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Abstract 
 
 

The production of wastewater during hydrocarbon recovery is an unresolvable 

factor of the oil and gas industry. Oil wells in the US produce on average, nearly 10 barrels 

of water for every 1 barrel of oil. Most of the produced water is reinjected back into the 

formation. However, recent studies may have linked increases in localized seismic activity 

to corresponding rises in wastewater well injection. Consequently, environmental 

discharge or reuse regulations are becoming more rigorous for produced water. Produced 

wastewater often originates from areas where water repurposing is an attractive option due 

to limited water resources in the area. Current water treatment solutions have not been 

universally successful as practical solutions due to high treatment material costs, long 

treatments cycles, and the production of additional environmental waste. Therefore, the 

need for a cost-effective, environmentally safe, and low waste producing water treatment 

method may change the outcome of millions of barrels of unusable water produced each 

year.  This study explores the recent advancements in nanotechnology to treat oil field 

wastewaters and demonstrates a newly discovered material’s ability to reduce residual oil 

concentrations below discharge limits.  

Iron oxides are commonly found in the environment and display a unique 

characteristic of superparamagnetism that is desirable for produced water treatment. The 

inherent magnetism of these particles allows them to be physically manipulated by a 

magnetic field and can be used to separate trapped oil from oil-in-water emulsions. The 

principal objective of this study is to examine the abilities of magnetite (Fe2O4) and 

maghemite (γ-Fe2O3) nanoparticles to reduce residual oil concentrations in produced water 

samples containing both dispersed and dissolved oil. Amine-coated magnetite 
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nanoparticles have shown oil removal capabilities in previous studies. The nanoparticles 

for this study were sourced from a local laboratory and also purchased commercially for 

comparison. The characteristics of the nanoparticles were measured and analyzed for 

comparative analysis and particles selection to optimize the water treatment process. 

Iron oxide nanoparticles used in water treatment tests relied on carefully designed 

oil removal experiments, emulsion production, and nanoparticle recovery and recyclability 

tests. The oil removal tests were conducted with prepared oil-water emulsions at known 

concentrations and with locally sourced produced water samples. The oil removal tests 

include the combination of an oil-water emulsion and dispersed nanoparticles in varying 

concentrations. After mixing the solution, the cloudy oil-water emulsions were made clear 

almost immediately when an external magnet was applied, indicating good oil-nanoparticle 

adherence. Oil concentration measurements via non-dispersive infrared spectroscopy 

confirmed the removal of oil as seen visually in the tests. Initial emulsion oil concentrations 

were reduced after nanoparticle treatment from 1,000 ppm to less than 10 ppm (>99% oil 

removal efficiencies). The oil removed from the O/W emulsions was then separated from 

the nanoparticles to be reused in additional treatment cycles. Maghemite maintained >98% 

oil removal efficiencies for up to at least ten cycles. These test results confirm iron oxide 

nanoparticles as a viable treatment solution for produced waters and most importantly, 

provide an environmentally safe method for removing oil contaminants from oilfield 

waters without the production of additional waste. 
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Chapter 1: Introduction 
 
1.1 Overview 
 

The over-abundance of produced waters in the oil field continues to be a challenge 

for the industry. Current solutions often employed provide additional options for oilfield 

managers to deal with excessive volumes of produced waters where formation re-

injection is not ideal or cost-effective. Produced waters contain contaminants such as high 

salinity, heavy metals, and even residual oil components (Table 1.1). These contaminants 

must be removed before disposal or reuse. The primary reduction of these contaminants 

occurs near the production site where simple gravitational separation techniques begin oil 

separation. The concentrations of these contaminants are closely monitored and wholly 

crucial to ensuring disposed or reused oilfield water meets environmental regulations.  

 
Table 1.1 Common produced water components and their concentrations. 
(Duraisamy et al., 2013). 
 

 

 

Gravitational separation is often unable to reduce water contaminant concentrations 

below the disposal restrictions. Thus, further treatment is required to remove 

contaminants bound within the water by chemical bonding, emulsification, or other 
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dissolution phenomena. Produced water may contain natural surfactants the keep oil 

compounds emulsified. Dissolved oil components such as phenols, polycyclic aromatic 

hydrocarbons (PAHs), and volatile hydrocarbons exist naturally in produced water and 

generally cannot be detected without magnification. Free-oil, produced solids, and other 

suspended contaminants are easily removed, but a more sophisticated and direct approach 

is required to separate the PAHs, phenols, and volatile hydrocarbons (Duraisamy et al., 

2013). This study demonstrates the ability of iron oxide nanoparticles to remove the 

emulsified oil components from water through an environmentally safe and efficient 

process. 

 

1.2 Problem Statement 
 

Most produced water collected during enhanced oil recovery (EOR) techniques or 

standard hydrocarbon recovery is injected directly back into the formation. This practice 

is often used to maintain formation pressures during long-term production and enhanced 

recovery techniques. This practice is widely accepted because the contaminated produced 

water does not require treatment before reinjection. While reinjection can help maintain 

formation pressures throughout production, recent studies have shown that reinjection 

can produce adverse effects such as aquifer/groundwater contamination and unwanted 

seismic activities (Peterson et al., 2018). If the produced water could be treated safely and 

efficiently in the field, it could be utilized by the local agricultural industry or in the 

fulfillment of local water needs. Many of today’s water treatment methods do not meet 

disposal or reuse regulations and often produce externalities themselves. 



   
 

   
 

3 
 

Current restrictions of offshore water discharge into the ocean state that oil 

concentrations in said waters must be below 42 ppm/day and includes a 29-ppm 

maximum monthly average per the US Environmental Protection Agency regulations. 

Primary gravitational separation techniques of oil from produced water does not provide 

an adequate solution for reducing dissolved and emulsified oil concentrations to meet this 

regulation. More specialized treatment processes must also be applied to target the 

emulsified oil components.  For onshore water disposal/reuse, there is no allowance for 

residual oil concentrations in the disposed water. The most common specialized treatment 

solutions for reducing produced water oil concentrations at or below these limits include 

physical treatments, chemical demulsifiers, ultrafiltration, biological treatments, and 

specialized thermal solutions. Although, each of these solutions suffers from 

disadvantages such as extended treatment times, high material cost, and additional waste 

production. For example, filtration techniques do not offer a reliable solution for the 

removal of nano-sized dissolved/emulsified oil. Filtration of increasingly small particles 

also increases filter fouling that prevents flow and slows treatment. Chemical 

demulsifiers have shown the ability to demulsify the dissolved oil with single-use 

materials that can be expensive and unsafe for the environment even at low (0.1 ppm) 

concentrations (Duraisamy et al., 2013). Thermal and biological solutions are challenging 

to use due to energy requirements and expensive machinery. 

Therefore, a produced water treatment method that can remove emulsified oil 

effectively without producing further waste is necessary to the growing challenge of 

excess produced water production. Oilfield water management teams could benefit from 

new technologies that provide additional options for produced water reuse and disposal. 
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Wastewater streams that were previously considered useless could be transformed into 

an asset, especially in areas where there are limited water resources. However, the 

acceptance of using the treated effluent for human consumption may be difficult without 

detailed toxicology and contamination testing. 

 This study provides a nanoparticle oil removal technique for produced water that is 

environmentally safe, cost-effective, and efficient in reducing dispersed and dissolved oil 

concentrations without additional material waste production. 

 

1.3 Objectives 
 

The primary goal of this investigative study aims to demonstrate oil removal and 

demulsification of produced water samples using superparamagnetic nanoparticles. This 

study illustrates the demulsification ability of these nanoparticles as an oil and gas 

wastewater treatment solution. The specific objectives of this study are: 

• Develop a produced water treatment method using superparamagnetic 

nanoparticles to reduce oil concentrations below disposal limits. 

• Compare and analyze nanoparticle oil removal efficiencies of synthesized and 

commercially obtained magnetite and maghemite nanoparticles. 

• Seek to understand the characteristics of nanoparticles that aide in demulsification 

and nanoparticle recyclability. 

• Demonstrate sustained oil removal efficiencies of these magnetic nanoparticles 

over sequential use and reuse trials. 
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1.4 Methodology 
 
The main objectives of this thesis study were achieved through a systematic 

experimental investigation and also a thorough literature review of current produced 

water treatment techniques. The analysis of relevant literature magnified the importance 

of the proposed nanoparticle produced water treatment process to remove dissolved and 

emulsified oil components that are often difficult to separate. The experimental 

investigation of the nanoparticle oil removal process relies on consistent and controlled 

oil-in-water emulsion preparation. Emulsions were prepared by ultrasonification with 

real-world oil samples, mimicking the properties of produced water samples collected in 

the field. The treatment of locally sourced produced water was also tested to ensure the 

practical application of this oil removal procedure in the field.  

The most important objective of this study was the analysis and discrimination of 

maghemite and magnetite nanoparticles samples. The nanoparticle characteristics, 

including size and magnetization saturation, were measured and considered throughout 

the study for data analysis, hypotheses, and conclusion formulation. Dispersion, oil 

removal, and recyclability tests for each nanoparticle sample were performed, and results 

analyzed for selecting the best performers. The nanoparticles with the highest oil removal 

efficiencies were selected for repeat testing and more advanced analysis. The oil removal 

efficiency was examined by oil concentration measurements before and directly 

following nanoparticle treatment via non-dispersive infrared spectroscopy. The tests to 

bolster the efficacy of the nanoparticle treatment was a complete examination of 

recyclability and reusability of the nanoparticles following successful, sequential oil 

removal treatments. The experimental data were collected for each trial and analyzed, 
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along with each of the various testing variables. The efficiency and applicability of the 

nanoparticle oil removal process were demonstrated visually and by direct experimental 

result comparisons. 
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Chapter 2: Literature Review 
 
 
2.1 Characteristics of Produced Water 
 

Produced water is the water or brine fluid that is carried to the surface along with 

the hydrocarbons from the subterranean formation. Produced water originates from the 

pores of the reservoir rock during formation. It becomes trapped in the rock pores along 

with the other organic materials that will later become hydrocarbons. Due to factors of 

age, location, temperature, and pressure, the composition and characteristics of produced 

water are incredibly complex. Many of the phases, the formation waters come in contact 

with, can dissolve in the water because water itself is an excellent solvent. While the 

composition of the water is unique from the factors listed, the compositional ranges of 

these elements can be generalized under the chemical categories listed in Table 1.1. These 

produced water constituents include dispersed oil, dissolved organic compounds, 

produced solids, metal, and even treatment chemicals (Duraisamy et al., 2013). 

Oil and grease found in produced water attract the most significant attention. The 

presence of oil/ grease in produced water is described as the total amount of dispersed oil 

and dissolved organic compounds. Dispersed oil droplets are generally present in 

produced waters in the range of 4-5 microns. However, the droplet size may be greater or 

smaller depending on the interaction the water has with the other liquids and gases as it 

moves to the surface. Dispersed oil is considered an especially vital constituent to track 

as it can be especially toxic to aquatic ecosystems. The majority of dispersed oil droplets 

are removed by standard gravitational separation techniques at the production site. 

However, the more challenging trapped oil can remain. Oil droplets smaller than 10 

microns in size are generally not removed by primary water processing operations. In 
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fact, tiny oil droplet can interfere with these processes. (Bansal and Caudle, 1999). The 

droplets are held dispersed in the aqueous phase often by natural or production treatment 

surfactants. Factors that can affect produced water oil concentrations include interfacial 

tensions between the phases, the efficiency of primary separation devices, oil density, and 

chemical pretreatments. (Ali et al., 1999).  

Hydrocarbons existing naturally in produced water that are soluble and become 

dissolved in the water include phenols, organic acids, volatiles, and polycyclic aromatic 

hydrocarbons (PAHs). Solubilized hydrocarbons are so challenging to remove that they 

are often left untreated and disposed of in the ocean (offshore) or reinjected (onshore). 

(Viel, 2004). Fig 2.1 shows the standard components of oil found in produced water. 

 
Figure 2.1 Oil components in produced water (Yang, 2006). 

 

The next most concerning produced water constituent is salt concentration. The 

concentrations are measured as salinity, TDS (total dissolved solids), or conductivity. The 

salinity of produced water is especially important for onshore water disposal 

management. However, most produced water has a higher salinity than seawater and 

therefore, must also be accountable for in offshore production (Cline, 1998). Water 

salinity can be measured in conductivity. Electrical conductivity is a product of dissolved 
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ions that conduct electricity in the water. Waste water that contains elevated TDS 

concentrations are relatively conductive. Conductivity is measured in μ Siemens per 

centimeter (µS/cm). TDS is measured in parts per million (mg/L) (Godsey, 2011). 

