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Abstract

Next generation radar technology is based on phased array technology and provides

remarkable scanning flexibility and spatial search capability for the multifunction weather

and air surveillance radar systems. The future weather radar is comprised of thousands

of antenna elements and requires strict polarization purity, grating lobe free system, low

sidelobe levels, suppressed surface waves, low cross-polarization, with beam shape require-

ments. To address these demands is a serious challenge. Over the past few decades,

phased array radar technology has been a tremendous advancement in search for future

radar technology. With the blessing of modern computational electromagnetic tools, the

theory behind the electromagnetic and circuit-level behavior of large-scale phased array

system opened the door to analyze the wide variety of multi-layered, complex system of

large arrays. However, numerous challenges still remained unsolved for large scale devel-

opment. One such challenge in integrating a large phased array is the threat of grating

lobes that are introduced by unavoidable disturbances to the periodic structure at the

seams between mechanical sub-array modules. In particular, gaps in the ground plane

may interrupt the natural currents between elements, leading to radiation from periodic

sources that are spaced at regular distances that are typically many wavelengths apart.

In order to quantify these grating lobe effects, an appropriate analysis framework and

accurate model are of utmost importance. The model must capture all surface wave and

mutual coupling between elements, and the analysis must have a clear formulation that

allows for the calculation of worst-case grating lobe levels as well as differences in active

reflection as a function of location within a sub-array. To accurately predict those effects,

this dissertation work applied a modern method called Floquet framework, coupling with

full wave solver to explore the grating lobe effects in infinite arrays of sub-arrays, with each

physical sub-array potentially separated from the others by a gap or discontinuity in the

ground plane. Calculations are then performed to extract active reflection coefficients and
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grating lobe levels from the resulting Floquet mode scattering parameters. Additionally,

this Floquet framework is expanded from broadside to any scan angles in space. In the

mathematical framework, the surface equivalence theorem based on Huygens’s equivalence

principle is applied to authenticate its findings. From the simulation results, it is evident

that the grating lobe amplitude level emerged to around 30 dB in the E-plane scan and E-

plane grating lobes for a patch array. This is due to natural current disruption in between

sub-arrays in the ground plane gap and it is very strong in the E-plane, leading to the

potential for low-level grating lobe effects. The other planes and scan angles show less

significant effects. It was found that the measurements qualitatively follow the simulated

results. The Floquet-based method may therefore be used as a good approximation for

a worst-case scenario where all gap-based perturbation effects are identical on each sub-

array. This can be used for system-level planning to inform a mechanical solution to the

electrical connection between sub-arrays.

Another fundamental and paramount challenge for phased array antenna is scan blind-

ness. Scan range of the printed phased arrays is limited by the phenomenon known as

scan blindness, which is induced by coherent coupling between the substrate waves/surface

waves and the array’s space harmonic fields. Near the scan blindness angle, a phased array

system fails to function as a radiator or receiver because of strong excitation of substrate

Transverse Electric (TE) and Transverse Magnetic (TM) waves and coupling of desired ra-

diating energy to these unwanted substrate waves. Moreover, this dissertation work, with

the aid of Floquet framework, accurately and more precisely captures the surface wave

phenomena and its behavior using Electromagnetic Bandgap (EBG) structures to aim to

reduce the surface wave excitation in an intelligent way. The reduction of surface waves

can be beneficial in several ways to the next generation of digital phased arrays. First,

the radiation efficiency will increase due to reduced surface wave excitation. Second, due

to decreased surface waves the diffraction from the edges will also be decreased, leading

xv



to decreased back radiation and interference with the main pattern in the forward region.

Finally, reduction of surface wave excitation ultimately reduces coupling between adjacent

antenna elements.

Furthermore, cylindrical radiating phased array radars have a unique challenge. Due

to their conformal nature, they support cylindrical surface waves and cylindrical creeping

waves. These modes have detrimental effects on the overall pattern quality and lead to

“phase mode blindness” like as planar equivalent “scan blindness”. This dissertation seeks

to explain, address, and mitigate these surface and creeping wave effects and ultimately

suppress “phase mode blindness” using cylindrical EBG structure.
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1
Introduction

Phased array antennas are proliferating across a wide variety of applications. In modern

days, they seem no longer to be an interest of just military (radar) applications, but are

encountered in diverse civilian applications such as air traffic control and instrumental

landing of airplanes, satellite communications, mobile communication base stations, radio

astronomy, weather applications, medical applications (i.e., as microwave imaging to detect

early breast cancer), and automotive applications (i.e., as automotive collisions avoidance

radar or as adaptive cruise control technology). The beauty of phased array technology is

its capability to perform accurate and rapid beam scanning within seconds, which allows a

system to perform multiple tasks either enlaced in time or simultaneously. A phased array

is a system of multiple antennas. By changing the phases of the antennas, the radiation

pattern can be controlled in a particular direction and suppressed in undesired directions.

Integration of electronics in the system increases the components and complexity and

increases the frequency of operations for diverse applications. Today, very complex phased

arrays can be manufactured over a wide range of frequencies and perform many functions.

They can be electronically controlled which gives additional flexibility to perform all the

tasks very accurately. The system can be programmed digitally to get more accurate and

precise results very rapidly.
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Despite their many potential capabilities, the high cost and complexity of phased arrays

are the principal impediments to their deployment in various large scale applications.

Therefore, it is paramount to understand their complexity, its limitations and capabilities,

and also to explore the ways to make it cost effective. All of these pose significant challenges

to understanding the basic electromagnetic and circuit level behavior of phased array

systems. Even though some of the challenges are well-understood after years of research,

there are still many fundamental challenges that need to be addressed. The purpose of

this dissertation is to create a bridge to fill the gaps in understanding some of the problems

at hand and propose ways to solve these problems.

1.1 Surface Waves

Surface waves are electromagnetic wave modes that bound to an interface between two

materials and propagate along the surface. The materials could be any dissimilar mate-

rials, such as air, dielectric, metal, electromagnetic bandgap structures, or other kinds of

materials. Surface waves can be of two types and are named transverse electric (TE) or

transverse magnetic (TM) waves. In TE surface waves, the electric field is transverse to

the direction of propagation and the magnetic field forms vertical loops out of the surface,

while in TM surface waves, the magnetic fields are transverse to the direction of propa-

gation and the electric field forms loops that extend vertically out of the surface. There

are different ways these surface waves can be excited, such as with the antenna itself or

other external radiation fields. As illustrated in Figure 1.1, a grounded dielectric slab,

due to the presence of a dielectric substrate, always supports surface waves. The fields

decay exponentially away from the boundary in both the positive and negative x and y

directions. The rate of decay can vary and depends on the material’s properties.

2



Figure 1.1: Propagation of surface waves modes on the grounded dielectric slab [1].

These surface wave excitations affect different microwave structures. For instance, they

affect printed circuits, micro-strip lines, and antennas, and reduce the performance of the

overall circuits. These surface waves can diffract at the finite-sized ground plane and lead

to increased cross-polarization labels and ripples in the co-polarized radiation patterns.

In the phased array, where multiple elements are required to build an array, these surface

waves are strongly liable for strong mutual coupling. If the unit cell is larger than 0.5λ0,

grating lobes and surface wave lobes can occur in the frequency band and scan volume

of interest. As a result, scan blindness occurs at certain scan angles. Several procedures

have been developed that mitigate this inherent problem. One of the methods to mitigate

this issue is the use of high impedance surfaces. Using high impedance surfaces, one can

alter the surface impedance and therefore the surface wave properties. High-impedance

surfaces can be used to minimize the detrimental effects of the surface waves on antennas.

By utilizing the textured metal surface, one can alter the scattering characteristics of the

object. In this dissertation, high-impedance surfaces were used to control the surface wave

propagation, and hence suppress scan blindness.
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1.2 Ground Plane Gaps

Modern phased array and antenna applications require antennas to be mounted on the

finite dielectric coated ground plane. Most of the analysis of the ground plane is based on

the assumption that the ground plane is planar and infinite in extent. However, in practice

all antennas are finite, so the ground plane is finite in nature. Typically, the electrical

performance of the infinite ground plane antenna will be different from that of the finite

ground plane. Therefore, the analysis must include the effects of the finite ground plane.

It is well established that a dielectric-coated ground plane supports a finite number

of surface wave modes. In phased array, where multiple elements are necessary to build

a radar, analysis is usually performed by unit cell analysis. While integrating these unit

cells, they encounter gaps. These gaps perturb the natural current flow of the antenna

elements. This smooth truncation of the dielectric-coated ground plane may alter the

surface wave propagation and change the mutual coupling environment of each individual

antenna element. Therefore, it is worthwhile to analyze a phased array that incorporates

the ground plane gap effects, which will be analyzed in detail in Chapter. 3.

1.3 Dissertation Organization

This dissertation outlines details from multiple projects, with the common theme of ap-

plication of Floquet analysis to modern phased array antennas.

Chapter 2 covers background information on the fundamentals of phased arrays and

gap effects on phased arrays, particularly gaps in the ground plane of arrays of sub-

arrays. Then a mathematical framework which accurately captures the mutual coupling

and surface wave effects is suggested. This framework predicts and quantifies any worst

case grating lobe effects for a large phased array system.
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Chapter 3 presents the Floquet analysis overview and the standard mathematics behind

it. This method can be coupled with the full wave solver.

Chapter 4 studies the gap effects on large phased arrays using the Floquet framework.

In the past, the Floquet framework was coupled with the full wave solver to predict the

performance of infinite arrays. However, this work is extended to analyze the infinite

array with the finite sized sub-arrays, while capturing all mutual coupling and surface

wave effects.

Chapter 5 investigates the benefits of EBG surface on modern phased arrays with the

Floquet method for large phased array systems. Modern phased array antennas use λ/2

distance in between the array elements to avoid scan blindness. Over here the distance

between the elements is more than λ/2 and the scan blindness is removed. However, using

EBG structure the narrow bandwidth is found. Further research is necessary to investigate

the bandwidth behavior of mushroom structures.

Chapter 6 explores the benefits of EBG surfaces on cylindrical geometries. Due to the

conformal nature of the cylinder, cylindrical radar supports creeping waves. This chapter

investigates how to suppress surface waves and creeping waves in the cylindrical geometry.

Chapter 7 summarizes and concludes the dissertation, and addresses directions for

further research on Floquet modal framework. In addition, Electromagnetic bandgap

material structure for modern phased array design is proposed.

5



2
Background on Phased Arrays

2.1 Introduction

In this chapter we will try to give an overview of electromagnetic behavior of phased

array antennas starting from basic antenna fundamentals to antenna arrays and finally

to phased array antennas. The basic fundamentals of the phased array antenna are also

covered. These fundamentals are very essential in designing a successful phased array

antenna system.

The phased array antenna is composed of groups of individual radiators and can be

arranged in the space in various geometrical configurations to produce highly directive

beams. These types of antenna arrangements are called arrays. In an array antenna, the

antenna elements can be identical or different in size and shapes. The fields from each in-

dividual element constructively add to form a radiated beam of any desired shape in space

and destructively add to cancel each other. The beam in the space is controlled by adjust-

ing the phase and amplitude of the exciting signals at the individual elements. Therefore,

without changing the position, beam scanning is possible electronically in the space. The

overall performance of the phased array is affected by three principal parameters as given

below:

1. The geometry of the array
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2. The amplitude and phase excitation of each individual element

3. The radiation pattern of each individual element

No matter the purpose for which an antenna will be used, including in phased arrays,

in cellular telecommunications, to broadcast, in medical applications, the performance of

the radio frequency antenna is very crucial. Two major factors, the antenna resonance

frequency, or center frequency, and the bandwidth, are very important design parameters

in determining the performance of an antenna. The antenna needs to be well impedance-

matched within its operating frequency.

2.1.1 Advantages of Phased Arrays

Using a phased array system, one can scan the complete hemispherical search in seconds

accurately and rapidly, either interlaced in time or simultaneously. An electronically

steered array radar is able to track a large number of targets and illuminate some of these

targets with radio frequency (RF) energy. An electronically-controlled phased array gives

more flexibility needed to perform all the various functions in a way best suited to the

specific task at hand. The digital beam-steering technique even allows a faster and more

accurate scan. Some of the unique capabilities of phased array antennas include:

1. Fast and accurate wide angle scanning without moving the antenna

2. Adaptive beam forming

3. Graceful degradation in performance over time

4. Distributed aperture

5. Multiple beams

6. Potential for low radar cross section
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2.2 Grating Lobes

For a successful phased array design, it is necessary to understand the certain basic param-

eters of phased array antennas, for instance, the grating lobes, beam-width, instantaneous

beam-width, etc. In phased arrays, there may be several pick intensities other than the

desired beam. Those are called grating lobes. These are not the sidelobes. People usually

confuse grating lobes with sidelobes. The grating lobe locations are a function of frequency

and the element spacing. When the element spacing in the array is less than or equal to

λ0/2, there are no grating lobes, only main lobes exist. In general grating lobes appear

when the array spacing is greater than λ0/2. If the antenna elements spacing is greater

than λ0/2, the grating lobe appears even at broadside scanning.

In general, a linear array is comprised of identical elements positioned into a regular

space in a regular geometrical configuration. Array factor for linear array for N−elements

can be represented by

AF =
N∑
n=1

ej(n−1)(kd cos θ+α) (2.1)

which can be written as

AF =
N∑
n=1

ej(n−1)ψ (2.2)

where

ψ = (kd cos θ + α) (2.3)

Therefore, array factor is a function of ψ is a Fourier series with a period of 2π.

