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Abstract
Deviations	from	typical	environmental	conditions	can	provide	insight	into	how	organ-
isms	may	respond	to	future	weather	extremes	predicted	by	climate	modeling.	During	
an	episodic	and	multimonth	heat	wave	event	(i.e.,	ambient	temperature	up	to	43.4°C),	
we	studied	the	thermal	ecology	of	a	ground-	dwelling	bird	species	in	Western	Oklahoma,	
USA.	Specifically,	we	measured	black	bulb	temperature	(Tbb)	and	vegetation	parame-
ters	at	northern	bobwhite	(Colinus virginianus;	hereafter	bobwhite)	adult	and	brood	lo-
cations	as	well	as	at	stratified	random	points	in	the	study	area.	On	the	hottest	days	(i.e.,	
≥39°C),	 adults	 and	broods	obtained	 thermal	 refuge	using	 tall	woody	 cover	 that	 re-
mained	on	average	up	to	16.51°C	cooler	than	random	sites	on	the	landscape	which	
reached	>57°C.	We	also	found	that	refuge	sites	used	by	bobwhites	moderated	thermal	
conditions	by	more	than	twofold	compared	to	stratified	random	sites	on	the	landscape	
but	that	Tbb	commonly	exceeded	thermal	stress	thresholds	for	bobwhites	(39°C)	for	
several	hours	of	the	day	within	thermal	refuges.	The	serendipitous	high	heat	conditions	
captured	in	our	study	represent	extreme	heat	for	our	study	region	as	well	as	thermal	
stress	for	our	study	species,	and	subsequently	allowed	us	to	assess	ground-	dwelling	
bird	 responses	 to	 temperatures	 that	are	predicted	 to	become	more	common	 in	 the	
future.	Our	findings	confirm	the	critical	importance	of	tall	woody	cover	for	moderating	
temperatures	 and	 functioning	 as	 important	 islands	 of	 thermal	 refuge	 for	 ground-	
dwelling	 birds,	 especially	 during	 extreme	 heat.	However,	 the	 potential	 for	 extreme	
heat	loads	within	thermal	refuges	that	we	observed	(albeit	much	less	extreme	than	the	
landscape)	 indicates	 that	 the	 functionality	 of	 tall	woody	 cover	 to	mitigate	 heat	 ex-
tremes	may	be	increasingly	limited	in	the	future,	thereby	reinforcing	predictions	that	
climate	change	represents	a	clear	and	present	danger	for	these	species.
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1  | INTRODUCTION

Although	comparatively	 rare,	extreme	climatic	events	can	have	sub-
stantial	impacts	on	populations	(Easterling	et	al.,	2000;	Holmgren	et	al.,	

2006;	Parmesan,	Root,	&	Willig,	2000).	For	example,	 the	 frequency,	
severity,	and	extent	of	high	heat	events	can	dictate	species	distribu-
tions	 (Jiguet	 et	al.,	 2006;	Parmesan	et	al.,	 2000),	 constrain	behavior	
(Austin,	1976;	Cunningham,	Martin,	Hojem,	&	Hockey,	2013;	Ricklefs	
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&	Hainsworth,	1968;	Zimmerman	et	al.,	1994),	and	inhibit	physiologi-
cal	performance	of	organisms	(Dawson,	1982;	McKechnie,	Hockey,	&	
Wolf,	2012;	du	Plessis,	Martin,	Hockey,	Cunningham,	&	Ridley,	2012).	
Even	short-	term	heat	waves	have	led	to	catastrophic	population-	level	
mortality	events	in	endothermic	bird	and	bat	species	in	arid	regions	of	
Australia	and	the	United	States	(Finlayson,	1932;	Miller,	1963;	Towie,	
2009;	Welbergen,	Klose,	Markus,	&	Eby,	2008).	Increased	heat	loads	
have	also	been	 linked	to	population-	level	extinctions	 in	ectothermic	
lizards	 in	Mexico	 (Sinervo	et	al.,	2010).	 In	the	future,	 thermal	condi-
tions	currently	considered	as	extreme	events	are	predicted	to	become	
more	frequent	and	extensive	in	many	regions	due	to	climate	change	
(IPCC	2013).	Accordingly,	extreme	heat	events	can	present	researchers	
with	an	opportunity	to	evaluate	the	effects	of	climate	projections	on	
organisms	(Boyles,	Seebacher,	Smit,	&	McKechnie,	2011;	McKechnie	
et	al.,	2012);	however,	doing	so	typically	necessitates	either	long-	term	
studies	or	those	that	serendipitously	capture	climatic	events	(e.g.,	ep-
isodic	high	heat	events).

