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Abstract

In this thesis, we investigate few-body physics and many-body physics of ultralong-

range Rydberg molecules. Ultralong-range Rydberg molecules are formed through

scattering processes between Rydberg electrons and ground state atoms. The

huge size of the Rydberg electron’s orbit makes the Rydberg electron able to

interact with more than one ground state atom in cold atomic gases with atom

number densities from 1012 cm−3 to 1014 cm−3. In cold atomic gases, the ground

state atoms on average are far away from each other. They are weakly interacting.

Depending on the angular momentum state of the Rydberg electron, two types of

polyatomic Rydberg molecules have been studied. When the Rydberg electron is

in an ns state, the isotropic probability distribution of the Rydberg electron makes

the Rydberg electron interact with different ground state atoms equally. The total

binding energy is a summation of the binding energy from each scattering process.

These additive interactions have been studied using Cs 6s + 83s and 6s + 90s

polyatomic Rydberg molecules in this thesis. When the Rydberg electron is in

an l > 0 angular momentum state, spatial correlations between different ground

state atoms are established through the anisotropic probability distribution of the

Rydberg electron. The total binding energy depends on the relative positions of

different ground state atoms. These nonadditive interactions are studied using Cs

6s+ 6s+ 34d and 6s+ 6s+ 36d triatomic Rydberg molecules in this thesis.
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Chapter 1

Introduction

Ultralong-range Rydberg molecules, a novel kind of molecules formed between

Rydberg atoms and ground state atoms is a significant discovery and can be seen

as a milestone of the century-long research on Rydberg atoms. The investigation

of interactions between Rydberg atoms and ground state atoms can be tracked

back to 1934 when Edoardo Amaldi and Emilio Segré observed energy shifts of

Rydberg atoms immersed in a dense gas of ground state atoms [1]. The transition

lines were supposed to always move to the red because of the screening effect

generated by the ground state atoms inserted between the Rydberg ion cores and

Rydberg electrons. Surprisingly, for different atomic species, both red line shifts

and blue line shifts were observed. In the same year, Enrico Fermi developed

the zero-energy pseudopotential and resolved this contradictory result [2]. When

Rydberg electrons get close to the outer turning points of their orbits, they can

be approximately seen as free electrons with zero speed. A low energy scattering

happens between the Rydberg electron and the ground state atoms in the vicinity

of the outer turning point, figure 1.1. The resulting energy shift can be treated by

a delta function potential located at the ground state atom and proportional to

the electron-atom scattering length. The original model created by Enrico Fermi

only includes s-wave scattering. It was extended for p-wave scattering, d-wave

scattering and other high order scatterings by Omont in 1977 [3]. In 2000, using

this model, Chris Greene et al. predicted the existence of ultralong-range Rydberg
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molecules [4]. They found the scattering process between a Rydberg electron and

a ground state atom with negative scattering length generates negative energy

shifts, which can support bound molecular states.

So far, ultralong-range Rydberg molecules have been observed and studied

successfully using Rb, Cs and Sr. Ultralong-range Rydberg molecules in low

angular momentum states (l < 3) possess shallow Born-Oppenheimer potential

energy curves (PECs) that oscillate as a function of the internuclear distance. The

oscillations mimic the behavior of the Rydberg electron’s radial wavefunction and

the depth of the potential energy curve is around several hundred MHz. When

Rydberg electrons are in high angular momentum states (l ≥ 3), the angular

momentum states are degenerate. A summation of the degenerate wavefunctions

with opposite parities breaks the spherical symmetry of the probability distribution

of the Rydberg electron and makes the Rydberg electron tend to be localized

around the ground state atom. The positive charge center and the negative charge

center do not overlap anymore. A giant permanent dipole moment is established.

This makes Rydberg molecules the only homonuclear diatomic molecules which

possess dipole moments. One example of the probability distributions for this

type of Rydberg molecules is shown in figure 1.2. As it looks like an ancient

trilobite fossil, this type of Rydberg molecule is named a “trilobite” molecule.

High angular momentum states also mean the Rydberg electrons have little chance

to get close to the ion cores and they concentrate their probability distributions

far away from the ion cores. This causes the potential wells to be much deeper

than potential wells of low angular momentum states. The typical depth of the

2



Figure 1.1: The scheme of the basic structure of an ultralong-range Rydberg
molecule. The binding is generated by the scattering between the Rydberg electron
and the ground state atom.

potential wells of Rydberg molecules in high angular momentum states is several

GHz.

High order scatterings possess shape resonances. They are metastable states

in which an electron is trapped due to the shape of a potential barrier. Shape

resonances can shift potential energy curves dramatically, which makes different

potential energy curves tend to cross each other. Avoided crossings generated by

p-wave shape resonances mix low angular momentum states with high angular

momentum states [5]. This makes the molecular states generated by the avoided

crossings behave like a second type of Rydberg molecules. In contrast to “trilobite”

molecules, the probability distribution of the Rydberg electron is butterfly shaped.

This type of Rydberg molecule is named a “butterfly” molecule.

Although research on interactions between Rydberg atoms and ground state

atoms started around one century ago, intensive and diverse study of ultralong-

range Rydberg molecules started one decade ago with the popularization of laser

cooling and trapping techniques. The first observation of ultralong-range Rydberg
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molecules was achieved by Tilman Pfau’s group at the university of Stuttgart in

2009 [6]. The bound molecular states generated by internal quantum reflection and

avoided crossings were observed shortly after that [7, 8]. The behavior of Rydberg

molecules in electric and magnetic fields has also been explored [9, 10, 11, 12].

Recently, scientists started to consider spin dependent relativistic effects. One

prominent effect is that spin-spin interactions between Rydberg electrons and

electrons in ground state atoms can mix singlet scattering channels with triplet

scattering channels, forming a new series of potential energy curves [13, 14, 15, 16].

The observation and measurement of the large permanent dipole moments

of ultralong-range Rydberg molecules were challenging for many years. This is

because directly exciting electrons to high angular momentum states to generate

“trilobite” and “butterfly” molecules needs a sophisticated experimental setup. Due

to the selection rules, three lasers with different frequencies are needed to excite

ground state electrons where l = 0, to l ≥ 3 angular momentum states. More fields,

for example microwaves, are required to excite angular momentum states where

l ≥ 3. So far, direct excitation of Rydberg molecules to high angular momentum

states has not been achieved. A clever strategy to circumvent this obstacle was

developed by our group in 2015. Due to the quasi-integer quantum defect of the

Cs ns state ∼ 4.05, low angular momentum states are degenerate with n− 4 high

angular momentum states. Mixing with high angular momentum states leads

the Cs 6s+ ns Rydberg molecules to possess large permanent dipole moments.

On the other hand, ns states can be reached using two-photon transitions from

the ground state. In 2015, we photoassociated Cs 6s + 37s, 6s + 39s, 6s + 40s

4



Figure 1.2: The probability distribution of the Rydberg electron of a “trilobite”
molecule. The height represents the probability. The silver ball represents the
Rydberg ion core. The ground state atom is buried under the two highest peaks.

“trilobite” molecules and succeeded in measuring their permanent dipole moments

for the first time [12].

Rydberg electrons are highly excited electrons with enormous orbits. The

typical size of Rydberg molecules is ∼ 100 nm. Ultralong-range Rydberg molecules

are excellent candidates to explore many-body physics. The large space between

the Rydberg ion cores and Rydberg electrons make it possible to have more than

one ground state atom within the orbit of the Rydberg electron. When the atom

number density is extremely high ( > 1014 cm−3), Rydberg molecules can be

used to probe shape resonances [17]. In Bose-Einstein condensates a Rydberg

atom can be seen as an impurity which interacts with all ground state atoms

nearby [18, 19, 20, 21]. More interestingly, when the atom number density is

moderate ( ∼ 1011 cm−3 to ∼ 1013 cm−3), few-body physics can be studied, where

spatial correlations between different ground state atoms have been observed and

reported [22, 23, 24].
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The first evidence of polyatomic Rydberg molecules was reported by Tilman

Pfau’s group in 2010 [7]. Molecular signals observed in the spectra with a

frequency difference of twice the binding energy of the ground molecular dimer

state were shown to be Rydberg trimer signals. In 2012, as they went to higher

principal quantum states, n = 60 to n = 110, higher orders of polyatomic Rydberg

molecules formed by more ground state atoms were observed, where a series of

molecular signals formed by different numbers of ground state atoms was evenly

distributed on the red side of the Rydberg transition line [25]. The frequency

difference between two of the adjacent molecular signals is the binding energy

of the Rydberg dimer. The binding energies of Rydberg molecules formed by

different numbers of ground state atoms are multiples of the binding energy of

the Rydberg dimer. These results can be understood intuitively by imagining

the orbit of the Rb ns Rydberg electron as spherically symmetric and very large.

Different ground state atoms interacting with the Rydberg electron are far away

from each other and independent. The total binding energy is a summation of

the binding energy of each scattering process.

When a Rydberg electron is in an np, nd, or even higher angular momentum

state, the probability distribution is not spherically symmetric anymore. This

makes the total binding energy from different ground state atoms angularly

dependent, where the angles are determined by the relative positions of different

ground state atoms. In 2018, we studied Cs 6s + 6s + 34d and 6s + 6s + 36d

triatomic Rydberg molecules and observed the angular dependence of the binding

energy caused by the anisotropic probability distribution of the Rydberg electron
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for the first time [24].

This thesis is organized as follows. Chapter 2 introduces the Fermi pseu-

dopotential. We firstly introduce some basic properties of Rydberg atoms. An

understanding of Rydberg atom properties helps to understand the formation

of ultralong-range Rydberg molecules. Then we give expressions which describe

s-wave scattering and p-wave scattering. We consider the spin dependent rela-

tivistic effects, which include spin-orbit coupling and spin-spin coupling. Then we

investigate how a Rydberg molecule behaves in electric fields and how a Rydberg

electron interacts with more than one ground state atom.

In Chapter 3, we describe the experimental apparatus used to conduct the

Rydberg molecule experiments. The experiments were conducted in an ultracold

environment which is achieved by combining a Zeeman slower, magneto-optical

trap and far-off-resonance trap. Two-photon transition, photoionization, ion

detection and the time sequence of the experiment are presented.

In Chapter 4, we present our work on few-body and many-body physics

of Rydberg molecules, where we investigate the manner in which a Rydberg

electron interacts with more than one ground state atom. There are two different

situations. The first one is when the Rydberg electron is in an ns state. Its

probability distribution is isotropic. In the second situation, the Rydberg electron

is in an l > 0 state, where the probability distribution is anisotropic. We compare

our results with theoretical study and good agreement is obtained. We conclude

in Chapter 5 and discuss several topics which will be interesting in the future.

Detailed information about the setup of our experiment are at the end of this
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thesis as appendices.
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Chapter 2

Theory

2.1 Introduction

Ultralong-range Rydberg molecules are investigated using spectroscopy. Corre-

spondingly, we need to calculate the molecular states and simulate the spectra

theoretically. The goal of this chapter is to introduce the model we create to

analyze and characterize ultralong-range Rydberg molecules and the method

we use to simulate the bound molecular states. In the seminal paper written

by Chris Greene in 2000 [4], the scattering between a Rydberg electron and a

ground state atom is treated as a perturbation of the unperturbed spherically

symmetric Coulomb potential generated by the Rydberg ion core. We can obtain

the Hamiltonian for the Rydberg electron in the ulralong-range Rydberg molecule

by writing the potential term as a combination of the Coulomb potential and

the Fermi pseudopotential. Knowing the Hamiltonian, potential energy curves

(PECs) of the Rydberg electron can be calculated. Then we can obtain bound

molecular states and simulations of spectra. Since the scattering is treated as

a perturbation, eigenenergies and wavefunctions of the Rydberg electron in the

unperturbed Coulomb potential have to be known to calculate the perturbation

[26]. In the first part of this chapter, we introduce Rydberg atom physics.

The accuracy of the Hamiltonian determines the accuracy of the calculations

and simulations. To obtain an accurate Hamiltonian, both s-wave scattering and
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p-wave scattering are included. p-wave shape resonances of Cs change the potential

energy curves dramatically. Compared to Rb, the p-wave shape resonances of Cs

need to be treated more carefully. Spin dependent relativistic effects are important

for ultralong-range Rydberg molecules. The fine structure and hyperfine structure

generated by the spin dependent relativistic effects have been observed using

modern, advanced spectroscopic techniques. After adding the spin dependent

relativistic effects into the Hamiltonian, we obtain the most complete Hamiltonian

up to now.

Two concrete examples are presented in the last part of this chapter, which

demonstrate how we adjust the model and extend the Hamiltonian according to

different conditions. The first example focuses on the most important property, the

dipole moments of ultralong-range Rydberg molecules. Ultralong-range Rydberg

molecules possessing dipole moments behave like pendula in electric fields instead

of free rigid rotors. We demonstrate how the Hamiltonian changes when the

ultralong-range Rydberg molecule is in electric fields. Using the new Hamiltonian,

we describe what will be different in the spectra when the ultralong-range Rydberg

molecule is in an electric field. The second example focuses on a situation where

a Rydberg electron interacts with several ground state atoms. We demonstrate

how to extend the Hamiltonian to include all different scatterings with different

ground state atoms. This is the theoretical background for Chapter 4, where we

present our work on isotropic and anisotropic polyatomic Rydberg molecules.
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2.2 Rydberg Atoms

2.2.1 Scaling Laws

Rydberg atoms have their outer electrons in a high principal quantum number

state n ≥ 10. A highly excited hydrogen atom is the simplest Rydberg atom,

where the potential is [27]

V (r) = − 1

4πε0

1

r
. (2.1)

The loosely bound electron has a tiny binding energy,

E = −e
2/4πε0
2a0

1

n2
, (2.2)

and an enormous orbital with a radius r,

r = a0n
2, (2.3)

where a0 is a constant called Bohr radius. e is the charge of the electron. ε0 is

the vacuum dielectric constant.

Since the potential is a spherically symmetric Coulomb potential, properties

of Rydberg atoms are functions of r. Knowing expectation values of rσ where σ

is a positive or negative integer, one can understand the properties of Rydberg

atoms. In table 2.1, we list some expectation values of rσ as functions of the

principal quantum number n. This can help us to quickly estimate the change

of the property as n changes, as soon as we know its expression as a function

11



Table 2.1: Expectation values of rσ for H in atomic units [28, 29].

< r > =
1

2
[3n2 − l(l + 1)]

< r2 > =
n2

2
[5n2 + 1− 3l(l + 1)]

< 1/r > =
1

n2

< 1/r2 > =
1

n3(l + 1/2)

< 1/r3 > =
1

n3(l + 1)(l + 1/2)l

< 1/r4 > =
3n2 − l(l + 1)

2n5(l + 3/2)(l + 1)(l + 1/2)l(l − 1/2)

< 1/r6 > =
35n4 − 5n2[6l(l + 1)− 5] + 3(l + 2)(l + 1)l(l − 1)

8n7(l + 5/2)(l + 2)(l + 3/2)(l + 1)(l + 1/2)l(l − 1/2)(l − 1)(l − 3/2)

When σ > 0, expectation values of rσ are determined mostly by the location of
the outer classical turning point, r = a0n

2. This is because the electron spends
most of its time there. So for σ > 0, < rσ >∼ n2σ. When σ < −1, the behavior
of the small r part of the wavefunction is important. For n� l, < rσ >∼ n−3.

of r. For example, we know the operator of the dipole moment is d = er, the

expectation value can be calculated as,

dnl,nl′ =< ψnlm|er|ψnl′m > ∼ n2. (2.4)

For a hydrogen atom, if we excite it from the ground 1s state to the Rydberg

10s state, its dipole moment increases 100 times. This makes Rydberg atoms

very sensitive to electric fields, because the dipole moment is directly related to

the atomic polarizability. A moderate electric field can make a notable shift of

the energy level. The electric field can be a DC field, which causes a DC Stark

12



Table 2.2: Selected scaling laws for Cs Rydberg atoms [28].

Property Scales as Cs 40s1/2

Orbital Radius r n2 123 nm

Energy Spacing between Adjacent Levels ∆E n−2 136 GHz

Polarizability P n7 6 MHz (V cm−1)−2

Radiative Lifetime τ0 n3 68 µs

shift. It can also come from laser light, which causes an AC Stark shift. Another

example is the diamagnetic effect. It is proportional to the area of the orbit of

the Rydberg electron, which is proportional to r2. Using table 2.1, we know the

diamagnetic effect scales as n4. The diamagnetic shifts which are very difficult to

be observed in low n states are obvious in Rydberg states.