Produced waters with high salt concentrations require desalination techniques in 

preparation for reuse. Produced waters containing residual oil must be pretreated to 

remove the oil components before desalination.  (Drewes et al., 2009). The type of salt 

found in the produced waters of the oil basins of the western United States as shown in 

Fig 2.2. Sodium Chloride (NaCl) makes up much of the salt content in many of these 

basins, including that of the Anadarko basin where the produced water samples for this 

study were taken. Additionally, oil samples taken from the Anadarko basin show an oil 

API gravity of 43 degrees (Collins, 1969).  

 

 
 

Figure 2.2 Produced water salt composition in the central and western United 
States (Drewes et al., 2009). 
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2.2 Oil-in-Water Emulsions 
 

In an oil-in-water emulsion system, the finely divided particles of dispersed oil 

are known as the dispersed or discontinuous phase. The non-dispersed or continuous 

phase is the water that surrounds the dispersed oil droplets. It is common for a third 

component, the emulsifier or emulsifying agent that is present to aid in emulsion stability 

through surface interactions. The emulsions used throughout this study are known as oil-

in-water (O/W) emulsions designed to mimic the conditions of produced water. However, 

it should be noted that water-in-oil (W/O) emulsions occur when water droplets are 

dispersed inside a continuous oil phase. 

The first step to produce a two-phase O/W emulsion is size reduction in the 

discontinuous or dispersed phase. Energy in the form of work must be applied to the 

system for this process. The amount of work required to produce an O/W emulsion with 

a given droplet size is described by the equation: 

 

𝑊𝑊 = 𝛾𝛾𝑜𝑜/𝑤𝑤 ∙ Δ𝐴𝐴 

 

where W, is the free energy requirement measured in ergs, γ is the surface tension between 

the water and oil phases in dynes/cm, and ΔA is the surface area in cm2. The use of 

surface-active agents that can reduce the O/W surface tension is often used in emulsion 

production to decrease energy input requirements. Two conventional methods for energy 

input in emulsion preparation are mechanical agitation and ultrasonification. While both 

ways can be used successfully in emulsion preparation, it has been observed that 

ultrasonification reduces droplet size and increasing size uniformity of the dispersed 
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phase better than that of mechanical agitation (Ramisetty and Shyamsunder, 2011). 

Smaller droplets in the dispersed oil phase correlate with increased emulsion stability. 

 

2.3 Current Produced Water Treatment Methods 
 

Produced water management provides opportunities for discharge, reuse, or 

consumption in other industries such as irrigation or potable water. Produced water can 

be turned into an asset if it can be effectively treated. The main objectives for produced 

water treatment are described as follows (Arthur et al., 2005): 

1. De-oiling – Removal of free and dispersed oil/grease. 

2. Soluble organics removal. 

3. Disinfection – bacteria, microorganisms, algae, etc.  

4. Suspended solids (SS) removal. 

5. Dissolved gas – removal of hydrocarbon gases, CO2, hydrogen sulfide, etc.  

6. Desalination – dissolved salts. 

7. Softening – Removal of excess water hardness.  

8. NORM (Naturally occurring radioactive materials) removal.  

 
Current technologies and techniques of produced water treatment are used individually, 

or they can be combined as physical, biological, and chemical treatment processes 

depending on the treatment objectives. The chemical contaminant tolerances are stricter 

for agricultural/irrigation reuse than those of disposal or reinjection. Thus, it is important 

to select the treatment processes that are best suited to treat produced water with unique 

compositions and contaminants. Generally, the most crucial factor in determining 

treatment versus disposal is reliant upon overall treatment cost. It is also desirable that 

the treatment process can be employed at or near the production site to reduce 

transportation costs. The advantages and disadvantages of each treatment process must 
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also be considered, especially those that produce additional waste or excess energy 

consumption. The economics for each of the reviewed water treatment technologies is 

shown in Table 2.2. The most common water treatment techniques and processes, 

including physical, chemical, and biological processes will be examined in the following 

section. 

Table 1.2 Treatment technology cost & efficiency (Adapted from Igunnu & Chen, 2012) 
Water Treatment 

Technology Overall Cost* Removal Efficiencies 

Ceramic MF/UF 
membrane N/A 90-100% water recovered 

Polymeric MF/UF 
membrane Capital Costs + Operation: $0.04-0.10/bpd† 85-100% water recovered 

NF Capital Cost: $35 to $170/bpd + Operating cost: 
$0.03/bbl. 75-90% water recovered 

RO Capital cost: $35 to $295/bpd + Operating cost: 
$0.03-0.08/bbl. 30-85% water recovered 

Thermal (MSF, 
VCD, MED) 

Capital cost: $140 to $360/bpd + Operating cost: 
$0.08-0.19/bbl. ~75% water recovered 

Demulsifiers Varies greatly by chemicals used - 

Magnetic 
nanoparticle§ Varies by materials and reusability ~98-100% oil removed, 

100% water recovered‡ 
 * Based on best available data 
 † BPD – capital costs of treatment facility design per barrel treated daily 
 ‡ Recovered water that meets or exceed effluent regulations 
 § Still in development and not widely accepted for produced water treatment 
 
 

2.3.1 Membrane Filtration Technology 

Conventional produced water treatment processes can remove particles 5.0 μm 

and larger. Historically the level of particle size removal from produced waters has been 

accepted for disposal or reinjection regulation. Improved disposal regulation standards in 

recent years require new water treatment processes to reduce contamination below the 

standards of 42 mg/L of oil/water, and less than 10 mg/L of Total Suspended Solids (TSS) 

(EPA, 2019). Membrane treatment is a newer contaminant separation process that allows 

water treatment that meet the high standards of regulation (Duraisamy et al., 2013). 
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Membranes are micro or nano-porous films that are used to separate particles 

according to size and are driven by pressure gradients. Membranes are produced with a 

specific pore range that set the limit for maximum pore size that can pass through the 

membrane film. The membranes can also be designed to separate only targeted 

components. Current membrane filtration processes include microfiltration (MF), 

ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RS), and specialized material 

filters such as polymeric or ceramic membranes.  

There are two current membrane filtration processes known as cross-flow and 

dead-end filtration. Either of these systems functions by a pressure gradient or vacuum-

driven system. A visual representation of each of these filtration systems is shown in Fig 

2.3. 

 

 

Figure 2.3 Visual comparison of dead-end and cross-flow filtration. (Bilstad and 
Espedal, 1996) 

 

Membranes can be classified by structure and morphology, or they can be 

separated by the type of material such as ceramic or composite membranes. Membrane 
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treatment for produced water is advantageous due to low operation cost, ease of use, few 

or no chemical requirements, low energy consumption, and the ability to be easily 

combined with other treatment methods. However, membrane treatments are limited by 

membrane fouling, low flux, and shortened membrane lifetimes (Duraisamy et al., 2013). 

Membrane processes may also require additional water for flow maintenance and 

membrane cleaning (Igunnu and Chen, 2012). 

 

2.3.2 Microfiltration (MF) / Ultrafiltration (UF) 

The objective of MF and UF filtration is to remove large micellular particles, 

microorganisms, and suspended solids. The range of MF pore sizes is >50 nm while UF 

provides separation with pores ranging from 2-50 nm. UF has shown the ability to obtain 

higher oil removal efficiencies when compared to standard separation techniques (He, 

2008). Researchers have also determined that UF is more efficient removal of dissolved 

components, hydrocarbons, suspended solids, and from oilfield produced water (Bilstad 

and Espedal, 1996). 

Both MF and UF water treatments can be performed via cross-flow or dead-end 

filtration. The recovery of produced water ranges from 85%-100%, dependent on 

membrane filtration method selected. It is common for cross-flow filtration to result in 

higher fluid recoveries than that of dead-end filtration (Duraisamy et al., 2013). MF and 

UF are low pressure (1–30 psi) operating systems and therefore be used prior to 

desalination. However, they are not able to remove salt from water during filtration 

(Drewes et al., 2009). Membranes from both processes are typically formed with ceramic 

of polymeric materials. MF and UF share common disadvantages of required periodic 
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cleanings of the membrane to reduce fouling. Over time the fouling of the membrane may 

reach sufficiently high levels that membranes must be discarded and replaced. Fouling 

introduces additional waste in the water treatment process that must be considered. 

Additionally, the waste generated during the backwashing and cleaning process creates 

more waste the must be disposed of/ recycled or further treated (Igunnu and Chen, 2012). 

Table 2.1 summarizes the parameters and targets of MF and UF treatment processes. 

 

Table 2.1 Membrane water treatment processes (Igunnu and Chen, 2012) 

 
 
2.3.3 Polymeric/Ceramic Membranes 

Membranes used for MF and UF processes are categorized by material 

composition, whether they be organic (polymeric) or inorganic (ceramic). Polymeric 

membranes can be made of polyacrylonitrile (PAN) or polyvinylidene difluoride (PVDF) 

and can be used to treat feed stream with higher TDS contents. Polymeric membranes 

Process Mechanism of Separation Material/Type Objective 

Microfiltration 
(MF) 

Separation by sieving 
through macropores (>50 

nm) 

Polymeric 
and inorganic 

/ Porous 

Removal of suspended solids, 
large organic molecules, and large 

colloidal particles including 
microorganisms (used for reducing 

colloidal suspensions and 
turbidity) 

Ultrafiltration 
(UF) 

Separation by sieving 
through mesopores (2-50 

nm) 

Polymeric 
and inorganic 

/ Porous 

Removal of large dissolved solute 
molecules and suspended colloidal 

particles, including bacteria and 
macromolecules such as proteins 

Nanofiltration 
(NF) 

Separation through the 
combination of charge 

rejection, solubility 
diffusion, and sieving 

through micropores (<2 
nm) 

Polymeric / 
Dense 

Removal of multivalent ions and 
specific charged or polar 

molecules 

Reverse 
Osmosis (RO) 

Separation is based on the 
difference in solubility and 

diffusion rates of water 
and solutes 

Polymeric / 
Dense 

Removal of low molecular weight 
components such as inorganic ions 
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demonstrate high particle removal efficiencies, including dispersed and emulsified oil. 

They are cheaper than ceramic membranes but are more prone to fouling due to the 

presence of oil, bacteria, and sulfides in the feed stream (Duraisamy et al., 2013). They 

may require daily cleaning and low molecular weight, or volatile compounds may be 

inseparable by membranes. 

Ceramic membranes are made from carbides, metal oxides, or nitrides. These 

membranes are more chemical and thermally stable. Ceramic membranes benefit from 

tubular modules that increase flux due to high porosity in the membrane. The lifetime of 

inorganic, ceramic membranes is more significant than polymeric materials due to their 

ability to withstand higher mechanical, thermal, and chemical stress (Abbasi et al., 2012). 

Ceramic membranes can be used in water treatment to meet effluent standards without 

any sort of pretreatment or chemical additives (Ebrahimi et al., 2010). They also can treat 

feed streams with a higher amount of total dissolved solids (TDS). Ceramic membranes 

are prone to fouling, especially from feedwater, with a high concentration of ions where 

irreversible fouling occurs (Duraisamy et al., 2013). 

Conversely, cleaning of ceramic membranes is generally more natural due to the 

material durability. Ceramics have not demonstrated the ability to separated dissolved 

ions or organics, which limits their use as a single-step treatment. Several studies have 

concluded that ceramic membranes have better overall performance and durability 

compared to polymeric membranes. 

 
2.3.4 Reverse Osmosis and Nanofiltration 
 

Reverse osmosis is a well-known technology that has historically been used for 

seawater desalination and is now used in produced water treatment. It is driven by 
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hydraulic-assisted osmotic pressure to a dense, non-porous membrane and the clean water 

(permeate) passes through the membrane. Contaminant particles as small as 0.0001 μm 

can be removed by RO across a membrane, however, the membrane is prone to fouling 

and scaling. While few field studies have been successful for RO, laboratory studies have 

shown the potential of RO membranes to separate oil from produced water. The 

successful treatment is dependent on a combination of appropriate pre-treatment 

technologies (Mondal and Wickramasinghe, 2008). RO uses electrical energy for its 

operation so it can function automatically. It has a high pH tolerance and produced water 

recovery for RO applications can be as low as 30% or as high as 85%, highly dependent 

on pre-treatment. Disadvantages of this treatment technique include extensive feedwater 

pre-treatment, high sensitivity to organic and inorganic materials present, and maximum 

feed temperatures of 45°C.  The operating costs of RO are dependent on energy price and 

TDS concentrations in the feedwater (Drewes et al., 2009). 