While	increased	heat	loads	can	have	substantial	impacts	on	popu-
lations	(Sinervo	et	al.,	2010),	they	first	originate	as	thermal	constraints	
on	individuals	that	are	often	mediated	by	an	organism’s	behavior	and	
physiology	(van	Beest,	Van	Moorter,	&	Milner,	2012;	Kendeigh,	1949;	
Mosauer,	1936).	Refuge	seeking	is	a	critical	behavior	that	allows	many	
reptile	 (Attum,	Kramer,	&	 El	Din,	 2013;	 Lagarde	 et	al.,	 2012;	Mack,	
Berry,	Miller,	&	Carlson,	2015),	mammal	(van	Beest	et	al.,	2012;	Cain,	
Jansen,	Wilson,	&	Krausman,	2008),	and	bird	(Wolf	&	Walsberg,	1996;	
Wolf,	Wooden,	&	Walsberg,1996)	species	to	lessen	the	impacts	of	ex-
treme	heat	events	or	avoid	heat	stress	by	exploiting	more	favorable	
microclimates	available	to	them.	Thermal	refuge	can	be	provided	by	
abiotic	 (i.e.,	 landform,	 topography;	Millar,	Westfall,	&	Delany,	 2016)	
or	biotic	 (i.e.,	vegetation	cover)	 (Attum	et	al.,	2013;	van	Beest	et	al.,	
2012)	landscape	features.	Importantly,	the	survival	of	organisms	can	
hinge	on	their	ability	to	locate	and	occupy	refuges	that	modulate	ex-
treme	heat	 conditions;	 accordingly,	 previous	 research	 has	 identified	
how	 fine	 scale	microrefuges	 can	 serve	 as	 thermal	 refuge	 for	 endo-
therms	 and	 ectotherms	 (Attum	 et	al.,	 2013;	 Carroll,	 Davis,	 Elmore,	
Fuhlendorf,	&	Thacker,	2015;	Lagarde	et	al.,	2012;	Wolf	et	al.,	1996).	
Despite	 the	 acknowledged	 importance	 of	 thermal	 refuge	 for	 many	
species,	 it	 remains	unclear	whether	thermal	 refuges	will	continue	to	
effectively	 buffer	 organisms	 from	 future	 heat	 extremes	 (Keppel	 &	
Wardell-	Johnson,	 2012;	 Scheffers,	 Edwards,	 Diesmos,	 Williams,	 &	
Evans,	2014;	Suggitt	et	al.,	2011),	or	whether	suitable	buffered	condi-
tions	will	continue	to	exist	(Carroll,	Davis,	Fuhlendorf,	&	Elmore,	2016).	
For	example,	climate	change	effects	may	also	 induce	major	shifts	 in	
vegetation	structure	 (Breshears	et	al.,	2005,	2009;	Kelly	&	Goulden,	
2008)	which	consequently	could	alter	the	availability	of	thermal	cover	
for	 species.	 Therefore,	 assessing	 how	 microhabitats	 buffer	 thermal	
extremes	will	be	important	for	linking	changes	in	climate	to	changes	
in	microclimate	(Goller,	Goller,	&	French,	2014;	Potter,	Arthur	Woods,	
&	 Pincebourde,	 2013;	 Scheffers	 et	al.,	 2014)	 and	 can	 provide	 per-
spectives	 that	are	more	relevant	 to	organisms	than	approaches	that	
assess	thermal	conditions	at	broader	scales	 (e.g.,	>1	km)	(Gunderson	
&	Leal,	2012;	Hannah	et	al.,	2014;	Helmuth	et	al.,	2010;	Sears	et	al.	
2011).	This	linkage	will	be	fundamentally	necessary	for	understanding	

when,	where,	how,	and	if	organisms	will	adjust	to	more	extreme	tem-
peratures	in	the	future	and	also	for	assessing	how	microhabitats	may	
provide	in	situ	thermal	modulation	relative	to	climate	change	(Keppel	
et	al.,	2015;	Moritz	&	Agudo,	2013).

Studies	 that	capture	naturally	occurring	periods	of	extreme	heat	
in	 order	 to	 assess	 how	 climate	 change	 may	 influence	 endotherms	
are	 scarce	 (Boyles	 et	al.,	 2011;	 McKechnie	 et	al.,	 2012;	 Parmesan	
et	al.,	 2000)	 especially	 since	 such	 events	 can	be	 logistically	 or	 tem-
porally	 difficult	 to	 capture	 (e.g.,	 episodic	 heat	waves).	Nevertheless,	
the	 rates	 of	 catastrophic	 die	 offs	 and	 sublethal	 effects	 (e.g.,	 fitness	
costs,	 constraints	 on	 growth	 and	 development)	 are	 predicted	 to	 in-
crease	in	frequency	for	many	endothermic	bird	species	in	the	future	
(Cunningham,	Kruger,	Nxumalo,	&	Hockey,	2013;	McKechnie	&	Wolf,	
2010).	Ground-	dwelling	birds	may	be	especially	at	risk	to	heat	expo-
sure	because	they	inhabit	the	near-	ground	thermal	medium,	which	is	
subjected	 to	 extremely	 high	 and	 variable	 temperatures	 (Rosenberg,	
Blad,	&	Verma,	1983).	Accordingly,	models	of	bird	abundance	suggest	
that	populations	of	nonmigratory	ground	nesting	birds	are	more	vul-
nerable	than	other	avifauna	to	heat	waves	and	drought	(Albright	et	al.,	
2010).	As	a	small	nonmigratory	ground-	dwelling	bird	species,	north-
ern	bobwhite	 (Colinus virginianus;	 hereafter	 bobwhite)	 (see	Figure	1)	
are	a	useful	model	for	assessing	microhabitat	use	during	extreme	heat	
events	for	several	reasons	(Carroll,	Davis,	Elmore,	&	Fuhlendorf,	2015;	
Carroll,	Davis,	Elmore,	Fuhlendorf,	&	Thacker,	2015).	First,	bobwhites	
are	 regularly	 confronted	 with	 thermal	 stress	 and	 potentially	 lethal	
microclimates	 due	 to	 high	 heat	 and	 solar	 radiation	 during	 summer	
in	 the	 Southern	Great	 Plains	 of	 North	America	 (Forrester,	 Guthery,	
Kopp,	&	Cohen,	1998;	Guthery,	2000;	Guthery,	Land,	&	Hall,	2001).	
Second,	 there	 is	 only	 a	 4.4°C	 difference	 between	 normal	 bobwhite	
body	 temperature	 (42.6°C)	 and	 lethal	 temperature	 (47°C)	which	 re-
quires	them	to	actively	dissipate	heat	both	physiologically	 (i.e.,	gular	
flutter)	and	behaviorally	(i.e.,	occupying	refuges	and	reducing	activity)	
in	order	 to	mitigate	heat	extremes	 (Guthery,	2000).	Third,	bobwhite	
chicks	are	much	more	vulnerable	to	direct	solar	radiation	and	high	heat	

F IGURE  1 Female	northern	bobwhite	(Colinus virginianus)	
photographed	in	western	Oklahoma,	USA



     |  6415CARROLL et AL.

than	adults,	yet	annual	bobwhite	breeding,	nesting,	and	brood	 rear-
ing	cycles	temporally	overlap	with	yearly	peaks	in	heat	extremes	(i.e.,	
summer	in	North	America;	Guthery,	2000).	Consequently,	the	suscep-
tibility	of	bobwhites	to	high	heat	exposure	across	multiple	life	stages,	
combined	with	the	occurrence	of	unusually	hot	conditions,	provides	
a	context	from	which	to	examine	how	organisms	may	respond	to	the	
more	extensive	and	extreme	heat	associated	with	predicted	climate	
change.

