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Abstract. Grasslands are inherently dynamic in space and time, evolving with frequent
disturbance from fire and herbivores. As a consequence of human actions, many remaining
grasslands have become homogenous, which has led to reduced ecosystem function,
biodiversity loss, and decreased ecological services. Previous research has shown that
restoring inherent heterogeneity to grasslands can increase avian diversity, but the amount of
heterogeneity (i.e., number of patches or fire return interval) and the impact on avian
community stability have yet to be investigated. We used a unique landscape-level design to
examine avian response to interacting fire and grazing across multiple experimental landscapes
that represented a gradient of fire- and grazing-dependent heterogeneity. We used seven
landscapes (430–980 ha; x̄¼ 627 ha) with varying levels of patchiness ranging from annually
burned (one single patch) with spring-only fires to a four-year fire return interval with spring
and summer fires (eight patches). This design created a range of heterogeneity as a result of
pyric herbivory, an ecological process in which fire and grazing are allowed to interact in space
and time. We found that greater heterogeneity across experimental landscapes resulted in
increased avian diversity and stability over time. An index of bird community change,
quantified as the sum of the range of detrended correspondence analysis axis site scores, was
nearly four times greater in the most homogenous experimental landscape when compared to
the most heterogeneous experimental landscape. Species responses were consistently positively
associated with increased heterogeneity at the landscape scale, and within-experimental-
landscape responses were most often related to litter cover, litter accumulation, and vegetation
height. We conclude that increased fire- and grazing-dependent heterogeneity can result in
high variability in the bird community at finer, transect scales, but increased diversity and
stability at broad landscape scales. We recommend that future management efforts in
rangelands focus on restored disturbance processes to increase heterogeneity and improve
grassland bird conservation.
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INTRODUCTION

The promotion of uniform and moderate grazing

across rangelands has become a central paradigm for
grassland management and, although it has undoubted-
ly limited severe grazing on rangelands, it has greatly

diminished the natural complexity of this biome
(Fuhlendorf and Engle 2001). This simplification, or
homogenization, of rangeland landscapes has resulted in

a decline of ecosystem structure and function, ecosystem
services, and overall biodiversity (Anderson 2006,
Derner et al. 2009, Fuhlendorf et al. 2009). Recognition

of the state of rangelands and an understanding of the
importance of ecosystem complexity and heterogeneity
has presented a challenge to ecologists and managers

alike because it suggests the need for an alternative

paradigm for ecosystem management (Fuhlendorf et al.

2012). Because heterogeneity is the root of diversity

(Wiens 1997, Fahrig et al. 2011), a model for managing

rangelands that promotes the restoration of variability

that is inherent to this system may diversify structure

and increase ecosystem function (Fuhlendorf et al.

2012). Furthermore, while it is generally accepted that

heterogeneity increases diversity (Benton et al. 2003,

Fahrig et al. 2011), there is a need to understand the

level of heterogeneity that maximizes conservation in an

applied framework if research is expected to have an

effect on management.

Fire and grazing are key forces in the maintenance of

grass-dominated systems, and their frequency, intensity,

and effects have been variable in time and space at

multiple scales (Steinauer and Collins 1996, Hoekstra et

al. 2005). Recently, a model for managing rangelands

that restores the interactive effects of fire and grazing

through an ecological process known as pyric herbivory

has been shown to restore grassland heterogeneity and
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increase diversity across multiple trophic levels (Fuh-

lendorf and Engle 2004, Fuhlendorf et al. 2009).

Heterogeneity in this context is derived from variability

in vegetation structure, composition, density, and

biomass, which are highly dependent on fire and grazing

processes and the interaction of these processes (Fuh-

lendorf and Engle 2001, 2004, Allred et al. 2011,

McGranahan et al. 2012). Through pyric herbivory,

heterogeneity results from a shifting grassland mosaic at

broad scales as herbivores and fire interact through a

series of positive and negative feedbacks (Fuhlendorf et

al. 2009, McGranahan et al. 2012, Augustine and

Derner 2013). As a result, diversity has increased across

multiple trophic levels (Fuhlendorf et al. 2006, 2010,

Engle et al. 2008, Hovick et al. 2014), but how this

affects community stability and variability over time is

mostly still unknown.

