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Use of low-resolution burned area products and implications for fire 

risk assessment within the wildland-urban interface 

Abstract: 

The impacts of wildfires are socially, economically and ecologically vast and these impacts are 

often thought to be intensified within the wildland-urban interface (WUI) where structures 

intermingle with wildland vegetation. Because the WUI is expanding rapidly and ignitions 

within the WUI are said to occur more frequently, it is pertinent that fire scientists and land 

managers have access to accurate fire occurrence and burned area data within these regions. 

Burned area information is often accessed via remotely sensed burned area products of differing 

spatial resolutions. It is known that burned area products with coarse spatial resolution frequently 

underestimate burned area due to the omission of small fires; therefore, this thesis aims to 

explore how much burned area low-resolution BA products miss, where they miss burned area, 

and how different products detect burned area within the wildland-urban interface in Oklahoma, 

USA. In order to determine how much burned area is missed by these products and where the 

burned area is located in regards to the WUI, this project utilizes the MODIS MCD64A1 burned 

area product and the Monitoring Trends in Burn Severity (MTBS) data as a proxy for coarse-

resolution burned area data and compares it to a higher-resolution dataset developed using 

Sentinel-2 imagery. We find that the low-resolution products are unable to detect a significant 

amount of burned area (Δ 57,000 acres) and may poorly depict the spatial distribution of fire as 

they were unable to detect major hotspots of fire occurrence. Additionally, we find that the 

majority of burned area within our study region (Eastern Oklahoma, USA) takes place outside of 

the WUI.  

Keywords: burned Area, wildland-urban interface, remote sensing, spatial resolution 
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1. Background 

Remote Sensing is the science of acquiring and analyzing information about objects or 

phenomena from a distance. The sun radiates electromagnetic (EM) energy. This energy, when 

differentiated by wavelength and frequency, is categorized by the electromagnetic spectrum 

(EMS). When EM energy from the sun hits the surface of the earth, the light interacts with a 

variety of molecules and surfaces. While some of this light is scattered within our atmosphere 

and back into space, a portion of it makes it to the surface of the earth where it interacts with 

matter on the Earth’s surface (trees, bodies of water, buildings, etc.) Different types of matter 

reflect, absorb and emit EM energy differently within different portions of the EMS, thereby 

giving every object (with a unique chemical composition) a unique spectral profile (Kennedy et. 

al., 2009). When optical energy from the sun is reflected back off of the surface of the earth, 

optical remote sensing satellites are used to detect this reflected electromagnetic energy. 

Therefore, the capacity to store the spectral information for a given region at a given time makes 

remote sensing an invaluable tool when studying change detection. The basis of using remote 

sensing for change detection is that changes in the object or phenomena of interest will induce 

spectral changes in said object/phenomena thereby allowing us to identify changes in the object 

over time (Hussain et. al., 2013.).  

Because remotely-sensed imagery can capture phenomena from local to regional to even 

global scales, it is an invaluable tool for studying and detecting changes in phenomena that occur 

at a variety of spatial and temporal scales such as wildfires (Lentile et. al., 2006). Remote 

sensing can detect regions affected by fires because burned vegetation gives off a radically 

different spectral signal than unburned vegetation due to the dark carbon residue (char) that is 

created when the vegetation is exposed to flame (Trigg and Flasse, 2000; Pereira, 2003). 
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Additionally, in regions where char is quickly disseminated by wind, sensors are still often able 

to detect the removal of photosynthetic vegetation (Koutsias et. al., 2000).  

The impacts of wildfires are expansive and increasing global temperatures and decreasing 

precipitation rates will most likely lead to upturns in the number of wildfires and forest fires 

experienced and the total area burned during these events (Flannigan et. al., 2009; Gitas et. al, 

2012). Because of this, wildfire managers and fire scientists require quality fire occurrence 

information in order to mitigate future fire risks (Oliveira et. al., 2012). As a response to this 

need, a variety of remotely-sensed burned area data products were developed. However, many of 

these products that are still used today, such as the MODIS MCD64A1 burned area product or 

the PROBA-V product which have relatively coarse spatial resolutions, or fields-of-view (500 

meters and 300 meters, respectively.) Coarse spatial resolution, as it applies to the detection of 

burned area, can be of issue as larger fields-of-view are often unable to detect small fires. Hence, 

it is possible that the use of these large-scale burned area products could lead to underestimations 

in total burned area due to the omission of small fires (Hall et. al., 2016; Nogueira et. al., 2017; 

Zhu et. al., 2017) which is alarming as burned area information is often utilized to assess 

economic losses, ecological impacts, monitor land-cover changes, and model the atmospheric 

impacts of burning (Gitas et. al., 2004; Pereira, 2003). 

Hence, this work aims to compare two commonly-used, coarse-resolution burned area 

products (the MODIS MCD64A1 burned area, and Monitoring Trends in Burn Severity product) 

to a higher-resolution, Sentinel-2 (20-meter spatial resolution) burned area dataset. In doing so, 

we aim to explore just how much burned area these low-resolution products miss, where they 

miss burned area, and how the different products detect burned area within the wildland-urban 

interface. 
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2. Wildfire and the wildland-urban interface 

Impacts from wildfires are vast and complex with the potential of fires to change vegetation 

dynamics (Padilla et. al., 2015), degrade air quality (Fann et. al., 2018), and increase greenhouse 

gas emissions (Stavros et. al., 2014). Additionally, increasing global temperatures and decreasing 

precipitation will most likely lead to upturns in the number of wildfires and forest fires 

experienced and the total area burned during these events (Flannigan et. al., 2009; Gitas et. al, 

2012) therefore indicating a positive feedback loop between fire and climate (Stavros et. al., 

2014). This becomes cause for concern when considering the implications of fire interaction 

within the wildland-urban interface (WUI), or “the area in which houses meet or intermingle 

with undeveloped wildland vegetation” (Radeloff et al., 2005) as fire ignitions have been found 

to occur nearly twice as frequently in wildland-urban interface regions (Chas-Amil et al., 2013). 