The	climate	of	the	North	America’s	Southern	Great	Plains	is	char-
acterized	by	periodic	drought	events	and	heat	waves	 (Arndt,	2003).	
However,	 relative	 to	 historical	 records,	 the	 high	 heat	 that	 occurred	
during	 2012	 in	 the	 Southern	 Great	 Plains	was	 particularly	 extreme	
(i.e.,	ambient	temperature	up	to	43.4°C).	Specifically,	43	days	during	
the	 summer	 of	 2012	 had	 ambient	 temperatures	 (Tair)	≥	35°C	which	
exceeded	 the	 average	 summer	 maximum	 Tair	 reported	 for	 the	 re-
gion	 from	 2000	 to	 2014	 (33.3°C)	 (Arnett	 Oklahoma	Mesonet	 Site;	
Oklahoma	Mesonet,	2016a,b).	Therefore,	the	timing	of	our	study	pro-
vided	 a	 serendipitous	 opportunity	 to	 conduct	 a	 natural	 experiment	
on	the	thermal	ecology	of	a	ground-	dwelling	bird	species,	specifically	
bobwhites.	It	also	allowed	us	to	focus	on	two	scales	that	were	directly	
relevant	to	two	differing	life	stages	(i.e.,	brood	rearing	and	nonbrood	
rearing).	Our	primary	objective	was	to	assess	potential	thermal	expo-
sure	and	bobwhite	refuge	use	compared	to	thermal	conditions	on	the	
prevailing	landscape	during	a	period	of	extreme	heat.	Our	secondary	
objective	was	to	use	bobwhites	as	a	model	species	to	estimate	thermal	
buffering	at	refuge	sites	and	validate	future	heat	load	predictions	for	
ground-	dwelling	birds.	Finally,	we	aimed	 to	evaluate	 the	capacity	of	
thermal	refuges	to	continue	to	modulate	microclimate	in	the	future.

2  | MATERIALS AND METHODS

2.1 | Study area

We	conducted	 our	 study	 at	 Packsaddle	Wildlife	Management	Area	
(WMA)	 which	 is	 owned	 by	 the	 Oklahoma	 Department	 of	 Wildlife	
Conservation.	The	WMA	is	located	in	western	Oklahoma,	USA,	and	is	
7,956	ha	in	extent.	The	study	area	is	a	mixed-	grass	shrub	landscape,	
and	sand	shinnery	oak	(Quercus havardii)	is	the	most	dominant	shrub	
and	is	a	native	species	that	grows	to	approximately	0.3–1.2	m	in	height	
in	 clonal	mottes	 (i.e.,	 clumped	 thickets)	 (Peterson	&	Boyd,	1998).	A	
hybrid	form	of	sand	shinnery	oak	and	post	oak	(Quercus stellata)	also	
occurs	patchily	 in	 the	 study	 area	 and	 typically	 reaches	heights	well	
in	excess	of	1.8	m	(Wiedeman	&	Penfound,	1960),	thereby	standing	
much	 taller	 than	most	other	plant	 species	on	 the	surrounding	 land-
scape	 (Peterson	 &	 Boyd,	 1998;	 Figure	2).	 Detailed	 information	 on	
the	vegetation	community	of	the	study	area	is	provided	by	DeMaso,	
Peoples,	Cox,	and	Parry	(1997).

Located	 in	 the	 Southern	 Great	 Plains	 of	 the	 United	 States,	
Oklahoma’s	 climate	 is	 characterized	 by	 highly	 variable	 precipitation	
among	years,	as	well	as	common	drought	events	and	heat	waves	which	
often	occur	in	tandem	(Arndt,	2003).	Although	hot	and	dry	conditions	
can	be	common	in	the	Southern	Great	Plains	(Arndt,	2003;	Rosenberg,	
1986),	 our	 study	 year	 (2012)	 and	 period	 (May–July)	 captured	 a	

comparatively	extreme	heat	and	drought	event.	Specifically,	the	tim-
ing	of	our	study	captured	intense	and	frequent	bouts	of	extreme	heat.	
As	recorded	by	on-	site	weather	stations,	the	study	period	underwent	
20	days	 of	 Tair	 ≥39°C	which	 represents	 the	 heat	 stress	 and	 hyper-
thermia	 threshold	 for	 bobwhites	 (Forrester	 et	al.,	 1998)	 and	 2	days	
of	Tair	>	43°C	which	equaled	or	exceeded	the	maximum	Tair reported 
from	other	field	studies	on	the	effects	of	heat	on	bird	behavior	in	arid	
regions	of	the	world	(Cunningham,	Martin,	et	al.,	2013;	Cunningham,	
Kruger,	 et	al.,	 2013;	 Edwards,	 Mitchell,	 &	 Ridley,	 2015;	 Martin,	
Cunningham,	&	Hockey,	2015;	du	Plessis	et	al.,	2012).	Moreover,	rain-
fall	during	the	study	period	(41.7	mm)	was	20%	of	the	average	from	
1994	to	2015	(246.1	mm;	Arnett	Oklahoma	Mesonet	Site;	Oklahoma	
Mesonet,	2016a,b).

2.2 | Capture and radio- marking

During	 the	 winter	 and	 spring	 (February–May)	 of	 2012,	 we	 used	
Stoddard	 style	 funnel	 traps	 (Stoddard,	 1931)	 to	 capture	 adult	 
bobwhites	 and	 each	 captured	 individual	 that	 weighed	 >130	g	 was	
collared	 with	 a	 6-	g	 necklace	 radio-	collar	 (n	=	78	 individuals;	 40	 
females	and	38	males)	(Advanced	Telemetry	Systems,	Isanti,	MN).	We	

F IGURE  2 Representation	of	(a)	the	exterior	and	(b)	the	interior	of	
hybrid	shinnery	oak	patches	which	provide	discrete	thermal	refuges	
for	northern	bobwhites	(i.e.,	adults	and	broods)	during	heat	extremes	
at	the	Packsaddle	WMA,	Oklahoma,	USA,	2012
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located	 radio-	marked	adults	4–7	 times	per	week	by	homing	 (White	
&	 Garrott,	 2012)	 to	 determine	 bobwhite	 locations.	 Our	 homing	 
technique	involved	circling	telemetered	birds	at	a	distance	of	10–15	m	
and	recording	an	estimated	distance	and	bearing.	Given	that	our	hom-
ing	involved	circling	birds	from	a	distance	of	10–15	m,	we	were	able	
to	determine	the	vegetation	patch	containing	the	radio-	marked	indi-
vidual	and	estimate	the	birds’	 location	within	each	respective	patch.	
The	homing	technique	has	been	used	in	a	substantial	amount	of	stud-
ies	on	the	habitat	use	of	gallinaceous	birds	(Grisham,	Borsdorf,	Boal,	&	
Boydston,	2014;	Patten,	Pruett,	&	Wolfe,	2011;	Winder	et	al.,	2014)	
and	the	 thermal	ecology	of	gallinaceous	birds	 (Guthery	et	al.,	2005;	
Hovick,	Elmore,	Allred,	Fuhlendorf,	&	Dahlgren,	2014),	including	bob-
white	(Carroll,	Davis,	Elmore,	Fuhlendorf,	&	Thacker,	2015;	Guthery	
et	al.,	2005).	Moreover,	it	allows	for	an	assessment	of	refuge	use	given	
that	bobwhite	movement	is	severely	curtailed	during	hot	periods	on	
summer	days	(Carroll,	Davis,	Elmore,	Fuhlendorf,	&	Thacker,	2015).

