec~. of zero current, the ohly physi­

cally realizable voltage that is appropriate mu~t b~ alternating. 



V = 

0 

0 

(0 ,O) = O 

(a) 

V = (1 , 1) = 1 

(d) 

il 
T 

V = (0 J 1) = 8 

(b) 

r1 
1 

V = (1 , 0) = cl> 

(c) 

V = (1 , 1) = 1 

(e) 

Fig. 15. Symbols for Different Kinds of Voltage. 
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One representation would be that of Figure 15(d), where the switch at 

the top swings back and forth, producing alternately positive and nega­

tive voltage at the top terminal with respect to the bottom one. The 

other possibility is shown in Figure 15(e), that is, a simple a-c 

generator. For either of these two situations, it must be re~lized 

that at a,ny one instant the current will tend to flow in only one direc­

tion. It is assumed that the resultant average current or therms 

current will be the important aspect, not the instantaneous value. 

Voltage with Series Conductance 

As far as output terminals are concerned, any voltage Vin series 

with conductance C can be treated as a simple source S equal to the 

product V • c, as illustrated in Figure 16. The reference directions 

for V and C must be the same. Obviously, if either V or C is zero, 

Swill be zero. If V = 1, S = c, and if C = 1, S = V. 

If a complex two-terminal network can be simplified to an equiva­

lent two-terminal network, the latter can be used in conjunction with 

V to evaluate a source. For example, Figure 17(a) shows voltage equal 

to 1 in series with the bridge circuit of Figure 12(e). Since the 

bridge circuit has a conductance of a, V • C = S = a, so the source can 

be considered as a battery with the polarity as indicated. A different 

bridge network is illustrated in Figure 17(b). The possible paths 

through the bridge yield the expression 911> + 11>9 +axe+ 11>x = 0 + 0 + 

xe + xl1> = xe + ~$. If xis O or 11> , s = O. If xis e or 1, s = 1. 

Polarized Relays 

If ample current is sent through the coil of an ordinary relay, 

its contacts will be operated, regardless of the direction of the 

current. In either Figure 18 (a) or Figure 18 (b) the relay wil\ there­

for~ be operated. If provision is made to avoid chatter, alternating 
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--1> IC 
I 

0 

IV = i r V. C 
I 0 0 

(a) 

I 9 ~ ·= 110 0 

T O L 
(b) (c) 

-:-1> 

~ J ..• 

I · = I 0 

T O L 
(d) (e) 

--f> 

(£) 

Fi~. 16. Equivalent Voltage Sources. 
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0 

= 9 

T E) 

(a) 

= 

(b) 

Fig. 17. Equivalents of More Complex Circuits. 
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(a) (b) 

+ p + p 

.f 7 j: 
(c) (d) 

(e) (f) 

Fig. 18. Various Relay Coil Connections. 
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current will be satisfactory. In the usual a-c relay, part of the 

pole face is encircled by a copper ring which introduces a phase shift 

so that the net pull on the armature does not decrease enough to cause 

chatter. This type of relay will operate satisfactorily on direct cur-

rent if the magnitude of the current is the same as therms value for 

which it is designed. A source designated e, $, or 1 would then actu-

ate the relay. 

Certain relays are llbiased'' by a permanent magnet so that they 

respond to one polarity of voltage but not to the opposite polarity. 

A typical representation1 for such a polarized relay coil is shown in 

Figure 18(c), where the polarity marks indicate to which terminals of 

a battery the two leads should be connected to actuate the relay. The 

relay shown in Figure 18(c) would be operated, that of Figure 18(d) 

would not. Although current will flow in both instances, the current 

in Figure 18(c) will be effective in actuating the relay, that in (d) 

will not. One might, then, label a relay with an arrow alongside one 

lead and mark the arrow withe,,, or 1 to indicate the direction of 

conductance which will effect actuation of the relay. If this is done, 

then the product VCe will indicate whether the relay will operate. If 

VCe = O, the relay will not operate; for any other value of the prod-

µct, the relay will operate. It will be noted that even though VCe = 

O, current might be flowing in one direction, but it would not actuate 

the relay. Such is the case in Figure 18(d), 

The equivalent of a polarized relay can be constructed by placing 

1William Keister, A. E. Ritchie, ands. H. Washburn, The Design 
of Switching Circuits (New York, 1951), p. 19. 
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a diode in series with an ordinary relay which would operate with cur-