Nanofiltration systems are designed to soften water by removing metal 

contaminants as small as 0.001 μm (Drewes et al., 2009). Produced water with TDS 

values between 500 – 25,000 ppm can be treated via NF. NF is similar in function to RO. 

However, lab tests demonstrated an only minor improvement of treating saltwater 

compared to the effectiveness of RO using the same sample (Mondal and 

Wickramasinghe, 2008). Therefore, several studies have concluded that NF is an 

imperfect solution for produced water treatment, especially used exclusively. Similar to 

RO, NF feedwater is sensitive to high levels of organic and inorganic materials. NF also 

requires frequent backwash cycles. Water recovery for NF systems ranges between 75% 

and 90%. RO systems operate at much higher pressures than NF. A NF membranes’ 
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effectiveness is reduced by fouling, which in turn reduces flux and transmembrane 

pressures increase (Igunnu and Chen, 2012). 

 

2.3.5 Thermal Technologies 
 

Thermal water treatment technologies are desirable where energy costs are lower, 

and the water is highly contaminated. Thermal treatment options such as vapor 

compression distillation (VCD), multistage flash (MSF) distillation, and multi-effect 

distillation (MED) have historically been employed as desalination processes until recent 

advancements in membrane filtration technology (USBR, 2003).  The MSF distillation 

works through water evaporation that reduces the pressure without raising the 

temperature. The preheated feedwater is flashed into steam as it is fed into a lower 

pressure chamber. Expected water recovery for MSF treatment is 20% and may still 

contain 2–10 mg/L of residual TDS (Drewes et al., 2009). Acids and other descaling 

chemicals may be required due to the heated feedwater and thus increase chemical costs. 

A multi-effect distillation MED functions with the application energy sufficient to 

convert the feed water to steam. The steam is captured via condensation, and the clean 

water can be recovered. Several evaporator systems are utilized to improve efficiencies 

and minimize energy consumption. VCD leverages vapor inside alternating evaporation 

and compression chambers. The chambers can be compressed either thermally or 

mechanically. The compressed vapor increases in energy, which is then transferred back 

to the evaporation chamber to be used as a heating source. This heat exchange makes 

VCD energy consumption significantly lower than MSF or MED systems. Mechanical 

vapor compression has exhibited advantages in chemical use reduction, reduced overall 
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cost, and decreased fouling and formation is reduced when VCD is used at temperatures 

below 70°C (Heins et al., 2005). VCD technology is a mainly a good candidate for 

seawater desalination, but some enhanced vapor compression technologies have been 

used in produced water treatment (Drewes et al., 2009). A hybrid VCD-MED treatment 

system is an example of an enhanced vapor compression technology. Produced water 

recovery from thermal treatment systems ranges from 20 –67% dependent on equipment, 

energy use, and single or hybrid systems. 

 
 2.3.6 Demulsifiers 
 

Produced waters may contain naturally occurring surfactants that can stabilize oil-

in-water emulsions by decreasing the oil-water interfacial tension. The most significant 

source of surfactants is introduced to formation waters during well production, as a 

regular part of hydrocarbon recovery. Demulsifiers can disrupt the chemical and physical 

bonds of surface-active agents (surfactants) that keep oil emulsified in produced water. 

The presence of certain solids such as silts, iron sulfide, and paraffin in crude oil can 

affect the process. Demulsifiers must be screened and selected based on the composition 

of the produced water to ensure compatibility. Past research has found that water-soluble 

demulsifiers are not effective in reducing oil concentrations of produced water, although 

oil-soluble demulsifiers can be useful. Previous researchers tested over 200 different 

emulsifiers, most of which were water-soluble, and discovered that very few were able to 

reduce the final oil concentration (Deng et al., 2005). Demulsifiers can require long 

settling times (up to six hours) to reduce oil concentrations in produced water below 

discharge regulations. The dosage of demulsifiers used is also critical in determining the 
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overall reduction produced water oil concentration. Fig 2.4 shows the effect of 

demulsifier dosage on oil concentration in the produced water. It should be noted that a 

demulsifier dosage of at least 50 mg/L (50 ppm) is required to decrease oil concentrations 

below 50 mg/L (50 ppm). Residual oil concentrations under 29 mg/L (29 ppm) were 

observed for demulsifier doses of 100 mg/L (100 ppm) (Deng et al., 2005). 

 

 

Figure 2.4 Effect of demulsifier dosage on oil concentration for produced water 
treatment (Deng et al., 2005) 

 
 

The zeta potential of the oil droplets in produced water also increases in the 

presence of the demulsifiers. Thus, the net charge on the surface of oil droplets decreases. 

A decrease in electrostatic repulsion is the driving force for the coalescence of the residual 

oil droplets. Demulsifiers can be customized for field-specific compatibility, however, 

this customization can be expensive and the chemical composition of the demulsifiers 

may also be environmentally hazardous. Demulsifiers are generally single-use products 

that can remain in the water after oil separation. The demulsifying chemicals can be toxic 
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to the environment and require further treatment of the produced water before disposal or 

reuse. 

 

2.4 Characteristics of Iron Oxide Nanoparticles 
 

Iron oxides are found naturally in soils, waterways, rocks, and living organisms. 

Many processes in the environment rely on the properties or iron oxide nanoparticles. All 

iron oxides and oxide hydroxides consist of Fe, and with an attached O or OH. Iron oxides 

differ in composition among the 15 known variations as well as the valence of Fe and in 

the crystal structure. Due to near universality, the presence of iron oxides is safe under 

most conditions with the most damaging effect being the corrosion they may cause. 

Therefore, iron oxide nanoparticles provide an excellent opportunity to use naturally 

occurring for the treatment of produced water. The two iron oxide variants that are used 

in this study are magnetite and maghemite. The primary characteristics of these 

compounds are shown in Table 2.3. 
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Table 2.2 Characteristics of maghemite and magnetite (Schwertmann and Cornell, 2008). 

 
 
 
2.4.1 Maghemite 
 

Maghemite is the fully oxidized state of magnetite and exists in a cubic crystalline 

structure. The cubic structure is carried through the increase in positive charge upon 

oxidation of Fe (II) in magnetite. The oxidation of magnetite to maghemite changes the 

color from black to red-brown. One of the methods for producing maghemite is oxidizing 

magnetite. This method also provides well-ordered maghemite with superstructure lines 

(Schwertmann and Cornell, 2008). Magnetite oxidation can occur naturally over time 

through direct air exposure or can be accelerated using an oven set to 250°C. The 

saturation magnetization for maghemite is 60–80 Am2/kg. The solubility of maghemite 

is still under contestation. References can be found that list maghemite as insoluble, but 

past research has also demonstrated that maghemite can be soluble in an HNO3 solution 

(Taylor and Owen, 1997). 
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The structure characteristics and surface charge of maghemite nanoparticles are 

responsible for oil droplet adhesion through electrostatic attraction (Chun et al., 2001).  

Maghemite retains a cubic structure when derived from magnetite through oxidation.  The 

Oxidation of magnetite creates a void in the cation site. It has been suggested that this 

cation vacancy is what allows maghemite to exhibit impressive sorption capacities (Dixon 

and Weed, 1989). This hypothesis was further tested as hydrophobic nanotubes were 

coated with maghemite to further increase their adsorption capacity. (Fard et al., 2016) 

 
2.4.2 Magnetite 
 

Magnetite contains Fe(II) and Fe(III) elements as the basis of its structure. 

Magnetite crystals formed synthetically at low temperatures are often very small (<100 

nm). Magnetite must be protected from oxidation by storage practice or chemically 

stabilized to prevent the transformation to maghemite. It is for this reason that many 

preparation methods of magnetite require reactions to occur in an N2 gas environment. 

The two basic ways to produce are (1) by co-precipitation of Fe3+/ Fe2+ in solution at a 

ratio between 0.5 or 10, or (2) by partial oxidation of a Fe2+ salt in and alkaline 

environment (Schwertmann and Cornell, 2008). 

Magnetite displays ferrimagnetism arising from structurally induced spin 

moments. These moments occur on the octahedral and tetrahedral locals in magnetite. 

The existing net magnetic moment is the result of an inequality in valent cations in the 

octahedral/tetrahedral sites (Faivre, 2016). The saturation magnetization of magnetite is 

large and reported as 92–100 Am2/kg. In the presence of oxygen, magnetite tends to easily 

oxidize, losing and O- and becoming maghemite. Under conditions of high temperature 

(+400°C), the magnetite will oxidize into a secondary structure called hematite. 
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2.4.3 Functionalized Iron Oxide Nanoparticles 
 

The use of superparamagnetic nanoparticles is becoming prominent among the 

industries of biotechnology, medicine, oil & gas, and other specialized applications. Some 

of the well-accepted applications of iron oxide nanoparticles that are used to aid in drug 

delivery (El-Boubbou, 2018). The biocompatibility of these iron oxide particles has been 

proven and therefore confirms their use in the water treatments as being safe for humans 

and most environmental applications (Wu et al., 2008). 

Magnetic iron oxide nanoparticles have a large surface-to-volume ratio which 

correlates with an increased surface energy.  The increased surface energies cause the 

particles to aggregate in order to reduce the energies. Also, uncoated iron oxide 

nanoparticles such as magnetite are chemically volatile, especially in the presence of 

oxygen when magnetite oxidizes to form maghemite. Magnetite oxidation generally 

reduces magnetism and dispersibility as the resulting maghemite aggregates. Therefore, 

it has become necessary for researchers to provide a proper surface coating to the particles 

to stabilize the magnetite nanoparticles. Due to the high surface activity of magnetite, the 

molecule will accept many different forms of chemical coatings such that the nanoparticle 

and coating can be specialized for unique applications. These coating strategies involve 

grafting the nanoparticles with organic molecules such as polymers, surfactants, and 

biomolecules. Surface coating such as inorganic silica, metal, or other nonmetal 

elementary substances can also be grafted. The protective shell of the grafting not only 

stabilizes the magnetite nanoparticle but can also allow for additional functionalization 

and coatings. 
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Magnetite is the most commonly used iron oxide nanoparticle to coat with a 

surface-active agent. Magnetite nanoparticles have been favored in recent studies as 

carriers for chemical demulsifiers due to their desirable zeta potential and magnetization 

saturation values. Examples of coatings applied to magnetite include propriety 

demulsifiers, amines, and silicone-based polymers. When magnetite nanoparticles are 

coated with a surface-active agent, they act as the carrier for the chemical that has the 

added benefit of being able to be manipulated by an external magnet. This magnetism has 

been utilized to separate the water from the demulsifying compound during water 

treatments (Wang et al., 2018). The use of bare or uncoated iron oxide nanoparticle to the 

oil and gas industry has been limited. Recent studies have shown the ability of maghemite 

to be used to clean up oil spills by using the particles to adhere to oil films on top of the 

water (Chun et al., 2001). These studies indicate that uncoated iron oxide nanoparticles 

do exhibit a natural affinity to oil in an oil and water environment. 

 

2.5 Nanoparticle Oil Removal and Recyclability 

Superparamagnetic particles have the unique ability to be manipulated and 

moved with a magnetic field. Innovations in nanotechnology have improved the value 

of magnetic nanoparticles due to the vast array of applications in many scientific 

communities. The use of iron oxide nanoparticles alone or as the carrier for other 

compounds is becoming more common. The nanoparticles are combined with unique 

compounds to be translocated to desired areas and then returned using a magnetic field. 

The specialized chemicals grafted to the nanoparticles can be recovered and reused 
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rather than lost or simply discarded. Superparamagnetic nanoparticles can decrease 

costs and improve deliverability. 

 

2.5.1 Techniques 

Magnetic iron oxide nanoparticles have a high specific surface area, and the 

recovery of the particles is attributed to their response to a magnetic field. The structure, 

surface charge, and nanomaterial develop the unique characteristics of magnetic 

maghemite nanoparticles, suggesting a high potential of them in the removing of oil from 

produced water. The removal of oil from produced water using maghemite leverages the 

electrostatic adsorption and magnetic separation potential of maghemite nanoparticles. 

The hydrophobicity and positive surface charge of maghemite allow for a favorable 

interaction with the oil. The zeta potential of maghemite is on average, >35 mV, which is 

considerably less than magnetite. However, this zeta potential is also dependent on 

production temperature and the pH during the reaction while synthesizing or oxidizing 

magnetite. Maghemite has shown to be stable in a water suspension. 