AF (ψ + 2π) =
N∑
n=1

ej(n−1)(ψ+2π) =
N∑
n=1

ej(n−1)ψej(n−1)2π = AF (ψ) (2.4)
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The array factor for a linear array is a function of θ. The complete structure can be

determined from the values of θ as

0 < θ < π (2.5)

Usually this is refers to the visible region and map to −1 < cos θ < 1 or −kd <

kd cos θ < kd, or

α− kd < ψ < α + kd (2.6)

Actually equations 2.5 and 2.6 are functions of θ and ψ and determine the visible

region. Let say we have exactly one period on the visible region and the period is 2π.

Therefore, 2π = 2kd = 2(2π/λ)d or d/λ = 1
2 . Hence, when the element spacing is less

than half wavelength, exactly one period of wavelength appears in the visible space. For

more than one “half wavelength” spacing, there might be more major lobes appearing in

the visible space. These additional lobes that have intensity equal to the main lobe are

called grating lobes.

There are two grid structures of planar array. One is rectangular grid and the other one

is triangular grid. Each has its own unique properties. For this study, we only considered

the rectangular grid structure.

In most situations, it is undesirable to have grating lobes. As a result, most arrays

are designed so the element spacings are less than one wavelength. The array grid of

planar arrays controls the grating lobes. The scan performance of a rectangular-grid array

behaves like the projected linear array in the scan plane.

2.2.1 Grating Lobes in Planar Array

In a linear array one can control the beam shape in only one plane, whereas when using

a planar array one can control the beam pattern in both planes. In a planar array other
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than principal planes one can use sinθ pattern space to see the periodicity of the grating

lobes and to analyze the array in the 2-D plane. For a rectangular grid array, the grating

lobe occurs when [3]

um = us +m
λ

a
,m = 0,±1,±2, ..... (2.7)

vn = vs + n
λ

b
, n = 0,±1,±2, ..... (2.8)

with the following relations :

cos θn,m =
√

(1− u2
m − v2

n) (2.9)

where a and b are unit cell spacing and the a and b are the spacing between unit cell

along x− and y− directions respectively. The first part of the right hand of the equations

represents the locations of the main beam when antenna is scanned to θ0. The second

part represents the grating lobe locations. These are actually the periodic copies of the

main beam.
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Figure 2.1: Grating lobe diagram in u-v space.

For planar rectangular grids, the grating lobe locations for half-wavelength spacing for

both x− and y− directions have been depicted in Figure 2.1. The half wave-length spacing

is chosen for the simplicity of the equations 2.7 and 2.8. As shown in Figure 2.1, the region

inside the green circle is called the visible space. The black circle inside the green circle

is the main beam for scanning angle (θs, φs = 0◦, 0◦). The electronic scan beam can be

scanned anywhere in the visible space without the presence of grating lobes.
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2.3 Mutual Coupling

Mutual coupling is an important parameter in array theory. It can be defined as an

electromagnetic interaction between the antenna elements in an antenna array. According

to Stutzman and Thiele [4], mutual coupling has three components:

• Radiation coupling between two nearby antennas

• Interactions between an antenna and nearby objects, particularly conducting objects

• Coupling inside the feed network of an antenna array

Mutual coupling in real array alters the current magnitude (and thus impedance), and

the phase distribution of each element from the free space values. Therefore, the total

array pattern gets altered compared to no coupling case. It affects the antenna array

primarily in following ways:

• Change the array radiation pattern

• Change the array manifold (the received element voltages)

• Change the matching characteristic of the antenna elements (change the element’s

input impedance)

Now, we will define the mutual coupling effects in terms of mutual impedance and

scattering parameters and will only include the radiation coupling between the elements.

Let us assume an arbitrary finite N element array. For the first element of an N element

array, the way to relate terminal voltage and the element current is

V1 = Z11I1 + Z12I2 + ....+ Z1NIn (2.10)
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For N elements, it can be written as

V1 = Z11I1+ Z12I2+ . . . +Z1nIn

V2 = Z21I1+ Z22I2+ . . . +Z2nIn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vn = Z1nI1+ Z2nI2+ . . . +ZnnIn

(2.11)

where Vn= impressed voltage at the nth element, In = current flowing in the nth element,

Znn = self-impedance of the nth element, Zmn=Znm = mutual impedance between mth

and nth elements. For nth terminal plane the total voltage and current is given by

Vn = V +
n + I−n (2.12a)

Vn = V +
n − I−n (2.12b)

where (V +
n , I

+
n ) and (V −n , I−n ) are the incident and reflected waves at a specific point on

the nth port. Equation 3.2 can be further simplified to



V1

V2

...

Vn


=



Z11 Z12 . . . Z1n

Z21 Z22 . . . Z2n

... ... . . . ...

Zn1 Zn2 . . . Znn





I1

I2

...

In


(2.13)

or in matrix form as

[V ] = [Z][I] (2.14)

On the other hand, if V +
n is the amplitude of the voltage wave on port n, and V −n is

the amplitude of the voltage wave reflected from port n, the [S] matrix can be defined as
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

V −1

V −2
...

V −n


=



S11 S12 . . . S1n

S21 S22 . . . S2n

... ... . . . ...

Sn1 Sn2 . . . Snn





V +
1

V +
2
...

V +
n


(2.15)

or

[V −] = [S][V +] (2.16)

If we assume the characteristics impedance, Z0n, of each port is identical, and set

Z0n = 1 from equation 3.3, the total voltage and currents at the nth port can be written

as

Vn = V +
n + I−n (2.17a)

Vn = V +
n − I−n = V +

n − I−n (2.17b)

Using the definition of [Z] from 3.3 and 3.8 we get

[Z][I] = [Z][V +]− [Z][V −] = [V ] = [V +] + [V −] (2.18)

which can be written as

([Z] + [U ])[V −] = ([Z]− [U ])[V +] (2.19)
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where [U ] is the identity matrix and can be defined as

[U ] =



1 0 . . . 0

0 1 . . . 0
... ... . . . ...

0 0 . . . 1


(2.20)

Comparing equations 3.10 and 3.6 we can say that

[S] = ([Z] + [U ])−1([Z]− [U ]) (2.21)

alternatively, we can find [Z] matrix from [S] matrix

[Z] = ([U ] + [S])([U ]− [S])−1 (2.22)

In theory and practice, both can be used based on the requirements. In the finite

sub-array we studied here, every individual antenna element within the sub-array will face

a different mutual coupling environment. Hence, it is necessary to analyze the coupling

behavior of each individual element. Using Floquet modal analysis we studied the coupling

behavior of the antennas. The details of this Floquet modal framework is explained in

Chapter. 3.

2.3.1 Eliminating Mutual Coupling

Mutual coupling is very important parameter in antenna arrays. If mutual coupling be-

tween the array elements can be known the array analysis can be performed rigorously in

various aspects. According to Bhattacharyya [5], in general, the mutual coupling between

the array elements can be quantified in terms of following measurable quantities:

• Mutual impedance
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• Mutual admittance

• Scattering parameters

Mutual coupling alters the impedance and radiation characteristics of the elements.

Unfortunately, it is very difficult to predict for a finite array. Mutual coupling usually

tends to make the active element pattern more directive than the ideal element and,

therefore, increase the scan roll-off of the array [6]. Hence, simply eliminating mutual

coupling may deteriorate the active element pattern compared to what it should actually

be.

2.3.2 Tightly Coupled Arrays

The traditional method of wide-band array design is to design an antenna element that

has gain bandwidth (10 : 1) or more. A recent innovation in wide-band phased arrays

is the tightly coupled array. Tightly coupled arrays are of great interest due to their

wide bandwidth, good scan performance, and low cross-polarization. The tight spacing

of array elements in an array results in very high mutual coupling among the elements

in the array. Over the years, researchers have found that tightly coupled elements were

necessary to achieve wide bandwidth performance, while conventional array design seeks

to reduce mutual coupling. The unexpected benefit is that the bandwidth of the embedded

element pattern is larger than when isolated. The highly coupled array is a fundamentally

different type of wide-band antenna where the mutual coupling among the array elements

is utilized to shift down the center frequency and at the same time broaden the impedance

bandwidth of the array [7]. Therefore, mutual coupling is very important to get the wide

bandwidth.
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2.4 Embedded Element Pattern

In order to understand the array behavior in phased array system, it is important to

understand the radiated field intensity of an element in the far-field region. This parameter

is often defined by element pattern. When this element pattern is a function of scan

angle, it is called embedded element pattern. Embedded element pattern or scan element

pattern (SEP), formally known as Active Element pattern, is gain per element versus scan

angles. Scan element pattern, also a function of scan and frequency, tells the radar or

communications systems designer how well the system works. Note that SEP is not an

antenna “pattern;” it shows gain versus scan. The modifier “scan” implies a quantity that

varies with scan angle. The scan element pattern will provide the phased array antenna

gain at the position of the scanned beam as a function of scan angle.

2.4.1 Infinite Array Embedded Element Pattern

For a large phased array antenna, all scan element patterns will be nearly identical and

the phased array antenna performance may be approximated by applying pattern multi-

plication. In this pattern multiplication, the common scan element pattern is multiplied

with the array factor. Therefore, all coupling effects are accounted for then in the scan

element pattern. The embedded element pattern can be defined as [5]

GA(θ, φ) = Ge(θ, φ)× AF (θ, φ) (2.23)

where GA represents the array gain pattern, Ge represents the active element gain pattern,

and AF represents the normalized array factor with the sum of amplitude squares set

of unity. The characterization of a large array antenna may be accomplished on the

basis of the assumption that, in a large array, nearly all elements encounter a similar
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array environment, and therefore also encounter identical mutual coupling effects from

the surroundings.

2.4.2 Finite Sub-array Embedded Element Pattern

For an infinite array, active element pattern is the same for all elements. For a finite array,

however, each element sees a different environment, so the active element pattern is differ-

ent. To accurately and precisely calculate the active element pattern for a finite array, one

must incorporate in the formulation all surface waves’ and edge effects’ contributions [8].

The equations should include all mutual coupling analysis between the antenna elements.

Using Floquet modal analysis, the coupling coefficient is easily computed.

For an infinite array of a finite-sized sub array, edge effects do not contribute much to

the overall array performance due to the fact that the center antenna element face equiv-

alent to infinite array’s center element environment. Hence, the active element pattern of

infinite array of finite sized sub-array can be formulated as [9]

~E(θn,m, φn,m) = θ̂

jV TM
n,m

√
abZTM

n,m

λ2

− φ̂
jV TE

n,m

√
abZTE

n,m

λ2 cos θn,m

 (2.24)

where

cos θn,m =
√

1− u2
m − v2

n (2.25)

where a and b are the element spacings. V TM
n,m and V TE

n,m are the normalized modal voltages

at the array aperture for the TMn,m and TEn,m Floquet modes, ZTM
n,m and ZTE

n,m represent

the Floquet mode impedances relevant to TMn,m and TEn,m modes (e.g., 377 for a square

lattice at broadside scan). It is worth mentioning that, the analysis utilized here under

the assumption that array radiates in the infinite array environment when non-excited

elements are match terminated. The details of this analysis are described in the Chapter. 3.
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2.5 Scan Impedance

In a phased array, scanning by changing the feeding coefficients changes element input

impedance, called the scan impedance. For an infinite array the formulation is very easy.

However, the scan impedance, which is related to the scan reflection coefficient, is also

defined by a radiating element as a function of scan angle, when all of the radiating

elements are of the proper magnitude and phase. The scan impedance of a non-ideal

radiating element is a function of the phase from across the array aperture. From the scan

reflection coefficient, it can be immediately obtained through a well-known relationship

as [10]

Z(θ, φ) = Z0
1 + Γ(θ, φ)
1− Γ(θ, φ) (2.26)

where Z0 is the port impedance and Γ(θ, φ) is the scan reflection coefficient. A phased array

consists of discrete radiators. The array is usually linear or planar, but can be cylindrical,

spherical, or any conformal shape. Any array design must consider mutual coupling, scan

blindness effects, grating lobes, polarization purity, bandwidth, etc. Impedance match is

a function of scan due to mutual coupling.

2.5.1 Scan Blindness

In a phased array, when antenna elements are excited, substrate modes also get excited.

These substrate waves change the mutual coupling of the array elements. When these

substrate modes couple to the radiating mode at certain scan angles, the antenna does

not radiate. Scan blindness is a specific phenomenon of a large phased array where some

of antennas cease to radiate. Scan blindness is always undesirable. It happens when the

propagation constant of a surface wave mode coincides with that of the Floquet mode, at
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which point these two modes couple strongly, leading to a resonance and subsequent scan

blindness.

If an infinite array structure is capable of supporting a guided wave, then under certain

Floquet excitations, the guided mode may be strongly excited. Depending on the coupling

mechanism between the radiating elements and the guided mode, the input voltage across

each source element becomes either infinitely large, zero, or the voltage and the current

are in phase quadrature. The above three voltage-current relations lead to infinite, zero,

or reactive input impedance; hence the array ceases to radiate. This effect is known as

scan blindness of the array.

Scan blindness becomes worse as the array size increases and is not a severe problem

for small arrays. Complete scan blindness, occurring when 100% of the power is reflected

from the elements, only occurs in infinite arrays.

Scanning to the blind angle means that kz becomes imaginary while a surface wave

mode propagates along the surface of the array. Blindness occurs when the imaginary

part of the impedance becomes extremely large even when the real part may be nonzero.

In order for blindness to occur, k must be zero, and the wave propagation constant must

equal the surface wave propagation constant.

ksw =
√
k2
xs + k2

ys (2.27)

Surface wave exist in a dielectric substrate of thickness h when for the TE mode

kzd cos kzdh+ jkz0 sin kzdh = 0 (2.28)

and for the TM mode

εrkzd cos kzdh+ jkz0 sin kzdh = 0 (2.29)
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where 0 in the subscript indicates free space and d indicates dielectric. For substrate with

h < λ0/4√
εr−1 only the lowest order TM surface wave modes exist.

