By
THEODORE R. GROSE
Bachelor of Science
Central State University

Edmond, Oklahoma
1978

```
Submitted to the Faculty of the Graduate College
        of the Oklahoma State University
        in partial fulfillment of the requirements
            for the Degree of
            MASTER OF SCIENCE
                December, 1980
```

$$
\begin{aligned}
& \text { Thesis } \\
& 1980 \\
& G 877 w \\
& \text { cop.2 }
\end{aligned}
$$

## WEAK BOSON DECAYS INTO TWO QUARKS PLUS A

PHOTON OR A GLUON

Thesis Approved:


## PREFACE

This study is concerned with the decays of intermediate vector bosons into particular decay schemes. Much attention is given to the existence of zeros in certain amplitudes. Also, Dalitz plots are obtained for many three-body decays.
I wish to express my great appreciation to my thesis adviser, Dr. Karnig O. Mikaelian, first for his guidance and assistance throughout this study, and also for many enlightening discussions. Also, I would like to thank Dr. Mark Samuel and Katsunori Mita for their computer programming assistance, and to thank the committee members, Dr. Mark Samuel, Dr. N. V. V. J. Swamy, and Dr. Geoffrey P. Summers, for their assistance in the final manuscript preparation.
I would like to thank Janet Sallee for her preparation of the initial draft of this manuscript.
Finally, special gratitude is expressed to my best friend, Dana, for her continual encouratement.
Chapter Page
I. INTRODUCTION ..... 1
II. $W^{-}$DECAY TO TWO QUARKS AND A PHOTON ..... 3
III. W DECAY TO SPIN ZERO QUARKS AND PHOTON ..... 15
IV. DECAY TO TWO QUARKS AND A GLUON. ..... 18
V. SUMMARY AND CONCLUSIONS ..... 24
SELECTIVE BIBLIOGRAPHY ..... 26
APPENDIX A. ..... 27
APPENDIX B. ..... 29
APPENDIX C ..... 30
APPENDIX D. ..... 36
Table Page
I. THE DECAY WIDTH RATJO, $\frac{\Gamma\left(W^{-} \rightarrow q \bar{q} \gamma\right)}{\Gamma_{o}}$ ..... 13II. THE DECAY WIDTH RATIO, $\frac{\Gamma\left(W^{-} \rightarrow e^{-} \gamma\right)}{\Gamma_{0}} . . . . . . . . . . . . .13$
III. THE DECAY WITH RATIO $\frac{\alpha \Gamma\left(W^{-} \rightarrow q \bar{q} g\right)}{\alpha_{s} \Gamma_{0}}$ ..... 22
IV. THE DECAY WIDTH RATIO, $\frac{\alpha_{s} \Gamma\left(W^{-} \rightarrow q \bar{q} \gamma\right)}{\alpha \Gamma\left(W^{-} \rightarrow q \bar{q} g\right)}$ ..... 22

## LIST OF FIGURES

Figure Page

1. Diagrams for $W^{-} \rightarrow q \bar{q} \gamma$. ..... 4
2. Diagrams for $W^{-} \rightarrow \phi_{i} \phi_{j}^{\dagger} \gamma$ ..... 16
3. Diagrams for $W^{-} \rightarrow q \bar{q} g$. ..... 19

## INTRODUCTION

With the building of colliding beam machines which will be able to produce energetic $W$ bosons, the possibility of recording decay products will facilitate the study of various decay schemes. The processes we have studied are three body decay distributions. Where bodies in the final state have color, like quarks and gluons, we have hadron jets.

If $S U(2) \quad x U(1)$ is the correct group unifying weak and electromagnetic interactions, we expect to find the $W^{-}$boson with the properties expected from the Weinberg - Salam model. A good test of the model is to produce the $\mathrm{W}^{-}$bosons and study the decay modes. The prediction of a zero value in the differential cross-section of $W^{-} \rightarrow q \bar{q} \gamma$, for $K=1(1)$, could lead to a good confirmation of this theory, and confirmation of other parameters such as $K$, quark charges, couplings, etc. If the anomylous magnetic moment of the $W$ bosons, $K$, does not equal one, no zero could be expected in the angular distribution (2).

The first process, $\mathcal{W}^{-} \rightarrow q \bar{q} \gamma$, like the crossed process, $q \bar{q} \rightarrow W^{-} \gamma$, has been found to contain a factorization in its amplitude (2). Briefly the factorization is produced as follows: three Feynman diagrams contribute to the process, $W^{-} \rightarrow q \bar{q} \gamma$, so we can write $M_{f i}=Q_{i} M_{A}+Q_{j} M_{B}+Q_{w} M_{C}$, where $Q_{i}, Q_{j}$, and $Q_{w}$ are the electric charges of $q, \bar{q}$, and $W$. We find, after some algebra, $M_{f i}=F\left(Q_{i}, S, T, U\right)\left(M_{A}+M_{B}\right)$ after setting $Q_{i}=Q_{w}-Q_{j}$. For $F=O$ we have a zero in our cross section. We have examined this particu-
lar zero as it occurs in Dalitz plots. We have found the analytic expression for this partial decay probability. There has been an attempt to explain the zero theoretically (3), but as yet we cannot present a physical reason for the existence of the zero.

Next, we have examined briefly the process $W^{-} \rightarrow q \bar{q} \gamma$ where the quarks possess spin zero; there are four Feynman diagrams here; thus we have determined that in this process we have a factorization also. Thereby, we have found a zero in the physical region of this process also. Notable is the "occurrence" that this factorization is identical to that one found previously for spin one-half quarks.

Then, since $W^{-} \rightarrow q \bar{q} g$ is similar to $W^{-} \rightarrow q \bar{q} \gamma$, we examined this three jet decay with gluon jet and produced Dalitz plots. We note that this process has color matrices (4,5), and had there been a factorization, it would have necessarily been a function of these matrices. We did not find a factorization though, since a factorization seems plausible in processes with three or more diagrams, and this process has only two diagrams. We found also the analytic expression for this partial decay probability.

These processes constitute groundwork for a more complete understanding of the nature of the $W$ boson and its relationships with other particles.

## CHAPTER II

## $\mathrm{W}^{-}$DECAY TO TWO QUARKS AND A PHOTON

Refering to Figure 1, and using the Feynman rules given in Appendix A; we find the matrix element for

$$
W^{-}(p) \rightarrow q_{i}\left(q_{1}\right)+\vec{q}_{j}\left(q_{2}\right)+\gamma(k)
$$

where

$$
\begin{aligned}
& p=q_{1}+q_{2}+k . \\
& M_{f i}=e \bar{u}\left(q_{l}\right)\left(-i Q_{i} \gamma_{\mu}\right)\left(\frac{i}{l_{l}}\right)\left(-\frac{i g}{2 \sqrt{2}} \gamma_{v}\left(l-\gamma_{5}\right)\right) v\left(q_{2}\right) \varepsilon_{k}^{\mu} \varepsilon_{p}^{\nu} \\
& +\operatorname{e\overline {u}}\left(q_{1}\right)\left(\frac{-i g}{2 \sqrt{2}} \gamma_{\nu}\left(l-\gamma_{5}\right)\right)\left(\frac{i}{-\ell}\right)\left(-i Q_{j} \gamma_{\mu}\right) v\left(q_{2}\right) \varepsilon_{k}^{\mu} \varepsilon_{p}^{\nu} \\
& +\operatorname{e\vec {u}}\left(q_{1}\right)\left(\frac{-i g}{2 \sqrt{2}} \gamma_{\alpha}\left(1-\gamma_{5}\right)\right) v\left(q_{2}\right)\left(\frac{i\left(h^{\alpha} h^{\beta}-g^{\alpha \beta}\right.}{h^{2}-M_{w}^{2}}\right)\left(-i\left(Q_{i}-Q_{j}\right)\right) \\
& x\left[g_{\nu \beta}(-p-h)_{\mu}+g_{\mu \nu}(2 p-h)_{\beta}-g_{\mu \beta}(p-2 h)_{\nu}\right] \varepsilon_{k}^{\mu} \varepsilon_{p}^{\nu}
\end{aligned}
$$

where $g$ is the weak coupling, $e$ is the electromagnetic coupling, quark masses have been dropped, and where $\ell_{1}=p-q_{2}=q_{1}+k, \ell_{2}=p-q_{1}=q_{2}+k$, and $h=p-k=q_{1}+q_{2}$. After considerable simplification using the gamma matrix and spinor relations, and the transversality condition for both of the bosons:


