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Abstract: This paper presents a method for designing linear, quadratic and cubic interpolators that
compute elementary functions using truncated multipliers, squarers and cubers. Initial coefficient
values are obtained using a Chebyshev series approximation. A direct search algorithm is then used
to optimize the quantized coefficient values to meet a user-specified error constraint. The algorithm
minimizes coefficient lengths to reduce lookup table requirements, maximizes the number of
truncated columns to reduce the area, delay and power of the arithmetic units, and minimizes the
maximum absolute error of the interpolator output. The method can be used to design interpolators
to approximate any function to a user-specified accuracy, up to and beyond 53-bits of precision (e.g.,
IEEE double precision significand). Linear, quadratic and cubic interpolator designs that approximate
reciprocal, square root, reciprocal square root and sine are presented and analyzed. Area, delay and
power estimates are given for 16, 24 and 32-bit interpolators that compute the reciprocal function,
targeting a 65 nm CMOS technology from IBM. Results indicate the proposed method uses smaller
arithmetic units and has reduced lookup table sizes compared to previously proposed methods.
The method can be used to optimize coefficients in other systems while accounting for coefficient
quantization as well as truncation and rounding effects of multiple arithmetic units.

Keywords: elementary functions; interpolators; table-driven methods

1. Introduction

Elementary functions such as sin(x), cos(x), 1/x,
√

x and exp(x) play a key role in a wide
variety of applications. These applications include scientific computing, computer graphics, 3D
graphics applications and computer aided design (CAD) [1–4]. Although software routines can
approximate elementary functions accurately, they are often too slow for numerically intensive
and real-time applications. Hardware implementations have a significant speed advantage per
computation as well as the potential to further increase throughput by using multiple units operating in
parallel. Continuously increasing latency and throughput requirements for many scientific applications
motivate the development of hardware methods for high-speed function approximation. Furthermore,
correct and efficient hardware computation of elementary functions is necessary in platforms such
as graphics processing units (GPUs), digital signal processors (DSPs), floating-point units (FPUs) in
general-purpose processors, and application-specific integrated circuits (ASICs) [5–7].

A number of different algorithms can be used to compute elementary functions in hardware.
Published methods include polynomial and rational approximations, shift-and-add methods,
table-based and table-driven methods. Each method has trade-offs between lookup-table size,
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hardware complexity, computational latency and accuracy. Shift-and-add algorithms, such as
CORDIC [8], are less suitable for low-latency applications due to their multi-cycle delays. Direct table
lookup, polynomial approximations, rational approximations [9,10] and table-based methods [11–16],
are only suitable for limited-precision operations because their area and delay increase exponentially
as the input operand size increases. Table-driven methods combine smaller table sizes with addition
or computation of a low-degree polynomial. They use smaller tables than direct table lookup and are
faster than polynomial approximations.

Previous table-driven methods have had some success in dealing with the total hardware
complexity in terms of the size of the lookup tables and the complexity of the computational units.
They can be classified as compute-bound methods, table-bound methods, or in-between methods.

1. Compute-bound methods use a relatively small lookup table to obtain coefficients which are then
used in cubic or higher-degree piecewise-polynomial approximation [17,18].

2. Table-bound methods [10,13,19,20] use relatively large tables and one or more additions.
Examples include partial-product arrays, bipartite-table methods and multipartite-table methods.
Bipartite-table methods consist of two tables and one addition [13,21]. Multipartite-table
methods [10,20] are a generalization of bipartite-table methods that use more than two tables and
several additions. These methods are fast, but become impractical for computations accurate to
more than approximately 20-bits due to excessive table size.

3. In-between methods [22–24] use medium-size tables and a moderate amount of computation.
In-between methods can be subdivided into linear approximations [12,24] and quadratic
interpolation methods [22,23,25–27] based on the degree of the polynomial approximation
employed. The intermediate size of the lookup tables makes them suitable for IEEE
single-precision computations (24-bit significand), attaining fast execution with reasonable
hardware requirements.

As noted above, in-between methods are the best alternative for higher-precision approximations.
For practical implementations, the input interval of an elementary function is divided in subintervals
and the elementary function is approximated with a low-degree polynomial within each subinterval.
Each subinterval has a different set of coefficients for the polynomial, which are stored in a lookup
table, giving a piecewise polynomial approximation of the function. Truncated multiplication and
squaring units can be used to reduce the area, delay, and power requirements. However, the error
associated with the reduced hardware complicates the error analysis required to ensure accurate
evaluation of functions [26,27].

This paper presents an optimization method to localize and find a closed-form solution for
interpolators that allows for smaller architectures to be realized. Although this paper presents ideas
similar to other papers in terms of the implementation, the main contribution is the use of the
optimization search algorithm to find a direct solution quickly and efficiently. This paper extends
earlier work [28–30] by providing the following:

• A method to optimize the precision required for polynomial coefficients in order to meet the
required output precision

• A method to accommodate the errors introduced by utilizing truncated multipliers, squarers
and/or cubers so that output precision requirements are met

• Synthesis results for linear, quadratic and cubic interpolators for different precisions including
area, latency and power, targeting a 65nm CMOS technology

• A comparison to other methods to quantify the benefit of utilizing optimization methods to explore
a design space with multiple parameters that can be adjusted to meet a given error requirement

The rest of this paper is organized as follows: Section 2 covers background material related to
polynomial function approximation. Section 3 discusses truncated multipliers, squarers and cubers,
and gives equations for reduction error. Section 4 describes general hardware designs and presents
the error analysis used to determine initial coefficient lengths and the number of unformed columns
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for truncated arithmetic units. Section 5 describes our method for optimizing the value and precision
of the coefficients to minimize the lookup table size while meeting the specifications for output error.
Section 6 presents synthesis results. Section 7 compares our results with previously proposed methods.
Conclusions are given in Section 8.

2. Polynomial Function Approximation

Polynomial function approximation is one method used to compute elementary functions.
This paper presents a technique to compute elementary functions by piecewise polynomial
approximation using truncated multipliers, squarers and cubers. Polynomial approximations have the
following form

f (x) ≈ a0 + a1x + a2x2 + · · ·+ aN−1xN−1

≈
N−1

∑
i=0

aixi (1)

where f (x) is the function to be approximated, N is the number of terms in the polynomial
approximation, and ai is the coefficient of the ith term. The accuracy of the approximation is dependent
upon the number of terms in the approximation, the size of the interval on which the approximation
is performed, and the method for selecting the coefficients. In order to reduce the polynomial order
while maintaining the desired output accuracy, the interval [xmin, xmax) is often partitioned into 2m

subintervals of equal size, each with a different set of coefficients. To implement this efficiently in
hardware, the interpolator input is split into an m-bit most significant part, xm, and an (n−m)-bit
least significant part, xl , where n is the number of bits input to the interpolator. For normalized IEEE
floating point numbers [31], the input interval for an operand is [1, 2). Numbers of this form are
specified by the following equation:

x = 1 + xm + xl · 2−m (2)

The coefficients for each subinterval are stored in a lookup table. xm is used to select the
coefficients, so Equation (1) becomes

f (x) ≈ a0(xm) + a1(xm) · x + · · ·+ aN−1(xm) · xN−1

≈
N−1

∑
i=0

ai(xm) · xi (3)

Some applications require function approximation for large operand sizes, such as IEEE double
precision formats. Unfortunately, as operand size grows it becomes increasingly difficult to find
coefficient sizes and hardware parameters that meet output error specifications with acceptable total
hardware complexity. One solution is to relax the precision requirement, e.g., to allow a maximum
absolute error of 3/4 of one unit in the last place (ulp) [32].