For some properties we frequently use, tabulating their scaling laws is very

helpful. Table 2.2 shows a short list of representative properties and demonstrates

how Rydberg atom properties change with n.

2.2.2 Energies of Rydberg states

The essential difference between a highly excited hydrogen atom and the highly

excited alkali atoms we use in our experiment is that the nucleus of the alkali

atom is surrounded by inner electrons. The screening effect generated by the inner

electrons makes the net charge of a Rydberg ion core be +e when the Rydberg

electron is outside the ion core. In this case, the structure of the Rydberg atom

can be modelled using the structure of a hydrogen atom. The energy levels of

13



Rydberg atoms are similar to the energy levels of hydrogen atoms. However,

when Rydberg electrons are in low angular momentum states (l < 3), they have a

chance to penetrate into the inner shells and “see” more positive charges. Thus

the screening of the nuclear charge by the inner shell electrons is less effective. As

Rydberg electrons get to higher angular momentum states (l ≥ 3), the chance to

penetrate into inner shells rapidly decreases. To take into account this scenario,

we modify the expression of the energy levels, equation 2.2, slightly,

E = −e
2/4πε0
2a0

1

(n− δl)2
. (2.5)

A small experimentally determined quantity δl, called the quantum defect, is

subtracted from the principal quantum number n to give an effective principal

quantum number n∗ = n− δl. The subscript means the quantum defect depends

on the angular momentum state of the Rydberg electron. The quantum defect

can be further parameterized

δl = µl(0) +
µ′l(0)

(n− µl(0))2
, (2.6)

where µl(0) and µ′l(0) for ns, np, nd, and nf states of Rb [30, 31] and Cs [32, 33]

are given in table 2.3. For higher angular momentum states, the quantum defects

account for core polarization through the approximate formula [34]

δlhigh =
αc[3n

2 − l(l + 1)]/4

n2(l − 1/2)l(l + 1/2)(l + 1)(l + 3/2)
, (2.7)
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Table 2.3: Quantum defect parameters for Rb and Cs [30, 31, 32, 33].

Rb µl(0) µ′l(0) Cs µl(0) µ′l(0)

s1/2 3.1311804 0.1784 s1/2 4.049325 0.2462

p1/2 2.6548849 0.2900 p1/2 3.591556 0.3714

p3/2 2.6416737 0.2950 p3/2 3.559058 0.374

d3/2 1.34809171 -0.60286 d3/2 2.475365 0.5554

d5/2 1.34646572 -0.59600 d5/2 2.466210 0.067

f5/2 0.0165192 -0.085 f5/2 0.033392 -0.191

f7/2 0.0165437 -0.086 f7/2 0.033537 -0.191

where αc is the polarizability of the Rydberg ion core. For Rb, αc = 9.11, for Cs,

αc = 15.8, in atomic units.

2.2.3 Wavefunctions of Rydberg States

Since Rydberg electrons in different angular momentum states have different

chances to penetrate into inner shells of the Rydberg ion cores, an l dependent

potential is used when we calculate the wavefunctions of the Rydberg electrons

[35],

Vl(r) = −Zl(r)
r
− αc

2r4
[1− e−(r/rc)6 ]. (2.8)

The first term on the right side of the equation is the Coulomb potential generated

by the nucleus. The second term comes from the polarization interaction between

the Rydberg electron and the ion core. 1− e−(r/rc)6 is a cut-off function, which

prevents the singularity of the potential at the origin. rc is the cut-off radius,

which is chosen to be of the order of the core radius. Some authors treat rc as a

15
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Figure 2.1: The blue curve is the l dependent potential calculated using equation
2.8 where l = 0. The red curves are wavefunctions of 35s, 45s, 60s, 90s Rydberg
states calculated using the RADIAL program.

variable parameter to be chosen to reproduce accurate experimental data. αc is

the static dipole polarizability of the ion core, Zl is the charge parameter which

can be expressed as

Zl(r) = 1 + (Z − 1)e−a1r − r(a3 + a4r)e
−a2r, (2.9)

where Z is the nuclear charge of the atom, and an are fitting parameters fit

to measured energy levels. The wavefunctions can be obtained by numerically

solving the Schrödinger equation using a Fortran program called RADIAL [36].

Numerical results of the wavefunctions are obtained on series of grid points which

changes depending on how many nodes are in the wavefunction, see figure 2.1.

Additionally, this program can calculate continuum wavefunctions above

the ionization threshold using the SFREE subroutine, which is necessary for

determining photoionization cross sections for Rydberg states in an optical dipole

trap.
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2.2.4 Lifetimes of Rydberg States

Rydberg atoms decay radiatively due to spontaneous emission as a result of the

coupling of the atom to the vacuum electromagnetic field. The radiative lifetime

τ0 of a Rydberg state nl can be expressed as

1

τ0
= Γ0 =

∑
Enl>En′l′

A(nl→ n′l′), (2.10)

where Γ0 is the total transition rate to all states n′l′ lower than the Rydberg state

nl. It is a sum of the Einstein A coefficients, which is the transition rate to a

single state n′l′. The Einstein A coefficient can be expressed as,

A(nl→ n′l′) =
4ω3

nn′

3c3
lmax

2l + 1
R2(nl→ n′l′), (2.11)

where ωnn′ is the transition frequency between n and n′. lmax is the larger of

l and l′, c is speed of light, and R(nl → n′l′) is a radial matrix element of the

electric dipole transition. The transition rate from nl to n′l′ depends on the

frequency difference and the dipole matrix between them. Equation 2.11 together

with Equation 2.2 indicate two important results. First, decay back to the lowest

allowed state is the dominant process, because the frequency difference ω between

them is the largest. Second, when a Rydberg electron is in a high principal

quantum number state n, further increasing n only makes a tiny increase of the

frequency difference. Therefore, in the limit of high n, the Einstein A coefficient

changes mostly determined by the dipole matrix between the Rydberg state and

17



the low lying state. The wavefunction of a Rydberg electron in an nl state has

little overlap with the radial wavefunction of a valence electron in a low n′l′

state. The small overlap makes the transition rate back to the low lying state

of a Rydberg electron very small [37]. Thus, the radiative lifetimes of Rydberg

electrons are very long. As listed in table 2.2, the radiative lifetime of the Cs 40s

Rydberg atom can be as long as 68 µs. The radiative lifetimes scale with n as [28]

τ0 = τ(n∗)3, (2.12)

where n∗ is the effective principal quantum number, and τ is a parameter for the

radiative lifetime that depends on l and the properties of the atom.

Blackbody radiation makes an atom in a Rydberg state nl transition to nearby

states n′l′. For Rb at T = 300 K, around n = 30, blackbody-radiation-induced

decay is the dominant decay process. Blackbody-radiation-induced decay can be

expressed as

1

τBBR
= ΓBBR =

∑
n′

A(nl→ n′l′)
1

exp(ωnn′/kT )− 1
. (2.13)

Here the blackbody-radiation-induced decay can go to any states with a transition

amplitude weighted by the Planck distribution.

When there is no photoionization or other ionization processes, the total decay

rate is a sum of the spontaneous decay rate and the blackbody-radiation-induced

decay rate [38]
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1

τeff
= Γ0 + ΓBBR =

1

τ0
+

1

τBBR
, (2.14)

where τeff is the effective lifetime of the Rydberg state. Equation 2.14 gives

results approximately consistent with experimental observations. To get a bet-

ter agreement with experimental observations, we use an equation with fitting

parameters [38],

τeff =

[
1

τs(n∗)δ
+

A

(n∗)D
21.4

exp(315780B/(n∗)CT )− 1

]−1
. (2.15)

These parameters vary with different effective principal quantum number n∗,

angular momentum states l and different atomic species. This expression gives

very good agreement with experimental observations. Parameters can be found in

reference [38].

In our experiment, we use a far-off-resonance trap (FORT) laser to photoionize

Rydberg molecules and Rydberg atoms [39, 40]. We conducted experiments to

investigate the photoionization rate by the beams of our FORT laser. The result

is shown in figure 2.2. The effective lifetimes of the Rydberg atoms are reduced

when the Rydberg atoms are confined in our FORT. Equation 2.14 for the atoms

in our FORT becomes [41]

1

τeff
= Γ0 + ΓBBR + Γphoto−ion =

1

τ0
+

1

τBBR
+

1

τphoto−ion
. (2.16)

Γphoto−ion is the photoionization rate. It depends on laser intensity I, laser

frequency ω and photoionization cross section σphoto−ion,
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Figure 2.2: Photoionized Rydberg atom counts as a function of the FORT laser
power in our experiment. The maximum density of our cold atomic cloud is
around 5× 1012 cm−3, the temperature is around 40 µK. The solid blue line is a
linear fit to the data. It crosses the horizontal axis at a non-zero point, which
indicates other ionization channels exist. The error bar is the standard deviation.
This result is reported in [41].

Γphoto−ion =
I

~ω
σphoto−ion. (2.17)

The photoionization cross section can be calculated as,

σphoto−ion = 2π2 ~e2

mec

df

dE
, (2.18)

where df/dE can be written as,

df

dE
=

lRyd+1∑
l=lRyd−1

2meωl>
3~(2lRyd + 1)

∣∣∣∣∫ ψn,l(r)rψL,E(r)dr

∣∣∣∣2. (2.19)

lRyd is the angular momentum quantum number of the Rydberg state, l> is the

greater of l and lRyd. ψn,l(r) is the Rydberg state wavefunction. ψL,E(r) is the

continuum wavefunction with energy E.

20



2.2.5 Summary

Many characteristics of ultralong-range Rydberg molecules are stemmed from

the exaggerated properties of Rydberg atoms, for example, the geometric size

and the lifetime. Therefore a better understanding of the properties of Rydberg

atoms helps to understand the formation of ultralong-range Rydberg molecules

and their characteristics. Scaling laws are handy tools to quickly estimate how

the properties of Rydberg atoms change as n changes. Exact calculations of

these properties require a knowledge of the eigenenergies and wavefunctions of

the Rydberg electron. Since the scattering that binds a Rydberg electron and

a ground state atom together is treated as a perturbation, the eigenenergy and

wavefunction of the Rydberg electron in the Coulomb potential are also needed to

calculate the potential energy curves generated by the scattering. Because of the

screening effect, the eigenenergy and wavefunction of a Rydberg electron depend

on its angular momentum state. This means the angular momentum state of the

Rydberg electron has an important impact on the properties of Rydberg molecules,

for example, the dipole moments of Rydberg molecules and the total binding

energies of polyatomic Rydberg molecules, which we will discuss in following

sections.
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2.3 Ultralong-range Rydberg Molecules

2.3.1 s-wave Scattering Process

In 1934, Edoardo Amaldi and Emilio Segré conducted a famous experiment. The

basic idea of the experiment is straightforward. They mixed small amounts of

Rydberg alkali atoms (Na, K) with rare gas atoms (Ar, He, Ne, H2, N2) at

densities of ∼ 1019 cm−3 to observe the energy shifts of the Rydberg states. Since

Rydberg electrons have very large orbits, the space between the Rydberg electron

and the Rydberg ion core is filled with polarizable, rare gas atoms instead of

vacuum when the density is high enough. If we consider a polarizable dielectric

plate placed between two parallel charged conductive plates, we can derive what

Edoardo Amaldi and Emilio Segré expected at that time. According to this

model, there will be a red shift of the Rydberg electron’s energy level, which

means the transition frequency is smaller, or equivalently, the energy difference

between the Rydberg level and the ground state level becomes smaller, no matter

what rare gases are present. But the result of the experiment was surprising

and not consistent with this simple model. The pressure shifts of Ar and He

were to the red, while the pressure shift of Ne was to the blue, which means

the transition frequency was larger. Shortly after the experiment, Enrico Fermi

developed quantum zero-energy scattering theory to explain the experimental

results.

Ground state atoms in the vicinity of Rydberg electrons can be polarized by

the Rydberg electrons. The interaction between the Rydberg electron and the
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polarized ground state atom is

V (r) = − 1

(4πε0)2
αq2

2r4
, (2.20)

where α is the polarizability of the ground state atom. Unlike the Coulomb

potential, equation 2.1, which scales as 1/r, the polarization potential scales as

1/r4. The potential becomes very deep when the Rydberg electron gets close to

the polarized ground state atom, but increases to zero very fast when the Rydberg

electron moves away from the polarized ground state atom. The polarization

potential has a very small effective range.

On the other hand, the loosely bound Rydberg electrons have small kinetic

energy. The kinetic energy of a Rydberg electron can be related to the principal

quantum number n using Bohr’s theory mvr = n~ [42],

1

2
mv2 =

1

2

~2

mn2a20
. (2.21)

If we excite one hydrogen atom from the ground state n = 1 to a Rydberg state

n = 30, the kinetic energy decreases 900 times. The de Broglie wavelength of

the Rydberg electron is very large. Hence, the scattering between a Rydberg

electron and a polarized ground state atom is a low energy, zero-range scattering

process, where the long wavelength limit kr0 � 1 is fulfilled. k is the wavevector

of the de Broglie wave of the Rydberg electron and r0 is the effective range
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of the polarization potential. In this situation, partial waves of the scattering

processes for higher l can be ignored, since they cannot penetrate the centrifugal

barrier. The s-wave scattering process is the dominant scattering process [26]. The

polarization potential extends over only a small fraction of the Rydberg electron’s

enormous de Broglie wavelength, the collision can be approximately treated by

adding a scattering phase shift to the Rydberg electron’s wavefunction. The

resulting energy shift is equivalent to that provided by a delta function potential

located at the perturber which is proportional to the electron-atom scattering

length [2],

Vs(r−R) = 2πaTs (k)δ(r−R), (2.22)

where r is the position of the Rydberg electron, R is the position of the ground

state atom, and aTs (k) is the energy-dependent s-wave triplet scattering length.

Triplet means the spin of the Rydberg electron is parallel with the spin of the

valence electron of the ground state atom. For Cs atoms we use in our experiment,

aTs (k) = −21.7 a0. When they are antiparallel, the scattering process is a singlet

scattering process, with a singlet scattering length aSs(k) = −1.33 a0. Only

negative scattering lengths form attractive interactions between Rydberg electrons

and ground state atoms. For alkali atoms, aSs(k) is too small to generate deep

potential wells that support bound molecular states. aTs (k) can be written as a

function of phase shift [43]
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aTs (k) =
tan(η)

k
, (2.23)

where η is the phase shift. By approximating the electron’s motion as a classic

Coulomb system, we can get a semiclassical expression for k,

k(R)2

2
= − 1

2n2
+

1

R
. (2.24)

The potential energy curve generated by the scattering process at the position of

the ground state atom can be evaluated as

V T
s (r,R) =< ψnlm(r)|2πaTs (k)δ(r−R)|ψnlm(r) >

= 2πaTs (k)|ψnlm(R)|2.
(2.25)

The δ(r − R) function in the interaction operator makes the final potential

energy curves mimic the wavefunctions of Rydberg electrons. These shallow

Born-Oppenheimer potential curves oscillate as functions of internuclear distance

R. Due to the negative scattering length, the successive potential energy curve

minima correlate with the successive maxima of the Rydberg electron density,

figure 2.3.

When the Rydberg electrons are in high angular momentum states, different

angular momentum states are degenerate. The final potential energy curves are

a summation of different wavefunctions with opposite parities. Neglecting the

small quantum defects of all l ≥ 3 states, the potential energy curve generated by
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Figure 2.3: The red curve represents the Rydberg electron’s wavefunction while
the blue curve represents the potential energy curve of a Rydberg molecule formed
by an s-wave scattering process. We can see the oscillatory potential curve
tracks the radial Rydberg wavefuncion. Due to the negative scattering length,
the maxima of the wavefunction correlate with the minima of the potential well.
Since the scattering length depends on k, which changes along the internuclear
axis, the oscillation of the potential curve is out of phase with the oscillation
of the wavefunction. The tracking stops at around 600 a0 corresponding to the
Ramsauer-Townsend minima of the s-wave scattering cross section [4, 44].

the scattering process is given in terms of radial hydrogenic wavefunctions Rnl(R)

evaluated at the location of the perturber as [4],

Un(R) = − 1

2n2
+ 2πaTs (k)

n−1∑
l=lmin

2l + 1

4π
Rnl(R)2. (2.26)

This expression can be approximated as

Un(R) ≈ − 1

2n2
+ aTs (k)

( 2
R
− 1

n2 −
(lmin+

1
2
)2

R2 )
1
2

πn3
. (2.27)

In this case, the Rydberg electron tends to be localized around the ground state

atom. A dipole moment is established because the Rydberg electron with −e

26



is localized at the ground state atom while the Rydberg ion core has a net

positive charge +e. The nodal pattern of the Rydberg electron’s probability

density function is reminiscent of a trilobite fossil, figure 1.2, so this type of

ultralong-range Rydberg molecule is called a “trilobite” molecule.