Figure 1. Diagrams for $W^{-} \rightarrow q \bar{q} \gamma$

$$
\begin{aligned}
M_{f i} & =M_{\mu \nu} \varepsilon_{k}^{\mu} \varepsilon_{p}^{\nu}=\frac{-i e g}{2 \sqrt{2}}\left(\ell_{i}+\frac{k \cdot q_{1}}{k \cdot h}\right) \\
& x \bar{U}\left(q_{1}\right)\left\{\frac{1}{\ell_{1}^{2}} \gamma_{\mu} \ell_{1} \gamma_{\nu}-\frac{1}{\ell_{2}^{2}} \gamma_{\nu} \ell_{2} \gamma_{\mu}\right\}\left(1-\gamma_{5}\right) v\left(q_{2}\right) \varepsilon_{k}^{\mu} \varepsilon_{p}^{\nu}
\end{aligned}
$$

and choosing:

$$
\begin{aligned}
& U=\ell_{1}^{2}=2 k \cdot q_{1}, t=\ell_{2}^{2}=2 k \cdot q_{2} \\
& S=h^{2}=2 q_{1} \cdot q_{2}, \\
& M_{f i}=\frac{-i e g}{2 \sqrt{2}}\left(q_{i}+\frac{U}{t+u}\right) \bar{U}\left(q_{1}\right)\left\{\frac{1}{u} \gamma_{\mu} \ell_{1} \gamma_{\nu}-\frac{1}{t} \gamma_{\nu} \ell_{2} \gamma_{\mu}\right\}\left(1-\gamma_{5}\right) v\left(q_{2}\right) \varepsilon_{k}^{\mu} \varepsilon_{p}^{v}
\end{aligned}
$$

and we note already the zero at $Q_{i}=\frac{-u}{t+u}$. Having checked gauge invariance by $M_{\mu \nu} k^{\mu}=0$, it is worthwhile to check $M_{\mu \nu} V^{\nu}$ to look for simplification in the $W^{-}$polarization density; and we find $M_{\mu \nu} P^{\nu}=0$. Now the
tensor $\sum_{\operatorname{spin}} \varepsilon_{p}^{\nu} \varepsilon_{p}^{\beta}=-g^{\nu \beta}+\frac{p_{p}^{\nu}}{M_{w}^{2}}$ can be simplified into just $-g^{\nu \beta}$. We
note in passing that if $M_{\mu \nu} P^{\nu} \neq 0$ we may construct what may be referred to as a polarization density projection operation (see Appendix B) which will change the original $M_{f i}$ to a new $M_{f i}^{\prime}$ which will not change the physics and will obey $M_{\mu \nu}^{\prime} P^{\nu}=0$.

Now for the spin sum and average:

$$
\begin{aligned}
& \frac{1}{3}{ }_{a l l} \sum_{\text {spins }}^{M}{ }_{\mu \nu} M_{\alpha \beta}^{*} \varepsilon_{p}^{\nu} \varepsilon_{p}^{\beta} \varepsilon_{k}^{\mu} \varepsilon_{k}^{\alpha}=\frac{1}{3}{ }_{\text {quarks }} \operatorname{spins}^{M_{\mu \nu}} M_{\alpha \beta}^{*} g^{\nu \beta} g^{\mu \alpha} \\
& =\frac{1}{3} \operatorname{spins}_{\sum_{\mu \nu} M^{* \mu \nu} \equiv \frac{1}{3}|\tilde{M}|^{2}}^{l}
\end{aligned}
$$

$$
\text { and } \begin{aligned}
\left|\overline{M_{f i}}\right|^{2}= & \frac{e^{2} g^{2}}{8}\left[\frac{1}{3}|\tilde{M}|^{2}(3)\right] \\
& =\frac{e^{2} g^{2}}{8}\left(Q+\frac{u}{t+u}\right)^{2} \underset{\substack{\text { quark } \\
\text { spin }}}{ }\left|\bar{U}\left(\frac{1}{U} \gamma_{\mu} \ell_{1} \gamma_{\nu}-\frac{1}{t} \gamma_{\nu} \ell_{2} \gamma_{\mu}\right)\left(1-\gamma_{5}\right) v\right|^{2}
\end{aligned}
$$

The factor of three was inserted for the sum over three quark colors.

$$
\begin{aligned}
& \overline{\left|M_{f i}\right|^{2}}=\frac{e^{2} g^{2}}{8}\left(Q_{i}+\frac{u}{t+u}\right)^{2}\left[\frac{2}{2} \operatorname{Tr}{A_{1}}_{1} \gamma_{\mu} k_{I} \gamma_{\nu}\left(I-\gamma_{5}\right){A_{2}}_{2} \gamma^{\nu} k_{1} \gamma^{\mu}\right. \\
& +\frac{2}{t^{2}} \operatorname{Tr}{q_{1}}^{\gamma} \nu \ell_{2} \gamma_{\mu}\left(1-\gamma_{5}\right){g_{2}}_{2} \gamma^{\mu} k_{2} \gamma^{\nu} \\
& -\frac{2}{\mathrm{tu}} \operatorname{Tr} \phi_{1} \gamma_{\mu} k_{1} \gamma_{v}\left(1-\gamma_{5}\right) \phi_{2} \gamma^{\mu} \lambda_{2} \gamma^{\nu} \\
& \left.-\frac{2}{\mathrm{tu}} \operatorname{Tr} \phi_{1} \gamma_{\nu} \phi_{2}{ }_{\mu}{ }_{\mu}\left(1-\gamma_{5}\right) \phi_{2} \gamma^{\nu} \phi_{1} \gamma^{\mu}\right]
\end{aligned}
$$

where Dirac spinors are normalized to 2 m . Using the usual trace techniques;

$$
\begin{aligned}
\left|\overline{M_{f i}}\right|^{2} & =\frac{e^{2} g^{2}}{8}\left(Q+\frac{u}{t+u}\right)^{2}\left[\frac{64}{u^{2}}\left(\frac{u}{2}\right)\left(\frac{t}{2}\right)+\frac{64}{t^{2}}\left(\frac{u}{2}\right)\left(\frac{t}{2}\right)\right. \\
& \left.+\frac{128}{t u}\left\{\frac{S}{2}\left(\frac{S}{2}+\frac{u}{2}+\frac{t}{2}\right)\right\}\right] \\
& =2 e^{2} g^{2}\left(Q+\frac{u}{t+u}\right)^{2}\left[\frac{t^{2}+u^{2}+2 M_{w}^{2} S}{t u}\right]
\end{aligned}
$$

where $Q \equiv Q_{i}$. The second factor, $t^{2}+u^{2}+2 M_{w}^{2} S$, is positive definite, but the first factor, $\left(Q+\frac{u}{t+u}\right)^{2}$, can be zero (but of course never negative) when $Q=-\frac{u}{t+u}$. However, we defer the discussion of this point until after the phase space, since the zero is most significant in the context of the phase space.