Approximation involves the evaluation of a desired function via simpler functions. In this
paper, the simpler functions are the polynomials for each interval. Different types of polynomial
approximations exist with respect to the error objective, including least-square approximations,
which minimize the root-mean-square error, and least-maximum approximations, which minimize
the maximum absolute error. For designs with a maximum error constraint, the least-maximum
approximations are of interest. The most commonly used least-maximum approximations include the
Chebyshev and minimax polynomials. Chebyshev polynomials provide approximations close to the
optimal least-maximum approximation and can be constructed analytically. Minimax polynomials
provide a better approximation, but must be computed iteratively via the Remez algorithm [33].
Neither Chebyshev nor minimax polynomials account for the combined non-linear effects of coefficient
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quantization errors, reduction error due to use of truncated arithmetic units and roundoff error due
to rounding intermediate values. Our optimization algorithm adjusts the coefficient values to best
account for these errors. Chebyshev polynomials are used as the starting point because they are easier
to compute and the optimization algorithm only requires reasonable initial coefficient values. Minimax
polynomials can also be utilized for the initial approximation, however, this paper focuses on utilizing
Chebyshev polynomials.

It is important to consider that the minimax algorithm provides a better approximation utilizing
the Remez algorithm compared to the results obtained in this paper, which is discussed later in
Section 7. Interestingly, recent research in the area of arithmetic generation has produced minimax
approximations automatically using the Remez algorithm [34]. Again, these implementations are
complex and designed for Field Programmable Gate Arrays (FPGAs) as denoted on the FloPoCo
website [34]. This paper utilizes Chebyshev series approximations, because they provide a simple
table-driven method for faithfully-rounded approximation to common elementary functions. Some
researchers have also stated that Chebyshev interpolating polynomials are just as good as the best
polynomials in the context of table-driven methods for elementary function computations and, thus,
the common practice of feeding Chebyshev interpolating polynomials into a Remez procedure offers
negligible improvement, if any, and thus may be considered unnecessary [35].

This research targets simple architectures for ASIC implementations. The novel optimization
algorithm presented in this paper provides a simple implementation to improve the accuracy of
elementary function implementations, especially when using truncated arithmetic units and other
approximate arithmetic units [36]. Another advantage is that the methods presented in this paper
utilize truncated units that have been shown to exhibit lower power requirements [37]. Other similar
endeavors, such as the Sollya project, are useful, but are more complex than the algorithm presented in
this paper in addition to having different targets [38]. For example, Sollya is a tool for safe floating-point
code development, whereas, the novel direct-search methods in this paper provide another approach
that is simple and finds a solution to complex error requirements for elementary functions.

With the approach presented in this paper, Chebyshev series approximations are used to select
the initial coefficient values for each subinterval [26,27]. First, the number of subintervals, 2m, is
determined. With infinite precision arithmetic, the maximum absolute error of a Chebyshev series
approximation is [18]

EChebyshev =
2−N(m+2)+1 · | f n(ξ)|

N!
(4)

xm ≤ ξ < xm + 2−m

where ξ is the point on the interval being approximated such that the Nth derivative of f (x) is at its
maximum value. The maximum allowable error of the interpolator is 2−q, which is selected as a design
parameter. Since there will be error due to finite precision arithmetic in addition to EChebyshev, we limit
EChebyshev to 2−q−2, and solve Equation (4) for m. Since m must be an integer, this gives

m =

⌈
q− 2N + 3 + log2(| f N(ξ)|)− log2(N!)

N

⌉
(5)

The Chebyshev series approximation polynomial, pm(x) of degree N − 1, is computed on the
subinterval [xm, xm + 2−m) by the following method:



Electronics 2016, 5, 17 5 of 25

1. The Chebyshev nodes are computed by using

τi = cos
(
(2i + 1) · π

2n

)
for (0 ≤ i < n) (6)

2. The Chebyshev nodes are transformed from [−1, 1] to [a, b) by the following equation:

xi =
τi(b− a) + (b + a)

2
for (0 ≤ i < n) (7)

For subinterval m on [xm, xm + 2−m), this becomes

xi = xm + (τi + 1) · 2−m−1 (8)

3. The Lagrange polynomial, pm(x), is formed, which interpolates the Chebyshev nodes on [xm, xm +

2−m) as
pm(x) = y0 · L0(x) + y1 · L1(x) + · · ·+ yn−1 · Ln−1(x) (9)

where Li(x) is given in Equation (10)

Li(x) =
(x− x0) · · · · · (x− xi−1) · (x− xi+1) · · · · · (x− xn−1)

(xi − x0) · · · · · (xi − xi−1) · (xi − xi+1) · · · · · (xi − xn−1)
(10)

and
yi = f (xi) (11)

4. pm(x) is expressed in the form given in Equation (9) by combining terms in pm(x) that have equal
powers of x.

5. The coefficients of pm(x) are rounded to a specified precision using round-to-nearest even.

2.1. Linear Interpolator Coefficients

For a linear interpolator, the coefficients for the interval [xm, xm + 2−m) are given by

a0 = −1
2
· y0 ·

(√
2− 1

)
+

1
2
· y1 ·

(√
2 + 1

)
(12)

a1 =
√

2 · (y0 − y1) · 2−m (13)

where

y0 = f (xm + 2−m−1 +
√

2 · 2−m−2) (14)

y1 = f (xm + 2−m−1 −
√

2 · 2−m−2) (15)

2.2. Quadratic Interpolator Coefficients

For a quadratic interpolator, the coefficients for the interval [xm, xm + 2−m) are given by

a0 =
1
3
· y0 · (2−

√
3)− 1

3
· y1 +

1
3
· y2 · (

√
3 + 2) (16)

a1 =
1
6
· y0 · (

√
3− 4) · 2m+2 +

1
3
· y1 · 2m+4 − 1

6
· y2(
√

3 + 4) · 2m+2 (17)

a2 =
1
3
· (y0 − 2 · y1 + y2) · 22m+3 (18)

where
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y0 = f (xm + (

√
3

2
+ 1) · 2−m−1) (19)

y1 = f (xm + 2−m−1) (20)

y2 = f (xm + (1−
√

3
2

) · 2−m−1) (21)

2.3. Cubic Interpolator Coefficients

For a cubic interpolator, the coefficients for the interval [xm, xm + 2−m) are given by
Equations (24)–(27) where

κ1 =

√
2 +
√

2 (22)

κ2 =

√
2−
√

2 (23)

a0 =

κ2(4κ1(y3 + y0 − y1 − y2) + 8y3 − 8y0 + κ3
1(y1 + y2))

+ κ1(8y1 − 8y2 − κ3
2(y3 + y0)) + κ3

1(2y2 − 2y1) + κ3
2(2y0 − 2y3)