According to Mailoux [11], array blindness results when the array geometry with short-

circuited input ports would support a normal mode (lossless non-radiating propagation)

along the structure at some given scan angle. With the array excited at all input ports,

at the angle of array blindness, the input impedance at all ports are identically zero, with

the structure supporting a non-radiating lossless mode. In finite array, the energy gets

radiate in terms of grating lobes, in mechanical, or other thermal energies.

2.6 Gaps in the Ground Plane

To predict the performance of a large phased array antenna, precise and accurate modeling

and validation of those modeling efforts are of utmost importance. A well-designed phased

array should not have any grating lobes, as they can be avoided by proper choice of element

lattice relative to the highest operating frequency and largest scan angle. However, one

practical concern in integrating large phased array antennas is a low-level grating lobe

effect that may appear because of interruption of the overall periodic structure due to

the physical connection between mechanical sub-arrays of finite size. Recent advances in

computational electromagnetics have enabled the analysis of larger and larger finite phased

arrays, but simulations of arrays with thousands of elements are often problematic. This is

especially the case if details like mechanical interconnections (and potential ground plane

gaps) are also included.

To meet the demand for weather tracking and air surveillance, modern phased array

design requires thousands of antenna elements. One practical way to arrange these antenna

elements that are in the group of sub-arrays can be called line replaceable units (L-R-U).

These LRUs can be assembled in a rectangular grid by putting each LRU along horizontal
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Figure 2.2: Ground plane gap model.

and vertical axes to form a planar configuration as shown in Figure 2.2. The main reason

for such arrangements is probably the fact that service engineers can easily replace the

LRU upon failure, which eventually helps to save service costs in the long run. An X-band

3×3 unit cell was designed. Each unit cell size is 45 mm × 45 mm. To mimic the practical

situation of real phased array system a 1 mm gap is created in between each sub-array

as can be seen in Figure 2.2. These gaps are the main culprits which impede the natural

current flow between array elements. The simulation of such a large 8×8 and complicated
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Figure 2.3: Unit cell set up for the gap model.

sub-array unit cell is difficult, but could predict serious grating lobe-related limitations

long before building the eventual 10, 000 element/face array.

However, if the overall array can still be reasonably treated as a periodic structure of fi-

nite sub-arrays that in turn forms a large phased array, then periodic boundary conditions,

based on Floquet’ s theorem, may be used on a single sub-array (one “ unit cell ” instead of

the entire array geometry). An example of such unit cell set up is presented in Figure 2.3.

This approach was explored through pure simulation in [9], where grating lobe limitations

due to periodic ground plane gaps were estimated. The simulations must make use of

many Floquet modes, owing to the larger (relative to a wavelength) unit cell size. This

leads to both software (mode count) and memory/time limitations for larger sub-arrays.

Analysis of more advanced antennas, with complex geometries, multi-layered structures,

vias in electromagnetically sensitive locations, and 3-D structures will only exacerbate
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these memory and time issues. Moreover, some systems like the future nationwide Multi-

function Phased Array Radar (MPAR) program require very low peak sidelobe levels, as

strict as −50 dB [12].

What is needed is an efficient and accurate method to analyze these effects validated

through basic measurements. The next chapter will investigate such an analysis using

Floquet modal framework.
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3
Floquet Modal Analysis of Phased Array Antennas

The phased array antenna is becoming increasingly popular because of it provides the

capability of command-able, agile, high gain beams which is very useful for radar, weather

applications, airborne and space-borne applications. Phased array antenna system can

be reconfigured electronically in a way that allows, for instance, beam scanning, multiple

spot beams and shaped beams. Generally, the analysis of an array antenna involves a

two-step process, such as characterizing an isolated element, and employing the element’s

characteristics to predict the performance of the full array. The underlying assumption

in this approach is that the element characteristics remain invariant with respect to the

array scan. Such an analysis works reasonably well if the coupling between the elements

is negligibly small. For strongly coupled elements the analysis becomes inaccurate. This

happens in the case of a wide-angle scan array, where the element spacing is kept small

to avoid grating lobes. Therefore, to predict the performance of a wide angle scan array

accurately, the analysis must include the mutual coupling effects.

For the array-pattern analysis, the well-known equation (i.e., array-pattern = array

factor × isolated element pattern) does not explicitly include the mutual coupling effects.

Inclusion of mutual coupling effects involves coupling analysis between the elements and

subsequent manipulation of a coupling matrix. Alternatively, if one could determine the
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element pattern in the array environment, then the above simple equation for array pat-

tern becomes valid. Such an element pattern in the array environment is known as the

active element pattern (AEP) or the embedded element pattern. The Floquet modal anal-

ysis yields the AEP, which implicitly includes the mutual coupling effects. In addition,

the Floquet modal analysis yields the coupling coefficients between the elements in the

“array environment”. The conventional element-by-element approach ignores the effects of

the neighboring elements when coupling between two elements in an array is considered.

The effect of the neighboring elements on mutual coupling may be substantial for many

situations.

To include the mutual coupling effect for broadside radiation, the concept of infinite ar-

ray analysis of radiating sources was first introduced by Wheeler in 1948 [13]. A radiating

element inside a waveguide was analyzed in a way that essentially emulates an infinite array

of the elements from the image theory perspective. For analyzing a scanned beam array in-

cluding mutual coupling effects, Stark employed the Fourier series expansion method [14].

He included the linear phase variation terms in the Fourier series, thus implicitly introduc-

ing “Floquet modal expansion”. The radiation impedance, in the form of a doubly-infinite

series, was deduced. Following Stark’s formulation, Wheeler introduced a “pictorial pre-

sentation” of the impedance, which he called “grating-lobe series” method [15]. Farrell

and Kuhn also employed the Floquet model to obtain the reflection coefficient and power

pattern of an infinite array of rectangular waveguides [16]. A similar approach was used

by other researchers to study surface wave resonance effects in dielectric loaded waveguide

arrays [17].

In this chapter, we present a Floquet modal analysis of an infinite array with a finite

sub-array. The finite sub-array analysis includes three major steps. In the first step,

an infinite array with uniform excitation is analyzed using Floquet modal expansion.

Under such excitation, the active reflection and transmission coefficients of an element are
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determined. In the second step, the driving point reflection coefficients of a fully excited

finite array are obtained using the scattering matrix formulation. It is shown that the

elements of the scattering matrix (i.e., the coupling coefficients) can be determined from

the active reflection coefficients of an element in an infinite array. In the third step, the

vector AEP is obtained. Hence, the radiation pattern of a finite array with an arbitrary

excitation can be computed. In our study we specifically focused on grating lobe effects on

phased array antennas. Grating lobe amplitude increases due to disruption of the ground

plane. The explanation of such a behavior is explained.

3.1 Overview of Floquet Modal Analysis

The field excited by a periodic phased array can be decomposed into an infinite number of

modes, which are referred to as Floquet modes. Depending on the frequency, some modes

propagate and some modes decay along the z-direction. The former are usually referred

to as propagating waves, and the latter are often called evanescent waves. Both modes

are indexed by m and n, along the two respective dimensions, according to the framework

shown in Figure 3.1. In this framework, “UC” represents a periodic unit cell boundary

condition that enforces the two-dimensional periodicity along these dimensions. There

are also open boundaries, parallel to the unit cell lattice, above and below it, which are

realized in finite element solvers with Floquet ports that are similar to waveguide ports.

The Floquet modal development naturally employs an S-matrix formulation for all of the

modes, and all of the developments in this paper will utilize this convenient formulation.

The number of propagating modes depends on the frequency, scan angle, and unit

cell size, but for a given array there ideally exists only one propagating mode pair (TE

and TM) corresponding to m = n = 0. This so-called “fundamental” mode represents

a plane wave propagating in the scan direction (θs, φs) when the array is transmitting.
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Figure 3.1: Typical Fouquet modal unit cell boundary condition.

Fortunately, numerical experiments have shown for single-element lattices that only the

propagating Floquet modes and a few evanescent Floquet modes are needed to yield very

accurate solutions [18].

When scanning to an angle (θs, φs), the phase difference between adjacent sub-arrays

situated along the x and y directions are ψx = k0a sin θs cosφs and ψy = k0b sin θs sinφs,

respectively, where k0 is the wave number in free space. The normalized modal electric

field vectors (transverse components and variation only), corresponding to the resulting

Floquet modes, are given by [18]

~eTEn,m(x, y, ψx, ψy) = x̂kyn − ŷkxm√
ab(k2

xm + k2
yn)

exp(−jkxm − jkyn) (3.1)

~eTMn,m(x, y, ψx, ψy) = x̂kyn + ŷkxm√
ab(k2

xm + k2
yn)

exp(−jkxm − jkyn) (3.2)

where a × b, is the unit cell size, hats symbolize unit vectors and kxm and kyn are the

Floquet wave numbers along x and y directions, respectively for the ith Floquet mode.

For a rectangular grid, the wave numbers are given by:
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Figure 3.2: Grating lobe diagram for 1.5λ×1.5λ array with scanning angle (θs = 30◦, φs =

90◦).

kxm = ψx + 2mπ
a

(3.3)

kyn = ψy + 2nπ
b

(3.4)

where integers m and n, as well as whether a specific mode is TE or TM, depend on

the Floquet mode index i. For the purposes of this research work, define the Floquet

indices iTEn,m and iTMn,m to be those corresponding to the TE and TM mode, respectively, for

a given n and m. Normalization of equations 3.3 and 3.4 by k0 produces the following

coordinates [19];

um = us +m
λ

a
,m = 0,±1,±2, ..... (3.5)
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vn = vs + n
λ

b
, n = 0,±1,±2, ..... (3.6)

The coordinates generate the locations of all grating lobes on the (u, v) or direction

cosine plane, which is traditionally used to visualize the migration of grating lobes under

scanning [20]. All real angles, representing visible space, are inside on the unit circle in

this plane. Angles outside the unit circle are “imaginary” or invisible space. When the

main beam is scanned, the origin of the (u, v) plot moves to the new value and all grating

lobes moves correspondingly. However, the unit circle remains fixed. Any coordinate (u, v)

falling within the unit circle other than the fundamental beam m = n = 0 represents a

grating lobe location, shown in Figure 3.2. Since the sub-array lattice constants a and b

are typically multiple wavelengths, several such grating lobes may exist, spaced by λ/a

and λ/b in the u and v directions, respectively.

The scattering matrix that relates antenna terminal and Floquet modes is given by [5]

[
V −] =

[
S]

[
V +] (3.7)

where
[
V −] is the normalized incident voltage vector and

[
V −] is the normalized reflected

voltage vector at the input port and
[
S

]
is the scattering matrix of order (Ns + Nf ) ×

(Ns + Nf ), where Ns is the number of elements per sub-array and Nf is the number of

Floquet modes being considered. This matrix can be decomposed into four sub-matrices

as:

[
S

]
=

 Sa Sr

Sr SF

 (3.8)

where Sa, Sr, and SF represents scattering parameters for ports, radiation and Floquet,

respectively.
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3.1.1 Radiation Patterns and Grating Lobe Calculations

A single-element, single-polarization “sub-array ” unit cell will produce an electromagnetic

field that can be represented in terms of Floquet modal fields as [18]

~E(x, y) =
∞∑
i=1

Sri1(ψx, ψy)~ei(x, y, ψx, ψy) (3.9)

In the above equation, Sri1 is the transmission coefficient from the antenna port (port

1) to the ith Floquet mode and ~̂ei is the normalized modal electric vector for the ith

Floquet mode, corresponding to a particular n, m, and TE or TM mode from equations 3.3

and 3.4. These transmission coefficients are directly computed from a unit cell analysis

with periodic boundary conditions.

For the arrays in question here, those built on two-dimensional rectangular sub-arrays

with elements indexed by j within a sub-array, the fields are given by

~E(x, y) =
∞∑

i=−∞

N∑
j=1

Sri,j(ψx, ψy) ~ei,j(x, y, ψx, ψy)e−jk0(usxj+vsyj) (3.10)

Here, the element locations are (xj, yj) and Sri,j is as defined above. The modal voltages

associated with the iTEn,m and iTMn,m modes are

V TE
n,m =

N∑
j=1

SriTEn,m,J(ψx, ψy)e−jk0(usxj+vsyj) (3.11)

V TM
n,m =

N∑
j=1

SriTMn,m,J(ψx, ψy)e−jk0(usxj+vsyj) (3.12)

The vector form of the resulting radiated fields at the scan angle (θs, φs) becomes [5]

~E(θs, φs) = θ̂

jV TM
0,0

√
abZTM

0,0

λ2

− φ̂
jV TE

00

√
abZTE

0,0

λ2 cos θs

 (3.13)

where V TM
0,0 and V TE

0,0 are the normalized modal voltages at the array aperture for the

TM0,0 and TE0,0 Floquet mode, ZTM
0,0 and ZTE

0,0 represent the fundamental mode TE and

31



TM Floquet mode impedances (e.g., 377 for a square lattice at broadside scan). The

gain can be determined by appropriately normalizing these fields. Similarly, under the

assumptions herein, reciprocity dictates that the overall transmit and receive patterns are

identical.

The radiated fields may be modified for any scan angles and for any Floquet scan

impedances with the following relations

~E(θn,m, φn,m) = θ̂

jV TM
n,m

√
abZTM

n,m

λ2

− φ̂
jV TE

n,m

√
abZTE

n,m

λ2 cos θn,m

 (3.14)

where

cos θn,m =
√

1− u2
m − v2

n (3.15)

The Ludwig-2 AZ/EL definition of polarization is used here because it is the most

relevant for the polarimetric weather radar application from which this work draws its

accuracy-driven inspiration. According to this definition [21]

EA(A,E) = cosφs
cosE Eθs(θs, φs)−

cos θs sinφs
cosE

Eθs(θs, φs) (3.16)

EE(A,E) = cos θs sinφs
cosE Eθs(θs, φs) + cosφs

cosE
Eθs(θs, φs) (3.17)

where

cosE =
√

1− (sin θs sinφs)2 (3.18)

The results below reflect this definition of polarization, where elevation (E) maps to

co-pol and azimuth (A) maps to cross-pol for the arrays investigated.