2.3.2 p-wave Scattering Process and Shape Resonances

The Rydberg electron obtains more kinetic energy when it gets closer to the

Rydberg ion core. High order partial waves start to penetrate the centrifugal

barrier. We need to consider high order scattering processes in this situation. The

next order is p-wave scattering [16, 26, 3],

Vp(r−R) = 6πa3p(k)δ(r−R)
←−
∇ ·
−→
∇ , (2.28)

where a3p(k) is the scattering volume of the p-wave scattering process, which

depends on the wavevector k of the Rydberg electron,

a3p(k) = −tan(η)

k3
. (2.29)

−→
∇ is the gradient operator acting on the right side.

←−
∇ is the conjugate of the

gradient operator acting on the left side. η is the phase shift of the p-wave

scattering. The gradient operators act in all three spatial directions, giving rise

to two possible sets of states: those that maximize the gradient parallel to the

internuclear axis, and those that maximize the gradient perpendicular to the

internuclear axis. The former have a nodal plane perpendicular to the internuclear
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Figure 2.4: The potential energy curves near Cs 31s Rydberg transition. The
black one is the PECs of Cs 6s+ 31s Rydberg molecule. The green, blue, and red
curves correspond to Cs 6s+ 27h, 6s+ 27g, and 6s+ 27f Rydberg molecule. The
solid lines correspond to Σ molecular symmetry, and the dashed lines correspond
to Π molecular symmetry. The potential wells formed by avoided crossings can
support bound molecular states mixed with hydrogenic state characters. This
makes the Cs 6s+ 31s Rydberg molecules gain large permanent dipole moments.
The results have been reported in [8].

axis, and thus a Σ molecular symmetry (m = 0), and the latter place the nodal

plane along the axis, and hence have a Π molecular symmetry (m = 1).

High order scattering processes, where the angular momentum of the scattered

electron relative to the ground state atom is greater than zero, may support

quasi-bound negative ion states, where the incident electron is trapped by the

centrifugal potential barrier and attached to the ground state atom temporarily

[45]. This phenomenon is called a shape resonance. Shape resonances occur at

well defined energies when electrons scatter from atoms or molecules. At the
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position of a resonance, the tangent of the phase shift diverges. The p-wave

potential energy curves are shifted by the p-wave shape resonance dramatically.

This makes potential energy curves of different angular momentum states tend to

cross. The selection rules prevent the crossings and generate avoided crossings

which support bound molecular states [5].

Figure 2.4 gives an example of avoided crossings generated by p-wave shape

resonances. The potential energy curves near the Cs 31s state are shown. Since

the quantum defect of the Cs ns state is -4.05, the potential energy curve of the Cs

31s state is almost energetically degenerate with potential energy curves of the Cs

n = 27 high angular momentum states. Several different p-wave shape resonances

at different positions along the internuclear axis shift the potential energy curves

of the Cs n = 27 high angular momentum states dramatically. Here we focus on

the Cs 27g state. The shape resonance makes it tend to cross the Cs 27f state at

around 1180 a0, where an avoided crossing is generated. The inset on the graph

is a zoom-in view of the avoided crossing. Several bound molecular states are

supported by the potential wells generated by the avoided crossing. These bound

molecular states also possess large electric dipole moments. The nodal pattern is

different from the nodal pattern of a “trilobite” molecule. It features two large

“wings” of electron density extending to the usual spatial boundary of the atomic

Rydberg state, but along the internuclear axis the density accumulates near the

position of the perturber. This class of ultralong-range Rydberg molecule is called

a “butterfly” molecule [5, 46].

p-wave shape resonances are more important for Cs than Rb [44, 47]. There are
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three reasons. First, when on resonance, the cross section for Cs is almost twice the

cross section for Rb. This shifts potential energy curves of Cs Rydberg molecules

much more than in the case for Rb molecules. Second, different shape resonances

are well separated for Cs compared to Rb. This leads to more complicate potential

energy curves for Cs Rydberg molecules. As shown in figure 2.4, the potential

energy curves near the Cs 31s state are shaped strongly by three successive

p-wave shape resonances at around 1000 a0, 1250 a0, and 1300 a0. Third, Cs

shape resonances are within the classically accessible region of the electron kinetic

energy. The resonance energy of the Cs 0− shape resonance is only 1.69 meV [44].

The entire potential energy curve is strongly perturbed by the Cs p-wave shape

resonances except the outer-most potential well, which is formed by an s-wave

dominated scattering process.

2.3.3 Relativistic Effects in Rydberg Molecules

Historically, people noticed that relativistic effects influenced the motion of

electrons in atoms in the early days of quantum mechanics. It was Sommerfeld who

first took special relativity into account, refining Bohr’s prominent contributions,

to explain the fine structure of hydrogen atoms. Spin dependent relativistic effects

also play a significant role in the formation of Rydberg molecules. Different spin

dependent relativistic effects in an ultralong-range Rydberg molecule are shown

in figure 2.5.

Depending on the spins of the Rydberg electron and the valence electron in

the ground state atom, scattering processes between the Rydberg electron and the
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ground state atom can be triplet scattering, where the two spins are parallel, or

singlet scattering, where the two spins are antiparallel. The projection operators

for triplet scattering ÎT and singlet scattering ÎS are

ÎT = ŜG · ŜR +
3

4
, (2.30)

and,

ÎS = Î− ÎT, (2.31)

where ŜG is the spin operator of the ground state atom and ŜR is the spin operator

of the Rydberg atom. Î is the identity operator. For triplet states, the eigenvalue is

one. For singlet states, the eigenvalue is zero. The wavefunction can be written as

ψnlm(r)|SR,MR; SG,MG > [16], where |SR,MR; SG,MG > is the spin wavefunction.

ψnlm(r) is the unperturbed wavefunction of the Rydberg electron in the Coulomb

potential,

Ĥ0 ψnlm(r) = − 1

2(n− δn,l)2
ψnlm(r). (2.32)

The PECs of s-wave triplet scatterings and singlet scatterings are
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V T
s (r,R) = 2πaTs (k)|ψnlm(R)|2 < SR,MR; SG,MG| ÎT |SR,MR; SG,MG >

= 2πaTs (k)|ψnlm(R)|2 < SR,MR; SG,MG| ŜG · ŜR +
3

4
|SR,MR; SG,MG >

= 2πaTs (k)|ψnlm(R)|2,

(2.33)

and,

V S
s (r,R) = 2πaSs(k)|ψnlm(R)|2 < SR,MR; SG,MG| ÎS |SR,MR; SG,MG >

= 0.

(2.34)

Since p-wave scattering depends on the coupling between the scattering angu-

lar momentum Lsc = 1 and the total spin S = SR + SG, the uncoupled basis

ψnlm(r)|SR,MR; SG,MG > are not the eigenstates of the spin dependent Hamilto-

nian when we include p-wave scattering into the Hamiltonian. We define a new

basis ψnlm(r)|J,MJ; S,MS >, where J = Lsc+S is the total angular momentum and

MJ is its projection on the internuclear axis. As discussed in the above section, the

triplet (S = 1) p-wave scattering (Lsc = 1) phase shift of Cs exhibits a relatively

large splitting of the resonance energy for J = 0, 1, 2. The three successive

p-wave shape resonances of Cs strongly perturb all but the outer-most potential

well, where the s-wave scattering process is dominant. These effects make the

calculated potential energy curves of Cs Rydberg molecules very complex. In the

case of Rb, we usually use a single average shape resonance curve to represent
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p-wave scattering since the resonances overlap in resonance energy.

The scattering between the Rydberg electron and the ground state atom

depends on the spin-spin coupling between the Rydberg electron and the valence

electron of the ground state atom. Any spin dependent relativistic effects which

have influence on either the spin of the Rydberg electron or the spin of the ground

state electron affect the potential energy curves. This spin-spin coupling builds

a bridge between the Rydberg atom and the ground state atom. The spin-orbit

coupling and electron-nucleus spin coupling (hyperfine interaction) of both the

Rydberg atom and the ground state atom need to be included in the calculation

to obtain accurate results [13, 16]. The hyperfine interaction decreases as n−3.

In Rydberg states, the hyperfine interaction is too weak to affect the curves

at currently relevant experimental resolutions. We only consider the hyperfine

interaction of the ground state atom. The spin-orbit coupling also decreases as

n−3. However, in n = 30 to n = 40 states, which we discussed in Chapter 4, the

spin-orbit coupling is comparable to the hyperfine interaction of the ground state

atom. We include spin-orbit coupling of the Rydberg atom in our calculation. For

alkali ground state atoms, there is no spin-orbit coupling since they are in an ns

state. The final expression which includes all spin dependent relativistic effects is
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Figure 2.5: The scattering between the Rydberg electron and the ground state
atom depends on the spin-spin coupling of the Rydberg electron and the valence
electron of the ground state atom. Any spin dependent relativistic effects having
influences on the spin status of either electron affects the potential energy curves

of the formed Rydberg molecule. For the p-wave scattering process,
−→
L sc = 1 is

not zero anymore. The total spin
−→
S =

−→
S R +

−→
S G couples with

−→
L sc, which forms

a new basis
−→
J . The spin-orbit coupling of the Rydberg atom couples the spin of

the Rydberg electron
−→
S R and the angular momentum orbital

−→
l , which forms

−→
j .

The hyperfine interaction of the ground state atom couples the spin of the ground

state electron
−→
S G and the spin of the nucleus

−→
I G, which forms

−→
FG. Since the

hyperfine interaction decreases as n−3, the hyperfine interaction of the Rydberg
atom can be ignored.
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Figure 2.6: The spectrum of Cs 6s+ 34d Rydberg molecules. One striking feature
are the two labeled peaks. One is the ground molecular state of the outer-most
potential well formed by triplet scattering. The other one is the ground molecular
state of the outer-most potential well “duplicated” by triplet-singlet mixing due
to the hyperfine interaction of the ground state atom with the Rydberg electron.

Ĥ =Ĥ0 + Ĥso-R

+ Ĥs,T · ÎT + Ĥs,S · ÎS

+ Ĥp,T · ÎT + Ĥp,S · ÎS

+ Ĥhf-G.

(2.35)

More explicitly writing out the operators,

Ĥ =Ĥ0 + Ĥso-R

+ 2π[aSS(k)ÎS + aTS (k)ÎT]δ(3)(r− R)

+ 6π[aS−JP (k)ÎS + aT−JP (k)ÎT]δ(3)(r− R)

←−
∇ ·
−→
∇

k2

+ AŜG · ÎG.

(2.36)
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Figure 2.7: The potential energy curves of Cs 6s+31d Rydberg molecules. Several
series of potential energy curves correspond to different projections of total angular
momentum along the internuclear axis. They overlap very well when the scattering
is s-wave dominated. As p-wave scattering starts to perturb the potential energy
curves strongly, they start to separate energetically.

As in atoms, fine structure appears after adding the spin dependent relativistic

effects.

Electron-nucleus spin coupling of the ground state atom couples singlet and

triplet scattering channels. It generates a new series of potential energy curves

[13], which are shallower than the potential energy curves of triplet scattering

but deeper than the potential energy curves of singlet scattering. The potential

wells are deep enough to support bound molecular states. These bound molecular

states were first observed in 2015 [14]. Using Cs 6s+ nd Rydberg molecules, we

also observed the mixing between singlet scattering channels and triplet scattering

channels, see figure 2.6. The total angular momentum Jtot = lr + sr + sg + Ig and

the projection of the total angular momentum, mtot = mlr + msr + msg + mIg ,

are the only good quantum numbers. Correspondingly, different potential energy
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curves for different mtot are separated in energy. For the outer-most potential

wells where the s-wave scattering is dominant, it is difficult to observe the splitting

of these states, as in figure 2.7. The potential energy curves are more complex for

heavier atoms because of a larger mIg .

2.3.4 Rydberg Molecules in Static Electric Fields

A molecule in the gas phase is free to rotate relative to a set of mutually orthogonal

axes of fixed orientation in space, centered on the center of mass of the molecule.

Free rotation is not possible for molecules in liquid or solid phases due to the

presence of intermolecular forces. The free rotation of a Rydberg molecule can be

described as a rigid rotor. The Schrödinger equation of the free rotation is

Ĥψ =
L̂2

2I
ψ =

J(J + 1)~2

2I
ψ, (2.37)

where L̂ is the rotational angular momentum operator, I is the moment of inertia

of the Rydberg molecule. By defining the rotation constant B = ~2/2I, the

rotational energy can be written as

E = J(J + 1)B, (2.38)

where J is the rotational quantum number, which is a positive integer.

Ultralong-range Rydberg molecules possessing large permanent dipole moments

cannot be seen as free rigid rotors anymore in static electric fields. Instead, we

model them as harmonic pendula. The Schrödinger equation of the pendular state
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can be written as,

Ĥψ =

[
L̂2

2I
− µ · ε

]
ψ, (2.39)

where the first term on the right side of the equation describes the rotation and the

second term describes the interaction between the electric field and the Rydberg

molecule. µ is the dipole moment of the Rydberg molecule, ε is the strength of the

electric field. If the static electric field is very weak or the dipole moment of the

Rydberg molecule is very small, the interaction between the Rydberg molecule

and the electric field can be treated as a perturbation. When the static electric

field is very strong or the dipole moment of the Rydberg molecule is very large,

the interaction between them becomes the dominant term. Here we define a

parameter η,

η =
µ · ε
B

, (2.40)

which we use to describe the strength of the interaction between the Rydberg

molecule and the static electric field. When the interaction is very strong, the

Rydberg molecule cannot rotate a full circle, but behaves like a pendulum. The

energy of the pendular movement is,

E
η→large−−−−−→ −η + (ν + 1)(2η)1/2 ·B, (2.41)

where
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Figure 2.8: Energy level correlations between the rigid rotor system and the
pendular system.

ν = 2J − |Mj|, (2.42)

which is the pendular quantum number.

In the pendular system, J is not a good quantum number anymore, but Mj is

still a good quantum number. Correspondingly, the selection rules ∆J = ±1 are

not valid anymore. But the selection rules ∆Mj = 0,±1 are still valid. According

to equation 2.41 and equation 2.42, two different rotational states with different

rotational energies may have the same energy in pendular system. For example,

both the rotational state J = 2, Mj = 2 and J = 1, Mj = 0 correspond to the

ν = 1 · 2− 0 = 2 pendular state. Their separated energy levels will merge together

after adding an electric field. The correlations between the energy levels of the
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rigid rotor system (η = 0) and the pendular system (η =∞) are shown in figure

2.8. Another important feature generated by equation 2.42 is when ν is an odd

number, there are no even Mj sublevels. When ν is an even number, there are no

odd Mj sublevels.

From equation 2.41, the energy difference between two adjacent pendular

states is (2η)1/2B, where η = µ · ε/B. If we increase the strength of the electric

field, different pendular states are more separated energetically. In spectra, the

corresponding molecular signal will be broader. This gives us a way to derive the

dipole moment of the Rydberg molecule. By adding different electric fields, we

measured the line broadening of the molecular signal and extracted the dipole

moments of the Cs “trilobite” molecules in 2015 [12].

2.3.5 Isotropic and Anisotropic Polyatomic Rydberg Molecules

Because a highly excited Rydberg electron has an enormous orbit, it is not hard

to imagine that there may be more than one ground state atom within the orbit of

the Rydberg electron when the atom number density of a cold atomic gas is high

enough. Experiments investigating this interesting topic have been conducted

and the results have been reported and discussed [7, 17, 20, 24, 25, 48]. With

different atom number densities and different n, the average number of ground

state atoms within the orbit of the Rydberg electron can range from less than

one to several thousand. In this situation, the Rydberg electron interacts with

each of the ground state atoms. Since different ground state atoms are far away

from each other, their weak interactions are negligible. The relation between the
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total binding energy and each scattering process depends on the wavefunction of

the Rydberg electron.