From	May	to	July	2012,	we	monitored	non	brood	attending	adults	
as	well	as	broods	(i.e.,	chicks	associated	with	a	radio-	marked	adult)	to	
determine	bobwhite	habitat	use	from	a	combined	biotic	 (i.e.,	vegeta-
tion)	and	abiotic	(i.e.,	temperature)	perspective.	We	included	locations	
from	May	 in	our	 study	period	because	May	2012	was	 characterized	
by	 extreme	drought	 (i.e.,	 only	 0.25	mm	of	 rainfall	 during	 the	month)	
and	 above	 average	 temperatures	 (Arnett	 Oklahoma	 Mesonet	 Site;	
Oklahoma	Mesonet,	2016a,b).	To	obtain	a	representation	of	bobwhite	
thermal	ecology	relative	to	high	heat,	we	obtained	radio-	locations	from	
11:00	to	17:00	hr	since	these	times	correspond	to	peak	diurnal	heating	
and	 therefore	potential	 thermal	 stress	 in	 bobwhites.	 For	 each	 radio-	
tracking	occasion,	we	randomly	selected	radio-	marked	birds	(i.e.,	adult	
or	brood	with	attending	adult)	for	radio-	tracking	based	on	the	available	
pool	 of	marked	 individuals.	Confirmation	 that	 adults	were	 accompa-
nied	by	a	brood	(≥1	chick)	was	achieved	within	2	days	of	each	radio-	
telemetry	bout	by	visually	confirming	brood	presence	through	flushing,	
as	well	as	observing	chick	feces	or	distraction	displays	by	adults	(Carroll,	
Davis,	Elmore,	Fuhlendorf,	&	Thacker,	2015;	Taylor	&	Guthery,	1994).

2.3 | Thermal sampling

To	obtain	an	index	of	the	thermal	characteristics	at	bobwhite	use	sites	
compared	to	those	on	the	 landscape,	we	measured	black	bulb	tem-
perature	 (Tbb).	Tbb	 is	a	single	measurement	derived	from	the	effects	
of	multiple	environmental	variables	simultaneously	(i.e.,	ambient	tem-
perature,	solar	radiation	and	wind;	Bakken,	Santee,	&	Erskine,	1985;	
Campbell	&	Norman,	1998;	Gagge,	1940).	Therefore,	Tbb better repre-
sents	the	thermal	environment	experienced	by	an	organism	than	am-
bient	temperature	(Tair)	(Helmuth	et	al.,	2010).	We	assessed	Tbb	using	
black	 bulb	 thermometers	 (hereafter,	 black	 bulbs)	 which	 consisted	
of	 steel	 spheres	 coated	 with	 flat	 black	 paint	 (101.6	mm-	diameter;	
20	gauge	 thickness)	 that	were	placed	 at	 ground	 level	 at	 each	 loca-
tion	(Allred	et	al.,	2013;	Guthery	et	al.,	2005;	Hovick	et	al.,	2014).	To	
measure	and	record	Tbb,	each	black	bulb	was	fitted	with	an	internally	
centered	Tair	 sensor	 attached	 to	 a	HOBO	U12	 data	 logger	 (Carroll,	
Davis,	Elmore,	Fuhlendorf,	&	Thacker,	2015;	Carroll,	Davis,	Elmore,	&	
Fuhlendorf,	2015;	Hovick	et	al.,	2014).

Although	Tbb	recorded	by	black	bulbs	does	not	provide	a	complete	
representation	of	 the	 thermal	 conditions	 experienced	by	bobwhites	
given	that	black	bulbs	do	not	fully	reproduce	bobwhite	feather	com-
position	or	color	(Dzialowski,	2005),	Tbb	measurements	do	provide	an	
index	of	heat	loads	occurring	on	the	landscape	and	those	experienced	
by	bobwhites.	We	 recognize	 that	bobwhites	 likely	experience	 lower	
heat	loads	than	those	described	by	Tbb	given	that	the	short-	wave	ab-
sorptivity	of	black	bulbs	(~1)	exceeds	that	of	a	bobwhite	(0.78)	(Calder	
&	King,	1974;	Guthery	et	al.,	2005).	Nevertheless,	measuring	Tbb pro-
vides	a	standardized	way	to	index	thermal	environments	and	has	been	
a	commonly	used	methodology	 in	 the	 thermal	ecology	of	galliforms	
(Carroll,	 Davis,	 Elmore,	 Fuhlendorf,	 &	Thacker,	 2015;	 Carroll,	 Davis,	
Elmore,	&	Fuhlendorf,	2015;	Guthery	et	al.,	2005;	Hovick	et	al.,	2014).	
Therefore,	our	objective	was	to	obtain	an	 index	of	 thermal	environ-
ments	 exploited	 by	 bobwhites	 compared	 to	 those	 available	 on	 the	
prevailing	landscape.