As the WUI continues to expand and as rising numbers of people begin to settle within these 

previously uninhabited regions (Theobald & Romme, 2007), increased fragmentation of these 

wildland ecosystems and their consequent intermingling with urban structures is cause for 

concern. Especially, since previous literature has shown that landscape heterogeneity and 

structure have large implications in regard to fire behavior. For example, Herrero-Corral et. al. 

(2012) found a correlation between fuel homogeneity and fire risk, noting that certain spatial 

configurations of buildings within the WUI influenced landscape structure increase fire risk. 

Similarly, Ortega et. al. (2012) found that the areas most vulnerable to wildfires in Spain 

experienced increased landscape fragmentation, noting that fine-grained forest-agriculture 

mixtures had “an ignition frequency four times higher than that of pure forested landscapes” 

(Ortega et. al., 2012; Herrero-Corral et. al., 2012).  

Fire occurrence information (here, referring to the spatial distribution and intensity of 
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fires) aids in the determination of fire risk by indicating where ignition sources are located and 

where there are favorable conditions for fire spread (Oliveira et. al., 2012). Therefore, in order to 

properly plan for and mitigate fire risk within the WUI, fire management teams and policy 

makers often depend on information regarding both fire occurrence and the spatial patterns of 

human settlement across the area of concern (Moreno et. al, 2011; Chas- Amil et. al., 2013).  

Burned vegetation gives off a radically different spectral signal than unburned vegetation 

due to the dark carbon residue (char) that is created when the vegetation is exposed to flame. As 

a result, remotely sensed imagery is capable of observing burned areas on the ground. As our 

climate warms, the imminent need for accurate burned area and fire occurrence data has led to 

the development of a variety of remotely sensed global burned area products over the years. 

Earlier burned area products which are no longer available include the Global Burnt Surfaces 

(GBS) product derived from weekly composites of the daily NOAA-AVHRR GAC 8 km dataset 

providing data ranging from 1982-1999 (Carmona‐Moreno et. al., 2005); the GLOBCARBON 

product derived from SPOT Vegetation, ASTR-2, MERIS and AATSR data (available in 10km, 

1 km, 0.5 degree and 0.25 degree spatial resolution) with data ranging from 1998-2007 

(Plummer et. al., 2006); the Geoland-2 product derived from 1 km SPOT Vegetation data with a 

temporal range of 1999- 2014; the Global Burnt Area 2000 (GBA2000) product which utilized 1 

km SPOT Vegetation data for the year 2000 (Grégoire et. al., 2003); the GLOBSCAR product 

which utilized 1 km ATSR-2 data for the year 2000 (Simon et. al., 2004) and the L3JRC product 

which utilized 1 km SPOT Vegetation data and had a temporal coverage of 2000-2007 (Tansey 

et. al., 2007).  Currently available burned area products are described in Table 1. Of the currently 

available products, this work focuses on the MODIS Burned Area Product (MCD64A1) and the 

Monitoring Trends in Burn Severity (MTBS) burned area product as they are freely available 
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products with a large temporal coverage that have been used in recent fire research (see Radeloff 

et. al., 2018; Kramer et. al., 2018; Zhu et. al., 2017; etc.) 

The aforementioned burned area products utilize a variety of vegetation indices in order 

to identify burned areas. For example, the FIRECCILT10 product utilizes the Burn Area Index 

(BAI) and the Global Environmental Monitoring Index (GEMI); the MTBS products utilize the 

Normalized Burn Ratio (NBR), the Differenced Normalized Burn Ratio (dNBR) and the 

Relativized Differenced Normalized Burn Ratio (RdNBR); while Products such as GFED4 and 

MODIS MCD64A1 utilize their own vegetation indices. For a more comprehensive list of 

vegetation indices commonly used in burned area detection and their formulas see Fornacca et. 

al., (2018) and Chu & Guo (2014). In this paper, we will use the Normalized Burn Ratio (NBR) 

as it has become known as the “standard spectral index to estimate fire/burn severity” 

(Veraverbeke et. al., 2010). 

The wildland-urban interface/intermix has been defined as “the area in which houses 

meet or intermingle with undeveloped wildland vegetation” (Radeloff et al., 2005) and therefore 

encompasses homes or structures built within densely forested areas, shrublands and grasslands. 

Homes within the WUI comprise more than 39% of all houses in the contiguous United States 

with the WUI as a whole encompassing more than 9% of the total land area (Radeloff et al., 

2005).  The development of these structures amongst previously wild vegetation has led to the 

destruction of homes by wildfire, increased land/habitat fragmentation, the introduction of 

invasive species and an overall loss of biodiversity (Hansen et al., 2005; Liu, Wimberly, Lamsal, 

Sohl, & Hawbaker, 2015). Despite this, the WUI continues to develop rapidly, with a 52% 

increase in total occupied land mass occurring between 1970 and 2000 and projections into 2030 

indicating an additional 10% increase (Theobald & Romme, 2007). As the wildland-urban 
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interface continues to expand, wildfire has become a topic of increasing concern with nearly 

45% of the structures located within the WUI were at risk for burning (defined by having already 

experienced 1 fire) between the years 2000 and 2010 (Thomas & Butry, 2014).  