It is worth mentioning that, the grating lobe locations and radiated fields for grating

lobe ~E(θn,m, φn,m) for a given scan direction can be computed from Floquet wave numbers.

The grating lobe directions (θn,m, φn,m) with the Floquet wave numbers are given by [5]
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sin θn,m cosφn,m = mλ0

a
+ sin θs cosφs (3.19)

sin θn,m sinφn,m = nλ0

a
+ sin θs sinφs (3.20)

The solution of equations 3.19 and 3.20 give a finite set of real solutions of (θn,m, φn,m)

and these represent corresponding grating lobe locations. The grating lobe direction for

a finite number of elements excitation in the sub-array, creates (Ns + Nf ) × (Ns + Nf )

eigenvectors. Each eigenvector comprises a set of grating lobes [5]. Therefore, intensities

of the grating lobes such as the amplitude and phase of the grating lobes are related to

the eigenvectors.

3.1.2 Mutual Coupling and Active Impedance

The mutual coupling information between the elements is important in determining the

active impedance of an element with respect to given amplitude and phase distributions [5].

For a given excitation of a finite array with a port scattering matrix Sb, the active reflection

coefficient of the ith element is given by

Γi =
N∑
j=1

Sbi,j
V +
j

V +
i

(3.21)

For infinite arrays where matched loads are assumed on all elements, the excitation is

uniform and the active impedance is only a function of scan angle. However, for arrays

of sub-arrays, the active impedance will additionally depend on where a given element is

positioned within a sub-array, and this can be calculated as

Γi =
N∑
j=1

Sai,je
−jK0(us)|xj−xi|+vs|yj−yi| (3.22)
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3.2 Simple Example Simulations

Antenna arrays can be based on a variety of designs, (e.g., dipole, log-periodic dipole,

microstrip, etc.) each having their own modeling technique and performance charac-

teristics [22]. For the illustrative purposes of this dissertation, square microstrip patch

antennas, shown in Figure 3.3, are adopted due to the relative simplicity of the design,

and the fact that they represent a common phased array element.

Figure 3.3: Cross-sectional view of a single microstrip patch antenna.
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(a) 1×4 antenna array with-

out gap

(b) 1× 4 antenna array with

a 1 mm gap

(c) Unit cell set up for 1× 4 antenna array with a 1 mm gap

Figure 3.4: 1× 4 array geometry.
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The frequency range is chosen to be near the 2.6 GHz to 3 GHz band with a center

frequency 2.85 GHz, to match the weather radar application. The substrate used in this

model is the RT/Duroid 5880 (tm) with a dielectric constant of 2.2, a loss tangent of

0.0009, and a thickness of 1.524 mm. The size of the square patch antenna is set to be

33.69 mm × 33.69 mm in order to reasonably match the antenna at broadside at the

center frequency. The feeding position is shifted from origin by 5.36 mm and fed by a

50-Ω coaxial cable through a probe feed. The copper thickness is chosen as 35 µm.

3.2.1 1× 4 Antenna Sub-array Design

The square patch antenna was aligned and replicated along its E-plane as shown in Fig-

ure 3.4 to form a 1 × 4 array. Figure 3.4a shows the 1 × 4 array without a ground plane

gap. In a separate simulation, a 1 mm gap, shown in Figure 3.4b, was added in between

the patches to intentionally create a discontinuity of the currents in the ground plane and

to represent a moderately-sized gap that may appear in a large phased array. The unit cell

set for 1×4 are is depicted in Figure 3.4c. The simulations were run in a full wave solver by

employing periodic boundary conditions mapped to specific scan angles. Each individual

antenna element is excited by a TEM wave port. A total of 38 Floquet modes were used in

this particular simulation. In general, the choice of these modes is based on the frequency,

scanning angle, and sub-array unit cell size to ensure that all higher-order modes have

enough attenuation to the Floquet ports (> 40 dB) to ensure convergence of the solution.

Here, the distance to the upper boundary is chosen to be 50 mm. Higher-order modes are

ignored in order to ensure simulation efficiency and to ease the interpretation of results.

The full S-parameters were generated for a θs angle of 30◦ for the three principle planes

(E-plane, H-plane, and D-plane). Based on these S-parameters, the embedded element

pattern, grating lobes, and active reflection coefficients are computed using the equations

of the previous section in MATLAB.
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Figure 3.5: 1× 4 array grating lobe locations (blue star indicates main beam location).
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Figure 3.6: 1× 4 array radiated field patterns vs. frequency.
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(c) H-plane without gap
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(e) D-plane without gap
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Figure 3.7: 1× 4 array active reflection coefficient.
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3.2.2 Results

The grating lobe locations of these scan angles (φs = 90◦, 0◦, 45◦ for θs = 30◦) are plotted

in Figure 3.5. There are four, three, and four grating lobes for the E-plane, H-plane,

and D-plane scans, respectively. The radiated field patterns (normalized E-field) for all

polarizations and grating lobes are shown in Figure 3.6. Due to the disruption of the

ground plane, the grating lobe amplitudes emerged at least 5-dB in the E-and H-planes,

with one of the E-plane grating lobes increasing to a significant level (30 dB). This is

because the currents are strongest along this direction. Hence, a disruption there is most

significant. For systems requiring very low sidelobes, this is clearly an issue. In the H-

plane there is an obvious null in the cross-pol of the main beam. This is related to the

way that mutual coupling effects manifest themselves along a direction where symmetry

is violated by the non-differential probe feeding, whereas symmetry is largely maintained

in the E-plane. Figure 3.7 shows the active reflection coefficients of every individual port.

As expected, gaps created by the interruption of natural currents in the ground plane lead

to different mutual couplings with respect to relative antenna positions. Therefore, the

discrepancies are observed.
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Figure 3.8: 3× 3 array grating lobe locations (blue star indicates main beam location).
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Figure 3.9: 3× 3 array radiated field patterns vs. frequency.
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(a) E-plane without gap
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(b) E-plane with gap
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(c) H-plane without gap

2.6 2.7 2.8 2.9 3
−25

−20

−15

−10

−5

0

Frequency [GHz]

A
ct

iv
e 

re
fle

ct
io

n 
co

ffi
ci

en
t [

dB
]

 

 

Port 1
Port 2
Port 3
Port 4
Port 5
Port 6
Port 7
Port 8
Port 9

(d) H-plane with gap
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(e) D-plane without gap
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(f) D-plane with gap

Figure 3.10: 3× 3 array active reflection coefficients.
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3.3 3× 3 Antenna Sub-array Design

To investigate a more general case where sub-arrays are arranged in a 2D lattice, a 3× 3

array was also simulated. Figure 3.1 shows the geometry of a 3×3 array with and without

disruption of the ground plane. The ground plane is again separated with a 1 mm gap,

but this time along a square lattice, as shown in Figure 3.1. The analysis are performed

with exactly the same approach as described for the 1× 4 array. The upper z distance to

the Floquet port is increased to 100 mm to further attenuate higher-order modes, allowing

for a reduction to 32 Floquet modes with field convergence.

3.3.1 Results

The variation of the active element pattern is again studied for the 3× 3 sub-array case.

The effects of gaps in the ground plane and subsequent variations in mutual coupling are

more apparent in the 3 × 3 array. In Figure 3.8, the relevant grating lobe locations are

plotted. For E-plane and H-plane scanning there are six grating lobes, and in the D-plane

there are only four grating lobes. Like the 1× 4 array, the rise of grating lobe amplitudes

is even more evident in the 3×3 case, as shown in Figure 3.9. Figure 3.10 shows the active

reflection coefficients in each case for each antenna within the sub-array.
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Figure 3.11: Current density of 3× 3 array, (left) without a ground plane gap and (right)

with a 1 mm gap.

Interruption of current propagation due to the gap is shown in Figure 3.11, where the

absolute value of the complex surface current is plotted on a logarithmic scale covering

60 dB. It is obvious from the graph that the flow of current gets disrupted at the gaps,

and that interruption is the principal contributor to the grating lobes. It can also be seen

that the current distribution under the non-driven patches is also changed as a result of

the perturbed mutual coupling. This also perturbs the resulting Floquet mode parameters

and, therefore, the resulting grating lobes.
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4
Practical Demonstration Verification and Impact on

Future Weather Radar

The standard Floquet modal analysis of infinite arrays of finite sized sub-arrays has been

studied through a rigorous mathematical framework and presented in the previous chapter.

This Floquet framework, however, has not been validated through measurements. To

corroborate the overall theory, this chapter presents measurements of an array of 1.5λ ×

1.5λ sub-arrays of simple patch antennas, quantifying the grating lobe and the grating

lobe effects. The measurements are accomplished carefully in a planar near-field anechoic

chamber. These efforts will eventually be helpful to predict the performance of next

generation digital phased array radars, which requires much more complex geometries

without building the array first.

In the previous chapter the antenna was designed and studied for S−band. In order to

verify the theoretical findings, we need a reasonably moderate sized antenna array. Within

the fabrication facilities of Advanced Radar Research Center at University of Oklahoma,

we can fabricate the reasonably moderate sized antenna array, if we switch to a higher

frequency band. Therefore, the frequency band is switched from S-band to X-band with

a center frequency near 10 GHz, in order to operate at a frequency where the array could

be large enough to capture large-array effects with readily-available coaxial connectors,

while being small enough to prototype and measure. The substrate was Rogers R04350B,
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Figure 4.1: Top and bottom view of 3× 3 sub-array with port numbers.

with a dielectric constant of 3.66, a loss tangent of 0.004, and a thickness of 1.524 mm.

The size of each patch is set to be 6.86 × 6.86 mm in order to reasonably match the

array at broadside at the center frequency with a feeding position of 1.5 mm from the

patch center. Each element is fed by a 50 Ω SMA connector through a probe feed. The

copper thickness is chosen to be 35 µm. The elements are spaced on a 15 mm grid with

15 elements along the H-plane and 27 elements along the E-plane. In one simulation and

board, the ground plane is continuous, and in a separate simulation, a 1 mm gap is added

in the ground plane between each 3 × 3 sub-array to intentionally create a discontinuity.

This truncation is representative of a significant gap that may appear during integration

of many sub-arrays in a large phased array system. Figure 4.1 shows the top and bottom

view of the 3 × 3 sub-array and the port numbers for each element according to their

relative space. The array is assumed herein to be on the x-z plane.
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Figure 4.2: 1.5λ× 1.5λ array radiated field vs. frequency at 30◦ scan for E-plane.
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Figure 4.3: 1.5λ × 1.5λ array radiated field vs. frequency at 30◦ scan.
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Figure 4.2 compares the radiated field pattern (normalized E-field) for all polarization

and grating lobes for two different cases (without a 1 mm gap in the ground plane and

with a 1 mm gap in between the sub-arrays). The grating lobe levels calculated here

are representative of residual numerical errors in HFSS, and their levels are shown in

Figure 4.2. There are a total of six grating lobes, and, due to disruption of the current in

the ground plane, some of the grating lobes emerged at more than −30 dBc, as shown in

Figure 4.2b. Such a grating lobe would be significant in a system requiring low sidelobe

levels.

The normalized H-plane and D-plane field patterns for all polarizations and grating

lobes are showed in Figure 4.3. As shown in Figure 4.3, some of the grating lobes’ am-

plitude also raised up for both planes. This is the similar behavior we have observed for

E-plane scan.
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(b) E-plane with 1 mm gap in ground plane

Figure 4.4: Active reflection coefficient of 3 × 3 array.
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The variation of the active reflection coefficient for each element in a 3 × 3 sub-array

is shown in Figure 4.4. The effect of gaps in the ground plane and subsequent variations

in mutual coupling are apparent in the 3× 3 array. The active reflection coefficient varies

from element to element due to the 1 mm gap in the ground plane, as shown in Figure 4.4b.

When there is no gap, as depicted in Figure 4.4a, all the elements in the array will see

similar mutual coupling environments, so the active reflection coefficients for all ports

would be same. Where there is a gap, as explained earlier, this is not the case instead,

all ports will see different mutual coupling environment so the active reflection coefficients

will also be different.
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Figure 4.5: Bottom view of the antenna array without gap.
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Figure 4.6: Bottom view of the antenna array with a 1 mm gap between sub-arrays.
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Figure 4.7: Front view of the antenna array.
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4.1 Fabrication Efforts

Figure 4.5, Figure 4.6 and Figure 4.7 show bottom and front views of the fabricated 9 × 5

antenna array. Each sub-array contains 3 × 3 elements. There are in total 405 elements

of square patch antennas. This represents the largest array that could be fabricated in-

house, and this size is thus as close a representation to an infinite array as possible. A wet

etching method and photo lithography were used to fabricate the antenna array. Ideally,

all elements are identical, and the mutual coupling is periodic between the sub-arrays;

however, finite “array of sub-array” effects and fabrication errors will inevitably provide a

practical measurement limit.

Figure 4.8: Test fixture of the measurement set up.

The individual feed points of the antenna are terminated with 50 Ω coaxial feed, and

50 Ω matched loads were attached to provide a proper coupling environment. The central
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three sub-arrays were measured in the near field chamber of the Advanced Radar Research

Center at University of Oklahoma.

