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Abstract. Climate change is expected to alter temperature regimes experienced by fishes, which may
also alter life history traits. However, predicting population-level responses to climate change has been
difficult. Metabolic theory of ecology has been developed to explain how metabolism controls a variety of
ecological processes, including life history attributes. Thus, this theory may be a useful tool for predicting
fish population responses to climate change. To understand how climate change may alter freshwater fish
life history, we measured population characteristics (e.g., recruitment, growth, body size, and mortality) of
21 North American common carp Cyprinus carpio populations spanning a latitudinal gradient of >2,700
km. We then evaluated (1) how metabolic rates vary with body size and temperature (i.e., metabolic theory
of ecology) to interpret latitudinal patterns in life history traits and (2) how predicted increases in annual
temperature as a result of climate change may alter metabolism and population characteristics. Common
carp growth and mortality decreased whereas fish size and age increased with increasing latitude.
Common carp growth rate was 22% faster but mortality was 31% higher for the most southern population
compared to the most northern population. Incorporating latitudinal population patterns into metabolic
theory of ecology models explained substantial variation in mortality and longevity among populations
and suggested that metabolism will increase with temperature according to three global warming
scenarios. The greatest metabolic increase occurred at the largest predicted increase in temperature and
metabolism increased more for southern populations compared to northern populations. Combined, our
findings suggest common carp and other fishes may experience increased growth and metabolic demands
but populations may attain smaller body size due to higher mortality in response to climate change.

Key words: Bergmann’s rule; biogeography; climate change; Cyprinus carpio; global warming; intraspecific variation;
invasive species; latitudinal relationships; life history traits; metabolism; North America.

Received 11 November 2014; revised 13 January 2015; accepted 16 January 2015; published 14 April 2015.
Corresponding Editor: D. P. C. Peters.

Copyright: © 2015 Weber et al. This is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited. http://creativecommons.org/licenses/by/3.0/

* Present address: Department of Natural Resource Ecology and Management, Towa State University, Ames, lowa 50011 USA.

+ E-mail: mjw@iastate.edu

INTRODUCTION anticipated to have substantial effects on aquatic
organisms (Magnuson et al. 1990, Sharma et al.

Global climate change and subsequent long- 2007, Carmona-Catot et al. 2011). However, the
term alterations in water temperatures are effects of global climate change on aquatic
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populations are often difficult to predict because
long-term data sets needed to establish correla-
tions between climate and population character-
istics are lacking in most instances. Latitudinal
patterns in animal population characteristics may
be reflective of future population responses to a
changing climate (Benejam et al. 2009, Walther et
al. 2009) and therefore could be a useful tool to
evaluate possible effects of climate change on
populations where long-term datasets are lack-
ing.

Many fishes have broad geographic distribu-
tions and are exposed to a gradient of ecological
conditions that can alter life history characteris-
tics. Temperature is a dominant factor that
produces latitudinal trends in animal popula-
tions (Magnuson et al. 1990, Brown et al. 2004,
Heibo et al. 2005). Bergmann’s rule predicts that
endotherms living at colder temperatures and
higher latitudes will achieve larger body size
compared to those living at warmer tempera-
tures and lower latitudes because of the thermal
advantage of reduced surface-to-volume ratio
inherent in large individuals (Bergmann 1847,
Watt et al. 2010). Although originally developed
for interspecific relationships, the concept was
later extended to intraspecific relationships
(James 1970, Belk and Houston 2002). In the
Northern Hemisphere, body size of most endo-
therms tends to increase from south to north due
to decreasing temperature regimes in conjunction
with the properties of thermoregulation and
endothermic metabolism (Angilletta and Dun-
ham 2003). Although Bergmann’s original rule
was only intended to be applied to interspecific
relationships among endotherms, attempts have
been made to identify similar latitudinal patterns
in ectotherms but with mixed success (Ray 1960).
For instance, while body size of some fishes
increase with increasing latitude, others have
larger body sizes at southern latitudes (Belk and
Houston 2002, Rypel 2014). Variation in body
size among fishes may be because some species
have unique mechanisms to cope with subopti-
mal environmental conditions. For example,
counter-gradient growth variation (i.e., faster
growth at higher latitudes) can result in similar
individual body size in northern versus southern
latitudes despite lower temperatures and shorter
growing seasons (Conover and Present 1990).
Regardless of the mechanism, documented lati-
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tudinal patterns in life history traits are incon-
sistent among species (e.g., Rypel 2014). Despite
our poor understanding of latitudinal patterns of
most freshwater fishes, understanding relation-
ships between life history traits and latitude has
become increasingly important as ecologists
attempt to predict future population responses
to climate change (Teplitsky et al. 2008, Walther
et al. 2009, Merila 2012).