The most common technique for nanoparticle introduction to an O/W is first by 

dispersion of the particles in a solution with water. Ultrasonification has shown the best 

results for dispersing nanoparticles, especially those that aggregate when stored such as 

maghemite and magnetite. Following dispersion, the nanoparticles are mixed with the 

emulsion for one hour or up to 24 hours. The agitation method is not specific and can be 

carried out any number of ways. After mixing a strong magnet is applied to the solution 

so that a separated layer is formed. The negatively charged dispersed oil adheres to the 

surfaces of positively charged maghemite nanoparticles.  
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Past studies have used dyes to mark the color of the emulsified oil for better 

clarity; however, the use of marking dyes unnecessary for practical application. The 

separated oil is then skimmed off the top of the water is decanted depending on the 

concentration of the nanoparticles. Common nanoparticle concentrations range between 

0.4-10 mg/mL.  An external magnetic field can be used to separate the nanoparticles from 

the oil that collects on the water surface. Solvent washing techniques are used to dissolve 

any hydrocarbon components attached to the magnetic nanoparticles. Current research in 

produced water treatment using iron oxide nanoparticles have focused mainly on the use 

of functionalized magnetite nanoparticles although maghemite nanoparticles have been 

shown to remove asphaltenes from a toluene solution (Peng et al., 2012). 

 

2.5.2 Efficiency and Challenges 

The success of magnetic nanoparticle water treatment is dependent upon 

measurements taken initially and then after treatment to observe the change. Some of the 

challenges that arise during treatment include nanoparticle dispersion difficulty, emulsion 

stability, nanoparticle mass loss, and longer than expected mixing times. Due to the high 

energies of iron oxide nanoparticles, they tend to aggregate over time when stored to 

reduce this energy. Then when attempts are made to disperse the nanoparticles, more 

extensive mixing techniques may be required to break up the aggregates. 

Ultrasonification has shown favorable results in dispersion. Higher sonication amplitudes 

may be needed for severely aggregated nanoparticles. When low concentrations of 

nanoparticles are used in treatment (<1 mg/mL), it has been observed that mixing times 

with the O/W emulsion must conversely increase and may require up to 24 hours of 
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mixing. Also, during the collection process with the magnet, some of the less magnetic 

nanoparticles may be left behind with the oil. The magnetization of each nanoparticle 

varies depending on the size and purity of the sample. Therefore, magnetic nanoparticles 

will likely need to be washed several times following synthesis to remove the less 

magnetic or impure iron oxide particles. The need for pre-washing is also dependent on 

materials and technique used during nanoparticle synthesis. Another important 

consideration when using functionalized MNPs is the degradation of the coating over 

time that results in lower removal efficiencies. Fig 2.5 shows the recycle test results of 

three different studies that utilized functionalized MNPs. The loss of coating was the most 

common hypothesis for the steep reduction in efficiencies over the cycles. 

 

 
 

Figure 2.5 Functionalized magnetite nanoparticle recycling test results for three 
relevant studies. Cycle number (horizontal axis), oil removal efficiency (vertical axis) 
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Chapter 3: Experimental Studies 
 
 
3.1 Oil Removal Experiments 
 

Laboratory experiments were conducted for emulsion production, oil removal 

efficiencies, and nanoparticle recycling. Each experiment was designed with specific 

materials, measuring parameters, and data collection techniques. The purpose of the tests 

is to determine the optimal materials and methods required to achieve the highest oil 

removal efficiencies that could be sustained over multiple reuse cycles of the 

nanoparticles. Therefore, nanoparticle selection and exclusion were the essential 

objectives of each experiment. Each of the various tests performed and data collected 

were driven to optimize the oil removal process while also ensuring low costs, short 

treatment times, and little environmental impact. 

Data was collected throughout the experiments using the instruments discussed in 

section 3.1.3. Data was measured by reputable instruments that were calibrated correctly 

and measuring methods given by the instrument manufacturers was followed precisely. 

Visual data collected also became an essential aspect of all data considered and aided in 

the determining of the physical processes being observed. Photos and short videos 

represented the visual data, and the analysis of the relevant data is further shown in the 

figures of Chapters 3 and 4. The following sections discuss the variables, parameters, and 

data collected for each of the experiments. The test matrices tables in the following 

sections denote an “x” for each test that was conducted and noted otherwise with a 

footnote with further explanation for why these tests were not performed. 
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3.1.1 Test Variables and Matrices 
 

The first tests conducted for this study were focused on gaining basic 

understanding and experience of the magnetic iron oxide nanoparticles. These 

nanoparticles are the critical component of the water treatment process and therefore, 

must be well understood. The nanoparticles were obtained in powdered form that could 

be manipulated easily by an external magnet while still inside the container or sample 

vials. It was then necessary to test the dispersibility of the nanoparticles in solution. As 

mentioned by the literature, iron oxide nanoparticles have an inherent attraction to each 

other and will aggregate together if left alone, especially in the presence of oxygen. The 

nanoparticles were placed into a solution to provide protection from this natural 

aggregation and to evenly disperse the particles for a perfectly homogeneous suspension. 

The first solution the nanoparticles were mixed in was sourced from local tap 

water, and this was done to get an overall sense of the particles ability to disperse into the 

solution and then be collected and removed from the solution with the application of an 

external magnet. The complete composition and characteristics of the tap water were not 

determined as part of this study. Therefore, the plan for future tests was to use DI water 

so that the composition of the test fluids could be controlled to observe if changes in water 

source or composition changed the outcome of the tests. Throughout the study, it was 

determined that some of the iron oxide nanoparticle samples did not respond as quickly 

or as efficiently to the magnet, depending on the type of water used. Visual data was 

collected for these tests to inspect the mixed solutions and determine the dispersion 

compatibility and magnet response while in solution. Table 3.1 shows the eight different 
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water samples that were used as the mixing fluid for producing the solutions in 

preparation for water treatment and the corresponding iron oxide nanoparticle samples.  

 
Table 3.1 Test Matrix for Nanoparticle Dispersion in Water Samples 

 
 

The next sets of tests were used to determine the optimal emulsion preparation 

procedure. Emulsion preparation was designed with two goals including, (1) an emulsion 

using real-world oil samples than can mimic the residual oil found naturally, (2) and 

emulsion with consistent and known compositions to exclude other molecular 

interactions apart from the iron oxide nanoparticles and the oil. Two different oil samples 

were used to ensure that the results from subsequent tests could not be explained solely 

by fortuitous oil sample selection with perfect test compatibility. The other dependent 

variables used were brine salinity (%), salt type, and oil concentration (ppm). The salts 

chosen are common to the locale and the oil concentrations were congruent with standard 

oil-field produced water concentrations. 

The data for these emulsion preparation tests were to be collected visually and 

verified through subsequent instrumentation measurements. The prepared emulsions 

were observed over time for demonstrating stability and homogeneity and were to be 

  
Dispersion Water Sample 

Nanoparticle 
Source 

DI 
Water 

Distilled 
Water 

Tap 
Water 

1% 
NaCl 
Brine 

3% 
NaCl 
Brine 

Produced 
Water - 

OK 

Produced 
Water - 
ARG 

Ethanol 

Maghemite -
WCTC x x x x x x x x 

Maghemite -
WCTC x x x x x x x x 

Magnetite - 
WCTC x x x x x x x x 

Magnetite - 
Commercial x x x x x x x x 

Amine - 
Coated 

Magnetite 
x x x x x x x x 



   
 

   
 

32 
 

tested for oil content using infrared spectroscopy to verify composition. The tests 

conducted for oil samples used, oil concentration, and brine salinities are shown in Table 

3.2. 

 

Table 3.2 Test Matrix for Emulsion Preparation and Stability 

*Untested due to poor results from initial CaCl2 brine emulsion tests 
† Untested. A single emulsion prepared with produced water was tested to ensure water components (other 
than oil) do not affect emulsion production or nanoparticle water treatment. 
 
 

The main tests conducted in this experiment designed to determine which 

nanoparticle sample produced the highest oil removal efficiencies, and what water 

treatment preparation methods reduced treatment time. The goal of these test parameters 

as described in Tables 3.3 and 3.4 is to select the iron oxide nanoparticle the removes the 

most amount of oil in the shortest amount of time.  

The introduction of the prepared iron oxide nanoparticle solutions to the emulsion 

samples required agitation or mixing so that the nanoparticles would directly contact the 

oil droplet that was dissolved and dispersed in the emulsion. All mixing/agitation methods 

selected were elementary and required minimal equipment or materials and are shown in 

Table 3.3, with their corresponding nanoparticle samples. The first mixing method was a 

standard shaking plate mixer and the second was a lab vortex instrument. The data for 

these tests were only recorded as what test was used for mixing so the data could be later 

  
NaCl Brine 

Concentration 
CaCl2 Brine 

Concentration 

 

Emulsion Oil Source & Concentration 
(ppm) 1% 3% 1% 3% PW-

ARG 

Medium Oil Sample 

10,000 x x * * † 
1,000 x x x x x 
500 x x * * † 
100 x x * * † 

Heavy Oil Sample 1,000 x x x x † 
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referenced and compared to oil removal efficiency data for determining the effects of 

each mixing type and selecting an optimized mixing approach. 

 

Table 3.3 Test Matrix for MNP Treatment Mixing Methods 
  Emulsion + MNP Dispersion Mixing 

Nanoparticle Source Shaker Plate 
10 min/180 rpm 

Shaker Plate 
>10 min/180 rpm 

Vortex 
30 sec/3200 rpm 

Maghemite Commercial x x x 
WCTC x x x 

Magnetite Commercial x * x 
WCTC x * x 

Amine - Coated 
Magnetite WCTC x x x 

*Untested due to poor cleaning results of previous tests with uncoated magnetite nanoparticles. 
 
  

The next variable that was tested was to show how the nanoparticle concentration 

would affect oil removal efficiencies. The results of these tests were crucial for optimizing 

oil removal procedures. The iron oxide nanoparticles are relatively inexpensive; however, 

the associated costs of purchase or production contribute a more significant percentage 

of materials costs than any other chemical used in this study. Determining the lowest 

concentration of nanoparticles allowable to maintain oil removal efficiencies provides 

substantial evidence and purpose to the practical use of these nanoparticles on a larger 

scale. Primary nanoparticle concentrations were selected from the literature (Wang, 2018) 

and were later reduced by one-half for the tests later used to determine critical 

nanoparticle concentrations for the treatment process. Table 3.4 summarizes each 

nanoparticle sample the corresponding concentrations (mg/mL) tests that were 

conducted. The data from these tests was also referenced to compare to oil concentrations 

of treated water to select the highest oil removing nanoparticles and optimized 

nanoparticle concentrations. 
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Table 3.4 Test Matrix for Demulsification Experiments 

*Untested due to poor cleaning results of previous tests with uncoated magnetite nanoparticles. 
 
 
3.1.2 Materials Used 
 

Laboratory produced magnetite and maghemite nanoparticles were obtained 

through cooperation with a research project in the same facility. The amine-

functionalized magnetite nanoparticles were also obtained on location shortly after the 

amine coating process was complete. Locally synthesized magnetite nanoparticles were 

labeled “WCTC-T__” with an accompanying batch number, and locally manufactured 

maghemite nanoparticles were labeled “WCTC-Jh__” with an accompanying batch 

number. Each of these nanoparticles will be referenced similarly in this study. WCTC 

magnetite and maghemite nanoparticles samples were dark brown or black. 

Commercially produced maghemite nanoparticles (Iron (III) oxide nanopowder, <50 nm 

particle size) were purchased from Sigma-Aldrich and are reddish-brown. Commercially 

produced magnetite nanoparticles (Iron (II, III) oxide nanopowder, 50-100 nm particle 

size) were also obtained from Sigma-Aldrich and are black in color. Commercial iron 

oxide nanoparticle samples are labeled as “Commercial” or “S.A.” 