The spatial resolution of a dataset can affect the reported burned area. For example, large-

scale remotely sensed fire products such as the Monitoring Trends in Burn Severity (MTBS) 

products (which maps fires 500 acres or greater in the eastern US, and fires 1000 acres or larger 

in the Western US) or the Moderate Resolution Imaging Spectroradiometer (MODIS) 

MCD64A1 burned area product (with a spatial resolution of 500m or approximately 62 acres per 

pixel) are often relied upon by researchers in order to estimate burned area (see Dennison et. al., 

2014; Libonati et. al., 2015; Sparks et. al., 2015, Radeloff et. al., 2018). Likewise, many studies 

surrounding wildfire and the WUI use gridded fire data of 30-meters or greater (Martinez et. al., 

2009; Badia et. al., 2011; Radeloff et. al., 2018). It is possible that the scale of coarse pixel fire 

products could lead to underestimations in total burned area due to the omission of small fires 

(Hall et. al., 2016; Nogueira et. al., 2017; Zhu et. al., 2017) therefore introducing significant 

error.  

Radeloff et. al (2018) found that rapid growth of the WUI has led to increased wildfire 

risk, using the number of housing units within burned areas as a proxy for fire risk. They found a 

62% growth in the number of housing units located within a fire’s perimeter between 1990 and 

2010 in the US indicating substantial occupation within high-risk fire areas. However, since 

MTBS dataset was used to quantify burned area, it is possible that the number of housing units 

within burned areas was underestimated. Although there are discrepancies between the total 

burned area reported by various global BA products, smaller-scale assessments using high 

resolution imagery indicate high underestimations in burned area (Nogueira et. al., 2016) and 
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some estimate that if small fires were properly accounted for, the global total burned area would 

increase by approximately 35% (Randerson, et. al., 2012).  

Radeloff et al. (2018) provide a compelling analysis of the increased fire risk within the 

WUI; however, they focus on fires that are 500 acres and larger. Here we are interested in 

understanding whether the number and area of small fires (< 500 acres) follows the same spatial 

pattern. This project uses Sentinel-2 MSI data and the differenced Normalized Burn Ratio 

(dNBR) as a proxy for small fire occurrence within the WUI to better understand what remotely 

sensed burned area products such as the MTBS and MODIS MCD64A1 burned area products are 

missing. In addition, we evaluate data from the national fire incident reporting system to further 

identify the number of small fires occurring in our study area of eastern Oklahoma, USA. Fire-

related research in Oklahoma has been mainly focused on the response of different species to fire 

(Boyd & Bidwell, 2001; Allred et. al., 2011; Bright et. al., 2016), fire history throughout the state 

(Clark et. al., 2007; Allen & Palmer, 2011; Stambaugh et. al., 2013), fire danger estimation 

(Carlson et al, 2002; Carlson and Burgan, 2003.), and specific environmental factors influencing 

wildfires such as weather (Reid et al., 2010) or soil moisture (Krueger et al., 2015). Some 

research has focused on the Flint Hills corridor stretching from northern Oklahoma to eastern 

Kansas where prescribed burning is commonplace (Mohler & Goodin, 2012). However, few, if 

any, researchers to date that have calculated burned area and fire occurrence using higher-

resolution remotely-sensed imagery (Mohler & Goodin utilized MODIS data) in Oklahoma.  

 

2.1 Study Area 

Our study area is approximately 23,080 km2 of land located within eastern Oklahoma, USA 

(Figure 1). The study area is comprised predominantly of forest (45%), grassland (17%) and 
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croplands (25%) (Yang et. al., 2018). As of 2010, the wildland-urban intermix in Oklahoma 

comprised a total of 10,486 km2 while the wildland-urban interface comprised 3,198 km2. 

Cumulatively this represents a total WUI area of 13,684 km2, approximately 7.6 percent of the 

states total land area.  This figure is slightly higher for our study area, which, as of 2010, 

consisted of approximately 7.23% or 1,669 km2 wildland-urban intermix, and approximately 

2.87% or 662 km2 wildland-urban interface with the intermix growing most rapidly; having 

increased by 2.17% since 1990 (the interface only saw increases of about .79% between 1990 

and 2010). The main cities within our study area include Broken Arrow (2010 population of 

98,850), Sapulpa (2010 population of 20,544), Muskogee (2010 population of 39,223) and 

McAlester (2010 population of 18,363); however, the region also encompasses the southern 

portion of the Tulsa metropolitan area.  Tulsa, with a population of 391,906 according to the 

2010 census, is the second largest city in the state of Oklahoma (U.S. Census Bureau, 2010.).   
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2.2 Data 

2.2.1 Burned area data 

In this project we first generate a high resolution (20m) burned area dataset based on Sentinel-2A 

data, which is then compared to Landsat based MTBS data (30m) and the MODIS MCD64A1 

burned area product (500m) which are two freely available burned area datasets that are often 

used in burned area analysis. Point data from the National Fire Incident Reporting System is also 

evaluated.  

 

    2.2.2  Sentinel-2 data 

Relatively cloud-free level 1C orthorectified Sentinel-2A MSI Imagery was downloaded through 

the European Space Agency Copernicus Open Access Hub in the Sentinel Standard Archive 

Format for Europe (SAFE format). The level 1C product comes as Top-Of-Atmosphere 

reflectances in 100x100 kilometer tiles with a UTM/WGS84 projection. Note that our imagery 

was from UTM zone 15. The temporal resolution of Sentinel 2A is approximately 10 days while 

the spatial resolution of the sensor is reliant on the spectral band. We used the 20-meter spatial 

resolution which is associated with a spectral resolution consisting of five bands: B5 (705 nm), 

B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 (1610 nm) and B12 (2190 nm). Our study area 

was comprised of two Sentinel-2A MSI tiles with tile T15STV representing the northern half of 

the study area and tile T15STU representing the southern half. We downloaded prefire 