Organisms have two options to cope with
climate change: migration to new habitats or
physiological or behavioral adaptions to chang-
ing conditions. Fishes inhabiting lentic environ-
ments may migrate vertically in stratified lakes to
locate preferred temperatures to cope with
changing thermal regimes (Busch et al. 2012),
but long distance latitudinal migration to more
suitable habitats, which is possible in lotic
systems, is rarely an option. Thus, many fishes
must adapt to climate change through alterations
in physiological tolerances and energy demands
(Gillooly et al. 2001). Metabolism is an important
aspect of autecology because it regulates organ-
ism physiology and may therefore alter individ-
ual responses to ecosystem changes. Recently,
metabolic theory of ecology has been developed
to predict how metabolic rate controls ecological
processes, including life history attributes
(Brown et al. 2004) and could offer a powerful
approach to evaluate the ecological effects of
climate change and link the performance of
individuals to population, community and eco-
system levels (Brown et al. 2004, Munch and
Salinas 2009, Dillon et al. 2010). Mass-specific
metabolic rate typically increases with tempera-
ture and decreases with body size (Gillooly et al.
2001). Because higher ambient temperatures
result in greater metabolic demands, individuals
living at higher latitudes and cooler temperatures
are expected to live longer compared to individ-
uals living at lower latitudes that experience
warmer temperatures and longer growing sea-
sons (Brown et al. 2004).

Climate change predictions suggest temperate
regions of North America will experience in-
creased mean annual air temperatures up to
3.5°C over the next 100 years (Solomon et al.
2007). Potential impacts of climate change on
thermally stratified lakes include increased
warming of surface waters, reduced ice coverage
(Busch et al. 2012), increased duration of strati-
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fication, and prolonged hypoxic periods in the
hypolimnion (Stefan et al. 2001). Changes to lake
heat budgets and metabolism may in turn alter
primary producer and consumer assemblages
and biomass (Schindler et al. 2005, Carter and
Schindler 2012). Although climate change im-
pacts on physical characteristics and lower
trophic levels are relatively well understood,
substantially less in know regarding how these
future changes could impact fishes. Due to
predicted increases in surface water tempera-
tures, ectotherm metabolism should increase
(Dillon et al. 2010), influencing population
characteristics of these organisms, community
interactions, and their commensurate ecosystems
effects (Brown et al. 2004). Linking and under-
standing latitudinal patterns of population char-
acteristics together with metabolic demands
would help ecologists predict the effects of
climate change on these populations.

Climate change presents a significant threat to
fish populations. However, identifying and dis-
entangling the effects of climate change on fishes
is difficult. Most current research has focused on
predicting changes in species distributions that
may result from climate change, but little
research has evaluated population-level conse-
quences. Predicting the effects of climate change
at the population level is an important first step
towards understanding broader ecological ef-
fects. Although many hypotheses have been put
forth suggesting potential effects of climate
change on organisms (Hellmann et al. 2008,
Rahel and Olden 2008), predicting population-
level effects of climate change on freshwater
fishes is difficult (Carmona-Catot et al. 2011) and
few have tested their hypotheses or identified
potential specific responses of species to climate
change.

Because temperature is the dominant factor
influencing latitudinal trends in life history
variables, latitude can provide a powerful surro-
gate to test ecological and evolutionary responses
to temperature gradients (Power et al. 2005). Yet,
due to difficulties in collecting simultaneous
samples across a wide geographic region, most
studies evaluating intraspecific latitudinal varia-
tion of populations have relied on summarizing
data from a myriad of technical and scientific
publications instead of standardized sampling of
target organisms consistently across study areas.
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Differences in data collection and processing
methods across systems can induce sampling
biases and potentially mask latitudinal patterns
in population characteristics. Thus, identifying
latitudinal population patterns in the context of
climate change remains an important but elusive
goal of ecology. Understanding changes in life
history parameters and population dynamics of a
species across a wide range of latitudes coupled
with knowledge about how metabolism may
change in responses to increases in temperature
may provide a ‘window’ to forecast the conse-
quences of global climate change on the popula-
tion dynamics of fishes (Houghton et al. 2001,
Brown et al. 2004, Power et al. 2005).

One of the major challenges to evaluating
latitudinal patterns in body size of freshwater
fishes is that population structure of many
species can be altered through exploitation or
other management manipulations, making it
difficult to detect latitudinal thermal responses
(Beard and Kampa 1999). Unfortunately, most
research evaluating relationships between lati-
tude and fish population characteristics have
used recreationally important species subject to
differences in harvest regulations and exploita-
tion rates across populations, complicating de-
tection of latitudinal patterns in population
characteristics. Common carp Cyprinus carpio
provide a useful model to evaluate latitudinal
population patterns and test for potential effects
of climate change because they have been
established in North America for >100 years,
experience limited exploitation that would oth-
erwise bias latitudinal patterns, and are large-
bodied fishes that are widely distributed across
the region that may display latitudinal variation
in population characteristics.