Deionized water (DI-H2O) (0.23 MΩ resistivity) was obtained through LabChem 

(ASTM Type II). Sodium chloride (NaCl, ≥99.0 %) was purchased from Fisher 

BioReagents and a calcium chloride (CaCl2) salt sample was used from the current lab 

  Nanoparticle Concentration (mg/mL) 
Nanoparticle Source 5 2.5 1.25 0.625 0.313 

Maghemite Commercial x x x x x 
WCTC x x x x x 

Magnetite Commercial x * * * * 
WCTC x x x x x 

Amine - Coated Magnetite WCTC x x x x x 
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inventory. The first produced water sample of this study (PW-OK) was obtained from a 

random well in Oklahoma and was orange in color, had visible suspended particles, and 

contained measured residual oil oil of 80-120 ppm. This oi/grease components were not 

removed during standard gravitational separation techniques at the well site. The second 

produced water sample was obtained from Argentina (PW-ARG), and it is estimated that 

the sample was pretreated to remove contaminants before shipment. This hypothesis is 

based on its transparent appearance and low measured residual oil content of 20-40 ppm. 

Other water samples used for testing include local tap water and distilled water purchased 

from a local grocery store. The medium crude oil sample used in this study was sourced 

from a random well in Oklahoma and had the following characteristics: density of 0.814 

g/cm3, API gravity of 41.7 degrees, and a viscosity of 2.60 cP. Oil samples of similar API 

gravity (43 degrees) have been recorded previously in the same basin (Collins, 1969). 

The heavy oil sample was found on location and had an API gravity of 21 and a density 

of 0.925 g/ cm3. Both oil samples were chosen for their availability and convenience 

rather than for their unique characteristics and composition. Ethanol (Histoprep, 100% 

alcohol) was used for solvent washing. 

 

3.1.3 Equipment Used 

The most important data collected in this study were the initial and final oil 

content measurements to determine the oil removal efficiency of the nanoparticle 

treatment process. Therefore, the instrumentation and methodology for measuring oil 

content in water samples were extensively researched for proper instrument selection. 

The chosen instrument (Fig 3.1) for these measurements was the oil content analyzer 
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(Horiba OCMA-550).  This oil content analyzer was selected for its fast measurement 

times, simple sample extraction procedure, ability to measure volatile hydrocarbons, and 

its compliance with the ASTM D7066-004 (2004) standard. The measurement principle 

of this instrument, as stated by the manufacturer, is “solvent extraction non-dispersive 

infrared absorption analysis.” Non-dispersive infrared absorption an often-used method 

in the field for analyzing oil in water. The infrared absorption is measured by passing an 

infrared beam through the sample cell (containing the extracted oil), and the amount of 

infrared absorbed by the sample is measured at the necessary wavelength. ASTM D7066-

04 method uses a single wavelength reference, usually around (2930 cm-1), corresponding 

to the CH2 stretch vibration frequency (Yang 2011). This method can determine all the 

CH2 that is contained in a sample. Therefore, this method can measure the volumetric 

concentrations of oil extracted from the sample. The analyzer has a stated measurement 

range of oil concentration between 0 and 200 ppm. The precision and accuracy of the 

instrument are summarized below: 

 

 

Oil Content Analyzer  
 

Measurement range (actual): 0 mg/L – 220 mg/L 

Resolution: 0.1 mg/L (for measurements 0 to 99.9 mg/L) 
1.0 mg/L (for measurements 100 to 200 mg/L) 

 
Repeatability: ± 0.4 mg/L ± 1 digit (for measurements 0 to 9.9 mg/L) 

± 2 mg/L ± 1 digit (for measurements 10.0 to 99.9 mg/L) 
± 4 mg/L ± 1 digit (for measurements 100 to 200 mg/L) 
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Figure 3.1 Non-dispersive Infrared Spectrometer (Horiba OCMA-550). 
 

As stated in the measurement principle, the oil content analyzer utilizes solvent 

extraction for oily water samples to separate the fluids in preparation for oil concentration 

measurements. The only solvent suitable for this instrument is a proprietary solvent 

named S-316 that is composed of polychlorotrifluoroethylene (65-75%) and 

chlorotrifluoroethylene trimer or tetramer (25-35%).  S-316 is one of two 

chlorofluorocarbons (CFC) solvents that are still available for use to extract residual oil 

in water samples for measuring oil concentrations. 

The S-316 solvent demonstrates excellent ability to extract residual oil from 

water, soil, and metals parts. Remaining oil components in the water samples are 

extracted by the S-316 with equal parts water and solvent. The mixture is agitated for one 

minute and the formation of separated solvent and water layers are shown for successful 

oil extraction. The extraction fails if the layers do not separate within 40 seconds or a 

cloudy layer forms between the two layers. 6.5 mL of solvent is required for the 

measurement cell. Calibrations of the oil content analyzer are comprised of a two-point 

calibration including a zero (S-316 solvent blank) and a span calibration of a known, 
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prepared calibration solution. A heavy-oil sample is included with the instrument and can 

be used for making the span calibration solution. The span calibration can be prepared 

for any value within the measurement range of the instrument. The calibrations must be 

performed daily to ensure accuracy as humidity and changes in room temperature can 

affect measurement results. Measurements of oil concentration are taken over a specified 

time wherein the sample measurement is left to stabilize to a singular 10-sec moving 

average value. Sample dilution is required for samples with oil concentrations higher than 

the instrument's measurement range. Sample dilution is accomplished by increasing the 

solvent to water sample ratio until the oil concentration measurement can stabilize within 

the measurement range. The S-316 solvent can be recycled and reused using a reclaimer 

(Horiba SR305), which is a filtration system used to recover used solvent (Fig 3.2). 

 

 

Figure 3.2 Solvent Reclaimer (left) and S-316 Extraction Solvent (right) (Horiba) 
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A sonifier (Branson SFX550) was used to conduct nanoparticle dispersion and 

emulsion preparation testing. The sonifier is marketed as a cell disruptor and homogenizer 

by producing ultrasonic energy waves inside the central control unit. The ultrasonic 

energy is transferred to the sample via a 1/2" diameter Tapped Bio disruptor horn. The 

output power of the sonifier is 550 watts at 20 kHz. It is capable of homogenizing samples 

from 0.2 to 1,000 mL in volume. The sonifier (Fig 3.3) was chosen for its demonstrated 

ability to disperse nanoparticles within a solution and for the large homogenization 

capacity for large test samples. The programs created on the main control unit detail the 

parameters of sample sonication for a set amount of time or a prescribed amount of 

energy, measured in joules. The instrument can also homogenize a sample until reaching 

a specified temperature with the use of an accompanying temperature sensor. The sonifier 

can deliver the energy continuously or as energy pulses. For this study, sample sonication 

occurred continuously during the homogenization for a period of 2 to 7 minutes. The 

amplitude of the sonication can also be adjusted between 20-100%. The instrument can 

store up to 20 preset sonication programs specified as a continuous or pulse program 

according to the desired input variable (time, energy, temperature). The sound level 

produced by the Sonifier while in use is high enough to cause hearing discomfort and 

possible impairment. Therefore, proper ear protection is required while using the 

instrument, especially for amplitudes higher than 50%. 
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Figure 3.3 Sonifier and Homogenizer (Branson SFX550) 
 

For sample mixing in this study, three different methods and instruments were 

used and shown in Fig 3.4. A standard lab magnetic stirring plate was used for brine 

preparation and for heating oil samples for instrument calibration. The stir plate was 

selected for its low cost and versatility of capabilities including stirring and heating of 

samples. The temperature range of the stir plate was 200°C and the stirring range was 

between 200-1500 rpms. A magnetic stir bar was used in conjunction with the plate to 

mix 1-3% brine solutions. The stirring took place for 10 minutes to ensure salt dissolution. 

The heating element of the plate was used to heat oil samples to 70°C for viscosity 

reduction. This was necessary for proper mass measurements of the oil samples when 

calibrating the oil content analyzer.  
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Figure 3.4 Mixing/Agitation Instruments; (a) magnetic heat/stir plate, (b) shaker 
plate, and (c) lab vortex 

 

The next instrument used for mechanical agitation was a standard orbital shaker 

plate. This instrument was selected for availability, price, and its ability to mix multiple 

samples concurrently. The orbital shaker plate was capable of sample agitation in the 

range of 0-220 rpms. Generally, the mechanical agitation of the test samples was 10 mins 

or less. The shaker plater could be used to mix indefinitely, or a timed mix could be set 

for 0 to 15 mins. 

A third mixing instrument was used in this study after successful oil removal tests 

using the orbital shaker plater. To reduce mixing times and increase the success of the oil 

removal process in the field, it was required that mixing times be minimized. The lab 

vortex mixer was chosen to reduce mixing times by providing greater agitation rpms, up 

to 3,200 rpms. The use of the vortex was able to reduce sample mixing times by 95%. 

The lab vortex used was capable of mixing samples up to 50 mL. The vortex was used to 

mix samples at the highest speed (3,200) rpms for 30 seconds for the oil removal tests. 

 

A B C 



   
 

   
 

42 
 

The properties of the water samples used in this study were measured using a 

portable conductivity meter (Apera Instruments EC400S) that can measure TDS, salinity, 

and resistivity (Fig 3.5). The handheld instrument included a data logger with a removable 

sensor probe. The unit required a 2-point calibration before sample measurements using 

the provided calibration fluids. The sensor probe measures the sample properties with 

appropriate units (results shown in Table 4.2): conductivity (mS/cm), TDS (mg/L), 

salinity (ppt), and resistivity (Ω). Conductivity measurements sometimes required 10-15 

seconds to stabilize, which was expected from the instrument documentation. This 

instrument was selected due to its on-site availability and its capabilities of near-instant 

measuring of the four parameters as previously discussed. The probe was cleaned with 

DI water between sample measurements. The accuracy, range, and resolution of the 

portable meter measurements are summarized below:  

 

 

Portable Conductivity Meter  
 

Conductivity 
Range: 0 to 200 mS/cm [(0.00 to 1999) μS/cm; (2.00 to 199.9) mS/cm] 

Resolution: 0.01-1 μS/cm, 0.01/0.1 mS/cm 
Accuracy: ±1.0% F.S ±1 digit 

 
TDS: (0 to 100) g/L; 

 
Salinity: (0 to 100) ppt; 

 
Resistivity: (0 to 100) MΩ  

 
Temperature 

Range: -10~110°C (32 to 230°F) 
Resolution: 0.1°C 

Accuracy: ±0.5°C±1 digit 
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Figure 3.5. Handheld conductivity, resistivity, TDS, and salinity meter (Apera 
Instruments EC400S) 

 

N52 grade magnets were used for oil removal, nanoparticles treatment, and 

recycling. The magnets were square or cylindrical with dimensions of 40 x 20 mm. The 

strength of the magnets measured in residual flux density, Br, was about 15,000 Gauss. 

An example of a magnet in use is shown in Fig 3.6. 

 
 

Figure 3.6 Cylindrical rare earth magnet used for MNP collection 
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 Nanoparticle magnetization characterization tests were performed using a test 

stand (Mark-10 ALX-S) configured with a digital force gauge (Mark-10 Series 2, model 

M2-5) (Fig 3.7), a custom-built sample vial holder, digital caliper, and a rectangular rare 

earth magnet (40 x 40 x 20 mm, 15,000 Gauss). 

 

 
 
 

 
 

Figure 3.7 Digital force gauge (Mark-10 Series 2, model M2-5) 
 

Digital Force Gauge 
 

Force Measurement: 
Capacity: 20 N (5 lbF) 

Resolution: 0.02 N (0.005 lbF) 
Accuracy: ±0.5% 

Overload: 200% capacity 
 

Sampling: 
Rate: 500 Hz 

Type: Continuous, Peak Tension/Compression 
  

Environmental Conditions: 
Temperature Range: 40-100°C 

Max Humidity -96% 
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3.1.4 Nanoparticle Magnetization – Pull Force Test 

The magnetic characteristics of the nanoparticles were measured using a force 

gauge configured on a test stand. A prescribed mass of nanoparticles (1.92 g) was added 

to a small glass sample vial. The sample vial was attached to the bottom of the force 

gauge using a custom-built securement. A rare earth magnet was secured to the bottom 

of the test stand and the built-in digital caliper on the test stand was used to measure the 

distance between the sample and the magnet. The sample was lowered towards the 

magnet and the force gauge measured the tensile force exerted from the downward pull 

of the magnetic iron oxide nanoparticles towards the magnet. The force measurements 

were recorded as N/g, however, the force was standardized for analysis. The peak force 

measurement was taken at twos distances between the magnet and the nanoparticles 

samples. The two distances separating the sample from the magnet were 0.25” and 0.00.” 