The general differential decay rate is ${ }^{6}$ :

$$
\begin{aligned}
d \Gamma & =\frac{1}{2 M_{w}}\left|\overline{M_{f i}}\right|^{2} \frac{1}{2 E_{I}} \frac{d^{3} q_{1}}{(2 \pi)^{3}} \frac{1}{2 E_{2}} \frac{d^{3} q_{2}}{(2 \pi)^{3}} \frac{d^{3} k}{2 E_{k}(2 \pi)^{3}} \\
& x(2 \pi)^{4} \delta^{4}\left(P-q_{1}-q_{2}-k\right) \\
d \Gamma & =\frac{1}{2 M_{w}(2 \pi)^{5}}\left|\overline{M_{f i}}\right|^{2} \frac{d^{3} q_{1}}{2 E_{I}} \frac{d^{3} q_{2}}{2 E_{k}} \delta^{3}\left(\vec{q}_{I}+\vec{q}_{2}+k\right) \delta^{6}\left(M-E_{1}-E_{2}-E_{k}\right)
\end{aligned}
$$

where the rest frame of the decaying $W$ has been chosen. Now

$$
\begin{aligned}
& \int \frac{d^{3} P_{n}}{2 E_{n}}=\int_{-\infty}^{\infty} d^{4} P_{n} \delta\left(P_{n}^{2}-M_{n}^{2}\right) \theta\left(E_{n}\right) \\
& d \Gamma=\frac{\left|\bar{M}_{f i}\right|^{2}}{2 M_{w}(2 \pi)^{5}} \delta \delta \delta d q_{1} d q_{2} d k \delta\left(q_{1}^{2}-m_{l}^{2}\right) \delta\left(q_{2}^{2}-m_{2}^{2}\right) \delta\left(k^{2}\right) \\
& \quad x \quad \theta\left(E_{1}\right) \theta\left(E_{2}\right) \theta\left(E_{k}\right) \delta^{3}\left(\vec{q}_{1}+\vec{q}_{2}+\vec{k}\right) \delta^{\circ}\left(M-E_{1}-E_{2}-E_{k}\right)
\end{aligned}
$$

where

$$
\theta(x) \equiv \begin{cases}1 & \text { for } x \geq 0 \\ 0 & \text { for } x<0\end{cases}
$$

Now let

$$
\begin{aligned}
\text { P.S. } & =\iiint q_{1} d q_{2} d k \delta\left(q_{1}^{2}\right) \delta\left(q_{2}^{2}\right) \delta\left(k^{2}\right) \theta\left(E_{1}\right) \theta\left(E_{2}\right) \theta\left(E_{k}\right) \\
& x \delta^{3}\left(\vec{q}_{1}+\vec{q}_{2}+\vec{k}\right) \delta^{\circ}\left(M-E_{1}-E_{2}-E_{k}\right)
\end{aligned}
$$

where the quark masses have again been dropped. We define the Jacobian needed to get the energy distribution of the two quarks:

$$
J=\frac{\partial^{2}(\text { P.S. })}{\partial E_{1} \partial E_{2}}=\iint \mathrm{a}^{3} q_{1} \mathrm{a}^{3} q_{2} \int \mathrm{dk} \delta\left(q_{1}^{2}\right) \delta\left(q_{2}^{2}\right) \delta\left(\mathrm{k}^{2}\right)
$$

$$
\begin{aligned}
& \mathrm{x} \quad \theta\left(\mathrm{E}_{1}\right) \theta\left(\mathrm{E}_{2}\right) \theta\left(\mathrm{E}_{\mathrm{k}}\right) \delta^{3}\left(\overrightarrow{\mathrm{q}}_{1}+\overrightarrow{\mathrm{q}}_{2}+\overrightarrow{\mathrm{k}}\right) \delta^{0}\left(M-\mathrm{E}_{1}-\mathrm{E}_{2}-\mathrm{E}_{\mathrm{k}}\right) \\
& J=\iint d^{3}{q_{1}}_{1} d^{3} q_{2} \delta\left(q_{1}^{2}\right) \delta\left(q_{2}^{2}\right) \theta\left(E_{1}\right) \theta\left(E_{2}\right) \theta\left(M-E_{1}-E_{2}\right) \\
& \quad \mathrm{x} \delta\left(\left[M-E_{1}-E_{2}\right]^{2}-\left[{\overrightarrow{q_{1}}}_{1}+\vec{q}_{2}\right]^{2}\right)
\end{aligned}
$$

Substituting $d^{3} q_{n}=d \Omega\left|\vec{q}_{n}\right|^{2} d q_{n}=d \Omega\left|\vec{q}_{n}\right| E_{n} d E_{n}$, and integrating the angular distribution of $q_{1}$ over all space and integrating $\cos \theta$ from 1 to -l for angular distribution of $q_{2}$ :

$$
\begin{aligned}
J & =8 \pi^{2} \rho \rho\left|\vec{q}_{1}\right|\left|\vec{q}_{2}\right| \frac{E_{1}}{2 E_{1}} E_{2} d E_{2} \theta\left(E_{1}\right) \theta\left(E_{2}\right) \theta\left(M-E_{1}-E_{2}\right) \\
& x d(\cos \theta) \delta\left(E_{2}^{2}-\vec{q}_{2}^{2}\right) \delta\left(M_{w}^{2}+E_{2}^{2}+2 E_{2} E_{1}-2 M_{w}\left(E_{1}+E_{2}\right)-2\left|\vec{q}_{1}\right|\left|\vec{q}_{2}\right| x \cos \theta\right) \\
& =2 \pi^{2} E_{1} E_{2} \int_{-1}^{1} d(\cos \theta) \delta\left(-\left[M-E_{1}-E_{2}\right]^{2}+E_{1}^{2}+E_{2}^{2}+2\left|\vec{q}_{1}\right|\left|\vec{q}_{2}\right| \cos \theta\right) \\
& x \theta\left(E_{1}\right) \theta\left(E_{2}\right) \theta\left(M-E_{1}-E_{2}\right) \\
& =\pi^{2} \theta\left(E_{1}\right) \theta\left(E_{2}\right) \theta\left(M-E_{1}-E_{2}\right) \theta\left(4\left|\vec{q}_{1}\right|^{2}\left|\vec{q}_{2}\right|^{2}-\left(-M^{2}+2 M\left(E_{1}+E_{2}\right)-2 E_{1} E_{2}\right)^{2}\right)
\end{aligned}
$$

where the $\theta$-functions give the physically allowed phase space. From the phase space we get;

$$
\frac{\partial^{2} \Gamma\left(W^{-} \rightarrow \mathrm{q}_{\mathrm{q}}^{-} \gamma\right)}{\partial E_{1} \partial E_{2}}=\frac{\pi^{2}}{2 M_{W}(2 \pi)^{5}}\left|\overline{M_{f i}}\right|^{2}
$$

where the range of $E_{1}$ and $E_{2}$, i.e. phase space, is given by the above $\theta$-functions. Defining $x=1-\frac{2 E_{2}}{M_{W}}$ and $y=1-\frac{2 E_{1}}{M_{w}}$, we get for our factorization in terms of $x$ and $y ;\left(Q+\frac{x}{x+y}\right)$. And we get for our dif-
ferential decay width; $\frac{d^{2} \Gamma}{\partial x \partial y}=\frac{e^{2} g^{2} M_{W}}{16(2 \pi)^{3}}\left(2+\frac{x}{x+y}\right)^{2}\left[\frac{(x-1)^{2}+(y-1)^{2}}{x y}\right]$. We get $\frac{\partial^{2} \Gamma}{\partial x \partial y}=0$ when $Q=\frac{-x}{x+y}$ or $x=-\left(\frac{Q}{Q+1}\right) y$ (a straight line in Dalitz plot phase space).

