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PREFACE

Although the sfudy'of switching circuits had previously drawn
soﬁe.attention, my interest was really sparked by atténdance atba
--short course on the Design of Digital‘Control circuits 5ponsored by
| Bell Telephohe Laboratories at Murray Hill, New Jersey, August 24
through Septembei 4, 1953, The followiﬁg year I had the privilege
of teaching a coufsé on this subject in the School of Electrical
Engineering at Oklahpma'Agricultural and Mechanical College. Occé-

sionally, I saw feference to the use of diodes in switching circuits
but no statement of how to include them in the mathematical treat-
ment of the circuits, ﬁr_Kirby B. Auétin, Director of Research at
_Aliiéd Control Company, once}remafked to me that ﬁe had greatly
reduced thé numbef of relays"ﬁééded in a particular switching prob-
vlem by introducing &iﬁdes'intq_fhe circuit, I decided that an
interesting and useful study %ould be the development of a form of

" Boolean élgébfalwith whiéﬁ to handle switching circuits contaiﬁing
diodes. - |

The mathémétical'basis of a fQur—valued Boolean glgeﬁra -
developed‘in this thesisfﬁiligiiﬂhoée, be a useful tool fq; ana-
lyzing and simp;ifying é@itching circuits which inclu&eIAibaeé.
Although the use of this élgebra or bf matrices for vefy simple cir-
cuiﬁs may not bé justifiable, it seems that the techniques offer a

mathematical discipline which should be valuable for analyzing more
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complex circuits.

I am indebted to members of the staff of Bell Telephone Labora-
tories who arranged for the short course on the Design of Digital
Control Circuits and who inspired my interest in the subject. Sincere
thanks are due Professor A. ;éeter for making it possible for me to
teach a course in switching circuits in his department: Work on a
relay contrdct under the supervision of Professor Charles F. Cameron
made it possible for me to learn a great deal about relays'as ele-
ments of switching circuits:‘ Special thanks are due my adviser, Dr.
Herbert L. Jones, for his patience with my periods of inactivity énd

for his stimulation of the completion of this work.
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CHAPTER I
INTRODUCTION

In 1857, George Boolel published the original presentation of
the algebra of logic. Since then, many mathematiciéns have extended

his investigations. Susanne K, Langer2

lists a number of‘publications
on the subjeg;. In 1938, Claude E. Shannon® applied Boolean algebra
to relays aga switching circuits. In addition to a number of journal
articles, two books*’S have;lto a great extent, been based on the
application of mafhematical logic to. switching circuits.

This form of mathematics is ideal for énianalysis of on-off
devices: switches, relays, counters, muiﬁi?ibrators, and dial tele-
phone systems, Any electrical cirguif that has two possible states
can be analyzed in terms of this alg;braroé}logic, wheﬁher the two

states are energized and degnergized, magnetized positively and -

lGeorge Boole, An Investigatlon of the Laws of Thought (London,
1857).

2gusanne K. Langer, An Introduction to Symbolic Logic (2d ed.,
New York, 1953), pp. 356~360.

3Claude E. Shannon, "A Symbolic Analyéis of Relay and Switching
Circuits," AIEE,TransactiOns, LVII (1938), 713—723;

4R. K. Richards, Arithmetic Operations in Digital Computers
(New York, 1955). .

Swilliam Kelster, A. E. Ritchie, and S. H, Washburn, The Design
of Switching Clrcults (New York, 1951).




magnetized negatively, or conducting and non-conducting.

In recent years an increasingly popular circuit element has been
the diode, a device that conducts very well in one direction but has
almost no conduction in the opposite direction. For many years diodes
have been used as rectifiers to obtain unidirectional current from
alternating-current sources. Highly efficient "solid-state" diodes of
the germanium or silicon type that require no filament voltage have
greatly stimulated the development of diode circuitry. Diodes have
proved to be particularly useful in digital computer circuits.

When an attempt is made to apply ordinary Boolean algebra to
diode switching circuits, a serious difficulty arises. The algebra
allows two possible states, and a diode is either conducting or not
conducting at any given instant, but a thorough analysis must some-
how handle circuit elements that conduct well in both directions,
elements that do not conduct in either direction, and diodes that
conduct well in one direction but not in the other.

Mathematical analysis of diode circuits has recently been
studied by a few authors. Lee and Chen® have applied a three-valued
propositional logic introduced by Post’ to switching circuits, but their

work deals with three possible values of output voltage, for example,

instead of treating the bilateral conduction of diodes as a special kind

of circuit, Allowable voltage states are negative, zero, and positive,

®C. Y. Lee and W. H. Chen, "Several-Valued Combinational Switching
Circuits," AIEE Transactions, LXXV, pt. I (1956), 278-283.

7E. L. Post, "Introduction to a General Theory of Elementary Pro-
positions," American Journal of Mathematics, XLIII (1921), 163-185.




so that a trinary arithmetic can be handled instead of the usual bi-
nary arithmetic. Yokelson and Ulrich® have shown how to solve for
values of resistors and voltages to be used with diodes in logic cir-
cuits, but they have not applied an algebra of logic to the diodes.
A rectifier algebra has been developed by Schaefer® using a V b for
"the more positive of a or b" and a A b for "the more negative of a
or b." His algebra "is not the ordinary numerical algebra taught in
high school, nor is it the Boolean algebra used for relay circuits.
It is, rather, something of a union of the two."'° The method is
particularly useful when more than one voltage source is to be con-
sidered, but it does not handle combinations of diodes with ordinary
on-off devices.

A study of the problem revealed that it would be useful to have
an algebra adapted to regular switching circuits or diodes or both.
In order to develop such an algebra, it seemed vital to understand
the fundamental concepts of ordinary Boolean algebra more thoroughly
than the average electrical engineer has done. Chapter II of this
thesis covers the mathematical background necessary for a proper
understanding. On this foundation, the third chapter develops the
theory of the Boolean algebra of order two, that is, the two-valued
logic with which ordinary switching circuits can be analyzed. In

addition to the two standard binary operations universally used,

8B. J. Yokelson and W. Ulrich, "Engineering Multistage Diode
Logic Circuits," AIEE Transactions, LXXIV, pt. I (1955), 466-475.

®David H. Schaefer, "A Rectifier Algebra," AIEE Transactions,
LXXIII, pt. I (1955), 679-682.

1°1bid., p. 679.



other binary relations are evaluated. Based on a few postulates and
definitions, several theorems involving the various binary relations
are tabulated.

Chapter IV develops the Boolean algebra of order four as the di-
rect union of two two-valued Boolean algebras. Twenty operational
tables are developed for the four-valued algebra. Except for the
number of allowable digits, the new algebra does not negate the two-
valued postulates and theorems. It is, rather, an extension of the
old algebra to allow two more elements. Based on nine new dual pos-
tulates, in addition to the postulates and theorems of the two-valued
algebra, a number of new theorems are tabulated.

A brief coverage of the application of two-valued algebra to
conventional switching circuits is included as a basis for under-
standing the application of four-valued logic to circuits that include
diodes, different kinds of voltage sources, and polarized relays. As
an illustration of how present two-valued techniques can be expanded
to include four allowable states, the use of matrices is discussed,.

It appears to the author that the four-valued Boolean algebra
herein developed is a sound mathematical basis for analysis of
switching circuits which include unilateral devices. The technique
should prove to be particularly valuable in the rapidly expanding

fields of digital computers and automatic controls.



CHAPTER II
THE MATHEMATICAL .BASIS OF BOOLEAN ALGEBRAS

Classes?t

The words "class” and ”se;" are used interchangeably to refer to
a collection of objects which have a common property. Any property
defines a class, namely, the class of all objects which have that prop-
perty. Conversely, any class determines a property by virtue of the
fact .that an object is said to have a particular property if and only
if it belongs to the corresponding class. The objects are called the
elements of the class. The combination of signs x ¢ C means "x is an
element of C" or "the element x is in the class C". Mathematically,
one may consider as a valid set .one which contains no elements what-
soever, This would be called the empty, null, or void set. When a
class C is defined by an enumeration of all its elements (for example,
a, b, gnd c), it is designated by enclosing the elements within braces
as follows. C = {a,b,c].

Classes may in turn be considered as elements of .other classes.
Any higher class is defined by‘pointing out the lower classes which
belong to it. One restriction must be applied, however, in order to

avoid logical contradictions, WNo class may belong to its own elements.

lGarrett Birkhoff and Saunders Mac Lane, A Survey of Modern
Algebra (rev. ed., New York, 1953), pp. 29-34.




Thus, the "class of all classes" is not considered valid. A set A is

called a subset, or subclass, of set B if and only if every element of

A is also an element of B, The set A is then said to be included or
contained in set B, This relationship is expressed symbolically by

A sBor BzA. Class A is equal to class B if and only if A is a sub-
set of B and B is a subset of A, If A is a subset of B but A is not

equal to B, A is called a proper subset of B, designated A < B. The

null set 0 is considered to be a subset of every set. The universal set

I is the class which includes all subclasses and elements involved in a

particular problem, If, for example, the elements under discussion were

specific people, they might be classified into larger sets according to

a particular property. The universal set would then include all people

of all classes. The inclusion relation satisfies the following laws.
Reflexive: A = A for all A.

Antisymmetric: If A= B and B = A, then A = B,

Transitive: If A =B and B = C, then A = C.

The intersection of two sets A and B is written A A B = C and con-

sists of all elements which are in both A and B but not in one of them
alone, The symbol ~ is frequently referred to as '"cap”. C is the
greatest set included in both A and B,

The union of two sets E and F is written E v F = G and consists of
all elements which are in E or in F or in both E and F, The symbol o
is frequently referred to as "cup"”. G is the smallest set which con-
tains all elements of E and all elements of F.

Correspondence

A correspondence a - b is a rule which prescribes for each element

a of class A a corresponding element b of another class B. Two types of



correspondence are possible, a many-to-one and a one-to-one. In a many-
to-one correspondence there is at least one element b in the class B
which corresponds to two or more elements a;, ap, etc., in A, Such a
correspondence is designated with a single-headed arrow: a - b. In a
one-to-one correspondence, each element of B corresponds to one and only
one element in A, For this relationship, a double-headed arrow is used:
a « b. Arrows are also used to show correspondences between sets: A - B
or A« B, For finite sets, a correspondence is sometimes designated by
writing each element of the first set on one line, writing corresponding
elements of the second set in appropriate positions underneath on a
second line, and enclosing both lines within parentheses. Thus, for the
letters and digits of a modern telephone dial, the many-to-one corre-
spondence would be written as follows.

(ABCDEF TUVWXYZ)

2223334 888999%0

When class B is included in class A, a many-to-one correspondence

lP*:l:
~ ®

IJKLMNOP
455566617

A > B is called a single-valued transformation and a one-to-one cor-

respondence A <+ B is called a one-to-one transformation. A one-to-one

transformation on a finite set is called a permutation.

Relationship

Elements of a set may be "related" to each other in many ways.
For example, element a may equal element b of the same set. This
relationship is universally expressedas a = b, In the set of inte-
gers, element a might be an integral divisor of b, written a | b.

Such relationships between two elements are called binary relations

because two elements are involved. These binary relations might, in

general, be expressed by the symbol p. p is a binary relation for a



class C if, for two elements a and b of C, either a stands in the
relation p to b (in symbols, a p b) or a does not stand in the relation
p to b.

An equivalence relation is a binary relation a p b which satisfies
the following laws.

Reflexive: a p a for all a of the class C.

Symmetric: If a p b, then b p a for all elements a and b of C.

Transitive: If a p b and b p ¢, then a p ¢ for all a, b, and ¢

of C.

Obviously, the equivalence relation is satisfied by equality of numbers
and by congruence of triangles. The sign ~ is customarily used for the
general equivalence relation.

Binary Operations

A binary operation on a class C is a rule which assigns to each
pair of elements of C a unique element of C. For example, in the class
of intergers, 2 + 3 = 5 symbolically assigns the number 5 to the pair
of numbers 2 and 3 when the binary operation is +. 1In 2+3 = 6, the
binary operation is the product, symbolized by . Using the symbol o
for any binary operation, a o b = ¢ uniquely defines c¢. A set with
such an equality relation between its elements is called an operational
system, If the equivalent of any couple of an operational system S is
itself an element of S, the system is said to be closed.

In general, the order of the elements involved in the binary
operation will need to be observed, since a o b might not be equal to
b o a. A binary operational system in which a o b = b o a is called
commutative. The following axiom is assumed for the equality relation

in an operational system.



Substitution,Principle

In an operational equation, any one of the elements may be replaced
by its equivalent, and any couple, triple, or n-'tuple may be replaced by
its equivalent. 1If a; = ap and by = by, then a; 0 by = a; 0 by = a5 0 b;
= apo0bp. If aob=c, thencod= (a0ob) od., Since, by the sub-
stitution principle, a binary operational system can produce expressions
like (a o b) o ¢ = e, one may define a trinary operational system as one
in which a rule assigns to each triple .of elements a unique element,
A set of rules for n elements would define an n-ary operational. system.

A couple, triple, or n-tuple substituted for its equivalent must
be enclosed.within,pérentheses to indicate that the entire .expression
is acted upon in the same manner as its equivalent. Usually an .oper-
ational sigh‘is required between elements of a binary operationai ex-
pression, although by custom the operational sign for multiplication
is frequently omitted in algebraic expfessions° Thus, xy = Xey.
Frequently a binary relation will be indicated by constructing an

operational table. In such a table, the .elements of a set are listed

both as column headings and at the left of the rows. The.binary re-
lation is indicated at the upper left, For x 0oy = 2z, X is a row
heading, y is a column heading, and z is the listing in the body of the
table in the appropriate .row and column.
TABLE T
‘A BINARY OPERATIONAL TABLE.

O | €3 Cp C3z Cy4

€1 | €1 C2 C3 C4
Cza | €2 C1;:Cq €3

Co Q3 C4 Cj Cp

C4q Cq4 Cg Cp Cy



10

Table T indicates the following equivalences:
Cqy O C3 = Cy Ci; O Cp = Cp Cy O C3 = Cqg C1 O Cqg = Cyg

Cos O C7 = C Co O Co = C Co O C
2 1 2 2 2 1 2 3

b

Cq Co O Cg = Cg

i

C3 0Cy =C3 C3OCp=2C4 C30Cg==Cy; C30OCq=Cp
€4 0 Cyp =C4 €4 0Cp=2Cg €4 0C3 =Cp Cq40Cq=Cy

The main diagonal, as in a determinant, is a straight line drawn through

the upper left element and the lower right element. Obviously, the array

will be symmetrical about the main diagonal if and only if the system

is commﬁtative, An operational system S may be indicated by listing

the binary operation and the elements in parentheses following the

letter assigned to the system, Thus, the system tabulated ébove would

be S(o, cj, ¢z, ¢y, c4). If the binary system were definitely under-~

stood, the listing might .omit the .operational sign and be shown as

S(c1, cz2, ca, c4).

Isomorphisms and Homomorphisms
An isomorphism exists between two binary operational systems
S;(0, a3, by, - . .) and So @, as, bo, . . .) if and only if there
exists a one-to-one correspondence, S; <« So, between their elements
such that a; o b; = c; implies as ® by = co, and vice versa,
Aﬂhomomorphism exists between two binary operational systems
S3 (0, a3, by, . . .) and S ®, ag, bz, . . .) if and only if there
.exists a many-to-one correspondence, Sy => Sy, from S; to the whole .of

S such that a; o by = ¢; implies as ® by = c5, and vice versa.

If S, £ S;, the isomorphism S; « S, is called an automorphism

and the homomorphism Sy < S, is called an endomorphism.

Groups

A group G is a binary operational system which satisfies .the
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following axioms.
1. G is a non-empty set of elements a, b, ¢, . . ., which is
closed under a single-valued binary operation x 0 y =z, x, b, z, € G,

2. The binary operation satisfies the associative law.

xo0 (yoz)=(xo0y)oz for all x,iy, z.

- 3. With respect to the binary operation, there is an identity

element i € G which satisfies the identity law. xoi =10 x = x
for all x.

4, For each element x in G there is an inverse element x * also
in G which satisfies the inverse law. x0x *=x 1 o0 x =1 for each
x and some element x * of G.

Groups are not necessa:ily commutative. A group whose binary
operation satisfies the law x o y = y 0 x is called a commutative or
Abelian group.

The binary operational system of Table I, page 9, satisfies the
four axioms and is, therefore, a group. In this group the identity
element is c; and each element is its own inverse. The group is
commutative,

It can be shown®

that, in any group, xa = b and ay = b have the
unique solutions x = ba™? and y = a”*b. A binary associative oper-
ational system in which xa = b and ay:= b afe not always solvable is

called a semigroup.

Groups of Transformation

On page 7 it was stated that when class B is included in class

A, a many-to-one correspondenceé A —» B is called a single-valued

2

2Birkhoff and Mac Lane, p. 127,
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transformation, and a one-to-one correspondence A + B is called a one-
. 1234 .
to-one transformation. For example, 1212 is a single-valued

transformation, and ( l g g ? ) is a one-to-one transformation. An
operational system of transformations involves a concept of equality
énd a binary operation. Two transformations, t and u, are equal if
and only if they have the same effect on every element of the set §
on which they operate. xt = xu for every x € S. By definition, the
binary operation (indicated as the product teu or tu) of two trans-
‘formations is the result of performing them in succeésion, first t,
then u. x(tu) = (xt)u.