When the Rydberg electron is in an isotropic s angular momentum state,

the probability distribution of the Rydberg electron is spherically symmetric.

The Rydberg electron has equal chance to interact with each ground state atom.

There is no correlation between different ground state atoms. The total binding

energy is a summation of the binding energy of each individual scattering process.

The polyatomic Rydberg molecule in this case is called an isotropic polyatomic

Rydberg molecule.

When the Rydberg electron is in an l > 0 angular momentum state, its

probability distribution is not spherically symmetric anymore. Spatial correlation

can be established due to the anisotropic probability distribution of the Rydberg

electron. The polyatomic Rydberg molecule in this case is called an anisotropic

polyatomic Rydberg molecule.

To illustrate these two different cases, we use triatomic Rydberg molecules to

study the interaction between a Rydberg electron and two ground state atoms.

Considering two ground state atoms at R1 and R2, by treating them as identical

particles, the wavefunctions of the triatomic Rydberg molecule are

Ψ+(r,R1,R2) = A+(R1,R2)[Ψ1(r,R1) + Ψ2(r,R2)] (even parity),

Ψ−(r,R1,R2) = A−(R1,R2)[Ψ1(r,R1)−Ψ2(r,R2)] (odd parity),

(2.43)

where A± are normalization coefficients. Ψ1(r,R1) and Ψ2(r,R2) are the wave-
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functions of the Rydberg dimers,

Ψi(r,Ri) =
∑
m

ψnlm(Ri)
∗ψnlm(r), (2.44)

where ψnlm(r) is the unperturbed Rydberg electron’s wavefunction in the Coulomb

potential. The potential energy curves for the even parity state and the odd parity

state are [23]

E±(R1,R2) = E0 +
2πa1g11 + 2πa2g22

2

± 1

2

√
(2πa1g11 − 2πa2g22)2 + 16π2a1a2g12g21,

(2.45)

where E0 is the energy of the unperturbed Rydberg electron in the Coulomb

potential. ai is the s-wave triplet scattering length. And

gij =
∑
n,l,m

ψ∗nlm(Ri)ψnlm(Rj). (2.46)

The cross term gij is a sum of different principal quantum number states n, angular

momentum states l, and their projections on the internuclear axis m. Since the

Rydberg atom has fixed n and l, the cross term gij is a sum of m. Depending on

whether m is fixed or not, there are two different kinds of polyatomic Rydberg

molecules, isotropic polyatomic Rydberg molecules and anisotropic polyatomic

Rydberg molecules.

When n, l,m are all fixed,
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g11 = ψ∗nlm(R1)ψnlm(R1)

g22 = ψ∗nlm(R2)ψnlm(R2)

g12 = ψ∗nlm(R1)ψnlm(R2)

g21 = ψ∗nlm(R2)ψnlm(R1).

(2.47)

It can be easily shown that

g11 · g22 = g12 · g21. (2.48)

Substituting equation 2.48 into equation 2.45, we obtain

E±(R1,R2) = E0 +
2πa1g11 + 2πa2g22

2
± 1

2

√
(2πa1g11 + 2πa2g22)2

= E0 +
2πa1g11 + 2πa2g22

2
± 2πa1g11 + 2πa2g22

2
.

(2.49)

Writing it more explicitly,

E+ = − 1

2n2
+ 2πaTs (k)|ψnlm(R1)|2 + 2πaTs (k)|ψnlm(R2)|2, (2.50)

and,

E− = − 1

2n2
. (2.51)

It turns out when n, l,m are all fixed, the total binding energy is a summation of
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the binding energy from each scattering process. Different scattering processes

are independent. The additive interactions with different ground state atoms

can be observed using ns Rydberg molecules, because for an ns Rydberg atom,

n, l,m are all fixed. This can be understood in another way. When a Rydberg

electron is in an ns state, its spherically symmetric probability distribution makes

it equally interact with each ground state atom, no matter what the relative

positions are. This kind of polyatomic Rydberg molecule has been observed using

Rb ns Rydberg molecules at the university of Stuttgart for the first time [25]. We

obtained experimental spectra of isotropic polyatomic Rydberg molecules using

Cs ns Rydberg molecules [48].

When l > 0, m is not fixed, the cross terms under the square root in equation

2.45 cannot be canceled. For example, supposing there are two angular momentum

sublevels m and m′,

g11 = ψ∗nlm(R1)ψnlm(R1) + ψ∗nlm′(R1)ψnlm′(R1)

g22 = ψ∗nlm(R2)ψnlm(R2) + ψ∗nlm′(R2)ψnlm′(R2)

g12 = ψ∗nlm(R1)ψnlm(R2) + ψ∗nlm′(R1)ψnlm′(R2)

g21 = ψ∗nlm(R2)ψnlm(R1) + ψ∗nlm′(R2)ψnlm′(R1).

(2.52)

g11 · g22 equals
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g11 · g22 = ψ∗nlm(R1)ψnlm(R1)ψ
∗
nlm(R2)ψnlm(R2)

+ ψ∗nlm(R1)ψnlm(R1)ψ
∗
nlm′(R2)ψnlm′(R2)

+ ψ∗nlm′(R1)ψnlm′(R1)ψ
∗
nlm(R2)ψnlm(R2)

+ ψ∗nlm′(R1)ψnlm′(R1)ψ
∗
nlm′(R2)ψnlm′(R2),

(2.53)

and g12 · g21 equals

g12 · g21 = ψ∗nlm(R1)ψnlm(R1)ψ
∗
nlm(R2)ψnlm(R2)

+ ψ∗nlm(R1)ψnlm′(R1)ψ
∗
nlm′(R2)ψnlm(R2)

+ ψ∗nlm′(R1)ψnlm(R1)ψ
∗
nlm(R2)ψnlm′(R2)

+ ψ∗nlm′(R1)ψnlm′(R1)ψ
∗
nlm′(R2)ψnlm′(R2).

(2.54)

In this case,

g11 · g22 6= g12 · g21. (2.55)

The spatial correlations between different ground state atoms are established

through the summation on m. With a further assumption R1 = R2 = R,

equation 2.45 becomes

E±(R, θ) = Edim(R)

[
1± (−1

2
+

3

2
cos2θ)

]
. (2.56)

The total binding energy turns out to be a function of the angle enclosed by the

two ground state atoms. The polyatomic Rydberg molecules that are formed are
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named anisotropic polyatomic Rydberg molecules. The nonadditive interactions

with different ground state atoms were observed by us using Cs 6s + 6s + nd

Rydberg trimers for the first time in 2018 [24]. Our experimental results are

discussed in Chapter 4.

2.3.6 Summary

The scattering between a Rydberg electron and a ground state atom is a low energy

scattering which can be well described by the Fermi pseudopotential. We described

the Fermi pseudopotentials for s-wave scattering and p-wave scattering. They,

together, give accurate calculations of Rydberg molecules. Current spectroscopic

techniques allow us to resolve fine and hyperfine structures of ultralong-range

Rydberg molecules. Different spin dependent relativistic effects need to be taken

into account. This can give a better understanding of the spectra. The most

fascinating characteristic of ultralong-range Rydberg molecules is their large

permanent dipole moments, which make them behave like pendula in electric

fields. The measurement of the enormous dipole moment was achieved by us

for the first time in 2015. In experiments, the dipole moments of ultralong-

range Rydberg molecules need to be considered since they can strongly broaden

molecular signals in the residual electric fields of the experimental system. The

mechanism of a Rydberg electron interacting with more than one ground state

atom was described. Depending on the angular momentum states of the Rydberg

electron, the scatterings between the Rydberg electron and different ground state

atoms can be correlated or independent. By exciting the Cs ground state atoms
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into different angular momentum states, both cases were observed and studied by

us [24]. We present our experimental results in Chapter 4.

47



Chapter 3

Experimental Realization

3.1 Introduction

We need to bring Rydberg atoms and ground state atoms close enough to create

ultralong-range Rydberg molecules efficiently. The fragile bonds generated by

scattering processes make ultralong-range Rydberg molecules difficult to observe

in room temperature samples of atoms. The two critical conditions to generate

ultralong-range Rydberg molecules are temperature and density. Laser cooling and

trapping techniques enable the generation of samples where Rydberg molecules

can be observed and their properties can be explored. In this chapter, we introduce

basic concepts of laser cooling and trapping. This helps to explain how to generate

cold and dense atomic gases. Other details, including the high vacuum system, the

two-photon transition, the photoionization and ion detection, are also described.

Together the description gives an overview of the spectroscopic experiments we use

to investigate ultralong-range Rydberg molecules. These methods are commonly

used in atomic physics today.

3.2 Laser Cooling and Trapping

3.2.1 Magneto-optical Trap

A magneto-optical trap (MOT) consists of a laser cooling technique referred

to as optical molasses with quadrupole magnetic fields. Optical molasses is
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generated by three pairs of counter-propagating circularly polarized beams in-

tersecting perpendicularly. The confinement of optical molasses comes from the

scattering/dissipation force generated by photons absorbed by atoms. Since the

absorption happens along the laser beam’s direction, while the following spon-

taneous emission happens along a random direction, on average, the photons

absorbed by atoms behave as a frictional force on the atoms. Here we use a

two-level system as our model, the scattering force can be expressed as [42]

Fscattering = photon momentum× scattering rate. (3.1)

Each photon has a momentum ~k, where ~ is the reduced Planck constant, k is

the wavevector of the photon. The scattering rate is Rscattering = Γρ22. 1/Γ is the

lifetime of the excited level. ρ22 is the fraction of population in the excited level

of the two-level system in a steady state which we can obtain from solving the

optical Bloch equations,

ρ22 =
Ω2/4

δ2 + Ω2/2 + Γ2/4
, (3.2)

where δ = ω − ω0 + kv is the frequency difference between the laser frequency

ω and the atomic transition ω0. kv accounts for the Doppler effect generated

by the motion of the atom. v is the projection of the atom’s velocity along the

laser’s propagation direction. k is the wavevector of the laser light. Ω is the Rabi

frequency. With the expression of ρ22 substituted in,
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Fscattering = ~k
Γ

2

Ω2/2

δ2 + Ω2/2 + Γ2/4
. (3.3)

The Rabi frequency and saturation intensity are related by I/Isat = 2Ω2/Γ2,

where I is the intensity of the laser light, Isat is the saturation intensity of the

transition between the ground level and excited level. Substituting this relation

into equation 3.3,

Fscattering = ~k
Γ

2

I/Isat
1 + I/Isat + 4δ2/Γ2

. (3.4)

The maximum scattering force Fmax = ~kΓ/2 can be reached when the intensity

I of the laser goes to infinity. The maximum deceleration is

amax =
Fmax

m
=
vr
2τ
, (3.5)

where m is the mass of the atom and vr = ~k/m is called the recoil velocity.

τ = 1/Γ is the lifetime of the excited level.

Atoms in a gas move in all directions. To reduce their temperatures requires

scattering forces in all three perpendicular directions. This can be realized by

three pairs of counter-propagating laser beams tuned to the red side of the cooling

transition. The Doppler effect leads to an increase in the frequency of the laser

beam propagating in the direction opposite to the atom’s velocity. It brings the

laser closer to the resonance and thereby increases the rate of absorption from

this beam. Meanwhile the other beam co-propagating with the atom is further

off-resonant. The imbalance between scattering forces of two counter-propagating
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beams makes atoms always face frictional forces no matter which directions they

move towards. The cross section between six laser beams behaves like optical

molasses for atoms confined within. The frictional force of the optical molasses is

given by,

Fmolasses = Fscattering(ω − ω0 − kv)− Fscattering(ω − ω0 + kv). (3.6)

In our experiment, we use Cs 6s1/2 F = 4 to 6p3/2 F = 5 as the cooling

transition with 15 MHz frequency detuning to the red. A small portion of atoms

can be excited into 6p3/2 F = 4 state followed by a decay into 6s1/2 F = 3 state.

This takes the atoms out of the cooling transition cycle. Another laser which is

on resonance with 6s1/2 F = 3 to 6p3/2 F = 4 transition is used to put them back

to the cooling transition cycle. The cooling transition is achieved using a trapping

laser (Toptica DFB laser) with an output of ∼ 40 mW. A small portion of this

output is used to do a saturation absorption locking. The rest is amplified by

a tapered amplifier (Eagleyard Photonic EYP-0850-00500-3006-CMT03) which

gives ∼ 100 mW, and sent to a beam splitting system to generate six circularly

polarized beams. The power of each beam is adjustable. Each trapping beam has

a power of ∼ 12 mW with a diameter of ∼ 1 cm. More details can be found in

Appendices A and C. The repumping laser is a home-made diode laser. Only a

small amount of power is needed to realize efficient repumping. The total power

of the MOT repumping laser is ∼ 6 mW. More details can be found in Appendix

B.
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Although optical molasses can cool down atoms, it cannot trap atoms and

hold them. To trap atoms, a quadrupole magnetic field generated by a pair of

anti-Helmholtz coils is needed to cooperate with the optical molasses. When the

axis of a pair of anti-Helmholtz coils is along z direction, the gradient of the

magnetic field of this quadrupole magnetic field is

dBx

dx
=

dBy

dy
= −1

2

dBz

dz
. (3.7)

The zero point of the magnetic field is overlapped with the center of the optical

molasses, where there is no net force for atoms at rest. Atoms at small distances

from the center suffer both a frictional force and a restoring force

FMOT = F σ+

scattering(ω − kv − (ω0 + βz))− F σ−

scattering(ω − kv − (ω0 − βz))

≈ −2
∂F

∂ω
kv + 2

∂F

∂ω0

βz

≈ −αv − αβ

k
z.

(3.8)

βz is the Zeeman shift at displacement z, which can be expressed as

βz =
gµB

~
dB

dz
z, (3.9)

where µB is the Bohr magneton, g is the Landé factor. Here the imbalance in the

radiation force generated by Zeeman effect behaves like a restoring force with a

spring constant αβ/k.
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Figure 3.1: Circuit diagram for the IGBT current switch.

The anti-Helmholtz coils used to generate the quadrupole magnetic field

are installed in the vacuum chamber. The coils are water-cooled copper tubes,

typically carrying a current of 30 A (Lamda EMS 7.5-130 Power Supply). The

coils are switched using an insulated-gate bipolar transistor (IGBT) which can

turn off the magnetic field in as little as 10 µs, depending on the number of

transient voltage suppressors (TVS) used in the circuit, figure 3.1. Another three

pairs of Helmholtz coils in three perpendicular directions are installed outside the

chamber. They can be used to compensate residual magnetic fields, such as earth

field.
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Under typical operating conditions, atoms in magneto-optical traps undergo

over-damped harmonic motion. Magneto-optical traps are a commonly used

technique to generate cold atomic gases, especially for alkali atoms where the

trapping and repumping lasers have been commercialized. Further cooling can be

conducted based on magneto-optical traps. It is important to characterize the

cooling limit of magneto-optical traps.

A random walk of N steps gives a mean displacement proportional to N1/2.

Like Brownian motion, in time t, the spontaneous emission happens Rscatteringt

times with each of them giving the atom a vr recoil velocity along a random

direction,

v2z =
1

3
v2rRscatteringt, (3.10)

where Rscattering = Γρ22 as described above. The factor 1/3 takes into account the

spherically symmetric distribution of the recoil velocity and its projection on z

axis. Similarly, the fluctuation of the absorption of the beams along z axis also

gives

v2z = v2rRscatteringt. (3.11)

There is no 1/3 factor because the influence of the fluctuation of the absorption is

only along z axis.

When the kinetic energy of the cold atom does not change anymore, we reach

the cooling limit,
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d

dt
(
1

2
mv2z ) = 2mv2rRscattering − αv2z = 0, (3.12)

which finally gives

kBTD =
~Γ

2
. (3.13)

kB is the Boltzmann constant. TD is the Doppler cooling limit which is theoretically

the coolest temperature a magneto-optical trap can reach based on the idea so

far presented.

However, there is another cooling process called polarization-gradient cooling

or Sisyphus cooling within magneto-optical traps. It enables magneto-optical

traps to reach even cooler temperatures. The standing wave in each of the three

perpendicular directions formed by two counter-propagating circularly polarized

laser lights have a spatially varying polarization with it. Energy levels of cold

atoms within a magneto-optical trap shift periodically by this polarization-gradient

of the standing wave. This finally makes the cold atoms preferentially absorb

photons with smaller energies followed by emission of photons with more energies.