Few studies have addressed the direct influence of

spatial heterogeneity on community temporal variability

or how disturbance history alters the spatial scale of

community stability over time (Wu and Loucks 1995,

Foster et al. 2003). However, it is well supported that

biological diversity contributes to ecosystem stability

(Tilman 1996, Tartowski et al. 1997, Jiang and Pu 2009,

Downing et al. 2014), and that biodiversity is a driver of

many ecological processes and not simply a product of

them (Naeem 2002). In most cases, however, the effects

of diversity on stability have been investigated at lower

trophic levels or highly controlled experiments and few

studies have examined the effects of restored grassland

heterogeneity on the stability of upper trophic levels

such as the native bird community. In this circumstance,

we define stability as a reduction in the temporal

variability of an attribute within an ecosystem (Downing

et al. 2014). Specifically, we will focus on population

attributes associated with diversity of the grassland bird

community (i.e., the temporal variability in species

abundance and diversity).

There needs to be a better understanding of how the

timing and scale of restored natural disturbance

processes influence diversity and stability (Christensen

1997, Wiens 1997). It has been shown that high habitat

heterogeneity can promote temporal stability through

several mechanisms, including stabilization of resources

and increased refugia from minor disturbance or

predation (Brown 2007), but this probably depends on

scale. Despite many conservation and restoration

programs focused on generating and maintaining

heterogeneity to promote biodiversity and system

stability (Palmer et al. 1997, Benton et al. 2003, Carey

2003), there is limited empirical evidence supporting the

impacts of restored heterogeneity at broad scales

relevant to management or on terrestrial fauna. The

implications of such research would be applicable to

ecological theory and management practices simulta-

neously (Micheli et al. 1999). Furthermore, a better

understanding of the impacts of restored heterogeneity

on community stability will improve conservation

efforts because variation in community processes can

decrease reliability of ecosystem processes (Naeem and
Li 1997), reduce ecosystem services (Cardinale et al.

2012), and increase extinction risk (Pimm et al. 1995).
To improve our understanding of the impacts of

restored heterogeneity on avian diversity, stability, and
individual species abundances, we investigated avian

response to a gradient of fire- and grazing-dependent
heterogeneity that resulted from pyric herbivory. We
used a unique landscape-level design across seven

experimental landscapes that varied from annually
burned (i.e., one patch) to a four-year fire return interval

with spring and late-summer prescribed fires (i.e., eight
patches). We hypothesized that greater landscape-level

heterogeneity would increase avian diversity and result
in greater community stability over time, and that

individual species abundances would vary greatly across
the gradient of heterogeneity as a result of specific life

history traits.

METHODS

Study site

Our study took place on The Nature Conservancy’s
Tallgrass Prairie Preserve (TGPP) in northeast Oklaho-

ma, USA from 2011 to 2013. This area comprises the
southern extent of the Flint Hills region of the Great

Plains and is part of the largest remaining tallgrass
prairie in North America. The TGPP is a 16 000-ha area

dominated by tallgrass prairie plant community. Dom-
inant grasses include Andropogon gerardii Vitman,

Schizachyrium scoparium Nash, Panicum virgatum L.,
and Sorghastrum nutans (L.) Nash. Dominant forbs at

the preserve include ironweed (Veronia spp.), milkweed
(Asclepias spp.), and ashy sunflower (Helianthus mollis).

The climate is temperate with hot summers (average
high of 31.48C for June 2011–2013) and cold winters

(average low of �4.818C for January 2011–2013).
Precipitation during the growing season (April–October)

was 478 mm, 624 mm, and 875 mm for 2011, 2012, and
2013, respectively.