rent in either direction. That is to say, the effective conductance of 

the relay alone is 1. For Figure 18(e) and (f), the series combination 

of the diode and the relay give a conductance of ct> • 1 = ct>. The combi-

nation of Figure 18(e) is thus the equivalent of the relay shown in (c} 

Similarly (d) and (f) are equivalents. In this case, however, it 

should be remembered that current flows in (d) but not in (f). In 
i'J 

neither of them is there any current to effect the operation of the 

relay. 

Diodes in Circuit Simplification 

In analysis of ordinary two-valued switching circuits, the follow­

ing type of function is frequently encountered: F =ab+ ab+ abc. 

The circuit for this expression in series with a battery, is shown in 

Figure 19(a). An obvious simplification is indicated in Figure 19(b), 

which corresponds to F = a(b +be)+ ab. At first glance, the circuit 

of Figure 19(c),might seem to be an equivalent, since paths ab, ab, 

and abc exist through it. The circuit is incorrect, however, because 

of the "sneak path" abc. The expression for the circuit of Figure 

19(d) is ab+ ab+, act>cb + aceb. If this circuit is connected in series 

with a battery as shown in (d), the equivalent source is ct>(ab +ab+ 

a<1>ci; + aceb) = ct>ab + <l>ab + ct>acb + ct>eacb = ct>ab + ct>ab + ct>acb + 0 = ct> ( ab 

+ab+ abc), which is the same as that of Figure 19(a). 

Diodes in Translator Circuits 

Diodes are frequently used in translator circuits for digital 

computers, for example, to convert from one code to another. Figure 

20 shows a circuit for translating from a decimal code to a binary 

code, where the combination of binary lamps that will be lighted de-

pends on which digital switches Dare closed. Since the decimal number 
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a----b 

(a) 

~a~~ =--c·--=--1-----00-
1..-__ a ---- b -"'---------' 

(b) 

a b 

C 

-a b 

--C ~Incorrect] 
0 

(c) 

a 

~J 
b 

' 
f= .. C -a b 

(d} 
., .. r. 

Fig. 1 9. Steps.in the Development -- -of a Circuit for ab+ ab+ abc. 
., ., -,, 
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De 

Ds 

1 , 1 

''fig. 20.. A Decimal-to-Binary Translator .• 
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3 = 2i + 2°, lamps L2 and Li, should be lighted when D3 is closed. 

Similarly, 5 = 22 + 2°, so lamps L4 and Li, should be lighted when D5 

is closed. At first, it might be thought that direct connections 

should be made from L2 and Li, to D3 and from L4 and Li to D5 • If this 

were done, however, there would be a conductive path to light L2 when 

D5 is closed. To avoid these spurious paths, it is common practice to 

employ diodes, as shown in Figure 20, so that there will be conduction 

in the proper direction, but not in the wrong direction. Four-valued 

Boolean algebra is a discipline that will enable one to handle with 

mathematical precision such circuits. 

Diodes in Control Circuits 

Figure 21 shows a circuit for controlling three relays through 

two wires. Table XXXI indicates effective currents through the three 

relays. As indicated in a previous paragraph, for any value other 

than zero the relay will be operated. It will be noticed that with 

this circuit arrangement all four possible combinations of operation 

of Ki and K2 are achieved. K3 is operated for all but the first posi-

tion. If make contacts on K1 and K2 were paralleled, the result would 

be the equivalent of a set of make contacts on K3 , so, that Ks could 

be eliminated, If, however, lamps were substituted for the relays, 

there might be an occasion when it would be advantageous to have a 

third lamp lighted whenever either of the other two were lighted. The 

fact that this drcuit needs only two wires between .the 1:1witch loca-

tion and th~t of the relays or lamps could be a decided advantage if 
I 

I 

the locations were widely separated. 