It can be shown®’%

that the algebra of transformations has the
following properties. Multiplication of transformations obeys the
associative law, (tu)v‘= t (uv). The identity transformation ti is
the correspondence which leaves every element x of the set S unchanged.
xti = x for every x € S. tit = tty = t for all t; When the transforma-
tions are one-to-one, the inverse of t is that transformation t % which
carries xt back into x; Then xtt * = x for all x of S and tt * = t 1t
= tj. The non-void set T of transformations is a group if the set is
closed under multiplication and the inverse t Y of every element t of
T is in T.
Symmetries

Gtoup theory is the foundation of a consequential algebra of
symmetry. Geometrically, a symmetry implies a trapsformation by means

of a rigid motion of translation, rotation, or reflection, which

3Birkhoff and Mac Lane, pp. 120-123.
4Stephen A. Kiss, Transformations on Lattices and Structures of
Logic (New York, 1947), pp. 28-30.
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maintains distances between any two points and carries the figure so

transformed into itself. For example, consider the square of Figure 1.

Fig. 1. Axes of Reflection and Angles of Rotation of a Square,

This square is shown in a position rotated forty—five degrees counter-
clockwise frém the positioq usually shown® in modern algebra textbooks.
It was intentionally displaced so that the figure will show certain

relations characteristic of lattice structures, which will be discussed

later,

For Figure 1, the symmetries are as follows:

Spirkhoff and Mac Lane, p. 118.



I = the identity transformation ={ °% ©2 ©3 €4
C1 C2 C3 Cgq

H = a reflection in the H axis = [ ¢1 €2 ©3 C4
Cz2 C1 C4 C3

. . (o] C
V = a reflection in the V axis = | °1 2 3 C4
Ca C4q4 C; C2

, C; Co C3 C
R! = a 180° rotation about the center = 1~2 ™3 "4
' Cq C3 C2 C3

. . A Cq Co Cq C
D = a reflection in the D diagonal = 12 "3 "4
‘ Cy1 C3 C2 Cyg
° . : C; Cz2 C3 Cy
R = a 90° clockwise rotation aroéund the center =
: : Co Cq Cl Cag
11 e ; . Cj Cp Cg Cqg
R" = a 270° clockwise rotation around the center =
‘ C3 €1 C4 C2
. . Cy Co Cq C
D' = a reflection in the D' diagonal = <' 1-2 ™3 "4 )
' Cq Co C3 C3

A multiplication table for the group of symmetrical transforma-
tions of the square is shown.in Table II. This table can be checked
TABLE II

MULTIPLICATION TABLE FOR TRANSFORMATIONS OF A SQUARE.

o I H V*° R D R R"'" D!
I I H V R'D R R" D!
H H I R* V R"™ D' D R
\' vV Rt I H R D D' R"

R?! Rt v H I D' R" R D

D D R R*" D' I H V R!
R R D D' R* V R' I H
R" | R* D' D R H I R' V:

Dt D R* R D R' V H I
by listing for each transformation the two lines of corresponding-
elements within parentheses, then listing the resultant correspond-

ence by tracing each element through its two tramsformations.
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HnV:(Cl Ca ¢s3 C4>,,< Ci €z C3 C4>=<91 Ca Ca C_4>= RY
C2 €3 C4 C3 €3 C4 €3 C2 C4 C3 C2 C31 I
Most of the group properties can be read directly from Table II.

For -instance, the existence of an identity implies that some row must
be a replica of the top heading and that the cogresponding column must
be a replica of the left heading; Obviously, I is the identity element.
The possibility of solving the equation ay = b indicates that the row
opposite a must contain the entry b. Since the solution is unique, b
must occur only once in this row. A group is commutative if and only
if its operational table is symmetrical about the main diagonal. Ob-
viously, the group shown in Table II is not.commutative; Ihe set
{(I,4,V,R'}, however, is commutative and is itself a group.
Subgroups

| A non-empty subset K of a group G is a subgroup of G if the pos-
tulate of closure is satisfied; fhat is, if ®xy is in K whenever x and
y are in K. Thus, the subset {I,H,V,R'} is a commutative subgroup of
the non-commutative group [I,H,V,R',D,R,R",D'}; The intersection
K~ L of two subgroups K and L of a group.G is a subgroup of G. The
union K v L of two subgroups K and L of a group G is a subgroup of

G 67T

Isomorphism and Automorphism of Groups

Any two groups, or any two binary operational systems, G
(0,a;,by,...) and Go(@,ap,bs,...) are isomorphic if and only if
there is a one-to-one correspondence aj; + ap between their elements

such that aj; o.b; = .d; implies ap @ by = dp. There is thus an

®Kiss, p. 33.
TBirkhoff and Mac Lane, p. 141.
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isomorphism between the transformation subgroup T(e,I,H,V,R!) of Table
II and the group G(o,cy,cz,ca,cq) of Table I. I+ cy, H® cg, V & cg,
R! ¢+ c4.

An automorphism tz of a group G is a one-to-one transformation
on G‘such that (x o y)tg = (xtyz) o (ytyz) for all x and y in G. The
automorphisms of any group G themselves form a group.

Rings

A group or a semigroup is a system héying only a single binary
Operation defined betwggn pairs of elements; A ring, however,_has
two binary operations, usually called addition aﬁd multiplication,

A ring R is a set of elements {a,b,c,;:;] with two binary operatioms

satisfying the following axioms.

1. The elements of R form a commutative group under additionm.
X+y=Yy+ X,

2. The set R is closed under multiplication. xy =z , z ¢ R

for all x and y.

3. The set R is associative uﬁder multiplication., x(yz) = (xy)z.

4, Multiplication is distributive over addition. x(y + z) =
Xy + x2. (X + y)z = xz + yz,

5. The substitution principle is valid for multiplication.

If xy = z, then zw = xyw.
If xy = yx for every x and y of R, the ring is commutative. It

can be shown®

that rings also have the following properties. The
associative law of addition holds. x + (y + 2) = (x + y) + 2. The

equation a + x = b is solvable for all a and B of R. There is a

8Kiss, pp. 49-51.
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unique zero element, the identity of addition, such that x + 0 = x for
all x. The product of any element and zero is zero. x0 =0 fqr all x;
There are negative elements such that -x + x = x + (-x) = 0 and - (-x) =
x for all x. |

Division Rings

A division ring is a ring which has a unity element 1 and in which

1

every non-zero element x has an inverse x * such that xx ¥ = x *

x =1,
It can be shown®’20 that a division ring also has the following prbp—
erties, :A division ring has no divisors of zero? A division ring is
a ring which has at least two elements, the non-zero elements of which
form a group under multiplication;' It is, therefore, closed under
multiplication. The equations ax = b and ya = b are solvable whenever
a is not equal to zero. The cancellation laws are valid; that is,
there are unique solutions for ax = b and ya = b when a 1s not equal
to zero. A division ring may or may not be commutative; A commu-
tative division ring is called a fiﬁli: A subset S of a ring R is
said to be a subring of R if and only if 8 is a ring with respect to

the operations of addition and multiplication in R.

Direct Unions

Direct unions are compound systems obtained from two or more

operational systems., The direct product P = G X H of two groups

G(ay,az,...,am) and H(by,bs,...,by) is an operational system of order
mn, the elements of which are ordered couples (aj,bj) in which the

ai € G and bj € H. Two couples are equal if and on1§ if their corre-

®Kiss, pp. 52-56.
10Birkhoff and Mac Lane, pp. 126-127.
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sponding components are equal. (aj,bj) = (ak,bg) if and only if aj =
ay and bj = by. The product of two couples is défined by the equation
(ai,bj)(ak,bz) = (aiak,bjbz)o

The direct product P of the groups‘G and H contains the subgroups
Gg and Hg isomorphic with G and H, respectively. Every element of P
is expressible as a permutable éfoduct of an element of Gg by_an
element of Hg. The system of P is closed under multiplication
because G and H are closed. Because multiplication is agsociative
in the groups G and H, the associative law is valid in P;‘ The
identity element of P is (1,,1p), where i; and i, are the identity
elements of G and H, reSpéctiveiy: The inverse of (ai,bj) is
(ai"1,bj71), because (ai *,bj 1)(ai,bj) = (i;,iz2). H

The direct sum § = Ry + Ry of twourings Ry énd Rp is the set
of all pairs (a,b) with a in R; and b in RQL‘ The two operations in
S are (a;,by) + (as,bz) = (ay + ap, by + bz) and (aj,by) (@z,bz) =
(ayaz,bibs). S is itself a ring. - N o

Partially Ordered Systems

The inclusion relatiop for sets stated on page 6 is a specific
example of the broader concept of a partially ordered system which
has the same general properties as the set inclusion; A partiélly
ordered system P is any set with a binary relation = between éle-
ments of the set, which satisfies the reflexive, anti—symmetric,
and transitive laws. By a < b is meant that a is included in b,

but a is not equal to b. In other words, a is properly included

in b.

Least and Greatest Elements

By a least element of a partially ordered system P is meant
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an element 0 satisfying the relation 0 = p for all p of P. By a great- _

est element of P is meant an element u satisfying the relation p s u
for all p of P. The element b is said to cover the element a if
a<b and if a < x < b is possible for no x ¢ P; that is, if there
is no element between a and b. The elements a and b are said to be
linked to each other if and only if a covers b or b covers a. In a
partially ordered systemk}g-which coverage and linkage relations exist,
and in which there is a least element 0, an element is called an atom
if and only if it covers zero. |
Duality

The duality principle states that any theorem which is true in
every partially ordered system remains true if the symbols = and 2
are interchanged throughout the statement of the theorem. A partially
ordered system P is called self-dual if ;nd‘only if its dual system
Pq is obtained by a one-to-one transformation on the elements of P.

Diagrams of Partially Ordered Systems

The relations of a partially ordered system can be illustrated
by geometrical diagrams. Each element of the system is represented
by a small circle so placed that the circle for a is above that for
b, with respect to a horizontal line, whenever a > b; Then a line is
drawn between a and b if a covers b. This line represents the link
between the two points. When b covers a, c covers b, d covers c,

« » + 5 and n covers (n - 1), then the element a is said to be con-

{

nected to n by an ascending chain of links, and n is connected to a

by{a descending chain of links. Since links are always drawn between
i
th% circles of two elements to indicate coverage and since one of the

| : :
circles in a coverage relation must be higher than the other, no link
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is ever drawn horizontally. Two elements on a diagram are connected by
"a chain if and only if there is an inclusion relationship between them.
A chain must be either ascending or descending; a combination of both
rising and falling lines does not represent a chain.

Figure 2 shows a number of diagrams for partially ordered systems.
In Figure 2(a), a 1s covered by b. In (b), d covers b and c¢; b and ¢
cover a. In (b) there 1s an ascending chain from a to d through b,
and another through c. In this same diagram, b does not cover c, nor
does ¢ cover b. The diagram of (c) could be obtained by rotating (b)
180°. Obviously, (c) is the dual of (b), since for (b) a S b, a = c,
b=d, ¢c =5d, and for (c) a 2 b, a = c,”b 2d, c 2d., “One system can
be obtained from the other by the transformation t = < : : ; :<>a
The two are self-dual systems, ‘

The system diagrammed in Figure 2(d) is not self-dual. 1Its dual
would be obtained by rotating the diagraﬁ 180°, but since there is no
transformation which will transform the diagram and its dual into each
other, the system is not self-dual.

Figure 1, page 13, the diagram for the symmetries of the square,
has the following coverages: cg4 covers cp, C4 COVErs Cg, Cp COVers cj,
and cg covers cy.

Lower and Upper Bounds

By a lower bound of a subset X of a partially ordered system P
is meant an element a ¢ P satisfying the relation a = x for all x € X,

The greatest lower bound is a lower bound including all other lower

bounds. The upper bound of a subset X of a partially ordered system
P is an element b € P satisfying the relation x = b for all x ¢ X.

The least upper bound is an upper bound included in all other upper
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c b
d
(c)
h
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b d
a
(e)

Fig. 2. Diagrams of Some Partially Ordered Systems.



bounds.

upper bounds of Figure 2(b).

bound, it is the greatest lowef bound. The upper bound is also the
least upper bound. . Thé fact that there is not always only one lower

bound is shown ip Table IV, which lists some of the subsets of Figure

2(e).

TABLE III

SUBSETS AND LOWER AND UPPER BOUNDS OF THE PARTIALLY
ORDERED SYSTEM SHOWN IN FIGURE 2 (b).

Since, in each case shown in Table III, there is only one lower

Subsets

{a}
{b})
{c]
{d}
{a,b}
[a;c]
{a,d]}

- {b,c}
{b,d}
(C;d]
{a,b,c}

: [a’)b)d}
{a,c,d}
{b,c,d}

‘ {a,b,é,d}

TABLE IV

Pop NPT DN A0 O

Lower
Bounds

Upper
Bounds

[o VRN = PR o VY o VY o P o Y o P« TR o VR ¢ TN « N o PO o DL “ A

SOME SUBSETS AND BOUNDS FOR THE SYSTEM SHOWN IN FIGURE 2(e).

Subsets
{a,b}
{b;c;d}
{e,g}
{b,d,f}
{C;e}

Lower
Bounds

Greatest

Lower
Bounds

a

a
c
a
c

Upper
Bounds

b,e,f,h

Least
Upper
Bopnds

© HhDo oo

It will be observed that the system diagrammed in Figure 2(d)

22

To illustrate, Table III shows the subsets, lower bounds, and
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does not have a greatest lower bound. When a greatest lower bound
exists, it is unique, If a least upper bound exists, it is unique,

Chains and Lengths of Chains

A partially ordered system P is called a simply ordered system,
or chain, if and only if either x s y or x 2 y for all arbitrary
elements x and y. The number of links in a chain is called the length
of the chain. For example, any of the ascending chains from a to h
of Figure 2(e) has three links: In this diagram there are six ascend-
ing chains from a to h. Designated‘by a succession of elements, they
are (a,b,e,h), (a,b,f,h), (a,c,e,h), (a,c,g,h), (a,d,f,h) and
(a,d,g,h). The Jordan-Dedekind chain conditionll is that all chains
between fixed-points have the same length; Although this condition
is satisfied for all diagrams of Figure 2, not‘a}l finite par;ially
ordereq systems satisfy it. |
Lattices

A lattice is defined as a partially ordered system in which any
two elements x and y have a greatest lower bound and a least upper
bound. In any lattice, the greatest lower bound of elements a and b
is denoted a ~ b, and the least upper bound is indicated by a v b.
For lattices, a n b is called the meet of a and b and coincides with
the set-theoretical definition of the intersection A n B of two sets,
as stated on page 6. The set-theoretical union A v B of two sets
corresponds to the 1attice=theo;etica1 definition of a u b, called
the join.

Two lattices L and Ly are dual if they are dual when considered

llKiss, p. 78.
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Since every inclusion relation x £ y

in L becomes x 2 y in L3, the ~ operational table of L betomes the

v operational table of Ly, and the v operational table of L becomes

the n operational table of Lj.

It can be shown2’13 that all lattices obey the following

operational laws.

IdemEot_;ent: XaX=%xand x u X

= X

Commutative: X*xan y=ynxand xuys=yux

Associative: X ny) nz=%Xn §nz)and Xuy)uvz=xuv (yuz)

Absorptive: X s Ruy) =xandxov Xay)=x

Self-Distributive: X a (VY »n 2)

Xuv (y uz)

X ny)n (Xnz)and

(XUy)u(XUZ)

Semidistributive: xn G uz) 2 Xnany)u Xnz)and

Xu(maz)gs Buy)n Buz)

4-Element Semidistributive: X uy) m U V) 2 Xau)u (yav)

and X ay)u WaAaV)SE ouua Fuv)

Semimodular: If z S x, thenxn (Yuz) 2 R ny) vz, and

if z2x, thenxu nanz)s RuyY)nz

A modular lattice is a lattice which satisfies the following

modular laws.
If z £ x, then X n (y v 2)

if z 2%, thenx v (y ~ 2)

=

(Xny') v 2, and

.(xuy)n.z,

It will be noted that the modular laws are like the semimodular

laws except for the presence of the =

signs in the modular laws.

A visual check to determine whether a finite lattice is modular

12girkhoff and Mac Lane, pp. 352-354.

13kiss, pp. 81-83.
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is to look at its diagram. If the lattice is modular, it satisfies
the Jordan-Dedekind chain condition; that is, all chéins connecting
each pair of fixed points must have the same length. For example,
Figure 3 shows the diagram of a non-modular lattice. The left chain.

from a to g contains four links; the right one, only three,

a

Fig. 3. Diagram of a Non-Modular Lattice,

Distributive Lattilces

A distributive lattice is a lattice which satisfies the
following dual distributive laws.,
Xn Guz)=Eay)uv Eaz)andx v fnz)= EKouy)an xuaz)
A distributive latti;e ig always modular., A chain is a distributive

lattice.