The test fixture of the array measurements is depicted in Figure 4.8. An OEWG

X-band probe was used as a source antenna (transmitter). The probe and array were

separated by approximately 2λ (2.402 inches) to get the proper near field data. The

central 3 × 9 elements (1 × 3 sub-arrays of 3 × 3 elements) were measured in order to

validate the overall theory based on individual and average behavior of these sub-arrays.
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(a) Center sub-array without gap

(b) Center sub-array with gap

Figure 4.9: E-plane scanning sub-array element pattern [dB] (the black asterisks (∗)

indicate grating lobe locations).
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(a) Combined sub-arrays

without gap

(b) Combined sub-arrays

with gap

Figure 4.10: E-plane scanning sub-array element pattern [dB] (the black asterisks (∗)

indicate grating lobe locations).
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(a) Center sub-array without gap

(b) Center sub-array with gap

Figure 4.11: H-plane scanning sub-array element pattern [dB] (the black asterisks (∗)

indicate grating lobe locations).
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(a) Combined sub-arrays

without gap

(b) Combined sub-arrays

with gap

Figure 4.12: H-plane scanning sub-array element pattern [dB] (the black asterisks (∗)

indicate grating lobe locations).
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(a) Center sub-array without gap

(b) Center sub-array with gap

Figure 4.13: D-plane scanning sub-array element pattern [dB] (the black asterisks (∗)

indicate grating lobe locations).
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(a) Combined sub-arrays

without gap

(b) Combined sub-arrays

with gap

Figure 4.14: D-plane scanning sub-array element pattern [dB] (the black asterisks (∗)

indicate grating lobe locations).
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4.2 Measurements

The measurement results of the embedded sub-array patterns of E-plane scanning for cen-

ter and combined sub-arrays at 30◦ are shown in Figure 4.9 and Figure 4.10. These types

of plots are a hemispherical projection of three-dimensional space on a two-dimensional

surface. The black stars in the plots are the calculated grating lobe locations. It is clearly

visible that the grating lobe was raised up due to the gap in the ground plane. It is

more visible when all the elements are combined. Figure 4.11 and Figure 4.12 exemplify

the embedded element sub-array patterns of H-plane scanning for center and combined

sub-array, respectively. A similar trend is observed in the H-plane as well. The D-plane

embedded sub-array patterns comparison, shown in Figure 4.13 and Figure 4.14, does not

exhibit grating lobes that are as significant as in the E-plane. Certainly, the grating lobes

level increased for all cases.
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Table 4.1: SUMMARY AND COMPARISON OF SIMULATED AND MEASUREMENT

RESULTS

4.3 Comparison between Simulation andMeasurement

Results

The comparison between simulation and measured results between different sub-arrays

have been summarized in Table. 4.1. From the simulation results it is evident that the

grating lobe amplitude level emerged to around 25 dB in the E-plane scan and E-plane

grating lobes. This is due to current disruption in the ground plane gap and it is very

strong in the E-plane. The other scan angles and planes show a less significant effect.

The measured results also show similar characteristics, but in the case of the E-plane

the measurements do not show as drastic of a rise in grating lobes in the worst case. It
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is speculated that the variability in the (hand-) manufacturing of each connector, load,

and solder connection prohibits a purely constructive addition of these more dominant

grating lobe effects. Further testing of other non-central sub-arrays are underway to

better understand these limitations. It is evident from the combined sub-array results

that the increases in radiation due to the gaps are not only visible at the precise grating

lobe locations but all along the corresponding ridges in (u, v)-space as well. Phase stability

between measurements was a concern at first, but it was found that the phase did not

vary in repeated measurements more than a few degrees (which maps to an error floor of

around -50 dBc in these measurements for a single sub-array). However, because small

alignment errors will drastically impact the measured level of smaller grating lobe effects,

careful post-processing and measurement re-alignment will be investigated to explore the

limitations due to this non-ideality as well.

4.4 Further Analysis

Using Floquet modal analysis, we were able to extract the grating lobes radiation pattern

for the finite sized sub-arrays. We found that due to the gap some of the grating lobes

amplitude raised up. Since the gap is the only source for the disruption of natural currents,

the issue is how we can represent the grating lobes in terms of gap currents for each grating

lobe location for particular scan angles. To answer this question, we need to formulate the

gap current as a slot magnetic current. Since this type of antenna is aperture antenna, we

used aperture analysis techniques to analyze the antennas.

Aperture antennas can be analyzed either in spatial domain or in spectral domain. In

spatial domain the analysis is very complex. However, spectral domain it can be simplified.

To analyze it in the spectral domain we have two choices as noted in equations 4.1.
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A = ẑAz(x, y, z) ∇2Az + k2
0Az = 0 (4.1a)

F = ẑFz(x, y, z) ∇2Az + k2
0Fz = 0 (4.1b)

Induce the Fourier transform

Ãz(kx, ky, Z) =
∫ +∞

−∞

∫ +∞

−∞
Az(x, y, Z)e−j(kxx+kyy)dxdy (4.2)

Az(x, y, Z) = 1
(2π)2

∫ +∞

−∞

∫ +∞

−∞
Ãz(kx, ky, Z)e−j(kxx+kyy)dkxdkyy (4.3)

∇2Az + k2Az = 1
(2π)2

∫ +∞

−∞

∫ +∞

−∞
(−k2

x− k2
y + ∂

∂z2 + k2)Ãz(kx, ky, Z)e−j(kxx+kyy)dkxdky = 0

(4.4)

Hence

∂2Ãz
∂z2 + (kx, ky, Z)e−j(kxx+kyy)dkxdky = 0 (4.5)

If we define

kz ≡
√

(k2
0 − k2

x − k2
y) (4.6)

Correct choice would be

kz =


√
k2

0 − k2
x − k2

y, k2
x + k2

y < k2
0

−j
√
k2

0 − k2
x − k2

y, k2
x + k2

y < k2
0

(4.7)
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Then we have

∂2Ãz
∂z2 = k2

zÃz = 0 (4.8)

Solution,

Ãz(kx, ky, z) = Ãz(kx, ky, 0)e−jkzz (4.9)

Similarly,

F̃z(kx, ky, z) = F̃z(kx, ky, 0)e−jkzz (4.10)

Hence,

Az(x, y, z) = 1
(2π)2

∫ +∞

−∞

∫ +∞

−∞
Ãz(x, y, 0)e−j(kxx+kyy+kzz)dkxdky (4.11)

Fz(x, y, z) = 1
(2π)2

∫ +∞

−∞

∫ +∞

−∞
F̃z(x, y, 0)e−j(kxx+kyy+kzz)dkxdky (4.12)

This a representation of the potential as spectrum of plane waves. For an aperture in x-y

plane, the far-fields can be represented as

Eθ = jke−jkr

4πr [fx cosφ+ fy sinφ+ η cos θ(−gx sinφ+ gy cosφ)] (4.13a)

Eφ = jke−jkr

4πr [(fx sinφ− fy cosφ) cos θ + η cos θ(−gx sinφ+ gy cosφ)] (4.13b)

where η is the impedance in free space and f and g have been expanded in terms of their

x and y components.
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4.5 Huygens Sources

Figure 4.15: Equivalent gap current model on ground plane.

It is very important to understand that antenna radiate from currents. For the problem

described here in Figure 4.15, we need to first calculate the current in the gap. Using

the computational electromagnetic methods, one can calculate currents on a boundary

surface by using the equivalence theorem with the incident fields, and calculate the far-

field radiation pattern from these boundary currents. In general, we assume a current
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distribution on the antenna or, equivalently, a distribution of fields on an aperture. The

fields on the aperture can be reduced to a current distribution. We need to calculate

the magnetic current distribution in this gap model depicted in Figure 4.15. Magnetic

current are fictitious, but they enable the radiation problem to be solved. This kind of

problem stated in Figure 4.15 can be solved by simply analyzing the aperture in periodic

environment.

We replace the incident fields in the aperture with a combination of equivalent electric

and magnetic currents. We calculate radiation as a superposition of each source by using

the vector potentials. Oftentimes, we assume that the incident field is a propagating free-

space wave whose electric and magnetic fields are proportional to one another. This gives

us the Huygens source approximation and allows the use of integrals over the electric field

in the aperture. Each point in the aperture is considered to be a source of radiation.

The Huygens source approximation is based on the assumption that the magnetic and

electric fields are related in a plane wave in the aperture as [23]

ηgy = fx and − ηgx = fy (4.14a)

ηHy = Ex and − ηHx = Ey (4.14b)

with this approximation the far field becomes

Eθ = jke−jkr

4πr (1 + cos θ)(fx cosφ+ fy sinφ) (4.15a)

Eφ = jke−jkr

4πr (1 + cos θ)(fx sinφ− fy cosφ) (4.15b)

The two-dimensional vector Fourier transform f = (fx, fy) of the aperture electric field

in the x-y plane determines the far-field components. We derive the radiated components
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by projecting (vector scalar product) this field onto the vectors θ̂
cosθ

and φ̂. The trans-

formed f expands the field in k-space. This normalizes the pattern and removes the direct

dependence on the aperture length.

We separate out all but f when we consider aperture distributions. We drop the terms

for the radiation from a point source and the pattern of a Huygens point source and

limit our discussions to Huygens sources and far fields. General aperture fields require

equation 4.13, and for any region other than the far-field, additional phase terms are

needed in the transforms.

4.6 Further Simulation Results
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Figure 4.16: Without gap main lobe co-pol.
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Figure 4.17: Without gap main lobe cross-pol.

The goal of this section is to accurately capture and analyze the grating lobes effects

including mutual and surface wave effects for any given scan angles of planar phased

arrays with rectangular lattice structures. To perform this investigation, we expanded our

study from 0◦ scanning angle to 44◦ with 2◦ angular resolution. We studied for both cases,

without gap and with a 1 mm gap. The co-pol and cross-pol of main beam for without

gap case are plotted in Figure 4.16 and Figure 4.17. Figure 4.18 and Figure 4.19 depicted

the co-pol and cross-pol of main beam for the 1 mm gap case. As expected, the patterns

distorted for the 1 mm gap case at a scan angle near 20◦ and the amplitude of the cross-pol

increased. This cross-pol rise is happened may be the gap current radiation.
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Figure 4.18: With a 1 mm gap main lobe co-pol.
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Figure 4.19: With a 1 mm gap main lobe cross-pol.
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4.7 Gap Current Radiation

To investigate more, the present section focuses on how gap current can be captured due

to gaps in the sub-arrays, how this gap current radiates and affects the grating lobes,

sidelobes, cross-polarization levels, and the radiation patterns is discussed in order to

acquire fundamental knowledge and undertake theoretical/mechanical treatments to the

array level to predict the overall array performance. These studies were performed with

the combination of Floquet modal unit cell analysis results and exporting these results

into a MATLAB program, where spectral domain analysis technique, discussed in earlier

sections, was used. The unit cell discussed herein, as shown in Figure 4.1, has a total of nine

wave ports and a 1 mm gap in-between the array. After a successful full-wave Floquet

modal simulation in the HFSS, the surface currents and near-field data are exported

with a constant resolution in a uniform grid. Initially, the center element of the array is

excited, and results are exported under master/slave conditions. Antennas in the array

are arranged along φ = 90◦, making it as an E-plane. The results shown here are only for

the scan angle (φs, θs) = (90◦, 30◦). The gap currents are depicted in Figure 4.20.

(a) E_x field [with gap] (b) E_y field [with gap]

Figure 4.20: Electric fields in the ground plane while exciting center element [E-plane].
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(a) E_x field [with gap] (b) E_y field [with gap]

Figure 4.21: Gap currents only [E-plane].

The near-field data for gap along x- and y-directions is visible in the graphs due to

excitation of the center element of the array. The fields for the ports are also apparent in

the graphs. It is evident that by eliminating the ports’ near-field current contribution, one

can easily get the gaps’ current only as illustrated in Figure 4.21. This graph is showing

only the gaps’ contribution.

(a) Co-pol [with gap] (b) Cross-pol [with gap]

Figure 4.22: Radiated electric fields due to gap currents only [E-plane].
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If we consider this gap current as an infinitely long magnetic current source, using

spectral domain method and invoking Huygen’s equivalent principal, the radiated fields

for the gap itself can be calculated. The radiated fields solely for the gap current radiation

are plotted in Figure 4.22. By employing standard mathematical formulation, the radiated

fields are converted to Ludwig-II, and depicted in Figure 4.23. The radiation patterns due

to gap current are even worse when converted to Ludwig-II. The red dots on the graphs

are representing the grating lobe locations.

(a) Co-pol [with gap] (b) Cross-pol [with gap]

Figure 4.23: Radiated electric fields due to gap currents in Ludwig-II [E-plane].
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(a) E_x field [with gap] (b) E_y field [with gap]

Figure 4.24: Electric fields in the ground plane while exciting all elements [E-plane].

In the previous configuration, only the center element of the array was excited. Now,

all nine elements are excited and all nine elements contribution to the gap and resulting

radiating patterns are studied. The scan angle for this study is chosen to be (φs, θs) =

(90◦, 30◦). Similar approaches are applied to perform this study as well. The contribution

from all nine elements are presented in Figure 4.24. As is observed, the ports’ near-field

data is visible in the graphs.

(a) E_x field [with gap] (b) E_y field [with gap]

Figure 4.25: Gap currents only while exciting all elements [E-plane].
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The concentration of this study is solely based on the gaps’ contribution. Therefore,

the ports’ data are eliminated and resulting gaps’ fields are plotted in Figure 4.25. As can

be seen in the graphs, there is only gap fields are available.

(a) Co-pol [with gap] (b) Cross-pol [with gap]

Figure 4.26: Radiated electric fields while exciting all elements and due to gap currents

only [E-plane].

(a) Co-pol [with gap] (b) Cross-pol [with gap]

Figure 4.27: Radiated electric fields while exciting all elements and due to gap currents

in Ludwig-II [E-plane].
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The radiated far-fields due to the gap current are illustrated in Figure 4.26. The

radiated fields are converted to Ludwig-II. Figure 4.27 shows the radiated fields for Ludwig-

II.