Experimental design

Our unique landscape-level design consisted of seven

large-scale experimental landscapes that varied in size
from 430 to 980 ha (x̄ ¼ 627 ha) and ranged from one

patch (i.e., the entire experimental landscape) to eight
patches (Fig. 1). Burn patch size varied depending on the

number of patches within the landscape, but averaged
170 ha for the six landscapes with fire return intervals . 1

year. Experimental landscapes had no interior fences and
were enclosed by a single exterior fence for organizational

purposes. The attraction and preference of grazing
animals to recently burned areas creates structural

heterogeneity because animals graze recently burned
portions of the landscape while reducing their use of
areas that have gone unburned in multiple years. This

behavior results in a range of vegetation structure, with
recently burned and grazed patches having shorter
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vegetation devoid of litter, while unburned areas have

taller vegetation and greater amounts of litter (Allred et

al. 2011, McGranahan et al. 2012). Therefore, we created

spatial heterogeneity within seven experimental land-

scapes by manipulating the number and relative size of

burn patches. As patch number increases and the relative

size of a patch decreases (range 79–378 ha), grazing

animals will concentrate more heavily on such a patch,

increasing the level of heterogeneity within an experi-

mental landscape (Allred et al. 2011). Each experimental

landscape was assigned a fire return interval (i.e., 1, 2, 3,

or 4 years) and a season of fire (i.e., spring only or spring

and summer). Experimental landscapes with one to four

patches were burned in the spring (March to April);

landscapes with four to eight patches were burned in the

spring and summer (July to August). Application of fires

began in 2008 and continued through 2013, and only one

patch was burned per experimental landscape, season,

and year. All experimental landscapes were in similar

condition, with similar potential productivity, and were

moderately grazed by domestic cattle (Bos taurus) at 2.4

AUM/ha (AUM is animal unit months, a standard

metric of stocking rate). Spring and summer burns were

done following prescriptions set by TGPP personnel and

only Nature Conservancy employees were allowed to

burn. Fuel loads and fire behavior varied dependent upon

fire return interval of the experimental landscape and the

weather conditions, with summer fires generally resulting

in patchier burns as a consequence of higher fuel moisture

and conducted under higher relative humidity than spring

fires.

Data collection

We used line transect surveys to record the grassland

bird community. Line transects are preferred to point

counts in open habitats due to higher sampling

efficiency, and cryptic species are more likely to be

observed (Buckland 2001). We randomly placed 12

transects, 200 m long, in each of the seven experimental

landscapes (i.e., 84 transects total) because we were

primarily interested in landscape-level (to correspond to

the heterogeneity gradient) responses to heterogeneity

and therefore wanted equal sampling effort across

experimental landscapes. Transects were placed .100

m from experimental landscape borders and .200 m

from other transects. We conducted surveys from

sunrise until 10:30 hours (Central Standard Time), when

grassland birds are most active (Ralph et al. 1993), and

on days with no precipitation and wind speeds less than

15 km/h. On each transect, observers recorded every

bird seen and heard within 50 m of the line as they

walked at a slow pace (i.e., ;1 m/s). We limited

observation to 50 m to maximize detectability and

decrease potential observer error when identifying

cryptic grassland species at long distances (Pillsbury et

al. 2011). Additionally, observers recorded the species

and perpendicular distance from the line for each

encounter. We conducted surveys four times annually

(;every 10 days) from 15 May through 10 July.

We measured plant community characteristics once

each breeding season in mid June to correspond with

avian surveys. We recorded vegetation at the midpoint

of each transect and placed a 0.5-m2 quadrat on the

transect and sampled every 2.5 m in each cardinal

direction for a distance of 10 m (n ¼ 17 total quadrats/

plot). We estimated canopy cover for the following plant

functional groups: graminoid, forb, litter, bare ground,

and shrub. Additionally, we measured vegetation height

and litter depth in each quadrat using standardized

methods. Finally, we measured vegetation density using

FIG. 1. Experimental design at The Nature Conservancy’s Tallgrass Prairie Preserve, Oklahoma, USA, used to examine the
influence of a gradient of fire and grazing heterogeneity on the grassland breeding bird community. Each box represents an exterior
fence of an experimental landscape and below it we have included the number of patches within each landscape and the fire return
interval (parenthetically). Dashed lines are hypothetical patch divisions created by discrete fire and focal grazing; no experimental
landscape had interior fencing. The dark boxes represent spring fires (March–April) and the gray boxes represent summer fires (late
July–August). Experimental landscapes ranged from 430 to 980 ha (x̄¼ 627 ha) and patch sizes ranged from 79 to 378 ha (x̄¼ 170
ha) in landscapes managed for heterogeneity.

