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existence of zeros in certain amplitudes. Also, Dalitz plots are ob­
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CHAPTER I 

INTRODUCTION 

With the building of colliding beam machines which will be able to 

produce energetic W bosons, the possibility of recording decay products 

will facilitate the study of various decay schemes. The processes we 

have studied are three body decay distributions. Where bodies in the 

final state have color, like quarks and gluons, we have hadron jets. 

If SU(2) x U(l) is the correct group unifying weak and electromag-

netic interactions, we expect to find the W boson with the properties 

expected from the Weinberg - Salam model. A good test of the model 

is to produce the W bosons and study the decay modes. The prediction 

of a zero value in the differential cross-section of W + qqY, for 

K = 1 (1), could lead to a good confirmation of this theory, end 

confirmation of other parameters such as K, quark charges, couplings, 

etc. If the anomylous magnetic moment of the W bosons, K, does not equal 

one, no zero could be expected in the angular distribution (2). 

The first process, W + qqy, like the crossed process, qq +WY, has 

been found to contain a factorization in its amplitude (2). Briefly the 

factorization is produced as follows: three Feynman diagrams contribute 

-Q., Q., and Q are the electric charges of q, q, and w. We find, after 
l J w 

some algebra, Mf. = F(Q. ,S,T,U) (M + M) after setting Q. = Q - Q .. For 
l l A· B l w J 

F = O we have a zero in our cross section. We have examined this particu-

1 



lar zero as it occurs in Dalitz plots. We have found the analytic ex­

pression for this partial decay probability. There has been an attempt 

to explain the zero theoretically (3), but as yet we cannot present a 

physical reason for the existence of the zero. 

2 

Next, we have examined briefly the process W + qqY where the quarks 

possess spin zero; there are four Feynman diagrams here; thus we have 

determined that in this process we have a factorization also. Thereby, 

we have found a zero in the physical region of this process also. Nota­

ble is the "occurrence" that this factorization is identical to that one 

found previously for spin one-half quarks. 

Then, since W + qqg is similar to W + qqY, we examined this three 

jet decay with gluon jet and produced Dalitz plots. We note that this 

process has color matrices (4,5), and had there been a factorization, it 

would have necessarily been a function of these matrices. We did not 

find a factorization though, since a factorization seems plausible in 

processes with three or more diagrams, and this process has only two 

diagrams. We found also the analytic expression for this partial decay 

probability. 

These processes constitute groundwork for a more complete under­

standing of the nature of the W boson and its relationships with other 

particles. 



CHAPTER II 

W DECAY TO TWO QUARKS AND A PHOTON 

Refering to Figure 1, and using the Feynman rules given in Appendix 

A; we find the matrix element for 

-
W (p) ~qi (ql) + qj(q2) + Y(k) 

where 

-, ) ,-i_g_ y (1-Y )) (~) (-iQ.Y )v(q )Eµ Ev 
+ eu ql 212 v 5 -£ 2 J µ 2 k P 

X [g a(-p-h) + g (2p-h)a - g a(p-2h) ] Ekµ SpV 
Vµ µ µV µ µµ V 

where g is the weak coupling, e is the electromagnetic coupling, quark 

masses have been dropped, and where £1 = p-q2 = q 1+k, £2 = p-q1 = q 2+k, 

and h = p-k = q 1 + q 2 . After considerable simplification using the 

gamma matrix and spinor relations, and the transversality condition for 

both of the bosons: 

3 



4 

Figure 1. Diagrams for W -+qqY 



M e: l\: \! 
µ\! k p 

k·q 
-ieg (Q. + __ l) 

212 i k·h 

x u (q ) {-1- y il y 
1 Q, 2 µ \) 

1 

Q, 2 
2 

Y l 2 Y }Cl-Y )v(q )e:µ e:v 
\) ]..l 5 2kp 

1 

and choosing: 

£1 
2 u = 

s = h2 = 

= 2k·ql, 

2q1·q2, 

t = Q, 2 = 2k·q 
2 2 

with S + t + U = M2 
w 

M .-ieg (Q. + _2_._)U(q ) {l y !;_, y 
fi 2;~ i t+u 1 u µ 1 v 

l Y / Y }(1-Y )v(q )e:µ e:v 
t \) 2 µ 5 2 k p 

-u 
and we note already the zero at Q. = ~- . Having checked gauge invari­

i t+u 

ance by M kµ = 0, it is worthwhile to check M P\! to look for simpli-
µv µv 

fication in the W polarization density; and we find M Pv = o. Now the 
µ\! 

tensor "' v s [., e: e: 
spin p p 

vs 
-g + 

\) s 
l?_£_ 

2 
M 

w 

vs 
can be simplified into just -g We 

note in passing that if M P\!to we may construct what may be referred to 
]..l v 

as a polarization density projection operation (see Appendix B) which 

will change the original Mfi to a new Mfi which will not change the 

physics and will obey M' P\! = O. 
]..!\! 