2κ1κ2(κ1 − κ2)(κ1 + κ2)
(24)

a1 =

2m+1(κ2(4κ1(y1 + y2 − y3 − y0) + 12y0 − 12y3)
+ (12κ1(y2 − y1)) + κ3

1(y1 − y2) + κ3
2(y3 − y0))

κ1κ2(κ1 − κ2)(κ1 + κ2)
(25)

a2 =
22m+3((κ1(y0 − y1 − y2 + y3) + 6κ2(y3 − y0)) + 6κ1(y1 − y2))

κ1κ2(κ1 − κ2)(κ1 + κ2)
(26)

a3 =
−23m+5(κ2(y3 − y0) + κ1(y1 − y2))

κ1κ2(κ1 − κ2)(κ1 + κ2)
(27)

y0 = f
(

xm +

(
1 +

1
2

√
2 +
√

2
)
· 2−m−1

)
(28)

y1 = f
(

xm +

(
1 +

1
2

√
2−
√

2
)
· 2−m−1

)
(29)

y2 = f
(

xm +

(
1− 1

2

√
2−
√

2
)
· 2−m−1

)
(30)

y3 = f
(

xm +

(
1− 1

2

√
2 +
√

2
)
· 2−m−1

)
(31)

One method to reduce the hardware needed to accurately approximate elementary functions using
polynomials is to use truncated multipliers and squarers within the hardware [26,27]. Unfortunately,
incorporating truncated arithmetic units into the architecture complicates the error analysis. However,
recent advances using optimization methods for minimizing the error of a given function using
truncated units have been successful at finding an optimal and efficient table size [28]. Furthermore,
designs that incorporate truncated multipliers, squarers and cubers significantly reduce area and
power consumption required for a given elementary function.

Although many optimization methods can be utilized, the designs generated for this paper utilize
a modified form of the cyclic direct search [39]. This optimization method utilizes the optimized most
significant bits for each coefficient to significantly reduce the memory requirements. Then, cyclic
heuristic direct search is used to optimize the number of truncated columns to decrease the size of the
coefficients. Each value is exhaustively tested to ensure that it meets the intended accuracy for a given
architecture.



Electronics 2016, 5, 17 7 of 25

3. Truncated Multipliers, Squarers, and Cubers

Truncated multipliers, squarers, and cubers are units in which several of the least significant
columns of partial products are not formed [40]. Eliminating partial products from the multiplication,
squaring and cubing matrix reduces the area of the unit by eliminating the logic needed to generate
those terms, as well as reducing the number of adder cells required to reduce the matrix prior to the
final addition. Additional area savings are realized because a shorter carry-propagate adder can be
used to compute the final results, which may yield reduced delay as well. Eliminating adder cells, and
thus their related switching activity, also results in reduced power consumption, particularly dynamic
power dissipation.

Figure 1 shows a 14× 10-bit truncated multiplier, where r denotes the number of unformed
columns and k denotes the number of columns that are formed but discarded in the final result. In this
example, r = 7 and k = 2. Eliminating partial products introduces a reduction error, Er, into the output.
This error ranges from Er,low, which occurs when each of the unformed partial-product bits is a ‘1’, to
Er,high, which occurs when each is a ‘0’. Er,low is given by [41]

Er,low =
r−1

∑
q=0

(q + 1) · 2−2·n+q

= 2−r−k−2·n · ((1− r) · 2r + 1) (32)

= 2−r−k · ((1− r) · 2r + 1) ulps

where ulps is units in the last place of the full-width true product. The weight of one ulp depends on
the location of the radix point. This analysis assumes that the inputs are between 0 ≤ x < 1. For the
example given in Figure 1, Er,high is zero and the range of the reduction error is −1.502 ulps ≤ Er ≤ 0
ulps. By comparison, the error due to rounding a product using a standard multiplier has a range of
−0.5 ulps < Ernd ≤ 0.5 ulps (round 0.5 toward +∞ mode).

Figure 1. 14× 10 truncated partial-product matrix, k = 2, r = 7.

For truncated squarers, as with truncated multipliers, r denotes the number of unformed columns
and k denotes the number of columns that are formed but discarded in the final result. Unlike truncated
multipliers, it is not possible for each of the unformed partial-product bits in a truncated squarer to be
‘1’. Er,low for a truncated squarer depends if r is even or odd [42]. If r is even,

Er,low = −
r/2−1

∑
q=1

((q + 1) · 22q+1 + (q− 1) · 22q)− 1,

= −2r−1 · r + 2r − 1 (33)
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If r is odd,

Er,low = −
(r−1)/2

∑
q=1

(q · (22q + 22q−1)) + 2− 1 +
r−2

∑
q=(r−1)/2

2q +
(r−1)/2−2

∑
q=1

22q

= −2r−1 · r + 11 · 2r−3 − 2(r/2−1/2) − 1 (34)

The reduction error for truncated cubers is [37,43].

Er,low =
r

∑
q=1

((q · (q + 1))/2) · 2q−3n (35)

4. Preliminary Hardware Designs

4.1. Finite Precision Arithmetic Effects

There are several errors that affect the accuracy of the interpolator output. These errors are from
the Chebyshev approximation, quantization of coefficients and rounding at the multiplier, squarer and
cuber. Quantization error results from rounding each Chebyshev coefficient ai to ni bits for storage in a
lookup table. Quantization error ε is defined as the difference between the infinite precision value and
the quantized coefficient. The least significant bit of each coefficient has a weight of 2−n f i , where n f i
is the number of fractional bits in coefficient ai. To prevent large intermediate values, the multiplier,
squarer and cuber outputs are rounded. A ‘1’ is added to the column immediately to the right of the
rounding point, then the k least significant bits at the output are discarded.

4.2. Linear Interpolator

Figure 2 shows the block diagram of a linear interpolator, where xm is used to select coefficients a0

and a1 from a lookup table [26,27]. Multiplier #1 computes a1 · xl , which is then added to a0 to produce
the output.

Figure 2. Linear interpolator block diagram.

Errors in the output due to the quantization of a0 and a1 are Eε0 and Eε1 respectively. Since a0

contributes directly to the output, Eε0 = ε0, and a1 is multiplied by xl which has a value less than 2−m,
so

|Eε0 | ≤ 2−n f 0−1 (36)

|Eε1 | ≤ 2−n f 1−1 · 2−m (37)
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The design goal is to limit the absolute error of the interpolator output to 2−q, where q is selected
based on the overall accuracy requirements. Each coefficient length is chosen by setting Eεi = 2−q−3

and solving for n f i. This ensures that Eε0 + Eε1 ≤ 2−q−2. In addition to the fractional bits, a sign bit is
needed, so

n0 = n f 0 + 1 = q + 3 (38)

n1 = n f 1 + 1 = q−m + 3 (39)

In addition to quantization errors, rounding the multiplier output introduces a rounding error
Ernd_m1 at the interpolator output. The LSB (least significant bit) weight of a1 is 2−n f 1 and the LSB
weight of xl is 2−n, so the LSB weight of a full precision product would be 2−n f 1−n. Since r columns of
partial products are not formed and k output bits are discarded, the LSB weight of the multiplier output
is 2−n f 1−n+km1+rm1 , so Ernd_m1 ≤ 2−n f 1−n+km1+rm1−1, where km1 and rm1 are k and r for the multiplier.