Now in order to integrate our differential decay width, we note that where we dropped the quark masses it is now necessary to impose a lower bound upon the quark energies. In addition, there is an infrared divergence for the photon energy, so it is convenient to impose the same lower bound on all three decay energies. This is equivalent to saying not only do we have an infrared divergence for the photon, but some energy must reside in the quark masses besides.

Graphing the allowed phase space:

and using the limits on $x$ and $y$ :

$$
\Gamma=\frac{e^{2} g^{2} M_{w}}{16(2 \pi)^{3}} \int_{\varepsilon}^{1-2 \varepsilon} d y \int_{\varepsilon}^{1-y-\varepsilon} d x\left(Q+\frac{x}{x+y}\right)^{2}\left[\frac{(x-1)^{2}+(y-1)^{2}}{x y}\right]
$$

Next, the Dalitz plot is obtained by computer methods (an analytic expression for the total decay rate will be given later) ; the program divided the phase space into small parts and provided a histogram of decay probability (see Appendix C). In our histogram, where the relation $Q=\frac{-x}{x+y}$ is satisfied, that is, when the energies of the quark and antiquark are such that

$$
E_{q}=\left(\frac{2 Q+1}{2 Q}\right) M_{W}-\left(\frac{Q+1}{Q}\right) E_{\bar{q}}
$$

then our probability of finding such an event is nil. For clarity, all probabilities in the Dalitz plots have been given as the percentage of the total probability for the respective process.

Now returning to integrate $d \Gamma$ :

$$
\begin{aligned}
\Gamma(W \rightarrow q \bar{q} \gamma) & =\frac{e^{2} g^{2} M_{w}}{16(2 \pi)^{3}} \int_{\varepsilon}^{1-2 \varepsilon} d x \int_{\varepsilon}^{1-x-\varepsilon} d y\left(Q^{2}+\frac{2 Q x}{x+y}+\frac{x^{2}}{(x+y)^{2}}\right) \\
& x\left[\frac{(x-1)^{2}+(y-1)^{2}}{x y}\right]
\end{aligned}
$$

To evaluate these integrals we can use the symmetry between $x$ and $y$, $d x$ and $d y$, to make the integrals much simpler. This is only valid for the identical cutoff $\varepsilon$ we have imposed for both $d x$ and $d y$.

For the first integral, we define X by

$$
\int d x \int d y\left[\frac{(x-1)^{2}+(y-1)^{2}}{x y}\right]=2 \int d x \int d y \frac{(x-1)^{2}}{x y} \equiv 2 x
$$

For the second integral:
$2 Q \int d x \int d y \frac{x}{(x+y)}\left[\frac{(x-1)^{2}+(y-1)^{2}}{x y}\right]=Q \int d x \int d y \frac{(x+y)}{(x+y)}\left[\frac{(x-1)^{2}+(y-1)^{2}}{x y}\right]$

$$
=2 Q \int d x \int d y \frac{(x-1)^{2}}{x y}=2 Q X
$$

For the third integral:

$$
\begin{aligned}
& \int d x \int d y\left(\frac{x^{2}}{(x+y)^{2}}\right)\left(\frac{(x-1)^{2}+(y-1)^{2}}{x y}\right)=\int d x \int d y \frac{\frac{3}{2}_{2}^{2} x^{2}+\frac{1}{2} y}{(x+y)^{2}}\left(\frac{(x-1)^{2}+(y-1)^{2}}{x y}\right) \\
& \quad=\int d x \int d y \frac{\left[\left(x^{2}+2 x y+y^{2}\right)-2 x y\right]}{(x+y)^{2}}\left(\frac{(x-1)^{2}}{x y}\right) \\
& \quad=x-2 \int d x \int d y \frac{(x-1)^{2}}{(x+y)^{2}}
\end{aligned}
$$

For the total integration

$$
\left[\left(W^{-} \rightarrow q \bar{q} \gamma\right)=\frac{e^{2} g^{2} M_{w}}{16(2 \pi)^{3}}\left[\left(2 Q^{2}+2 Q+1\right) x-2 \int d x \int d y \frac{(x-1)^{2}}{(x+y)^{2}}\right]\right.
$$

Performing the integrals (see Appendix D)

$$
\begin{aligned}
\Gamma\left(W^{-} \rightarrow q \bar{q} \gamma\right) & =\frac{e^{2} g^{2} M}{16(2 \pi)^{3}}\left\{( Q ^ { 2 } + Q ^ { \prime } \frac { 1 } { 2 } ) \left[2 \ln ^{2} \varepsilon-3|\ell n \varepsilon|+\frac{5}{2}-\frac{\pi^{2}}{3}\right.\right. \\
& -6 \varepsilon-\frac{9}{2} \varepsilon^{2}+6 \varepsilon|\ln \varepsilon|+4 \ln (1-\varepsilon)|\ln \varepsilon|-3 \ln (1-2 \varepsilon)+6 \varepsilon \ln (1-2 \varepsilon) \\
& \left.+4 L i_{2}\left(\frac{\varepsilon}{1-\varepsilon}\right)+2 \ln ^{2}(1-\varepsilon)\right] \\
& \left.+\frac{1}{(1-\varepsilon)}\left[\frac{11}{3}-1 l \varepsilon-\varepsilon^{2}+3 \varepsilon^{3}\right]+2\left(\varepsilon^{2}+2 \varepsilon+1\right) \ln \left(\frac{2 \varepsilon}{1-\varepsilon}\right)\right\}
\end{aligned}
$$

$$
L i_{2}(x)=-\int_{0}^{x} \frac{\ln (1-z)}{z} d z=\frac{x}{1^{2}}+\frac{x^{2}}{2^{2}}+\frac{x^{3}}{3^{2}}+\cdots \text { for }|x| \leq 1
$$

If we keep only terms of order $\varepsilon$ :

$$
\begin{aligned}
\Gamma\left(W^{-} \rightarrow q \bar{q} \gamma\right) & \cong \frac{e^{2} g^{2} M_{W}}{16(2 \pi)^{3}}\left\{( Q ^ { 2 } + Q + \frac { 1 } { 2 } ) \left[2 \ln { }^{2} \varepsilon-3|\ln \varepsilon|+\frac{5}{2}-\frac{\pi^{2}}{3}\right.\right. \\
& \left.+2 \varepsilon|\ln \varepsilon|+4 \varepsilon+O\left(\varepsilon^{2}\right)\right] \\
& \left.+\frac{11}{3}-\frac{22}{3} \varepsilon+2 \ln (2)+4 \varepsilon \ln (2)+O\left(\varepsilon^{2}\right)\right\}
\end{aligned}
$$

Using $\Gamma_{o} \equiv \Gamma\left(W^{-} \rightarrow q \bar{q}\right)=\frac{M_{w} g^{2}}{16 \pi}$ we have $\frac{\Gamma\left(W^{-} \rightarrow q^{-} \bar{q} \gamma\right)}{\Gamma_{o}}$ as a function of $\varepsilon$ (see Table I) where we have chosen $Q=-1 / 3$, corresponding to the charge of the $d$-quark $\left(W^{-} \rightarrow d \bar{u} \gamma\right)$.