(December / January) and postfire (March) imagery for both tiles (Table 2). We atmospherically 

corrected the level 1C products and converted them into level 2A products of 20-meter resolution 

using the Sen2Cor processor in ESA SNAP.  
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2.2.3 Monitoring Trends in Burn Severity (MTBS) data  

National fire occurrence point data and burn severity rasters were obtained through the 

Monitoring Trends in Burn Severity (MTBS) program. MTBS data represents all large fires 1000 

acres (~ 4 km2) or greater for the Western United States and 500 acres (~2 km2) or greater for the 

Eastern portion of the United States with Oklahoma being classified as a western state.  MTBS 

data is developed based on Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper 

Plus (ETM+) satellite data and therefore has a spatial resolution of 30 meters and contains data 

going back until 1984 (as Landsat TM was not launched until 1982). MTBS products are created 

by first obtaining fire occurrence data from the Integrated Reporting of Wildland-Fire 

Information (IRWIN) project and compiling the data into an MTBS database. For fires over 1000 

acres, Landsat reflectance imagery of the reported fire location and ignition date (both before and 

after the fire) are obtained and undergo geometric and radiometric correction. Then, using 

Landsat TM bands 4 (near infrared) and 7 (short-wave infrared), the Normalized Burn Ratio 

(NBR= (TM4-TM7)/(TM4+TM7)) is computed for each pre-fire and post-fire image, followed 

by the differenced Normalized Burn Ratio (dNBR= NBRprefire - NBRpostfire) and Relativized 

dNBR (RdNBR= dNBR/!"𝑵𝑩𝑹𝒑𝒓𝒆𝒇𝒊𝒓𝒆
𝟏𝟎𝟎𝟎

") in order to characterize fire severity. An MTBS mapping 

analyst then hand digitizes the fire perimeter based off of the reflectance imagery and the NBR, 

dNBR and RdNBR imagery and interprets the burn severity classes for the fire (Eidenshink et. 

al., 2007). 

 

2.2.4 MODIS MCD64A1 
The MODIS burned Area product, MODIS MCD64A1, is a monthly product derived from daily 

500m surface reflectance inputs in conjunction with 1 km MODIS active fire observations. The 
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algorithm calculates the normalized burn ratio using composite reflectance imagery from 

MODIS bands 5 (near—infrared 2) and 7 (short-wave infrared 2) in which Burn Ratio = (b5 – 

b7/ b5 + b7) to create dynamic burn thresholds on a per-pixel basis. In the resulting product each 

pixel value indicates the day of the year that the pixel burned with a range of 1-366 while values 

of 0 indicate unburned pixels (Giglio et. al., 2016). MODIS uses a sinusoidal coordinate system 

comprised of tiles and for our study area we used tile (h10, v5). For this study we used data from 

the month of February in 2016.  

 

2.2.5 National Fire Incident Reporting System point data 

Fire occurrence data for 2016 was obtained directly through the National Fire Incident Reporting 

System (NFIRS) state program manager for the state of Oklahoma. This data contained complete 

street addresses for each fire location as reported by 273 unique fire departments across 68 

counties in Oklahoma. Per the U.S. Fire administration, Oklahoma has a total of 745 registered 

fire departments (as of December 2018) indicating that the 6,013 reported fires within our 

records likely represent only of subset of all fires experienced within the region. In addition to 

fire location, the fires were marked with fire department ID and name, alarm date and time, 

incident type and description (i.e. grass fire, brush fire, etc.), monetary loss and total number of 

acres burned per fire. This data was utilized to determine the month with the greatest number of 

wildland fire occurrence in the state. 

 

2.2.6 Ancillary datasets 

2.2.6.1 National Land Cover Database 
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We obtained National Land Cover Database (NLCD) land cover classification data for the 

contiguous United States in 2011. NLCD data comes at a 30-meter spatial resolution and 

contains 16 land cover categories based off of a modified Anderson Level II classification 

scheme (Yang et. al., 2018). We use the 2011 land cover product that was amended in 2014 to 

correct for the over-elimination of small areas within the four classes categorized as “developed” 

or urban.  

 

2.2.6.2 Wildland Urban Interface 

The wildland urban intermix has been defined as a region containing more than 1 housing unit 

per every 40 acres of land that is also covered by more than 50% wildland vegetation. The 

wildland urban interface, is defined as having more than one housing unit per every 40 acres of 

land and containing less than 50% wildland vegetation while being within 1.5 miles of a large 

area (greater than 1,235 acres) that is covered with more than 75% wildland vegetation (Stewart 

et. al., 2007).  In order to quantify the WUI and WUIx for our study area, we use 30-meter 

resolution data for the state of Oklahoma for 2010. This data was created by the SILVIS lab and 

generated using the NLCD 2011, NLCD 2001 and NLCD 1992/2001 Retrofit Change Product 

for land cover data and the U.S. Census TIGER 2010 block polygons with associated 2010, 

2000, and 1990 housing and population density to quantify human presence (Radeloff et. al., 

2017). 
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2.3 Methods 

As mentioned before, there are several remotely sensed burned area datasets available, many of 

which have low spatial resolution. Because of this, we sought to develop our own dataset using 

20-meter resolution Sentinel-2 data in order to better quantify small fire occurrence.  We then 

aim to compare this higher-resolution Sentinel-based dataset to existing burned area products in 

order to understand how much burned area these low-resolution products are missing and where 

these underestimations are occurring. For example, what is the distribution of fire occurrence 

reported by each product? Are these products underestimating burned area within the WUI? In 

order to accomplish this, we compare our Sentinel-2 dataset with the MTBS and MODIS 

MCD64A1 Burned area products, which are both easily accessible, frequently-used, large-scale 

burned area products. Our comparison was divided into four main parts: 1) an initial comparison 

using a sample of the data; 2) a comparison of the burned area reported by each product for fires 

of different sizes; 3) a comparison of the spatial distributions of fire occurrence reported by each 

product; and 4) a quantification of fire occurrence and burned area within the WUI for each 

dataset.   