The 0.25” measurement results were used for batch comparison and the 0.00” separation 

test was used to describe peak magnetization of the sample. Fig 3.8 shows the instrument 

used to measure the magnetic pull force. 
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Figure 3.8 Instrument set-up for magnetic force measurement – 0.00” sample 
spacing (left); 0.25” sample spacing (right) 

 

 
3.1.5 Oil Removal Test Procedure 

Oil-in-water emulsions of varying concentrations (100-1,000 ppm) were 

synthesized using a prepared brine solution of salinities ranging from 1,000-3,000 ppm. 

Brine solutions were mixed on a magnetic stir plate with DI water and powdered NaCl 

(Sigma Aldrich, ≥99.0%) or CaCl2. The most commonly used salinity of the prepared 

brine was 1180 ppm (1.18 g/L) as referenced by a previous study (Wang et al., 2018). 

The standard preparation concentration of crude oil to brine for emulsion production was 

1,000 ppm (1% vol wt). Emulsions were homogenized using a probe sonicator (Branson 

SFX 550) at 70% amplitude for 7 mins. The visual stability of the emulsions was observed 

over time. Emulsions with visible loss of stability were mixed via sonication daily or as 

needed before demulsification testing. Oil stability was observed visually for 1 hour to 
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ensure homogeneity among test emulsions. The concentrations of the produced oil-in-

water emulsions were confirmed using oil content analyzer. 10 mL of the produced 

emulsion was transferred to a clean 20 mL glass sample vial. 10 mL of the S-316 solvent 

was added to the vial and was mixed by hand for 1 minute to separate any residual oil. 

The separation of the solvent and water layers was observed before extracting 6.5 mL of 

the solvent layer into the oil content analyzer measurement cell for analysis. 

 

3.1.6 Demulsification Test 

Synthesized and commercial (Sigma Aldrich, nanopowder) maghemite 

nanoparticles were prepared for demulsification treatment by dispersion in various water 

sources including DI water, tap water, distilled water, and produced water samples. The 

standard concentrations of nanoparticles dispersed was 5.0 mg/mL. Concentrations as 

low as 0.313 mg/mL were also prepared to determine critical concentrations. The 

nanoparticles were dispersed in each water samples via probe sonication for 2 mins at 

20% amplitude. Dispersed nanoparticles were used immediately to reduce settling time 

and prevent aggregation. An external magnetic field was applied to the nanoparticles after 

dispersion to observe homogeneity and ensure proper magnetic response for complete 

nanoparticle recovery. An example of dispersed nanoparticles in solution is shown in of 

Fig 3.9b. 
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Figure 3.9 Commercial maghemite treatment test visualization, a) 1,000 ppm 
emulsion, b) 5 mg/mL MNPs, c) separated water and oil+MNPs, d) Treated water 

 

The demulsification capability of the synthesized and commercial maghemite 

nanoparticles was tested by mixing 10 mL of a prepared emulsion with 10 mL of a 

prepared nanoparticle dispersion in a 20 mL sample vials (1:1 ratio). The samples were 

mixed by an orbital shaker plate for 10 mins at 180 rpm or on a lab vortex for 30 seconds 

at 3200 rpm. The mixing instruments are shown in Fig 3.4. The effect of mixing was 

observed in the solution before an external magnet was applied. An external magnet was 

applied to the bottom or side of the sample vial, and the magnetic response of the 

nanoparticles was observed. The samples remained on the magnet until no further visual 

response was observed (10 sec - 1 min). Examples of successful demulsification in the 

sample vials including the treated water are shown in Figs. 3.9c and 3.9d. Fig 3.10 shows 

a diagram for oil removal demulsification test using the nanoparticles. 

 

 

 

A B C
 

D 
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Figure 3.10 Step diagram of the nanoparticle demulsification test 
 

The samples also remained on the magnet during treated water extraction to 

prevent nanoparticles from also being removed. A syringe was used to extract and transfer 

10 mL of the treated water to a clean 20 mL glass vial. The treated water was mixed with 

10 mL of the S-316 solvent and shaken by hand for 1 minute. The separated solvent and 

water layers were observed. The lower solvent layer was extracted, and 6.5 mL was 

transferred to the measurement cell for oil content analysis. An example of the separated 

layers in the water/solvent sample is shown in Fig 3.9e. The sample measurement was 

observed by the instrument for 60 secs, after which it was recorded when the 10 sec 

moving average measurement stabilized. All tests and procedure for these demulsification 

tests were conducted at standard conditions. The oil removal efficiencies (ηR) were 

calculated from initial emulsion concentrations (Ci) and residual oil concentrations in the 

treated water (Cr) following that: ηR = [ (Ci - Cr ) / Ci] x 100. 
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3.1.7 Accuracy and Repeatability 

An essential part of conducting and recording a successful study is being able to 

demonstrate consistency in the results of the tests as well as being able to repeat the tests 

and obtain similar data. For this study, many of the same tests were conducted over 

several months which led to a sufficient sample size to provide a basic statistical analysis 

of the results of the oil removal efficiency tests for the various types of iron oxide 

nanoparticles. The data were collected throughout the study and then the statistical 

analysis is performed on the test measurements. Table 3.5 shows the raw data for the 

repeated tests including relevant parameters. 

 

Table 3.5 Oil Removal test results for maghemite 

 

 Matched nanoparticles batch results were considered unified and the 

measurement values were used to calculate the basic test statistics of mean, range, 

standard deviation, and sample size. Table 3.6 contains a summary of all the statistical 

Batch # NP Source 
Dispersion 

Concentration 
(mg/mL) 

Emulsion Oil 
Concentration 

(ppm) 

Oil Conc. 
(mg/L) 

Removal 
Efficiency 

B004 J Commercial 5 1,000 20.8 97.92% 
B009 J Commercial 5 1,000 6.8 99.32% 
B026 J Commercial 5 1,000 9.4 99.06% 
B032 J Commercial 5 1,000 2.4 99.76% 
B033 J WCTC (B005 Jh) 5 1,000 0 100.00% 
B046 J Commercial 5 1,000 2.6 99.74% 
B050 J WCTC (B005 Jh) 5 1,000 4 99.60% 
B067 J WCTC (B005 Jh) 5 1,000 12.9 98.71% 
B070 J Commercial 5 1,000 7.5 99.25% 
B071 J WCTC (B005 Jh) 5 1,000 2 99.80% 
B072 J Commercial 5 1,000 7.9 99.21% 
B073 J WCTC (B005 Jh) 5 1,000 4.3 99.57% 
B077 J WCTC (B005 Jh) 5 1,000 10.1 98.99% 
B078 J WCTC (B005 Jh) 5 1,000 10.1 98.99% 
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parameters calculated for the maghemite samples that had sufficient repeated tests. 

Standard tests for both the synthesized (WCTC) and commercial maghemite 

nanoparticles were conducted that allows a direct comparison.  

 

Table 3.6 Oil Concentrations and Removal Efficiencies after MNP treatment 
 

Maghemite 
Sample n 

μ - Oil 
Conc. 

(mg/mL) 
μ (ηR) 

σ Oil 
Conc. 

(mg/mL) 
σ (ηR) 

Min Oil 
Conc. 

(mg/mL) 

Max Oil 
Conc. 

(mg/mL) 

Min 
(ηR) 

Max 
(ηR) 

WCTC (B005 Jh) 7 6.2 99.38% 4.83 0.48% 0 12.9 98.71% 100.00% 

Commercial 7 8.2 99.18% 6.16 0.62% 2.4 20.8 97.92% 99.76% 
 

n – sample size; μ – mean; σ – standard deviation; ηR – removal efficiency 
 
 
 
3.2 Nanoparticle Recovery Test 
 

The second primary objective of this study was to demonstrate a water treatment 

technique that allowed for material recovery and reuse. Many of the most commonly used 

water treatment technologies rely on single-use chemicals and other materials that are not 

candidates for reuse. As has been shown in previous studies, iron oxide nanoparticles are 

a promising candidate for reuse as the molecules can be easily manipulated with a simple 

magnet. Their inherent superparamagnetism allows the nanoparticles to be manipulated 

without disrupting any other part of the water treatment test. Therefore, the following 

tests were designed to show the durability and maximum reusability of the iron oxide 

nanoparticles. 

Magnetite reuse was not within the scope of these recovery tests due to poor 

performance in the past and the unreliability of the coating to remain fixed to the iron 

oxide nanoparticles after repeated solvent washings. Also, the instruments available for 

this study did not allow for the coating of the nanoparticle to be observed before, during, 
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and after treatment cycles. Therefore, the tests for measuring the recyclability of 

magnetite were excluded. This decision to exclude the magnetite from the nanoparticle 

reuse treatment cycles was also made considering the effect that the water sample had on 

the nanoparticles and is explained in Chapter 4 with the data collected in (Table 4.2). 

 
3.2.1 Test Variable and Matrices 
 

The physical mechanisms that allow the iron oxide nanoparticles to adhere and 

collect the oil from the prepared emulsions must be counter-acted in the nanoparticles 

washing process. The tests conducted to remove the residual oil for the nanoparticles in 

preparation for reuse is summarized in Tables 3.7 and 3.8.  The most effective method 

for oil extraction from water samples is solvent washing. The type and concentration of 

the solvent used for washing could have an impact on the volume of solvent required, and 

the washing time. Two widely-available and inexpensive solvents including lab-grade 

ethanol and consumer-grade isopropyl alcohol were used in the tests. The use of the 100% 

ethanol solvent was only tried after less-than-satisfactory results with the cheaper, 

consumer-grade isopropyl alcohol. However, both solvents are inexpensive and only 

small volumes are required to wash the nanoparticles. The use of a 3% brine to complete 

the solvent wash by removing any residual alcohols was selected to due to the excellent 

compatibility of the nanoparticles that were seen in the nanoparticle’s dispersibility in the 

water samples tests (See Table 4.2) 
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Table 3.7. Test Matrix for MNP Solvent Washing 

*Untested due to observed mass loss during solvent washing in previous tests. 
 

After the nanoparticles were successfully washed of any oil following an initial 

oil removal test, additional tests of the exact sample parameters were implemented again 

with the nanoparticles. The process for the nanoparticles water treatment and reuse cycles 

is shown in Fig 3.11. 

 
 

Figure 3.11 Schematic of the nanoparticle recycle test procedure 
 

 
 

MNP 
Dispersion 
(5 mg/mL)

Combine 
with O/W 
Emulsion

Agitation 
and 

Magnetic 
Separation

Treated 
Water 

Removal

Used MNP 
Separation

Solvent 
Washing

Brine Rinse

  Nanoparticle Washing 

Nanoparticle Source Isopropyl 
(91%) 

Ethanol 
(100%) 3% Brine 

Maghemite Commercial x x x 
WCTC x x x 

Magnetite Commercial * * * 
WCTC * * * 
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The total number of water treatment cycles tested are summarized in Table 3.8. 

The maximum number of tests was selected to be higher than previous studies but within 

reasonable time constraints. The washing process proved to be quite tricky and a single 

mistake would disrupt the entire washing process or subsequent reuse attempts. An 

individual water treatment test, including data collection, took about 20 minutes, followed 

by a 15-minute solvent washing. The entire recycle process up to 10 hours is therefore in 

the time range of 5-6 hours of continuous testing. 

 

Table 3.8. Test Matrix for MNP Recovery and Recycling 

*Untested due to observed mass loss during solvent washing in prior tests and poor oil removal efficiencies 
 
 
3.2.2 Materials Used 
 
 Magnetite and maghemite nanoparticles that were collected from previous 

treatment cycles through solvent washing and magnet collection. The nanoparticles were 

labeled according to the number of times they were reused, i.e. R1, R2, and R3. Deionized 

water (LabChem), distilled water was purchased from a local grocery store, and tap water 

sourced on site. The solvents used for removing the oil from the nanoparticles following 

 
Nanoparticle Recycling and Recovery 

Nanoparticle 
Source 

Recycle 
#1 

Recycle 
#2 

Recycle 
#3 

Recycle 
#4 

Recycle 
#5 

Recycle 
#6 

Recycle 
#7 

Recycle 
#8 

Recycle 
#9 

Maghemite -
WCTC x x x x x x x x x 

Maghemite -
WCTC x x x x x x x x x 

Magnetite - 
WCTC * * * * * * * * * 

Magnetite - 
Commercial * * * * * * * * * 

Amine - 
Coated 

Magnetite 
* * * * * * * * * 
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water treatment were ethanol (Histoprep, 100% alcohol), and isopropyl alcohol (Equate, 

91%). 