Black	bulbs	were	deployed	at	adult	 (n	=	40)	and	brood	 locations	
(n	=	37)	 observed	 from	 11:00–17:00	hr	 on	 the	 day	 following	 radio-	
tracking	assuming	 that	weather	 conditions	were	 similar	 to	 those	on	
the	day	that	location	was	observed	(Carroll,	Davis,	Elmore,	Fuhlendorf,	
&	Thacker,	2015;	Guthery	et	al.,	2005).	Given	that	our	study	was	con-
ducted	during	a	summer	characterized	by	historic	high	heat,	weather	
conditions	from	day	to	day	were	relatively	uniform.	We	used	11:00–
17:00	hr	to	categorize	refuge	use	as	bobwhite	adult	and	brood	move-
ment	has	been	 shown	 to	be	 substantially	 reduced	or	 ceased	during	
the	 heat	 of	 the	 day	 as	 they	 loaf	 and	 seek	 thermal	 refuge	 (Carroll,	
Davis,	 Elmore,	 Fuhlendorf,	 &	Thacker,	 2015).	To	 assess	 the	 thermal	
landscape,	we	also	conducted	thermal	sampling	at	104	stratified	ran-
dom	points	distributed	across	the	study	area.	We	obtained	stratified	
random	 points	 (i.e.,	 based	 on	 proportion	 of	 vegetation	 types)	 using	
a	vegetation	 layer	 in	ArcGIS	 10.3	 (Environmental	 Systems	Research	
Institute,	Redlands,	California,	USA)	that	was	created	using	125	train-
ing	 points	 and	 an	 additional	 215	 used	 for	 ground	 truthing.	A	 black	
bulb	was	placed	at	each	radio-	marked	non-	brood	attending	adult	and	
brood	attending	adult	location	and	Tbb	was	recorded	at	15-	min	inter-
vals	 for	24	hr	 (n	=	5,068).	We	then	averaged	Tbb	 for	each	hour	 from	
11:00	to	17:00	hr	(n	=	1,267)	so	that	it	would	match	hourly	ambient	
temperature	and	solar	radiation	that	was	simultaneously	recorded	at	a	
weather	station	(2	m	above	ground)	located	in	the	study	area.	We	con-
ducted	thermal	sampling	during	similar	average	hourly	Tair	conditions	
at	adult	 (range:	18.33–41.85°C),	brood	 (range:	20.97–43.44°C),	 and	
random	sites	on	the	landscape	sites	(range:	23.92–43.44°C;	Table	1).

Before	 analysis,	we	 classified	days	with	maximum	Tair	<	35°C	 as	
“moderate,”	Tair	≥	35	–	<39°C	as	 “hot,”	 and	Tair	≥	39°C	as	 “extreme.”	
We	chose	these	categories	because	they	represent	biologically	rele-
vant	thresholds	for	bobwhites.	Specifically,	30–35°C	is	considered	to	
be	thermoneutral	for	bobwhites	(Lustick,	1972),	≥35	–	<39°C	is	con-
sidered	thermally	stressful	but	not	hyperthermic	(Guthery,	2000),	and	
≥	39°C	 represent	hyperthermic	 conditions	 (Guthery,	 2000;	Guthery	
et	al.,	 2001).	 Specifically,	 at	 operative	 temperatures	 of	 39°C,	 the	
rate	of	heat	removal	is	exceeded	by	heat	gain	in	bobwhites	(Guthery,	
2000)	and	this	physiological	threshold	has	been	used	for	the	analysis	
of	thermal	data	and	climate	projections	for	galliforms	such	as	greater	
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prairie	chickens	 (Hovick,	Elmore,	Fuhlendorf,	&	Dahlgren,	2015)	and	
bobwhites	(Carroll,	Davis,	Elmore,	&	Fuhlendorf,	2015;	Guthery	et	al.,	
2005).

2.4 | Vegetation sampling

To	understand	how	bobwhites	utilize	vegetation	patches	on	the	land-
scape	during	potentially	thermally	stressful	periods	(11:00–17:00	hr),	
we	sampled	vegetation	characteristics	at	adult	and	brood	 locations.	
For	comparisons	with	vegetation	at	bobwhite	locations,	we	also	con-
ducted	vegetation	sampling	at	points	derived	from	our	stratified	ran-
dom	 sampling	 approach	 using	ArcGIS	 10.3	 (Environmental	 Systems	
Research	 Institute,	Redlands,	California,	USA).	Therefore,	 the	 strati-
fied	random	sampling	points	allocated	for	vegetation	sampling	were	
representative	of	available	vegetation	in	the	study	area.

To	assess	canopy	structure	and	coverage,	we	measured	the	angle	of	
obstruction	(°)	in	eight	compass	directions	(cardinal	and	sub-	cardinal)	
at	each	location	(Kopp,	Guthery,	Forrester,	&	Cohen,	1998).	To	accom-
plish	this,	a	2-	m	pole	with	a	digital	carpenter’s	level	attached	to	it	was	
aligned	with	the	top	of	nearest	vegetation	in	each	of	the	eight	direc-
tions	(Kopp	et	al.,	1998).	We	also	centered	a	0.5	m2	quadrat	(modified	
from	Daubenmire,	1959)	over	the	estimated	bird	location	or	random	
location	to	estimate	percent	bare	ground,	litter,	grass,	forb,	and	woody	
cover.	Vegetation	 height	 at	 each	 sampling	 point	was	 classified	 into	
categories	of	<1	m,	≥1-		 <2	m,	 and	≥2	m	given	 that	 bobwhites	have	
been	shown	to	utilize	varying	vegetation	heights	throughout	the	day	
at	adult	 (Hiller	&	Guthery,	2005)	and	brood	locations	(Carroll,	Davis,	
Elmore,	Fuhlendorf,	&	Thacker,	2015).	To	better	inform	the	potential	
management	of	thermal	space	and	because	thermal	refuge	selection	
by	birds	can	be	species	specific	 (Martin	et	al.,	2015),	we	also	we	re-
corded	 the	 dominant	 species	 at	 each	 location	 (e.g.,	 hybrid	 shinnery	
oak,	sand	plum,	etc.).

2.5 | Analyses

To	assess	bobwhite	site	selection	relative	to	the	thermal	 landscape,	
we	 analyzed	Tbb	 as	 a	 dependent	 variable	 among	 all	 bobwhite	 loca-
tions	 (i.e.,	adult	and	brood)	and	stratified	random	points	as	an	 inde-
pendent	variable	using	a	one-	way	analysis	of	variance	(ANOVA)	(Zar,	
1984).	Additionally,	we	compared	hourly	mean	differences	in	Tbb	for	

moderate	(maximum	Tair	<	35),	hot	(maximum	Tair	≥	35	–	<39°C),	and	
extreme	(maximum	Tair	≥	39°C)	days	using	ANOVA.