 

2.3.1 Sentinel dataset development 

We began by creating our own dataset utilizing the Sentinel-2A data. Using the same methods as 

the MTBS data, we calculated the Normalized Burn Ratio (𝑁𝐵𝑅 = 12345623
12375623

) for each pre-fire 

and post fire image using Sentinel band 8a for the near-infrared (NIR) and band 12 for the short-

wave infrared (SWIR). The differenced Normalized Burn Ratio (dNBR = NBRprefire – NBRpostfire) 

was then calculated using the NBR images for each respective tile and used the thresholds 

suggested by the USGS FireMon program (Lutes et. al., 2006) to determine fire severity. We 
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then used a freely available water mask to remove water from the imagery (Jean-Francois et. al., 

2016). Last, we used band math to create binary rasters from our masked dNBR images in which 

1 represented fire pixels (as categorized by threshold values indicating burned area) and zero 

represented all other features. 

 

2.3.2 Fire Dataset Comparison 

2.3.2.1 Comparison of MTBS sample 

In order to determine whether or not our three primary fire data products (the Sentinel-2 based 

dNBR calculated by hand, the MODIS MCD64A1 burned area product and the MTBS product) 

were comparable, we identified all fires over 1000 acres in our study area in February 2016 

(which is the month with the largest number of fires in our study area (Figure 2)) for each 

product and charted the BA reported by each product.  

 

2.3.2.2 BA size comparison 

Next, we compared the datasets for fires at a variety of different burned area size thresholds. 

MTBS data maps all fires over 1000 acres in the western United States, including Oklahoma 

(Eidenshink et. al., 2007).  In order to determine the burned area that is unaccounted for due to 

the omission of small fires, different acreage thresholds of 10,000, 5000, 2000, 1000, 750, 500, 

250, 100, 50, 20, and 10 acres (i.e. calculating the burned area for all fires over 10,000 acres, 

over 5000 acres, over 2000 acres, etc.) were calculated for each dataset. We then determined the 

number of fires and burned area for each fire for each threshold.  Note that we did not apply 

thresholds below 50 acres for the MODIS product as the size of one MODIS pixel is 

approximately 60 acres and therefore would have been redundant. To filter out noise due to 
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water and cropland changes, these land covers were masked based on the European 

Commission’s Joint Research Center Global Surface Water dataset (Pekel et al. 2016), and the 

USDA National Agricultural Statistics Service Cropland Data Layer, 2016, respectively.  

 

2.3.2.3 Distribution comparison 

We converted our burned area data for fires 500 acres and greater from raster format to vector 

point data. We then measured the first-order effects of each point pattern. First order effects, 

which quantitatively describe spatial variation in the intensity of a point pattern, were estimated 

via the kernel-smoothed intensity function, 𝜆(x) (the estimated intensity of a pattern at some 

point x), as follows: 𝜆9(𝑥)=
=

>?(@)
∑ 𝛿9(𝑥 − 𝑥D)E
DF=  In which 𝑥D = {𝑥=, 𝑥I,⋯ , 𝑥E}	for the number of 

points 𝑛 ∈ ℝ, where 𝛿9 is the Gaussian smoothing kernel, =
>?(@)

 is an edge correction factor and 

𝑡 > 0 determines the amount of smoothing (Diggle, 1985; Yang et al., 2007). By performing an 

intensity analysis on the point patterns created for each dataset, we characterize the spatial 

distribution of the fire locations and determine where fire events are more likely to occur across 

space. 

 

2.3.2.4 Fire wildland-urban interface analysis 

We calculated the burned area occurring within the wildland-urban interface, wildland-urban 

intermix, urban areas, and wildlands (here, defined as all other regions that could not be 

categorized into the three aforementioned categories.) WUI and WUIx regions were classified 

using the 30-meter resolution data by Radeloff et al (2017) while urban areas and all other 

remaining areas were categorized using the NLCD 2011 land cover classification layer. Fire 

polygons for each dataset were then overlayed to determine how many pixels from each region 
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(Wildland, Urban, WUI, WUIx) were within the fire boundaries and the percentage of the total 

burned area that each category took up within the fire perimeters for each dataset. 

 

2.4 Results 

False color composites of pre and post-fire images reveal that burned areas are easily visible in 

the Sentinel-2 datasets (Figure 3). The dNBR dataset is able identify and highlight the burned 

areas (Figure 3).  

 

2.4.1 MTBS comparison results 

In order to determine whether our three primary fire data products (the Sentinel-2 based dNBR 

calculated by hand, the MODIS MCD64A1 burned area product and the MTBS product) were 

able to identify the same fires, we compared the total acres burned for each dataset. MTBS 

reported 13 fires for the month of February 2016; however, upon further inspection, one of the 

fires appears to just be a sandbank and therefore we only analyze the 12 remaining fires. Our 

results for the remaining 12 fires indicate that each dataset produced similar burned area values 

with a greater difference in burned area seen for larger fires (Figure 4). Because of the high 

similarity between the three datasets, we accept that the datasets provide similar results for large 

fires; thereby justifying our further comparative analysis.  