 

3.2.3 Equipment Used 
 

A standard overhead lab mixer with a steel paddle was used to mix in the solvent 

washing process. The mixer was found on-site and used for its convenience and size. The 

mixing speed was not measured due to the small volumes and low mixing speeds. A rough 

estimate of the mixing rates used is 150 rpms. The other equipment and instruments used 

for nanoparticle recovery tests are described in section 3.1.2 including the sonifier, 

magnets, and oil content analyzer. 

 
3.2.4 Nanoparticle Recovery Test Procedure 

The recovery and recyclability of the maghemite nanoparticles were tested 

following successful demulsification tests. A solvent washing procedure was used to 

extract the oil collected by the maghemite nanoparticles in preparation for reuse. 

Remaining nanoparticles in the sample vial were collected with a magnet and washed 

with ethanol twice in a standing mixer (T-Line Laboratory Stirrer, Model 104). Residual 

ethanol was removed from the nanoparticles by washing with a 3% NaCl brine solution 

two times. A magnet was used to collect and recover the nanoparticles throughout the 

cleaning process as excess liquids were easily decanted. The cleaned nanoparticles were 

re-dispersed in a corresponding volume of 3% NaCl brine to ensure a consistent 

nanoparticle concentration of 5 mg/mL. The recycled nanoparticles were again used to 

demulsify another 10 mL of prepared emulsion for a total of nine times. The recycling 
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tests plus initial demulsification tests were used to demonstrate the capability of the 

maghemite nanoparticles to be reused up to ten treatment cycles. 
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Chapter 4: Results and Discussion 
 
 
4.1 Nanoparticle Characteristics 

Preliminary testing included all four types of MNPs including a commercial and 

synthesized version of both magnetite and maghemite. All MNPs responded well to a 

magnet and dispersed completely in the 1-3% NaCl brines used in this study. However, 

after some poor results with the magnetite samples, the testing was expanded to include 

other types of water for MNP dispersion and emulsion production. As the tests continued, 

some of the magnetite tests were not performed due to poor results of previous trials that 

relied on a successful outcome. The characteristics of the nanoparticles should be 

discussed to explain the differences and possible explanations for some of the test results. 

 
 

Figure 4.1 MNP samples used for demulsification testing. 
 
4.1.1 Maghemite vs. Magnetite 

The saturation magnetization for the magnetite particles used in this study was 

higher than those of the maghemite samples. The magnetization data for the MNP 

samples are shown in Table 4.1. The differences in saturation magnetization were 
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expected from previous studies and explains why most researchers have selected to use 

magnetite nanoparticles as carriers for a grafted surface agent. However, the increases in 

magnetization saturation did not correlate with the success of the oil removal experiments 

in this test.  

The crystalline structure of magnetite is cubic and that of maghemite can be cubic 

or tetragonal. Magnetite does not possess a surface charge, so a coating is necessary to 

keep it from oxidizing into maghemite. The differences in molecular structure, especially 

those of surface charge and contribute to the differences in saturation magnetization 

values but do not explain why maghemite outperformed magnetite in the tests of this 

study. Therefore, the data collected from this study suggest that saturation magnetization 

may not be the best indicator of MNPS performance for produced water treatment. 

The solubility of the MNPs may also have observed in this study. Magnetite is 

known to be water-soluble due to its high surface activity, but maghemite is generally 

considered to be insoluble. However, some researchers have discovered the maghemite 

can become more soluble in a nitric acid solution with calculated pH vales between 1-2. 

This result may explain why maghemite was able to perform well in the oil removal tests 

in while being dispersed into water samples that contain at least a 1% NaCl concentration. 

Further details of the possible solubility conflict with specific water samples is later 

described. 
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Table 4.1 Magnetization measurements for magnetite and maghemite samples 

Sample Mag(H)emite or 
Mag(N)etite 

Magnetic 
Portion (%) 

Saturation 
Polarization 

(Guass^cm^3/g) 

Magnetic Dipole 
Moment (10^-

7*Vsm) 

WCTC B002 N 38.62% 61.77 0.3912 
WCTC B003 N 32.70% 52.31 0.6212 
WCTC B004 N 31.76% 50.81 0.5733 
WCTC B005 H 26.90% 43.03 0.4374 
WCTC B006 N 41.35% 66.14 0.6591 
WCTC B007 H 36.63% 58.59 0.4771 
WCTC B009 H 24.97% 39.95 0.4322 
WCTC B010 H 38.13% 61.06 0.706 

Sigma Aldrich (N) N 55.28% 88.42 1.027 
Sigma Aldrich (H) H 49.60% 79.33 0.2163 

 

The magnetic pull force data collected for each of the nanoparticle sample as 

described in section 3.1.4. The measurements considered for nanoparticle comparison 

and analysis were measure with a 0.25” separation between the magnet and the sample. 

The pull force data was compared with the saturation magnetization data to determine the 

relationship of the two magnetization tests. Fig 4.2 shows a positive correlation between 

the two magnetism measurements. An increase in saturation magnetization was consistent 

with an increase in magnetic pull force. The correlation of the magnetization 

measurements was near linear with an R2 value of 0.9171. The saturation magnetization 

measurement requires expensive instruments and training. The strong correlation in the 

magnetization data suggest that the pull force measurements tests could be performed to 

estimate magnetization saturation with a certain degree of accuracy quickly and with 

minimal equipment. This discovered relationship can save time and money in future 

comparative analysis of magnetic nanoparticle samples. 
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.  

Figure 4.2 Magnetic Pull Force vs Magnetization Saturation 
  

 

4.2 Oil Removal Efficiency Testing 

The purpose of this study is to test the ability of iron oxide nanoparticles to remove 

dissolved and dispersed oil in contaminated water. Reducing the oil concentrations below 

the discharge limit of 42 ppm, or below 10 ppm fulfills the same effect that current 

treatment options provide. However, using MNPs takes only minutes to demulsify the oil 

and separate the treated water and the other current treatment methods can take days and 

multiple pre-treatment and treatment methods to reduce oil concentrations below these 

limits. Data from these tests that show oil removal efficiencies >97% provide sufficient 

evidence for the practical use of these MNPs for produced water treatment 

 

4.2.1 Demulsification Test 

Prepared emulsions demonstrated a consistent homogeneity after sonication, as 

shown in Fig 4.3. The oil was emulsified completely when mixed with 1-3% NaCl brines. 
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Emulsions prepared with a CaCl2 brine were also observed to be homogenous; however, 

within 30 minutes after sonication, a slight oil layer formed at the surface indicating 

emulsion instability. For the emulsion prepared with NaCl brine, the 3% brine was 

observed to remain stable up to two hours after sonication before an oil layer began to 

develop on the surface. NaCl is the ideal choice for emulsion production in this test 

because it accurately represents the salt type of the produced water sourced for this study 

as represented in Fig 2.2. The 1.18% NaCl brine demonstrated excellent stability for the 

applications of further tests and remained stable for more than eight hours and was 

therefore selected as the preferential salinity for all emulsion produced for demulsification 

testing. The stability of the emulsions could be further improved with the addition of a 

stabilizing surfactant, as noted in the literature (Lin et al. 2012). Due to the use of non-

dispersive infrared spectroscopy for oil content analysis in this study, a surfactant was not 

used according to potential incompatibilities with the S-316 measuring solvent. 

 

 

Figure 4.3 Prepared emulsions: a) NaCl, medium oil, 1,000-250 ppm oil conc. b) 
NaCl, heavy oil, 200 ppm oil conc. c) CaCl2, medium oil, 1,000 ppm oil conc. 

 

Oil content analysis by infrared spectroscopy was performed for prepared 

emulsions, produced water samples, and treated watered from successful demulsification 
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tests. Appropriate calibration of the content analyzer was confirmed using known 

concentrations of prepared emulsions (100-ppm lab-synthesized and manufacturer-

provided oil emulsions). The oil content measurements for both emulsions following 

calibration were 96 ppm and 102 ppm, respectively. These measurements are consistent 

with the manufacturer’s referenced repeatability range of ±5 ppm (mg/L). A two-point 

calibration method was performed with a zero and span (200 mg/L) calibration sample. 

The residual oil concentrations of the two produced water samples used in this study, PW-

OK and PW-ARG, were measured to be 42.8-107 mg/L and 54 mg/L. The oil 

concentrations of the PW-OK produced water varied due to natural separation of oil in 

water over the course of a few months. Examples of the sourced produced water samples 

used throughout this study are shown in Fig 4.4 

 

 

Figure 4.4 Produced water samples sourced locally (PW OK) and from Argentina 
(PW-ARG) 

 

The dispersibility and magnetic response of the nanoparticle before emulsion 

treatment was dependent on the characteristics of the water used for dispersion. The 

measurements of water properties analyzed in this study are shown in Table 4.2.  
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Table 4.2 Properties of Experimental Water Samples. 

 

The water samples with a salinity concentration of at least 150 ppm were successful 

in dispersion and recovery tests among the majority of MNP samples. Water salinities at 

or above this threshold demonstrated an ability to stabilize the dispersed nanoparticles. 

Water samples with low or zero salinity caused dispersion instability and also allowed for 

some of the dispersed nanoparticles to remain suspended in solution even after a magnetic 

field was applied as shown in Fig 4.5. The preferred water selected for demulsification 

tests in this study is a 3% NaCl brine (3 g/L) to maintain consistency and repeatability 

across all trials. This salinity was used for all nanoparticles dispersion and washings as it 

allowed for an excellent magnetic response during the tests. 

 

 

 

 

 

 

Water Sample Conductivity 
(mS/cm) 

TDS 
(mg/L) 

Salinity 
(ppt) 

Salinity 
(ppm) 

Resistivity 
(Ω) 

Tap Water 0.306 217 0.15 150 3270 

DI Water 0.00439 3.07 0 0 230,000 

NaCl Brine (1180 ppm) 2.34 1660 1.17 1170 428 

DI Water (CT) 0.0714 50 0.04 40 14,000 

Produced Water (OK) 179.7 100,000 89.8 89,800 5.6 

Produced Water (ARG) 55 39,000 27.5 27,500 18 

NaCl Brine (3000 ppm) 5.84 4100 2.91 2910 172 

Distilled Water 0.00777 6 0 0 129,000 
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Figure 4.5 Water dispersion and recovery tests for distiller water – low salinity 
using various MNP samples (left), and for a maghemite sample (right) dispersed 

and recovered in three different water samples. 
 

The demulsification ability of the maghemite nanoparticles is shown in Fig 3.9. 

Synthesized and commercial maghemite/magnetite nanoparticles all demonstrated an 

ability to demulsify and separate oil in the emulsions with the application of an external 

magnetic field. The most consistent tests results were observed using a nanoparticles 

concentration of 5 mg/mL, a 1,000-ppm medium oil emulsion, and a 3% NaCl brine 

concentration. The highest oil removal efficiency results for each of the separate batches 

tested is shown in Fig 4.6.  
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Figure 4.6 Highest oil removal efficiencies for each batch of nanoparticles tested - 
Bare magnetite (black); amine-functionalized magnetite (blue); maghemite (red) 

 

At least one amine-functionalized magnetite (B011 T) and one maghemite sample 

(B005 Jh) were capable of reducing oil concentrations below detectable limits by the oil 

content analyzer, corresponding to an oil removal efficiency (ηR) of 100%. Although both 

types of nanoparticles showed success in the demulsification tests, the availability, short 

synthetization times, and readiness of the maghemite samples provide a clear advantage 

over the use of the amine-functionalized magnetite. The cost of the reagents, long 

synthesizing times, and degradation over repeated use are known disadvantages of the 

amine-functionalized particles. The results of this study indicate that similar (or in some 

cases better) oil removal efficiencies can be achieved using less expensive and more 

durable maghemite nanoparticles compared to the amine-functionalized magnetite. The 

bare magnetite samples were the least effective in reducing the oil concentrations as 

expected from past studies. 
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Complete demulsification occurred as the maghemite nanoparticles adhered to the 

emulsified oil (oil+MNPs) and separation from the water was observed between 10 and 

30 seconds after the magnet was applied. The completion of demulsification for the 

synthesized nanoparticles was at or near 10 seconds after the magnet was applied. For the 

commercial nanoparticle demulsification, complete water and oil+MNPs separation was 

observed near 30 seconds after the magnet was applied. The commercial maghemite 

nanopowder size distribution was defined by the manufacturer as <50 nm and it was 

found that the smaller or weaker ferromagnetic nanoparticles were slower to respond to 

the applied magnetic field.  