Use of Theorems for B2 

The theorems for B2 have potentialities for circuit development. 

As an example, T309a states that (x l y) e = (x + y) e. By T310a, 
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Fig. 21. Two-Wire Control of Three Relays. 

TA!LE XXXI 

VALUES FOR THE CIRCUIT ... 0F FIGURE . 20·. 

Switch . Equivalent Effective Currents 
Position -Source Ki K2 Ks 

0 0 0 0 

2 a e 0 a 

3 4> 0 4> 4> 

4 a 4> 
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(x l y) $ = xy$, The first expression is for "x or yin series with 

e." The second expression means "x and yin series with $. 11 Figure 

22(a) shows x l yin series with a voltage V. If V = a, the equiva­

lent circuit is shown in Figure 22(b). If V = $, the circuit of Fig­

ure 22(c) results. This suggests the use of the circuit of Figure 22 

(d), in which the lamp L2 will light if either switch x or switch y is 

closed, and L2 will light if both switches are closed. However, be­

cause diodes are required in series with the lamps to distinguish di­

rections of conduction, it might appear better to have used the cir­

cuit of Figure 22(e), which uses only two diodes, whereas the (x 

l y) circuit of (d) uses three. If, on the other hand, the lamps are 

to be operated at some distance from the switches, circuit (e) re­

quires three wires between locations, but (d) needs only two. Figure 

22(e) could be modified, as shown in (f), to use only two wires be­

tween locations ,'-~but then it would require four diodes instead of the 

three for the (x l y) circuit. 

Experimental Apparatus 

For experimentally constructing o~dinary switching circuits and 

four-valued switching circuits, the apparatus of Plate I has been 

developed. Connections to the various elements are made by plugging 

into banana jacks. Leads have stackable banana plugs on each end. 

Sources of supply available on the panel are 115 'volts ac and 48 

volts de. Ten single-pole, double-throw switches are included, as 

well as three four-pole, double-throw, spring-return ones. Both neon 

and incandescent indicator lamps are available. Two relay banks have 

two-winding relays, the coils of which can be connected in an add~­

tive or a subtractive manner. All relay coils are equipped with 

series resistors so that shunt control can be utilized. A "matrix" 
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i~;J 
y=i 0 

~. . (x l y)V 

0 

(a) 

al:r-e: I _Lx Y·-----e 
0 

-
(x + y)e 

4>-- xy4> 

1= -r . 0 

(b) (c) 

x--y 

X 

y 
L2 

(d) 

X y 

X 

y 
L2 

(e) 

x-y 

(f) 

Fig. 22. Certain "And" and "Or" Circuits. 
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board in the upper right corner of the picture facilitates connection 

of translator circuits like that shown in Figure 20. A number of di­

odes are available, mounted on General Radio double plugs, for con­

structing four-valued switching circuits. 

The apparatus has been used to check experimentaUy a number of 

two-valued and four-valued switchin$ circuits. It is believed that 

the apparatus is particularly valuab!Ei as· a···means of testing the 

mathematically developed circuits and of revealing incorrect solu­

tions like that of Figure 19(c). 



CHAPTER VII 

MATRICES FOR FOUR-VALUED BOOLEAN ALGEBRA 

Adaptation of the Hohn-Schissler Theory 

Hohn and Schissler1 of Bell Telephone Laboratories have effec-

tively developed the theory of Boolean matrices for a two-valued alge-

bra. This chapter will show how their system can be used with the 

four-valued Boolean algebra developed in this thesis. 

Since four-valued logic allows the use of diodes that conduct 

well in one direction but not in the other, reference directions must 

be carefully observed. For example, their Figure 22 should have di-

rection arrows establishing reference directions for the variables, as 

shown in Figure 23. Their Figure 33 is similarly adapted in Figure 24; 

their Figure 44 becomes Figure 25. It should be noted that, since no 

directivity was indicated by Hohn and Schissler, the directions as-

signed are arbitrary. A definite type of assymmetry will, however, 

result for certain matrices if all nodes are numbered and the refer-

ence direction is established from the lower number to the higher 

number for each element, 

1Franz E. Hohn and L. Robert Schissler, "Boolean Matrices and the 
Design of Combinational Relay Switching Circuits, 11 ·The Bell System 
Technical Journal, XXXIV (l 955), 1 77 -202. 