(a) Co-pol (φs, θs) = (90◦, 10◦). (b) Cross-pol (φs, θs) = (90◦, 10◦).

Figure 4.28: Radiated electric fields due to gap currents in Ludwig-II [E-plane].

(a) Co-pol [(φs, θs) = (90◦, 30◦)]. (b) Cross-pol[(φs, θs) = (90◦, 30◦)].

Figure 4.29: Radiated electric fields due to gap currents in Ludwig-II [E-plane].

After exciting all nine elements in the array and their contribution to the gap currents

are added together, the results are averaged to get the final radiated fields. The radi-

ated fields for scan angle (φs, θs) = (90◦, 10◦) after converting to Ludwig-II are shown in
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Figure 4.28. Similarly, for scan angle (φs, θs) = (90◦, 30◦), the contribution of radiated

fields in Ludwig-II is illustrated in Figure 4.29. The study is performed for various scan

angles and different settings for port excitation, for instance, exciting the center element

only and/or all nine elements. From all the graphs shown above, it is evident that, even

for a 1 mm gap truncation in the sub-array, the gap current radiates and it contributes

to the both co-pol and cross-pol patterns. There is no gap exist under the assumption

of infinitely long ground plane and thereby no gap current contribution to the radiation

patterns. Finally, it can be concluded truncation of gap in the ground plane or perturba-

tion of currents due to gaps affects the cross-pol, which may lead to cross-pol rise in the

patterns.

4.8 Conclusions

A large phased array that requires thousands of elements is typically built by adjoin-

ing several sub-arrays next to each other. Mechanical gaps (or other perturbations) are

therefore likely at the sub-array seams. These gaps disrupt the natural current flow in

between sub-arrays, leading to the potential for low-level grating lobe effects. This study

has attempted to simulate and measure these effects carefully in a near-field chamber us-

ing a reasonably large array with an X-band, with relatively large (1 mm) gaps between

sub-arrays of 3 × 3 elements. It was found that the measurements qualitatively follow

the simulated results in most cases, but that mechanical (and thus electrical) variability

in the fabrication of this particular array may have limited the overall accuracy of the

measurements. Nevertheless, the measurements show that with suitable disruption to the

natural current flow (particularly along the E-plane for these microstrip patch antennas),

one does observe measurable increases in grating lobes, even based on measurement of a
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subset of the sub-arrays. The Floquet-based method may therefore be used as a good ap-

proximation for a worst-case scenario where all gap-based perturbation effects are identical

on each sub-array.

Effects of ground plane/dielectric truncation is obvious. When the dielectric coated

ground plane is of infinite extent, all the antenna elements see the same mutual coupling

environment. When the ground plane has a sharp discontinuity like the case of the finite

sub-array analyzed here, the surface waves will be diffracted. If one can consider this

truncation in the unit cell analysis as infinitely long magnetic current source, the effects of

truncation on the radiation patterns, grating lobes, and cross-pol levels can be analyzed

accurately by incorporating all mutual coupling and surface wave effects using the math-

ematical framework described above for any given scan angles. A full wave analysis of the

problem using the spectral domain approach is also presented to verify the validity of the

Floquet framework invoked for this analysis. Theoretical and experimental investigations

on any scan angles were also conducted. Both mathematical frameworks reveal that the

truncation in the ground plane even as small as 1 mm alters the grating and cross-pol

levels significantly. This rigorous effort can be used for system-level planning to inform a

mechanical solution to the electrical connection between sub-array for any future phased

array radar applications.
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5
Floquet Analysis of Planar EBG structure for Surface

Wave Suppression

In the electromagnetic environment, the inherent behavior in the interface of two differ-

ent materials always generates surface waves. This also includes, for instance, interface

between free space and the dielectric material. These surface waves propagate along the

interface and decay slowly or attenuate with the distance from the interface. During these

path propagations the surface waves get incident to one interface and reflected back to

the other interface, and when they reach to the edges they get diffracted and radiate

readily into surrounding space as leaky waves. These undesirable features are depicted in

Figure 5.1. These waves are incident on the ground plane, for instance, at an elevation

angle θ, get reflected from there, and meet the dielectric-air interface, which also reflects

them. Following this waggling path, they finally reach the boundaries of the substrate

where they are reflected back and diffracted by the edges of the substrate [1].

These surface waves can be classified into two categories: transverse electric (TE)

or transverse magnetic (TM) surface waves. They are the TE and TM modes of the

substrates. These modes are characterized as the wave attenuating in the transverse

direction (normal to the antenna plane).
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Figure 5.1: Propagation of surface waves in the substrate [1].

Surface wave propagation is a very serious problem in the phased array community.

Surface wave radiation increases cross-polarization levels, limits beam scanning capabili-

ties and creates scan blindness, reduces antenna efficiency and gain, and increases end-fire

radiation. Therefore, it is very important to explore these surface waves and their char-

acteristics and propose a way to suppress these surface waves. Electromagnetic bandgap

(EBG) structures offer unique solution, for they effectively suppress surface waves for a

variety of frequencies and a wide range of applications [24]. EBGs usually consist of metal-

lic patches of different shapes located at the surface of grounded dielectric slab and each

element is connected to the ground plane through vias. The metallic patches could be
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Figure 5.2: Lumped LC model for EBG analysis [2].

different shapes like a square, hexagon, or other shapes. In general, the height of the sub-

strate is less than a tenth of a wavelength h < λ/10 [25]. According to [25], the vias plays a

very important role in suppressing the surface waves. Numerous studies have been carried

out over the years to suppress the surface waves using vias. The main idea, in short, is that

using a high impedance surface, the antenna is placed very near to the ground plane and

electromagnetic bandgap behavior suppresses propagation of surface waves, which reduces

radiation from the edges and thereby maintains a very directive beam [2, 24, 25].

Even though various methods have been implemented to analyze the EBG structures,

the simplest method is the lumped element model. Other techniques are: (a). periodic

transmission line method and (b). full wave numerical methods. Figure 5.2 represents the

equivalent lumped element model of the EBG structure and that describes EBG as an LC

resonant circuit [26]. The resonance frequency is given by the following equation

ω0 = 1/
√
LC (5.1)

It is evident from the equation that, if we increase the capacitance, resonance frequency

can be reduced. To the author’s knowledge, no publications to date have analyzed the

fundamental limits of these high impedance surfaces or provided clear guidelines to design

these high impedance surfaces including multilayer circuits. Analysis of multilayer struc-

ture and vias is also rare. Some others suggest that TM wave suppression is relatively easy

85



compared to the TE waves [27]. Hence, it is very important to analyze EBG geometry for

multilayer structures for phased array applications and suppress the surface waves.

5.1 Benefits of Reducing Surface Wave Suppression

Reducing surface wave excitation from printed planar antennas can be beneficial for var-

ious reasons. First, the radiation efficiency will increase due to reduced surface waves

excitation. Second, due to decreased surface waves, the diffraction from the edges will

also decreased, leading to decreased back radiation and interference with the main pat-

tern in the forward region. Also, reduced surface wave excitation usually results in reduced

coupling between adjacent antenna elements [28].

EBG substrates consist periodic structures and have forbidden frequency bands, within

which no surface waves can propagate. Care must be taken, however, to also ensure

that leaky waves are not supported by the periodic substrate, which can also result in

undesirable effects [29]. Antennas based on reduced surface waves can also eliminate the

surface waves [28].

The wire medium supports three different families of plane wave solutions: transverse

electromagnetic (TEM) modes, transverse magnetic (TM) modes, and transverse electric

(TE) modes. The dispersion characteristics of these modes are [30]

βh = ±kz (TEMmode) (5.2a)

β2
h = k2 (TEmode) (5.2b)

β2
h = β2

p + k2 (TMmode) (5.2c)

The mushroom type EBG structure has many benefits: 1) it provides a compact high-

impedance boundary and an in-phase reflection characteristic and 2) it can suppress the

propagation of guided modes. These properties are useful in enhancing the radiation
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properties of low-profile antennas, e.g., to improve the return loss over a relatively wide

bandwidth and reduce the mutual coupling in printed antenna arrays sharing the same

ground plan.

5.2 Scan Blindness and its Phenomena

The scan range of the printed phased arrays is limited by the phenomenon known as scan

blindness, which is induced due to coherent coupling between the substrate waves and the

array’s space harmonic fields. Due to strong excitation of substrate waves and coupling of

desired radiating energy to these unwanted substrate waves, near a scan blindness angle,

a phased array fails to function as a radiator or receiver.

Scan blindness occurs as phase matching is satisfied between the substrate waves and

array’s Floquet modes. This condition can be shown as [31]

β2
sub = (2πp

dx
+ k0 sin θ cosφ)2 + (2πq

dy
+ k0 sin θ sinφ)2 (5.3)

where βsub is the substrate wave phase constant, where it can be βsw or βtw, depending

on the mode type under consideration, and the right side represents phase constant of the

projected array mode on the structure’s surface. In most practical cases scan blindness is

due to coupling between a surface wave mode and the (∓1, 0) Floquet modes. However, we

can also observe from equation 5.3 that the scan blindness, due to the (0, 0) Floquet mode

or main beam, is possible if the array excites leaky wave modes, whose phase constant βsw

is smaller than that of free space k0.

Fast periodic leaky modes may exist within a surface wave bandgap zone. These leaky

modes may result in more energy loss and crosstalk than the surface wave modes and

should be taken into account in circuit design. Leaky modes (complex wavenumbers) may

exist within the surface wave bandgap. In order to utilize the surface wave bandgap for loss
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reduction, it is necessary to also eliminate the leaky modes within the bandgap, creating

a complete mode bandgap [29]. The eigenvalues (propagation wavenumbers) are obtained

from the roots of this equation for a given direction in the phase plane (i.e., for a given ratio

of or, equivalently, a given angle). When the propagation wavenumber is purely real (for

a lossless structure), the corresponding mode is a bound mode. When the wavenumber is

a complex value, the mode may be either an attenuating slow wave (an evanescent surface

wave mode in the bandgap) or a radiating leaky mode. To calculate the leaky modes, we

need attenuation constant α. In the periodic case, if there are several space harmonics, the

incident beam may strongly couple to a leaky mode of the structure whenever it is phase

matched to any of these space harmonics. A guided mode with phase constant |β| < k0,

supported by an open wave guiding structure, is a leaky wave that radiates energy into free

space as it travels along the structure. In other words, the leaky mode can couple to the

radiation modes of free space, namely, outgoing plane waves. However, recent theoretical

and experimental findings have shown that, under specific conditions, a fast wave traveling

along an open structure can avoid radiation and, instead, it can behave as a purely bound

mode without coupling to propagating waves in the background [32].

Similar to mushroom EBG structures, another high impedance surface named unipolar

compact EBGs (UC-EBG) is constructed by interconnecting unit cells on the top layer

to realize a high-impedance surface with good stopband characteristics at the desired

frequency range [33–36]. For a variety of microwave applications, UC-EBG’s are very

attractive and easier to fabricate compared to mushroom EBGs, as they don’t have vias.

However, to design UC-EBG’s at certain desired frequencies, the compactness became an

issue as their periodicity should be a half wave-length at their center frequency [37].

88



5.3 Multilayer EBG Surface for Antenna Applications

Our main focus for this study is to suppress surface waves for weather applications. Most

of the weather radar works on S-band. For simplicity we chose frequency at 3.415 GHz.

We have chosen a 50.8 mm × 50.8 mm unit cell. Due to its larger wavelength and vias in

the mushroom, it also needs significant memory constraint to simulate the whole structure

in the full wave simulator with proper convergence.

Within the 50.8 mm× 50.8 mm dimension, we can fit as many mushroom EBG unit

cells as we want. Many mushroom EBGs require more memory and time to solve the

whole structure. It is important to remember that our substrates are all lossy. However,

due to memory and time constraint to use EBG as an antenna’s ground plane, we later

switched to a 4 × 4 mushroom EBG unit cell to cover the whole 50.8 mm× 50.8 mm

dimension. That is why our EBG mushroom cell is 12.7 mm, as shown in Figure 5.4.

5.3.1 Dipole Antennas on EBG Surface

In the frequency range where the surface impedance is very high, the tangential magnetic

field is small, even with a large electric field along the surface. Such a structure is some-

times described as an artificial magnetic conductor. Because of this unusual boundary

condition, the high impedance surface can function as a new type of ground plane for low-

profile antennas. The image currents in the ground plane are in-phase with the antenna

current, rather than out-of-phase, allowing radiating elements to lie directly adjacent to

the surface, while still radiating efficiently. For example, a half-wave dipole lying flat

against a high-impedance ground plane is not shorted as it would be on an ordinary metal

sheet. For simplicity, we choose dipole antenna length to be λ/2 as its characteristics are

well known.
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It is well-known that input impedance for a λ/2 dipole is 73 + j42.5 Ω [25]. The

resonance condition for any kind of antenna is considered as the reactance part needs

to be zero. Therefore, to make the imaginary part equal to zero, the antenna length is

reduced until the input impedance becomes real. While the antenna gets excited there is

some fringing effect. So, the antenna’s physical dimension is not exactly λ/2, but slightly

smaller than the effective length. Usually λ/2 is the effective length of the antenna.

To design dipole antenna usually this equation can be followed

l + d = 0.48λ (5.4)

where d is the diameter of the wire, and l is the length of the wire. Ideally, d < λ/10. In

such case real input impedance should be 6 68 Ω. The diameter of the wire antenna can

be transformed to the width of the antenna using Hellen’s transformation as [38]

width of dipole planar antenna (W ) = 4r

where r is radius of the wire. In practice, width usually helps to increase the bandwidth

of the antenna.