 

2.4.2 BA Threshold Results 

The dNBR “detects changes in vegetation consumed or killed,” (Lentile et. al., 2009) and at 

smaller area thresholds, results reveal noise due to smaller-scale changes such as clear cuttings 

(Figure 5, 6).  Our findings present relatively similar burned areas between fire products for 
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comparatively large fires with greater dissimilarity occurring between data products for smaller 

fires.  When we compare the MODIS MCD64A1 burned area product and burned area results 

derived from Sentinel-2 , we find that both datasets presented similar burned area values for fires 

500 acres and larger, while for fires less than 500 acres Sentinel-2 reported significantly higher 

burned area values (possibly due to MODIS pixel resolution, Figure 7).  Because of this 

discrepancy, we evaluate fires 500 acres and greater on all datasets for the rest of this analysis. 

Still, when we account for smaller fires, even just fires greater than or equal to 500 acres, we 

begin to see dramatic increases in the total burned area reported as the spatial resolution of the 

product increases. For example, figure 8 depicts our comparison of the cumulative burned area 

for all fires 500 acres and greater between the Sentinel-2, MTBS and MODIS data products. In 

this figure one can see that for fires 1000 acres and larger (i.e. a threshold of 1000 acres), the 

MTBS product reports the lowest total burned area (approximately 49,000 acres) while MODIS 

reports a slightly greater cumulative burned area (approximately 61,000 acres) and the Sentinel-2 

dataset reported the greatest burned area (approximately 91,000 acres). When we summarize the 

burned area totals for all fires 500 acres and greater we find a difference of nearly 57,000 acres 

between the total burned area reported by MTBS and Sentinel-2 for our study area during the 

observation month of February 2016 (Table 3). 

 

2.4.3 Spatial distribution Results 

The Kernel Smoothed Intensity, which indicates the estimated intensity of the fire occurrence 

pattern per square meter, was estimated using a Gaussian kernel (Figure 9). The Kernel 

Smoothed Intensity (KSI) plot for the Sentinel-2 product indicated four major hotspots for fire 

occurring throughout the primary bounding box of the study region. The MODIS MCD64A1 
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product showed similar results, save one hotspot in the northern-most portion of the study area. 

The MTBS KSI plot, on the other hand, indicated a large lack of fire activity throughout the 

entire central portion of the study region. Hence, the Sentinel-2 and MODIS data products tend 

to pick up on the same hotspots (or regions with increased fire occurrence) while the MTBS 

product fails to recognize the same spatial patterns as the products of higher spatial resolution.   

  

2.4.4 Fire Wildland-urban interface analysis results 

We found that the WUI comprised a total of 2% of the total study area, with the WUIx 

representing 7.2%, urban areas; 4.9%, and the wildland areas equating to 85.2%.  The results of 

our wildland-urban interface analysis indicate that the vast majority (> 96%) of burned area is 

occurring within our wildland category (Figure 10). This means that we find a relatively larger 

amount of burned area in the wildlands compared to what would be expected based on area 

alone. We also find that while the WUIx category covers more than 7% of the land surface, less 

than 1.2% of the burned areas can be found in this area. This means that there are relatively 

fewer fires in the WUIx category than we would expect by uniform random change. The WUI 

occupies about 2% of the study area, but the burned area was less than 0.02%, revealing the 

smaller amount of burned area in WUI. Thus, our results show that we find fewer fires in the 

WUI and WUIx areas than would be expected based on the amount of area these classes cover.  
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2.5 Discussion 

All remotely-sensed fire products are imperfect in one way or another and aspects such as the 

temporal sampling and spatial resolution of the data can cause significant fluctuations or 

underestimations in burned area outcomes. In addition, while burned areas are easily 

distinguishable on the ground, the spectral signal of the char can be short-lived, especially in 

regions dominated by fine fuels where charred vegetation is quickly disseminated via wind 

(Trigg and Flasse, 2000; Pereira, 2003). Because the spectral signal of char can be fleeting, the 

acquisition dates for the pre-fire and post-fire imagery can have a significant effect on the burned 

area that is reported. We started our analyses comparing the MTBS data with other burned area 

datasets. Our results indicate that for large fires (>1000 acres), datasets report highly similar 

burned areas regardless of the spatial resolution of the dataset. However, when accounting for 

smaller fires, even just fires greater than or equal to 500 acres, our results demonstrate that 

increases in burned area upwards of 57,000 acres. This result supports the findings of Randerson 

et. al., (2012) which found that accounting for small fires increased global burned area by 35%, 

with some continental-scale regions such as Equatorial Asia having increases as much as 157%. 

In addition, Nogueira et. al., (2017) also found that large-scale global burned area products miss 

between 4% and 15% of the burned area in Brazilian savannas due to missing small fires and 

note that the omission of small fire patches (<450 ha) in global burned area products is high with 

omission errors ranging from 0.7 to 0.95.  

Oliveira et. al., 2012 noted that fire occurrence information aids in the determination of 

fire risk by indicating where ignition sources are located and where there are favorable 

conditions for fire spread. Here we characterized the spatial distribution of fire occurrence by 

estimating the kernel smoothed intensity of point patterns created by taking the centroid of each 
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fire over 500 acres from each of the data products. The results of our kernel smoothed intensity 

functions indicate that the Sentinel-2 and MODIS MCD64A1 products present very similar 

spatial distributions and intensities of burned areas, while the MTBS presented different results. 

We believe that this is a result of the fact that the MTBS product only mapped large fires which 

occurred less frequently than the smaller fires seen on the MODIS and Sentinel-2 products; 

hence the increased number of fire observations that occurred with the higher resolution products 

likely yielded more accurate representations of fire intensity. Others have found similar results. 