TORRE J. HOVICK ET AL.664 Ecological Applications
Vol. 25, No. 3



a Nudd’s board adapted for grassland/shrubland use by

observing the percentage of obstruction on a Nudd’s

profile board from a distance of 7.5 m away and an

observer height of 1 m above ground level (Nudds 1977,

Guthery et al. 1981). We recorded vegetation densities in

each cardinal direction at every plot.

Data analysis

We assessed the effects of heterogeneity on avian

diversity by calculating Shannon diversity (H ) at the

experimental landscape level (Pillsbury et al. 2011). This

diversity measure simultaneously takes into account the

number of bird species present in an experimental

landscape and the relative abundances of individual

bird species. We overcame a potential drawback of

diversity indices associated with obscured species

identities by restricting our analysis to five grassland

breeding birds that made up the majority of our

detections. Then, to explicitly examine the influence of

heterogeneity on diversity, we ran a general linear model

with the number of patches within an experimental

landscape as our dependent variable and used the

calculated diversity scores (H ) as our response variable.

This approach allowed for simple interpretation of the

effects of heterogeneity on grassland bird diversity.

We examined bird community composition and

stability over time by subjecting grassland bird abun-

dance data for each experimental landscape to indirect

gradient analysis using detrended correspondence anal-

ysis, DCA. DCA has been used to summarize general

similarities and differences among grassland bird com-

munities and can elucidate compositional dynamics over

time (Collins 2000, Fuhlendorf et al. 2006). This method

of analysis uses detrending and rescaling to deal with the

arch effect and compression near the ends of gradients

that can flaw reciprocal averaging and other correspon-

dence analysis. Additionally, DCA presents sample and

site scores expressed in standard deviation units, which

makes interpreting results easier and more intuitive than

some other forms of ordination. All analyses were

conducted in Canoco 5.0 using default settings for DCA

unconstrained ordination (ter Braak and Šmilauer

2012); software is available online.4 After completing

the DCA, we then used loading scores for site samples

(i.e., each experimental landscape and year combina-

tion) to project differences in avian community change

over time. We call this metric the community change

index because it refers to the change in the bird

community at the experimental landscape scale across

the three years of the study. Differences in community

composition are measured by standard deviation units,

and therefore, experimental landscapes with a greater

range of axis scores have the most change in the bird

community, whereas those experimental landscapes with

a smaller range in axis scores represent the most stable

bird communities over time. In addition to projecting

site scores to show relationships of dissimilarity in

ordination space, we used the community change index

as a response variable in a general linear model to show

the relationship between bird community stability and

fire- and grazing-dependent heterogeneity.

In addition to among-experimental-landscape dynam-

ics, we used DCA to investigate finer-scale patterns of

community composition within landscapes at the

transect level. For this analysis, we performed an

indirect gradient analysis using DCA on transect-level

bird abundances. We then used the individual DCA axis

1 site scores to calculate an average of all transects (i.e.,

12 per experimental landscape) within an experimental

landscape for each year of the study. Next, we calculated

a standard deviation for the average site scores within

each year. We then took an average of the standard

deviation for each experimental landscape over the three

years of the study and calculated a standard error of the

averaged standard deviation. We call this metric the

variation index because it refers to variation in the bird

community at fine scales over time. Finally, we used a

general linear model to quantify the effect of fire- and

grazing-dependent heterogeneity (i.e., the number of

patches/experimental landscape) on transect-level varia-

tion in the bird community (i.e., variation index).

Increased standard deviation in this analysis would

indicate greater variability in the avian community at

the transect scale over time, a result that would be

expected at finer scales within heterogeneous environ-

ments.

We addressed individual species’ responses to fire- and

grazing-dependent heterogeneity using distance esti-

mates from line transect surveys and program Distance

6.0 to calculate species-specific detection probabilities

and densities (Thomas et al. 2010). We then used density

estimates to create general linear models for each of the

five most abundant obligate-breeding grassland bird

species (sensu Vickery et al. 1999). We ran two linear

models for each of the five species to assess the influence

of the number of patches (i.e., level of heterogeneity)

and the effect of fire return interval on individual species

abundances. We realize that fire return interval and the

number of patches are highly correlated (i.e., greater fire

return intervals in this study will increase the number of

patches), but to make our results most applicable to

future conservation, separate analysis on the number of

patches (heterogeneity) and fire return interval makes

our results more interpretable.