The design is initiated by first using standard multipliers. We want the rounding error to be
less than the error due to coefficient quantization, so km1 is chosen by setting Ernd_m1 = 2−q−4 and
solving for km1. Remember that for a standard multiplier, all columns of partial products are formed,
so r = 0 and

km1 = n−m− 1 (40)

4.3. Quadratic Interpolator

Figure 3 shows the block diagram of a quadratic interpolator, where xm is used to select coefficients
a0, a1 and a2 from a lookup table [26,27]. A specialized squarer computes x2

l . Multiplier #1 computes
a1 · xl and multiplier #2 computes a2 · x2

l , which are then added to a0 to produce the output.

Figure 3. Quadratic interpolator block diagram.

As with the linear interpolator, the multiplier outputs can be kept in carry-save form. Eε0 and Eε1

for a quadratic interpolator are the same as for a linear interpolator, given by Equations (36) and (37).
a2 is multiplied by the squarer output, which has a maximum value of 2−2m, so

|Eε2 | ≤ 2−n f 2−1 · 2−2m (41)

As with the linear interpolator, the design goal is to limit the approximation error to 2−q. In the
case of the quadratic interpolator, however, there are three errors due to coefficient quantization as
well as several rounding errors, so we initially set each Eεi equal to 2−q−4 rather than 2−q−3 to ensure
that the sum of all errors is less than 2−q. A sign bit is required in addition to the fractional bits so
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n0 = n f 0 + 1 = q + 4 (42)

n1 = n f 1 + 1 = q−m + 4 (43)

n2 = n f 2 + 1 = q− 2m + 4 (44)

Analysis shows that for some configurations, xl can be truncated at the input to the squarer to
reduce the size of the squarer. Assume that the t least significant bits of xl are truncated, such that
xl = x′l + εxl , where x′l is the truncated version of xl . The squarer output is then x′l

2 rather than x2
l ,

resulting in a squarer output error of −2x′l · εxl − ε2
xl

. Noting that x′l < 2−m, |εxl | < 2−n+t, and ε2
xl

is negligible, the magnitude of the squarer output error is less than 2−n−m+t+1. This error is then
multiplied by a2, so the error at the interpolator output due to εxl is∣∣∣Eεxl

∣∣∣ ≤ 2−n−m+t+1 (45)

assuming |a2| ≤ 1. The value of Eεxl
is set equal to 2−q−4 to find the maximum value for t, which gives

t = n + m− q− 5 (46)

If t ≤ 0, then xl cannot be truncated. As with the linear interpolator, we set k for the multipliers
and the squarer so that rounding error in each unit is less than each error due to quantization. Since we
limited each quantization error to 2−q−4, we limit each rounding error to 2−q−5.

Like the linear interpolator, the LSB weight of the multiplier #1 output is 2−n f 1−n+km1+rm1 , resulting
in Ernd_m1 = 2−n f 1−n+km1+rm1−1. Setting this equal to 2−q−5 gives

km1 = n−m− 1 (47)

The LSB weight of the squarer output is 2−2n+2t+ksq+rsq , so Ernd_sq = 2−2n+2t+ksq+rsq−1, where ksq

and rsq are k and r for the squarer. The squarer output is multiplied by a2, where we assume |a2| ≤ 1,
so the rounding error for the squarer is set equal to 2−q−4 to find ksq

ksq = 2n− 2t− q− 3 (48)

If |a2| > 1, ksq is increased accordingly.
The LSB weight of the multiplier #2 output is 2−n f 2−2n+2t+ksq+rsq+km2+rm2 so Ernd_m2 =

2−n f 2−2n+2t+ksq+rsq+km2+rm2−1. Setting the maximum rounding error equal to 2−q−5 gives

km2 = q− 2m + 3 (49)

4.4. Cubic Interpolator

Figure 4 shows the block diagram of a cubic interpolator. The m most significant bits of x, xm, are
used to select coefficients a0, a1, a2 and a3 from a lookup table. A specialized squarer computes x2

l
and a specialized cuber computes x3

l . Multiplier #1 computes a1 · xl , multiplier #2 computes a2 · x2
l

and multiplier #3 computes a3 · x3
l , all of which are then added to a0 to produce the output. All of the

multiplier outputs are kept in carry-save form.
Errors in the output due to the quantization of a0, a1, a2 and a3 are Eε0 , Eε1 , Eε2 and Eε3 respectively.

Since a0 contributes directly to the output, Eε0 = ε0, so

|Eε0 | ≤ 2−n f 0−1 (50)

Coefficient a1 is multiplied by xl , which has a maximum value less than 2−m, so

|Eε1 | < 2−n f 1−1 · 2−m (51)
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Figure 4. Cubic interpolator block diagram.

Coefficient a2 is multiplied by the squarer output, which has a maximum value of 2−2m, so

|Eε2 | < 2−n f 2−1 · 2−2m (52)

Coefficient a3 is multiplied by the cuber output, which has a maximum value of 2−3m, so

|Eε3 | < 2−n f 3−1 · 2−3m (53)

The design goal is to limit the approximation error to 2−q. In the case of the cubic interpolator
there are four errors due to coefficient quantization as well as several rounding errors, so we initially
set each Eεi equal to 2−q−5 to ensure that ∑ Eεi < 2−q−3, and the sum of all errors is less than 2−q.
Utilizing a sign bit in addition to the fractional bits, the sizes of the coefficients are as follows:

n0 = n f 0 + 1 = q + 5 (54)

n1 = n f 1 + 1 = q−m + 5 (55)

n2 = n f 2 + 1 = q− 2m + 5 (56)

n3 = n f 3 + 1 = q− 3m + 5 (57)

Like the linear and quadratic interpolators, the LSB weight of the multiplier #1 output is
2−n f 1−n+km1+rm1 , resulting in Ernd_m1 = 2−n f 1−n+km1+rm1−1. The rounding error is chosen to be less
than the error due to coefficient quantization, so Ernd_m1 is set equal to 2−q−6 which gives

km1 = n−m− 1 (58)

Similar to the quadratic interpolator, xl can be truncated at the input to the squarer. The error at
the interpolator output due to the truncation of xl is set equal to 2−q−5 to find the maximum value of t,
which gives

t = n + m− q− 6 (59)

The rounding error for the squarer is set equal to 2−q−6 to find ksq, which gives

ksq = 2n− 2t− q− 5 (60)

The maximum rounding error for multiplier #2 is set to 2−q−6, which gives

km2 = q− 2m + 1 (61)
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Again, similar to the squarer, the input to the cuber can be truncated. Assume that the p least
significant bits of xl are truncated, such that xl = x′′l + εxl , where x′′l is the truncated version of xl that
is input to the cuber. The cuber output is then x′′l