The energy difference between the absorptions and emissions further cools down

the atoms. The final temperature is related to the intensity and frequency detuning

of the cooling laser light by

kBT ∝
I

|δ|
. (3.14)

From this equation we can see, if we want to reach a lower temperature, we can
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decrease the intensity of the laser light and increase the detuning of the laser light.

In our experiment, after each 1.4 s long loading of the MOT, a 60 ms long

polarization-gradient cooling is conducted, where both the powers of the trapping

laser and repumping laser are attenuated a lot and the frequency of the trapping

laser is shifted further to the red side of the cooling transition. The total power

of the trapping laser is reduced from ∼ 100 mW to ∼ 35 mW. The power of

the repumping laser is reduced from ∼ 6 mW to ∼ 50 µW. The detuning of

the trapping laser from the 6p3/2 F = 5 state is increased from -15 MHz to -25

MHz [49, 50]. At the same time, the far-off-resonance trap is turned on. The AC

Stark shift generated by the intense light of the far-off-resonance trap makes the

trapping laser even more off-resonant. The polarization-gradient cooling further

cools the atomic gases in the MOT from ∼ 125 µK down to ∼ 30 µK. The strong

attenuation of the repumping laser passively leads all cold atoms to fall into the

6s1/2 F = 3 state, which is the ground state.

3.2.2 Zeeman Slower

Before loading into a magneto-optical trap, hot atoms need to be pre-cooled. At

room temperature, atoms are too hot for a magneto-optical trap to capture them

efficiently. For our experiment, the desired final velocity needs to be 6 30 m s−1,

allowing for capture from the power-broadening molasses beams. Direct loading

without any pre-cooling as in a vapor-cell MOT is possible, but the maximum

density and lifetime it can realize is usually unsatisfactory, 1010 cm−3 to 1011

cm−3, compared to 1012 cm−3 to 1013 cm−3 in a MOT loaded from a Zeeman
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slower. The pre-cooling can be accomplished either by a Zeeman slower or a

2-dimensional MOT.

The maximum deceleration from a scattering force is shown in equation 3.5.

The velocity of the atoms pre-cooled by a Zeeman slower is designed to be zero

when the atoms get to the center of a magneto-optical trap. Therefore the length

of the Zeeman slower is

L0 =
v20
amax

, (3.15)

where v0 is the initial velocity of the atom coming out from the hot oven. An

issue with this cooling process is the changing velocity of the atom makes the

laser light off-resonant due to the Doppler effect. This can be solved by changing

a magnetic field along the Zeeman slower, which leads a shift of the energy level

of the atom running along the Zeeman slower. The desired magnetic field can be

calculated as [42]

ω0 +
µBB(z)

~
= ω + kv. (3.16)

The magnetic field along the Zeeman slower can be adjusted by changing the

number of turns of the wire. According to simulations, the current setup of the

Zeeman slower gives a final velocity of ∼ 24.28 m s−1. A detailed study can be

found in reference [51, 52].

In our system, one end of the Zeeman slower is connected to the main chamber

by a nozzle. The other end of the Zeeman slower is connected to the Cs source.
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Figure 3.2: The structure of the Cs source.

The Cs source is contained in an oven with a turbo pump (Turbovac 50) used

to evacuate the oven after each replacement of the Cs source. Hot Cs atoms

flow towards the Zeeman slower due to thermal expansion. A pressure gradient

generated by two ion pumps (Gamma Vacuum 40S; Vacion Pump 20) is used

to pump out the Zeeman slower, figure 3.2. A cold cup with a tiny aperture at

the center is installed to make sure pressure does not build up in the oven. The

temperature of the cold cup is regulated at -10 ◦C using a thermo-electric cooler

(TE Tech CP-036). Only atoms with low radial velocities can pass through the

aperture when they arrive at the cold cup from the oven. Atoms with high radial

speeds will stick on the surface of the cold cup. The Cs atoms passing through the
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cold cup with well defined radial velocities are further cooled in the axial direction

along the Zeeman slower. The initial axial velocity of the hot atoms coming from

the oven depends on the temperature of the oven. For T = 323 K, v = 226 m/s.

3.2.3 Far-off-resonance Trap

Atoms can be polarized by electromagnetic fields. The induced atomic dipole

moment p oscillates at the driving frequency ω. The electric field of laser light can

be expressed as E(r, t) = êẼ(r)exp(−iωt) + c.c., and p(r, t) = êp̃(r)exp(−iωt) +

c.c., where ê indicates the polarization direction of the electric field. The amplitude

of the dipole moment p̃ can be simply related to the field amplitude Ẽ by [53]

p̃ = αẼ. (3.17)

Here α is the complex polarizability, which depends on the driving frequency ω.

The induced dipole moment can in turn interact with the electromagnetic field.

This interaction can be described by

Udipole = −1

2
< pE >= − 1

2ε0c
Re(α)I. (3.18)

The angular brackets denote the time average over the rapid oscillating terms,

the field intensity is I = 2ε0c|Ẽ|2, and the factor 1/2 takes into account that the

dipole moment is induced, not permanent. The dipole force is the gradient of the

interaction potential
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Fdipole(r) = −∇Udipole(r) =
1

2ε0c
Re(α)∇I(r), (3.19)

where we can see the dipole force is a conservative force, which is proportional to

the intensity gradient of the driving field. The corresponding scattering rate is

Rscatter(r) =
1

~ε0c
Im(α)I(r). (3.20)

With a more explicit expression of the complex polarizability α [53] substituted

in and using the rotating-wave approximation, the dipole potential and scattering

rate can be written as

Udipole(r) =
3πc2

2ω3
0

Γ

∆
I(r). (3.21)

Rscatter(r) =
3πc2

2ω3
0

(
Γ

∆
)2I(r). (3.22)

∆ = ω−ω0, ω is the frequency of the electromagnetic field and ω0 is the transition

frequency of the atom. 1/Γ is the lifetime of the excited level. Depending on the

laser frequency, we have two different types of optical dipole traps: blue detuned

dipole traps, ω > ω0, where all atoms are confined at positions with minimum

intensity; and red detuned dipole traps, ω < ω0, where all atoms are confined at

positions with maximum intensity.

For alkali atoms the dipole trap potential can be written as
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Figure 3.3: The diagram of relative positions of different optical beams inside the
chamber.

Udipole(r) =
3πc2

2ω3
0

(
2 + PgFmF

∆F=3

+
1− PgFmF

∆F=4

)I(r), (3.23)

where F and mF are the total angular momentum quantum number and the

magnetic quantum number of the specified ground state. gF is the Landé factor.

P = 0,±1 correspond to linearly and circularly polarized light. The detunings

∆F=3 and ∆F=4 refer to the energy splitting between the particular ground state

6s1/2 F = 3, 4 and the center of the 6p3/2 and 6p1/2 excited states, respectively.

To realize a deep trap with a smaller scattering rate, we usually use a far

detuned laser with a very high intensity. In our experiment, we use a diode-

pumped ytterbium fiber laser (IPG YLR-50-1064-LP) to generate a crossed

far-off-resonance trap, where 50 means the maximum output power is 50 W, 1064
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means the wavelength is 1064 nm, and LP means it is linearly polarized. Using a

dichroic mirror, the fiber laser beam is transported to the chamber by overlapping

it with one of the MOT trapping beams. Before the dichroic mirror, a positive lens

is used for collimating the fiber laser beam. After passing through the chamber,

the fiber laser beam is collimated again by another positive lens, and reflected

back through the chamber to cross the original beam. In this way, we cross the

two fiber laser beams at a 22.5◦ angle with their focuses overlapping, see figure

3.3. The beam waist of each beam is 98 ± 1 µm. The aspect ratio of the cross

section is ∼ 2 : 1. The trap frequencies are 2π × 3.58 kHz radially and 2π × 1.0

kHz axially. The trap depth is ∼ 5 mK.

3.2.4 Characterization of Cold Atoms in Far-off-resonance Traps

The two most important parameters for cold atoms in a far-off-resonance trap are

temperature and maximum atom number density. In a given potential U(r), the

thermal density distribution n(r) directly follows from the Boltzmann factor,

n(r) = n0exp

[
−U(r)

kBT

]
, (3.24)

where n0 is the maximum atom number density, T is the temperature of the cold

atomic gas, and kB is the Boltzmann constant. The temperature T can be derived

from the measurement of the spatial distribution of the atom number density in

the FORT. If the trap potential is harmonic in all directions, the atom number

density is a Gaussian distribution in all directions,
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n(r) = n0exp(− x2

2δ2x
)exp(− y2

2δ2y
)exp(− z2

2δ2z
), (3.25)

where δi = ω−1i
√
kBT/m is the standard deviation of the Gaussian distribution. It

is related to the full width at half maximum (FWHM) of the Gaussian distribution.

Thus δi can be obtained using absorption imaging. m is the mass of the cold

atom. ωi is the trap frequency along each direction, which can be calculated by

knowing the parameters of the FORT. The temperature can be obtained as

T =
m

kB
δ2i ω

2
i . (3.26)

The temperature can also be measured by observing the thermal expansion

of cold atoms after releasing them from far-off-resonance traps. The maximum

atom number density, spatial density distribution and thermal expansion can

be measured by various imaging methods, for example, absorption imaging or

fluorescence imaging. Among these methods, absorption imaging gives the most

reliable results. Using a CCD camera and a simple imaging optical setup, see

figure 3.4, we can obtain an image of the optical density of a cold atomic gas.

This optical density can be further used to obtain the atom number density.

The optical density can be represented as

D(x, y) = −ln I(x, y)

I0(x, y)
= −lnIabs − Ibg

Iff − Ibg
, (3.27)

where I0 is the intensity of the imaging light before the cold atomic gas. I is the

intensity of the imaging light after the cold atomic gas. Iabs is the transmission
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Figure 3.4: The absorption imaging setup.

intensity after absorption by cold atoms in FORT. Ibg is the background intensity

without cold atoms, the imaging beam is off, the FORT is on. Iff is the intensity

of the imaging beam without cold atoms, and the FORT is on. The optical density

can be related to column number density by Beer’s law

D(x, y) = σ

∫
n(x, y, z)dz = σñ(x, y), (3.28)

where n(x, y, z) is the atom number density of cold atoms, ñ(x, y) is the column

number density of cold atoms and σ is the absorption cross section. The results of

different imaging stages and the final optical density of the cold atoms are shown

in figure 3.5.

To image a cold atomic gas in a FORT, a well collimated imaging beam with
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(a) (b)

(d)(c)

Figure 3.5: Imaging results of different stages during an absorption imaging
measurement. (a) is the background intensity Ibg, (b) is the intensity of the
imaging light Iff , (c) is the transmission intensity after absorption by cold atoms
Iabs, (d) is the optical density of the cold atoms.

a well defined polarization is guided into the chamber and projected on the cold

atomic gas. After passing through the cold atoms, the imaging beam is collected

by an optical imaging system consisting of two positive lenses with focuses f1 and

f2. The magnification of the optical imaging system is

m = −f2
f1
. (3.29)

By knowing the array size (how many pixels) and the pixel size of a CCD

camera, we can derive the actual size of the cold atomic gas and the spatial

distribution of the atom number density. Since the spatial distribution of the

atom number density in a 3D harmonic far-off-resonance trap is a Gaussian
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distribution, the maximum density can be derived directly

D(x0, y0) = σ

∫
n(x0, y0, z)dz

= σ

∫
n(x0, y0, 0)e−

z2

2δ2 dz

= σ n(x0, y0, 0)
√
π
√

2 δ,

(3.30)

where the standard deviation δ of the Gaussian distribution is related to the

linewidth

δ =
FWHM

2
√

2ln2
. (3.31)

The absorption cross section can be expressed as

σ =
σ0

1 + 4(∆/Γ)2 + I/Isat
, (3.32)

where ∆ is the imaging laser detuning from resonance, Γ is the lifetime of the

excited state, I is the intensity of the imaging light, Isat is the saturation absorption

intensity and σ0 is the resonance scattering cross section, which is defined as

σ0 =
~wΓ

2Isat
. (3.33)

ω is the frequency of the imaging laser. Isat can be represented as

Isat =
cε0Γ

2~2

4|ε̂ · d|2
, (3.34)
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where ε0 is the vacuum dielectric constant. ε̂ is an unit vector which indicates the

polarization direction of the imaging laser beam. d is the electric dipole moment

of the atom.

3.3 Ultrahigh Vacuum Chamber and Fail-safe System

Ultrahigh vacuum (UHV) environments are a critical technique for cold atomic

experiments. To obtain cold atomic gases with high densities, a low background

loss is necessary. To get a high vacuum, a three tier vacuum pump system is

installed in our experiment, figure 3.6. The main chamber is directly pumped by

a Leybold TMP 350M turbo molecular pump. It is backed by the second pump

which is a Varian M2 diffusion pump. A Leybold D65B rotary vane mechanical

pump works as the backing pump for the diffusion pump. The Leybold TMP

350M turbo molecular pump can also be switched to be backed by the Leybold

D65B rotary vane mechanical pump directly. In addition, a non-evaporable getter

(NEG) pump, SAER CapaciTorr 400-2, is installed in the chamber directly as

a supplement to the main pumping system. Several gate valves are installed

between different pumps.

A programmable logic controller (PLC) is used to monitor the vacuum system.

It accepts input from various sources and from a touch panel display. We can use

the touch panel to turn the pumps on/off, and open/close the valves. Different

buttons on the display modify variables in the memory of the touch panel which

are linked to the memory address in the PLC. The interface on the panel display
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Figure 3.6: The diagram of the vacuum system.

can be designed using a program available from the manufacture called “C-More”.

The PLC, touch panel display, different gate valves, and the Leybold TMP 350M

turbo molecular pump have two back-up batteries as a fail-safe power supply.

This is to make sure when a power outage happens, the whole system can transfer

into a default state which protects the vacuum in the chamber.

The program on the PLC is controlled by another program called “DirectSoft32”

on a remote computer connected to the PLC through a serial cable connection.

Once connected, the program on the PLC is shown on the computer and its status

can be observed. Each line of the program consists of a series of relays which

must be “on” for the output address to turn on. There are two kinds of relays:
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“normally open” and “normally closed”. “Normally open” relays are on when the

address associated with them is on (for example when an input port is receiving a

voltage), and off when the address associated with them is off (when the input

port is not receiving a voltage). “Normally closed” relays function the opposite

way: they are on when the address associated with them is off and vice versa.

3.4 Two-photon Excitation

We use two-photon transitions to photoassociate ultralong-range Rydberg molecules

[54]. Different transitions and energy levels used in our experiment are shown

in figure 3.7. The Cs atoms are excited from the ground state, 6s1/2 F = 3, to

Rydberg states using a near resonant transition to 6p3/2 F = 4 at ∼ 852 nm. This

first step of the excitation is detuned from the resonance by 300 MHz. Both the

first step laser and the Rydberg excitation laser (TA-SHG) ∼ 508 nm are locked

to an ultralow-expansion (ULE) Fabry-Pérot cavity using the Pound-Drever-Hall

(PDH) technique [55, 56]. Each laser has a linewidth ∼ 30 kHz. They are linearly

polarized in the same direction. The first step laser crosses the first pass of

the FORT beam perpendicularly with a beam waist of ∼ 1 mm and a power

of ∼ 4 mW. The Rydberg excitation laser co-propagates with the second pass

of the FORT beam with a beam waist of ∼ 75 µm and a power of ∼ 70 mW.

The excitation strength to a Rydberg state can be expressed as the total Rabi

frequency of the two-photon transition
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Figure 3.7: Energy levels of Cs atoms and different transitions we use in experi-
ments.

Ωac =
Ωab · Ωbc

4π∆
, (3.35)

where ∆ is the detuning of the laser from the intermediate state, which is 300

MHz. Each Rabi frequency is defined as

Ωab =
< a |er · E0| b >

~
=
e

~

∫
ψ∗a(r)r · E0ψb(r)d

3r (3.36)

Ωbc =
< b |er · E′0| c >

~
=
e

~

∫
ψ∗b (r)r · E′0ψc(r)d3r (3.37)
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where E0 and E′0 are the amplitudes of the electric fields of the first step laser and

Rydberg excitation laser. The two-photon transition can excite Cs atoms from

the ground state to Rydberg ns states and Rydberg nd states. The total Rabi

frequency is around several hundred Hz to several kHz depending on the Rydberg

state we excite and the experimental conditions we use. A detailed description of

the setup of the two-photon excitation is found in Appendix D.