2 Ibid., p. 179. 
3 Ibid., p. 181 .. 
4 Ibid., p. 1 84. 
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X + y~ XU~+ y~ 

~z + "i..Z X"i..Z + UZ 

Fig. 23. Adaptation of Figure 2 of Hohn and Schissler, 

2 X (y + z) uy w 

~ (l_ + ~) X + Z z 
C = 

uy X + z y 
~ 

w z "L 

3 

Fig, 24, Adaptation of Figure 3 of Hohn and Schissler. 

[> X 0 X 0 
2 

~ X ;; 

X 0 0 y 

p = 0 0 y X 

~~ X 0 "L y 

\v1 
0 "L X Y.. 

3 

Fig. 25. Adaptation of Figure 4 of Hohn and Schissler, 
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If each node is identified, a primitive connection matrix5 is the 

array of all elements Pij between nodes i and j, with all nodes taken 

into account. For Figure 23, the primitive connection matrix i; as 

X 0 y 

X 0 u 
p = 

0 0 z 

l u z - -

would be expected, Pii = 1, since that is a connection of a node with 

itself. The main diagonal must, therefore, consist entirely of 1 •s. 

Because all directions were established from a lower numbered node to 

a higher numbered one, the elements above the main diagonal do not 

have underscore marks, but all variables below the main diagonal are 

underscored. O, of course, indicates an open circuit in either direc-

tion., As indicated on page 86., the underscore operation does not 

affect either O or 1. 

The output matrix shown beside the circuit of Figure 23 traces 

all paths between terminals 1, 2, and 3, the oµtput terminals of this 

three-terminal matrix. A third type of matrix discussed by Hohn and 

Schissler6 is the connectton matrix, which includes non-terminal and 

terwinal nodes, but does not demand as many non-terminal nodes as the 

primitive matrix does. This is illustrated in Figure 24, where no 

node was identified between terminals 1 and 2 or between tert)linals 

and 3. 

5 Hohn and Schissler, p. 180. 
6 Ibid. 
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For matrices A= [aij] and B = [bij], Hohn and Schissler state7 

the following definitions and properties. 

(1) Equality: A= B if and only if aij = bij for all i and j. 
(2) Sum: A + B = [ aij + bi.], that is, the sum is formed by 

adding corresponding elements. the sum of two switching matrices is 
again a switching matrix. It corresponds to connecting the elements 
aij and bij in parallel between nodes i ~nd j throughout the circuit. 

(3) Logical Product: A* B = [aij • bij], that is, the logical 
product is found by multiplying corresponding elements throughout. 
The logical product of two switching matrices is again a switching 
matrix. It corresponds to connecting the elements aij and bij in 
series between i and j. 

(4) Complement: A'= [aij] where ai. = ai~ if i, j, but aii 
= 1 for all i. This operation corresponaJ to rlplacing all the two­
terminal circuits corresponding to the aij (i :J j) by their comple­
ments, recognizing the fact that the connection of a terminal to 
itself is invariable. 

(5) Inclusion: A f B ("A is included in B" or "A is contained 
in Bu) if and only if a1 . ;ii bi. for all i and j. Also, B ~ A is 
equivalent to A ;ii B. IfA;ii B, then any combination of values of the 
input variables which result,s in a path from i to j in the circuit 
corresponding to A, also results in such a path in the circuit 
corresponding to B. 

(6) Zero Matrix: The zero matrix Z has aij = 0 for i :J j but 
aii = 1 for all i. This corresponds to open circuits between all 
pairs of terminals. 

(7) Universal Matrix: The universal matrix Uhas a . = 1 for 
all i and j. It corresponds to short circuits between aH pairs of 
terminals. 

(8) Matrix Product: 

The rule here is the same as for ordinary matrices. AP means AA .•• 
Atop factors. The matrix product of two switching matrices is 
again a switching matrix, but since the product of symmetric matrices 
is not necessarily synunetric, this product does not always have 
meaning in the case of relay switching circuits. 