It has been studied that a straight-wire dipole can be located parallel and in very close

proximity to the ground plane to achieve 50 Ω impedance with more bandwidth [39]. Also,

Yang and Rahmat−Samii [40] matched a dipole antenna over a single layer EBG surface

with 50 Ω impedance. They concluded that due to strong mutual coupling between the

image current and dipole currents, due to their close proximity, the impedance of the dipole

gets changed for the PMC ground plane. In their study [40], it was indicated that surface

wave bandgap cannot guarantee the effective radiation of a low-profile wire antenna as a

complicated interaction occurs between the wire antenna and the EBG surface. They never

explained what this complicated interaction is. Our exploration would be to learn about

this complicated interaction and its effects on radiation patterns and the surrounding

environment.
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Yang and Rahmat−Samii [40], in their study of dipole antenna for a single layer mush-

room, put the dipole over an EBG top surface as high as 0.02λ12GHz and varied the

dipole distance until maximum isolation found within the frequency band. We extended

this study for multilayer circuits for lossy substrates and instead of wire antenna printed

planar antenna is used.

5.4 Aperture Coupling

For microstrip planar antenna configuration, aperture coupling is very common for the

indirect method of feeding the resonant patch. Aperture-coupled antennas are well known

for increasing the impedance bandwidth and theoretically provide zero cross-polarizations

in the principal planes [41, 42]. In general, microstrip-fed slot antennas have the advantage

of relatively good impedance matching and the capacity for full integration with active or

passive components.

For aperture coupling for microstrip antenna, the top substrate contains the radiat-

ing element, and the bottom substrate contains the microstrip feed line. The coupling

aperture is usually centered under the patch, leading to lower cross-polarization due to

symmetry of the configuration. As depicted in Figure 5.3, a small aperture is cut in the

ground plane to allow coupling from the open-circuited microstrip feed line to the radi-

ating patch. A microstrip 50 Ω feed line is generally placed in the center of the patch

for maximum coupling and symmetric radiation pattern. According to [41], the aperture

couple microstrip antenna has several benefits such as:

• The top patch could be fabricated on a thick low dielectric substrate to enhance the

BW, and the feed network on the other side of the ground plane could be on a thin

high dielectric substrate to reduce radiation losses.
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Figure 5.3: Typical aperture coupled microstrip antenna.

• Radiation from the feed network does not interfere with the main radiation pattern,

since the ground plane separates the two substrates.

• The excess reactance of the antenna can be compensated for by varying the mi-

crostrip feed length of the open-circuited microstrip stub.

• The input impedance is easily controlled by the size, shape, and position of the

aperture.

The slot aperture can be either resonant or non-resonant. The resonant slot provides

another resonance in addition to the patch resonance, thereby increasing the BW at the

expense of an increase in back radiation. As a result, a non-resonant aperture is normally

used.

5.5 Reflection Phase Diagram

To effectively suppress the surface waves, a mushroom EBG unit cell is designed, as

presented in Figure 5.4. It consists of five parts: two dielectric substrates of different

thickness, a metal ground plane is sandwiched in-between the dielectric substrates, pe-

riodic metal patches on top of the substrate, and vertical vias connecting the patches
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to the ground plane. The patch size is 11.47 mm × 11.47 mm and the ground plane

is 12.70 mm × 12.70 mm. The diameter of the via is 2 mm. The dimension of the

top substrate is 12.70 mm × 12.70 mm × 4.572 mm, where at the bottom substrate is

12.70 mm × 12.70mm × 1.524 mm.

Figure 5.4: EBG unit cell structure.

The performance of the mushroom EBG surface is verified based on the aforementioned

geometrical configuration and dimensions. The plane wave normal incidence reflection

phase variation of S11 of the geometry is shown in Figure 5.5. The full wave Floquet based

simulated data shows that the bandwidth of 0.50 GHz (fl = 3.27 GHz and fh = 3.77 GHz)

is achieved. At a very low frequency, the reflection phase is +180◦ and the structure

behaves like a smooth metal surface. As frequency increases the reflection phase slopes
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Figure 5.5: Reflection phase diagram of the proposed EBG geometry.

downward and eventually crosses through zero, where it behaves like a magnetic conductor.

Above the resonance frequency the phase returns to −180◦. This diagram is obtained from

HFSS, a full wave electromagnetic solver. It is worth mentioning that both CST and HFSS

give almost the same reflection phase diagram. The desired band is close to the frequency

region where the EBG surface shows a reflection phase in the range of (0◦ ± 90◦). In this

range, antenna can lie on the top of the EBG surface.
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5.6 Dispersion Diagram and Surface Wave Bandgap

0 0.5 1 1.5 2 2.5 3

 

0

1

2

3

4

5

6

7

8

9

F
re

qu
en

cy
 [G

H
z]

Band gap from 2.73 GHz to 3.91 GHz

     to X     X  to M     M to    

light line
HFSS Frequency mode 1 [TM]
 HFSS Frequency mode 2 [TE]
 CST Frequency mode 1 [TM]
 CST Frequency mode 2 [TE]

Figure 5.6: Dispersion diagram of the proposed EBG geometry.

A single EBG unit cell is simulated using full wave eigenmode HFSS and CST solver. The

Bloch boundary conditions are applied in the unit cell. The dispersion diagram for the

geometry described here is shown in Figure 5.6. As can be seen, the surface wave bandgap

is approximately between 2.73 GHz and 3.91 GHz. Below resonance the TM surface waves

are supported. At low frequencies they lie very near to the light indicated in Figure 5.6 by

a green line with a slope equal to the speed of light c. The field extends many wavelengths

beyond the surface, as it does on a flat metal sheet. Near the resonant frequency, around

3.415 GHz, the surface waves are tightly bound to the surface and have a very low group

velocity. The dispersion curve is bent away from light line at around 3.91 GHz. Above

the resonance frequency, the TE waves are supported and the surface is capacitive. The
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Figure 5.7: Proposed EBG geometry.

lower end of the dispersion curve is close to the light line and the waves are weakly bound

to the surface, extending far into the surrounding space. As the frequency is increased,

the curve bends away from the light line and the waves are more tightly bound to the

surface [24]. The slope of the dispersion curve indicates that the waves feel an effective

index of refraction that is greater than unity. This is because a significant portion of the

electric field is concentrated in the capacitors.

5.7 Theoretical Design of Mushroom EBG Dipole

Antenna

In this study, a mushroom EBG structure for dipole antennas is designed to resonate at

3.415 GHz. Figure 5.7 shows the dimensions of the antenna. The antenna is designed on

the substrate R4350B with dielectric constant εr=3.66. The geometry has two substrates,
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Figure 5.8: Antenna geometry without mushroom.

the top for the antenna and the bottom for the feed. The dimension of the mushroom

patch is chosen to be 11.47 mm × 11.47 mm. The via dimension is found 2 mm and

the distance between two mushrooms patch is 1.23 mm. The unit cell consists of three

parallel dipole antennas. The center one is the driven dipole antenna and the other two are

parasitic antennas. Parasitic elements are used to increase the bandwidth of the antennas.

The driven antenna dimension is 24 mm × 0.50 mm. The parasitic antenna dimensions

are 26.71 mm× 0.50 mm. These dimensions are obtained through parametric studies.

The aperture in the ground plane is 16 mm × 1 mm. On the bottom substrate there is a

microstrip feed line. This stub length is found to be 5.6 mm × 3.36 mm to match it with

50 Ω.

The geometry is excited under Floquet boundary conditions. It is found that there

are 34 Floquet modes required to perfectly simulate the antenna. Therefore, 34 Floquet

modes are used on each top and bottom Floquet boundary. The choice of these modes is

97



based on the frequency, scan angle, and unit cell size to ensure that highest order modes

have enough attenuation to the Floquet ports.

To compare the antenna performance, another similar naked version of the antenna

is designed. Figure 5.8 shows the geometry of the naked version. Since the antenna

needs to resonate at 3.415 GHz, the dimensions for the driven and parasitic elements are

changed slightly. These dimensions are found through parametric studies. The driven

antenna’s dimensions are 22.18 mm × 0.50 mm. The parasitic antennas’ dimensions are

24.80 mm × 0.50 mm.

2.6 2.8 3 3.2 3.4 3.6 3.8 4

Frequncy [GHz]

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

R
ef

le
ct

io
n 

co
ef

fic
ie

nt
 [d

B
]

S
11

[naked]

S
11

[EBG]

Figure 5.9: Reflection coefficient comparison.
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The performance of the antenna is shown in Figure 5.9. Both antennas are resonating

at 3.415 GHz. The comparison of the smith charts is shown in Figure 5.10. It is found that

both antennas achieved well impedance match at 3.415 GHz. However, a naked version

has wider bandwidth compared to the EBG one.
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5.8 Scan Performance
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Figure 5.11: Scan performance.

Scan performance of the antenna is shown in Figure 5.11. For the naked version there is

clearly a blind angle at around 44◦ for E-plane scanning. However, there is no blind angle

for E-plane scanning for EBG geometries. This is due to suppression of surface waves

using EBG material.
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6
Electromagnetic Bandgap Structure on Cylindrical

Radiating Geometries

A cylindrical polarimetric radar is always the best choice compared to its planar coun-

terparts. There are several benefits of using cylindrical geometry compared to planar ge-

ometry. In a cylindrical array configuration, while scanning the beam, the sector of each

cylindrical facet commutates to scan different azimuths. A very low cross-polarization can

be achieved through cylindrical geometry.

The main benefits of using a cylindrical array is that the beam shape is invariant with

the azimuth scanning with a constant elevation angle. Polarization is always pure along

H- and V - position, since the cylindrical array is always scanning on the principal planes.

In a planar array, while scanning away from principal planes, there is an issue with cross-

polar biases that can be introduced due to the loss of orthogonality from electronically

steering the beam away from the principal planes. Using a cylindrical array configuration,

this can be easily avoided [12, 43, 44].

The cylindrical array configuration supports creeping wave modes in addition to leaky

and surface wave modes. All surface and creeping waves have adverse effects on array

performance. They increase the back radiation levels. In order to meet future weather
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Figure 6.1: Cylindrical polarimetric phased array radar demonstrator.

observation needs, under the multifunction polarimetric phased array radar (MPAR) pro-

gram, a cylindrical polarimetric phased array radar (CPPAR) was modeled, built, and

tested at the Advanced Radar Research Center at the University of Oklahoma, as shown

in Figure 6.1. Most of the details of the analysis, starting from modeling, beam-forming,

and calibration can be found in [12, 44, 45]. This is the biggest cylindrical radar ever

made for weather applications. Comparatively, the CPPAR demonstrator is a new and

very uncommon technology [12]. Some of the electromagnetic behavior of the CPPAR
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demonstrator is well-understood. However, a significant number of electromagnetic wave

interactions with the surroundings are yet to be well-understood [12, 44]. It was found

that CPPAR patterns suffer from ripples in the H-polarized pattern and a substantial

amount of back radiation [12, 44]. Measurements were taken several times to better un-

derstand these behaviors. Through both measurements and simulations, it was found

that there are significant amounts of back radiation. Initially, it was assumed that the

ground reflections and other environmental factors might have effects on back radiation.

Some new measurements were performed by putting electromagnetic absorbers where the

ground reflections have the highest possibilities. There are still substantial amounts of

back radiations present. The measurement results were imported to a MATLAB program

to further study the phase mode spectral analysis of the measurement results. By elim-

inating some of the phase modes, the creeping waves dropped significantly and the back

radiation improved substantially [12, 44, 45]. Since these surface and creeping waves are

the root cause of the pattern’s deterioration, it is crucial to suppress those surface and

creeping waves to make the pattern quality as clean as possible. One of the reasons the

pattern quality needs to be clean is in order to use minimal frequency spectrums or to

reuse spectrums while operating the radar, instead of spending money on the frequency

real estate, it is a cost effective solution [44].

The motivation of this study here is to reduce the effects of surface and creeping waves

on cylindrical array geometry using electromagnetic bandgap structures and ultimately

reduce the back radiation. To accurately and precisely capture the surface waves and

creeping waves effects, the analysis invoked Floquet modal framework and the phase mode

pattern synthesis technique [12].
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6.1 Electromagnetic Bandgap on Cylindrical Structure

In the previous chapter, we designed and analyzed the planar EBG structure in a rigorous

mathematical framework to suppress the surface waves on planar phased array geometries.

We were able to mitigate scan blindness and improved the gain of the rectangular configu-

rations that ultimately enhanced antenna performance. Alternatives of the planar lattice

structure, cylindrical structures are a better choice for future weather applications [45].

Even though numerous papers have studied cylindrical EBG geometries, none of them

address creeping and surface wave effects and back radiation [46–48].

In this chapter, a new circularly periodic EBG substrate is introduced to suppress

the surface waves and creeping waves. The proposed EBG substrate is periodic based on

the aperture-coupled mushroom-like structure. So, we use the same geometry to explore

the suppression of surface waves on cylindrical geometry. We used the same geometrical

configuration for cylindrical structures, shown in Figure 6.2, as we used for planar EBG

structures. Unlike in the case of planar scan blindness, we want to eradicate the “phase

mode blindness” using cylindrical EBG geometries. The analysis technique described

herein includes the creeping and surface wave effects and takes into account the mutual

coupling. Hence, this analysis technique is more powerful than any techniques that do not

account for these effects.

6.2 Formulation for Analyzing the Simulation Results

The cylindrical array was previously studied in rigorous mathematical framework in [12].