3.5 Rydberg Ionization and Detection

To count the number of the Rydberg molecules created in an experiment, we ionize

Rydberg molecules and detect them using a multichannel plate detector (MCP).

Rydberg atoms and Rydberg molecules can be ionized using either photoionization

or pulsed electric field ionization (PFI). The generated ions are projected on to the

multichannel plate detector by electric field pulses. The voltage on the MCP is -5

kV and each hit from one ion can generate a small voltage pulse. The number of

voltage pulses are counted by a multichannel analyzer (MCA) card (FastComTec

P7886) with a 500 ps resolution.

The threshold field for electric field ionization of Rydberg atoms as a function

of the principal quantum number n is

E =
1

9n4
. (3.38)

The electric field is generated by two parallel plates separated by 4.5 cm. The

corresponding voltages to ionize Rydberg atoms in different Rydberg states can be
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calculated using equation 3.38. The electric voltage is supplied by a Glassman EK

high voltage power supply in conjunction with a DEI PVX-4140 pulse generator.

The repetition rate of the electric field pulse is limited by the power that can be

dissipated on the resistors in the chamber. The combined resistance of the system

is 3 kΩ and it can only dissipate 0.125 W. The relation between the dissipation

power P , resistance R, voltage V , and repetition rate f can be expressed as

P =
V 2

R
τf, (3.39)

where τ is the length of each pulse.

Rydberg atoms can also be photoionized by our FORT beam directly. The

energy required to ionize a Rydberg atom ∼ 10−2 eV is less than the energy

provided by a photon from the FORT beam of 1064 nm ∼ 1.17 eV. Compared to

pulsed field ionization, photoionization has a lower efficiency ∼ 50%, as not all

the atoms are ionized at the same time. Detailed studies of photoionization of

Rydberg atoms have been given in Chapter 2.

3.6 Experimental Timing and Data Collection

The typical period of the experiment is 2 s. As shown in figure 3.8, it consists

of a 1.4 s loading period of the MOT followed by a 60 ms long polarization-

gradient cooling. 20 ms after the polarization-gradient cooling, a 10 µs long

excitation, where both the first step laser and Rydberg excitation laser are turned

on simultaneously, repeats every 500 µs. It repeats 1000 times within 500 ms. 500
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Figure 3.8: Experimental time sequences.

ns after each excitation, a short electric field pulse is turned on for 500 ns. The

electric field pulse extracts all ions to the multichannel plate detector.

The complex experimental sequences are accomplished using three different

timing controllers. The master timing for the experiment comes from an SRS

DG535 digital pulse generator. It is driven by a crystal oscillator which has a

center frequency 10 MHz and 25 ppm variation. The resolution is 5 ps. The

SRS DG535 digital pulse generator is the most accurate sequence generator with

the highest resolution in our system. All micro-timings are controlled by it, for

example, the excitation laser’s turning on/off and the short electric field pulses

used for extracting ions.

There are five delay output BNCs: T0, A, B, C and D, where T0 is the mark

of the beginning of the time interval. A, B, C and D can be set from 0 to 1000 s
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in 5 ps increments with respect to T0. The output signal can be in TTL, NIM,

ECL or adjustable level forms. They can drive 50 Ω or high impedance loads.

There are another four pulse output BNCs : AB, -AB, CD and -CD. AB and CD

provide pulse intervals with high voltages between A and B, C and D respectively.

-AB and -CD provide pulses with low voltages. We use the SRS DG535 digital

pulse generator in burst mode. The rate is 2000 Hz with 1000 pulses and 4000

periods. This gives us 1000 pulses every 2 seconds with each pulse 500 µs long.

This timing structure is the basic time sequence of our experiment as described

at the beginning of this section.

A Thorlabs DG100N digital generator driven by the SRS DG535 is used as

the second order timing system. Internal triggers or external triggers can be up to

1 MHz with 50 ppm. Each delay/gate can be set with a 25 ns resolution. It has

six outputs, which can be triggered by the master trigger input or be triggered by

an individual trigger input. When we want some functions to be turned on/off

with certain delays after some other functions triggered by the SRS DG535, we

can use the Thorlabs DG100N to trigger these functions.

The last order timing system is a custom program written in C++ for a National

Instruments board (NI-DAQ) which is triggered by the Thorlabs DG100N. It has

8 digital outputs and 2 analog outputs. The board has a time resolution ∼ 10

µs. The outer frame of the experimental sequence is defined by the NI-DAQ, for

example, the length of the MOT loading. Although as the root of all triggers, the

SRS DG535 sends a trigger every 2 seconds, the period of the experiment set by

this custom program is 4 seconds. It consists of two 2 seconds long parts with the
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second part currently set as a repeat of the first part. The second trigger sent

by the SRS DG535 in the second 2 seconds is blocked by the Thorlabs DG100N

without sending to the NI-DAQ. This setup is very useful when we need to do

two different detections alternately, for example, a normal FORT scan followed

by a MOT scan.

Detailed setup of different time sequencers is shown in Appendix E.
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Chapter 4

Isotropic and Anisotropic Polyatomic Rydberg

Molecules

4.1 Introduction

Since the radius of a Rydberg electron’s orbit increases as a0n
2, the number of

ground state atoms interacting with a Rydberg electron can be manipulated

through changing the radius by changing n. This ability makes Rydberg molecules

excellent systems for investigating both few-body physics and many-body physics.

It is very interesting to investigate in what manner the Rydberg electron interacts

with different ground state atoms. In cold atomic gases, different ground state

atoms are far away from each other. The weak interactions between them can be

ignored. When the Rydberg electron is in an ns state, its probability distribution

is isotropic and the total binding energy is a summation of binding energies from

the interaction with each ground state atom. Experimental evidence supporting

this result has been reported for Rb [7, 25], Sr [20] and Cs [48]. When the Rydberg

electron is in an nd or higher angular momentum state, its probability distribution

is anisotropic and the total binding energy depends on the relative positions of

different ground state atoms. The nonadditive effect has been first observed and

reported by us using Cs 6s + 6s + nd triatomic Rydberg molecules [24]. The

simulated spectra, combining both dimer and nonadditive trimer states, agree

with our experimental measurements much better than spectra that only include
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dimer states. In this chapter, we present the results of our work on few-body and

many-body physics of Rydberg molecules. Depending on the angular momentum

states of the Rydberg molecules, we observed both additive and nonadditive

interactions between Rydberg electrons and ground state atoms.

4.2 Isotropic Polyatomic Rydberg Molecules

Theoretical study of the interaction between one Rydberg electron and many

ground state atoms has been discussed in Chapter 2. When a Rydberg electron is

in an ns state, the total binding energy is a summation of the binding energy of

each individual scattering process

E = − 1

2n2
+ 2πaTs (k)|ψn,0,0(R1)|2 + 2πaTs (k)|ψn,0,0(R2)|2 + · · · . (4.1)

The first term on the right side of the equation is the energy of the Rydberg electron

in the Coulomb potential. Each following term represents the binding energy

from each s-wave triplet scattering process. In this situation, different scattering

processes are independent. This can be understood intuitively. Considering the

atom number density of our cold atomic gas, on average, different ground state

atoms are far away from each other. Their weak interactions can be ignored.

The chance to have two ground state atoms close enough to each other that

the interaction between them cannot be ignored is very small. The probability

distribution of a Rydberg electron in an ns state is spherically symmetric. This
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means no matter what the relative positions of the ground state atoms are, the

Rydberg electron has the same probability to be scattered by each ground state

atom in the same way. Hence the total binding energy is a summation of binding

energies from different scattering processes.

The probability to find a ground state atom at a distance R away from the

Rydberg ion core scales with the area of the sphere centered on the Rydberg ion

core with radius R, which can be expressed approximately as 4πR2∆R. Therefore

the probability to find N ground state atoms at distances R1, R2, ..., RN scales

as (R1·R2·...·RN)2. This means the dominant molecular signals are the ground

molecular states in the outer-most potential wells, where the internuclear distance

R0 is the largest. Experimental signals of polyatomic molecular states with short

bond lengths are suppressed. Equation 4.1 changes to be

E = − 1

2n2
+

N∑
i=1

2πaTs (k)|ψ2
n,0,0(R0)|2

= − 1

2n2
+N × 2πaTs (k)|ψ2

n,0,0(R0)|2.

(4.2)

From this equation, we expect to observe a series of molecular signals evenly

distributed on the red side of the Rydberg transition line in an experiment.

Each order of the molecular signals corresponds to isotropic polyatomic Rydberg

molecules with a certain numberN of ground state atoms. The frequency difference

between two adjacent molecular signals is the binding energy of the Rydberg

dimer, and the total binding energy of the polyatomic Rydberg molecule is a
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multiple of it.

With the atom number density fixed, more and more ground state atoms

are within the orbital of the Rydberg electron as n increases. Higher orders of

polyatomic Rydberg molecular signals, with more ground state atoms interacting

with the Rydberg electron, can be obtained as we go to higher n Rydberg states.

At the same time, the depth of potential energy curves decreases as n increases.

Frequency differences between different orders of polyatomic Rydberg molecular

signals are smaller and smaller. Different polyatomic Rydberg molecular signals

tend to get close to each other energetically. In the limit of large numbers, the

states blur together and cannot be distinguished in experimental spectra.

In a cold atomic gas with a certain atom number density, an ns state Rydberg

atom on average has a certain number N̄ of ground state atoms within the orbital

of the Rydberg electron. This means polyatomic Rydberg molecules with a certain

number N̄ of ground state atoms have the largest chance to be created, which

gives the strongest molecular signal in the spectra. This number can be calculated

by knowing the maximum density n0 of the cold atomic gas and the geometric

volume of the Rydberg atom Vn,l,

N̄ = n0 · Vn,l = n0
4

3
π

{
1

2

[
3n2 − l ( l + 1 )

] }3

, (4.3)

where n is the principal quantum number and l is the angular momentum quantum

number. For example, a cold atomic gas with a maximum density of ∼ 5× 1012

cm−3, has on average three ground state atoms within the orbit of the Rydberg
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Figure 4.1: The experimental result for the Cs 83s isotropic polyatomic Rydberg
molecules, where the atom number density of the cold atomic gas is ∼ 5× 1012

cm−3. The upper graph is the experimental spectrum, where the pink dashed
curves are Gaussian distributions we used to fit the molecular signals. The lower
graph is the spectrum after we subtracted the base line coming from the Rydberg
transition line. The red dashed curve is a Gaussian fit based on the amplitudes of
different orders of the molecular signals.

electron in the 83s state. The chance to have a number of ground state atoms less

than or more than the mean value N̄ within the orbit of the Rydberg electron

decreases. The amplitudes of the spectral lines corresponding to more or less

atoms within the Rydberg orbital are smaller. This means a series of molecular

signals with their amplitudes displaying a Gaussian distribution centered on the

order corresponding to the mean value N̄ is expected to be observed in spectra.

Figure 4.1 shows experimental results for the Cs 83s isotropic polyatomic
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Rydberg molecules. The upper graph is the spectrum of the Cs 83s Rydberg

molecules. A series of molecular signals can be seen in the spectrum. These

molecular signals are the ground state in the outer-most potential well generated

by the s-wave triplet scattering and its multiples generated by different scattering

processes with different ground state atoms. We fit each individual molecular

signal with a Gaussian distribution, which is shown as a pink dashed line in the

spectrum. We find these molecular signals evenly distributed from the Rydberg

transition line to -15 MHz, with a frequency difference of ∼ 2.9 MHz between two

adjacent molecular signals. This energy is the binding energy of the molecular

dimer ground state generated by the s-wave triplet scattering process.

Since this series of molecular signals is very close to the atomic Rydberg

transition line, the base line of the molecular spectrum is strongly affected by

the corresponding Rydberg transition. The amplitude displayed in the experi-

mental spectrum is a sum of the molecular signal and the atomic signal from the

corresponding atomic Rydberg transition. To get the base line of the molecular

spectrum, we fit the corresponding atomic Rydberg transition to a Gaussian distri-

bution, then subtract this Gaussian curve from the spectrum. The result is shown

as the lower graph in figure 4.1. The amplitudes of different molecular signals

should fit a Gaussian distribution with the center on the order corresponding to N̄ .

Therefore, we fit the molecular spectrum to a Gaussian distribution according to

the amplitudes of different orders of the molecular signals, and find the center of

the Gaussian distribution is around the third order of the molecular signals. This

indicates that on average there are three ground state atoms within the orbital
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Figure 4.2: The experimental results for the Cs 90s isotropic polyatomic Rydberg
molecules, where the atom number density of the cold atomic gas is ∼ 3× 1012

cm−3. The upper graph is the experimental spectrum. The pink dashed curves are
Gaussian distributions we used to fit the molecular signals. The lower graph is the
spectrum after we subtracted the base line coming from the Rydberg transition
line. The red dashed curve is a Gaussian fit of the molecular spectrum. In 90s,
molecular signals are spectrally less resolved and energetically close to the atomic
Rydberg transition due to the decrease of the binding energy with increasing n.

of the Rydberg electron in the 83s state. Using equation 4.3, we can deduce the

average density of our cold atomic gas is ∼ 5 × 1012 cm−3, which is consistent

with our measurements using the absorption imaging.

Similar results were obtained for the 90s state, which is shown in figure 4.2.

The upper graph is the spectrum of the Cs 90s Rydberg molecules. We fit each

molecular signal by a Gaussian curve. We can see a series of molecular signals are
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evenly distributed on the red side of the Rydberg transition line with a frequency

difference of ∼ 1.1 MHz between two adjacent molecular signals. This is the

binding energy of the ground state in the outer-most potential well generated by

the s-wave triplet scattering process of the corresponding Rydberg dimer. The

binding energy of the Rydberg dimer decreases from 2.9 MHz for the 83s state

to 1.1 MHz for the 90s state. Since the binding energy is smaller for the 90s

state, the different polyatomic Rydberg molecular signals are less resolved, which

makes them harder to distinguish. The Gaussian fit of the amplitudes of different

molecular signals is shown in the lower graph. We can see the center of the

Gaussian fit is at around the quatramer of this series of polyatomic molecular

signals. This indicates on average there are three ground state atoms within the

orbital of the Rydberg electron in 90s state. The average density calculated using

equation 4.3 is ∼ 3× 1012 cm−3, which is consistent with what we obtained for

the 83s state.

4.3 Anisotropic Polyatomic Rydberg Molecules

When a Rydberg electron is in an nd or higher angular momentum state, its

probability distribution is anisotropic. The total binding energy depends on

the relative positions of the ground state atoms. Triatomic “trilobite” Rydberg

molecules have been theoretically studied recently [57, 58, 59], where expressions

for potential energy surfaces have been derived.

For R1 = R2, the total binding energy of the l = 2 trimer eigenstates can be
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expressed as

E±(R, θ) = Edim(R)

[
1± (−1

2
+

3

2
cos2θ)

]
, (4.4)

where Edim(R) is the corresponding diatomic PECs. The result is illustrated in

figure 4.3 (a), which describes E± as functions of the angle enclosed by the two

ground state atoms, namely the function 1± (−1
2

+ 3
2
cos2θ). The minima on the

curve give the angles which are energetically favored. The electronic wavefunction

maximizes its density on the two ground state atoms in these configurations. For

E+, the energetically favored angles are θ = 0 and θ = π, where the total binding

energy is twice the binding energy of the dimer state. For E−, the energetically

favored angle is θ = π/2. Although the minimum of the E− channel is not a

global minimum, it can still support vibrational states at 3/2 the dimer binding

energy.

For anisotropic polyatomic Rydberg molecules, different spin dependent rela-

tivistic effects need to be treated carefully. There are several reasons. The total

binding energy is a function of the angle enclosed by the two ground state atoms,

which means the trimer spectra signal shifts as the relative positions of the ground

state atoms change. The weak trimer signals merge together with the dimer

signals in spectra, which are complex due to spin dependent relativistic effects.

An accurate calculation is needed to seek out the nonadditive trimer signals from

a complex background.