For example, Dadashi (2018) found that in the Western United States, the MODIS MCD64A1 

product detected 603 more fires than the MTBS product, with 550 of those fires falling below the 

MTBS threshold of 1000 acres. Vaillant et. al., (2016) also found that the MODIS sensor was 

able to register more fires than the MTBS dataset for the entire United States. Spatial patterns of 

fire occurrence are important for risk and natural resource managers (Koutsias et. al., 2004); 

hence, the capacity of the MTBS product to frequently miss or omit fire events, should be taken 

into account when proceeding with location or occurrence-based fire projects. 

While WUI growth has been linked with an increase in wildfire ignitions (Radeloff et al. 

2018), we have demonstrated that the total amount of burned area is relatively small in WUI 

areas.  Our results indicate that within our study region the vast majority of burned area (>96%) 

is located on wildlands, with minimal burned area detected in the WUI (< .02%) or WUIx 

(<1.2%). By determining the proportion of burned area to total area for each of the four land 

cover categories used (Wildland, Urban, WUI, WUIx) we found that fewer fires and acres burned 

than would be expected in the WUI and WUIx based on the amount of area these classes cover. 

Hence, for our study area, we find the impacts of wildfires may be greater within the wildlands 

as opposed to the WUI. Others have found similar ratios of land area. For example, Kramer et. 
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al. (2018) calculated the area and percentage of intermix, interface, and non- WUI regions within 

MTBS fire perimeters that contained buildings and found that only 0.4% of the WUI burned 

between 2000 and 2013.  One study in California found that both the population density and the 

proportion of WUIx land were much stronger correlated (p< 0.001) with the number of fires then 

with the area burned (Syphard et al. 2007). A potential explanation for the small percentage of 

burned area that we found in the WUI is that while there might be more fires in the WUI, these 

fires are often small and quickly extinguished (Massada et. al., 2009), in addition to the fact that 

extensive and uninterrupted wildland fuels typically exist outside of the WUI (Kramer et. al., 

2018). In addition, a significant portion of wildland fire suppression and wildland fuel treatments 

occur in the WUI (Mell et al. 2010). These results appear to be a global trend. For example, 

despite an increasing global population, the global burned area has reportedly declined by almost 

25% between 1998 and 2015 (Andela et al. 2017), with major declines in savannas and 

grasslands because of human fire constraints.  

Still, it has been noted that while the probability of home exposure to wildfire is 

influenced by the presence of homes in fire-prone areas, it is also influenced by the occurrence of 

fire and the size and intensity of fire (Calkin et. al., 2014). Hence, as our results indicate that 

increased fire occurrence is taking place within wildlands or non-WUI regions, it is possible that 

homes within these wildlands (with a housing density too low to register as WUI) face an even 

greater risk.  Wildfire incidence might be higher among isolated houses even though higher 

housing density is associated with increased fire risk (Herrero-Corral et. al.,2012). Still, despite 

the structural risks’ fires pose, when looking at the impacts of burned area alone, it is clear that 

fire management and risk assessment within wildlands should remain a priority. 
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As of 2010, the WUI comprised 9.5% of the land in the conterminous United States with 

33.2% of housing units and 31.9% of the population residing in these WUI areas. Comparatively, 

in 2010, only 7.6% of the land area in Oklahoma was defined as WUI with 37.3% of the housing 

units and 36.7% of the population in the state residing within that 7.6% of land indicating that 

while the percentage of WUI in Oklahoma is slightly less than that of the entire continental U.S., 

a greater proportion of housing units and people reside within those areas (Radeloff et.al., 2018). 

According to the National Interagency Fire Center (2019), 745,097 acres burned in the state of 

Oklahoma in 2018, thereby making Oklahoma the state with the 4th -largest burned area (behind 

California with 1,823,153 burned acres; Nevada with 1,001,966 burned acres; and Oregon with 

897,263 acres burned.) Similarly, in work done by Kramer et. al., (2018), Oklahoma also ranked 

4th in states with the highest number of buildings destroyed by wildfire between the years 2000 

and 2013. Of those buildings destroyed, 25-50% of them were located within the WUI (here, 

California also ranked first with 75- 100% of the buildings destroyed by wildfire existing within 

the WUI)(Kramer et. al., 2018). Hence, although the state of Oklahoma is at high risk for 

burning and experiencing the destruction of homes due to wildfire compared to the rest of the 

United States, many (50-75%) of the homes destroyed in the state reside outside of the WUI 

(dissimilar to states such as California) despite Oklahoma having a slightly higher proportion of 

housing units and people living within WUI. This information strengthens our conclusion that for 

the state of Oklahoma, fire management and risk assessments should continue to focus on 

regions outside of the WUI. 
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2.6 Conclusion 

Overall, despite the Monitoring Trends in Burn Severity program providing highly-

detailed, free and user-friendly data, MTBS frequently misses many fires and fails to accurately 

represent total burned area or the distribution of fire occurrence due to its imposed fire size 

limitations. On the other hand, the MODIS MCD64A1 product was found to pick up the majority 

of large fires and more accurately depict fire distribution despite its coarse resolution. We found 

the higher resolution of the Sentinel-2 based dNBR product significantly increased the total 

burned area values for our study area indicating that spatial resolution does have a significant 

impact on burned area. Additionally, our Sentinel-2 product had the capacity to properly depict 

both larger and mid-range fires while accurately depicting fire distribution, however, the product 

was still unable to pick up very small fires due to increased noise in the data at small thresholds. 

Regardless of product, however, the majority of burned area occurred outside of the wildland 

urban interface and intermix indicating that wildlands and the isolated homes within them may 

face the greatest risk. 
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Tables and Figures 
 

Table 1. Examples of currently available remotely-sensed burned area datasets. 
 

 
 
 
 
Table 2. Description of Sentinel-2 Imagery.  
 