Finally, we used transect-level vegetation data to

examine the influence of finer-scale vegetation structure

and composition that result from disturbance processes

on individual species abundances. To do this, we used

univariate general linear models that could explain

relationships between individual species abundances

and vegetation parameters that were measured at

breeding bird transects. We used transect-level vegeta-

tion parameters and species abundances because using4 http://www.microcomputerpower.com/
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landscape-level means would average away the variation

within landscapes that is probably responsible for

species selection of specific vegetation structure and

composition resulting from variable timing of fire and

grazing processes at the transect scale. We ran a series of

eight models for all five species of interest. After

calculating Pearson correlation coefficients for vegeta-

tion components and removing those with values .

0.60, we only present the outcomes of models for the five

uncorrelated vegetation parameters.

RESULTS

We detected 5534 individuals of 35 different bird

species (see Appendix). Of the species detected, 12 were

obligate grassland breeding birds, 10 were facultative

grassland breeding birds, and 13 were species associated

with shrubland, forest, or wetland. However, the

grassland bird community was dominated by five species

that made up nearly 94% of all detections. The most

frequently encountered species were Dickcissel (Spiza

americana), Grasshopper Sparrow (Ammodramus sav-

annarum; see Plate 1), Eastern Meadowlark (Sturnella

Magna), Henslow’s Sparrow (Ammodramus henslowii ),

and Upland Sandpiper (Bartramia longicauda). No other

species accounted for �1% of the total detections.

Therefore, all of our analyses focused on the five most

abundant grassland breeding birds that have the greatest

potential of being affected by varying levels of fire- and

grazing-dependent heterogeneity.

Analysis of our seven experimental landscapes demon-

strated that the grassland bird community is strongly

dependent on heterogeneity. Grassland heterogeneity,

quantified as the variation in vegetation components,

generally increased at the landscape scale with an increase

in the number of patches within experimental landscapes

(Fig. 2). As a result, we found a significant, positive linear

relationship between landscape-level spatial heterogeneity

and grassland bird community diversity (Fig. 3).

Our examination of the bird community using DCA
explained .87% of the variation in the grassland

breeding bird community at the landscape level (Fig.

4A). Moreover, modeling of bird community stability

showed a significant, negative relationship between

community change index and the number of patches in

an experimental landscape (Fig. 4B), indicating that

increased heterogeneity at landscape scales resulted in

more stable bird communities over time. In fact, the

most homogenous experimental landscape experienced

nearly four times greater change in the grassland bird

community than the most heterogeneous experimental

landscape across the three years of the study.

At finer, transect scales we found that greater

heterogeneity resulted in increased bird community

FIG. 2. Vegetation heterogeneity shown as standard deviation of vegetation components measured along each breeding bird
transect in experimental landscapes ranging from one to eight patches at the Tallgrass Prairie Preserve, Oklahoma, USA.

FIG. 3. Grassland bird community diversity represented as
Shannon’s diversity index in response to fire- and grazing-
dependent heterogeneity across seven experimental landscapes
at the Tallgrass Prairie Preserve. An increasing number of
patches represents increasing heterogeneity.
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variability within experimental landscapes over time

(Fig. 5). In other words, experimental landscapes with

the greatest number of patches had transects with

greater variation in the bird community over time.

Transects in the experimental landscapes with the

greatest number of patches had a variation index of

0.48 6 0.10 (mean 6 SE) across the three years, whereas

transects in the experimental landscapes with the fewest

patches only had a variation index of 0.15 6 0.01. This

result is reflected in the variation of vegetation

parameters at a landscape level: experimental landscapes

with few patches have little variability (i.e., range in

standard deviation) in vegetation components, whereas

experimental landscapes with many patches have the

most variable vegetation as a result of out-of-sequence

successional recovery (Fig. 2).