In this study, we used two approaches to
predict how common carp populations may
respond to climate change. First, we used a
standardized dataset to evaluate latitudinal
variation in common carp abundance, recruit-
ment, growth, and mortality to predict potential
effects of climate change on life history charac-
teristics of common carp across North America.
Second, we used a metabolic theory of ecology
(Brown et al. 2004) to evaluate the effect of
temperature on common carp longevity patterns
across North America and predict how metabo-
lism and lifespan may change in response to
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Fig. 1. Map of North America depicting the locations of the 21 populations of common carp sampled (stars) in
Manitoba, Canada (n = 1), North Dakota (n = 3), South Dakota (n = 3), Illinois (n = 4), Oklahoma (n = 4), and

Texas (n = 6), United States.

predicted increases in annual temperatures as a
result of climate change. The use of these two
techniques applied to a ubiquitous species such
as common carp provides a useful approach to
predict fish population responses to climate
change.

MATERIALS AND METHODS

Common carp were collected from natural
lakes and reservoirs in Manitoba, Canada, and in
North Dakota, South Dakota, Illinois, Oklahoma,
and Texas, United States to cover the majority of
their latitudinal range throughout North Amer-
ica (Fig. 1). The linear distance between the most
southern and northern locations was >2,700 km.
Common carp were collected during spring 2009
from 18 populations in North Dakota, South
Dakota, Illinois, Oklahoma, and Texas using
daytime pulsed-DC electrofishing at each loca-
tion. The amount of effort at each location varied
but sampling continued until approximately 100
individuals were captured (Table 1). Common
carp in one lake in Canada were collected with
large mesh experimental gill nets (137 m long; six
panels [23 m each] consisting of 3.8-, 5-, 7.6-, 8.9,
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10.8-, and 12.7-cm bar mesh). Two sites in North
Dakota (lakes Edward Arthur Paterson and
Bowman Haley) were sampled following a
rotenone application. Although different meth-
ods were used to capture common carp in three
lakes, all techniques represent standard gears for
sampling warmwater fish in large lentic waters
(Miranda and Boxrucker 2009) and these tech-
niques either target all individuals in the popu-
lation (i.e., rotenone) or have been previously
verified to produce an unbiased population
sample (i.e., large mesh experimental gill nets;
Clark et al. 1991). Thus, all gears were assumed
to provide a similar representative sample of the
population. Captured individuals were mea-
sured for total length (I mm) and the anterior
dorsal fin spine was removed at the base and
used for age analysis (Weber and Brown 20114).
Dorsal spines were air dried for two weeks and
transverse sections (0.8 mm width) were re-
moved from the proximal portion of the spine
using a low-speed Isomet diamond saw. Annuli
were counted under a dissecting microscope on
separate occasions by two independent readers
who were experienced with aging common carp
spines. If age estimates differed between the two
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Table 1. Lake geographic location and common carp sample size (N), relative abundance (CPUE), and
recruitment variability (RVI) of the 21 populations surveyed. All lakes are located in the United States except
for Lake Manitoba which is located in Manitoba, Canada.

Lake Location Latitude Longitude Surface area (ha) Max. depth (m) N  CPUE (no./hr) RVI
Manitoba Manitoba 50.199 —98.205 462,400 7.0 250 35.2 0.00
Jamestown North Dakota  46.931 —98.709 848 11.6 106 70.7 0.13
Dickinson North Dakota  46.858 —102.851 387 8.2 108 NA 0.29
Bowman Haley North Dakota  45.976 —103.266 733 9.1 104 NA 0.15
Herman South Dakota  43.991 —97.175 521 4.0 198 78.2 0.23
Madison South Dakota  43.958 —97.019 1,069 4.6 200 65.3 0.49
Brant South Dakota  43.921 —96.947 420 43 196 110.5 0.39
Clinton Mllinois 40.160 —88.817 1,981 18.3 118 18.9 0.19
Paradice Illinois 39.410 —88.437 71 49 107 22.7 0.23
Shelbyville Illinois 39.408 —88.778 4,492 20.4 115 67.6 0.52
Carlyle Mllinois 38.614 —89.363 9,947 10.7 104 9.1 0.48
Sooner Oklahoma 36.458 —96.995 2,185 27.1 111 48 0.25
McMurtry Oklahoma 36.164 -97.177 467 22.3 89 61.8 0.40
Carl Blackwell Oklahoma 36.135 —97.192 1,364 14.0 103 37 0.30
Guthrie Oklahoma 35.819 —97.440 111 7.6 110 50.4 0.19
Ray Roberts Texas 33.405 —97.059 10,360 32.3 101 114.6 0.47
Arlington Texas 32.709 —97.220 785 18.6 102 59.5 0.11
Benbrook Texas 32.606 —97.494 1,471 21.3 100 96.5 0.14
LBJ Texas 30.556 —98.338 2,610 27.4 80 11.8 0.30
Woodlawn Texas 29.452 —98.534 15 6.1 101 77.6 0.53
Hi Lions Texas 29.385 —98.427 4 34 101 30.2 0.38

readers (5% of spines aged), the spine was re-
evaluated by both readers until a unanimous
agreement was made. In total, nearly 1,900
common carp were aged from 21 populations.