Complements

In set-theoretical considerations, the complement!* X of X is

the set of all elements not in X. X n X =0. Xou X = U, the

universal set., In a lattice with a least element 0 and a greatest

14The symbols ~X and X' can be used for the complement of X.
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element u, the complement x of an element x is an element such that

XnX=0and x v Xx =u. The complement of x is x. x = x. This is

known as the involution law. u is the complement of 0. In a dis-

tributive lattice, complements (when they exist) are unique and satisfy

the involution law and the follbwing two dualization laws.

Eay)=%xouvyand @uvy) =X a y

Boolean‘Algebraé

A Boolean algebra is-a distributive lattice which contains a
least element 0 and a greatest element u, with 0 = x =2 u for all x |
i .

and with a complement x for each element x.

Isomorphisms and Automorphisms of Binary Operational Systems

As indicated on page 10, an isomprphismbexists between two

binary operational systems Sy(0, 81, by, . & .)vand Sg@y,ag, bz, . .
.) if and‘only if there exists a one-to-one corféSpondenée, S1 0182,
between their elepents suehlthatgal o by = c; implies ap & by =;c2.
A one-to-one correspondence imélies a one-to-one transfgrmation
t froﬁ S; to Sp. If aj ¢ by = ci, then (a; °‘b1)t =‘c1t. That is,
a1t ® byt = c3t, or (ap ° by)t = a3t @ byt. If t 1 denotes the
inverée of t, the equation becomes almo by = (aat @ bat)t 1,

. Now assume that.the elements of S; have the game symbols as
those of Sz. That is, the two binary operational systems are
S,;(0, a, b, . . . ) and $2©, a, b, . . .). This does not require
that a « a and b ¢ b, Thé one-to-one correspondences may be a ¢ p,
b+ a, c+ h, etc., where elements on the 1eft_a?e‘in Sl and elements
on the right are in Sa- Now a b= (ate bt)t 3, where a and b
are any‘elements of 8; and are also eieméﬁts of Sp. Substitution
of ft' for a and gt * for b yields f;fl o gt T, Muitiplicatign of

both sides of the equation by t results in f ¢ g = (Ft72 o gt D,
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It can be shown®

that, given a set tj;, tp, and tz, . . . of one~-
to-one transformations on a binary operational system S with opera-
tional signs 03, 0, 03, . . . of the transformed systems S;, Sp,
83, . . ., and given t;tp = ta, the operational equation a 03 b = ¢
in S; is transformed into an operational equation in S3 by trans-
forming by tz all the terms, including o;. atz oz bty = ctz. An

automorphism is definedl® as an isomorphism of a group with itself.

Link-Preserving Transformations of Lattices

A link-preserving transformation on a lattice L is a one-to-
one transformation t on L such that if any two elements a and b
are linked in L, then their corresponding elements at and bt are
linked in the transformed lattice L¢. The symmetries of the
square are examples of link-preserving transformations. For the
lattice of Figure 1, page 13, the link-preserving transformations
are the same as the symmetries of the square.
I=( ©1Cc2¢3 Cs H=[ €12 €3 Ca V= C1C2¢€3 Cq
C1 Cz Ca Cau Cz2 €1 C4 Ca Cg C4 C3 C2
Ri= ( S1 C2 Ca Cc4 D =( C1¢2 csa Ccq R=( S1¢2¢ca Cs
Cq4 Ca Cp C: €y €z €z Ca Cp C4 C1 Ca

€1 1
R¥= €y ¢c2 c3 Cq Dl €3 Cz Ca Cyq
© O\ Cs c1 C4 C2 ‘ G4 C2 Ca C1

A lattice L is transformed into a dual lattice Ly by a
duality transformation tg. A duality transformation tq changes
every relation a £ b of L into a relation a 2 b in Ly, trans-
forming an ascending chain into a descending chain, and vice

varsa., The duality transformations for the lattice of Figure 1

15giss, p. 94.
‘16Birkhoff and Mac Lane, p. 147.
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Direct Unions of Lattices

i The direct union A X B of two partially ordered systems A and B
is the system C whose elements are the ordered couples (a,b), where
a is any element of A and b is any element of B. An equality and

four ordering relations are defined as follows.

(a1,by)

(@az;by)

(az;bz) if and only if a; = as and by = by,

HA
A

as and bl

HA
o
V)

(an,bs) if and only if a;
(al,bl) < (82,1)2) if and only if a; = ag and bl 2 b2.

(ay;by) > (8z,bz) if and only if aj; 2 ap and by

A
=2
N

i
o
N

(@3,b1) 2 (as,bz) if and only if a3, 2 ap and bj

For each of the four relations p in the direct union of two
partially ordered systems there is a dual relation pg such that
if ¢y p cz, then ¢z pgy cl; Thus, = and 2 are dual relations, and
< and > are dual relations; The elementé €1, C2y « - n>of the
direct union ¢ = A X B of two.partially ordered systems A and B
obey the three laws for the inclusion relation stated on page 6.

The direct union C = A X B of two lattices A and B is a
lattice with four singlgnvalued binary relatioms, =, <, >, and 2.
An operation 1is carried out component by component, in the s
sys;em of the componenté if the = relation is involved, in the u
system if 2 is involved. There is a one-to=ome correspondence
between the relations and the operations. The four operations
are designated in Table V.

For example, if aj £ ap in lattice A and b; £ by in lattice
B, the operational tables for A and B are shown in Table VI:

The elements of C are defined as ordered couples of the elements
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of A and B. Cy = (al,bl), Cp = (al,bg), Ca = (ag,bl)’ Cq = (ag,bg).
The table for the operation of“C shown in Table VII can then be

determined as indicated by the following calculations.
TABLE V

RELATIONS AND OPERATIONS FOR THE DIRECT UNION OF TWO LATTICES.

Relations . Corresponding
Relation between elements Corresponding operations between
in C of A and between operation in C elements of A and
elements of B between elements of B
= = E,8) hid ° = (nsn)
= = (,2) hig 1 = (ny0)
> = (Z,é) g T = (vsn)
= = (z,2) -« + = (w,u)
TABLE VI

OPERATIONAL TABLES FOR LATTICES A AND B.

A & i a; ag w l ay ap .- B:
‘d31f @3 8 23] a; az
ap| 43 8p ap| ap ap

(@)
TABLE VII

THE « OPERATIONAL TABLE FOR C = A X B,

° Ci Cz Ca C4

cy| €1 €1 c1 €1
Cs Cll Cs €1 Cz2
Ca C3 €3 Ca C3
Ca| C1 Ca C3 Cy

.Cl ¢ Cp = (al)bl) ° (al,bl) == (al sl .al, bl' n bl) = (al,bl) = C71

(a1 » 83, by a bp) = (a1,by) = c;

it

¢y ¢ ¢z = (ay,by) ° (ay b2)

¢y ¢ ¢a = (a,b1) * (@z,b1) = (@1 » 82, by a b1) = (a1,b1) =3



cy e cq = (@3,b1) ° (@2,b2) = (81 a a2, by a ba) = (a3,b1) =¢;

cz ° cg = (ag,bz) ° (a1,b2) = (@1 a 83, bp a bp) = (ay,b2) =c2

It

cz ° ca = (a1,bz) ° (az,b1) = (@1 n 82, b2 n b)) = (a1,b1) =c;
cz ° ¢4 = (a3,b2) ¢ (az,ba) = (a3 a az;, bz a bp) = (a1,b2) = c»
ca ° ¢z = (ag,b1) ° (az,by) = (a2 » @z, by ~ by) = (az,b1) = c3

cg ° Cq4 = (az,b1) * (82,b2) = (82 » a2, b1 n ba) = (32,b1) = c3

C4 ¢ C4 = (a2,b2) ° (az,b2) = (@2 ~ 82, bz a bz) = (az,b1) =c4

It can be shownl” that all four of the 0p¢rationa1 systems
of the union of two lattices are idempotent, associative? and
commutative. Since they are commutative, c4 ° c3 = c; ° cg4,
for exgmple, S0 cg4 °© él need ﬁot be calculated if c; ° cg4 ' is
already known.

The entries for the 0pe;ational tables fqughe ;hree other
operations of C = A X B can be calculated in a similar manner.

They are shown in Table VIII.
TABLE VIII

THE 1, T, AND + OPERATIONAL TABLES FOR C = A X B.

Ll | c1 ¢2 ¢c3 cy T | Cc1 €2 €3 C4 + | €1 Cz Ca C4
€3 | ¢1 €o cy Cp €y ] €1 c3 g ta - €1} C1 Ca C3 Cq
ca Ca €z C2 Cp ca €1 Ca €3 Cq Ca Ca2 Cz Cq Cq
Ca Cy C2 C3 C4 Ca Ca Ca Ca Ca Ca Cg C4q4 C3 Ca
Cq Ca2 Ca C4 C4q C4 C3 C4 Ca Cgq4 Cyq Cq C4 C4 Ca

(a) ®) ' (c)

Diagrams for A and B are shown in Figure 4 (a) and (b), respec-

tively; relations for C are indicated in (c) through (f).

17Riss, p. 104.



ag ba
ay by
(a) (b)
ca = (az,by)
(83,b1) (az,bz)
cz = (az,bo)
(d)
Ci
Ca-’:

(82,51)

Cq

Fig. 4. Lattice

cq = (ag,bz)

Ca = @ Cg =
(ay,bz) (ag,by)

cy = (ay,by)

(©)

cz = (az,bz)

Cyqg = Cl =

(az,b2) (@1,b1)
ca = (az,b;)

(e)
(1,b1)
) c2 =l
(al:ba)

(az,bz)

Diaérams for A, B, and C = A X B,
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The four ordering relations of C are all shown in Figure 4 (c),
provided different directions are assigned for ascending chains. For
the = relation, the ascending dirgption is, as usual, from bottom to
top. For <, it is from left to right, but right to left for ». For
2, it is from top to bottom;

Obviously, the four distinct relations for C are transforma-
tions of each other. All are link-preserving transformations. The
direct union of two transformationms ty and ty; on the elements of
two systems A and B is the couple (t1,tp) having for components a
transformation»on each of the two systems. The couple operates
sore(3)

a; ag

Ihen the

on C = A X B, For the systems of A and B, let t; =

by ba oo (a1 a2 by bs
or < by b2‘> and let ty; =R —'<'a2_al or bo by

I
following transformations apply to C.
= [ (81 a2\ (by bz —( €1 c2 cacy
ty,t = = =1
(t2,82) <:<;1 5;)’ <;1 bs €1 c2 Cg Cq
—( (81 82) [b1bz)\_/ c1czcace
(2,t2) = <:<;1 a%)’ <;2 bi/ / ~ \ c2 c1 ¢4 ca
(to,ty) =( a1 az) by b2\ _( c1cacacq
a1 ds ay 2, bl b , Cg C4 C1 C2
. ([ [21 82 by bz Ci C2 C3 Cq \ _ pny
(tz’tz). f"((&z al>’ (bg bl )= Cg Cg C2 C3 =R
The direct union (t;,tz) of transformations on two partially

ordered systems A and B is called a principal transformation on

C=AXDB 1if and only if each of the transformations t; and tp is
either the identity transformation or a duality tr;nsformation.
The transformations above are principal t;angformations, sincefR!
is a duality transformatio&; As indicated op_pgse 14, four otﬁer
transformations are possible: D, R, R¥, and D', These can not

be obtained as the couple of two 1dentity or dual transformations

on A and B,



CHAPTER IIL
THE BOOLEAN ALGEBRA OF ORDER TWO

The most common qulean algebra is that of order two. This
algebra contains only two elements and is, therefore a natqral de-
velopment for the algebra of logic in which a statement is either
true or false; no other values seem possible; Mathgmatically,
however, more elaborate systems can be developed to include four,
eight, or more elements;

Basic Theory of Two-Valued Boolean Algebra

This algebra is the set of gwo elements. Since the null set
0 is considered to bg’a subset of every set, let one of the ele-
ments be designated by 0 and the other by 1. Thus, ﬁhe Boolean
algebra of order two, B = (0,1}, is a completely ordered system,
Since 0 is a subset of 1 but is not equal to 1, it is a proper
subset. Thus, 0 <1 and 1 > 0, but the more general s and &
will be used. |

Two binary operations » and v can be applied to the two
elements of B, assigning to each pair (0,0), (0,1), (1,0), and
(1,1) a uniqﬁe eleﬁent of B:‘ The element chosen for‘egch pair
might appear to be quite arbitrary, but the choices are deter-
mined by the characteristics of the system;

B is a partially ordered sxstem sipce it satisfies the re-

flexive,.antisymmetric, and transitive laws. It contains a
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least element O and a greatest element 1. 1 covers 0. 0 is the
greatest lower bound, and 1 is the least upper bound of the set. B
thus satisfies the conditions given on page 23 for a lattice. More-
over, B is a chain, as defined-on page 23. It is a distributive
lattice, as explained on page 25, Since the meet x n y of two ele-
ments of a lattice is their greatest lower bound, 0 n 1 =1 a 0 =0,
Since the join x o y‘pf two elements of a lattice is their least
upper bound, Oul=100= 1; The greatest lower bound of 0 and
0 is 0; therefore, 0 » 0 = 0. Similarly, 1 a1 =1. The least
upper bound of 0 and 0 is 0; of 1 and 1, 1; Therefore, 0 v 0 =0,

and 1 o 1 = 1. These values are indicated in Table IX.

TABLE IX

THE ~ AND v OPERATIONAL TABLES FOR THE BOOLEAN ALGEBRA OF ORDER THWO.

0;00 0} 01
1 01 1 11

(a) ®)
The diagram for the lattice of B is given in Figure 5 (a).
Since there is only one chain joining the two elements, the lattice

is modular. By definition of the complement on page 26, 0 is the

complement of 1, and 1 is the complement of O,

1 0
Lo
@ ®

Fig. 5. Diagrams of Two-Element Léttices°



The two link-preserving transformatlons are .I -.< > and»R' =
<$ é>, I is the identity transformation. R? transforms the lattice
of B, shown in Figure 5 (a), into the lattice shown in Figure 5 ().
The R? transformation is the negative transformation of logic. Thus,
R'x =-x for each x ¢ B. The inverse t * of a transformation t satis-
fies the equation tt * = t;, the identity transformation. Thus R? *

= R', 8ince R'R? = I, ~-(-x) = x. The negative of an element is its

i

complement, =x = X.

In logic, the intersection or meet a 1s called a conjunction
and is frequently represented ﬁy the ampersand® & or by the multi-
plication sign2 o, which is frequently omitted between the two ele-
ments it connects, X ¢ y=Xy=Xny=x &y ="x and y" . The
union or join u is called a disjunction and is a;ternately repre-
sented*’2 by V or by the + sign®, x+y=xuy=xVy="or
y or both"., In most electrical engineering literature the » and

+ signs are preferred,

Other Binary‘Operations

Special symbols have been used* for vhrious combinations

which can be expressed with the negatiéh and the + and - sighs.

The "zero conditiqnal” X S-y”is used for X ° Y. The dual "one con-

ditional” x -y = x + Vo The "reversed zero conditional® x’g y
1 : : . .

X o ;, and the "reversed one conditional™ x « y equals x + y.
L EEY . Tt - o

ip, Hilbert and W, Ackermann, Grundzﬂg_»der theoretischen
Logic (2d ed., Berlin, 1938).

2A. N. Whitehead and B. Russell, Principia Mathematica 2d ed.,
vols. I, II, III, Cambridge, 1925~ 27)

8C. I. Lewis and C. H, Langford, Symbolic Logic (New York,
1932),

“Stephen A, Kiss, Transformations on Lattices and Structures
of Logic (New York, 1947), pp. 124- 125, ; '
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+y=x-:-L»y.

VR
B 1
%08

xgy= xeys=

The ¥zero biconditional® X ey, also written as x X y, can be ex-

O;Ia—.r-gy., x;y=x+y=

pressed as (x » §) 4+ (x o y). - Its dual, the "one biconditional®
Xey=x Xy= (+y) e &+ y); The "stroke systems" of Sheffer®
are the negations of the » and + systems: The "one stroke', x | y =
-(x ° y) = {(x * y), means "not both x and y", a proposition which

is false if and omnly if both x and y are true. The "two stroke",
x|y =-x+y)=(&x+ y), means "neither x nor y", a proposition
which is true if and only if both x and y are false. Table X lists

the operational tables for the Warious binary relationms.

Duals and Negatives

A distinction should be made between the dual of an expression
and the negative (or complement) qf ah expression:. Following the
discussion on pages 26 and 27, fhe two binary systems for B, the
Boolean algebra of order two, are B, (°,0,1) and B26+,0,1): A one-
to-one corfespondence Between the syétems implies é one-fo-qng
transformation t f:bm B, to Ba;‘ If x o y =2z, then (x * y)t = zt:
That is, Xt + yt = zt, or (x ° y)t = #t‘+ yt: Similarly, (x + y>tfl
- xemi s yeni, B -

" If t =Rt = <?“a>, t = R'.};QR' = 0=1. 1R' =1 = 0:
(x » y)Rt = xR + ny. G?T_;) = i + ; = X | y; Thus the nega-
tive of (x y)'is & | . As indicated in Table X, each value
of the function x |'y is the negative of the correéponding value

for x ¢ y. If, however, every element of the operational table

SH. M. Sheffer, "A Set of Five Independent Postulates for
Boolean Algebras,” Transactions of the American Mathematical
Society, XIV (1913), 481-488,




TABLE X

OPERATIONAL TABLES FOR VARIOUS BINARY RELATIONS OF

BOOLEAN ALGEBRA OF ORDER TWO.