(9). Multiplication~! Scalar: a.A= Aa, = [~ij] 
to Sang ~ij = aaij if if j, but ~ii= 1 for all i. 
a switching matrix. 

(10) Transpose: AT= [aij) where aij = aji• 

7 Hohn and Schissler, pp. 181-182. 

where a belongs 
Th~s a.A is again 

! 
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The preceding definitions and properties fit four-valued Boolean 

algebra as well as the two-valued kind, provided reference directions 

are strictly adhered to for each element. The complement' A' has been 

represented in this thesis by A. The statement on inclusion needs 

some clarification. In B2 , 0 f e, 0 f ~, 0 f 1, Sf 1, and~ f 1. Con­

sistent with these coverage relations, the statement would need to 

read as follows: "If A~ B, then any combination of values of the in­

put variables which results in a [bilateral] path [1] ••• " Obviously, 

since e f 1, aij = e would mean that bij could be either 8 or 1. The 

"S 11 referred to under 11Multiplicatio·n by a Scalar" is the set of 

Boolean switching functions, for which this thesis has used B. It can 

be extended to include B2 • If a primitive matrix Pis based on direc­

tions from a lower numbered node to a higher numbered one, all vari­

ables below the main diagonal will be underscored. Its transpose pT 

will therefore have all variables above the main diagonal underscored. 

For a matrix A based on two-valued elements, the transpose AT would be 

identical to A. 

In the appendix8 to their article, Hohn and Schissler include the 

following basic properties for switching matrices A, B, and C. All 

apply equally well to four-valued switching circuits. 

A+A=A A* A'= z 

A* A=A u + A= U 

A+ B = B + A u * A=A 

A * B = B * A A+ A'= u 

A+ (B + C) = (A+ B) + C (A * B)' = A' + B' 

A* (B * C) = (A* B) * C (A + B)' = A' * B, 

8 Hohn and Schissler, pp. 201-202. 



A + (B * C) = (A + B) * (A + C) (A ') ' = A 

A* (B + C) = (A* B) + (A* C) A+ (A* B) = A 

Z +A= A 

Z * A = Z 

A f B and B ;§; A if and only 

A ~ B and B ;§; C imply A f C 

A f B if and only if 

A f B if and only if 

z ;§; A f U for all A 

AB# BA ordinarily 

A(B + C) =AB+ AC 

(A+ B) C = AC +.BC 

AZ=ZA=A 

(AT)T = A 

(AT)i = (Ai)T 

(A + B) T = AT + 1rr 

(A* B)T =AT* BT 

(AB)':r = BTAT 

A*B 

A+B 

if 

= A 

= B 

A + (A ' * B) = A + B 

A f A 

A= B 

uP = U 

zP = Z 

(AP)_q = Apq 

APA<!.= Ap+q 

AU= UA = U 

(AB)C = A(BC) 

A(B * C) f AB* AC 

(A* B) C ~-AC* BC 

A f B implies AC f BC and CA f CB, but not conversely. 

Reduced Connection Matrices 
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Because reference directions must be carefully observed for four­

valued switching circuits, their matrices will differ from those for 

two-valued circuits by virtue of the underscores required for the 

former. Figure 25 illustrates the primitive matrix, with directions 

considered, for the circuit of Figure 49 in the article of Hohn and 

Schissler. Removal of a non.;·terminal node r, as they indicate, is 

9 Rohn and Schissler, p. 184. 



accomplished by adding to each cij the product of the entry cir in 

row i and column r by the entry crj in row rand column j, then de­

leting row rand column r. Deletion of terminal 5, then terminal 4 

results in the following matrices. 

X 0 X 

X "!!_Y y_y 
C (5 = -0 xy_ y + xy_ 

-
X Y"l.. "l.. + "!!.¥ 

X + X(yx_) x<z.+~y> 

C _x + _x(v;) (4 (5 = ti./ 
!Y + yy(y_ + ~) 

i<Y + XI_) xi+ Yi<Y + xI_) 

111 

By Tl 4a, x + x (yx_) = x + Yi) , and "!!_ + ~ (y_y) = x + y_y • By Tl 3b , 

"l.. (y_ + ~y) = y_, and y (y + X_l) = y. The matrix C (4 (S can therefore be 

simplified. 