The special case of $W \rightarrow e \bar{v} \gamma$, where now we have a color singlet with $2=-1$, will give us

$$
\frac{\Gamma\left(W^{-} \rightarrow e \bar{v} \gamma\right)}{\Gamma_{o}\left(W^{-} \rightarrow e \bar{v}\right)}
$$

as a function of $\varepsilon$ (see Table II).
Now, since the factorization we have is dependent upon charge, it is natural to conclude that the factorization in this case and in any other case will depend upon one set of group theoretical factors, in the present case, charge factors. To see how independent the factorization is of non-group factors, we can ask how other factors might change the existing factorization. For instance, we already know that if $K \neq 1$, no zero should be found (2). We could replace the quarks by particles

## TABIE I

THE DECAY WIDTH RATIO, $\frac{\Gamma\left(W^{-} \rightarrow q \bar{q} \gamma\right)}{\Gamma_{0}}$

| $\varepsilon$ | .09 | .12 | .15 | .18 | .21 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{\Gamma\left(W^{-}+q \bar{q} \gamma\right)}{\Gamma_{0}}$ | $3.3 \times 10^{-4}$ | $1.8 \times 10^{-4}$ | $9.8 \times 10^{-5}$ | $5.3 \times 10^{-5}$ | $2.8 \times 10^{-5}$ |

TABLE II
THE DECAY WIDTH RATIO, $\frac{\Gamma\left(W^{-} \rightarrow e \bar{u} \gamma\right)}{\Gamma_{0}}$

| $\varepsilon$ | .09 | .12 | .15 | .18 | .21 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{\Gamma\left(W^{-} \rightarrow e^{-} \gamma\right)}{\Gamma_{0}}$ | $1.4 \times 10^{-3}$ | $8.8 \times 10^{-4}$ | $5.4 \times 10^{-4}$ | $3.3 \times 10^{-4}$ | $1.9 \times 10^{-4}$ |

retaining their charged nature; also, we might replace the $W$ by another spin one or spin zero charged particle. Any of these changes may or may not have a factorization in their amplitude. One change we have tried is to use spin zero quarks.

## W DECAY TO SPIN ZERO QUARKS AND PHOTON

To examine the case of spin zero quarks, we refer to the diagrams in Figure 2 and the Feynman rules in Appendix $A$ and get:

$$
\begin{aligned}
M_{f i} & =-\operatorname{ieg}\left[\frac { Q _ { i } ^ { 2 } } { \ell _ { 1 } } \left\{\left(2 q_{1}+k\right)_{\mu}\left(P-2 q_{2}\right)_{\nu}-\frac{1+Q_{i}^{2}}{\ell_{2}^{2}\left\{\left(2 q_{2}+k\right)_{\mu}\left(2 q_{1}-P\right)_{\nu}\right\}}\right.\right. \\
& -\left(2 Q_{i}+1\right) g_{\mu \nu}+\frac{1}{h^{2}-M_{w}^{2}}\left\{\left(q_{1}-q_{2}\right)_{\nu}^{(-2 P)_{\mu}+(P+k) \cdot\left(q_{1}-q_{2}\right) g_{\mu \nu}}\right. \\
& \left.\left.+2\left(q_{1}-q_{2}\right)_{\mu}\left(q_{1}+q_{2}\right)_{\nu}\right\}\right] \varepsilon_{k}^{\mu} \varepsilon_{P}^{\nu}
\end{aligned}
$$

We first check the gauge invariance: $M_{\mu \nu} k^{\mu}=0$. Then, using the transversality condition, and dropping the quark masses, we find the factorization:

$$
M_{f i}=4 i e g\left(Q_{i}+\frac{u}{t+u}\right)\left\{\frac{1}{u} q_{2 \nu} q_{l \mu}+\frac{1}{t} q_{l \nu} q_{2 \mu}+\frac{g_{\mu \nu}}{2}\right\} \varepsilon_{k}^{\mu} \varepsilon_{p}^{\nu}
$$

(spin zero)
cf. $\quad M_{f i}=\frac{- \text { ieg }}{2 \sqrt{2}}\left(Q_{i}+\frac{u}{t+u}\right) \bar{u}\left(\gamma_{\mu} \frac{\ell_{1}}{u} \gamma_{\nu}-\gamma_{\nu} \frac{\lambda_{2}}{t} \gamma_{\mu}\right) v \varepsilon_{k}^{\mu} \varepsilon_{p}^{\nu}$
(spin one-half)
where $s, t$, and $u$ are same in each. While the second factor of each amplitude is different, the first factor of each is the same, $Q+\frac{u}{t+u}$.


Fïzure 2.: Diagrams for $W^{-} \rightarrow \phi_{i} \phi_{j}^{+} \gamma$

We do not continue this problem since we were interested only in seeing if the factorization property depended on the spin of the quarks--we do not know the factorization to be completely independent of the quarks spin, but in this case the factorization is the same as for the spin one-half case. We expect that the Dalitz plot with spin-O quarks will be different from the spin- $\frac{1}{2}$ case considered in the previous section, yet we also see that the decay probability will vanish along the line

$$
E_{q}=\left(\frac{2 Q+1}{2 Q}\right) M_{w}-\left(\frac{Q+1}{Q}\right) E_{\bar{q}}
$$

for both.
To see what the group factors will give in the way of a factorization for gluon vertices, we now study the process $W^{-} \rightarrow q \bar{q} g$.

## DECAY TO TWO QUARKS AND A GLUON

For the process: $W^{-}(p) \rightarrow q_{i}\left(q_{1}\right)+q_{j}\left(q_{2}\right)+g(k)$
where

$$
p=q_{1}+q_{2}+k
$$

Referring to the diagrams (Figure 3), the matrix elements are obtained; (see Appendix A for Feynman rules)

$$
\begin{aligned}
M_{f i} & =\bar{U}\left(q_{1}\right)\left(-i g_{S} \gamma_{\mu} T_{j i}^{a}\right)\left(\frac{i}{\ell_{l}}\right)\left(\frac{-i g}{2 \sqrt{2}} \gamma_{v}\left(1-\gamma_{5}\right)\right) v\left(q_{2}\right) \varepsilon_{k}^{\mu} \varepsilon_{p}^{\nu} \\
& +\bar{U}\left(q_{1}\right)\left(\frac{-i g_{1}}{2 \sqrt{2}} \gamma_{\nu}\left(1-\gamma_{5}\right)\right)\left(\frac{i}{-\ell_{2}}\right)\left(-i g_{S} \gamma_{\mu}^{T} T_{j i}^{a}\right) v\left(q_{2}\right) \varepsilon_{k}^{\mu} \varepsilon_{p}^{v} \\
& =\frac{-g g_{S} T j i}{2 \sqrt{2}} \bar{U}\left(q_{1}\right)\left[\gamma_{\mu} \frac{1}{l_{1}} \gamma_{\nu}-\gamma_{\nu} \frac{1}{l_{2}} \gamma_{\mu}\right]\left(1-\gamma_{5}\right) v\left(q_{2}\right) \varepsilon_{k}^{\mu} \varepsilon_{p}^{\nu}
\end{aligned}
$$

Here $g_{s}$ stands for the strong coupling, and we note that the gluon couples only to the colored quarks and not to the f boson.


Figure 3. Diagrams for $W^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}$

We have the same factor $\gamma_{\mu} \frac{1}{k_{1}} \gamma_{\nu}-\gamma_{\nu} \frac{1}{k_{2}} \gamma_{\mu}$ as we did in the photon case because this process is similar to diagrams (A) and (B) in Figure 1. Noting that a diagram like (C) in Figure 1 does not exist for this process, we can now understand why there is no outside factorization dependent upon gauge factors. It seems if the diagram (C) did exist, for instance, by replacing the $W^{-}$by a gluon, then we might get a factorization.