Potential	differences	 in	thermal	buffering	of	Tbb	at	bobwhite	 lo-
cations	and	stratified	random	sites	were	evaluated	by	calculating	the	
difference	between	mean	hourly	Tbb	measurements	at	each	location	
and	mean	 hourly	 Tair	 recorded	 at	 onsite	weather	 stations	 (Tbb−Tair; 
Carroll,	 Davis,	 Elmore,	 Fuhlendorf,	 &	Thacker,	 2015;	 Carroll,	 Davis,	
Elmore,	&	Fuhlendorf,	2015).	The	resulting	values	were	tested	for	dif-
ferences	between	refuge	sites	and	random	sites	using	ANOVA	(Zar,	
1984).	We	 also	 compared	 angle	 of	 obstruction	 and	 percent	 cover	
among	bobwhite	use	sites	(i.e.,	adult	and	brood	locations)	and	strati-
fied	random	sites	for	each	daily	Tbb	category	(i.e.,	moderate,	hot,	and	
extreme)	using	ANOVA.	Differences	were	deemed	significant	at	the	
p < .05 level.

3  | RESULTS

3.1 | Thermal environments

We	found	that	Tbb	at	stratified	random	points	on	the	landscape	could	
potentially	reach	extreme	temperatures	(e.g.,	72°C),	and	that	mean	Tbb 
exceeded	50°C	from	11:00	to	17:00	hr	(Table	1).	Despite	these	heat	
extremes	occurring	throughout	the	study	area,	mean	Tbb	at	adult	and	
brood	locations	remained	at	least	10°C	cooler	on	average	than	random	
sites	on	the	landscape	(Table	1).	These	differences	were	observed	on	
moderate	(F2,325	=	52.49,	p	<	.001)	as	well	as	hot	days	(F2,340	=	87.78,	
p	<	.001),	but	were	most	pronounced	on	extreme	days	(F2,592	=	101.50,	
p	<	.001)	when	thermal	buffering	for	bobwhites	was	likely	most	critical	
(Figure	3).	Additionally,	Tbb	at	random	sites	on	the	landscape	averaged	
57.17°C	at	14:00	hr	and	was	greater	than	50°C	for	the	entire	refuge	
period	(11:00–17:00	hr)	on	extreme	heat	days	(Figure	3).	Despite	the	
landscape	being	inundated	with	extreme	Tbb,	adult	and	brood	refuge	
sites	provided	 thermal	environments	 that	were	on	average	13.98°C	
and	8.45°C	cooler	than	random	sites	on	landscape,	respectively	(maxi-
mum	mean	differences	of	up	 to	16.51°C	and	10.88°C,	 respectively;	
Figure	3).	We	also	found	that	differences	between	Tbb	and	Tair	(Tbb−Tair)	
at	refuge	sites	(adult	and	brood	sites)	were	substantially	 less	than	at	
random	sites	(F2,585	=	96.31,	p	<	.001;	Figure	4)	and	bobwhite	refuge	
sites	moderated	thermal	conditions	by	more	than	twofold	compared	
to	the	landscape	on	extreme	days	(F2,1263	=	265.7,	p	<	.001;	Figure	4).	
Although	 refuge	 locations	 provided	 microclimates	 that	 were	 much	
less	extreme	 than	 those	on	 the	 landscape,	mean	Tbb	 at	 refuge	 loca-
tions	regularly	exceeded	39°C	(i.e.,	hyperthermic	level	in	bobwhites),	
with	temperatures	peaking	at	15:00	at	adult	(43.48°C)	and	brood	sites	
(47.22°C)	on	extreme	days	(Figure	3).

3.2 | Vegetation characteristics

Vegetation	 heterogeneity	 (i.e.,	 patchiness	 of	 structure	 and	 canopy	
coverage)	 influenced	 the	 thermal	 patterns	 that	 we	 observed;	 spe-
cifically,	 the	 use	 of	 different	 thermal	 environments	 at	 refuge	 sites	
compared	to	random	sites.	For	example,	bobwhite	refuge	sites	were	
characterized	 by	 greater	 angle	 of	 obstruction	 than	 at	 random	 sites	

TABLE  1 Range	of	ambient	temperature	(Tair)	and	black	bulb	
temperature	(Tbb)	sampled	at	northern	bobwhite	adult	refuge	sites	
(n	=	40),	brood	refuge	sites	(n	=	37),	and	stratified	random	sites	
(n	=	104)	(11:00–17:00	hr)	at	the	Packsaddle	WMA,	Oklahoma,	USA,	
2012

Site Tair Range (°C) Tbb Range (°C)
Tbb Mean 
(±SE)a

Adult 18.33–41.85 23.12–61.63 39.33	(±0.46)A

Brood 20.97–43.44 24.92–58.71 42.18	(±0.40)A

Random 23.92–43.44 30.17–72.43 52.23	(±0.27)B

aDifferent	letters	denote	significant	differences	(p	<	.05)	(Tukey’s	multiple	
comparisons).
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(n = 181; F2,175	=	84.79,	p	<	.001)	 (Figure	2).	 Specifically,	mean	 (±SE)	
angle	of	obstruction	 (i.e.,	 angle	of	 vertical	 and	overhead	vegetation	
cover)	 was	 more	 than	 twofold	 greater	 at	 adult	 (73.45	±	1.75)	 and	
brood	refuge	sites	(79.38	±	1.13)	than	at	random	sites	(35.21	±	2.44).	
Additionally,	 adult	 and	brood	 refuge	 sites	afforded	 two-		 and	 three-
fold	 greater	 percent	 woody	 cover	 than	 at	 random	 sites,	 respec-
tively	 (F1,175	=	46.43,	 p	<	.001).	 We	 also	 observed	 greater	 percent	
litter	at	bobwhite	 locations	 (i.e.,	adult	and	brood)	than	random	sites	
(F2,175	=	17.98,	p	<	.001)	as	well	as	greater	grass	cover	at	brood	loca-
tions	than	random	sites	(F2,175	=	8.79,	p	<	.001)	and	less	bare	ground	
cover	at	adult	 locations	 than	at	 random	sites	 (F2,175	=	4.33,	p	<	.05).	
No	significant	differences	were	observed	for	angle	of	obstruction	or	
percent	bare	ground,	litter,	grass,	forb,	or	woody	cover	between	adult	

and	brood	refuge	sites	(p	>	.05).	Moreover,	angle	of	obstruction	dif-
fered	across	temperature	categories	(F2,71	=	12.47,	p	<	.001)	and	was	
greater	at	bobwhite	 locations	on	days	with	Tair	of	≥	35-		<39°C	and	
≥39°C	than	days	with	Tair	<	35°C.	However,	we	found	no	differences	
in	percent	bare	ground,	litter,	grass,	forb,	or	woody	cover	at	bobwhite	
locations	among	daily	Tair	categories.