Now for the spin sum and average: 

1 i:: M* v S µ a 1 
2:. M M* vS µa M e: e: e:k e: µv aSg g 

3all 
spins ]..!\! aS p p k 3 

quarks 
spins 

1 M*]..lV 1 -,2 I: M - -1'.1 
3 spins ]..!\! 3 I" 
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= 

2 2 2 
~<Q + ~) 2 I lu<! Y ~ Y - l Y ~ Y ) (1-Y )vi 

8 t+u quark u µ 1 v t v 2 µ 5 
spin 

The factor of three was inserted for the sum over three quark colors. 

2 2 2 2 v µ 
~ (Q. + ~) [-Tr 4 Y ~ Y (1-Y )~ Y a Y 8 i t+u 2 1 µ 1 v 5 2 1 u 

+ 

where Dirac spinors are nonnalized to 2m. Using the. usual trace tech-

niques; 

2 2 2 
t +u +2M S 

2 2 + _E_) 2 [ w J 2e g (Q t+u tu 

where Q = Q.. The second factor, t 2 + u 2 + 2M2s, is positive definite, 
i w 

u 2 but the first factor, (Q + --) , can be zero (but of course never nega­t+u 
u 

tive) when Q = - -- . However, we defer the discussion of this point t+u 

until after the phase space, since the zero is most significant in the 

context of the phase space. 

6 



The general differential decay rate is6 

1 
df = -

2M 
w 

df 

. 3 

IMl2 _1_ ct q1 
fi 2E1 ( 2'IT) 3 3 

2Ek (2n) 

where the rest frame of the decaying W has been chosen. Now 

d 3P 
n 

!~ = 
00 4 2 

f d P o (P 
- 00 n n n 

x 

where 

Now let 

1 for x;::o 
e(x) - {o for x<o 

3 _,,. _,,. -+ 0 
x o (q +q +k)o (M-E -E -R) 

1 2 1 2 k 

where the quark masses have again been dropped. We define the Jacobian 

needed to get the energy distribution of the two quarks: 

J 

7 



x ] 2 -+ -+ ]2 c([M-E -E - [q +q ) 
1 2 1 2 

ub . . d3 S stituting ~ a~J~ !2dq =~I~ IE dE , and integrating the angu-
n n n n n 

lar distribution of q 1 over all space and integrating case from 1 to 

-1 for angular distribution of q 2 : 

J = 

x 2 -+2 2 2 I-+ -+ I d(cose) o (E -q ) o (M +E +2E E -2-1 (E +E )-2 q 1 lq x case) 
2 2 w 2 2 1 w 1 2 1 2 

x 6(E1 )6(E 2)8(M-E1-E 2) 

2 '-+ 21-+ 12 2 2 =TI 8(E1 )8(E 2)8(M-E1-E 2)e(4 q 1 J q 2 -(-M +2M(E 1+E 2 )-2E 1E2) ) 

where the e-functions give the physically allowed phase space. From the 

phase space we get; 

2 
TI 

2M ( 2TI) S 
w 

where the range of E1 and E2 , i.e. phase space, is given by the above 

8-functions. Defining x 
2E 2 

1 - -- and y 
M 

w 

2E 1 
1 - , we get for our 

M 
w 

factorization in terms of x and y; (Q + -2:-.) . 
x+y 

And we get for our dif-

8 
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ferential decay width; = 
e2 92 2 2 

Mw 3 (Q + ~) 2 [ (x-1) + (y-1) J. 
16 ( 2TI) x+y xy 

a2r 
We get = 0 when Q 

ax Cly 
-x = -- or x = 
x+y 

Q 
-(Q+l)y (a straight line in Dalitz 

plot phase space) . 

Now in order to integrate our differential decay width, we note 

that where we dropped the quark masses it is now necessary to impose a 

lower bound upon the quark energies. In addition, there is an infrared 

divergence for the photon energy, so it is convenient to impose the same 

lower bound on all three decay energies. This is equivalent to saying 

not only do we have an infrared divergence for the photon, but some 

energy must reside in the quark masses besides. 