Indices of relative abundance, recruitment,
growth, size structure, and mortality were
calculated for each population. Catch per unit
effort (CPUE) was used as an index of relative
abundance and was calculated as the number of
fish collected per hour of electrofishing. Electro-
fishing CPUE data were not available for two
North Dakota populations where rotenone was
applied to collect fish or from the Manitoba
population where gill nets were used, so these
populations were not included in correlations
requiring CPUE. Common carp recruitment
variation was calculated using the recruitment
variability index (RVI) as

RVI = [Sx/(Nm + Np)] — N /N,

where Sy is the sum of the cumulative relative
frequencies across year classes, Ny, is the number
of year classes missing from the sample, and N,
is the number of total year classes present (Guy
and Willis 1995). The recruitment variability
index can range from —1 to 1 with values close
to 1 indicating stable recruitment and values near
—1 indicating erratic recruitment. To index
growth and maximum length, we used the K
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and L.. parameters from the von Bertalanffy
growth function

L, = L. X 1 — ¢ Kt=n0)

where L; = length at time ¢, L.. = the theoretical
maximum length of common carp in the popu-
lation, K = the growth coefficient, and t, = time
when length would theoretically equal 0 mm.
Initial fitting of von Bertalanffy models to the
data resulted in illogical intercept (fo) estimates,
likely due to the low numbers of fish captured
<3 years of age in some populations. Conse-
quently, fy was constrained to zero when deriv-
ing K and L., from the von Bertalanffy models for
all populations (Weber et al. 2011b). In addition
to K and L., we calculated length at age 3
(generally defined as the age at maturation for
common carp; Panek 1987). Total length of the
largest individual captured in each population
was also compared as a metric for growth and
body size. Population size structure was quanti-
fied using proportional size distribution indices
(PSD, PSD-P; Neumann et al. 2012). Because
catch-curve slopes from some populations were
positive due to erratic recruitment at northern
latitudes, total annual mortality (A) was estimat-
ed using Heincke’s method (Ricker 1975, Miran-
da and Bettoli 2007)
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where 7 is the total of all age frequencies in the
sample, including the first fully recruited age
(age 3 for most populations), and ny is the
frequency of the first fully recruited age. Mean
ages of each population were also used as metrics
of mortality. Variability in common carp life
history characteristics (CPUE, recruitment vari-
ability, growth, size structure, and mortality)
were examined across latitude using Pearson’s
correlation analysis. Level of significance was set
at o= 0.05.

Recently, a metabolic theory of ecology (Brown
et al. 2004) has been used to explain variation in
lifespan across a species’ latitudinal range
(Munch and Salinas 2009). Because metabolism
is a known predictor of lifespan (Van Voorhies
2001), geographic variation in lifespan may be
explained by temperature regimes using the
metabolic theory of ecology. Lifespan (I) is
hypothesized to scale as

[ o mi exp<E>
m . [
kT

where m is body bass, E is activation energy of
metabolism, k is Boltzmann’s constant (8.62 X
10° eV/K), and T is temperature in degrees
Kelvin (°K). Metabolic activation energy is the
primary parameter that is estimated but is
thought to range between 0.2 and 1.2 eV
(Gillooly et al. 2001, Munch and Salinas 2009).
We also regressed log-mean age and mortality
rate (e.g., indices of carp lifespan) with the
inverse of mean annual temperature as
1 =b !
n(a) = b+ %

where 7 is mean age or mortality rate (A) of the
population, b is the slope of the regression line, k
is Boltzmann’s constant, and T is mean annual
temperature (Munch and Salinas 2009). Twenty-
year average annual air temperatures were
derived for each population location from an
online database (www.usgs.gov; accessed March
6, 2012). Due to the difficulty in obtaining
accurate, local water temperature data, many
studies use air temperature as a surrogate for
water temperature (e.g., Britton et al. 2010, Rypel
2014). Further, climate change models predict
widespread future changes in air temperature
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whereas similar data on lake-specific changes in
water temperature are not generally available.
Fortunately, air temperatures are a good predic-
tor of surface water temperature, even in deep
lakes that can thermally stratify (Zhang et al.
2014), and can be successfully applied to models
evaluating the effects of climate change on fishes
(Sharma et al. 2007). Bioenergetic models for
most fishes are not sensitive to growing season
temperature differences that occur across geo-
graphical ranges spanning even 6° of latitude
(Evans et al. 2014). Thus, any error introduced by
the use of air temperature as a surrogate of water
temperature should be negligible. Therefore, we
assumed that local ambient air temperature was
an approximate indicator of water temperature
and a relative indicator of latitudinal effect
among populations.