XXy=
Eoy)+ oy &
X 0 1
0 0 1
111 0
(&)
x|y=
Eey)=x+y +y)
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for x o y were changed, including column and row headings as well as
the value of the function, Table XI(a) would result. If this table
is rearranged to put column and row headings in their customary lo-
cations, the resultant Table XI(b) is seen to be the table for the +

relation,

TABLE XI
RESULT OF CHANGING EVERY ELEMENT OF TABLE X (a),

INCLUDING COLUMN AND ROW HEADINGS.

The expression x + y is called the dual of x - y; Note that,
in the dual expression; any literal element is not replaced by its
negative, but a 0 is replaced by 1 and vice versa: Xel=2x
would have as its dual x ; 0 = X, Ooy=0,and 1 +y = i. If
0 and 1 were not interchanged in going from an expression to its
dual, incorrect equations would result.

The rule, then, is that to write the dual of a Boolean algebra
expression, + and ¢ must be interchanged and 0 gnd 1 must be inter-
.changed in the original gxpression. ‘Iolwrite the negative, or
inverse, of an expression, take its dual and then change each
variable to its inverse. Table XII shows dual and negative re-
lations.

Postulates and Theorems for the + and o Operationms.

Table XIII lists postulates and definitions for two-valued

Boolean algebra, using only the + and ¢ binary operations. Once



TABLE XII

DUAL AND NEGATIVE EXPRESSIONS,

Expression Dual Negative
X oy X +y b'4 l y
X=>y X =y X «y

o i 1
X «y X -y X >y

o 1 1
XXy X X y x X y
XXy . x Xy XXy
X y X “ y X oy
X ; y X g y X g‘y
X ; y Xs7y X3y
x X y XXy XXy
x H y x ‘ v X+ y

TABLE XIII

POSTULATES-AND DEFINITIONS FOR TWO-VALUED BOOLEAN ALGEBRA

1 for all k € B

[P1] xx=0o0r x=

[PRa]l x=11f x =0 [P2b] x =0 if x =
[P3a] %+ 0=0+x%x=x [P3b] x ¢ 1 = 1 ox
[Pea] x+1=1+x=]1 [P4b] x 0 =0 o x

[t}



40

these postulates and definitions are established, the theorems of
Table XIV can be proved. It will be noticed that.most of the list-
ings in Tables XIII and XIV are in-pairs. As indicated on page 19,
any theorem that is true in a partially ordered syétem remains true
if the symbols = and Z are interchanged throughout the statement of
the theorem.. That is, if a particular equality is proved to be‘true,
its dual expression is also true.

A method of proof expecially useful for two-valued Boolean
algebra is proof by perfect induction®. The procedure is to test
the theorém by means of the po;hulétes for all possible values of
the variables. This is not difficult, since each variable has only
two possible values. Even if n variables are involved, only 2n
possible combinations need to be tested. T7a, for example, can be

proved by first letting x = 1. Then, by P2b, x = 0. Substitution

!

of these values for x and x gives the expression 1 + 0, which, by
either P3a or P4a, must equal 1. ﬁext, let x = 0. By P2a, x=1.
The resultant expression 0 + 1 must equal 1, again by P3a or Pia.
Since the theorem has been shown to be true for all possible values
of x, the theorem must always be true.

Theorem T7a could have been pfoved by reference to the theory
on page 34 where the u operational table, Table IX(b), was deve-
loped, since the v and + symbols are used interchaﬁgéably for the

union or join,

®William Keister, A. E. Ritchie, and S, H. Washburn, The
Design of Switching.Circuits (New York, 1951), p. 72,




TABLE XIV

THEOREMS FOR TWO-VALUED BOOLEAN ALGEBRA

(1] &

= x
[T2a] 0+0=0 [T2b] 1 1 =1
[T3a] 1 +0 =1 [T3b] 0 ¢ 1 =0
[T4a] 1+ 1 =1 SR [T4b] 0 -0 =0
[T5a] 0+ 1 =1 [T5b] 1 ¢ 0=0
[T6a] x + x = x [Teb] % o x = x
[T72) x + x = 1 [T7b] %o x =0
[T8§] X+y=Y+x [st]-xvoy=y;ox
[T9é] x+y)+z=x+ (y+2) [T9] (xoyj)‘oz=x,- G+ 2)
[T10a] (x - y)+z= (x+2z)e (y+§). |
[T10b] (x+y) cz= (x°2)+ (y° 2z)
(1112] GFy) =% <7 [T11b] & e y) =x+¥
(T12a] (;?3;7‘;;';)=§”.§°§ 4[T12b] eoyoz)=x+y+z
[T13a] x + (x » y) = x [T13b] x o (x+‘y)‘=xv
[T14a] (xo§)+y=x+y ‘[T.14b] E+y) oy=xey
Cmsal e+ Ge2) = @aa) e G4y
[T1Sb] x+y) e x+2) = (xoz)+ (x°y) -
R R R R R
[T16b] x+y) c (+2) e (Z+x%x)= (X+1Y)e° (2+X)
[T17a] G oY) + G o 2) + (@ » x) = (x‘+yj+ z) e Gk + 5 + 2)
[mid] & +y) o O +2) e (z+x)=.‘(x,oyog)ﬁ- x ey z)
(T18a)] (X ¢ ¥) + (y e 2) + (2 o X) = (X + y + ) o (§+§+E)

[T18b] (x +¥) o (y+2) ¢« (z+X) = (xoysz)+ (xoys z)
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Previously proved theorems may, of course,-bé used in proof of
other theorems. Thus, if one were to prove theorem T13b by perfect
induction, as indicated in Table XV, he might use T2 through TS in
arriving at values for the fourth, fifth, and sixth columns, instead

of going back to basic postulates.

TABLE XV

PROOF BY PERFECT INDUCTION THAT (x + ;) °oy =X oYy,

x |y y ] x4y |&+y)ey| xey
0 0 1 1 | 0 0
0 1 0 .0 0 0
i o 1 1 0 0
1 i 0 1 1 1

Postulates and Theorems for Other Binary Operations.

As indicated on pages 35 and 36, the other binary operations
for two-valued Boolean algeb;a can be expressed in terms of the +
and ¢ operations and negatives, These relations are shown in Tablg
XVI. With the equations of Tables XIII, XIV, and XVI, it is possi-
ble to prove a gréat many theorems, some of which are shown in
Table XVII.
TABLE XVIl

POSTULATES FOR OTHER BINARY OPERATIONS FOR TWO-VALUED BOOLEAN ALGEBRA.

[PSe] x 3y = Xey [P5b] % Ty =X +y
I[Ppeal x cy=3xo y [P6b] %« y = x.+ y
1
[P7a] x Xy = xey)+ Gey) [PB] xXy= ®+y) » G+y)
[Pea] x| y= Goy) [Peb] x| v = |

x +y)
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If one has a good working knowledge of the + and o Operatipns and
the definitions of the other operations in terms of + and ¢, he will
probably prefer to prove the theorems of Table XVII in terms of these
two operations. For example, T35a states (x é y)»g x 2 z) = X 3
(v 3 z). Formal proof of this theoFgm could proceed as ipdigated“in
Table XVIII. Proof by perfect induction is shown in Table XIX, usiqg
values from the operational Table X(c), which are the valﬁes_given |
in the (g) péfts of T20 through T23.

It is not necessary to prove all theorems in terms of the +vand

o operations. Table XX shows a prbof of T41a using previous theorems

dealing solely with the = operation,



TABLE XVII
THEOREMS FOR OTHER ‘BI‘N’ARY OPERATIONS

OF TWO-VALUED BOOLEAN ALGEBRA.

[T192a] (x-gy).=x<-y [T19b] (x—by):x«ay
, : 1
[T20a] © -g 0=0 [T20b] 1 -I 1T =1
[T212] O 3 T =1 [T21b] 1->0=0
- 1
[T22a] 1 3’ 0=0 [T22b] 0 =1 =1
1
[T23a] 1 21=0 [T23b] 0-0 =1
. 1
[To4a] x 3 0=0 [T24b] x> 1 =1
¢ . -
[T252] x 21 = x [T25b] x =+ 0 = x
[T26a] x3x=0 [To6b] % » x = 1
1
[T272a] x 3 X=X [T27b] X> X=X
- . 1
[T28a] ,;ch.—: X [T28b] x -+ x = x
: 1
[T29a] x>y =y <«<x [T29b] x>y =y «x
; o o 1 1
[T30a] (xgy)»z= x+y) oz [T30b] E->y)—>2z-= Xeoy)+z
1 1 Co
[T312] G2y)zgz=Ee-2)+ (¢ °2)
[T31b] (x -~ y) ‘-:: z= (X + z) ° (y + z)
1 ‘
[T32a] x-g(y—»z):ioi;oz [T32b] x> (y»2) =X+ Yy + 2
1 1
[T332] x> (y22z) =y-> (x=>2) [T33Db] x> (y->z)=y-> (x—>2)
o o o 1 1 ‘ 1 1
[T34a] x = (y=22)= x+y)>2z [T3b] x> G~>2)= xeoy)->z
c -0 1 1 ‘ 1
[T35a] (xgy) 3 (x 22)=x23 (ygz)
[T35b] @ —=>y) > x~>z) =x-> (- z)
1 1 1 1 1
[T36a] x»>y=x«y . [T36b] X+ y=x<«y
L ° o S | 1
(1372] @2y gz= G|y |z [137] &= §>‘-l- z=G&|y) |2
[T38a] x> (> z) =x-> (y«2) [T38] x> (y->2) =x-> (J « z)
o o o ‘ 1 1 1 1
[T39a] (x=>y)>x=x [T39b] @ ->y) > x=x
e". o0 : ‘ ‘ 1 1
[T40a] >y) > y=x ey {T40b] GE->y) >y =x+y
[o] [o] 1 1 '
fre1a] =x + (v P x) =0 [T41b] x = (y =+ x) =1
: 1

. . 1



[T42a]

[T43a] x pe (&y <

[T44a]
[T45a]
[T46a]
[T47a]
[I48a]
[T49a]
[T50a]
[Tsfa]
[T52a]
[T53a]
[TS4a]
[T55a]
[T56a]
[T57a]
[TS8a]
[T59a]
[Te0a]

[T61a]
[T61b]

[T62a]
[T63a]
[T64a]
[T65a]

[T66a]

X =
o

x &
(x
x

x

->

1
-
(o]

ot

x

ol
~<
~r

y) 3z

y) 2z

y)

- Z
(o]

y) 2z

X2 (x °y)

X oy
Xoy oz
X+y) ez

TABLE XVII (Continued).

(X°y)g(Y°X)=0

o
ot
—

ot
o

b
ot ot
b

b
ot
]

ot ot

ol

®
t

N
t
N

ot +» ¢t Ot

»
ot

(6.4

ot

X <
(0

X =
( (o]

t
N
~r

=t ot

ot ot

ot
N

1t

X

X

Xoy+xo 2

0;70-2-

o (¥ + 2)

[T42b] x - (x - y)
1 1

[T43b]
[T44b]
[T45b ]
[T46b]
fT47b]
[T48b]
{T49b]
[T50b]
[TS1b]
[T52b ]
[T53b]
[T54b]
[TS5b])
[T56b]
tf57b]
[T58b ]
[TS9b]

[Te0b]

®+y) o (x+2)

]

®i

| &1l 2

[T62b]
[T63b]
[Te4b]
{T65b]

[T66b])

X > (y « 2)
1 1

(x
(x
x

x

o} +~1¢
e«
S’ N’ S

~
~r

»t Pt

IR T R R R )

N

1

N

N

N

x> x+y)
1 .

]

(X+y)-l>(y+x_)=1

(x «y)
1

—
i

1

1

T I S S R I B )

o)
E]
~ 4
«
S’

1

1

«
SR

~ 4

X=>Yy

"
= ¢
~
~<
t
N
~r

Re§ =

X

»t =1

x «y)
1

x «y)
1l

x> vy)
1

X

y +z
1

1t Pt 1

~

]

i

(o}

]

LR

+y+z

+ (y o 2)

| v | 2)

<

+y+z
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[T67a]
(Te8a]
[T69a]
[T70a]
[T71a]
[T72a]
(T73a]
[T74a]
[T75a]
[T76a]
[T77a]
[T78a]
[T79a]
[T80a]
[T81a]

[T82a]

[T82b]

[T83a]

(T83b]

- [T84a]

[T85a]

(T86a]

[T87a]
[T88a]

- [T89a]

x « (x 2 z)
x=2>vy) sz
(x 2 Y)‘g z

xe (22

(o]

TABLE XVII (Continued).

X o (y + E). éT67b] X - (y » 2z)
1 1

X2 (y s z)

xXy)=xXy

0x0=0
O0xX1 =1
1x0=:1
1X1 =0
xXx=0
XXX =1
XXX =1

XXy=(x+y) e x+7Y)

XXy=Y XX

(T68b]
[Te9b]
[T70b]
[T71b]
[T72b]
[T73b]
[T74b]
[T75b]
{T76b]
{T77b]
fT78b]
[T79b]

[T80b ]

xX (7 X2) = (xX y) X z [181b]

(x X y) X z = (x'° yeoz)+ (x-e
(x oy » 2)

E+y+2) o (x+

x+y+z)eo (x+

(X ey o 2z) + (X ¢

®xXy) Xz

"

M1 <

[T64b ]
{Taesb]
[T86b)

[T87b]

[Tssb] (x X y) X

[T89b ]

< < <1

<

=x+ (y ° 2)
K>y)+-z=x%x> (y+z)
. 1 ,.1 l, 1.
x—>y)ez=2>(y+x)

171 1
X« (y>2)=x« (y«2)
1 1 1

xXy)=xXy
1X1 =1
1%X0=0
0Xx1=0
0X0 =1
XXX =1
xXx=0
x i X = 0
xXy= ey + oy
xXy=yxx
xX (FXz)= &xXy) Xz
ez) + (x oy o z)+
+ z) e‘(:_<+y+'z“)o
+2z) o x+y+z)e
cz) + Koy e z)+
®EXy)Xz= &EXYy)Xz
XXy =xXY h
xXXy)Xx=y
EXY)Xy=x

X X =y
XXy)Xy=x
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TABLE XVII (Continued).

[T90a] xX (y Xz) = (xXy) Xz [T90b] xX (y

[T912] xXy)Xz=(Xxeye z) + (x ¢ ;r °

x ey~ z)

[T91b] (xxy)_;< z=(x+y+ z) o (x + 7y +

X +y+2z)

[T92a] (kX y) Xz= (x+y+2z)e° (x+

x+y+ 2z)

[T92b] (x X y)__;< z=(xeoyoz)+ (xo

(x oy e 2)

[T93a] (x °y) X (x ° z)
[T93b] (x + y) X (x + z)

[T94a] (x = y) ‘x x Xy

[T95a] (x+y+2)X (x+y+2)

i
-+

<!
°

X e (y Xz)
x+ (y X z)

x +y [T94b]

[T95b] (x ey ez)X (XKoyoz)s=

[T96a] [ x+ (v o2z) Ix[ x+y)
[T96b] [ x o (v +2) I x[ (x¢y)

[T972] (2 ¥) X (xug y)
[T97b] (x> y) X (x > 2)

1 1
[T98a] (x > z) >f (y 2 z)
[T98b] (x -1> z) X (y 'l' z)

n o

0
!