Carrying out the spin averaging and summing:

$$
\left|\tilde{M}_{f i}\right|^{2}=\frac{1}{3} \operatorname{spins}^{\sum_{i n}}\left|M_{f i}\right|^{2}=\frac{2}{3} T_{j i}^{a} T_{j i}^{a^{*}} g^{2} g_{s}^{2}\left(\frac{t^{2}+u^{2}+2 M_{w}^{2} s}{t u}\right)
$$

where the last step has been accomplished from the great similarity of this process to $W^{-} \rightarrow q \bar{q} \gamma$.

Performing the color sum:

$$
\begin{aligned}
& \sum_{i j} T_{a}^{i j} T_{a}^{j i}={ }_{i, j}^{\sum_{j}} \frac{1}{2}\left(\delta_{i i} \delta_{j j}-\frac{1}{N} \delta_{i j} \delta_{j i}\right)=4, \text { for } N=3 \\
& \left|\overline{M_{f i}}\right|^{2}=\frac{8}{3} g^{2} g_{S}^{2}\left(\frac{t^{2}+u^{2}+2 M_{W}^{2} s}{t u}\right) \\
& \Gamma\left(W^{-} \rightarrow q q g\right)=\frac{g^{2} g_{S}^{2} M_{w}}{12(2 \pi)^{3}} \int_{\varepsilon}^{1-2 \varepsilon} d y \int_{\varepsilon}^{1-y-\varepsilon} \frac{(x-1)^{2}+(y-1)^{2}}{x y}
\end{aligned}
$$

where the phase space integral is identical to $X$ encountered in $W^{-} \rightarrow q \bar{q} \gamma$. Now we integrate on computer to get the dalitz diagram (see Appendix C). And the total decay width is

$$
\Gamma\left(W^{-} \rightarrow q \bar{q} g\right)=\frac{g^{2} g_{S}^{2} M_{W}}{12(2 \pi)^{3}}\left[2|\ln \varepsilon|^{2}-3|\ln \varepsilon|+\frac{5}{2}-\frac{\pi^{2}}{3}-6 \varepsilon\right.
$$

$$
\begin{gathered}
-9 / 2 \varepsilon^{2}+6 \varepsilon|\ln \varepsilon|+4 \ln (1-\varepsilon) \ln \varepsilon \mid-3 \ln (1-2 \varepsilon) \\
\left.+6 \varepsilon \ln (1-2 \varepsilon)+4 L i_{2}\left(\frac{\varepsilon}{1-\varepsilon}\right)+2 \ln ^{2}(1-\varepsilon)\right] \\
\text { Using } \Gamma_{0}=\Gamma\left(W^{-} \rightarrow q \bar{q}\right)=\frac{M_{w} g^{2}}{16 \pi}, \text { we have } \frac{\Gamma\left(W^{-}+q \bar{q} g\right)}{\Gamma_{0}} \text { as a function of }
\end{gathered}
$$

$\varepsilon$ (see Table III).
Noting the $W^{-} f_{i} f_{j}$ vertex equals $\frac{-i g}{2 \sqrt{2}} \gamma_{\mu}\left(I-\gamma_{5}\right)$, and the $Z^{\circ} f_{i} f_{i}$ vertex equals $\frac{-i g M_{z}}{2 M_{w}} \gamma_{\mu}\left(a_{i}-b_{i}, \gamma_{5}\right)$
$a_{e}=-\frac{1}{2}+2 x, a_{u}=a_{c}=\frac{1}{2}-4 / 3 x, a_{d}=a_{s}=-\frac{1}{2}+2 / 3 x$
$b_{e}=b_{d}=b_{s}=-\frac{1}{2}, b_{a}=b_{c}=\frac{1}{2}$,
"where high energy neutrino-physics data point to a weinberg angle corresponding to $x \equiv \sin ^{2} \theta_{w} \simeq 0.3$ or $\theta_{w} \simeq 33^{\circ} . "^{7}$

Substitution with the $Z^{\circ}$ vertex and simple algebra give:

$$
\begin{aligned}
\Gamma\left(z^{0} \rightarrow q_{i} \bar{q}_{i} g\right) & =\frac{g^{2} g_{S}^{2}\left(a_{i}^{2}+b_{i}^{2}\right) M_{z}^{3}}{12(2 \pi)^{3} M_{w}^{2}}\left[2|\ell n \varepsilon|^{2}-3|\ell n \varepsilon|+5 / 2-\frac{\pi^{2}}{3}\right. \\
& \left.-6 \varepsilon-\frac{9}{2} \varepsilon^{2}+6 \varepsilon|\ln \varepsilon|+4 \ln (1-\varepsilon) \ln \varepsilon \right\rvert\,-3 \ln (1-2 \varepsilon) \\
& \left.+6 \varepsilon \ell n(1-2 \varepsilon)+4 L i_{2}\left(\frac{\varepsilon}{1-\varepsilon}\right)+2 \ell n^{2}(1-\varepsilon)\right] \\
& =\left(a_{i}^{2}+b_{i}^{2}\right) \frac{M_{z}^{3}}{M_{w}^{3}} \Gamma(w \rightarrow q \bar{q} g)
\end{aligned}
$$

Also taking into account the relative couplings we can find $\left(\alpha_{s}=g_{s}^{2} / 4 \pi\right)$ $\frac{\alpha_{s}}{\alpha} \frac{\Gamma\left(W^{-} \rightarrow q \bar{q} \gamma\right)}{\Gamma\left(W^{-} \rightarrow q \bar{q} g\right)}$ as a function of $\varepsilon$. This is given in Table IV.

TABLE III
THE DECAY WITH RATIO $\frac{\alpha \Gamma\left(W^{-} \rightarrow q \bar{q} g\right)}{\alpha_{s} \Gamma_{o}}$

| $\varepsilon$ | . 09 | . 12 | . 15 | . 18 | . 21 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha \quad \Gamma\left(W^{-} \rightarrow q \bar{q} g\right)$ |  |  |  |  |  |
| $\bar{\alpha}_{s} \Gamma_{0}$ | $\times 10^{-3}$ | $\times 10^{-3}$ | $\times 10^{-3}$ | $\times 10^{-3}$ | $\times \begin{aligned} & 9.9 \\ & \times 10^{-4}\end{aligned}$ |

TABLE IV
THE DECAY WIDTH RATIO, $\frac{\alpha_{S} \Gamma\left(W^{-} \rightarrow q \bar{q} \gamma\right)}{\alpha \Gamma\left(W^{-} \rightarrow q \bar{q} g\right)}$

| $\varepsilon$ | .0 | .13 | .16 | .19 | .22 |
| :---: | :---: | :---: | :---: | :---: | :---: |

$\frac{\alpha_{s} \Gamma\left(W^{-} \rightarrow q \bar{q} \gamma\right)}{\alpha \Gamma\left(W^{-} \rightarrow q \bar{q} g\right)} 4.6 \times 10^{-2} \quad 4.0 \times 10^{-2} \quad 3.4 \times 10^{-2} \quad 3.0 \times 10^{-2} 2.8 \times 10^{-2}$

Finally, the ratio of $z^{\circ}$ decay into a gluon versus a photon (plus $q+q^{-}$) is

$$
\frac{d \Gamma\left(z^{\circ} \rightarrow q \bar{q} g\right)}{d \Gamma\left(z^{\circ} \rightarrow q \bar{q} \gamma\right)}=\frac{\Gamma\left(z^{\circ} \rightarrow q \bar{q} g\right)}{\Gamma\left(z^{\circ} \rightarrow q \bar{q} \gamma\right)}=\frac{4}{3} \frac{\alpha_{s}}{\alpha{Q_{i}}^{2}} .
$$