Graphing the allowed phase space: 

1 0 

y 

l~ 
, , I/'~ 
i.v ii /t 
,1·1/ // f?'-
( // 1 / /:, 

~ I '.· / /, I I / ' 

ii(/';;/ '; I /I 1/ 1 I 
ii/ / ,11/ 1/1/1 
II / / ' / I I 

0 

0 

! // I I // 1 / /; ' ' I I 

;; /;
//,, I 1/ 

I I I I I I 

I / lj 'I I// 
1 

0 x 1 



and using the limits on x and y: 

2 2 
e g M 2 2 

W 11-2E 11-y-E X 2 [(x-1) +(y-1) J r = --- dy dx (Q + -) 
16 (21T)3 E E x+y xy 

Next, the Dalitz plot is obtained by computer methods (an analytic 

expression for the total decay rate will be given later); the program 

divided the phase space into small parts and provided a histogram of 

decay probability (see Appendix C). In our histogram, where the rela-

tion Q = -x is satisfied, that is, when the energies of the quark and 
x+y 

antiquark are such that 

then our probability of finding such an event is nil. For clarity, all 

probabilities in the Dalitz plots have been given as the percentage of 

the total probability for the respective process. 

Now returning to integrate df: 

2 2 
e g M 

W l-2E 1 X E 2 2QX r (W-+qqy) = --- J dx J - - dy (Q + - + 
16 ( 21T) 3 E E x+y 

2 2 
x [(x-1) +(y-1) J 

xy 

2 
x ) 

2 
(x+y) 

10 

To evaluate these integrals we can use the symmetry between x and y, 

dx and dy, to make the integrals much simpler. This is only valid for 

the identical cutoff E we have imposed for both dx and dy. 

For the first integral, we define X by 

2 2 
[ (x-1) + (y-1) J f dxf dy 

xy 
(x-1) 2 

= 2 fdxfdy --- - 2X 
xy 



For the second integral: 

2 2 
x [(x-1) +(y-1) J 

2Qf dxfdy (x+y) xy 

2 2 
(x+y) [ (.x-1) + ( y-1) J 

Qf dxf dy (x+y) xy 

= 
2 

2Q f dxf dy (x-l) 
xy 

For the third integral: 

= 2QX 

2 2 2 
fdxfdy( x 2) ( (x-1) +(y-1) ) 

(x+y) xy 
= 

2 2 2 2 
fdxfdy ~x +~y ((x-l) +(y-l) ) 

(x+y) 2 xy 

= 
[ 2 2 2 

fdxfdy (x +2xy+y )-2xy] ((x-1) ) 

(x+y) 2 xy 

2 
(x-1) = x - 2 f dxf dy 2 
(x+y) 

For the total integration 

2 2 2 
[ - - e g M w [ 2 ( x-1) J 

(W -+qqy) = 3 (2Q +2Q+l)X-2fdxfdy 2 
16(2TI) (x+y) 

Performing the integrals (see Appendix D) 

f (W -+qqy) 

2 2 
e g M S 2 
___ w_ {(Q2+Q+~) [2£n2s - 3J£nsl+ - - 2!....... 
16 ( 2TI) 3 2 3 

11 

- 6s - i s 2 + 6sj2,ne:I + 4£n(l-e:) jinsj-3Q,n(l-2e:)+6E:Q,n(l-2e:) 

+ 1 [ 1
3
1 - lle: - s 2 + 3s 3] + 2(e: 2+2e:+l) Q,n(.3£._)} 

(1-E:) 1-€ 

where 



1x ln(l-z) dz 
0 z 

If we keep only terms of order E: 

· · · for Ix I ~ 1 

f (W +qqy) -

2 2 
e g M 

w 

16 ( 2'IT) 3 
2 2 I s 'IT 2 

{(Q +Q+~) [2£n E - 3 £nsJ + 2 - 3 

11 
+ 3 

Using r - r(W +qq) 
0 

= 

22 E + 2£n(2) + 4Ein(2) + O(s 2)} 
3 

2 
M g 

w 
16'IT 

f(W-+qqy) 
we have r as a function of E (see 

0 

Table I) where we have chosen Q - 1/3, corresponding to the charge 

of the d-quark (W + d u y) . 

The special case of W + e v y, where now we have a color singlet 

with Q = -1, will give us 

r(w- + e \) y) 
r (w- + ev) 

0 

as a function of E (see Table II). 