Product Pre-fire Image Post-fire Image 

Tile T15STV 

Entity ID S2A_MSIL1C_20151204T170702_N0204_R06

9_T15STV_20151204T170659 

S2A_MSIL1C_20160303T170302_N0201_R0

69_T15STV_20160303T170854 

Acquisition Date 12/04/2015 03/03/2016 

Tile T15STU 

Entity ID S2A_MSIL1C_20160103T170712_N0201_R06

9_T15STU_20160103T170713 

S2A_MSIL1C_20160303T170302_N0201_R0

69_T15STU_20160303T170854 

Acquisition Date 01/03/2016 03/03/2016 

Platform Sentinel 2A Sentinel 2A 

 
  

Derived product Sensor Temporal 
coverage 

Spatial 
resolution 

Temporal 
resolution 

Source 

FireCCILT10 AVHRR-
LTDR 

1982-2017 0.25 deg Monthly Otón & 
Pettinari, 2019 

MTBS LANDSAT 
TM/ 
ETM+/OLI 

1984-
present 

30m*  ---- Eidenshink et. 
al., 2007 

PROBA-V SPOT VGT 2014-
present 

300 m 10-day 
composite 
updated daily 

Dierckx et. al., 
2014 

GFED4 MODIS 500, 
TRMM/VIRS
, ASTR 

1995- 
2016/presen
t 

0.25 deg Monthly / 
Daily 

Giglio et. al., 
2013. 

MODIS burned area 
product (MCD45A1, 
MCD64A1) 

MODIS 500m 2000-
present 

500 m Monthly / 
Daily 

Giglio et. al., 
2016 
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Table 3. Results of burned area analysis for all fires greater than or equal to 500 acres within the 
study area. 
 

 
 
 
 
 
 
 

 
 
Figure 1. Study area in eastern Oklahoma, USA. The study area is comprised of two adjacent 
Sentinel-2 tiles, with tile T15STV representing the northern half of the study area and tile 
T15STU representing the southern half. 
  

Burned Area Analysis Results 
Product Total burned area (acres) 
MTBS 48,645 
MODIS MCD64A1 69,189 
Sentinel-2 dNBR 105,596 

T15ST
V 

TI5ST
U 
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Figure 2. The number of fires occurring per month in Oklahoma in 2016 according to data 
obtained from the Oklahoma National Fire Incident Reporting System (NFIRS). 
 

 

 

 

 

Figure 3. The pre (left) and post-fire (middle) false color images are created from Sentinel-2 
T15STU bands 12 (red), 8a (green) and 3 (blue). The burned areas are easily visible on the post-
fire image and the dNBR image (right).  
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Figure 4.  Area burned for the 12 fires observed in the study area by MTBS in February 2016. 
The fires are listed by name. The Sentinel and MODIS burned area data reveal slight 
underestimations of the burned areas as compared to the MTBS burned area data. The difference 
between the datasets appears to be slightly greater for the larger fires.  
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Figure 5. An example of clear-cutting being perceived as fire through dNBR. On the far left, the 
true color image was captured on 01/03/2016. The image in the center was captured two months 
later on 03/03/2016. In the center image, one can see evidence of additional clear-cutting that 
occurred since the image at left was captured.  The resulting loss of vegetation due to clear 
cutting is incorrectly perceived as fire in the dNBR image at right. 

 
Figure 6. Example of increased noise appearing at smaller thresholds for the Sentinel-2 dataset. 
The image on the far left depicts all fires over 1000 acres; the image in the center depicts all fires 
over 100 acres, and the image at right depicts all fires over 10 acres.   
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Figure 7. The correlation between burned area and threshold size for the Sentinel-2 and MODIS 
MCD64A1 datasets. Here, the labels on the points represent threshold size (in acres). Fires less than 500 
acres depict significantly greater burned areas for the Sentinel data which could be attributed to the spatial 
resolution of MODIS (1 pixel is ~ 60 acres) and the capacity of the product to detect smaller fires. There 
are two fires larger than 10,000 acres, however, MODIS misses one of the fires. 
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Figure 8. Comparison of the cumulative burned area for all fires 500 acres and greater between 
the Sentinel-2, MTBS and MODIS data products. Here, the x-axis uses the logarithmic scale and 
indicates the fire threshold size in acres while the y-axis indicates the total area burned for all 
fires greater than or equal to the corresponding threshold size. (i.e. For the Sentinel data, all fires 
500 acres and greater had a cumulative burned area of approximately 105,000 acres; but for all 
fires 5000 acres and greater there was a cumulative burned area of approximately 37,000 acres; 
etc.) 
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Figure 9. Kernel Smoothed Intensity Plots of fire occurrence for each dataset. Here, the scale 
indicates the estimated intensity of the fire occurrence pattern per square meter. The Sentinel and 
MODIS data products tend to pick up on the same hotspots (or regions with increased fire 
occurrence), save MODIS missing one hotspot in the northern region of the study area. Note that 
the MTBS product fails to recognize the same spatial patterns. 
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Figure 10. The bar labelled “Study Area” indicates the breakdown of each of our four land cover 
categories within the study region (by percentage) as indicated by the NLCD data. All other bars 
indicate the percentage of area that lied within the fire perimeters of the listed dataset by 
category. Note that all categories within fire perimeters are considered to be burned. In our study 
region, the percentage of area burned is disproportionally higher in wildlands than in any other 
area. It is possible that we see this trend because the lack of human presence within the wildlands 
means fires are not reported on or extinguished as quickly as they would be within urban or WUI 
areas. All three burned area datasets reveal that approximately 97% of all burned areas are found 
in the wildlands of the study area, despite the fact that just 85% of the study area is classified as 
wildlands. Additionally, while about 7% of the study area is classified as WUIx, only about 1% 
of the burned areas are found in the WUIx.  
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