+

x + z)

& * 2)

X2 y X z)
X = (¥ X 2)
1

(xxy)gz
EXy)->z
1

[199a] [x3 022 Ix[ &+
[T99b] [ x> G 2>2) ) x[ &x-°y)

[T100a] ®3y)Xz=(-*y-

X ey e Z)

[T100b] (x 3 ¥y) X2z = (x +y+

E+ 7+ 32)
[T101a] ] y) =X o y
[T1022] 0 | 0 =1

[T103a] 0 | 1

]
—

[T104a] 1 | O

n
—

i
o

[T1052] 1 | 1

->
o]
->
1

z]1=0
z ] =1

- z)

(x X y) Xz

X
N

~
it

z) + (x ° o z) +

<

z)

+ 2) o

L]
w®
+

<

+z) e

L)

=

C o+
<

z) + (x ° ° z) +

<

E+y)X XXy)=xoy

[—
-
(=]

z)-ll-(xo;‘oz)+(;{°y-z)+

z) e (x+§+z)° (;:+y+z)°

[T101b] (= ” y) = x +y
[T102b] 1 || 1 =0

[T103b] 1 || 0 =0

[T104b] O || 1.= 0
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[T106a]
[T107a]
[T108a]
[T109a]
[T110a]
[T111a]
[T112a]
[T113a]
[T114a]

{T115a]
[T115b]

[T116a]

[T116b]

fT117a]
[T118a]
[T119a]

[T120a]
[{T120b]

[T121a]

[(T121b]

[T122a]
[T122b]

[T123a]
[T123b]

[T124a]

TABLE XVII (Continued).

x| x =%
x| x=1
x|y=y1|x
|y ]zs=
x| o0 |2)=x+
x|y=x+y

[T106b] x || x = x
[T107b] x || x = 0
fT108b] x || y = v |

o y)+z [10%) &y |2

(y o z) [TN0b]l x| (v || 2)

[T11b)} x [y =x o

]

il

y
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x +y) e z

X

°‘(y+Z)

Nl &l=xecy M2l G|N]| &lly)=x+y
Gl Gly=x+y (3] G| Glly)=x-y
x| ly|] ¢6ly)l=x fmisbl x [ [y ] ¢l y) =x
(x| ¢l221]0x] 6l2l=x0+2
[xlol2llxlol2al=x+ G-

(x|l ol ]|l=x]ol2l=06]y|=x]]

[ & ]2)] %] o

[x G221tz ol21=0t6l»l=x]]

[ Gl =] D S

Gl lz=x+y+z (Bl &|N|z=xey-z
x| Glz)y=x+y+2 [T118b] x I (y"l Z) =X oy o z
Gl lz=%x] ol=2 Mol «|nlz=x] |2
@2y e @z2)=x2 (5 2) | |
(XIY)+(XIZ)=XI(Y+Z)

(xz2)e (yg2)= x+y) 3z

x> 2) + .G 22)=@ey) >z

.(xgy) t k32 =x2 0@ +'2)
@?y)o@;z)=x;@oz>

xzz)+ Ggez)= &eoy) 2z
@;z)»@;z>=@+y>;z

x=2>y)+ ¢ gx)=xxy Tiab (x-l»y)o(y-;x)-.-xgy
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TABLE XVIII

PROOF OF THEOREM T35a BY USE OF POSTULATES AND THEOREMS.

x>y) > x22) = (;<°'—y)g(xg2) [P5a]
=& oy)g xo2) (P5a)
= (oy)e (xo2z2) [P5a]
S S Y [T11b]
= (x +';)r° Goo 2) (T1]
mx e x o z) +y o (x o z) [Ti0b]
=(xe‘§)°;:+(§o;c)oé [T9b]
—0cz+ G oR) ez [T7b]
=0+ (3 ox%) oz {Péb]
= (G ex) oz [P3a]
= (X oy) o z fTeb]
=x o (y o 2) [19b]
cx3 G (¢5a]
=x2 (32 [P5a)
TABLE XIX

PROOF OF THEOREM T35a BY PERFECT INDUCTION.

X y z x>y x3z y 2z (xgy)g(xgz) x> (y » z)
6 0 O 0 0 0 0 0
0 0 1 0 1 i 1 1
o 1 0 1 0 0 0 0
0 1 1 1 1 0 0 0
1 0 o 0 0 0 0 0
1 0 1 0 0 1 0 0
1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0



PROOF

Xg(y;;X)
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TABLE XX
OF THEOREM Tl4a BY USE OF PREVIOUSLY PROVED THEOREMS.
=y 3 &®2x) [T33a]
=yg (0) [T26a]

il

0 [T24a]



CHAPTER IV
THE BOOLEAN.ALGEBRA OF ORDER FOUR

The Direct Union of Two Two~-Valued Boolean Algebras

On pages 28 and 29, it has Begﬁ shown that the direct union A X B
of two lattices A and B is a lattice C with four binary operations 4,
l, T, and +, as‘shown in Table V on page 29. The elements of C =
A X B are defined as ordered couples of A and B. If A = (0,1} and
B = (0,1}, the elements of C are c3 = (0,0), cé = (0,1), cag = (1,0),
vand cq = (1,1). Table VII is the -'operational table for C, and T;ble
VIII(c) is the + opgrational table fo: C; It will be noted that 1if
cz and cg are omitted from these tables; the results would be those
shown in Table XXI. A comparison of Table XXI(a) and (b) with‘TabLe

TABLE XXI .

THE ¢ AND + OPERATIONAL TABLES. FOR K ELEMENTS cj AND c4 OF C = A X B.

Ca CJ_ C4

‘ Cs | C4 C4

(a) ®)
X(a) and (b) shows a oné-to-one corre5pondence<‘81 :4 >, as might be
expected since cy is the couple (0,0) and ¢4 = (1,1). c; may there-
fore be represented by the symbol O and cg by 1. Let 6 represent cg =
f0,1) and ¢ represent cz = (1,0); Then the four operational tables

for C become those shown in Table XXII. 'The direct union of two two-

valued Boolean algebras is frequently represented as B2, with B
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standing for the Boolean algebra of order two.
TABLE XXII

THE ¢, +, 1, AND T OPERATIONAL TABLES FOR B2 = (0,0,6,1}.

o]0 8 ¢ 1 +]0 8 ¢ 1
olo0o o0 o0 0 0lo0o 8 ¢ 1
6|0 e 0 o ele 8 1 1
ol0 0 ¢ o oo 1 o 1
110 8 ¢ 1 U IR T I T
(@) (®)
110 8 o 1 T]10 6 o 1
0olo e 0 o olo o0 ¢ o
sle o 8 @ o l0 8 ¢ 1
ol 0 & ¢ 1 ol o6 o o o
1]e & 1 1 110 1 o 1
(c) ()

As indicated on pégé 29, an operation is éafriedfoutvcomponent
by component. The operation ¢ in the four-valued system represents
o in both of the two-vaided systems: 1l represents e« in the first
two~valued lattice, +‘in,the second: T indicates + in the first, e
in the second, whereas + in the four-Qalued system implies + in each
of the two-valued systems. The following calculaﬁions show how the

L table can be determined.

0L0= (0,00 L (0,00 = (0«0, 0+0)=(0,0)=0
0Le= (0,01 (0,1) = »_o,‘0+‘1)=\<o,15=_e
016=(,0)L (1,00 = (0 1,0 +0) = (0,0) =0
0L1=(0,00L0,1)=0@021,0+1)=(,1)=8
8 L0=(0,1) L (0,0) = (0 « O, 1»+05=(o,15=e
6 Le=(,1)L ©0,0)=(@©0s0,1+1)=(0,1) =8
8 Lo=(0,1)1 = =

(1,0) = © » 1, 1+0)=(0,1) =8



1

1

L

L

1= (0,1) L (1,1) = (0o 1, 1+ 1) = (0,1) =0
0= (1,0) L (0,0) = (1 « 0, 0+0)= (0,0) =0
8= (1,00 L (0,1) = (1 0, 0+1) = (0,1) =8
$= (1,00 L (1,0) = (1 +1,0+0)=(1,0)=2
1= (1,00 L A,1) =( 21,0+ 1) = (1,1) =1
0= (1,1) L (0,0) = (1 0, 1+0) = (0,1) =8
0= (1,1) 1 (0,1) = (1 «0.1+1)=(0,1) =0
o= (1,1) L (1,0) = (1 21,1 +0)=(1,1) =1

= =1

1= (1,1) 1 (1:1)=<1 °1;1+1) (1:1)

Lattice Considerations

Figure 6 shows lattice diagrams 65 B,,the two-valued Boolean

1 1 = gl,1)
o
8 = (Oﬂ) ' ¢ = (1,0)
L0
0 0 =(0,0)
@) | ®)

Fig. 8. Diagrams of Two- and Four;Valued Lattices.,

algebra, and of BZ, the four-valued Boolean algebra. Since B2 is a

o3
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1attice) it obeys the idempotent, commutative, associative, absorptive,
self-distributive, and semidistributive laws stated on page 24; '

Since B® satisfies the Jordan-Dedekind chain condition, it is a modular
lattice and follows the modular laws stated on page 24.

Transformations gﬁ_gf

Using the symbols 0, 8, ¢, and 1 for ci, cp, c3, and cy, respec-
tively, the link-preserving transformations of B2 indicated on page 27
are as shown in Table XXIII. The duality transformations are R! and

TABLE XXIII

LINK-PRESERVING TRANSFORMATIONS FOR B2,

_ (0801 _ (0801 _ (08¢1 y (0801
I= <oe¢1> "= <eo1¢> V.= <¢10e Ri= <1¢eo

v=(oeer) =) =) -G
D'. As indicated on page 32, the principal transformations ;fe I, H,
V, and R*. Table II, page 14, shows that I, H, V, R', D, and D' are
self-inverse; that is, tet = I. R and R",'however, are not self-
inverse.

Obviousiy, xI = %, since I is the identity transformation; Con-
sistent with the use of R' as the negative transformation for B, the
Boolean algebra of order two, R' can be considered the nggativé trans-
formation for B2, 0 =1,06=0,06=06, 1 = 0; On page 36, the zero
biconditional x X y was dgfined for Bas (x » ;) + (x o y); Since the
+ and + operations as well as negation exist in B2, the same definition
for x X y can be used for B2, Using this definition and the ¢ and +
operational tables shown in Table XXII(a) and (b), the values of x X y

for B2 can be determined. These values are indiéated in Table XXIV.

Close examination of Tables XXIII and XXIV will reveal the following



1)

equalities: XI = x X 0 = xe1 + ioO =x; xH=1XX0 = Xed + Xo8;

XV =x X ¢ = X0 + i°¢; and xR = x X 1 = x0 + X1

n
.

TABLE XXIV
THE X OPERATIONAL TABLE FOR B2,

X1 0 8 ¢ 1

0
6
9

- Q& O O
& = O @

1
9
e
0

-
D O = ©

Relationship of B and Ef

The union of two lattices, Booleen‘algebras of order two, into
the lattice of B2 certainly does not invalidate the postulates and
theorems previoﬁsly presented for the two-valued Boolean algebra, B.
Postplate P1 still applies to B, but two new elements 8 and ¢ must be
introduced for B2. Both B and B2 have 1 as the least upper bound and
0 as the greatest lower bound. In both systems, therefore, postulates
P3a, P3b, P4a, and P4b must be true; Comparison of Figure 6 (a), the
lattice diagram for B, with Figure 6 (b), the one for BZ, shoﬁspthat 1
covers 0 in both cases. The RY transfermation, rotation of Figure 6(b)
180°, interchangee 0 and 1 in either B or B2, P2a and P2b are true
for either B or B2, but for BZ there must be added the negatives for
the additional elements. §‘= $ 1f x = 8, and x=06if x = ¢. All
theorems of‘Table XIV can be proved true for B? as well as for B.
Operational tables for‘Bz (e;gu, Table XXIV) are Lrue for B if only
the elements 0 and 1 are considered; Relationships involving 6 and ¢
do not, of course, apply to B.

Binary Relations and Transformations

As indicated on pages 26 and27 , if there is an isomorphism between



two groups S; = (o, a, 5 o » o)and So = @, a, b, .
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. .) with the

same elements a, b, . . ., a o b = (at ®ibt)t_l, or f@g = (ft ! o

gt Y)t. If t is a principal transformation in B2, it is self-inverse,

and for every ordering relation o of B2 there is a relation p such

that x py = [ (xt) o (yt)]t°

il

For example, let o be the « operation. X p; ¥y

[ (xt) (yt)]t

Now if t is the identity transformation I, xt; = xI = x X y

Xp11y= BRI o yDI = X y)I =x o y;v Therefore, p

11 = °. 1f

t =H, xtp = xH=%xX 6 = (X°9) + (iye), The following steps show

the detailed development of a resultant expression. Notice that, for

simplicity, the ¢ symbol is omitted between two elemen
Thus, Xy = X ° y.

X pi2y = (xH - yH)H

= [0 +x8) = (y0 + y0)]H
= [@0) G0 + y6) + (x8) (¥ + §e)]H
= [(x0) (y0) + (x0) (¥8) + (x8) (y) + (x8) (ve) IH

[(X¢)(¢y) + (X¢)(ey) + (xe)(¢y) + (x8) (ey)]H

]

[(x¢¢)y + (x¢e)y + (xe¢)y + (xee)y]H M

il

fi

[ x0)y + (xO)y + &O)y + (xe)y]H

= [(x0)y + 0 + 0 + (xe)y]H

i

[ o)y + (:;e)y]H

B

[xy® + xyolH
= (Xyo + %y0)¢ + (xy® + xy6)8

= (xyd + Xy8)0 + (xy6)e (xy0)o

4

= (xyo + xy0)e + (x+y + &) G+ y + 8)8

xyd + §§8)¢ + x+y+ o)+

<
+
@
~
@O

I

i§8)¢ + (x +

=+

= (xy¢

St

ts it connects,

[T10b]

[T10b]

(T8b]

[T9b]

[Table XXII(a)]
[Table XXII(a)]
[Table XXII(b)]
[T9b]

[Table XXIV]
[T11a]

[112b]

[T1]

+ 8)(x +y + ¢)8 [Table XXIII for R7)



; Xyd
= Xyd
. %lxy¢
= Xy

= xy¢

i

xyd
= Xy
= Xy¢
= xy¢
= xXy¢
= xy¢
= (x6
= x(é

= x(y

i

il

+

+

+

+

oo

(xyo0 + Xy00) + (X +y + 8)(x + y + )0

xy0 + Xy0) + R+ + )R +y + 0)8

0+ G+ + e)(x + y + 0)8
x+y+0)Ex ; y + ¢)8
G+y+o)ox+y+ o)
[G+5+0)0l@+y+ o)
BE +y +0)X+y+ 0)
efx +y + 9)

x+y+0)o

X0 + yo6 + ¢é

X8 4 y6 + 0

X0 + yo

Xy + X0 + y8

xy%) + (y6 + xyo)

y¢) + y (6 + x¢)

) + y(x + 0)

Xy + X6 + yx + yo

Xy + X6 + xy + yo

= Xy + Xy + X0 + yO

= Xy + X8 + yo

xy + (x + y)o
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[T10b]

[Table XXIi(;)]
[Table XXII(a)]
[Table XXII(a)]
| (T6b]
[T9b]

[T8b]

[T13b]

[T8b]

[T10b]

[Table xx11($)]
[Table XXIL(b)]
[T6a]

[T8a)

[T10b]

[T14a]

[T10b]

[T8b]

[T8a]

{rga]

[T10b]

By perfect induction, the expression xy + (¥ + y)© can be shown

to be equal to x 1l y, the operational table for which is Table XXII(c).

Other expféssions can be similarly derived by letting o be o, X, Pl

(o}

or [, with t as any of the four principal transformations. The re-

sults_pbtained‘from the twenty possible qombinatiqns are listed in

Table XXV. Ten of the expressions are identical to ones already



TABLE XXV

EXPRESSIONS DERIVED FROM x p v = [ (xt) o (yt)]t.

Opérational
) ot [(xt) o (yt)lt Expression
° I X oy X oy
“ H xy + (x + y)o x1ly
° ' &+ y)(xy + ¢) xTy
o R? ‘x+y X+y
X I Xy + Xy XXy
X B G+NGE+ye+ GEDE+E xxy
X v (x§+§y-i-¢)(xy+;c§+é) xRy
X R &+ E+y) | x Xy
3 I Xy | X2y
3 H :-cy+(;c+y)e X*y
R &+ y) &y + ¢) x #y
3 R ‘:'<+y | x>y
- I Xy xey
s H x§.+ (x+§)e x4y
s \'4 (x+§)(x§+¢) x&®y
s Rt x+§' XLy
| I €3] x|y
| = x +¥) Gy + ¢) [y
v xy + (x + )6 x [y
| R @+ y) x|y
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defined for B: o, +, X, X5 r OO |, and ||. The L and T oper-

ations for BZ have already been indicated in Table XXII. Eight new

expressions dre indicated-in Table XXV: X, %, -, #, +, F, ﬂ, and W,

All of them involve either 6 or ¢ or both and thus, along with 1 and
T, apply to B2 only. Dﬁal and negative relationships for the twenty
binary relations of BZ are listed in Table XXVI.

Operational tables for each of the twenty binary relations of B2
can be worked out from their definitions in terms of o and + by ref-
erence to Table XXII(a) and (b). Results are shown in Table XXVII.

Although all postulates of Table XIII except P1 apply to BZ as
well as to B, further postulates or definitions are needed for B2,
These are listed in Table XXVIII. With the aid of these and tﬁé
postulates and theorems of Tables XIII and XIV, innumerable theorems
for BZ can be proved; Some of them are listed in Table XXIX. 'It
will be noted that they are listed in dual pairs, where a dual ex-
pressilon is obtained in a manner similar teo that used for B; Dual

binary relations are interchanged, 0 and 1 are interchanges, and ©

and ¢ are interchanged.