CHAPTER V

## SUMMARY AND CONCLUSIONS

With the expected branching ratios, $\frac{\Gamma(W \rightarrow q \bar{q} \gamma)}{\Gamma_{0}}, \frac{\Gamma(W \rightarrow q \bar{q} g)}{\Gamma_{0}}$, and $\frac{\Gamma_{W}(\rightarrow q \bar{q} \gamma)}{\Gamma_{W}(\rightarrow \bar{q} q g)}$, it will be feasible to look at the smallest decay, $W^{-} \rightarrow q \bar{q} \gamma$, and see the expected zero somewhere in the amplitude's angular distribution, depending upon the charges of the decay products, the quarks. If the zero is found, it will confirm many expectations about the theory $\operatorname{SU}(2) \mathrm{xU}(1)$ and other parameters associated with the theory; but now we can only wait in anticipation of the experiments. Further investigation might be made to find why only specific parameter values seem to have a factorization, and why the quarks of spin-o gave the same factorization as spin-l/2 quarks. Investigation of other particle processes may provide still other observable factorizations. We note that the factorization we found was independent of the spin in the sense that the factorization was found before the spin sum-average was completed. Thus if only particular spins are chosen for the initial and final states, we would still have identically the same zero. This is very unlike processes where a zero appears that is very spin dependent, such as those processes involving leptons and corresponding anti-neutrinos. It would be interesting to know exactly why some processes which have charge factors
do contain zeros and why similar processes with different charge
factors do not contain zeros; only further exploration might tell us the exact nature of these factorizations.

## BIBLIOGRAPHY

1. Lee, T. D. and C. N. Yang, Phys. Rev. 128, 885 (1962).
2. Mikaelian, K. O., M. A. Samuel, and D. Sadhev, Phys. Rev. Lett. 43, 746 (1979).
3. Dongpei, Zhu, Phys. Rev. D (to be published).
4. Cutter, Roger and Dennis Sivers, Phys. Rev. D. 17, 196 (1978).
5. Babcock, J., D. Sivers, S. Wolfram, Phys. Rev. D. 18, 162 (1978).
6. Bjorken and Drell, Relativistic Quantum Fields (McGraw-Hill, N.Y., 1965) .
7. Brown, R. W., K. O. Mikaelian, Phys. Rev. D. 19, 922 (1979).

## APPENDIX A

## FEYNMAN RULES

## Propagators

$$
\begin{aligned}
& w=\bar{\nu}-q^{q}=-i\left(g_{\mu \nu}-q_{\mu} q_{\nu} / M^{2}\right) /\left(q^{2}-M^{2}\right) \\
& q_{i}=\longrightarrow i / \neq q \\
& \phi_{i}=\longrightarrow q=i / q^{2}
\end{aligned}
$$

Vertices

$$
\begin{aligned}
& \gamma q_{i} q_{i}=\mu \sim\left\langle=-i e Q_{i} \gamma_{\mu}\right. \\
& W^{ \pm} q_{i} q_{j}=\mu--\zeta=\frac{-i g}{2 \sqrt{2}} \gamma_{\mu}\left(1-\gamma_{5}\right) \\
& z^{\circ}{ }_{q_{i}} q_{i}=\mu-\cdots=\frac{-i M_{z}}{2 M_{w}} \gamma_{\mu}\left(a_{i}-b_{i} \gamma_{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
& g_{a} q_{i} q_{j}=\mu, \operatorname{aros} \bigwedge_{j}^{i}=-i g_{S} \gamma_{\mu} T_{j i}^{a}
\end{aligned}
$$





Wave Functions

$$
\begin{aligned}
& g, \gamma=\varepsilon_{\mu}, \varepsilon_{\mu}^{+} \text {where } \Sigma \varepsilon_{\mu}(q) \varepsilon_{\nu}^{+}(q)=-g_{\mu \nu} \\
& W, z=\varepsilon_{\mu}, \varepsilon_{\mu}^{+} \text {where } \Sigma \varepsilon_{\mu}(q) \varepsilon_{\nu}^{+}(q)=-g_{\mu \nu}+q_{\mu} q_{\nu} / M^{2} \\
& q_{i}=u, \bar{u} \text { where } \sum_{S} U_{\alpha}^{(s)}(q) \bar{u}_{\beta}^{(s)}(q)=(q) \\
& \alpha \beta \\
& \phi_{i}=1
\end{aligned}
$$

## APPENDIX B

## POLARIZATION DENSITY PROJECTION OPERATION

$$
\text { For } M_{\mu \nu}=M_{\mu \nu}^{\prime}+\Omega_{\mu} P_{\nu} \text { where } M_{\mu \nu}^{\prime} \text { is chosen such that } M_{\mu \nu}^{\prime} P^{\nu}=0 \text {, }
$$

we get from our desired requirement:

$$
\begin{aligned}
& M_{\mu \nu} P^{\nu}=\Omega_{\mu} P_{\nu} P^{\nu}=\Omega_{\mu} M^{2} \\
& M_{\mu \nu}^{\prime}=M_{\mu \nu}-\frac{M_{\mu \alpha} P^{\alpha}}{M^{2}} P_{\nu}=M_{\mu \alpha}\left[g_{\nu}^{\alpha}-\frac{P^{\alpha} P_{\nu}}{M^{2}}\right]
\end{aligned}
$$

where now $M_{\mu \nu}^{\prime}$ fulfills our requirement $M_{\mu \nu}^{\prime} P^{\nu}=0$ and in all ways gives the same physics.

APPENDIX C

COMPUTER PROGRAM AND GENERATED DALITZ PLOTS

## Computer Program

```
    DTMEAS[CN w(50),z(5))
    OIMENSION ARAY(30,30)
    CIVY=14.
    PI=3.14159
    N(1)=0.41755c18837
    N(2)=0.3813355505
    N(3)=W(2)
    w(4)=0.2797053515
    h(5)=w(4)
    h(\epsilon)=0.1254\varepsilon4ct\epsilon\epsilonz
    W}(7)=w(6
```



```
    z (3) = = 24 (2)
    Z(4)=0.7415311856
    Z(5)=-2(4)
    Z(6)=0.9491379123
    Z(7)=-2(5)
    CIMENSIJN GP(5J), EP(EO)
    qRITE(6,8u)
80 FORMAT(1HC,3HEPS,10X,1HG,1OX,5HTCTAL)
    6P(1)=-1.0
    GP(2)=-1:0/3.0
    6P(2)
    6P(5) =-3.14.
    GP(t)=C.?
    GP(7)=1.0
    EP(1)=.0001
    EP(2)=3.001
    EP(2)=0.01
    EP(4)=0.05
    EP(5)=0.1
    EP(E)=0.15
    EP(8)=1.0/3.0
    [C 6C J=4,?
    EPS=EP(J)
    [07E K=1,2
    G=2P(K)
    [IVX=14.
    CIVX=DIVX
    TCTAL=O.O
    YNAX=1.0-2.0#EPS
    YNIN=EPS
    YL=Y:IN
    L=).
\ = DJ
SuM==.0
12 YO=YAIN+DELY#(DJ+1.2)/EIVY
C=(Y(-YL)/Z.:
L=1
Y=C*2(1)+?
xMAx=1.j-EOS-y
```

```
    EEX=x*NX-*IN
    ZO CONTINUE
    XL=XNIV
    II=00
    Y=C*2(1)+0
    x*AX=1,-EFPS-Y
    SUN IN=3.?
10: xU=XNIN+DELX* (DI+1.j)/CIVX
    IF (XMAY EE, XU) Xi=XNAX
    A=(XU-XL)/Z.O
    E}=(XL+XL)/2.j
200 CCNT INUE
    x= 苂 Z(N)+P
    SUMIIN=SUMIN+N(N)*XYF(X,Y,Q)*A*N(I)*C
    N=N+1
    IF(N.NE. N GO TC 200
    XL=XL
    CI=0I+1.)
    ARAY(JJ+1,I[)=ARAY(JJ+I,II) +SUMIN
    SUM=SJM+SUMIN
    SUNIN=O.Q IF (DI CLT (DIVX-0.5)) GO TC IOG
    IF(I .LE. M) GO TC 20
    CIV X=OIVX-1.0
    YL=YL
    CJ=0j+1.0
    j=0j 1.0
    IF(DJ,LT.(OIVY-0.5)) GO TD 1)
    ARITE(6,5 )IEPS,Q,TCTAL
    5 J FCRNAT(IHO,E3.2,3X,EIJ.3,3X,E!4.7)
    JJ=C
    c }JJ=JJ+
        IF(J..3T. DIVY) GC TD 70
        II=C
    90 1I= 11+1
    IF(ARAY(JJ,II) EGG&TSOD) GOTOC
    WPITE(S,QCC)JJ, II,SM[J
QOCFCRNAT(1HG,3HJJ=,I2,3X,3HII=,I2,3X,E14.7)
    ARAY(JJ,II)=0.0
    IF{II .LT. (DCIVX-.5)) GO TO 9)
    IF(JJ.LT: (DIVY-.5)) OETO`
    7E CCNTINU
```

```
    FINCTYM XYF (X,Y, X)
```

```
    FINCTYM XYF (X,Y, X)
```




```
\(y-1 \cdot() \geqslant(y-1.0)) /(y=x)\)
```