The strength of individual species’ responses to

heterogeneity varied, but four of the five focal species

showed statistically significant or near-significant in-

creases in abundance as a result of increased heteroge-

neity at broad, landscape-level scales (Fig. 6). The

Dickcissel, a generalist species and the most frequently

detected bird in this study, was the only breeding bird

examined that did not show a response to fire return

interval or the number of patches in an experimental

landscape. Three of the five species examined had a

significant, positive relationship with heterogeneity, and

variation in Henslow’s Sparrow abundance was best

explained by fire return interval (Fig. 6).

Within experimental landscapes at the transect scale,

we found that litter cover, litter depth, and vegetation

height were significant in explaining breeding bird

abundances for most species (Table 1). Dickcissel,

Henslow’s Sparrow, and Eastern Meadowlark all

showed positive relationships with litter depth or litter

cover within patches, whereas Grasshopper Sparrow

abundance decreased with increasing litter depth, and

Upland Sandpiper abundance was most explained by a

negative association with vegetation height (Table 1).

DISCUSSION

Restoring heterogeneity to dynamic grassland ecosys-

tems can benefit biodiversity (Collins 2000, Fuhlendorf

et al. 2006, Coppedge et al. 2008, Hovick et al. 2014).

The amount of heterogeneity and the influence on the

stability of communities, however, have received much

less investigation, especially on upper trophic levels at

landscape scales. Our examination of seven experimental

landscapes representing a gradient of fire- and grazing-

FIG. 4. (A) Biplot of detrended correspondence analysis
(DCA) showing axis 1 and axis 2 loadings of site scores
representing bird community dissimilarity across a gradient of
fire- and grazing-dependent heterogeneity at the Tallgrass
Prairie Preserve. Polygons were formed by connecting the site
scores for each experimental landscape for all three years of the
study. Numbers in the center of polygons represent the number
of patches resulting from pyric herbivory. The � symbol denotes
an experimental landscape with four-year fire return interval
and spring-only fire; the � symbol denotes an experimental
landscape with two-year fire return interval and spring and
summer fires. (B) Sum of the range of detrended correspon-
dence analysis axis 1 and axis 2 site scores (i.e., community
change index) as a function of fire- and grazing-dependent
heterogeneity. A strong, negative relationship between the
community change index and heterogeneity signifies less change
in the avian community at landscape scales when more
heterogeneity is present.

FIG. 5. The standard deviation of detrended correspon-
dence analysis axis 1 scores (i.e., variation index) at the transect
scale within experimental landscapes, showing grassland bird
community variation as a function of heterogeneity at the
Tallgrass Prairie Preserve. Bird community variation at the
transect scale within experimental landscapes increased with
increasing heterogeneity. Error bars show SE.
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dependent heterogeneity demonstrated that bird diver-

sity and abundance are strongly associated with

increased heterogeneity; nearly all species reached

maximum abundances in the most heterogeneous

landscapes and diversity was positively associated with

heterogeneity. Furthermore, heterogeneity increased

bird community stability at landscape scales. Many

studies have reported a positive relationship between

diversity and community stability (Tilman 1996, Brown

2003, Ives and Carpenter 2007, Jiang and Pu 2009,

Downing et al. 2014), but this study provides a unique

example of applied research influencing community

stability at upper trophic levels at scales relevant to

management. These results give new evidence support-

ing the role of heterogeneity in the conservation of

biodiversity and community stability in rangeland

systems and substantiate the claims that spatial and

temporal heterogeneity and complexity are critical

elements in ecosystem function (Christensen 1997).

Additionally, our results provide direct application to

management because of our landscape-scale real-world

experimental design, and they stress the importance of

variable disturbance patterns to improve conservation of

breeding grassland birds (see Plate 1). Because we report

avian densities and abundances, it is worth noting that

density can be a misleading indicator of habitat quality

FIG. 6. The responses of individual species to fire return intervals and the number of patches within an experimental landscape
at the Tallgrass Prairie Preserve, Oklahoma, USA.
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and therefore the implications for avian conservation
should be interpreted with some caution (Van Horne

1983). However, in a review of bird counts as

environmental indicators, higher densities resulted in
higher recruitment per capita and per unit of land area

72% and 85% of the time, respectively (Bock and Jones
2004).