-"!! + y_y 

~<Y + xx. 

-
X + Y"l.. 

<x + y)y 

x("l.. + y) 
(~ + y_)y 

In contrast with the matrix given10 by Hohn and Schissler, 

X xy 

C (4 (5 X xy , 

xy xy 

the matrix for four-valued switching circuits is, as would be expected, 

i 0 Hohn and Schissler, p. 185. 



more elaborate. It can be readily reduced to that of Hohn and 

Schissler if it is recognized that, when the only allowable values 

are O and 1, Yi = 0, x (x_ + y) = x (y + xy) = xy (1 + x) = xy, and 

ex + x.> Y = ci + Y > 1 = xy . 
Two-Terminal Network Connections 
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Figure 26 shows the allowable values for a two-terminal network, 

including for each case the matrix expression for the conductances. 

Figure 27 indicates the two possible ways in which two two-terminal 

networks can be connected. The series connection shown in Figure 

27(a) would be indicated in matrix notation as follows: 

The parallel connection shown in Figure 27(b) yields 

C = A + B 

A somewhat different approach would be to consider that each 

terminal of the original elements is a discrete node but that joining 

them in series gives rise to the following conductances: x13 = x31 = 
O, x1 4 = x41 = O, x23 = x32 = 1, x2 4 = x42 = O. The resultant primi-

tive matrix will then be 

X12 I O 0 
I 

X21 I 0 
I 

p = , ------,---------
. I 

0 I ~4 
I 
I 

0 0 ,1 X43 
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1 n------- -----+>2 1 o,__ ____ 4r::J~-----'---02 

e = ~ ~] 0 = [~ ~] = Z 

(a) (b) 

1 01---------,[;f"------o 2 1 "'-------~-'-----~ 2 

~ = a fJ 
(c) 

= ~ n = u 
(d) 

Fig, 26. Basic Two-Terminal Networks. 

1 2 
A 

1 2 3 4 
0- A B 

3 4 
B 

(a) (b) 

Fig, 27, Series and,Parallel Connections for Two Two-Terminal Networks. 
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Now the Hohn-Schissler method can be used to eliminate first node 

three, then node two, resulting in the following connection matrices: 

0 

, and c(2(3 = f 
~21X..3 

It will be observed that c(2 {3 is identical to C =A* B. 

Partitioning11 of the primitive matrix Pis indicated by dashed 

lines. It could have been written 

p = r,o ~o ~ ~ '~1 = 

011 = A, and 022 = B. It will be noted that 012 = <l21T. 

For the parallel connection shown in Figure 27(b), the following 

conductances are introduced: x13 = x31 = 1, :Ji:14 = x41 = O, x23 = 
X32 = O, and x24 = x42 = 1. The resultant primitive matrix is 

X12 I 0 

1 I o X21 I . 
p = 0 ·: --- -;~ 

I 
0 I X43 

Elimination of nodes produces the following connection matrices: 

11E. A. Guillemin; The Mathematics of Circuit Analysis (New York, 
1950), pp. 48-55. 
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As would be expected, the results are the same whether tj.bdes three and 

four are eliminated or nodes two and three. As indicated by the expres-

sions x12 + x3 4 and x21 + x43 , x12 and x 3 4 were placed ih parallel. C 

=A+ Bo 

Partitioning of the primitive matrix for the parallel connection 

would yield 

p - . - ~11 0:12J = z, 0:11 = A, 

. 0:21 0:22 

and ~ 2 = B. 