Nanoparticle concentrations were varied from 0.313 mg/mL to 5.0 mg/mL. Higher 

concentrations of dispersed nanoparticles that were used in demulsification testing 

allowed for shorter mixing times and greater oil removal efficiencies (ηR). A 5.0 mg/mL 

nanoparticle concentration demonstrated consistent and repeatable results, as also 

reported by past researchers (Lin 2012, Wang 2018). The critical concentration of 

nanoparticles is defined in this study as the concentration in which significant loss in oil 

removal efficiencies was observed with the subsequent reduction in nanoparticle 

concentration. The critical concentration was determined by a series of tests while 

reducing the concentration of nanoparticles by half-step increments from 5.0 mg/mL, to 

2.5 mg/mL, to 1.25 mg/mL, and so on. The removal efficiency curves for the synthesized 

and commercial maghemite nanoparticles are shown in Fig 4.7.  
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Figure 4.7 Removal efficiency vs. MNP Conc. for synthesized and commercial 
maghemite nanoparticles 

 

The critical concentration was determined to be 0.625 mg/mL. Observed critical 

concentration in this study was dependent on mixing times and methods of the 

nanoparticles and emulsion solution. The critical concentrations of iron oxide 

nanoparticles of other studies were determined without mixing time limits and included 

solution mixing up to 24 hours (Wang et al., 2018). For oil concentrations <0.313 mg/mL, 

longer mixing times @ 180 rpms on the shaker plate were required to achieve acceptable 

oil removal efficiencies. Fig 4.8 shows the effect that longer mixing times had on the very 

low MNP concentrations tested as part of determining mixing optimization.  
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Figure 4.8 Effect of mixing time (@180 rpms) on oil removal efficiency for low 
concentrations of commercial maghemite 

 

It was confirmed that oil removal efficiencies for lower nanoparticle 

concentration tests could be improved by increasing the mixing times to allow more time 

for the nanoparticles to contact the emulsified oil. For the feasibility of this study and its 

application in an oil field, the solution mixing times were subsequently limited to 30 secs 

and 10 mins. The two types of mixing employed in this study were performed with a 10-

minute mechanical shaker plate at 180 rpm and a laboratory vortex mixer for 30 seconds 

at 3200 rpm. The mixing instruments were shown previously in Fig 3.4.  

 
For all tested nanoparticle concentrations, the nanoparticles and demulsified oil 

were collected at the bottom or on the side of sample vials when the external magnet was 

applied.  At high nanoparticle concentrations, it was observed that the nanoparticles 
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remained in the bottom of the sample vial even after the removal of the magnetic field 

indicating that the collection of oil+MNPs at the bottom is governed by gravitational 

force. For lower concentrations, including those below the critical concentration, the 

oil+MNPs were collected at the top of the sample vial after the removal of the magnetic 

field. This result indicates that at low nanoparticle concentrations, the aggregation of the 

particles governs buoyancy force of the oil+MNPs. These observations were expected as 

reported by previous studies (Li et al., 2014). 

After successful demulsification, the treated water was easily removed with a 

syringe and prepared for oil content analysis. The prepared 1,000 ppm emulsions that 

were used in this study to simulate a controlled example of a produced water was reduced 

by the maghemite nanoparticles to oil concentrations below <10 ppm.  

For lower MNP concentrations, it was observed that the buoyancy of the oil and 

MNP aggregate was the dominant force and the residual oil floated to the top of the 

sample (Fig 4.9) after the magnet was applied to the vial to collect the oil+MNPs. 

 

 

Figure 4.9 WCTC B005Jh maghemite gravity dominated vs. buoyancy dominated 
MNP conc. (left), commercial maghemite gravity dominated vs. buoyancy 

dominated (right) MNP conc. 
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When concentrations of MNPS was increased, the gravity force dominated and 

the oil droplet-MNP aggregates sunk to the bottom of the sample vial. A visual 

representation of the forces is shown in Fig 4.10 where Fb represents the buoyancy force, 

Fdrag is the drag force, Fg is the gravitational force, and nFm is the magnetic force applied 

on the side bottom of a nanoparticle. The oil droplet is shown as the black circle with the 

magnetic nanoparticles are surrounding the droplet. Higher concentrations of MNP 

demonstrated a thicker MNP coating around the oil droplet. 

 

 
Figure 4.10 Forces acting on the nanoparticles and oil colloid for a buoyancy force 
dominated system (left) and gravity force dominated system (right) (adapted from 

Wang et al., 2018) 
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4.3 Nanoparticle Recyclability 
 

To demonstrate and increase the efficacy of the nanoparticle water treatment test, 

and a series of reuse treatment cycle experiments were performed to evaluate nanoparticle 

recyclability. First, the used nanoparticles need to be washed to remove the oil that is 

coating the particle. After the oil is removed and a final water rinse to remove residual 

solvent, the nanoparticles can be reused, thus increasing their practical application by 

reducing material costs. The use of the same nanoparticles at a constant concentration for 

ten treatment cycles shows the material durability and little to none environmental impact. 

 
4.3.1 Nanoparticle Recovery 
 

The recyclability and reusability of the maghemite nanoparticles were observed 

successfully over a series of consecutive test cycles. The nanoparticle samples used in 

this study demonstrated adequate oil removal efficiencies above 97% for all test samples 

used for ten cycles (Fig. 4.11). This study confirmed the ability of a 5 mg/mL solution 

concentration of suspended maghemite nanoparticles to effectively reduce residual oil 

concentrations of 1,000 ppm (mg/L) oil-in-water emulsions below the disposal limit for 

offshore applications. In some cases, infrared spectroscopy was unable to detect any 

residual oil after successful demulsification and treated water separation tests. 
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Figure 4.11 Commercial vs. synthesized maghemite recycling test results 
 

The process of solvent washing and magnetic recovery demonstrated an adequate 

ability to prepare the maghemite nanoparticles for resuspension and reuse. Two ethanol 

solvent washes and two 3% NaCl brine washings were used to remove any remaining oil 

components from the nanoparticles.  

The consistency of oil removal efficiencies exhibited by both types of maghemite 

nanoparticles suggests excellent reusability and high efficiencies over many repeated 

uses. This study examined maghemite oil removal up to ten cycles, and it is probable that 

the number of cycles could be much higher if the washing and recovery process is 

performed carefully as not to lose any nanoparticles that would later affect the 

concentrations of future demulsification cycles. It should also be noted that the 

maghemite nanoparticles showed no degradation in terms of their inherent ability to 

demulsify trapped oil or to be recovered by a magnetic field. The results of ten successful 

treatment cycles for WCTC B005Jh maghemite nanoparticles is shown in Fig 4.12. It was 
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observed that some of the treatment cycles resulted in separated water that was partially 

clouded. However, this cloudiness did not correlate to an increase in oil concentration 

because there was no significant reduction in oil removal efficiencies throughout the ten 

treatment cycles. 

 

Figure 4.12 Maghemite recycling from the first cycle through nine recycling tests 
(WCTC B005Jh) 

 

In this study, it was observed in the later cycles that the mass of nanoparticles 

appeared to be decreasing due to nanoparticle loss in the washing process. This loss could 

be avoided with more considerable attention given to the washing process including 

reducing the number of times the nanoparticles are transferred from one sample vial or 

beaker to the next. Deionized water was used for initial recycling tests; however, 

significant mass loss was observed in some of the later treatment cycles. The 

hypothesized reason for the mass loss is that the solubility of the maghemite nanoparticles 

into the deionized water sample attributed to the loss over repeated cycles. Past studies 

have demonstrated the solubility of maghemite, even though maghemite is generally 

considered insoluble by chemical standards.  Fig 4.13 shows the solubilities of a few iron 
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oxide nanoparticles in a nitric acid solution at 25°C and calculated pH values between 1-

2. The solubility products are shown as apparent values for each of the referenced iron 

oxide nanoparticles, compared to the relative ionic strength of the particles (Taylor and 

Owen, 1997). There was an observed residual dependence of pKsp on ionic strength of 

the solvent. Therefore, the loss in mass in the initial recycling tests using deionized water 

may be attributed to the maghemite solubilizing in the water and lost when the water was 

removed, even in the presence of a strong magnet. The mass loss for subsequent recycling 

tests was not observed in later tests when a NaCl brine solution was used for washing. 

The brine was chosen for the test due to favorable results from the dispersion tests as 

previously described in Chapter 3. 

 

 
 

Figure 4.13 Apparent Ksp values for maghemite, hematite, and goethite as a 
function of ionic strength, I (Taylor and Owen, 1997). 
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Chapter 5: Conclusions and Recommendations 
 
5.1 Conclusions 
 

The use of iron oxide nanoparticles in the oil and gas industry can provide an effective 

produced water treatment option. The natural abilities of the nanoparticles to separate oil-

in-water emulsions makes them superior to many other current treatment options that 

require expensive materials, have long treatment cycles, or produce additional waste to 

the environment. From this study of the use of maghemite (γ-Fe2O3) and magnetite 

nanoparticles to separate residual oil in produced water, it can be concluded that: 

• Maghemite nanoparticles demonstrate an inherent ability to demulsify O/W 

emulsions and separate residual oil. Magnetite nanoparticles require a surface-

active coating to achieve acceptable O/W demulsification. 

• Both synthesized and commercial iron oxide nanoparticles exhibit sufficient 

magnetization characteristics and oil-adherence capabilities that allowed for 

effective oil removal efficiencies of emulsions containing up to 1,000 ppm of oil. 

• Oil removal efficiencies up to 99% were consistently observed using both 

commercial and synthesized maghemite nanoparticles. In some cases, the oil 

content analysis instrument used was unable to detect any residual oil after 

treatment. 

• Nanoparticle concentrations as low as 0.313 mg/mL can remove oil at a 97% 

efficiency. 

• The used nanoparticles can be collected, cleaned, and recycled immediately with 

some nanoparticles maintaining oil removal efficiencies up to at least ten 
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treatment cycles. Maghemite nanoparticles showed no degradation or loss in oil 

removal efficiency over the reuse cycles.  

• Due to the low cost of iron oxide nanoparticles, environmental compatibility, and 

repeated recyclability, maghemite nanoparticle have been determined to be a 

practical option for produced water treatment. 

 
5.2 Recommendations 

Based on the previously discussed conclusions, the following recommendations are 

given for future work in the study of produced water treatment with iron oxide 

nanoparticles: 

 

• Expanding the research to more trials per nanoparticle sample and additional 

produced water samples from actively producing oil wells. 

• Increasing the number of reuse cycles beyond 10 to observe whether or not the 

particles lose their oil removal abilities after many reuse cycles. 

• Additional imaging techniques such as DLS and SEM could be used to further 

characterize the nanoparticles to understand and compare the various forms of 

iron oxide nanoparticles that could be used. 

• Further studies should seek to provide greater clarification of the physical 

mechanisms that drive the nanoparticle-oil interaction. 

• An investigation of the scalability of this water treatment process to confirm its 

application in the oil and gas industry. 

• Develop a method for customizing ion-oxide nanoparticles for water treatment 

plans based on compatibility and composition of the sourced produced water. 
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This will include determining critical concentrations required to maintain high 

oil removal and compatibility with the other components found in the produced 

water. 

• Future studies may also investigate the complete composition of the produced 

water before and after nanoparticle treatment to observe whether the nanoparticles 

can affect other water contaminants. 
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Nomenclature 
 

MNP(s) – Magnetic nanoparticle(s) 

O/W – Oil-in-water 

TDS – Total dissolved solids (mg/L or ppm) 

W – Free energy requirement (ergs) 

∆A – Surface area (cm2) 

𝛾𝛾𝑜𝑜/𝑤𝑤 – Surface tension (dynes/cm) 

SS – Suspended solids 

TSS – Total suspended solids (mg/L or ppm) 

NORM – Naturally-occurring radioactive material 

MF – Microfiltration 

NF – Nanofiltration 

UF – Ultrafiltration 

RO – Reverse osmosis 

MSF – Multistage flash (distillation) 

VCD – Vapor compression distillation 

MED – Multi-effect distillation 

BBL – Barrels 

BPD – Barrels per day 

PPM – Parts per million (ppm or mg/mL) 

PPT– Parts per trillion (ppt) 

Ω – Resistivity (ohms) 

Br – residual flux density (Gauss) 
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ηR – Removal efficiency (%) 

Fb – Buoyancy force 

Fdrag – Drag force 

Fg – Gravitational force 

nFm – Normal force applied as a magnetic force 

I – Ionic strength 

pKsp – Apparent solubility product 

n – sample size 

μ – mean 

σ – standard deviation 
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