Latitudinal temperature data was used to
predict patterns of physiological responses to
climate change (Dillon et al. 2010). Metabolic
rates of ectotherms can be predicted by

~0.75 1
In(IM~07%) = E(kT> +C
where IM is the mass-corrected metabolic rate, E
is activation energy (0.69), k is Boltzmann’s
constant (8.62 X 107°), T is mean annual
temperature in degrees Kelvin (°K), and C is a
normalization constant (fish = 20.83; Brown et al.
2004). Because fish mass is a dominant factor
influencing metabolic rate (Gillooly et al. 2001),
we calculated metabolic rate for each fish
collected from each population before calculating
a mean metabolic rate for each population.
Individual fish weight information was not
available for most of common carp populations
we collected. Thus, we used a standard weight
(Ws) equation to estimate individual weights.
This approach provided standardized weights
across populations and eliminated potential
biases associated with individual fish condition.
Standard weight for common carp is logyo(Ws) =
—4.639 + 2.920-log;oTL (Bister et al. 2000).
Climate change scenarios predict temperature
increases of 0.5, 1.7, and 3.5°C across much of
North America by 2100 under current, low
growth, and high growth emissions scenarios,
respectively (Solomon et al. 2007). Thus, we also
modeled common carp metabolism under these
three climate change scenarios to evaluate chang-
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Table 2. Common carp growth, size structure, and mortality characteristics of the 21 populations surveyed. K =
instantaneous growth parameter; L.. = maximum attainable size; PSD = proportional size distribution; PSD-P,

M, and T = proportional size distribution of preferred (P), memorable (M), and trophy (T) length fish; A =
annual mortality rate. Lengths are in mm total length and age is in years.

Growth Size structure Mortality
Lake K L. Lengthatage3 Max.length PSD PSD-P PSD-M PSD-T A Mean age Max. age
Manitoba 022 791 384 857 99 97 62 3 0.03 9.5 21
Jamestown 0.26 769 409 655 100 35 23 1 0.03 6.0 16
Dickinson 0.34 582 374 850 95 38 0 0 0.08 74 16
Bowman Haley 0.53 640 508 740 100 63 13 0 0.07 6.7 27
Herman 0.39 778 533 933 99 83 76 9 0.07 9.2 21
Madison 050 727 562 824 100 100 84 0 0.01 8.4 15
Brant 0.39 730 502 831 98 98 82 0 0.01 121 20
Clinton 0.61 435 365 580 78 8 1 0 0.01 9.3 20
Paradice 0.50 470 365 605 48 8 0 0 0.10 5.1 16
Shelbyville 0.44 524 385 615 99 25 0 0 0.01 7.8 14
Carlyle 0.55 534 430 642 96 34 0 0 0.06 8.6 22
Sooner 0.83 559 513 701 98 59 4 0 0.12 6.1 14
McMurtry 0.48 552 420 658 90 27 0 0 0.06 5.4 11
Carl Blackwell ~ 0.53 560 445 647 90 50 1 0 0.10 7.1 16
Guthrie 0.56 636 517 767 94 51 11 0 0.16 4.6 14
Ray Roberts 0.75 502 449 600 91 8 0 0 0.11 4.6 8
Arlington 0.63 591 501 695 99 66 4 0 0.07 5.5 13
Benbrook 1.00 484 460 636 89 5 0 0 0.23 3.8 9
LBJ 0.98 591 560 750 99 85 6 0 0.15 8.3 19
Woodlawn 0.69 580 506 735 100 88 2 0 0.03 6.2 19
Hi Lions 0.89 567 528 715 98 34 4 0 0.32 3.3 7

es in metabolic rate. Potential changes in meta-
bolic rate estimated under the three increased
temperature scenarios were calculated as the
difference between projected metabolic rate
under each of the three increased temperature
scenarios and metabolic rate estimated under
current temperatures. Ordinary least-squares
regression was then used to relate latitude with
current metabolic rates and multiple linear
regression was used to test for the combined
and partial effects of latitude, temperature
increase, and their interaction on change in
common carp metabolism. Significance was
determined at o = 0.05.

REesuLTs

Lakes ranged in size from 4 to 462,400 ha
surface area and 3.4 to 32.3 m maximum depth
(Table 1). However, lake morphology characteris-
tics were not related to latitude (r* < 0.20 for
surface area and maximum depth). Common
carp displayed a wide range of life history traits
and population characteristics across populations
(Tables 1 and 2). Relative abundance of common
carp ranged between 9.1 and 114.6 fish per hour
of electrofishing but was not related to latitude (r
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= 0.04, P = 0.85). Similarly, common carp
recruitment variability was not related to latitude
(Fig. 2A). In contrast, some important common
carp life history characteristics were highly
correlated with latitude. Instantaneous growth
rate (K) was negatively correlated with latitude
(Fig. 2B) whereas maximum theoretical size (L..)
was positively correlated with latitude (Fig. 2C)
and negatively related to instantaneous growth
rates (K; L., =—270.57 X K 4 755.3; r* = 0.32, P =
0.007). Mean length at age 3 (average age at
maturation) tended to decrease with latitude but
was only marginally significant because fish
were much larger than predicted for the three
lakes in South Dakota and one lake in North
Dakota (Fig. 2D). The average size of common
carp at age 3 was 144 mm larger (38%) for the
most southern population compared to the most
northern population.