$y-1 \cdot() \geqslant(y-1.0)) /(y=x)$
XETCFA
XETCFA
ENC

```
    ENC
```





Dalitz plot for $\mathrm{W}^{-} \rightarrow$ dug

APPENDIX D

$$
\begin{aligned}
& X=\int_{\varepsilon}^{1-2 \varepsilon} d y \int_{\varepsilon}^{1-y-\varepsilon} \frac{(x-1)^{2}}{x y}=\int_{\varepsilon}^{1-2 \varepsilon} \frac{d y}{y} \int_{\varepsilon}^{1-y-\varepsilon} d x\left(x-2+\frac{1}{x}\right) \\
& X=\left.\int_{\varepsilon}^{1-2 \varepsilon} \frac{d y}{y}\left[\frac{x^{2}}{2}-2 x+\ln x\right]\right|_{\varepsilon} ^{1-y-\varepsilon} \\
& =\int_{\varepsilon}^{1-2 \varepsilon} \operatorname{dy}\left[y\left\{\frac{1}{4}-\frac{1}{2} \ln \varepsilon\right\}+\left\{\frac{1}{2}+\frac{\varepsilon}{2}+\ln \varepsilon\right\}\right. \\
& +\frac{1}{y}\left\{-\frac{3}{4}+\frac{3 \varepsilon}{2}-\ln \varepsilon\right\}+\frac{y}{2} \ln (1-y-\varepsilon) \\
& \left.-\ln (1-y-\varepsilon)+\frac{1}{y} \ln (1-y-\varepsilon)\right] \\
& x \int_{\varepsilon}^{1-2 \varepsilon} d y \ln (1-y-\varepsilon)=\left.\left[\frac{1-\varepsilon-y}{-1} \ln (1-\varepsilon-y)-y\right]\right|_{\varepsilon} ^{1-2 \varepsilon} \\
& =-\varepsilon \ell n \varepsilon+(1-2 \varepsilon) \ln (1-2 \varepsilon)-1+3 \varepsilon \\
& x \int_{\varepsilon}^{1-2 \varepsilon} d y \ln (1-y-\varepsilon)=(\ln \varepsilon)\left[-\varepsilon+\frac{3}{2} \varepsilon^{2}\right]+\ln (1-2 \varepsilon)\left[\frac{1}{2}-\varepsilon\right] \\
& -\frac{3}{4}\left(1-4 \varepsilon+3 \varepsilon^{2}\right) \\
& \int_{\varepsilon}^{1-2 \varepsilon} d y \frac{1}{y} \ln (1-y-\varepsilon)=\int_{\frac{\varepsilon}{1-\varepsilon}}^{\frac{1-2 \varepsilon}{1-\varepsilon}} d y \frac{\ln (1-\varepsilon-(1-\varepsilon) y)}{y}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\frac{\varepsilon}{1-\varepsilon}}^{\frac{1-2 \varepsilon}{1-\varepsilon}} d y \frac{[\ln (1-\varepsilon)+\ln (1-y)]}{y} \\
& =\ln (1-\varepsilon) \ln \left[\frac{(1-2 \varepsilon) /(1-\varepsilon)}{\varepsilon /(1-\varepsilon)}\right]-L i_{2}\left(\frac{1-2 \varepsilon}{1-\varepsilon}\right)+L i_{2}\left(\frac{\varepsilon}{1-\varepsilon}\right) \\
& =\ln (1-\varepsilon) \ln (1-2 \varepsilon)-\ln (1-\varepsilon) \ln \varepsilon-L i_{2}\left(\frac{1-2 \varepsilon}{1-\varepsilon}\right)+L_{2}\left(\frac{\varepsilon}{1-\varepsilon}\right) \\
& =-\ln (1-2 \varepsilon)|\ln \varepsilon|-\frac{\pi^{2}}{6}+\ln ^{2}(1-\varepsilon)+2 L i_{2}\left(\frac{\varepsilon}{1-\varepsilon}\right)
\end{aligned}
$$

Substituting everything:

$$
\begin{aligned}
x & =|\ln \varepsilon|^{2}-\frac{3}{2}|\ln \varepsilon|+\frac{5}{4}-\frac{\pi^{2}}{6}-3 \varepsilon-\frac{9}{4} \varepsilon^{2}+3 \varepsilon|\ln \varepsilon| \\
& +2 \ln (1-\varepsilon)|\ln \varepsilon|-\frac{3}{2} \ln (1-2 \varepsilon)+3 \varepsilon \ln (1-2 \varepsilon)+2 \operatorname{li}{ }_{2}\left(\frac{\varepsilon}{1-\varepsilon}\right) \\
& +\ln ^{2}(1-\varepsilon) \\
\int & d x \int d^{2} \frac{(x-1)^{2}}{(x+y)^{2}}=\int_{\varepsilon}^{1-2 \varepsilon} d x(x-1)^{2} \int_{\varepsilon}^{1-x-\varepsilon} \frac{d y}{(y+x)^{2}} \\
& =\int_{\varepsilon}^{1-2 \varepsilon} d x(x-1)^{2}\left[\frac{-1}{1-\varepsilon}+\frac{1}{x+\varepsilon}\right] \\
& =-\frac{1}{2(1-\varepsilon)}\left[\frac{11}{3}-11 \varepsilon-\varepsilon^{2}+3 \varepsilon^{3}\right]-\left(\varepsilon^{2}+2 \varepsilon+1\right) \ln \left(\frac{2 \varepsilon}{1-\varepsilon}\right)
\end{aligned}
$$

$-1$
VITA
Theodore R. Grose
Candidate for the Degree of
Master of Science
Thesis: WEAK BOSON DECAYS INTO TWO QUARKS PLUS A PHOTON OR A GLUON
Major Field: Physics
Biographical:
Personal Data: Born in Long Beach, California, March 2, 1957, the son of Anna and Ted Grose
Education: Recieved Bachelor of Science degree in Physics from Central State University, Oklahoma, in 1978; enrolled in master's program at Oklahoma State University, 1978-80; completed requirements for the Master of Science degree at Oklahoma State University in December, 1980.
Professional Experience: Teaching Assistant, Oklahoma State University, 1978-80.