3 rather than x3
l , resulting in a cubic output error

of−3x′′l
2 · εxl − 3x′′l · ε

2
xl
− ε3

xl
. Noting that x′′l

2 < 2−2m, |εxl | < 2−n+p and that ε2
xl

and ε3
xl

are negligible,
the magnitude of the cuber output error is less than 3 · 2−n−2m+p. This error is then multiplied by a3,
so the error at the interpolator output due to εxl is

|Eεxl
| < 2−n−2m+p+1 (62)

assuming |a3| ≤ 1. As done previously, the value of Eεxl
is set equal to 2−q−5 to find the maximum

value for p, which gives
p = n + 2m− q− 6 (63)

The LSB weight of the cuber output is 2−3n+3p+kcu−rcu , so Ernd_cu = 2−3n+3p+kcu−rcu−1, where kcu

and rcu are k and r for the cuber. The cuber output is multiplied by a3, where it is assumed that |a3| ≤ 1,
so the rounding error for the cuber is set equal to 2−q−6 to find kcu which gives

kcu = 3n− 3p− q− 5 (64)

If |a3| > 1, then kcu is increased accordingly.
The LSB weight of the multiplier #3 output has a value of 2−n f 3−3n+3p+kcu+rcu+km3+rm3 , so the

rounding error is Ernd_m3 = 2−n f 3−3n+3p+kcu+rcu+km3+rm3−1. Setting the maximum rounding error equal
to 2−q−6 gives

km3 = q− 3m + 5 (65)

Although there are several ways to add all the partial products to produce the output, y, each
method benefits from having fewer partial products. In this paper, Dadda reduction schemes are used
for the multipliers in each design [44]. The constant correction method [41] is used for all truncated
multipliers, squarers and cubers. Although other correction methods can be employed, constant
correction is the easiest to implement. However, any correction scheme could be used.

5. Coefficient Optimization

After the preliminary design is completed, the coefficients are adjusted based on precision.
To minimize the lookup table size based on the term m, the direct search method is selected to find the
minimum MSB (most significant bit) of each interpolator. The size of the lookup table is 2m · (n0 + n1)

for a linear interpolator, 2m · (n0 + n1 + n2) for a quadratic interpolator, and 2m · (n0 + n1 + n2 + n3)

for a cubic interpolator. Finding the minimum value of m where the output precision requirement can
be met for all of the values in the reduced input domain reduces the size of the lookup table.

Initially, standard multipliers (full-width, all columns formed) are used. After the optimized
value of m is computed, each coefficient is found. Next, the standard multipliers, squarer and cuber
are replaced with truncated units. A new optimization method called the cyclic heuristic direct search
is used to maximize the number of unformed columns while maintaining design specifications for
error. This optimization reduces the area of the computational portion of the interpolator at the same
time coefficient sizes are optimized, reducing the size of the lookup table. For example, consider
the multiplier that computes a1 · xl in a linear interpolator and note that reducing the size of a1 also
reduces the size of the partial-product matrix required. Quadratic interpolators have two terms to
optimize, a1 and a2, and cubic interpolators have three terms to optimize, a1, a2 and a3. Cyclic heuristic
direct search is used because it is well suited for discrete optimization in multivariable equations.

Discrete optimization means searching for an optimal solution in a finite or countably infinite set
of potential solutions. Optimality is defined with respect to some criterion function, which is to be
minimized or maximized. In the cyclic heuristic direct search method each iteration involves a “cyclic”
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cycle in which each dependent variable makes an incremental change in value, one at a time, then
repeats the cycle [39].

5.1. Optimization Method

In the first stage, the number of most-significant bits, m, of the value input to the interpolator, x, is
optimized such that the function, y(x), is approximated to the specified accuracy. The decision variable,
DV, is DV = m and the objective function, OF, is OF = m. The constraint is

∣∣y(x)Real − y(x)Approx
∣∣ ≤

2−q for all x ∈ [1, 2), where y(x)Real is the exact value of the function, y(x)Approx is the approximated
value of the function and q is the number of bits of precision in the output. The algorithm adjusts the
DV to minimize the OF. Direct search methods are known as unconstrained optimization techniques
that do not employ a derivative (gradient) [39].

In the second stage, the coefficients sizes are optimized (minimized) and the number of unformed
columns in the arithmetic units are optimized (maximized) at the same time. This further reduces the
required size of the lookup tables and reduces the sizes of the partial-product matrices, which reduces
the overall area, delay and power of the interpolator.

For the second stage, the cyclic heuristic direct search method is used for several reasons.
The algorithm is simple to understand and implement. Direct searches can also satisfy hard constraints
well and do not use a derivative, gradient or Hessian, which have difficulty coping with non-analytic
surfaces such as ridges, discontinuities in the function or slope, and add computational difficulty and
programming complexity. Simplicity, robustness, and accommodation of constraints in this algorithm
are significant advantages for use with elementary function error analysis. Each of the coefficients
values are adjusted to satisfy the accuracy requirements.

Linear interpolators have 2 DVs, the size of coefficients for a0 and a1. The objective function is

OF = −rm1 (66)

As with the first stage, the algorithm adjusts the DVs to minimize the OF. This paper addresses
maximizing the number of unformed columns. Therefore, Equation (66) is chosen because minimizing
OF will maximize rm1. Other optimization algorithms may adjust the DVs to maximize the OF [39]. If
our algorithm maximized the OF then OF = rm1 would be used.

Quadratic interpolators have 3 DVs, the size of coefficients a0, a1, and a2. The objective function is

OF = −(rm1 + rm2 + rsq) (67)

Finally, cubic interpolator designs have 4 DVs, the size of coefficients a0, a1, a2, and a3.
The objective function is

OF = −(rm1 + rm2 + rm3 + rsq + rcu) (68)

The constraint is |y(x)Real − y(x)Approx| < 2−q for faithful rounding, but can be modified for
different precision requirements.

The procedure for the cyclic heuristic direct search method is:

1. Initialize the Decision Variable base (the initial trial solution in a feasible region), DVbase, and
evaluate the Objective Function, OF.

2. Start the cycle for one iteration.
3. Taking each DV, one at a time, set the new trial DV value,

DVtrial = DVbase + ∆DV (69)
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4. Evaluate the function at the trial value. If worse or “FAIL” keep DV base and set ∆DVi to a
smaller change in the opposite direction, where contract and expand are names arbitrarily chosen
as constants used for adjustment in the optimization, such that contract is −1 and expand is +1.

∆DVi = contract · ∆DVi (70)

5. Otherwise, keep the better solution (make it the base point) and accelerate moves in the
correct direction

OFbase = OFtrial (71)

DVbase = DVtrial (72)

∆DVi = expand · ∆DVi (73)

6. At the end of the cycle check for stopping criteria (excessive iterations, or convergence
criteria met).

7. Stop, or repeat from Step 2.

5.2. Optimization Example and Results

This Section presents a function approximation example to help clarify how the optimization
method works and how it improves results. Real numbers equal to the underlying fixed-point binary
values, then rounded to 6 fractional digits, are given in the example to improve readability. For the sake
of example, an arbitrary chosen input value for the interpolator, x = 1.278498, which has a reciprocal
value y(x) = 0.782168. The cyclic heuristic direct search method is employed to find the coefficient
values used to compute the approximation of the reciprocal in a similar fashion as the interpolators in
this paper. Table 1 shows the value of the approximation using linear, quadratic and cubic methods
described in the paper. The n-bit range-reduced input to the interpolator, x, is partitioned into 2m

sub-intervals, each with its own set of coefficients a0 through aN−1. xm is the m most significant bits
of x and xl is the n− m least significant bits of x. Although any analytical function can be shown
using the results in this paper, reciprocal is utilized as an example as it is one of the more common
implementations.