Large common carp (>840 mm) were only
found in three of the five most northern
populations. Larger (Fig. 2F) and older (Fig.
2G) individuals were captured at more northern
latitudes but population size structure (PSD-P)
was not related to latitude (Fig. 2E). Common
carp mortality rates declined with increasing
latitude (Fig. 2H) and were positively related to
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Linf Instantaneous growth rate (K) Recruitment index (RVT)
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Fig. 2. Relationships between latitude and common carp recruitment index (A), instantaneous growth rate (von

Bertalanffy K; B), theoretical maximum attainable size (L.; C), length at age 3 (D), proportional size distribution
of preferred length fish (PSD-P; E), largest observed size (F), mean population age (G), and mortality (A; H) for 21
common carp populations across North America.
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instantaneous growth rates (K; A = 0.25 X K —
0.06; r* = 0.50, P < 0.001). Mortality was >31%
higher and maximum fish age was 14 years
younger (7 versus 21 years) for the most southern
population compared to the most northern
population.

Comparing predictions of common carp lon-
gevity across latitudes revealed several patterns.
Mean age of common carp populations was
related to the thermal environment (Fig. 3A).
Metabolic theory of ecology calculates tempera-
ture as an inverse function (1/kT). Thus, common
carp populations located at lower latitudes with
warmer annual temperatures (lower 1/kT) had
younger mean ages compared to populations
further north where temperatures were cooler
and fish were older. Metabolism activation
energy (i.e., slope of the relationship between
temperature and mean age) was 0.22 eV. Con-
versely, mortality of common carp was negative-
ly related to temperature (1/kT): lower mortality
rates occurred at higher latitudes (with higher 1/
kT) and colder temperatures compared to lower
latitudes (and warmer temperatures) with a
metabolism activation energy of 0.64 eV (Fig. 4B).

Common carp metabolic rate, estimated as a
function of variation in body size, was negatively
related to temperature (1/kT) with fish at lower
latitudes and warmer temperatures having high-
er metabolism (Fig. 3C). All three global warm-
ing scenarios evaluated predicted increases in
common carp metabolism associated with pre-
dicted increases in mean annual temperature.
Increases in common carp metabolism following
three global warming scenarios across a latitudi-
nal gradient were explained by the equation: [ =
0.004 4 0.062 X T — 0.00008 X Lat — 0.001 X T X
Lat (r2 =0.70, P < 0.0001; I = metabolic rate, T =
global warming temperature increase, Lat =
latitude; Fig. 4). Common carp metabolism
increased only modestly with a 0.5°C increase
in temperature but increased dramatically with
temperature increases of 1.7° and 3.5°C. For
example, at a latitude of 30° N, carp metabolism
increased 0.0002 mW-g °7° at a temperature
increase of 0.5°C but increased 0.075 mW-g 7>
when temperatures increased 1.7°C and 0.095
mW-g *”° when temperature increased 3.5°C.
However, metabolism of populations at lower
latitudes increased more with increasing temper-
atures compared to populations at higher lati-
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tudes. A 3.5°C temperature increase produced a
0.03 mW-g °” metabolism increase at 50° N
latitude (32% decrease in metabolism between
30° N and 50° N locations).

DiscussioN

Our results indicate that life history character-
istics of common carp vary with latitudinal
temperature gradients and suggest that popula-
tion-level changes may occur for this species as
climate change progresses in accordance with a
metabolic theory of ecology. Common carp
populations at higher latitudes had lower growth
rates but achieved larger maximum size and had
lower mortality rates compared to populations at
lower latitudes, suggesting that global warming
may promote shorter life spans and smaller body
size. Each degree of warming has been suggested
to decrease organism body size by 6—22% (Desai
and Singh 2009). Reproductive output and
offspring quality of many fishes, including
common carp, are strongly tied to maternal body
size (Weber and Brown 2012). Thus, reductions
in body size as a result of climate warming may
reduce reproductive potential of these popula-
tions. Temperature and growing season duration
are important factors influencing latitudinal
variation in population characteristics of fishes
(Philipp 1992, Braaten and Guy 2002, Carmona-
Catot et al. 2011). Average annual temperatures
were approximately 19.5°C different between the
most southern and northern population loca-
tions, which likely had a substantial influence on
latitudinal differences observed in population
characteristics.