There are two important spin dependent relativistic effects: the spin-orbit
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Figure 4.3: The angular trimer potential energy curves of the Cs 34d3/2 Rydberg
molecules (a) for R1 = R2 = 1868 a0 without considering any spin dependent
relativistic effects. The influence of the hyperfine interactons of the ground state
atoms is shown in (b), and (c) shows the influence of the spin-orbit coupling in
the Rydberg atom. (d) shows the final potential energy curves after adding spin
dependent relativistic effects, where we combined both the hyperfine interactions
and the spin-orbit coupling. The primitive orbitals (signs indicated) of the trimer
state are illustrated in (e).

coupling of the Rydberg atom and the hyperfine interaction of each ground

state atom with the Rydberg electron. Figure 4.3 (b) shows the change of the

PECs after adding the hyperfine interactions. Due to the hyperfine interactions,

G = F1+F2+sRyd is a good quantum number, where F1 = F2 = 3 and sRyd = 1/2.

G takes half-integer values between 13/2 and 1/2. Each of these curves belongs

to a number of 2G degenerate states. The 13 curves can be further subdivided

into 6 deeper curves and 7 shallower curves corresponding to the s-wave triplet

scattering process and the mixing between the s-wave singlet and the s-wave triplet

scattering process, which are marked by the gray rectangle boxes in figure 4.3 (b).

The influence of the spin-orbit coupling is shown in figure 4.3 (c). The spin-orbit

coupling leads to a mixing of 34d3/2 (36d3/2) and 34d5/2 (36d5/2). The mixing with

the d5/2 angular momentum state is represented by the vertical colored bar on the
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right side of figure 4.3 (c). We can see that the trimer state corresponding to E−

is almost a pure d3/2 state, but the trimer state corresponding to E+ is a hybrid

mixture with the d5/2 state. Due to the selection rules, the spin-orbit coupling

lifts the degeneracy of E− and E+ and generates avoided crossings. Then we

combine these two spin dependent relativistic effects, and obtain the BO angular

PECs in figure 4.3 (d). E± splits into two sets of potential energy curves. The

E− set of PECs has their minima at θ = π/2 and is shallower. The E+ set of

PECs has their minima at θ = 0, π and is deeper than the E− set.

The evidence for nonadditive three-body interactions comes from the com-

parison between the simulated spectra and the experimental observations. First,

we present the simulations of the dimer states and the trimer states separately,

as shown in figure 4.4, and compared them individually to the experimental

observations. This allows us to directly study the effect of having nonadditive

trimers presented in the trap.

The potential energy curves are displayed as gray solid curves on the graph.

The outer-most potential well formed by the s-wave triplet scattering process

is at around 1800 a.u. with a depth of ∼ 70 MHz. The hyperfine interaction

of the ground state atom mixing the singlet scattering channel with the triplet

scattering channel, generates a new series of potential energy curves. Its outer-

most potential well has a shallower potential depth of ∼ 30 MHz. Both the

PECs generated by the triplet scattering and the mixing between the singlet and

triplet scattering start to split as the internuclear distance R decreases, because

of the influence of the p-wave scattering process. Here, we only presented several
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Figure 4.4: Comparison between the experimental spectrum (black line) and
theoretical simulation of the dimer states (colored lines) and trimer states (orange
histograms). The dimer states come from a few diatomic potential energy curves
(dashed lines) that have been selected from all potential energy curves (gray
background).

dominant dimer states with their wavefunctions represented by solid colored curves.

The dimer vibrational wavefunctions were calculated using the finite difference

method and considering the quantum reflection formed by the steep potential

drops. The relative strengths of the transitions are represented by the lengths of

the corresponding red horizontal bars shown with the experimental spectrum. The

strength of a molecular signal can be estimated by calculating the corresponding

Frank-Condon factor

Γν ∝
∣∣∣∣∫ dRχ0(R)R2χν(R)

∣∣∣∣2, (4.5)

where the initial state χ0(R) is the pair wavefunction for two cold atoms in the

ground state [60].

The most striking molecular signals in the spectrum are well described by the
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Figure 4.5: The diagram to show the probability to have two ground state atoms
with an angle θ enclosed by them.

dimer simulation. The strong peaks at -25 MHz and -60 MHz correspond to the

ground molecular dimer states supported in two outer-most potential energy wells.

The small lump at around -120 MHz corresponds to the ground molecular dimer

state supported by an inner potential well.

The trimer spectrum was simulated by fixing R1 = R2 at the internuclear

distance of the outer-most potential well R0, due to the probability to find two

ground state atoms at distances R1 and R2 from the Rydberg ion core scales

as (R1R2)
2. For 34d3/2, R0 = 1868 a0, and for 36d3/2, R0 = 2110 a0. Trimer

states supported in the inner parts of the PECs were ignored in the calculation.

The trimer spectrum was simulated using Monte Carlo method. Two ground

state atoms are randomly placed on a sphere with radius R0 and centered on the

Rydberg ion core. After one ground state atom is fixed on the sphere, the chance

to find the other ground state atom on the sphere at an angle θ with respect to it

depends on the area of a ring associated with θ on the sphere, figure 4.5. The area
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of the ring is 2πsinθR2dθ. This leads to a sinθ distribution of the sample when

we obtained the trimer spectrum simulation. More contributions to the trimer

spectra are expected for energies close to E(R1,R2, θ ≈ π/2).

In figure 4.4, the trimer signal is shown as a histogram of energies E(R1,R2, θ).

The bin width of the histogram is set to be 700 kHz and 3 MHz for 34d3/2 and

36d3/2 respectively according to the conditions of the experiment. Good agreement

exists between the trimer simulation and the experimental spectrum. For example,

from -30 MHz to -55 MHz and from -70 MHz to -120 MHz, the simulated trimer

state can predict the positions, strengths and trend of the experimental spectrum

very well.

To further confirm the observation of nonadditive three-body interactions,

we compared our simulations to the experimental spectra in another way. We

compared the simulated dimer state spectra and the simulated spectra including

both dimer states and trimer states to the experimental observations. The results

are shown in figure 4.6. Unlike the results shown in figure 4.4 where only the

dominant dimer states are displayed, here we include all bound dimer states. Both

dimer and trimer states are convoluted with Gaussian profiles with a linewidth of

700 kHz (3 MHz) for 34d3/2 (36d3/2). In figure 4.6, we can see that the simulated

spectra including both the dimer states and trimer states (black dotted-dashed

line) agree with our experimental observation (blue solid line) much better than

the spectra that only include the dimer states (gray dotted-dashed line) for both

the 34d3/2 and 36d3/2 state. Three parts of the spectra marked by red circles, -35

MHz to -45 MHz and -80 MHz to -100 MHz in 34d3/2, -50 MHz to -60 MHz in
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Figure 4.6: Comparison between the experimental spectra, the simulated spectra
which only include dimer states and the simulated spectra which include both
dimer states and trimer states. The most significant differences between the
dimer state simulations and simulations including both dimer states and trimer
states are marked out by three red circles, where we can see the simulations
which include both dimer states and trimer states agree with our experimental
observation better than the dimer state simulations.

363/2, clearly show that the experimental spectra can only be explained by the

inclusion of the trimer states.

In the experimental spectra, there are other molecular signals from -100 MHz

to -200 MHz, on the red side of the Rydberg transition line. These states are

beyond the scope of our theoretical simulation. They are molecular states which

exist in the inner parts of the potential energy curves. As discussed in Chapter

2, the inner parts are strongly influenced by the p-wave scattering processes and

shape resonances, which make them much deeper than the outer parts.
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4.4 Experiment Method

Experimental spectra were obtained using two-photon photoassociations. Details

of the experiment have been discussed in Chapter 3. Cold atomic gases are

prepared in our FORT at a temperature of 30 µK. The maximum atom number

density is ∼ 1× 1013 cm−3 with a Gaussian profile distribution. 1000 pulses of

excitation are applied at a frequency of 2000 Hz. The first step laser and Rydberg

excitation laser pulse simultaneously for 10 µs. 500 ns after the end of each laser

pulse, a 67 V cm−1 electric field pulse with a duration of 500 ns extracts ions

to a MCP detector at the bottom of the experimental chamber. Considering

the lifetimes of the Rydberg molecules, which are similar to the lifetimes of the

corresponding Rydberg atoms, the length of the excitation can be adjusted to

get the best signal. For Rydberg atoms, as discussed in Chapter 2, the lifetime

increases as n increases.

Excitations can be conducted with the FORT beams on. Since the strong

FORT beams give considerable AC Stark shifts, two problems need to be carefully

treated. The first one is different parts of the cross section of the FORT beams

have different intensities, which give different AC Stark shifts. Here we adjust

the diameter of our excitation laser to be ∼ 70 µm, which is smaller than the

diameter of the cross section, ∼ 98 µm. The second problem is the power of the

FORT laser increases during 1000 excitations. This means the AC Stark shift

changes. To solve this problem, we only count the ions generated by the first

50 to 300 pulses. These two problems give a line broadening that decreases the
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resolution of our experiment. We can eliminate the AC Stark shift by turning off

the FORT beam during excitations. This gives us molecular signals with higher

spectral resolution, but with smaller amplitudes. This is because the trap freely

expands when the FORT is off, which gives a lower density. Both the results with

the FORT beams on and off were obtained.

The total Rabi frequency of the two-photon transition we use to photoassociate

ultralong-range Rydberg molecules can be calculated using equation 3.35. The

first step laser with a wavelength of ∼ 852.33 nm can excite Cs atoms from the

ground state 6s1/2 (F = 3) to the intermediate state 6p3/2 (F = 4) with a detuning

∆ = 300 MHz to the blue side. The laser beam is well collimated after being

filtered by a polarization maintaining fiber. It is collimated to a diameter of ∼ 2

mm and has a power of ∼ 4 mW. The large size of the first step laser beam makes

the alignment easier. The power was chosen to give a Rabi frequency strong

enough to excite the atoms without significant power broadening. The detuning of

the first step laser from resonance can be tuned by adjusting either the frequency

shift of the AOM (A28 in Appendix D) or the frequency of the side band used to

lock the laser. According to equation 3.35, when the first step laser is close to the

resonance with the intermediate state 6p3/2 (F = 4), the smaller detuning gives a

better total Rabi frequency, but a broader molecular signal. A TA-SHG with a

wavelength of ∼ 511 nm is used to achieve the Rydberg excitation. The power of

the TA-SHG laser beam is 140 mW. Both lasers are linearly polarized in the same

direction and locked to an ultralow-expansion FP cavity using the PDH technique.

Each laser has a linewidth of 30 kHz. The photoassoicated Rydberg molecules
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were photoionized by the FORT beams. Each spectroscopic scan contains 400

steps with a step size of 0.5 MHz. The step size was chosen by estimating the

linewidth of the molecular signals in the experimental spectra, which is influenced

by the linewidth of the excitation lasers, residual electric and magnetic fields,

dipole moments of the formed molecules, and temperatures. We count both the

Cs+ signal and Cs+2 signal to generate experimental spectra.

4.5 Summary

Depending on the angular momentum state of the Rydberg atom, there are

two different types of polyatomic Rydberg molecules, isotropic and anisotropic

polyatomic Rydberg molecules. When the Rydberg electron is in an ns state, the

spherically symmetric probability distribution of the Rydberg electron makes the

Rydberg electron equally interact with each ground state atom. The total binding

energy is a summation of the binding energy from each scattering process. We

studied the additive interactions using the Cs 6s + 83s and 6s + 90s isotropic

polyatomic Rydberg molecules. In the experimental spectra, a series of molecular

signals evenly distributed on the red side of the Rydberg transition line is observed.

Different orders of the molecular signals correspond to different numbers of ground

state atoms within the orbital of the Rydberg electron. The frequency difference

between two adjacent molecular signals is the binding energy of the diatomic

Rydberg molecule. The total binding energies of the isotropic polyatomic Rydberg

molecules are multiples of the binding energy of the diatomic Rydberg molecule.
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When the Rydberg electron is in an l > 0 angular momentum state, the

probability distribution of the Rydberg electron is not spherically symmetric

anymore. The total binding energy depends on the relative positions of different

ground state atoms. Spatial correlations are established between different ground

state atoms due to the anisotropic probability distribution of the Rydberg electron.

The nonadditive interactions were studied by us for the first time using the Cs

6s+6s+34d and 6s+6s+36d anisotropic triatomic Rydberg molecules. The trimer

state simulations were obtained using the angular dependent PECs considering

spin dependent relativistic effects. We compared the experimental observations

with our theoretical simulations. The simulations including both the Rydberg

dimer states and trimer states agree with the experimental observations better

than the dimer state simulations, which proves the existence of the anisotropic

Rydberg trimer states.
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Chapter 5

Conclusions

A loosely bound Rydberg electron can be approximately seen as a free electron

with small kinetic energy near its outer turning point. It can be scattered by

a ground state atom when the ground state atom gets close to the Rydberg

electron. The scattering potential is a polarization potential. The low energy

scattering process can be described by a Fermi pseudopotential. For alkali atoms,

negative scattering lengths generate potential wells which are deep enough to

support bound molecular states. The formed molecule is called an ultralong-

range Rydberg molecule. According to equation 2.3, the radius of a Rydberg

electron’s orbit increases as a0n
2. This makes us able to manipulate the number

of ground state atoms interacting with a Rydberg electron in a cold atomic gas

for a particular atom number density by exciting the Rydberg electron to different

Rydberg states.

Depending on the angular momentum state of the Rydberg electron, two

types of polyatomic Rydberg molecules exist. An isotropic polyatomic Rydberg

molecule has the Rydberg electron in an ns state. The probability distribution

of the Rydberg electron is spherically symmetric. The isotropic probability

distribution makes the Rydberg electron equally interact with each ground state

atom. The total binding energy is a summation of binding energies from different

ground state atoms, which is shown in equation 4.1. Since the probability to find

N ground state atoms at distances R1, R2, ..., RN scales as (R1·R2·...·RN)2, the
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dominant molecular signals are the ground molecular states in the outer-most

potential wells, where the internuclear distance R0 is the largest. Experimental

signals of polyatomic molecular states with short bond lengths are suppressed.

Equation 4.1 changes to be equation 4.2. The total binding energy of an isotropic

polyatomic Rydberg molecule with N ground state atoms is N times the binding

energy of the corresponding diatomic Rydberg molecule. We studied the isotropic

polyatomic Rydberg molecules using the Cs 6s + 83s and 6s + 90s Rydberg

molecules. For each Rydberg state, a series of molecular signals was observed on

the red side of the Rydberg transition line. They are evenly distributed with equal

frequency difference between two adjacent molecular signals. This is exactly what

is described by equation 4.2. Different orders of molecular signals correspond

to polyatomic Rydberg molecules with different numbers of ground state atoms.

Their binding energies are multiples of the binding energy of the Rydberg dimer.

Since on average there are a certain number N̄ of ground state atoms within the

orbit of a Rydberg electron in an ns state, the polyatomic Rydberg molecule with

N̄ ground state atoms has the strongest molecular signal in the spectra.

When the Rydberg electron is in an l > 0 angular momentum state, the

probability distribution of the Rydberg electron is not spherically symmetric

anymore. The anisotropic probability distribution leads the total binding energy

to depend on the relative positions of different ground state atoms. Spatial

correlations are established between different ground state atoms. We used the

Cs 6s + 6s + 34d and 6s + 6s + 36d triatomic Rydberg molecules to study the

nonadditive interacitons between the Rydberg electron and the two ground state
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atoms. The total binding energy is expressed as equation 4.4. The first part on the

right side of the equation is the binding energy of the Rydberg dimer. The influence

of the relative positions of the two ground state atoms on the total binding energy

is represented as the second part. Different spin dependent relativistic effects

are taken into account. These interactions include the hyperfine interaction of

the ground state atom and the spin-orbit coupling of the Rydberg atom. The

spin dependent relativistic effects lift the degeneracy of the PECs. We obtained

simulated spectra of the Cs 6s+ 6s+ 34d and 6s+ 6s+ 36d Rydberg trimers and

compared them to the experimental observations in two different ways. In the

first way, we separately compared the dimer simulations and trimer simulations to

the experimental observations. We find both simulations are consistent with our

observations. In the second way, we combined the trimer simulations and dimer

simulations together. The combined simulations agree with the experimental

spectra better than the dimer simulations. Several features in the experimental

spectra which are not captured by the dimer simulations can be well described by

the combined simulations.

As discussed in Chapter 2, the angular dependence of the total binding energy

is generated by the cross term gij under the square root in equation 2.45. When the

principal quantum number state n, angular momentum state l and its projection

on the internuclear axis m are all fixed, the cross term can be canceled. The

total binding energy is a summation of binding energies from different scattering

processes. This is what happens when a Rydberg electron is in an ns state, where

l = m = 0.
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For l > 0, m can also be fixed using the optical polarization. This is realized

by adding magnetic fields to lift the degeneracy of the m states, and then using

optical pulses with certain lengths to excite the atoms into a certain m′ state

[61]. We expect to obtain experimental spectra which are different with the

experimental spectra where m is not fixed.