We found that fire- and grazing-dependent heteroge-

neity increased variability in vegetation cover and
structure at landscape scales. Differential timing of

disturbance across the landscape creates a corresponding

out-of-phase succession in vegetation within experimental
landscapes, which in turn is responsible for greater

heterogeneity at broad spatial scales and increased
temporal heterogeneity at fine spatial scales (Fuhlendorf

et al. 2006, Derner et al. 2009). This spatial heterogeneity

of vegetation structure provides greater breadth of
suitable nesting locations for grassland bird species and

increases the variety of grassland bird communities that
can occur across the landscape (Fuhlendorf et al. 2006,

Gregory et al. 2010, Little et al. 2012). Although there is

not a clear link to a mechanistic feedback between
heterogeneity and birds as there is for plants, it is clear

that dynamic grasslands that embrace the shifting
grassland mosaic can reduce the sensitivity to annual

changes in the avian community brought on by attempts

to reduce dynamism in grasslands through annual
burning and grazing. Moreover, maximizing variation

in vegetation structure can buffer against environmental

shocks or threats associated with predation and resource
shortages (Brown 2003, Ives and Carpenter 2007). As a

result, we found that experimental landscapes with
greater heterogeneity had less community change, where-

as those with more homogeneous structure experienced

nearly four times more community change. This finding
supports previous recommendations to increase the

diversity of management practices used in the North
American grasslands to overcome the current state of

homogeneity and improve grassland bird conservation

(Powell 2008, Rahmig et al. 2009).
Increased temporal stability in the avian community

with increased landscape-level heterogeneity may be

explained through multiple mechanisms, including

increased resources and refugia, and could be the result
of a phenomenon commonly referred to as the portfolio

effect: as the community diversifies, constancy increases

over time (Doak et al. 1998, Tilman et al. 1998).
Analogous to advice given by a financial consultant, the

portfolio effect refers to increasing diversity so that the
aggregate value (e.g., diversity, biomass) will be less

variable through time. In this case, fire- and grazing-

dependent heterogeneity at broad scales created suitable
environments that elevated species richness in the most

heterogeneous experimental landscapes, thereby creat-
ing a temporally stable avian community because of the

complementary or independent dynamics among species

that perform similar ecosystem functions (Schindler et
al. 2010).

Because heterogeneity is largely associated with

spatial and temporal variability, it is highly dependent
on scale and should be evaluated across several scales

(Fuhlendorf and Smeins 1999). To address this, we
examined community dynamics at the transect scale in

addition to landscape scales. We found a strong positive

association with transect-level variation in species
abundance and the number of patches in an experimen-

tal landscape. In other words, at fine scales, heteroge-
neity increased temporal variability in the grassland bird

community, but at broad spatial scales, heterogeneity

resulted in greater temporal stability. This fine-scale
variation over time occurs as some specialized species

select areas of low-stature grazing lawns in recently

burned patches (i.e., Upland Sandpiper), whereas other
species primarily select tall, unburned patches that occur

through time as patches succeed following disturbance
(i.e., Henslow’s Sparrow). As a result, within experi-

mental landscapes, diversity is high over time but low at

the transect scale in a given breeding season. This
temporal heterogeneity within patches demonstrates the

dependence of grassland birds on disturbance and
illustrates the variation in species composition as

succession takes place over time (Skowno and Bond

2003).
Within-landscape selection was best explained by fine-

scale habitat associations at the transect scale, which

illustrated that litter cover, litter depth, and vegetation

TABLE 1. Results of univariate regression showing the influence of vegetation components on grassland bird abundance at the
transect scale within experimental landscapes managed with pyric herbivory at the Tallgrass Prairie Preserve, Oklahoma, USA,
2011–2013.