Latitudinal clines in fish growth rates are
relatively common (e.g., Belk and Houston
2002, Heibo et al. 2005). Being ectotherms, fishes
at high latitudes have reduced growth due to
cooler temperatures and truncated growing
seasons. Although some fishes at higher latitudes
can experience faster growth rates that offset
shorter growing seasons (counter-gradient varia-
tion; Conover and Present 1990, Kokita 2004),
our results indicate that common carp annual
growth rates declined with increasing latitude.
Common carp length at age 3 was 77% larger at
the most southern compared to most northern
population. Despite reductions in growth rates,
maximum size within common carp populations
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Fig. 4. Change in metabolic rate of common carp across latitudes under warming scenarios of 0.5
(black circle), 1.7 (white circle), and 3.5°C (black triangle) by 2100.

at the highest latitudes were up to 80% larger
compared to those at lower latitudes, suggesting
that other mechanisms besides growth rates may
be responsible for producing latitudinal clines in
ectotherm body size. Similar intraspecific trends
of larger body size at higher latitudes (often
incorrectly referred to as Bergmann’s rule) have
been identified in a wide range of other animals
including birds (Yom-Tov et al. 2002), mammals
(Ashton et al. 2000), and amphibians (Ashton
2002) but limited and conflicting supporting
evidence exists for freshwater fishes (e.g., Heibo
et al. 2005, Benejam et al. 2009, Carmona-Catot et
al. 2011, Rypel 2014).

Bergmann (1847) originally proposed that
observed interspecific relationships between en-
dotherm body size and temperature was a result
of energy conservation in cold environments:
large-bodied endotherms lose less heat relative to
mass compared to smaller individuals. Since the
original development of Bergmann’s rule, this
theory has been broadly applied outside this
context to include intraspecific relationships and
ectotherms, producing substantial confusion re-
garding Bergmann’s original hypothesis (Watt et
al. 2010). However, if the mechanism for Berg-
mann’s rule is thermal adaptation of heat
conservation, then Bergmann’s rule cannot be
applicable for ectotherms and other mechanisms
need to be developed to explain latitudinal clines
in these populations (Watt et al. 2010). Yet,
ectotherms, such as fishes, may provide better

ECOSPHERE % www.esajournals.org

11

insight into latitudinal patterns because they
have indeterminate growth that may permit a
wider range of adult body sizes compared to
endotherms that generally have determinant
growth. We suggest that in the case of common
carp, body size increased with latitude as a result
of lower mortality and prolonged lifespan.
Although it may seem obvious that organism
age needs to be accounted for when testing for
latitudinal clines in population characteristics
such as body size, surprisingly few studies have
accounted for this important source of variation.
This oversight may be due in part to the
difficulty associated with accurately estimating
organism age for other wild taxa beyond fishes.
Nonetheless, latitudinal patterns indicate that
common carp lifespan of will likely decrease by
>60% in response to increased metabolic de-
mands initiated by climate change. Longer life-
spans of fishes inhabiting higher latitudes have
been documented for other species (e.g., Heibo et
al. 2005, Blanck and Lamouroux 2007) and may
explain latitudinal gradients in fish body size in
lieu of Bergmann’s rule of endotherm energy
conservation, but this hypothesis should be
evaluated more rigorously for other taxa to test
the scale of inference for this relationship.

Since Bergmann (1847) first proposed his
hypothesis regarding geographical variation in
endotherm body size, there have been numerous
studies that have evaluated these relationships
for a variety of taxa. More recently, spatial trends

April 2015 #* Volume 6(4) *%* Article 54



associated with Bergmann’s rule have been
applied to temporal changes in animal body size
in an effort to predict population responses to
climate change. Several observations indicate
that animal body size is decreasing in response
to climate warming (e.g., Gardner et al. 2011,
Sheridan and Bickford 2011). However, limited
information is available evaluating the mecha-
nisms underlying this shift in body size. Al-
though documenting spatial and temporal
changes in life history characteristics is impor-
tant, understanding mechanisms driving these
changes is critical to allow predictions of future
climate change impacts (Watt et al. 2010). Our
results, along with others (e.g., Sheridan and
Bickford 2011), indicate that increased longevity
of common carp at higher latitudes is strongly
related to metabolic theory of ecology. Mortality
rates of fishes are positively related to tempera-
ture (Pauly 1980, Munch and Salinas 2009) and
growth rates (Charnov and Berrigan 1990), the
two major determinants of metabolic rate in
ectotherms (Gillooly et al. 2001). Thus, decreased
metabolic rate, caused by lower annual temper-
ature at high latitudes, ultimately leads to longer
lifespan at northern latitudes, consistent with the
metabolic theory of ecology (Brown et al. 2004,
Munch and Salinas 2009) and the rate of living
theory (Sohal and Allen 1986). Similarly, Munch
and Salinas (2009) found lifespan was positively
correlated with latitude as a result of temperature
clines in 85% of 1,082 populations of ectotherms
representing a wide range of taxa, consistent
with the metabolic theory of ecology. Higher
ambient temperatures result in higher metabolic
demands with larger effects at lower latitudes.
This pattern likely occurs because populations at
lower latitudes are already near their optimal
temperature (25°C for common carp) and are
sensitive to even slight temperature increases
whereas populations at higher latitudes experi-
ence temperatures much lower than their thermal
optimum and are therefore more tolerant of
temperature increases (Deutsch et al. 2008).