For a linear interpolator, the initial values of the coefficients a0 and a1 are found for each
sub-interval using Equations (12) and (13), where y0 and y1 are given by Equations (14) and (15).
The coefficients are then optimized and the number of unformed columns in the truncated arithmetic
units are found using the method described in Section 5.

Table 2 shows the coefficients sizes for each interpolator utilizing traditional multiplication and no
optimization compared to using the cyclic heuristic direct search optimization method with truncated
multipliers, squarers and cubers. For example, with the 32-bit cubic interpolator the initial size of a1 is
29 bits, which is then reduced to 16 bits after optimization. This significant reduction in size not only
reduces the size of the lookup table, it also significantly reduces the size of the multiplier that computes
a1 · xl , which further reduces area, delay and power in the interpolator. Previous methods of computing
the error for each memory or hardware unit relied on trial and error, while the method provided in
this paper utilizes an optimal way of finding the coefficients for each table as well as containing the
error within all multipliers. Table 3 shows the hardware requirements comparison between our results
and previous research methods. Table 4 shows the memory requirements comparison between our
results with [18,26]. Table 5 shows the results for determining the optimal bit-width of the coefficients
and their respective lookup table sizes for four elementary functions: reciprocal, square root, reciprocal
square root and sine. All values were computed in MATLAB using a script run on a 2.28 GHz Apple
MacPro QuadCore Intel Xeon with 4 GB of 800 MHz DDR2 memory. Run times, even for 32-bit cubic
interpolators, are under 1 minute for all cases.
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Table 1. Example approximation calculation, x = 1.278498, y(x) = 1/x.

Interpolator n m xm xl y0 y1 y2 y3 a0 a1 a2 a3 y(x)Approx

Linear 16 7 1.265625 0.012873 0.785982 0.789410 - - 0.785171 −0.612738 - - 0.782180

Quadratic 16 4 1.250000 0.028498 0.764342 0.780488 0.797329 - 0.799997 −0.639162 0.475655 - 0.782169

Cubic 16 3 1.250000 0.028498 0.729798 0.748269 0.776046 0.796966 0.799999 −0.639868 0.506617 −0.337745 0.782163

Linear 24 11 1.278320 0.000177 0.782022 0.782233 - - 0.782277 −0.611723 - - 0.782168

Quadratic 24 7 1.265625 0.012873 0.783035 0.784074 0.785115 - 0.785276 −0.616655 0.482027 - 0.782168

Cubic 24 5 1.250000 0.028498 0.781213 0.786408 0.793874 0.799240 0.799999 −0.639998 0.511617 −0.389804 0.782168

Cubic 32 7 1.265625 0.012873 0.782965 0.783614 0.784533 0.785184 0.785276 −0.616659 0.484242 −0.377945 0.782168

Table 2. Coefficient sizes for regular multipliers vs. optimized truncated multipliers, squarers and cubers, f (x) = 1/x.

Interpolator n
n0 n1 n2 n3

Regular Optimized Regular Optimized Regular Optimized Regular Optimized

Linear 16 18 18 11 8 - - - -

Quadratic 16 19 19 15 11 11 11 - -

Cubic 16 20 20 17 12 14 12 11 10

Linear 24 26 26 15 12 - - - -

Quadratic 24 27 27 20 14 13 13 - -

Cubic 24 28 28 23 14 18 14 13 12

Cubic 32 36 36 29 16 22 16 15 14
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Table 3. Arithmetic units required for faithfully rounded results, f (x) = 1/x.

Interpolator n
Multiplier #1 Multiplier #2 Multiplier #3 Squarer Cuber Adder Widths

Ours [18] [26] Ours [18] [26] Ours [18] Ours [18] [26] Ours [18] Ours [18] [26]

Linear 16 8×9 15×5 9×9 - - - - - - - - - - 18,10 24,16 18, 11

Quadratic 16 11×12 19×8 15×12 11×12 12×10 12×12 - - 11 12 11 - - 19,13,13 24,21,14 19,16,13

Cubic 16 12×13 22×10 - 12×16 17×16 - 10×16 12×12 13 16 - 13 12 20,16,16,16 25,23,18,13 -

Linear 24 12×13 21×6 - - - - - - - - - - - 26,24 36,22 -

Quadratic 24 14×17 31×12 20×17 13×17 19×16 13×14 - - 15 17 15 - - 27,18,17 40,33,21 26,21,14

Cubic 24 14×19 35×15 - 14×24 27×24 - 12×24 18×14 19 24 - 19 14 28,24,24,24 41,37,29,20 -

Cubic 32 16×25 - - 16×32 - - 14×32 - 25 - - 25 - 36,32,32,32 - -

Table 4. Memory requirements for faithfully rounded results, f (x) = 1/x.

Coefficient Lengths

Interpolator n a0 a1 a2 a3 Lookup Table Size

Ours [18] [26] Ours [18] [26] Ours [18] [26] Ours [18] Ours [18] [26]

Linear 16 18 24 18 8 15 11 - - - - - 2944 156,000 3072

Quadratic 16 19 24 19 11 19 15 11 12 12 - - 592 27,500 672

Cubic 16 20 25 - 12 22 - 12 17 - 10 12 360 9500 -

Linear 24 26 36 - 12 21 - - - - - - 73,728 28,500,000 -

Quadratic 24 27 40 26 14 31 20 13 19 13 - - 6272 1,440,000 7040

Cubic 24 28 41 - 14 35 - 14 27 - 12 18 2100 121,000 -

Cubic 32 36 - - 16 - - 16 - - 14 - 11,300 - -
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Table 5. Optimized bit-widths and lookup table sizes for various functions.

Function
Linear 16 Linear 24 Quadratic 16 Quadratic 24 Cubic 16 Cubic 24 Cubic 32

m Table Size m Table Size m Table Size m Table Size m Table Size m Table Size m Table Size

1/x 7 2944 11 73,728 4 592 7 6272 3 360 5 2100 7 11,300
√

x 6 1664 9 19,968 4 576 6 3456 3 368 4 1152

1/
√

x 7 3072 10 37,888 4 560 7 6400 3 360 5 2112

sin(x) 6 1152 10 39,939 5 1088 7 6656 3 360 5 2080
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The importance of the results is that they seek to find a near-optimal solution of the lowest memory
requirements for a given elementary function. The exploration space is based on the input operand
space (e.g., 32 bits). Consequently, an exhaustive search for finding the smallest optimal decomposition
for a given operand size could take a considerable amount of time. The difficulty in finding these table
sub-divisions (e.g., a0 and a1 in Figure 2) is that each configuration has to run over the total space of
the register size. That is, a specific 32-bit operand decomposition would have to exhaustively check
all 232 configurations to find the worst-case error and see if the stopping criterion of being faithfully
rounded is met. As a comparison, traditional exhaustive searches (i.e., checking each configuration for
a given operand size one by one) ran several weeks with no tangible result. On the other hand, the
algorithms and presented architectures discussed in this research are realizable and complete within a
reasonable amount of time for the appropriate sizes presented. Future research might explore looking
at larger operand sizes, such as 64 and 128 bits, for more accurate and reliable computations.