Three-Terminal Network Connections 

Two three-terminal networks are shown in Figure 28. If these are 

connected in cascade, as indicated in Figure 29, x14 = x41 = O, x15 = 

X34 = X43 = o, X35 = X53 = 0, X36 = X63 = 1 • The partitioned 

tive matrix p = r11 0:21 0:1~] 
0:22 ' 

where o:11 = [A], 0:22 = [B], 0:12 = 

0 0 , r~ an~ 0:21 = 0 0 ~,~ In expanded form, 
0 1 

p = 

0 1 

X12 X13 I O O 0 
I 

X21 X23 J Q 0 

~1 ~2 I O 0 --------- l---------
0 0 I ~5 ~6 

0 0 0 I X54 ~56 
I 

O O I ~4 ~5 

primi-



--C> 

lt-[:l~ / 2 

~V23/ 
3 

(a) 

--C> 

4 ~ [:· 75 
~v:r 

6 

(b) 

Fig, 28, Basic Three-Terminal Networks. 

2 4 5 
A B 1-----CI--I 5 

30-----------(')6 

6 

Fig. 29, Cascade Connection of Two Three-Terminal Networks. 

1---c:r---1 2 
A 2 4 B 5 

6 

Fig. 30. Parallel Connection of Two Three·;..T~rminal Networks. 
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This will reduce to 

C = 

If the two three-terminal networks of Figure 28 are placed in 

parallel, as indicated in Figure 30, x14 = x41 = 1, x1s = xs1 = O, 

= 0, X35 = X53 = 0, X3e = X53 = 1 • Now, fo~~ gh~~partitioned primitive 

matrix, o:11 = [A), 0:22 = [B], 0:12 = 

Other Network Connections 

o:21 = 1 O· = Z, 
0 1 

The procedures iµdicated above can, of course, be extended to 

cover various connections for different networks. When networks are 

placed in parallel, o:12 = o:21 = z, the zero matrix of appropriate 

order. Perhaps a more direct approach for parallel connections is to 

make sure that, for two matrices A and B to be joined in parallel, ele-

ments to be paralleled occupy correspo~ding positions in the two 

matrices, then simply to form the matrix sum A+ B. 

An example of the use of matrices for four-valued switching cir-

cuits is the solution of th.e network shown in Figure 31, where two 

four-terminal networks are to be placed iµ cascade by connecting 

terminals two and five together and terminals four and seven together. 

The identities of only terminc\ls one and eight are to be retained. 

That is, it is desired to find an equivalent two-terminal circuit 

for terminals one and eight, A solution follows. 



0:11 

0:12 

1 2 5 ---<C> 6 1-_,;i---o- - - ----o--y --u 

ix 

--z ---0------ z ----u 

3 [>4 7 --t>8 

Fig. 31. A Four-Valued Switching Circuit to be Solved 
by Matrices, 

41 X 0 y 41 0 

9 9 0 x.. 0 9 
Cl22 

X 41 z 8 0 z -
0 0 z 0 t z - -

0 0 0 0 o, 0 0 

0 0 0 0 0 0 0 
CX23. 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 
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1 $ X 0 0 0 0 0 

9 9 0 0 0 0 

X $ z 0 0 0 0 

0 0 z 0 0 0 -p = 
0 0 0 y $ 0 

0 0 0 0 Y.. 0 9 

0 0 0 9 0 z 

0 0 0 0 0 <Ji z -

$ X 0 0 0 0 

9 9 0 0 0 

X <Ji z 0 0 0 -
C (7 = 0 0 z 9 0 z -

0 0 <Ji y <Jiz 

0 0 0 0 Y.. 9 

0 0 0 z ez $ -

$ X 0 0 0 

9 9 0 0 

X <Ji z 0 0 

C (6 (7 = 
0 0 z 9 z -
0 0 <Ji (9y + <!>Z) 

0 0 0 z (<Jiy_ + e~) -
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<P X 0 0 

e e <P (Sy + <l>z) 

C (5 (6 (7 = X <P z 0 

0 e z (z + Sy) -
0 (<1>:r + e~) 0 (~ + $l_) 

<P X 0 

s (8 + <I>~) (Sy + <l>z) 

C (4 (5 (6 (7 = 
X (<I> + ez) z 

0 <<1>z + e~> z -

(<I> + xz) xz 

C (3 ~4 ~5 (6 (7 = (S + ~) (Sy + z) 

xz <<1>z + ~> 
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The circuit- of Figure 51 is, therefore, equivalent to that. shown 

in Figure :32. 