We	observed	that	the	percentage	of	bobwhite	locations	in	vege-
tation	cover	≥2	m	tall	was	56.25%,	82.75%,	and	100%	on	moderate,	
hot,	and	extreme	days,	respectively;	despite	that	only	~7%	of	the	land-
scape	consisted	of	this	cover	type	 (Table	2).	Conversely,	herbaceous	
cover	comprised	approximately	50%	of	the	study	area	yet	none	of	the	
bobwhite	locations	occurred	in	this	cover	type	from	11:00	to	17:00	hr	
on	moderate,	hot,	or	extreme	days	(Table	2).	Tall	hybrid	shinnery	oak	
mottes	accounted	for	63%	of	bobwhite	refuge	sites	on	extreme	days.

4  | DISCUSSION

By	 capturing	 periods	 of	 high	 ambient	 temperatures	 which	 repre-
sented	extreme	heat	for	our	study	region	and	thermal	stress	for	our	
study	species,	we	demonstrate	how	a	local	resident	species	responds	

F IGURE  4 Mean	differences	between	hourly	black	bulb	
temperature	(Tbb)	and	ambient	temperature	(Tair)	measurements	
(Tbb−Tair)	(±SE)	among	refuge	sites	(i.e.,	adult	and	brood)	and	random	
sites	on	extreme	(Tair	≥	39°C)	days	(n	=	16)	at	the	Packsaddle	WMA,	
Oklahoma,	USA,	2012

TABLE  2 Vegetation	types	utilized	by	northern	bobwhites	at	
refuge	sites	(11:00–17:00	hr)	on	moderate	(<35°C)	(n	=	32),	hot	(≥35	
–	<39°C)	(n	=	29)	and	extreme	(≥39°C)	(n	=	16)	days	compared	to	
landscape	vegetation	availability	at	the	Packsaddle	WMA,	Oklahoma,	
USA,	2012

Locations

Cover Type (%)

Tall woody Low woody Herbaceous

<35°C 43.75 56.25 0.00

≥35	–	<39°C 82.75 17.25 0.00

≥39°C 100 0.00 0.00

Landscape	Availability 6.78 33.97 50.06

F IGURE  3 Black	bulb	temperature	(Tbb)	(±SE)	averaged	by	hour	
among	adult	refuge	sites,	brood	refuge	sites,	and	stratified	random	
sites	on	(a)	extreme	(≥39°C),	(b)	hot	(≥35	–	<39°C),	and	(c)	moderate	
(<35°C)	days	at	the	Packsaddle	WMA,	Oklahoma,	USA,	2012
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to	heat	extremes	which	approximate	conditions	that	are	predicted	to	
become	more	common	in	the	future	(United	States	Global	Research	
Change	Program	2014).	Our	 results	agree	with	 findings	 from	previ-
ous	 studies	 that	 have	 shown	 the	 thermal	 importance	of	 tall	woody	
cover	for	ground-	dwelling	birds	(Goldstein,	1984;	Martin	et	al.,	2015;	
McKechnie	 et	al.,	 2012),	 but	most	 importantly,	 showcases	 how	 tall	
woody	 cover	 functions	 as	 critical	 islands	 of	 thermal	 refuge	 during	
extreme	 heat.	 Tall	 woody	 cover	 provided	 refuge	 from	 Tbb	 that	 ex-
ceeded	lethal	thresholds	for	bobwhites	(Guthery,	2000;	Guthery	et	al.,	
2001)	 as	well	 as	most	biota	 (i.e.,	Tbb	>	50°C)	 (Calder	&	King,	1974).	
Additionally,	the	cooler	microclimates	observed	at	refuge	sites	com-
pared	to	the	surrounding	landscape	(i.e.,	16.51	and	10.88°C	cooler	at	
adult	 and	brood	sites,	 respectively)	 are	biologically	 significant	given	
that	even	small	differences	 in	temperature	(i.e.,	2–4°C)	on	the	land-
scape	become	increasingly	impactful	as	the	gap	between	body	tem-
perature	and	environmental	temperature	is	lessened	in	birds	(Ricklefs	
&	 Hainsworth,	 1968,	 1969).	 Nevertheless,	 the	 high	 Tbb	 observed	
within	 refuge	 sites	 (≥39°C)	 provides	 further	 evidence	 that	 ground-	
dwelling,	nonmigratory	species	such	as	bobwhite	may	be	highly	vul-
nerable	 to	climate	change	effects	as	extreme	temperatures	become	
more	common	(Carroll,	Davis,	Elmore,	Fuhlendorf,	&	Thacker,	2015;	
McKechnie	&	Wolf,	2010).

Behavioral	plasticity	can	be	an	important	mechanism	for	allowing	
organisms	 to	 adjust	 to	 changing	 conditions,	 especially	 climatic	 ex-
tremes	(Allred	et	al.,	2013;	Wolf	et	al.,	1996).	However,	the	effective-
ness	of	such	adjustments	is	contingent	upon	locating	more	favorable	
conditions	on	the	landscape.	In	contrast	to	some	reptile	species	that	
have	 the	 option	 of	 avoiding	 extreme	 heat	 by	 seeking	 underground	
burrows	 (Beck	&	Jennings,	 2003;	Mack	 et	al.,	 2015),	 bobwhites	 are	
limited	to	seeking	above-	ground	refuges	which	are	typically	comprised	
of	woody	vegetation	 (Carroll,	Davis,	 Elmore,	 Fuhlendorf,	&	Thacker,	
2015;	Forrester	et	al.,	1998).	Despite	the	lack	of	differences	in	vege-
tation	structure	that	we	observed	between	adult	and	brood	sites,	we	
found	that	mean	Tbb	at	adult	sites	remained	cooler	than	brood	sites	
by	up	to	5.4°C	on	the	most	extreme	days.	One	possibility	for	this	dif-
ference	is	that	adults	without	broods	may	have	exploited	thermal	en-
vironments	 at	 different	 scales	 than	 adults	with	 broods,	 even	within	
similarly	 structured	 vegetation	 patches.	 For	 example,	 despite	 their	
greater	vulnerability	to	solar	radiation	(Guthery,	2000),	chicks	can	ob-
tain	suitable	microclimates	at	much	finer	scales	than	adults	(e.g.,	under	
a	single	leaf).	Moreover,	adults	without	broods	are	unconstrained	from	
additional	predator	avoidance	associated	with	brood	attendance	which	
may	have	allowed	them	to	select	the	most	favorable	microclimate	in	
their	 immediate	 proximity	 (i.e.,	 within	 a	 given	 refuge	 patch).	 These	
findings	demonstrate	how	spatial	and	temporal	scales	associated	with	
specific	 life	stages	can	influence	thermal	exposure	(Angilletta,	2009;	
Potter	et	al.,	2013),	a	topic	that	should	be	considered	more	thoroughly	
in	the	future	species	conservation	efforts.