TABLE XXVI

DUAL AND NEGATIVE EXPRESSIONS OF B2,

Expression

»” »” »”
Xk X
< ~< ~<

"
Xt
«

"
H ®H o}
<

b
4 B ot vl
<

"

il

It

il

Xy + (x + y)eo

x + y)&xy + ¢)

Xy + §§

x+ ¥)&E+y)0 + (x+y)&+y)e
(x§ + §y + &) (xy + i; + 8)
x+y)&+y)

Xy

;Ey + (;< + y)o

&+ y) &y + ¢)

X+ vy

Xy

Xy + (X + )0

(x +y)(xy + ¢)

X+y

Gy) =x+y
G+ y) &y + ¢)

Xy + (% +y)6

& +y) = xy

Dual Negative
X +y X I y
x Ty X H y
x1ly X W y
xey x|y
XXy XXy
x Xy x Xy
xXy x Xy
XXy X XYy
X2y X ey
X Py x&y
Xty x4y
x>y X&'y
x:y x?y
x&Fy x ¥y
x4y X%y
x5y *3y
X “ y X ey
X H y xly
X ﬂ y xTy
X | y X+ y
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TABLE XXVII

OPERATIONAL TABLES FOR B2,

06 ¢1

e ® O
— O @
e — o

1111

l

06 ¢1

0
]
¢
1

o O O
OO D
o e e
O e —

0o0QoO

0
e
¢
1

e OO
€ O O
(=N N
o O O

06 ¢1

06 ¢1

0
e

€ —

e © O
—O @
O — €
DO e —

06 ¢1

X

089%1

0
]
¢
1

oo e e
ocooo o
ocoooco

O DO o —

(e)

@)

(c)

®)

(a)

06 91

©« OO
o © O
e o O

1¢1¢

e — o

1

06 ¢1

0
e
¢
1

OO D
@ O D
D e —

80060

D — —

+

06 ¢1

0
]
¢
1

— © O
e OO
o O O
o @O

ee611

E S

06 ¢1

0
]
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TABLE XXVIII

POSTULATES AND DEFINITIONS FOR FOUR-VALUED BOOLEAN ALGEBRA

[Psa] 0 = (0,0)

[pea]l 8 = (0,1)

[p7] x =0, 0or x =

= ¢

"1

[P8a]
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(P13a] x || v
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tPSb] o
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1f x = 6 (P8b] x = 6 if x
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= @+ )&+ e+ &+ y) &+ 7)o
= (xy + iy + o) (xy +‘§§ + 9)
=§y+(§+y)é [P11b]x$y=(§
= xy + (x + §59 [P12b] x ¥y = tx
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TABLE XXIX
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(To86a]
[T287a]
[T288a]
[T289a]
[ T290a]
- [T291a]
[1292a]
[T293a]

[T294a]

[T295a]
[T296a]

[T297a]
[T297b]

[T298a]
[T298b]

[T299a]
[T299b]

[T300a]
[T301a]

[T302a]
[T302b]

[T303a]
[T304a]

[T305a]
[T305b]

[T306a]

[T307a]

TABLE XXIX (Continued)

xLlx=0 [T286b]
XXX =0 [T287b]
XXE=0 (T288b]
XxX$+xXx=260 tT289b]
X+ x=% [T290b]
X4 x=20 fI291b]
X+ x=x [T292b ]
x| x =% [T293b]
x[x=0 [T294b]

x+y)xy+0)=x1ly [T295b]

xT %

X R X =
X R % :

XX

X ; X

X ¥+ X

X F X 3
x'ﬂ'xv
x T & =
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Xy + @+ y)é=xTy

xyd + kx + y)9m=”x ly fT296b] (% ; § + e)(xy>+ ¢)

(x+y+¢)(2y+e)=xly
Xy0 + X+ y)o=xTy

(x;7 + ;:y)tb + (xy + ;:5')9

XXy

[G+y)GE+y) +0l[&+y)&E+y)+

[+ )G+ +o0ll@+y)G+y) +

xRy

il

(x§ + iy)e + (xy + §§)¢

&+y)Gy +6) =x+y [T300b]

.iyé + x + y)eﬂ= X4y [T301b]

G+y+ o)Xy +0)=x2y

:-cye + (x +y)o = xF'y

G+ 3)Gy +6) =x4y [T303b]

1

X0 + x +y)0 =x ¢y  [T304b]

X+7+0)(xy +8) =x4¢y
X0+ @+ y)6 =xFy

Xy +‘(§ + ;)é =x |y [TSOGb]

X6 + +y)o=x]y  [T307b]
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. [T308a]
{1308b]

[T309a]
(T310a]
[T311a]
[T312a]

[T313a]
[T313b]

[T314a]
[T314b]

" [T315a]
[T315b]

[T316a]
-[T316b]

[T317a]
[(T317b]

[T318a]
(T318b]
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[T323a)
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TABLE XXIX (Continued)
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;c§¢+ (;:+;')G=x'ﬂ-y

x L y)o= (x+y)e [T309b] (x
®1y)e=xy - [T310b] (x
xly)+06=xy+86 [T311b] (x

xLy)+o6=x+y+0¢ [T32p] &
x%Xy)o=&+y)&+y)o=(xXye
(ny)+¢=x§+§y+¢=(ny)'+
Xy)o= (X+y (+7)0 = (xXy)o
(ny)+B=xy+;c§+e= (x;(y)‘+
®Xy) +6=G+y)&E+y) +0= (x
xR y)o = (xy +xy)0 = (x X y)o
EXy)+ ¢ = (x+.}-7)(;c+y)+‘¢= x
X Ryo= Xy + xy)8 = (x X y)8
x2y)0 = x+y)0= (x>0
(x$y)+d>=§y+¢=(x-gy)+¢
(x + )0 = Xy0 = (x 3 ¥)o
(x$y)+9=>—c+y+‘e=(x-i>y)+e
(x-.ky)+e=;cy+9= (x-c-)»y)+ew
®Fy)o = &+y)6= (x>y)0
x2y)+06=x +vy + ¢ = (x.z y) + ¢
(x$y)e=;{ye= (x-gy)e

(x )8 = (x+ )6 = 1o
EFEY) +O=Xy +0=(xey)+0

x ¢ y)0 = xy0 = (x & y)
§3{$y)+e=x+§+e'= (x«iy‘)+e

x<y)+0= x§ + 0 = (xgy) +9

xEY)0 = & +3)0= (xgy)0

-

y) + ¢
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y) + @

T y)¢

T y)e
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>?y)+¢

Xy + ¢
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[T324a]
[T324b ]

[T325a]
[T326a]

[T327a]
[{T327b]

[T328a]
[T328b])

[T329a]
[T329b]

[T330a]
[T330b]

(T351a]
[T332a]
[T333§]
[T334a]
[T33$a]
[T338a]
[T337a]
[T338a]
[T339a]
[T340a]
[T341a]

[T342a]

[T343a]

[T344a]
[T344b]
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xE€y)+o=x+y+0¢= (x;y)+¢

x #y)o = x;r‘e = (x«o—y)e '

x 1ly)x= (y+ 8)x [T325b]
ELly)+x=y0+x [T326b]
&% y)x = (v + yO)x

(ny)+‘x=(§+e)(y+¢)+x
EXy)+x=GF+6)F+0)+x
x % y)x = (0 + yo)x ’

@ X y)y = (o + x0)y

®RY)+y=x+0)(x+0)+y

(x)ky)+y=(;{+¢5(x+ej+y
(x X y)y = (X6 + x0)y° :

(x % y)x = xy0 | [T331b]

X2y)+xXxX=X+y+80 [T332b]

x4y = &+0)y [1333b)
x2y)+y=x0+7y [T334b]
Ety)x= (G +0)x [T335b]
E¢y)+x=y0+x [T336b]
(x ¢+ y)y = xy8 [T337b]
(x*y)+y'=x+y+e [T338b]

= ﬂ y)x = xyé : tT339b]
(xﬂ_yj+x=y+§+¢ tT34=0b]
& vy =kye  [T341b]

Glly) +y=%+y+o [T342b]
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Ly |y) = &xye
®Ty)+ & y)=&xy)+0o

xTy)+x=y6+x

(x T ny = éy + ¢)x

EPFPy)+x=x+y+0¢

(x *y)x = xyo
(x $ y) + vy = §¢ +y

(&F Py = &+ o)y

(x < y5 + x.= §¢ + X
(xi'-ij: G + o)x
E+Fy) +‘yﬂ= X +ly + ¢

x ¥ y)y = xy¢

lzxﬂ-y'.)'+ﬂx=x+§+e
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[T347a]
[T347b]

[T348a]
[T348b]

[T349a]
[T350a]

[T351a]

[T352a]

TABLE XXIX (Continued)
xLy)+ x|y
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x

1 [T345b] (T y)&x | y) = 0

[

)+ & y)= &xy)+e
V& | y)= Xy

-

EXy)EXy)= Xy}
EXy)+ @ERy)=(xXy)+8

E@Xy)+ @ERXRy)=(xXy)+ 0o
EXY)EXy) = (xXyo

x2y)&xsy)
x+y)&x2y)

& | &y

0 [T349b] Fy) + x < y)
[T350b] (X F y) + (x ? y)

]
o

x|y [T351b] (x |l v) + T y)

i

"

x[y

|y + &fy)=x]|yimsseb] | &]ly)=x]|y

72



CHAPTER V

THE APPLICATION OF BOOLEAN ALGEBRA OF ORDER TWO
TO SWITCEING CIRCUITS

Basic Considerations

Two-valued Boolean algebra is a naturalbmathematical basis for
switching devices. A one-to-one cofrespondence exists between on-off
electrical devices aﬁd the true-false propositions of mathematical
logic. Claude E. Shannon first applied Booléan algebra to électrical
circuits in ‘a thesis for the Master of -Science degree from the Massa-
chusetts Institute of Techﬁology.‘ én abstract of this thesis was
presented as a paper at a meeting¥of ;he American Institute of Eiec-
trical Engiheers,bJﬁne 20-24, 1938,fand later was published by ;h;t(‘
organization®, | |

Two‘differeﬁt ?iewPoints are possible with on-off devices. One
can consiaer_the cifcuit from the,standp;intiéf transmiSsion; eitﬁef:
it conducts perfectly or it does not conduct at all. The alﬁérnate‘
approach, ﬁsed by Sﬁannon, is to think in terﬁs of "hiﬁdrance," where
hindrance equals zero if a switch ié closed and equals one if the
2

switch is open. This notation nas‘been.followed b§ some colleagues

of Shannon at Bell Telephone Laboraiuries. The current trend, however,

iClaude E. Shannon, "A Symbolic Analysis or Relay and Switching
Circuits," AIEE Transactioms, LVII (1938), 713-723. ,
, 2William Keister, A. E. Ritchie, and $. H. Washburn, The Design
of Switching Circuits (New York, 1951). '
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seems to be to consider circuits in terms of transmission. Bennett,®
Caldwell,* Huffman,® Richards,® and Serrell,” to name a few authors of
recent publications, all use 0 for an open circuit and 1 for a closed
circuit, This symbolism has also been used in a number of articles
written by pe0p1e'at Bell Telephone Laboratories, including Hohn and
Schissler,® Karnaugh,® and Washburn.l® In this thesis, the idea of
transmission will be used, with O representing an open circuit or a
de-energized relay, and with 1 symbolizing a closed circuit or an ener-
gized relay.

As indicated on pages 33 and 34, the algebra of logic has two
fundamental binary operations, the meet and the join. The - symbol
is used almost exclusively in switching circuits for the meet, and the
+ symbol is used for the join. ‘In electrical circuits, two elements
may be connected either in series or in parallel. The choice of 0 for

an open circuit and 1 for a closed circuit dictates that the « symbol

SW. S. Bennett, "Minimizing and Mapping Sequential Circuits,"
AIEE Transactions, LXXIV, pt. I (1955), 443-447.

%S. H. Caldwell, "The Recognition and Identification of Sym-
metric Switching Functions,” AIEE Transactions, LXXIII, pt. I (1954),
142-147.

SD. A. Huffman, "The Synthesis of Sequential Switching Circuits,
Part I," Journal of the Franklin Institute, CCLVII (1954), 161-190.

®R. K. Richards, Arithmeti¢ Operations in Digital Computers (New
York, 1955).

7Robert Serrell, "Elements of Boolean Algebra for the Study of
Information-Handling Systems,” Proceedings of the IRE, XLI (1953),
1366-1380. _ .

SFranz E. Hohn and L. Robert Schissler, "Boolean Matrices and
the Design of Combinational Relay Switching Circuits,” The Bell
System Technical Journal, XXIV (1955), 177-202.

BN, Karnaugh, "The Map Method for Systhesis of Combinational
Logic Circuits,” AIEE Transactions, LXXII, pt. I (1953), 593-599.

105, H. Washburn, "An Application of Boolean Algebra to the
Design of Electronic Switching Circuits,™ AIEE Transactions, LXII,
pt. I (1953), 380-388.
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must be used for a series circuit and the + symbol for a parallel
circuit. The postulates of Table XIIi can now be interpreted as indi-
cated in Table XXX.

TABLE XXX
CIRCUIT INTERPRETATIONS OF TABLE XIII.
[P1] x=0o0r x =1 for all x € B
Any two-valued switching circuit must be either open or

closed at any given instant.

[PRa] x=11if x = 0
If a given circuit is open, the negative of the circuit is
closed.

[P2b] x =0 if x = 1

If a given circuit is closed, the negative of the circuit is K
open.

[F3a] x+0=0+x=x%x
A circuit in parallel with an open circuit in either order,
is the same as the original circuit alone.

[P3b] x 1 =1°x=x
A circuit in series with a closed circuit, in either order,
is the same as the original circuit alone.

[Pda] x+1 =1+ %=1
A circuit in parallel with a closed circuit, in either order,
is the same as a closed circuit, regardless of the state of
transmission of the original circuit.

[Péb] Xx o 0=0°:x=0
A circuit in series with an open circuit, in either order,
is the same as an open circuit, regardless of the state of

transmission of the original circuit.
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Circuit Schematic Diagrams

Various ways have been used for representing switching circuits
schematically. Shannon'! uses the symbolism of Figure 7(a) to indicate
the circuit X, from a to b, but does not regularly use the subscripts
because it is assumed that X} = Xpg. Figure 7(b) is his schematic
for X and Y in series, and Figure 7(c) represents X and Y in parallel.
Keister, Ritchie, and Washburnl? indicate a relay with "make" contacts
that are closed when the relay is energized by a schematic like that
of Figure 7(d). Figure 7(e) illustrates a relay with "break" contacts
which open when the relay is energized. Karnaugh!® uses the simplified
schematic of Figure 7(f) for make contacts and that of Figure 7 (g) for
break contacts. Washburn'* uses the symbolism of Figure 7 (), (1),
and (j) for "and", "or", and "not" circuitry.

Following the scheme used by Shannon, but without the circles
indicating terminals, Figure 8 shows some equivalent circuits based
on selected theorems from Table XIV. In some instances, the right-
hand circuit is obviously simpler; in 6thers, the same numbers of
contacts are required but the circuits are éfranged differently.

Circuit diagrams for the ten different binary relations for
Boolean algebra of order two are shown in Figure 9. Because all opera-
tions can be expressed in terms of o, }, and negation, it seems there
is little to be gained by using the other.binary symbols. No known

author has employed them in the study of switching circuits. Use of

1lshannon, p. 714.

12keister, Ritchie, and Washburn, pp. 12-14.
13Karnaugh, p. 596.

l4yashburn, p. 381.
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the X operation and its negative X does, however, offer considerable
brevity. Moredﬁer, these two circuits are frequently encountered in
practice. x X y, for example, is a circuit which is 1 when x is 1 and
y is 1 or when x ié 0 and y is 0, but not when both are 1 or both are
0. This is the situation desired in control of a light from two dif-
ferent locations, where 1 may represent a toggle switch thrown’in the
"up"‘position and 0 indicates that it is in the "down"‘position. The
same effect will be accomplished by using the X connection, where the
light will be on if one switch is up and the other is down but not when
both are up or both are down. The X relation is the "exclusive either
-or"S of mathematical logic. This relation is encountered in binary
addition for digital computers, where the summation output should be
1 if either of the two inputs is 1, but not if both inpﬁts are 1.
Huffmanl® uses the ® symbol for this "cyclic addition", but this symbol
has been used on page 10 of this thesis as a general binary opera-
tional sign, so its use for the "exclusive or" will be avoided.

No attempt has been made in this chapter to cover thoroughly
the field of two-valued switching circﬁits,.since books and peri-
odicals have handled the subject adequatély. This thesis has devel-
oped the mathematics of Boolean algebr# éf Arder two from an approach
that is somewhat different from that used by the average electrical
engineer., Such an approach is necessary for an understanding of the
mathematical development of the Boolean algebra of order four. This
chapter serves to illustrate the application of two-valued Boolean

algebra to ordinary switching circuits, so that the reader will be

15paul Rosenbloom, The Elements of Mathematical Logic (New York,

1950).
18Huffman, p. 163.
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able to understand more readily the application of four-valued Boolean

algebra in the following chapter.