1 --1> 
o----o--- X ----, 

Fig. :32. A Simpli'fication of Figure :31. 

Various theorems, notably T15a and T14a, were involved in obtain-

ing the reduced connection matrices. Obviously, the solution is not 

easy, but orderly steps do lead to a correct solution. The solution 

can be checked by perfect induction or by use of experimental appara-

tus like that shown in Plate I. 



CHAPTER VIII 

SUMMARY AND CONCLUSIONS 

R~sume 

In the twenty years since two-valued Boolean algebra was first 

applied to switching circuits, it has become a widely adopted method 

for analysis and simplification of digital control circuits. In re­

cent years, non-thermionic diodes have been greatly improved, and they 

are frequently used in control circuits. A need has, therefor~ arisen 

for a mathematical technique for handling di.odes as a part of switching 

circuits. A logical approach would be to use a four-valued Boolean 

algebra which would ~llow four possibl~ states of conduction: an 

open circuit, conduction in one direction only, conduction in the 

opposite direction only, and conduction equally well in both directions. 

Since technical literature contains very little information on 

four-valued Boolean algebra, it was decided that the mathematical 

theory should be developed from modern algebra in such a way as to 

provide a good foundation for the electrical engineer who wished to 

use and understand the four-valued logic in the study of switching 

circuits. This meant that the mathematical basis of two-valued 

Boolean algebra needed to be developed from sound principles so that 

it could be logically expanded into a four-valued algebra. The mathe­

matical basis of Boolean algebras is covered in the second chapter, 

including group theory, lattice theory, link-preserving transfor­

mations, and the direct union of two lattices. The next chapter 
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develops from that basis the Boolean algebra of order two, including 

a number of binary operations and theorems. The Boolean algebra of 

order four is then presented as the direct union of two-valued Boolean 

algebras. 

The application of the mathematics to switching circuits is then 

demonstrated. A brief coverage of conventional two-valued switching 

circuits is.given, followed by an analysis of the use of four-valued 

, togic in switching circuits that include diodes, different kinds of 

yoltage sources, and polarized relays. 

In the seventh chapter the use of matrices in the analysis of 

four-valued switching circuits is demonstrated. It is shown that 

essentially the only modification of the existing theory of Boolean 

matrices for two-valued circuits is rigorous adherence to reference 

directions. Partitioned matrices are used in demonstrating how two 
·, 

network matrices can be combined when the two networks are inter-

connected. 

Appraisal 

The use of four-valued Boolean algebra for analysis o,f si-mpl_e 

switching circuits with one or two diodes may be difficult to justify. 

One can often tell by looking at a circuit what it will do, without 

any need for a knowledge of lattice theory. A good electrician can, 

for that matter, wire up a "three-way" switch without thinking in 

-terms of x X y. The use of matrix theory for analyzing two switches 

in parallel would be unnecessarily complicated, 

On the other hand, the reason for the adoption of two-valued 

switching algebra is the fact that it will enable one to analyze 

rigorously and to simplify complex circuits. By the same token, the 
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Boolean algebra of order four is a strict mathematical discipline for 

precise handling of switching circuits which include diodes. It is a 

particularly useful concept in that it is fully compatible with regular 

two-valued logic, reducing automatically to it when the allowable 

values are confined to zero and one. 

Potentialities 

The use of four-valued Boolean algebra for analysis of switching 

circuits with diodes seems to have definite advantages. Its true test 

will, of course, be its application to practical problems. It is 

hoped that engineers in industry can soon be info~med of the theory 

developed in this thesis so that they can test ·its merit in the solu­

tion of problems encountered in the fields o:f t_elephone switching, 

digital ,computers, and automatic control. Perhaps, in commercial 

application, even the unusual binary operations for two-valued logic 

shown on page 39 will prove useful. In addition to sending copies of 

this thesis to friends in industry who_are working with switching 

circuits, the author hopes to be able to present a paper on the sub­

ject at a future meeting of one of the technical societies, so as to 

evoke comment from practicing engineers and perhaps to lead to adop­

tion of the technique where applicable. 
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