Now, since the factorization we have is dependent upon charge, it 

is natural to conclude that the factorization in this case and in any 

12 

other case will depend upon one set of group theoretical factors, in the 

present case, charge factors. To see how independent the factorization 

is of non~group factors, we can ask how other factors might change the 

existing factorization. For instance, we already know that if KI 1, 

no zero should be found (2). We could replace the quarks by particles 



TABLE I 

f (W + qqy) 
THE DECAY WIDTH RATIO, f 

0 

e: • 09 .12 .15 .18 . 21 

f(W f+ qqY} 3.3 x 10-4 1.8 x 10- 4 9.8 x 10-5 5.3 x 10-5 2.8 x 10-5 

0 

e: 

TABLE II 

f (W 
THE DECAY WIDTH RATIO, 

.09 .12 .15 

+ evY) 

r 
0 

.18 .21 

13 

f (W + evy) 
r 

1.4 x 10-3 8.8 x 10- 4 5.4 x 10-4 3.3 x 10- 4 1.9 x 10-4 

0 



retaining their charged nature; also, we might replace the W by another 

spin one or spin zero charged particle. Any of these changes may or 

may not have a factorization in their amplitude. One change we have 

tried is to use spin zero quarks. 

14 



CHAPTER III 

W DECAY TO SPIN ZERO QUAID.<S AND PHOTON 

To examine the case of spin zero quarks, we refer to the diagrams 

in Figure 2 and the Feynman rules in Appendix A and get: 

= 

+ 

Q. 
-ieg[--12"{(2q1+k) (P-2q2) 

Q, ]l \) 

1 

l+Q. 
l. ---

Q, 2 
2 

{ ( 2q +k) ( 2q1-P) } 
2 ]l \) 

1 
(2Q.+l)g + {(q-q) (-2P) +(P+k)·(q-q)g 

i Jl\I h2-M2 1 2 v µ 1 2 µv 
w 

We first check the gauge invariance: M kll=O. Then, using the trans­
µv 

versality condition, and dropping the quark masses, we find the 

factorization: 

(spin zero) 

cf. 

(spin one-half) 

where s,t, and u are same in each. While the second factor of each 

amplitude is different, the first factor of each is the same, Q+ ~ 
t+u 

15 



f:Q~ure 2; · Dia gr ams for w- -'>- cp . cp ~ y 
l. J 

16 
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We do not continue this problem since we were interested only in seeing 

if the factorization property depended on the spin of the quarks--we 

do not know the factorization to be completely independent of the quarks 

spin, but in this case the factorization is the same as for the spin 

one-half case. We expect that the Dalitz plot with spin-0 quarks will 

be different from the spin-~ case considered in the previous section, 

yet we also see that the decay probability will vanish along the line 

E = 
q 

for both. 

To see what the group factors will give in the way of a factoriza-

tion for gluon vertices, we now study the process W + qqg. 



CHAPTER IV 

DECAY TO TWO QUARKS AND A GLUON 

where 

Referring to the diagrams (Figure 3) , the matrix elements are obtained; 

(see Appendix A for Feynman rules) 

+ 

a i -ig µ v 
U(q1) (-ig y T .. ) (~) ( ;;:; y (l-y 5))v(q2)EkEP 

s µ Jl "'l 2v2 v 

- -ig i a 
U(ql) ( /-2 y" (l-y5)) (-r-) (-ig y T .. ) v(q ) EµE V 

2 v -rx, 2 s µ J l 2 k p 

a 
-gg T .. 

s Jl - [ 1 1 J µ v 
~2-12'~2.,..__ U(ql) y y- y -y °f: y (l-y5)v(q2)EkE 

µlvv2µ P 

Here g stands for the strong coupling, and we note that the 
s 

gluon couples only to th~ colored quarks and not to the W boson. 

18 



p ---->·---

Figure 3. Diagrams for·W--+qqi 
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1 1 We have the same factoryµ~ yv-yv y- y as we did in the photon case 
1 2 µ 

because this process is similar to diagrams (A) and (B) in Figure 1. 

Noting that a diagram like (C) in Figure 1 does not exist for this 

process, we can now understand why there is no outside factorization 

dependent upon gauge factors. It seems if the diagram (C) did exist, 

for instance, by replacing the W by a gluon, then we might get a 

factorization. 

Carrying out the spin averaging and summing: 

1 I I I 2 3 spins Mfi 

2 2 2 
2 a a* 2 2 t +u +2M s 
-3T .. T .. gg( w) 

Jl. Jl. s tu 

where the last step has been accomplished from the great similarity of 

-this process to W + qqy. 

Performing the color sum: 

I Tij Tji 
ij a a 

1-2 M~. I Il. 

. I. 
l 2<0 .. 8 .. 

1., J 1.1. J J 

8 2 2 -gg 
3 s 

= 

2 2 
g g M 

s w 

2 2 2 t +u +2M s 
w 

tu 

12(2'IT) 3 

~ 8 . . 8 .. ) 
1.J Jl. 