6. Implementation Results

The approach described in Section 5 is implemented using a MATLAB script. The script computes
the optimized polynomial coefficients and the maximum number of columns that can be removed from
the truncated arithmetic units. Synthesizable Verilog descriptions are then created for linear, quadratic
and cubic architectures. Code written in C is used to generate optimized RTL-level Verilog descriptions
of the squaring and cubing units used in the interpolators. The Verilog descriptions have been
implemented, targeting a 65nm cmos10lpe bulk CMOS technology from IBM R©. Results are obtained
using Synopsys R© (formerly Virage Logic) standard-cell libraries and synchronous-based memory
compilers. Memories are generated from the compiler to best suit their intended implementation size.
Interestingly, most memories do not fit the exact required memory size, so they have empty space that
may affect the area and delay estimates. Because of this, the results might be significantly better if the
memory compiler could produce sizes that fit the required interpolator size more accurately, such as
with some open-source memory compilers [45]. Designs were synthesized using Synopsys R© Design
Compiler

TM
and the layout was produced using Synopsys R© IC Compiler (ICC)

TM
. Power numbers are

generated from parasitic extraction of the layout and 100, 000 random input vectors using Synopsys R©

PrimeTime
TM

.
Both compiler-generated memories and standard-cells are placed and routed together to form the

best aspect ratio and area for the smallest delay. The methods employed in this paper are optimized
for delay, because the interpolators dominate the total area cost, which is especially true as the operand
size increases. Although smaller operand sizes could be produced with random logic, the intended
applications for this paper typically use memory-driven layouts (e.g., within multiplicative-division
schemes inside general-purpose architecture datapaths). Therefore, to create a consistent comparison
all implementations utilize memory generated by a memory compiler.

This paper produces several designs by varying the precision, the architecture, and the
approximation order. For this paper, several word sizes are designed for the linear, quadratic and cubic
architectures using the function f (x) = 1/x for x ∈ [1, 2). The area and delay results for 16, 24 and
32-bit interpolators are reported in Table 6. It can be seen that the piecewise-linear implementation has
a unit in the last position (ulp) of 2−16 that is more efficient than the quadratic interpolator circuit. For
16-bit accuracy, the linear interpolator has smaller area requirements yet maintains high speed with
smaller utilization of standard cells compared to quadratic and cubic interpolators. On the other hand,
the 24-bit quadratic interpolator is more efficient than the linear interpolator yet requires approximately
3.5 times more area. For 16-bit accuracy, the area requirements are smaller, yet it still maintains its high
speed with smaller utilization of standard cells compared to 24 bits. For cubic implementation, the
24-bit cubic interpolator is more efficient than the 16-bit interpolator despite having around 35% more
area than 16-bit architectures. On the other hand, 32-bit architectures have significantly more area than
16 and 24 bits, yet have comparable speed.
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Table 6. Post-layout area and delay results, f (x) = 1/x.

Interpolator n No. Mem Memory Sizes No. Cells Area (mm2) Memory Delay (ns) Total Delay (ns)

512× 18

Linear 16 2 512× 10 734 0.0416 1.128 1.895

512× 20

Quadratic 16 3 512× 14 2494 0.0783 1.147 2.319

512× 10

512× 20

512× 12

Cubic 16 4 512× 12 5011 0.0957 1.220 2.780

512× 10

2048× 26

Linear 24 2 2048× 14 1522 0.1019 1.300 2.217

512× 28

Quadratic 24 3 512× 18 4729 0.1120 1.160 2.330

512× 12

512× 28

512× 14

Cubic 24 4 512× 14 9945 0.1292 1.170 3.150

512× 12

512× 36

512× 16

Cubic 32 4 512× 16 15,351 0.3956 1.260 3.410

512× 14

For all of the results in Table 6, the total delay is the post-layout critical path through the circuit
including the memory delay. The memory delay is highlighted in Table 6 to showcase the non-memory
delay (i.e., Non-memory Delay = Total Delay - Memory Delay). Since the memory is synchronous, the
memory is read on the clock half-cycle and processed on the subsequent clock half cycle. Therefore,
an asynchronous memory design may improve the critical path, since it does not have to wait for
the precharge tied to the clock. It is important to also consider that the implementations utilized in
this paper use actual extracted memory instantiations as opposed to logic produced from FPGAs.
Previous research [14] has utilized specific FPGAs that have embedded memories, such as Xilinx’s Block
RAM (BRAM). Implementations using BRAM usually have integrated columns arranged throughout
the FPGA and allocate single columns of memory at a time when needed. When a specific FPGA
implementation gets large, it has to route its implementation across multiple columns and, thus,
possibly skew the actual propagation times because the place and route of the slices are not efficiently
located [46]. Although previous research could theoretically implement architectures that could use
their columns efficiently, it is hard to tell for a given implementation unless otherwise specified.

Some alternative architectures have been proposed to help alleviate some of these problems,
such as Xilinx’s UltraScale Architecture [47]. However, the gap between implementations of
silicon and FPGAs can be considerable based on the actual floorplan of its implementation and
its routing. Therefore, this paper focuses on implementations utilizing dedicated low-power SRAM
implementations and standard-cell logic that have optimized floorplans. An argument could also be
made that a full-custom design (for both memory and logic) would produce better results, as well.
On the other hand, the implementations in this paper are as close to a full-custom implementation as
possible in terms of their implementation. Also, similar to the research presented in [20], there is a
tradeoff between the size of the memory and the amount of logic for these dedicated interpolators, as
shown in Table 6.
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The power results for linear, quadratic and cubic with 16, 24 and 32-bit precisions are reported
in Figures 5 and 6. Figure 5 shows the dynamic and leakage power for each interpolator based on
generating several thousand random input vectors. It can be seen that increasing the complexity of
hardware increases the power dissipation. Figure 6 shows the dynamic power and percentage of
memory and logic circuit power usage separately. Interestingly, both quadratic methods incurred
a small amount of power for their clock networks (not shown due to the small amount reported),
whereas, linear methods do not.

Figure 5. Post-layout results for dynamic and leakage power, f (x) = 1/x.

Figure 6. Comparison of memory vs. logic power consumption, f (x) = 1/x.

7. Memory Comparison

A comparison of the optimized Chebyshev quadratic and cubic interpolators with existing
methods for function approximation is presented in this section. Linear interpolators are not
included in the comparison due to the small gains in accuracy compared to their table sizes.
All considered interpolators employ similar tables and multipliers. Therefore, the comparison results
are technology-independent.