Vegetation
component

Dickcissel
Grasshopper
Sparrow

Eastern
Meadowlark

Henslow’s
Sparrow

Upland
Sandpiper

b r2 b r2 b r2 b r2 b r2

Grass cover 0.05 0.02 �0.001 ,0.001 0.02 0.02* 0.06 0.14* �0.008 0.02*
Forb cover 0.10 0.08* �0.003 ,0.001 �0.001 ,0.001 �0.02 0.02* �0.003 0.005
Litter cover 0.05 0.08* ,0.001 ,0.001 0.02 0.06* 0.04 0.30* �0.005 0.05*
Litter depth 0.49 0.06* �0.18 0.04* 0.02 ,0.001 0.51 0.40* �0.05 0.04*
Veg. height 0.23 0.27* �0.02 0.009 0.02 0.02* 0.08 0.22* �0.02 0.13*

Notes: Univariate results indicate that most species are significantly impacted by litter accumulation and vegetation (Veg.)
height, two components that are greatly influenced by fire and grazing processes within landscapes and moderated across
experimental landscapes with greater heterogeneity. The regression coefficient b is the estimate.

* P � 0.05.
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height were the most influential parameters affecting

individual species abundances. Grassland birds select

nesting habitats with very specific characteristics, which

suggests that they evolved in grassland environments

with highly variable disturbance regimes that created

structurally diverse habitats (Cody 1985, Knopf 1996).

Despite the specific affinities of each species for certain

vegetation structure, no species reached maximum

abundances in an experimental landscape with limited

heterogeneity. This suggests that patches within the

most heterogeneous experimental landscape create

optimal nesting conditions, or that species may inher-

ently select for more diverse landscapes because they can

provide stabilization of resources and increased refugia

from potential environmental stressors (Brown 2007).

The grassland bird community of the southern Great

Plains is made up of a relatively low number of species

and is dominated by a few very abundant species; as a

result, our analysis was focused on the five most

abundant grassland breeding species. Therefore, while

we do speculate that heterogeneity plays an important

role in all habitat types, our results only directly apply to

grassland breeding birds. Our research area represents

the southern extent of tallgrass prairie and this may

explain the lack of overall diversity in the grassland bird

community and the abundance of a limited number of

species. Moreover, this area experiences a wide range of

climatic conditions and species must be able to cope with

great annual variation in rainfall and temperature. In

part, heterogeneity can play an important role in

buffering against this variation. For example, annually

burned patches may have highly variable amounts of

production, depending upon rainfall and early-spring

temperatures, whereas landscapes with a variety of

patches with different fire return intervals will have a

structural mosaic regardless of interannual variation in

climatic conditions. As previous work has demonstrat-

ed, heterogeneity can act as a buffer against climatic

variation for cattle production (Allred et al. 2014), and

our results demonstrate that this buffering effect applies

to the stability of the grassland bird community as well.

Maintaining and restoring spatiotemporally variable

disturbances that produce heterogeneity in herbaceous

systems has increased diversity in multiple taxa (Fuh-

lendorf et al. 2006, 2010, Engle et al. 2008), and has

frequently been suggested as the best method to promote

the conservation of grassland bird communities (Askins

2000, Walk and Warner 2000, Powell 2006). This study

now provides an approach that allows conservationists

and land managers to understand how specific distur-

bance regimes can maximize individual species abun-

dances, and perhaps more importantly, this research

illustrates the significance of heterogeneity at broad

scales to optimize avian diversity and stability. Addi-

tionally, our findings suggest that grassland bird

diversity in the southern Great Plains is maximized with

a three- to four-year fire return interval, which supports

tree ring data indicating that this region had a mean fire

PLATE 1. Singing adult male Grasshopper Sparrow in an experimental landscape managed for heterogeneity at The Nature
Conservancy’s Tallgrass Prairie Preserve, Osage County, Oklahoma, USA. Photo credit: T. J. Hovick.

TORRE J. HOVICK ET AL.670 Ecological Applications
Vol. 25, No. 3



return interval for the early part of the 20th century of

3.76 years (Allen and Palmer 2011). It is more

challenging to relate our burn patch sizes to historic

records, but it is safe to assume that most historic fires

were very large in context and typically were regulated

by natural fire breaks. As a result, we recommend that

large patch sizes be used by land managers and ranchers

when possible and that they burn no more than one-

third of the landscape annually. Furthermore, our

results add to a growing body of work supporting the

role of diversity in community stability and ecosystem

function and imply that managing for heterogeneity may

have other positive benefits to conservation that we have

yet to quantify (Brown 2003, Loreau et al. 2003, Isbell et

al. 2009, Downing et al. 2014).
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