4, for N 3 

) 

2 2 
(x-1) + (y-1) 

xy 

20 

where the phase space integral is identical to X encountered i' n w ...,,. .':l.qy. 

Now we integrate on computer to get the dalitz diagram (see Appendix C). 

And the total decay width is 

-
f (W + qqg) = [ 2 I im: I 2 - 3 I im: I + 5 

2 

2 
'IT 

3 - 6E: 



- 9/2 s 2 + 6sJ1nsl + 41n(l-E)1nsl-3£n(l-2E) 

+ 6E£n(l-2E) + 4Li2(l~E) + 2£n2 (1-E)] 

2 

21 

Using f = f(W 
0 

+ qq) = 
Mg 

w --, 
161f 

we have f(W +qqg) as a function of 
r 

0 

E (see Table III) . 

-ig 0 
Noting thew f.f. vertex equals r:: y (l-y5), and the Z f.f. vertex 

l. J 2v'2 µ l. l. 

equals 
-ig M 

z 
2 M 

w 

b 
s 

y (a.-b.y5 ) 
µ l. l. 

-~, b = b = 11, 
a c 

-~ + 2/3x 

"where high energy neutrino-physics data point to a weinberg angle corres-

d . . 26 pon ing to x = sin 
w 

~ 0.3 or e ~ 33°. 117 
w 

0 
Substitution with the Z vertex and simple algebra give: 

0 rcz + q.q.g) 
l. l. 

2 2 2 2 3 
g g (a.+b. )M 

s l. l. z 
3 2 

12(21f) M 
w 

- 6E - ~ s 2 + 6sJ£nsJ + 4£.n(l-s)£nsj-3£n(l-2E) 

+ 6dn(l-2E) + 4Li (-E-) + 2£n2 (1-E) J 
2 1-E 

2 2 
(a.+b.) 

l. l. 

3 
M 
_z_ r cw + qqg) 
M 3 

w 

Also taking into account the relative couplings we can find (a 
s 

a 
s 

a 
r cw-+ qqy) 
-----~--"-"--as a function of E. This is given in Table IV. 
r (w+ qqg) 

2 
g /41f) 

s 



TABLE III 

THE DECAY WITH RATIO ~r (W r-+ qqg) 

s 0 

.09 .12 .15 

22 

.18 .21 

a. f (W -+ qqg) 
a. r 6. 7 -3 

s 0 x 10 
4.2 

x 10-3 
2.7 

x 10-3 
1. 7 

x 10-3 
9.9 

x lo-4 

a f(W -+ qqy) 
s 

a r (w- -+ qqg) 

TABLE IV 

THE DECAY WIDTH RATIO, 

a r ( w - -+ qqY) 
s 

a r (W -+ qqg) 

.o .13 .16 .19 .22 

-2 -2 -2 -2 -2 4 6 lo 4 0 lo 3 4 lo 3.0 X lo 2.8 x 10 . x . x . x 



Finally, the ratio of z0 decay into a gluon versus a photon (plus 

q + q ) is 

ar (z0 + qqg) 

df(Z 0 + qqy) 
= 

r(zo ) + qqg 

r (z0 + qqy) 
3 2 

a. Q. 
l 

23 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

f(W-+qqy) 
With the expected branching ratios, f 

0 

f(W-+qqg) 
r 

0 

rw(-+qqy) 

r (-+qqg) , it will be feasible to look at the smallest decay, W 
w 

and 

+ qqy, 

and see the expected zero somewhere in the amplitude's angular distri-

bution, depending upon the charges of the decay products, the quarks. If 

the zero is found, it will confirm many expectations about the theory 

SU(2)xU(l) and other parameters associated with the theory; but now we 

can only wait in anticipation of the experiments. Further investigation 

might be made to find why only specific parameter values seem to have 

a factorization, and why the quarks of spin-a gave the same factori-

zation as spin-1/2 quarks. Investigation of other particle processes 

may provide still other observable factorizations. We note that the 

factorization we found was independent of the spin in the sense that the 

factorization was found before the spin sum-average was completed. Thus 

if only particular spins are chosen for the initial and final states, we 

would still have identically the same zero. This is very unlike processes 

where a zero appears that is very spin dependent, such as those processes 

involving leptons and corresponding anti-neutrinos. It would be 

interesting to know exactly why some processes which have charge factors 

24 
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do contain zeros and why similar processes with different charge 

factors do not contain zeros; only further exploration might tell us the 

exact nature of these factorizations. 
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APPENDIX B 

POLARIZATION DENSITY PROJEcrION OPERATION 
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the same physics . 
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