CHAPTER VI

THE APPLICATION OF BOOLEAN ALGEBRA OF ORDER FOUR
TO SWITCHING CIRCUITS

Unilateral Devices

_As indicated in the preceding chapter, it is possible to have
between two points, p and q, a circuit that can be considered to be a
perfect conductor. To such a circuit, the number 1 can be assigned;
There may be between p and q a circuit that can be considered a perfect
insulator. It would be given a value of 0. Of course, it is possiblg
to have between p and q a resistance of almost any ohmic value, but
such resistances are not considered to enter into switching circuits.
There is, however, a type of circuit that may be included in the |
switching-circuit field, that is, a circuit which is, to all practical
purposes, a perfect conductor in one direction and a perfect insulator
in the other direction. Current may, for example, flow readily from
q to p but ﬁot from p to q. Thermionic diodes are conductors of this
type. If the anode of such a diode is negative with respect to its
cathode, no appreciable conduction takes p;ace. With the opposite
polarity, the diode conducts relatively well. ‘Actually some leakage
- current may flow when the anode is negative and the diode will show
a few 6hms of resistance when the anode is positive, but in relation
to other circuit components it may usually be thought of as a perfect

diode. The recently developed silicon and germanium diodes have similar
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characteristics,

The ordinary mathematics of switching circuits will not handle
such devices. Conductance from p to q would be 0, but conductancé
from q to p would be 1. The circuit may be considered as an ordered
couplé (0,1), where the first element represents conductance from p
to q‘and the second, the conductance from q to p; Figure .10(c) shows
the conventional symbol for a diode, connected so that it Wiilureadily
conduct positive current from q to p but not from p to q. This might
be visualized as shown in Figure 10(d) where two directions are indi-
cated, the top lead for cufrent from p to q, the bottom f&r current
from q to p. The diode so connected could be assigned a value of 8,
the symbol assigned to the couple (0,1) on page 51. If connections
to the diode were reversed, as shown in Figure 10(e), ¢ = (1,0) would
represent the conductance; An open circuit would be indicéted"by 0 =
(0,0) and a closed circuit by 1 = (1,1);

Reference Direction

It is obvious that to express the circuit element shown in Figure
10(c), for example, a reference direction needs to be established:
Since it is customary in electronic circuitry to have input terminals
at the left and output terminals at the right, a simple.x can be used
for the conductance of Figure 11(a), implying a left-to-right reference
direction. Thus, in Figure 11 (b) éhe conductance is labeled as 8 =
(0,1) implying that left-to-right conductance is 0 and right-to-left
is 1. 1If, then, in»ggihg from left to righ? through a network, one
first encounters the perpendicular line of a diode, it is labeled e;

If the direction from left to right is with the arrow, conductance is

labeled ¢. 1In cases where a left-to-right direction is not clear,
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points at the two ends of each diode should be numbered so tﬁat the
direction from the lower number to the higher number can be used as a
reference direction. This is indicated in Figure 11(c) and (d). For
the bridge circuit of Figure 11(e), by this lower-to-higher scheme, v
=0, w=1, x=¢, y=20, and z = B.b;An élternate scheme  for indi-
cating reference direction is to draw an arrow beside each circuit
element, as ghown in Figure 12,

In tracing through possible paths from input to output, it is
sometimes necessary to go in a direction 0p§osite to the reference
direction. Under those circumstances, an underscore will be placed
below the letter for the circuit element. Thus, for the bridge of
Figure 11 (e) or Figure 12(e), the conductance from a to b = Cy, = vy
+ wz + vz + wxy. In terms of circuit values, Cap = 8°0 + 1°6 + 8°¢°6

+ 160, It will be observed that the underscore operation does not

change the values of 0 and 1 but does interchangéle and ¢.
006 ¢1

0¢81)/°

By reference to Table XXII (a) and (b) or to Table XXVII (a) and

(p), the value of the conductance Cap can be simplified. Cgp = 6°0 +
16 + 6°¢°0 + 1¢6°0 =0+ 6 + 0 + 0 = 8. The bridge, then, is equiva-
lent to a single diode between a and b, with a connected to the cath-
ode, indicated by the perpendicular line.

Schematic Diagrams of Binary Relations for §i

Circuit diagrams for the twenty binary relations of fable XXVIL
are shown in Figures 13 and 14; Those shown on the top and bottom
lines of both figures are also applicable to B, since neither 8 nor ¢
is included as a definite circuit elementL These ten are identical to
those for B shown in Figure 9. The remaining ten are reasonably com-

plex circuits, Therefore, if such connections are frequently encoun-
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tered, the shorthand'symﬁolism would pe well worth adopting. If such
clrcuits are rarely encoﬁntered, little would be gained by the use of
symbols other than « and +. The use of unidirectional devices in
switching circuits has nbt as yet been thoroughly exploited. It is
hoped that the development of this four-valued logic will facilitate
their use,. Possibly then such relapions‘as X X Y_will prove to be

more important than is presently apparent.

Representation of Voltage

The four elements of B2 can be used to represent different kinds
of voltages. As with conductahcé; various magnitudes are not'coﬁ;
sidered. If a voltage is to be used to operate é relay or a lamp,
for example, either there is enough voltage or not enough for satis-
factory operation; ‘Boolean algebré can, ﬁowever, distihguish a posi-
tive voltage from a negative one[

As with cohdUcﬁancez it is necessary first to establish a refer-
ence direétion, most conveniently done by means of an arrow;; Tﬁev
voltage then can be considered as a éouple; where the first elément
of the couple is 1 if thévvoltage will ténd to éend‘curreﬁt in the
direction of the arrow and the second element is 1 if the voltage
will tend to send current in a direction oppdsite to that of the
arrow. Iﬁ.each case, fhe Qalue of the element is 0 if it is not 1.
Figure 15 illustrates the notation. As is custopmary, the battery
symbol designates a d-c soﬁrce, with a short line for the negative
terminal and a 1onglline for the positive one: Siﬁce'V = (1,1) =1
must represent a voitagé that will tend to send current inheifher
direction, and because equal currents simultaneously fldwihg in both
dirgctions would produce a net effect of zero current,vthe only éhysi-

cally realizable voltage that is appropriate must be alternatihg.
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One representation would be that of Figufe 15(d), where the switch at
the top swings back and forth, producing alternately positive and nega-
;ive voltage at the top terminal with réspect to the bottom one. The
other possibility is shown in Figure 15(e), that is, a simple a-c
generator, For either of these two situations; it must be realized
that at any one instant the current will tend to flow in only one direc-
tion. It is assumed that the resultant average current or the rms
current will be the important aspect, not the instantaneous value.

Voltage with Series Conductance

As far as output terminals are concerned, any voltage V in series
with conductance C can be treated as a simple source S equal to the
product V ¢« C, as illustrated in Figure 16: The reference directioms
for V and C must be the same., Obviously, if either V or C is zero,

S will be zero. If V=1,8=C, and if C =1, S = V.

If a complex two-terminal network can Be simplified to an equiva-
lent two-terminal network, the lattér can be used in conjunction with
V to evaluate a source., For example, Figure 17(a) shows voltage equal
to 1 in series with the bridge circuit of Figure 12(e). Since the
bridge circuit has a conductance of @, V « C = S = 8, so the source can
be considered as a battery with the polarity as indicated. A different
bridge network is illustrated in Figure 17(b). The possible paths
through the bridge yield the expression 6¢ + ¢0 + 68 + ¢x =0 + 0 +
X0 + X¢ = x0 + x¢, If xisOor ¢ , S=0. If xisgor1, S=1,

Polarized Relays

If ample current is sent through the coil of an ordinary relay,

its contacts will be operated, regardless of the direction of the
current., In either Figure 18(a) or Figure 18(b) the relay will, there-

fore, be operated. If provisidnmis made to avoid chatter, alternating
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current will be satisfactory. In the usual a-c relay, part of the
pole face is encircled by a copper ring which introduces a phase shift
so that the net pull on the armature does not decrease enough to cause
chatter, This type of relay will operate satisfactorily on direct cur-
rent if the magnitude of the current is the same as the rms value for
which it is Aesigned. A source designated 8, ¢, or 1 would then actu-
ate the relay.

Certain relays are "biased" by a permanent magnet so that they
respond to one polarity of voltage but not to the opposite polarity.
A typical representation! for such a polarized relay coil is shown in
Figure 18(c), whére the polarity marks indicate to which terminals of
a battery the two leads should be connected to actuate the relay“‘ Tﬂe“
relay shown in Figure 18(c) would be operated, that of Figure 18(d) “
would not. Although current wi}l flow in both instances, the current
in Figure 18(c) will be effective in actuating the relay, that in (d)
will not. One might, then, label a relay with an arrow alongside one
lead andvmark the arrow with 8, ¢, or 1 to indicate the direction of
conductance which will effect actuation of the relay; If this is donme,
then the product VC, will indicate whether the relay will operate:.‘If
VVCe = 0, the relay will not operate; for any other value of the prod-
ucﬁ, the relay will operate; It will be noted that even though”VCe =
0, current might be flowing in one direction, but it would not actuate
the relay. Such is the case in Figure 18(d).

The equivalent of a polarized relay can be constructed by placing

William Keister, A. E. Ritchie, and-S. H. Washburn, The Design
of Switching Circuits (New York, 1951), . 19. .
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a diode in series with an ordinary relay which would operate with cur-
rent in either direction. That is to say, the effective conductance of
the relay alone is 1. For Figure 18(e) and (f), the series combination
of the diode and the relay give a conductance of ¢ » 1 = ¢. The combi-
nation of Figure 18(e) is thus the equivalent of the relay shown iﬁ (c)
Similarly (d) and (f) are equivalents. In this case, however, it
should be remembered that current flows in (d) but not in (f). In
neither of them is therek;ny current to effect the operationvof the

relay.

Diodes in Circuit Simplification

In analysis of ordinary two-valued switching circuits, the follow-
ing type of function is frequently encountered: F = ab + ab + aSc;
The circuit fér this expression in series with a battery, is shown in
Figure 19(a). An obvious simplification is indicated in Figure 19(b),
which corresponds to F = a(b + be) + EE: At first glance, the ciréuit
of Figure 19(c) might seem to be én equivaient, since paths ab, ;ﬁ,
and abc exi§£ through it. The circuit is incorrect, however, becguse
of the "sneak path" Ebc; The expression for the circuit of Figure
19(d) is ab + ab + aéchb + aceb; If this circuit is connected in series
with a battery as\shown in (d), the equivalent source 1s ?(ab + ;E +
abch + acob) = ¢ab + ¢ab + sach + ¢0ach = ¢ab + ¢ab + ¢ach + 0 = ¢( ab
+ ab + aSc); which is the same as‘that_of Figufe 19(a): » -

Diodes ig_Translator Circuits

Diodes are frequently ﬁsed in translator circuits for digital
computers, for example, to convert from one code to another. Figure
20 shows a circuit for translating from a decimal code to a biﬁary
code, where the combination of binary lamps that will be lighted de-

pends on which digital switches D are closed. 8ince the decimal number
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3 = 2% + 29, lamps Ly and L;, should be lighted when Ds is closed.
Similarly, S = 22 { 29, so iamps Ly and L;, should be lighted when Ds
is closed. Af first, it might be fhought that direct connections
should be made from Lz and L;, to Da and from Ly and L, to Dg. If this
were done, however, there would be a conductive path to light Lz when
Dg is closed. To avoid these spurious paths, it is common practice to
employ diodes, as shown in Figure 20, so that there will be conduction
in the proper direction, but not in the wrong direction. Four-valued
Boolean algebra is a discipline that will enable one to handle with
mathematical precision such circuits.

Diodes i&_Control Circuits

Figﬁre 21 shows a circuiﬁ for controlling three relays through
two wires., Table XXXi indicates effective currents through the three
relays. As indicéted in a previous paragraph, for any value other
than zero the relay will be operated. It will be noticgd that with
this circuit arrangement all four possible combinations of operation
of K; and K, are acﬁieved. Ks is operated for all but the first posi~
tion. If make contacts on K; and Kp were paralleled, the result would
be thé equivalent of a set of make contacts on Kz, so that Ké could
be eliminated. If, however, lamps were substituted fér the reiays,
there might be an occasion when it would be advantageous to have a
third lamp lighted whenever either of the other two were lighted;‘ The
fact that this circuit needs only tﬁo wires between the qw#tch locaf
tion and thgt of the re}ays:or lamps could be a decided advantage if v
the locations were widely separaéed.

Use of Theorems for BZ

The theorems for B® have potentialities for circuit development, -

"~ As an example, T309a states that (x L y) 8 =:(x +y) 6. By T310a,
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Fig. 21. Two-Wire Control of Three Relays.

TARLE .XXXI

VALUES FOR THE CIRCUIT OF FIGURE 20.

Switch  Equivalent - Effective Currents
Position Source K; Kz Ks
1 0 0 o 0
2 8 8 0 e
3 ¢ 0 ¢ ¢
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~
x Ly)d=xyé. The first expression is for "x . or y in series with
8." The second expreésion means "x an& y in series with ¢." Figure
22(a) shows x 1 y in series with a voltage V. If V = 8, the equiva-
lent circuit is shown in Figure 22(b). If V = ¢, the circuit of Fig-
ure 22(c) results. This suggests the use of the circuit of Figure 22
(d), in which the lamp L; will light if either switch x or switch y is
ciosed, and Ly will light if both switches are closéd; However, be-
cause diodes are required in series witﬁ the lamps to distinguish di-
rections of conduction, it might appear better to have used the cir-
cuit of Figure 22(e), which uses only two diodes, whereas the (x
l y) circuit of (d) uses three. 1If, on the other hand, the lampé are
to be operated at some distance from the switches, circﬁit (g) re-
quires three wires between locations, but (d) needs only two;,~ Figure
22(e) could be modified, as shown in (f), to‘use only two wires ‘be-
tween locations,xBut then it would require four diodes instead of the
three for the (x 1 y)»circuit;

Experimental Agparatﬁs

For experimentally constructing ordi#afy switching circuits and
four-valued switching circuits, the apparétﬁs of Plate I has been
developed. Connections to the various elements are made by plggging
into banana jacks. .Leads have stackable banana pIUgé on each end.
Sources of §upp1y available on'the_panel are 115 'volts ac and 48
volts dc. Ten single-pole, doubie-throw switches are inclu&ed, as
well as three four-poie, double-throw, spring-return qnes; Both neon
and incandescent indicator lamps are available. Two relay banks have
two-winding relays, the coils of which can be connected in an addi-
tive or a subtractive manner. All relay coils are equipped with

series resistors so that shunt control can be utilized. A "matrix"
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Plate I

Experimental Apparatus for Constructing Switching Circuits
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board in the upper right corner of the picture facilitates connection
of translator circuits like that shown in Figure 20. A number of di-
odes are available, mounted on General Radio double plugs, for con-
structing four-valued switching circuits,

The apparatus has been used to check experimentélly a number of
two-valued and four-valued switching circuits., It is believed that
the apparatus is particularly valuable as a"means of testing the
mathematically developed circuits and of revealing incorrect solu-

tions like that of Figure 19(c).



CHAPTER VII

MATRICES FOR FOUR-VALUED BOOLEAN ALGEBRA

Adaptation of the Hohn-Schissler Théor§

Hohn and Schissler® of Bell Telephone Laboratories have effec-
tively developed the theory of Boolean matrices for a two-valued alge-
bra. This chapter will show how their system can be used with the
four-valued Boolean algebra developed in this thesis.

Since four-valued logic allows the use of diodes that conduct
well in one direction but not in the other, reference direétions must
be carefully observed; For example, their Figure 22 should have di-
rection arrows establishing reference direcﬁions for the variables, as
shown in Figure 23, Their Figure 3% is similarly adapted in Figure 24;
their Figure 4% becomes Figure 25. It should be noted that, since no
directivity was indicated by Hohn and Schissler, the directions as-
signed are arbitrary. A definite type of assymmetry will, however,
result for certain matrices if all nodes are numbered and the refer-
ence direction is established from the lower number to the higher

number for each element,

lFranz E. Hohn and L. Robert Schissler, "Boolean Matrices and the
Design of Combinational Relay Switching Circuits," The Bell System
Technical Journal, XXXIV (1955), 177-202.

ZIbid., p. 179.

31bid., p. 181.

4Ibid., p. 184,
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If each node is identified, a primitive connection matrix® is the

array of all elements Pij between nodes i and j, with all nodes taken

into account. For Figure 23, the primitive connection matrix isg as

1 X 0 ;T
X 1 0 u

0 0 1 z

y & oz
— —

would be expected, p;; = 1, since that is a connection of a hode with
itself. The main diagonal must, therefore, comsist entirely of.1's,
Because all directions were established from a lower numbered node to
a higher numbered one, the élements above the main diagonal do not
have underscore marks, but all variables below the main diagonal are
underscored. 0, of course, indicates an open circuit in either dirgc-
tion. As indicated on page 88, tﬁe’uﬁderscore operation does not
affect either 0 or 1. |

The output matrix shown beside the circuit of Figure 23 traces

all paths between terminals 1, 2, and 3, the outputiterminals of this
three-terminal matrix; A third type of matrix discussed bybHohn and
Sch_issler6 is the conmection matrix, which includes non-terminal and
terminal nodes, but does not demand as many non—te?minal nodes as the
primitive matrikﬂdoes; This is iliustrated in,Figﬁre‘24, where no
node was identified between terminals‘1 and 2 dé between terminals 1

and 3.

SHohn and Schissler, p. 180.
®1bid.
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For matrices A = [a; ] and B = [le], Hohn and Schissler state’

Ay

the following definitions and properties.

(1) Equality: A =B if and only if ajj = biJ for all 1 and j

(@) Sum: A+ B = [a j .], that is), the Sum is formed by
adding correspondlng elements° ihe sum of two switching matrices is
again a switching matrix. It corresponds to connecting the elements-
aij and b; . in parallel between nodes i and j throughout the circuit.