It would be more interesting to investigate how a Rydberg electron interacts

with many ground state atoms in electric fields. “Trilobite” molecules and

“butterfly” molecules are good candidates for this topic [57, 58, 62]. The large

dipole moments with them cause the formed polyatomic Rydberg molecules to

have particular geometric configurations in electric fields to get the lowest binding

energies. The geometric configuration depends on the direction of the electric field

and the polarization direction of the linearly polarized excitation laser. Different

directions of the electric fields with respect to the polarization of the excitation

laser give different geometric configurations and different experimental spectra.

Besides these two interesting topics, there are lots of other fascinating topics on

ultralong-range Rydberg molecules. For example, in Chapter 2, we described how

to use spectroscopy to measure the dipole moments of ultralong-range Rydberg

molecules. Another method to measure the dipole moment is to use the Rydberg

blockade generated by the dipole moment between two ultralong-range Rydberg

molecules [63, 64]. We can prepare cold atoms in two optical tweezers separated

by a distance R, use one laser with a certain frequency ω0 to photoassociate

“trilobite” molecules or “butterfly” molecules in one optical tweezer and scan the

second laser near the frequency ω0 to see at what frequency ω′ we can generate
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the same Rydberg molecules in the other optical tweezer. The relation between

the frequency ω′ and the distance R between the two optical tweezers can be used

to derive the Rydberg blockade radius and the dipole moments of the “trilobite”

or “butterfly” molecules.

“Trilobite” molecules and their large permanent dipole moments come from the

summation of Rydberg electrons’ wavefunctions of different angular momentum

states. Recently, Matthew Eiles and his colleagues predict the existence of a

ghost “trilobite” chemical bond [65]. They proved that we can realize the same

summation of wavefunctions of different angular momentum states, by adding

electric fields and magnetic fields with particular amplitudes and lengths in a

certain sequence on Rydberg atoms. This means without the scattering processes

between the Rydberg electron and ground state atoms, we can generate ghost

“trilobite” atoms possessing large permanent dipole moments. The creation and

observation of a ghost “trilobite” chemical bond in an experiment is very attractive.

However, this topic is very challenging, extremely accurate control of electric fields

and magnetic fields is needed.

The Hamiltonian 2.36 we describe in Chapter 2 gives accurate predictions of the

relative positions of different molecular states with respect to the corresponding

Rydberg transition line. Unfortunately, the calculations of rovibrational line

strengths still cannot give satisfying results which are quantitatively consistent

with experimental observations. Moreover, our recent work on photoionization

of Rydberg molecules shows when we photoionize Rydberg molecules, Rydberg

molecules of some molecular states are more likely to decay as atomic ions, while
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others are more likely to decay as molecular ions [66, 67, 68]. This suggests

spectral results which only use atomic ion counts or molecular ion counts as the

signature of the number of Rydberg molecules created in experiments are not

accurate. It turns out both the theoretical calculations and the experimental

observations of the relative line strengths of different rovibrational states are

suspect. In experiments, we need to include both atomic ion counts and molecular

ion counts into spectra to reflect the relative rovibrational line strengths correctly.

The gigantic permanent dipole moments of ultralong-range Rydberg molecules

make ultralong-range Rydberg molecules have high potential commercial values.

For example, the dipole moment of the Cs “trilobite” molecules measured by

our group is ∼ 2000 Debye. It is two orders of magnitude larger than the dipole

moment of RbI (11.5 Debye), the largest dipole moment reported in [69]. Because

of the large permanent dipole moment, the ultralong-range Rydberg molecule is

very sensitve to external DC electric fields. They can be used to measure the

strengths and directions of the electric fields, when the field is extremely weak

where other methods [70, 71] are not capable.
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39, 3030 (2014).

[71] H. Fan, S. Kumar, J. Sedlacek, H. Kübler, S. Karimkashi, and J. P. Shaffer,
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Appendix A

Trapping Laser Scheme
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Figure A.1: The trapping laser setup.
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Table A.1: Scheme of Trapping Laser Setup.

Item No. Item Name Item Description

A01 Half-wave Plate Rotate the polarization axis of a linearly polar-
ized beam (combined with A02).

A02 Polarizing Beamsplitter Split a beam into two parts with adjustable in-
tensities (combined with A01).

A03 Half-wave Plate Rotate the polarization axis of a linearly polar-
ized beam (combined with A12).

A04 Positive Lens Shrink beam size to get the most 1st order transi-
tion efficiency of AOM and get the most coupling
efficiency into fiber(combined with A06).

A05 Mirror -
A06 Positive Lens Shrink beam size to get the most 1st order transi-

tion efficiency of AOM and get the most coupling
efficiency into fiber(combined with A04).

A07 Mirror -
A08 Acousto-optic Modulator Work as switching trapping laser on and off; It is

also used to switch between the normal loading
and the polarization-gradient cooling. It is driven
by an op-amp summing box.

A09 Mirror -
A10 Fiber Coupler Guide the beam to TA with the spatial mode of

the beam well defined.
A11 Mirror -
A12 Glass Work similarly as a polarizing beamsplitter (com-

bined with A03).
A13 Mirror -
A14 Cesium Cell Generate saturation absorption.
A15 Mirror (It is put at a lower level).
A16 Photodiode Receive saturation absorption signal and send to

Digi-Lock.
A17 Fiber Couple To TA.
A18 Negative Lens Amplify beam size to get the most TA amplifi-

cation efficiency (combined with A19).
A19 Positive Lens Amplify beam size to get the most TA amplifi-

cation efficiency (combined with A18).
A20 Mirror -
A21 Mirror -
A22 Half-wave Plate Regulate the polarization of the input beam to

TA.
A23 Tapered Amplifier Eagleyard Photonics EYP-0850-00500-3006-

CMT03. It is very sensitive to the polarization
of input beam.

A24 Cylindrical Lens Adjust aspect ratio of the output of tapered
amplifier, change it from a oval to a circle.

A25 Mirror -

107



Continued

Item No. Item Name Item Description

A26 Positive Lens Shrink beam size to get the most coupling effi-
ciency into the fiber.

A27 Mirror -
A28 Half-wave Plate Adjust the polarization of incoming beam to

get the maximum transition with well-defined
polarization (combined with A30).

A29 Quarter-wave Plate Adjust the polarization of incoming beam to
get the maximum transition with well-defined
polarization (combined with A30).

A30 Polarizing Beamsplitter Obtain a pure linearly horizontally polarized
beam.

A31 Fiber Coupler Guide the trapping laser to the beam split system
with its spatial mode well defined.

A32 Fiber Coupler To beam split system.
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Appendix B

Repumping Laser and Zeeman Slower Laser

Scheme
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Figure B.1: The repumping laser and Zeeman slower laser setup.
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Table B.1: The repumping and Zeeman slower laser setup.

Item No. Item Name Item Description

A01 Mirror -
A02 Mirror -
A03 Isolater -
A04 Half-wave Plate Rotate the polarization axis of a linearly polar-

ized beam (combined with A05).
A05 Polarizing Beamsplitter Split a beam into two parts with adjustable in-

tensities (combined with A04).
A06 Mirror -
A07 Positive Lens Shrink beam size to get the most 1st order tran-

sition efficiency of AOM and fiber coupling.
A08 Mirror -
A09 Acousto-optic Modulator Work as switching laser on and off; The frequency

shift has to be taken into account to get the best
slowing and repumping efficiency.

A10 Mirror -
A11 Fiber Coupler Guide the laser light into Zeeman slower.
A12 Half-wave Plate Rotate the polarization axis of a linearly polar-

ized beam (combined with A13).
A13 Polarizing Beamsplitter Split a beam into two parts with adjustable in-

tensities (combined with A12).
A14 Mirror -
A15 Mirror -
A16 Cesium Cell The Cesium cell is surrounded by magnetic rings

and twisted by weirs outside. It is used to gener-
ate DEVLL saturation absorption signal.

A17 Polarizing Beamsplitter Fully transparent for the probe beam coming
from A13; Fully reflect the pump beam coming
back from A15.

A18 Positive Lens Focus beam on photodiode detector A21 and
A22.

A19 Quarter-wave Plate Transfer left circularly polarized light into hori-
zontally polarized light and right circularly polar-
ized light into vertically polarized light (combined

with A20).
A20 Polarizing Beamsplitter Guide right circularly polarized light into A21

and left circularly polarized light into A22 (com-

bined with A19).
A21 Photodiode Generate DEVLL saturation signal (combined with

A22).
A22 Photodiode Generate DEVLL saturation signal (combined with

A21).
B01 Mirror -
B02 Mirror -
B03 Isolater -
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Continued

Item No. Item Name Item Description

B04 Positive Lens Shrink beam size (combined with B05).
B05 Negative Lens Shrink beam size (combined with B04).
B06 Mirror -
B07 Half-wave Plate Rotate the polarization axis of a linearly polar-

ized beam (combined with B08).
B08 Polarizing Beamsplitter Split a beam into two parts with adjustable in-

tensities (combined with B07).
B09 Mirror -
B10 Mirror -
B11 Half-wave Plate Rotate the polarization axis of a linearly polar-

ized beam (combined with B12).
B12 Polarizing Beamsplitter Split a beam into two parts with adjustable in-

tensities (combined with B11).
B13 Half-wave Plate Rotate the polarization axis of a linearly polar-

ized beam (combined with B14).
B14 Polarizing Beamsplitter Split a beam into two parts with adjustable in-

tensities (combined with B13).
B15 Cesium Cell The Cesium cell is surrounded by magnetic rings

and twisted by weirs outside. It is used to gener-
ate DEVLL saturation absorption signal.

B16 Polarizing Beamsplitter Fully transparent for the probe beam coming
from B14; Fully reflect the pump beam coming
back from B18.

B17 Mirror -
B18 Mirror -
B19 Quarter-wave Plate Transfer left circularly polarized light into hori-

zontally polarized light and right circularly polar-
ized light into vertically polarized light (combined

with B20).
B20 Polarizing Beamsplitter Guide right circularly polarized light into B21

and left circularly polarized light into A22 (com-

bined with B19).
B21 Photodiode Generate DEVLL saturation signal (combined with

B22).
B22 Photodiode Generate DEVLL saturation signal (combined with

B21).
B23 Mirror -
B24 Mirror -
B25 Positive Lens Shrink beam size to get the most 1st order tran-

sition efficiency of AOM (combined with B33).
B26 Negative Lens Shrink beam size to get the most 1st order tran-

sition efficiency of AOM (combined with B32).
B27 Acousto-optic Modulator Work as switching laser on and off; The frequency

shift has to be taken into account to get the best
repumping efficiency.
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Continued

Item No. Item Name Item Description

B28 Mirror Guide the beam into beam split system.
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Appendix C

The Beam Splitting System
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Figure C.1: The beam splitting system.
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Appendix D

Two-photon Excitation Scheme
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Figure D.1: The two-photon excitation setup.
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Table D.1: Scheme of excitation laser setup.

Item No. Item Name Item Description

A01 Mirror -
A02 Half-wave Plate Rotate the polarization axis of a lin-

early polarized beam (combined with

A03).
A03 Polarizing Beamsplitter Split a beam into two parts with

adjustable intensities (combined with

A02).
A04 Positive Lens Shrink beam size (combined with A05).
A05 Negative Lens Shrink beam size (combined with A04).
A06 Mirror -
A07 Fiber Coupler Input of EOM.
A08 Fiber Coupler Output of EOM.
A09 Half-wave Plate Rotate a linearly polarized beam,

make it fully pass through the next
polarizing beamspiltter(combined with

A10 A14).
A10 Polarizing Beamsplitter Fully transparent for the beam com-

ing from A09; Fully reflect the beam
coming back from A14 to A11 (com-

bined with A09 A14).
A11 Mirror -
A12 Positive Lens Focus beam on photodiode detector

A13.
A13 Pre-amplified Photodiode Detector Receive the back reflection signal

from ULE FP cavity to generate
PDH error signal.

A14 Quarter-wave Plate Rotate beam 45 degrees coming from
A10, then rotate it 45 degrees again
when the beam reflected back from
the ULE FP cavity (combined with

A09 A10).
A15 Mirror -
A16 Positive Lens Shrink beam size (combined with A17).
A17 Negative Lens Shrink beam size (combined with A16).
A18 Half-wave Plate Rotate the polarization axis of a lin-

early polarized beam (combined with

A20).
A19 Photodiode detector Receive saturation absorption signal

as reference of the lock point.
A20 Polarizing Beamsplitter Split a beam into two parts with

adjustable intensities (combined with

A18).
A21 Cesium Cell Generate saturation absorption.
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Continued

Item No. Item Name Item Description

A22 Quarter-wave Plate Rotate beam 45 degrees coming from
A20, then rotate it 45 degrees again
when the beam reflected back from
A23 (combined with A20).

A23 Mirror Covered by a suitable dense filter.
The incoming beam works as pump
beam; The back reflected beam
works as probe beam.

A24 Mirror -
A25 Mirror -
A26 Positive Lens Shrink beam size to get the most 1st

order transition efficiency of AOM.
A27 Mirror -
A28 Acousto-optic Modulator Work as switching laser on and off;

The frequency shift has to be con-
cerned since it adds to the total fre-
quency shift from 6 2p3/2 F = 4
state.

A29 Mirror -
A30 Positive Lens Shrink beam size to get the most

coupling efficiency.
A31 Mirror -
A32 Fiber Coupler Guide first step laser beam to the

UV chamber.
B01 Mirror -
B02 Mirror -
B03 Positive Lens Shrink beam size (combined with B05).
B04 Half-wave Plate Rotate the polarization axis of a lin-

early polarized beam (combined with

B06).
B05 Negative Lens Shrink beam size (combined with B03).
B06 Polarizing Beamsplitter Split a beam into two parts with ad-

justable partition of intensity (com-

bined with B04).
B07 Mirror -
B08 Fiber Coupler Input of EOM.
B09 Fiber Coupler Output of EOM.
B10 Half-wave Plate Rotate a linearly polarized beam,

make it fully pass through the next
polarizing beamspiltter(combined with

B11 B12).
B11 Polarizing Beamsplitter Fully transparent for the beam com-

ing from B10; Fully reflect the beam
coming back from B12 to B16 (com-

bined with B10 B12).
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Continued

Item No. Item Name Item Description

B12 Quarter-wave Plate Rotate beam 45 degrees coming from
B11, then rotate it 45 degrees again
when the beam reflected back from
the ULE FP cavity (combined with

B10 B11).
B13 Mirror -
B14 Mirror -
B15 Dichroic Mirror Fully pass 1064 nm, fully reflect 852

nm.
B16 Mirror -
B17 Positive Lens Focus beam on photodiode detector

B18.
B18 Pre-amplified Photodiode Detector Receive the back reflection signal

from ULE FP cavity to generate
PDH error signal.

B19 Mirror -
B20 Half-wave Plate Rotate the polarization axis of a lin-

early polarized beam (combined with

B21).
B21 Polarizing Beamsplitter Split a beam into two parts with

adjustable intensities (combined with

B20).
B22 Mirror -
B23 Mirror -
B24 Acousto-optic Modulator Work as switching laser on and off.
B25 Positive Lens Shrink beam size to get the most

coupling efficiency.
B26 Mirror -
B27 Mirror -
B28 Fiber Coupler Guide Rydberg excitation laser

beam to the UV chamber.
B29 Mirror -
B30 Fiber Coupler Guide Rydberg excitation laser

beam to wave-meter.
B31 Photodiode Detector Receive transition signal as refer-

ence, which is helpful when aligning
beams.

B32 Negative Lens Shrink beam size to get the most 1st
order transition efficiency of AOM
(combined with B33).

B33 Positive Lens Shrink beam size to get the most 1st
order transition efficiency of AOM
(combined with B32).
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Appendix E

Timing Electronics Scheme
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Figure E.1: Scheme of the timing system.
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Appendix F

Anisotropic Polyatomic Rydberg Molecules

Figure F.1: Theoretical simulations and experimental observations of the Cs
32d3/2, 34d3/2, 36d3/2, and 38d3/2 anisotropic polyatomic Rydberg molecules. The
experimental results only contain Cs+ signals.
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