The comparison is presented in two parts. First, Table 7 compares of our optimized Chebyshev
quadratic and cubic interpolators with an optimized bipartite table method (SBTM) [13], an
optimized symmetric table additional method (STAM) [20], a Chebyshev method without any
optimization and standard multipliers [18], multipartite table methods [14], a Chebyshev method with
constant-correction truncated multipliers [26], an enhanced quadratic minimax method [25] and two
linear approximation algorithms (DM97 [12] and Tak98 [24]). Each of the comparisons are shown for a
single operation of reciprocal (1/x) mainly because most of the papers usually only present reciprocal
due to its popularity for floating-point [31]. Some assumptions have also been made to allow for a
fair comparison, such as table sizes corresponding to a final result accurate to less than 1 ulp (i.e., they
produce a faithful result).
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Table 7. Table size comparisons for f (x) = 1/x at 24-bit accuracy.

Scheme Table Size (Kb)

SBTM [13] 1,933.0
Chebyshev [18] 1,440.0

STAM [20] 651.0
Multipartite Table [14] 379.0

DM97 [12] 52.0
Tak98 [24] 50.0

Chebyshev Truncated Multipliers [26] 7.0
MiniMax [25] 6.4

Ours (Optimized Quadratic) 6.5
Ours (Optimized Cubic) 2.1

It is important to consider that some implementations in Table 7 only include a carry-propagate
adder and not a multiplier (e.g., [13]). However, the importance of using multipliers in these
architectures is that they can realize faithful approximations with larger operand sizes compared
to those that are table-driven with adders [13]. Previous methods [14] had to overcome larger memory
sizes to meet a given accuracy, especially for operands greater than 16 bits. The approach presented
in this research allows significantly-reduced memory tables by employing multipliers within the
architecture while being faithfully-rounded. That is, the utilization of a multiplier allows the result to
converge quicker than those that only utilize adders. More importantly, since traditional rectangular
multipliers can consume large quantities of area and power [48], truncated multipliers along with
the algorithms in this paper can be implementated while not dominating area or energy as with
conventional approaches.

Second, Table 8 compares our optimized Chebyshev quadratic and cubic interpolators with other
quadratic methods (JWL93 [49], SS94 [18], CW97 [22], CWCh01 [23], minimax [25]) when computing
several operations (in this case, four operations) with the combinational logic shared for the different
computations and a replicated set of lookup tables. In JWL93 [49], the functions approximated
are reciprocal, square root, arctangent, and sine/cosine, CW97 [22] and CWCh01 [23] approximate
reciprocal, square root, sin/cos and 2x, and, in both SS94 [18] and the quadratic minimax interpolators,
the functions computed are reciprocal, square root, exponential (2x), and logarithm. This paper shows
results computed for reciprocal, square root, square root reciprocal and sine. Again, to allow for a fair
comparison, table sizes correspond in all cases for faithful results or final answers accurate to less than
1 ulp of error.

Table 8. Table size comparisons for four specific operations at 24-bit accuracy.

Scheme Table Size (Kb)

JWL93 [49] 65.9
SS94 [18] 58.0

CW97 [22] 25.0
MiniMax [25] 22.2
CWCh01 [23] 17.2

Ours (Optimized Quadratic) 22.9
Ours (Optimized Cubic) 7.3

The main conclusion to be drawn from this comparison is that SBTM, STAM and multipartite
table methods may be excessive for single-precision computations due to the large size of the tables to
be employed. It is also noticeable that fast execution times can be obtained with linear approximation
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methods, but their hardware requirements are two to three times higher per function than those
corresponding to the optimized Chebyshev quadratic and cubic interpolator, which, on the other
hand, allows for similar execution times. More importantly, fast quadratic and cubic interpolators can
significantly reduce the overall constraints for area, delay, and power because they can be tailored
for multiple functions. Using bipartite table methods requires significant amounts of area for each
function that can grow with the number of functions required for a given architecture.

The analysis of approximations with Chebyshev polynomials of various degrees performed in [18]
shows that Chebyshev polynomials are a good method of approximation compared to multipartite
tables that use a Taylor series. Additional savings utilizing truncated multipliers for Chebyshev
polynomials demonstrated a significant savings for lookup table sizes [26]. This paper presents a
simple, robust, and constraint-based optimization algorithm that has significant advantages for use
in elementary function error analysis. All the coefficients are adjusted based on the minimum most
significant bits that allow for compensation of the effects of rounding a coefficient to a finite word length.
This property, combined with the intrinsic accuracy of Chebyshev approximations, results in a more
accurate polynomial approximation and a reduction in the size of tables (largely determined by m). The
reduction of m by one results in a reduction by half in the size of the lookup tables to be employed. This
is because each table grows exponentially with m (each table has 2m entries), and therefore has a strong
impact on the hardware requirements of the architecture. Furthermore, a reduction in the wordlength
of the coefficients may also help in reducing the size of the accumulation tree to be employed for the
polynomial evaluation. Using the optimization method presented demonstrates significant memory
savings for 16, 24 and 32 bits of precision that produce faithfully rounded results. More importantly,
the optimization method presented in this paper can be theoretically employed for larger operand
sizes and in other areas where there are multiple sources of truncation and rounding error for a given
architecture. Consequently, the method has a significant return on investment to find a best-fit scenario
instead of using a trial-error method for table-based interpolators.

Table 8 displays a comparison for the most common bit sizes employed throughout most
papers dealing with interpolators (e.g., 24 bits). Along with our comparison for quadratic and cubic
interpolatars, comparisons are shown for the approximation of reciprocal, square root, exponential (2x),
and logarithm [18]. Again these results are designed for a target precision of 24 bits with less than
1 ulp of error. The dramatic reduction in memory requirements for the proposed optimization
method simplifies the process of creating small memory lookup table sizes. This occurs because most
interpolators require several table lookups per function. Therefore, a technique that can optimize the
size of the table lookup can benefit the overall memory requirement for all functions. Some results in
Table 8 show smaller table sizes compared to the optimized quadratic interpolator presented in this
paper [25]. This is because they utilize minimax algorithms that are more efficient than Cheybshev
polynomials, as mentioned previously. However, the optimization algorithm in this paper could
theoretically be equally applied to other algorithms such as minimax, along with reduced precision
functional units (e.g., constant-correction truncated multipliers, squarers, and cubers). There are some
other entries in Table 8 that employ hybrid schemes that also perform better than optimized quadratic
interpolators. This particular hybrid scheme [23] utilizes specific table lookups instead of polynomial
coefficients. This enables a reduction in the total table size as table-lookup methods can sometimes
be more efficient in evaluation of elementary functions [10]. On the other hand, this technique [23]
achieves this reduction in table size at the expense of computing the coefficients on the fly which adds
extra delay to the critical path and, thus, exhibits long latencies.

8. Conclusions

A technique for designing function interpolators using optimized bit-widths of coefficients and
truncated multipliers, squarers and cubers has been presented. A number of 16, 24 and 32-bit linear,
quadratic and cubic interpolators are developed and presented for reciprocal, square root, reciprocal
square root and sine. The technique is general and can be used for any function. Furthermore, it can be
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easily adapted for use with other designs for function approximation. The results show that reducing
the length of the coefficients significantly reduces the area, delay, and power requirements. Better
results can be expected by utilizing exact memory requirements instead of those generated from a
memory compiler. Also, each memory unit was generated individually and could be improved further
by using multi-ported memories. More importantly, compared with previous methods significantly
smaller requirements for each coefficient and the total lookup table size are obtained.
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