3) L _ég}cal Product: A * B = [ai ¢ J], that is, the logical
product is found by multiplying correSpondlng elements throughout.
The logical product of two switching matrices is again a switching
matrix. It corresponds to connecting the elements aj 4 and bij in
series between 1 and j.

(4) Complement: A’ = [ ] where ., = a;{ if 1 # j, but Qs
= 1 for all i. This operatlon corresponég to réplac1ng all the two-
terminal circuits corresponding to the i3 (i # j) by their comple-
ments, recognizing the fact that the connectlon of a terminal to
itself is invariable. '

(5) Inclusion: A = B ("A is included in B" or "A is contained
in B") if and only if a,; : for all i and .j. Also, B 2 A is
equivalent to A = B. ﬁgs B, ghen any combination of values of the
input variables which results in a path from i to j in the circuit
corresponding to A, also results in such a path in the circuit
corresponding to B. .

(6) Zero Matrix: The zero matrix Z has a;. = 0 for i # j but
ail = 1 for all 1. This corresponds to open cifcuits between all
pairs of terminals,

(7) Universal Matrix: The universal matrix U has a,, = 1 for
all 1 and j. It corresponds to short circuits between a{i pairs of
terminals.

(8) Matrix Product:

m
<Z a;xbyj >
k=1

The rule here is the same as for ordinary matrices. AP means AA ...
A to p factors, The matrix product of two switching matrices is
again a switching matrix, but since the product of symmetric matrices
is not necessarily symmetric, this product does not always have
meaning in the case of relay switching circuits. ‘

(9) Multiplication by a Scalar: A = Ax = [B;i] where ¢ belongs
to S and Bj5 = aa;j if i # j, but pjj = 1 for all i\ Thus QA is again
a sw1tching matrix. ' ’

(10) Transpose: AT = [aij] where qjj = aji-

7Hohn and Schissler, pp. 181-182.
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The preceding definitions and properties fit four-valued Boolean
algebra as well as the two-valued kind, provided reference directions
are strictly adhered to fpr each element; The complement A‘ has been
represented in this thesis by A. The statement on inclusion needs
some clarification. InB®, 056, 0=9¢,0=1,0s1, and ¢ s 1; Con-
sistent with these coverage relations, the statement would need to
read as follows: "If A = B, then any combination of values of the in-
put variables which results in a [bilateral] path 1] a;;" Obviously,
since 6 = 1, ajj = 6 would mean that bij could be either é or 1. The
"S" referred to under "Multiplication by a Scalar” is the set of |
,Boélean switching functions, for which this thesis has used B; It can
be extended to include B2, If a primitive matrix P is basgd on direc-

N

tions from a lower numbered nodé to a ﬁigher numbered one,/all vari-
ables below the main diagonal will be underscored; Its transpose pT
v Qill therefore have all variables aone the main diagonal underscored.
For a matrix A based on'two—fglued eiements, the transpose AT would be
identical to A. |

In the appendix® to their article, Héhn and Schissler include the

following basic properties for switching matrices A, B, and C. All

apply equally well to four-valued switching circuits.

A+ A=A ' A* A =7

A* A=A U+ A=U
A+B=B+A U * A=A
A¥B=B%A A+ A’ =10

A % B+C)=(A+B)+C (A*B) =A’+B"

A% (BX%C) = (A*B) *( (A+B)’ =A" % B~

8Hohn and Schissler, pp. 201-202.
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A+ B*C) = (A+B)* A+C) (@A) =4

A*¥ B+C) = (A*B) + A*C) A+ (A*B) =A
Z+A=A - A+ (A"*B)=A+B
Z*A=2 AsA 0

A =sBand B £ A if and only if A =B

A=Band B=C imply A=C |

A =B if and only if A ¥ B = A

A =B if and only if A+ B = B

Zs=A=0U for all A

AB # BA ordinarily uP =y

A(B + C) = AB + AC 2P = Z

(A + B) C = AC + BC (AP)d = APY

AZ = ZA = A APAQ = AP+

AT = A AU =UA = U

@h* = @»! (AB)C = A (BC)

A + B)T = aT + BT A(B ¥ C) = AB * AC
@ * B)T = AT x pT (A * B) C = AC * BC
AB)T = BTAT

A = B implies AC = BC and CA = CB, but not conversely,

Reduced Connection Matrices

Becauéé refereﬁce directions must be carefully observed for four-
valued switching circuits, their matrices will differ from those for
two-valued circuits by virtue of the uﬁderscores;required for the
former. Figure 25 illustrates the primitive matrix, with directions
considered; for the circuit of Figgre 4° in the article of Hohn and

Schissler. Removal of a non-terminal node r, as they indicate, is

®Hohn and Schissler, p. 184.
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accomplished by adding to each i3 the pro&uct of the entry c;, in
row 1 and column r by the entry Crj in row r and column j, then de-
leting row r and column r. Deletion of terminal 5, then terminal 4

results in the following matrices,

i; X 0 X N
.3 1 xy ¥y
C =
G : 0 iy 1 y + —z

x vy ytxy

— o ) ) .

1 x + x(yy) x(y + xy)
0(4(5= .’E"’é(z-)-’) 1 §+}:5'(X+;_{Y)
é(y + xy) Xy + yy(y + xy) 1

By Tl4a, x + x(yy) = x + yy), and x + x(yy) = X + yy. By T13b,

Yy + xy) =y, and y(y + xy) = y. The matrix G

@G can therefore be
simplified.
] x4+ yi §(z + éy)
Cus= |2+ W L &+ Py
X(y + xy & + )y 1

In contrast with the matrix given® by Hohn and Schissler,

1 X iy
0@6 X 1 Xy,
iy §§ 1

the matrix for four-valued switching clrcuits is, as would be expected,

1%Hohn and Schissler, p. 185.
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more elaborate. It can be readily reduced to that of Hohn and
Schissler if it is recognized that, when the only allowable values
are 0 and 1, yi = 0, i(l + %y) = x(y + xy) = xy(l + X) = xy, and
G+ 7= G+ =iy, |

Two-Terminal Network Connections

Figure 26 shows the allowable values for a twp—terminal network,
including for each case the matrix expression for the conductances.
Figure 27 indicates the two possible ways in which two two-terminal
networks can be connected. The series connection shown in Figure

27 (@) would be indicated in matrix notation as follows:

1 X12 1 X34 1 X1oXag

O
fi
5
*
(==}
i
*
i1

X2 | Xg3 | X21Xa3 1

The parallel connection shown in Figure 27 (b) yields

1 %12 1 X34 | 1 - Xjy2 + Xas

X211 1 X43 1 Xpj1 + Xas 1

A somewhat different approach would be to consider that each
terminal of the original elements is.a discrete node but that joining
them in series gives rise to the following conductances: Xja = Xz =
0, X134 = X497 = 0, Xpg = Xgp = 1, Xpg = Xgp = 0. The resultant primi-

tive matrix will then be

1 x| O 0]
I

X211 1 ! 1 0
!

P = e — |- e ——— o

I

0 1 I i Xa4
I

LO_ 0 \= Xan ]
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1, o2 lo Jl<} o2
o-fp - -
(@) ®)
lo » 02 lo 02
Ny NEE
(c) (@)

Fig. 26. Basic Two-Terminal Networks.

1 2
—0——4 A b O
<]5‘—--—n A 0——-—3——-3—1 B ——% Ol ¢——0
3 4
._—o—.—_‘. B 2 8,
(@) ®)

Fig., 27;f Series and Parallel Connections for Two Two-Terminal Networks.
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Now the Hohn-Schissler method can be used to eliminate first node

three, then node two, resulting in the following connection matrices:

1 ¥12 0 1 X10X34
C (3 XZl 1 X34 P and C (2 (3 °
0 Xem ] Xp3X43 |
It will be observed that C(2(3 is identical to C = A ¥ B,

Partitioning?! of the primitive matrix P is indicated by dashed

lines. It could have been written

a1 Q12 0 0 0 1
P= , where Q10 = y Opy = P

0728 Clop 1 0 0 0

Q11 = A, and Qpp = B. It will be noted that oy = Qp;!l.
For the parallel connection shown in Figure 27 (b), the following
conductances are introduced: Xj;a = Xa; = 1, X34 = X43 = 0, Xo5 =

X3z = 0, and %xp4 = x4p = 1. The resultant primitive matrix is

1 X12 ; 1 0
l B
X211 1 | 0 1
P= 1 0 : 1 Xag ‘
|
0 1 I X4,3 1
L —

1 X112 1. 1 X112 + Xn4
C = X 1 X C = ‘
(4 21 43 (3 (4:
1 Xa4 1 Xo1 + Xan 1

11E, A, Guillemin, The Mathematics of Circuit Analysis (New York,
19580), pp. 48-53,
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1 X12 Xag 1 Xi2 + Xag
C = X 1 1 C =
G| @G
Xas 1 1 . le + X433 1

As would be expected, the results are the same whether nodes three and
four are eliminated or nodes two and three; As indicated by the expres-
sions X;o + Xag and Xp3 + Xaa, X3o and Xay4 were placed in parallel. C
= A + B.

Partifioning of the primitive matrix for the parallel connection

would yield

125 B eS ¥ 1 0
P = , where Q3o = Qpy = =2, Oy = A,
Oy Qo2 0 1
and Oz = B.

Three-Terminal Network Connections

Two three-terminal networks are shown in Figure 28:> If these are
connected in cascade, as indicated in Figure 29, X314 = X41'= 0, x35 =
Xsy = 0, %16 = Xe1 = 0, X4 = X4z = 1, Xo5 = Xez = 0, Xzs = X2, = 0,
X34 = X43 = 0, X35 = X553 = 0, Xaze ?‘xes = 1. The‘partitioﬁed primi-

s . 0 0/
tive matrix P = [11 12], where ¢y, = [A), agz = [B], Q12 =

Opy O22
000 010
1 00{, and 0p; = |0 0 Of . In expanded form,
001 001
B X1z X33 | O 0 0
I
Xg1 ] Xoz | 1
xSl Xa2 1 ‘ 0 1
b= 0 1 0 : 1 X45 X4
0 0 : Xs54 | Xs6
0 1 ' X4 X5 1
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(a) (®)

Fig. 28. Basic Three-Terminal Networks.

oL 2 5
G a s
3 6

Fig. 29. Cascade Connection of Two Three-Terminal Networks,

@—XL"A‘—é

O
v~}

Lo

Fig. 30. Parallel Connection of Two Thrééurefminal Networks.
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This will reduce to

1 X12X45 X13 + X312 X2z + X46)
C= Xp1X54 1 Xse + Xs54 (X233 + X48)
X31 + Xp3 (Xaz + Xg4) Xaes + Xgs(Xaz + Xy 1

If the two three-terminal networks of Figure 28 are placed in

parallel, as indicated in Figure 30, X34 = X4; = 1, X35 = X5 = 0,

Xi16 = %1 = 0, Xpg = X4 = 0, Xpg = Xg2 = 1, Xpg = Xg2 = 0, Xag = Xa3

=0, Xa5 = Xs3 = 0, X35 = Xea

1]

1. Now, for the partitioned primitive
100
matrix, 0y; = [A]: Qo = [B], Q12 = Opy = 0 01 = 2.
001

o —

Other Network Connections

The procedures indicated above cén, of course, be extended to
cover various connections for different networks. When networks are
placed in parallel, @, = 0p; = Z, the zero matrix of appropriate
order. Perhaps a more direct approach for parallel éonnections is to
make sure that, for two matrices A and B to be joined in parallel, ele-
ments to be paralleled occupy corresponding positions in the two
matrices, then simply to forﬁ the matrix sum A + B.

An example of the use of matrices for four-valued switching cir-
cuits is the solution of the network ghown in Figure 31, where two
four-terminal networks are to be placea in cascade by connecting
tefminals'two and five together and terminals four and seven together.
The identities of only terminals one and eight are to be retained.
That is, it is desired to find an equivalent two-terminal circuit

for terminals one and eight. A solution follows.



13

12

or
o
wn

é
(6)]

x AVA Ay
7 ————O— — — — —— O—8Mg ——0
8 ——p ¢ 7T —— 8

Fig. 31. A Four-Valued Switching Circuit to be Solved

by Matrices.
1 ¢ x 0] E y ¢ 0]
2] 1 8 0 T y 1 0 »8
= U2 =
x ¢ 1 z e 0 1 z
0 0 =z 1 0 ¢ z 1
0 0 0 0] 0 1 o0 0]
1 0 0 o 0 0 0 O
= a21 =
0O 0 0 O : 0 0 O 1
_2 0 1 0 | o 0 0 0]
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T ¢ X 0 0 T
8 1 8 ® (8y + ¢2)
C(5 6 (7 =X ¢ 1 z 0
o 6 z 1 (z + @y)
0 (¢y + 62) 0 (z + oy) 1
P‘I_ ¢ b4 0 ]
18 1 (8 + ¢2z) (8y + ¢2)
C - = ‘ .
SACACIUNEN P ® + 62) 1 2
0 (¢y + 62) z 1
1 ¢ + xz) X7
C(3§4(5(6(7= ® + xz) 1 ey + 2z)
. X7 ¢y + 2) 1

1 z(x + ¢)
“eBEEET =, o ,
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The circuit of Figure 31 is, therefore, equivalent to that shown

in Figure 32.

1 —P
[e) X
-D%f z 8

=5

Fig. 32. A Simplification of Figure 31.

Various theorems, notably T13a and T14a, were involved in obtain-
ing the reduced connection matrices. Obviously, the solution is not
easy, but orderly steps do lead to a correct solution. The solution

can be checked by perfect induction or by use of experimental appara-

tus like that shown in Plate I.



CHAPTER VIII

SUMMARY AND CONCLUSIONS

Résumé

In the twenty years since two-valued Boolean algebra was first
applied to switching circuits, it has become a widely adopted method
for analysis and simplification of -digital control circuits; In re-
cent years, nonnthermidnic diodes have been greatly improved, and they
are frequently used in control circuits; A need has, therefore arisen
for a mathematical technique for handling diodes as a part of switching
circuits° A logical approach would be to use a four-valued Boolean
algebra which would gllow four possible states of conduction: an
open circuit, cqnduction in one direction only, conduction in the
opposite direction only, and conduction equally well in both directions;

Since technical literature contains very little information on
four-valued Boolean algebra, it was decided that the maéhematical
theory should be developed from modern algebra in such a way as to
provide a good foundation for the electrical engineer who wished to
use and understand the four-valuedblogic in the study of switching
circuits, This meant that the mathematical basis of two-valued
Boolean algebra needed to be developed from sound principles so that
it could be logically expanded into. a four-valued algebra.v The mathe-
matical basis of Boolean algebras is covered in the second chapter,
including group theory, lattice theory, link-preserving transfor-

ﬁations, and the direct union of two lattices. The next chapter

122
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develops from that basis the Boolean algebra of order two, including
a number of»binary 0perationsaand theorems; The Boolean algebra of
order four is then presented as the direct union of two-valued Boolean
algebras.

The épplication of the mathematics to switching circuits is then
demqnstrated.k A brief coverége of conventional two-valued switching
circuits is.given, followed by an analysis of the use of four-valued
5lggic in switching circuits that include diodes, different kind; of
&QItgge sources, and polarized relays;
| In the seventh chapter the use of matrices in the analysis of
four—vélued switching circuits is demonstrated. It is shown that
essentially the only modification of the existing theory of Boolean
matrices for two-valued circuits is rigorous adherence to refgrence
directions. Partitioned matrices are used in demonstrating hgw two
network matrices can be combined when the two networks are inter-~
connected,

Appraisal

The use of four-valued Booléan algebra for analysis of simple
switching circuits with one or two diodes may be difficult to justify;
One can often tell by looking at a circuit what it will do, without'
any need for a knowledge of 1atticé theory. A good electrician can,
for that matter, wire up a "thfeeuway" switch without thinking in
terms of x X y. The use of matrix theory for analyzing two switches
in parallel would be unnecessarily complicated.

On thé other hand, the réason for the adoption of two-valued
switching algebra is the fact that it will enable one to analyze

rigorously and to simplify complex circuits. By the same token, the
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Boolean algebra of order four is a strict mathematical discipline for
precise handling of switching circuits which include diodes. It is a
particularly useful-concept in that it is fully compatible with regular
two-valued logic, reducing automatically to it when the allowable
values are confined to zero and one.

Potentialities

The use of four-valued Boolean élgebra for analysis of switching
circuits with diodes seems to have definite advantages. Its true test
will, of course, be its appliéation to practical problems. It is
hoped that engineers in industry can soon be informed of the theory
developed in this thesis so that they can test its merit in the solu-
tion of problems encountered in the fields of telephone switching,
digital computers, and automatic control. Perhaps, in commercial
application, even the unusual Binar& operatiohs for two-valued logic
shown on page 39 will prove useful. In addition to sending copies of
this thesis to friends in industry who are working with switching
circuits, the author hopes to be able to présent a paper on the sub-
ject at a future meeting of one of the technical societies, so as to
evoke comment from practicing engineers and perﬁaps to lead to adop-

tion of the technique where applicable.
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