Although	shade	buffers	ground-	level	heat	loads	(Rosenberg	et	al.,	
1983),	we	 observed	 that	 birds	 in	 refuges	 (i.e.,	 brood	 attending	 and	
non-	brood	attending	adults)	were	still	regularly	subjected	to	average	
Tbb	exceeding	39°C	(i.e.,	potentially	hyperthermic	conditions;	Guthery,	
2000)	for	at	 least	5	hr	daily	on	extreme	days.	These	findings	further	

fortify	predicted	concerns	that	eventually	the	capacity	of	tall	woody	
cover	to	modulate	extremes	(primarily	by	blocking	solar	radiation)	may	
be	offset	by	rising	ambient	conditions	predicted	with	climate	change	
(Carroll	et	al.,	2016;	McKechnie	et	al.,	2012).	In	such	a	scenario,	cur-
rent	thermal	refuges	of	ground-	dwelling	birds	could	become	increas-
ingly	pervaded	with	unsuitable	or	lethal	conditions.	The	possibility	for	
reduced	 functionality	 of	 tall	woody	 cover	 as	 refuge	 sites	 has	 direct	
implications	 for	bobwhite	populations	 in	 the	hottest	and	driest	part	
of	their	distribution	whose	persistence	is	suggested	to	be	intrinsically	
linked	 to	 the	presence	of	 tall	woody	cover	 (Guthery,	2000).	 In	 such	
cases,	 individuals	would	 likely	 undergo	 increased	 evaporative	water	
loss	and	heat	stress	on	a	more	regular	basis,	whereas	populations	may	
be	subject	to	inhibited	reproduction	more	frequently	given	that	each	
have	been	associated	with	heat	extremes	(Guthery	et	al.,	2001).

By	 2100,	 summers	 are	 predicted	 to	 become	 hotter	 with	 more	
frequent	and	extreme	heat	waves	and	drought	in	the	Southern	Great	
Plains	 (United	 States	 Global	 Research	 Change	 Program	 (USGCRP),	
National	Climate	Assessment,	2014).	Currently,	an	average	number	of	
7	days	per	year	exceed	37.8°C	in	the	Southern	Great	Plains	but	this	
number	 is	 expected	 to	 increase	 by	 fourfold,	 and	 thus,	 organisms	 in	
the	 region	will	 be	 faced	with	 higher	 temperatures	more	 frequently	
(United	States	Global	Research	Change	Program	(USGCRP),	National	
Climate	Assessment,	2014).	For	example,	recent	studies	have	shown	
that	 time	spent	during	 thermally	 stressful	 conditions	 is	predicted	 to	
increase	 two-		 to	 fourfold	 for	 greater	 prairie-	chickens	 (Tympanachus 
cupido)	in	the	southern	Flint	Hills,	USA	(Hovick	et	al.,	2014).	Moreover,	
substantial	increases	in	ground-	level	heat	load	exposure	are	predicted	
for	bobwhites	in	the	Southern	Great	Plains	of	North	America	(Carroll,	
Davis,	Elmore,	Fuhlendorf,	&	Thacker,	2015)	and	increased	exposure	
to	high	heat	is	also	predicted	to	influence	the	fitness	of	birds	on	other	
continents,	 including	Australia	 (McKechnie	&	Wolf,	2010)	and	Africa	
(Cunningham,	 Martin,	 &	 Hockey,	 2015;	 Cunningham,	 Martin,	 et	al.,	
2013;	du	Plessis	et	al.,	2012).	Interestingly,	we	found	that	the	Tbb ob-
served	in	our	study	approached	and	in	some	cases	exceeded	predicted	
Tbb	 under	 low	 emission	 climate	 scenarios	 (i.e.,	 15:00	 and	 17:00	hr	
at	brood	sites;	Carroll,	Davis,	Elmore,	Fuhlendorf,	&	Thacker,	2015).	
Although	 these	 findings	 provide	 a	 lens	 from	which	 to	 approximate	
thermal	conditions	 that	may	be	associated	with	climate	change,	 the	
extreme	heat	captured	in	our	study	generally	indicated	lower	Tbb	than	
is	predicted	at	ground	level	in	the	future,	especially	under	high	emis-
sion	scenarios	 (Carroll,	Davis,	Elmore,	Fuhlendorf,	&	Thacker,	2015).	
Therefore,	ground-	dwelling	birds	may	face	future	microclimates	that	
are	substantially	more	extreme	than	those	experienced	during	current	
heat	waves	and	this	increased	potential	for	thermal	risk	should	be	ac-
knowledged	in	the	future	planning	and	conservation	practices.

Our	study	demonstrates	 that	while	capturing	periods	of	 thermal	
extremes	tends	to	be	logistically	difficult	in	ecological	research	(Boyles	
et	al.,	2011),	doing	so	can	provide	insight	into	how	organisms	may	re-
spond	to	extremes	and	serve	as	a	proxy	for	forecasting	future	behavior	
and	thermal	exposure.	By	assessing	temporal	and	spatial	scales	similar	
to	those	experienced	by	a	small	ground-	dwelling	bird	during	two	life	
stages,	we	were	 able	 to	depict	 conditions	 that	may	be	 faced	under	
future	extremes	that	would	not	be	possible	with	broader	scale	climate	
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modeling.	Future	research	should	focus	on	evaluating	how	changes	in	
microclimates	within	thermal	refuges	may	influence	species	responses	
and	also	attempt	to	identify	thresholds	at	which	thermal	refuges	may	
no	longer	provide	tolerable	or	survivable	conditions	(Scheffers	et	al.,	
2014).	Such	information	will	be	critical	for	not	only	understanding	or-
ganism	responses	to	extremes	but	also	quantifying	the	thermal	refugia	
capacity	of	landscapes	and	predicting	future	population	persistence.
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