The embedded element pattern for an N - column arrays can be expressed as [12]

E(θs, φ) = 1
N

N−1∑
k=0

N−1∑
n=0

E(θs, φ−
2π
N
n)ej 2π

N
nk (6.1)
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where k is the kth cylindrical phase sequence excitation (CPSE) and n is the column

number. A MATLAB function was generated to take the 0th element pattern, phase shift

the array by 2π
N
, and add the phase shifted calculation to the total pattern. Due to the

periodic nature of the cylindrical array geometries, the radiation pattern of the cylindrical

array can be represented as a Fourier series, where each term in the Fourier series is a

phase mode [12]. The Fourier series resulting from the far field pattern at an elevation

angle θs and φ may be represented by

E(θs, φ).n̂ =
∞∑

m=−∞
ame

jmφ (6.2)

where n̂ is the unit vector normal to the far field pattern at a specific elevation angle θs,

and am is the phase mode coefficients. The vector form of the antenna can be written

as [12]

n = N

2πKswr∆φ+ pN (6.3)

where p is any integer, and r∆Φ is the azimuth element spacing. The first fundamental

term here is larger than nmax = k0r and has little contribution to the radiation. The

radiation index p = −1 case, the contribution of the surface waves typically cancels out

the direct radiation from the exciting element. In general, excitation of surface waves is

identified as the primary contributor of the pattern degradations for the H-polarization.

6.3 Unit Cell Set Up

The behavior of planar arrays is well-understood, while a planar antenna is analyzed under

Floquet framework. The Floquet framework accounts for the mutual coupling and scan

impedance effects. It is a very powerful method to accurately predict any infinite to finite

sized antenna performance in the array environment [9, 18]. In general, the simulation
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in Floquet analysis is performed using the center element or geometry while computing

remaining elements in parallel to avoid computing thousands of elements in parallel. A

similar approach is applied to simulate the cylindrical geometry because of the cylinder’s

axial symmetry. This kind of method was applied earlier in a rigorous mathematical

framework to predict the performance of cylindrical array antenna geometry [12]. The

same procedure is applied to simulate this cylindrical EBG geometry. This kind of simu-

lation technique helps to accurately predict antenna performance using much less time and

fewer computational resources. Typically, the usage of computer resources goes up by N3

for the conventional array geometry, where N is the number of elements in the array, while

the computational usage for the unit-cell technique increases linearly with N . Hence, for

any medium to large arrays, this approach to the unit cell method is advantageous.

Figure 6.2: Cylindrical EBG set up.

106



Figure 6.3: Cylindrical naked/uniform substrate set up.

Figure 6.4: Cylindrical EBG geometry set up for 24 columns.
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For the simulation set-up over here, as shown in Figure 6.2 and Figure 6.3, the cylinder

is positioned axially along the z-direction with the 0th element directed along positive y-

axis in such a way that the elevation angle is θele = (90◦ − θs) and the azimuth angle is

φaz = (90◦ − φs), when the 0th element is considered at broadside. A typical 24-column

cylindrical EBG geometry set-up is shown in Figure 6.4, as an example. For this specific

geometrical configuration, the radius of the cylinder is approximately 192.93 mm, while for

96-columns it is about 775.89 mm. Even though the set-up shows all 24 columns around

the cylinder, the simulation will compute only the center element. Particularly, the 0th

element, and use master/slave boundary conditions to emulate the full array of elements.

The first master/slave boundary conditions are located on the air-box and are per-

pendicular to the x-y plane. The first master/slave boundary conditions create a phase

difference between the master and slave by 2πk
N

to emulate a fully populated cylinder in the

azimuthal direction. The first master/slave boundary conditions are located on the air-box

surfaces, which are parallel to the x-y plane. These two boundaries emulate currents on

these surfaces as if there were an infinite array of elements both above and beneath the

unit-cell. The slave-1 boundary condition follows a phase difference of k0dz cos θs between

the bottom and top boundaries.

A perfectly matched layer (PML) boundary condition is applied as a wedge-shaped

square air-box on the top of the geometry. PML is a reflection-free boundary condition. If

PML is not there, the default radiation boundary for HFSS would be a short circuit at the

end of the air-box. This would result disruptions in the radiation patterns that would not

physically be present in an experimental measurement. At the bottom, a perfect magnetic

boundary condition is applied at a distance of at least six times of the feed substrate

height.
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6.4 Convergence Consideration

Convergence is an important issue for any numerical method because it is necessary to

understand where, in angular and phase mode domains, it is invalid due to numerical

and boundary conditions. Unfortunately, most of the literature does not explicitly discuss

numerical convergence issues. The key to a successful electromagnetic field simulation is

to begin with simple, and easily manageable problems for which the solution is known in

advance. This helps the designer to build a sound technical judgment and an appreciation

for the sensitivity of the solution to various design parameters. Techniques for error-

checking and assessment of convergence can thus be systematically articulated and refined.

When simulating a cylindrical unit cell using full wave solver, for instance, with HFSS,

it is very important that one studies the convergence issues to get the correct solution

of the geometry. In HFSS, a PML is a radiation boundary that emulates reflection-free

radiation [49]. For a given geometry and set of boundary conditions, HFSS ensures one

will not receive any false numerical convergence. Even though PML requires more RAM,

PMLs absorb a much wider range of waves in terms of frequency and direction. For a

cylindrical geometry’s unit cell set-up, the PML boundary should provide an appropriate

termination for the cylindrical harmonics/phase modes that are above cutoff within the

unit cell for each CPSE [12]. However, we found a potential sensitivity of the placement

of PML that terminates the unit cell. In our simulation the PML distance is adjusted to

observe how PML distance affects convergence of the simulation.

109



-200 -150 -100 -50 0 50 100 150 200

Azimuth [deg.]

-100

-80

-60

-40

-20

0

P
at

te
rn

[d
B

]

Cylinder radius of 192.9322mm and element spacing of 50.8mm, f=3.415GHz,EL=3 deg, N=24

Naked/uniform co-pol [300 mm]
Naked/uniform coss-pol [ 300 mm ]
Naked/uniform co-pol [500 mm]
Naked cross-pol [500 mm]

-50 -40 -30 -20 -10 0 10 20 30 40 50

Phase Mode Index

-80

-60

-40

-20

0

20

40

60

S
pe

ct
ru

m
 [d

B
]

Phase mode spectrum for cylinder radius of 192.9322mm and element spacing of 50.8mm

Naked/uniform co-pol [300 mm]
Naked/uniform co-pol [500 mm]

Figure 6.5: Cylindrical simulation results comparison for naked/uniform substrate while

PML 300 mm vs. 500 mm away from the radiating surface [N = 24].
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Figure 6.6: Cylindrical simulation results comparison for EBG substrate while

PML 300 mm vs. 500 mm away from the radiating surface [N = 24].

Figure 6.5 and Figure 6.6 compare the simulation results for PML termination 300 mm

vs. PML 500 mm away from the radiating surface for H-pol, for cylindrical geometries on

a uniform substrate and on an EBG substrate, respectively. Apparently, there are excess

ripples in the co-pol patterns, and elevated back radiation observable for the naked case.

The phase mode analysis shows that, for both the EBG and naked cases, even though

PML is more than 3λ away, it is still modifying the simulation results.
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Figure 6.7: Cylindrical simulation results comparison for naked/uniform substrate while

PML 300 mm vs. 500 mm away from the radiating surface [N = 96].
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Figure 6.8: Cylindrical simulation results comparison for EBG substrate while

PML 300 mm vs. 500 mm away from the radiating surface [N = 96].

This behavior is much more visible when the number of elements is increased to 96.

Similar behavior is apparent for 96 elements as well and is depicted in Figure 6.7 and

Figure 6.8 for naked and EBG structures, respectively. The 500 mm case obviously gives

fewer numerical convergence issues and better results. The closer the PML is to the

radiating surface, the more phase mode spectrum acts inappropriately. From this we can

conclude that, for more complex antenna design, the PML should be placed more than 5λ

away to ensure convergence issues do not interfere with the simulated results.

.
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Figure 6.9: Cylindrical comparison while PML 500 mm away from the radiating surface

[N = 24].
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6.5 Comparison and Analysis of the Simulation Results
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Figure 6.10: Cylindrical comparison while PML 500 mm away from the radiating surface

[N = 96].

As we discussed in an earlier section, we first analyzed our geometry with number of

elements N = 24. The comparison of the results is shown in Figure 6.9. The 500 mm

case results are shown here as it gives better convergence. As can be seen, there are

significant improvements in the EBG cylindrical pattern. There are no ripples observed

in the co-pol pattern of cylindrical EBG structure. We also studied the N = 96 element

cylindrical pattern and the simulation results are shown in Figure 6.10. Certainly, while

exciting H-polarization, there are significant ripples observed near the broadside radiation

for naked/uniform cases for both settings. With the aid of phase mode analysis, it is found
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that in the naked case certain phase modes do not radiate. This is caused by a surface wave

on the grounded dielectric slab that leads to “phase mode blindness” which is similar to

“scan blindness” on planar equivalent cases discussed in the previous chapter. Therefore,

these ripples complicate the pattern synthesis. On the other hand, there are no ripples

for EBG geometries. This indicates that by using cylindrical EBG structure, one can

eliminate surface and creeping wave effects on cylindrical geometries and can improve the

antenna performance.
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Figure 6.11: Cylindrical comparison while PML 500 mm away from the radiating surface

[N = 96].

In a separate simulation, dipole antennas are placed along vertically. The comparison

of the simulation results for both V−pol and H−pol are shown in Figure 6.11. Both
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patterns are symmetric and matched very well. From the graphs it is seen that using

cylindrical EBG structures, the suppression of phase mode blindness is possible.

6.6 Conclusions

This chapter has presented the design, analysis, techniques, and simulation of a new

cylindrical EBG structures for multifunction radar application as a development effort for

future weather surveillance needs. The proposed cylindrical EBG structure has several

advantages to improve the pattern quality and the overall antenna performance. For

example, the creeping and surface wave excitation that is dominant in uniform substrate

geometries can easily be suppressed using these cylindrical EBG geometries. The back

radiation can be improved considerably. The “phase mode blindness”, which occurs due

to coherent coupling of creeping and surface waves to the radiated space waves is totally

eliminated. This analysis involved a rigorous mathematical framework referred to as the

phase mode analysis technique. By comparing both polarization simulation results, precise

matching between co-pol beam patterns is achieved.

To achieve the appropriate convergence, PML is placed at different distances from the

radiating surface of the antenna. It was seen that if the PML is placed too close to the

antenna surface in the unit cell, the far field radiation pattern is affected substantially

and relative convergence error occurs. For accurate analysis, the PML should be placed

at least 5λ apart from the radiating surface for the complicated and multilayer cylindrical

structure discussed in this chapter.

Finally, the next step would be to fabricate and measure this cylindrical geometry

within the facilities of ARRC at the University of Oklahoma. A good comparison between
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measurement and simulation results would be a fantastic aid to the ongoing effort to de-

velop the next-generation cylindrical phased array radar. Overall, the proposed cylindrical

EBG element could be an ideal choice for weather and MPAR applications.
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7
Summary and Conclusion

This dissertation presents an investigation into the theory and applications of Floquet

analysis on finite phased array applications. It was found that even though there is a very

small gap, as small as 1 mm in-between the sub-arrays, this has a huge impact on the

cross-polarization level increase. These periodic gap currents get radiated and contribute

to increasing the cross-polarization of the antennas.

Furthermore, the proposed scanning phased array antenna with EBG has promising

potential for the future generation of phased array antennas with reduced surface waves

beyond the commonly used half-wavelength element spacing. They have numerous utiliza-

tion in weather applications and remote sensing, surveillance systems, wide-angle scanning

radars, automotive radars such as collision avoidance, massive multi-input/multi-output

radars, intelligent vehicle highways, autonomous cruise control radars, and many more.

The simulation results shows there are significant improvements in surface wave sup-

pression of cylindrical EBG geometries. This is due to TM surface wave suppression. To

validate its results, cylindrical EBG geometries need to be built and tested. For future

weather radar, this kind of effort will be helpful to mitigate adverse effects of creeping and

surface waves.
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7.1 Future Works

We have analyzed the Floquet modal analysis for grating lobe effects of finite sized sub-

arrays. The study could be extended to multilayer arrays with different periodicities and

axis orientations. This type of analysis requires modal mapping between different sets of

Floquet modes due to different periodicities.

Even though the mushroom EBG structure was able to remove the scan blindness, the

antenna impedance bandwidth was very narrow. It is just the starting point to investigate

the EBG structure on weather applications. It would be very interesting for future work to

design a very broad-band antenna, while at the same time suppressing the surface waves.

There are many parameters that need to be investigated to observe the bandwidth behav-

ior. For instance, the wider the mushroom patch hat, the more capacitance it generates.

We need to explore the bandwidth characteristics upon patch hats, vias, thickness etc.

In this dissertation, each antenna design was for specific frequency band and operated

to be in a single state. In practical environments, these impedance surfaces can be made

tunable or reconfigurable by using varactors, switches, tunable materials or other methods.

This would give additional flexibility to operate the antennas over different frequency bands

or in different settings.

In addition, the bandwidth enhancement of the cylindrical array geometry using EBG

surface would be an interesting research topic for future work. Surface wave suppression

on cylindrical arrays would be a significant improvement for cylindrical geometries. How-

ever, in any case, the cost and design challenges of high impedance surfaces are generally

increased, as compared to the static and passive surface. Many attempts have been taken

in the past to solve these problems. However, these attempts only were partially success-

ful. These problems can be solved through more intuitive knowledge, understating, and

rigorous research.
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The next-generation phased array radar would be based on a digital beam-forming

technique. In this method, all the signals from the antenna elements will be collected into a

computer. Therefore, beam-forming can be performed using software instead of hardware.

As a consequence, generating multiple beams, adaptive nulling, lowering sidelobes, grating

lobes suppression and many other signal processing techniques can be employed, even

though it would be costly to implement. Conformal arrays would be another amazing

technology. Spherical arrays though, have many benefits like total hemispherical coverage,

polarization, mismatch loss compared to planar arrays but are difficult to build. As

demand continues to increase, more challenges will come along with existing challenges.

The designer’s task would be to overcome these challenges and make it affordable.
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