Our results indicate that while small (0.5°C)
increases in temperature may have minimal
effects on metabolism, larger temperature in-
creases (1.7°C) will have more pronounced
effects. However, metabolic increases were not
constant across latitudes. Effects of climate
change on populations are predicted to be more
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dramatic at higher latitudes because these lati-
tudes will experience greater increases in tem-
peratures (Parmesan 2007, Rosenzweig et al.
2008). Our results also indicate climate change
effects will interact with latitudinal gradient.
However, in contrast to the current paradigm,
increases in metabolism will be greatest at lower
latitudes and decline at higher latitudes. Body
size and temperature are the primary factors
responsible for intraspecific variation in metabol-
ic rate and longevity (Gillooly et al. 2001, Munch
and Salinas 2009). Body size is important because
metabolic rate decreases with increasing body
size; because individuals at more northern
latitudes are typically larger than individuals at
more southern latitudes, northern individuals
would be expected to have lower metabolic rates
than southern individuals under similar ambient
temperatures. Temperature is important because
metabolic rates are generally exponentially high-
er in warmer climates (Deutsch et al. 2008),
resulting in greater energy demand on individ-
uals at lower latitudes (Dillon et al. 2010). For
instance, climate warming at lower latitudes had
a greater effect on insects because they are
already living closer to their thermal maxima
compared to populations at more northern
latitudes (Deutsch et al. 2008). Predicted increas-
es in metabolism will have physiological effects
through increased food requirements and wvul-
nerability to starvation that can subsequently
affect ecosystem structure including food web
dynamics (Estes et al. 2011).

Although metabolism was a useful predictor of
lifespan for common carp in our study, consid-
erable variation in the model remained, indicat-
ing that other localized variables likely also
influence latitudinal clines in populations. Me-
tabolism activation energy estimates derived
with common carp in this study (longevity =
0.22 eV; mortality = 0.64 eV) are similar to rates
estimated in other studies for longevity (0.2-1.2
eV; Gillooly et al. 2001, Munch and Salinas 2009)
and mortality rate (0.60-0.70 eV; Gillooly et al.
2001, Brown et al. 2004) across a broad range of
taxa, suggesting biased parameter estimates were
not an important influential factor. Alternatively,
increased population density and ensuing densi-
ty-dependent effects can influence common carp
population characteristics (Weber et al. 2010) and
metabolic theory (Brown et al. 2004). However,
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common carp relative abundance was not related
to latitude, indicating that density-dependent
effects were likely not influencing the observed
latitudinal patterns. Instead, variation in other
environmental conditions (e.g., food availability,
competition, predation, etc.) across this latitudi-
nal range likely influenced variation in life
history traits.

Although common carp are an introduced
species to North America and much of the world,
predictable latitudinal trends in population char-
acteristics indicate that they have adapted to
localized conditions. Species introductions can
result in rapid evolution (10-36 years) and a
diversification of phenotypes (Whitney and
Gabler 2008). Similar to common carp in this
study, many other introduced species have been
shown to rapidly adapt to localized conditions.
For example, modified thermal habitats resulted
in amphibian evolution after only 36 years
(Skelly and Freidenburg 2000) and icefish Neo-
salanx taihuensis population characteristics rapid-
ly adapted to thermal regimes less than 25 years
following introduction (Zhu et al. 2014). Clearly,
strong selective pressures can result in rapid
adaptation of introduced species and similar
processes have likely produced the latitudinal
variation in population characteristics of com-
mon carp documented in this study. Yet, the
extent to which genetic differences or phenotypic
plasticity contributed to patterns in population
characteristics remains unknown but may have
contributed to unexplained variation among
populations. Our current understanding of lati-
tudinal clines in animal populations and poten-
tial responses to climate change would benefit
from future field, laboratory, and modeling
research aimed at disentangling these potential
confounding effects (Gienapp et al. 2008).

Body size of many fishes appears to be
declining in response to climate change (Gardner
et al. 2011) but the mechanisms responsible for
this shift have remained elusive. Metabolic
theory of ecology has been proposed as a
framework for evaluating local adaptation
(Munch and Salinas 2009). However, limited
information is available regarding intraspecific
variation in mortality rates (Bevacqua et al. 2011).
We found a strong latitudinal gradient in
common carp population characteristics includ-
ing longevity and mortality rates that closely
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follow latitudinal variation in metabolic rates.
Thus, metabolic theory of ecology, driven by
latitudinal clines in ambient temperature, may
serve as a powerful predictor of population-level
responses to climate change. Similar models
incorporating latitude or temperature, body size,
and mortality rates could be easily adapted to
other ectotherms in both terrestrial and aquatic
habitats to evaluate potential population shifts as
a result of climate change.
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