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Abstract:  

 

Inverse opals, a major type of self-assembled structures, provide good examples of 

photonic crystals that result from the periodic arrangement of voids. The periodic arrays of 

voids interfere with the light passing through them and prevent the propagation of certain 

wavelengths (stopband).  The ability to tune the stopband of an inverse opal is important 

in applications such as photonics and sensing. Inverse opal films can be fabricated by filling 

the interstitial sites of self-assembled colloids with a precursor solution and then removing 

the template (assembly of colloids) by means of heat or chemical dissolution. However, 

the fabrication of inverse opals with long range ordering of voids by using traditional 

methods is challenging due to the introduction of defects. Co-assembly is an evolving 

technique that is used to generate inverse opals with minimal defects but the use of 

experimental conditions to control the defects has not been widely explored. In this study, 

silica-based inverse opals were fabricated by using co-assembly technique and the quality 

of the resultant films was evaluated with respect to the colloidal concentration and sol-gel 

precursor concentration. To tune the stopband, the size of voids was altered by varying the 

size of colloids. Also, another type of inverse opals was produced from a cross-linked 

polymer based on 2-hydroxyethyl methacrylate which can result tunable stopbands in 

response to the external stimuli. The mechanical and dimensional stability of the polymer 

inverse opals were improved using a poly(dimethylsiloxane) mold. Overall, defect-free 

inverse opal photonic crystals with tunable stopbands in the visible region of the 

electromagnetic spectrum have been produced using inexpensive and simple techniques.  
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CHAPTER I 
 

 

INTRODUCTION 

 Photonic crystals are a group of materials that interact with light in a unique way. The periodic 

arrays of microstructures in photonic crystals can prevent the propagation of specific wavelengths 

of light, thereby resulting in a photonic band gap.1-3 Photonic band gap materials are used in a 

variety of applications such as optical transistors,4 optical waveguides with sharp bends,5, 6 optical 

fibers,7, 8 optical integrated circuits,6 high-efficiency lasers,9-11 etc. These photonic crystals are 

generally produced via lithography or self-assembly where the latter is simple and inexpensive 

compared to the former.12-16 Self-assembly in photonic crystals is an autonomous process that 

allows particles, made out of either organic or inorganic compounds,17, 18 to assemble into periodic 

structures.19  For example, polymer colloids dispersed in a solvent can be self-assembled into a 

close-packed structure by evaporating the solvent to produce colloidal assemblies known as opals. 

 

The opals are used as templates to fabricate inverse opal structures. Theoretically, it is predicted 

that inverse opals are more useful as photonic band gap materials compared to opals.16 Inverse 

opals block the propagation of specific wavelengths in the visible range of the electromagnetic 

spectrum and consequently show stopbands. Stopband, determines the color of the inverse opal; 

hence these materials find interesting applications as displays and sensors. Position of a stopband 

varies depending on the dynamic and static changes of the matrix and structure of an inverse opal; 

for instance, size of voids, or effective refractive index of the material result in stopband shifts.  
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Changing the size of voids to obtain stopband shifts is advantageous because it provides control in a 

broad range of wavelengths. 

 

This dissertation mainly focuses on the fabrication of inverse opals to obtain static and dynamic 

variation in the position of the stopbands.  The static variation was obtained by changing the size of 

voids in silica inverse opal thin films and the dynamic variation can be obtained by fabricating inverse 

opal hydrogels from poly(HEMA/DMAEMA/TEGDMA) (HEMA = 2-hydroxyethyl methacrylate, 

DMAEMA = N,N-(dimethylaminoethyl)methacrylate, and TEGDMA = tetraethylene glycol dimetha-

crylate). The first chapter describes the theoretical aspects of photonic crystals, bandgap structure, light 

diffraction, methods of fabrication of opals and inverse opals, and potential applications of photonic 

crystals.  

 

The second chapter describes a study conducted to investigate the limitations and quality of the inverse 

opals made by using a relatively new method known as co-assembly. The co-assembly method was 

introduced recently to substitute the conventional infiltration method used to fabricate inverse opals.20 

Usually, inverse opals are made in three steps: assembly of colloids on a substrate, infiltration of the 

sol-gel precursor solution, and removal of the template. In co-assembly, the first two steps are 

performed simultaneously, using a mixture containing both template particles and partially condensed 

sol-gel precursor molecules to reduce the defects associated with the inverse opals produced using the 

conventional method.20 The conventional method causes defects such as cracks, dislocations of 

particles, and presence of multiple lattice orientations. Although several remedies have been 

proposed,21-24 most of them are complex, time consuming, and expensive. Therefore, co-assembly is a 

good alternative. This chapter highlights the parameters, such as concentrations of colloids and sol-gel 

precursor, which affect the quality of the co-assembled thin films and ways to improve the quality. 

Furthermore, the defects were successfully semi-quantified using image analysis techniques.                    

In addition to that, the fabrication of inverse opals with tunable stopbands is also explained. The 
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position of the stopband was varied by changing the size of the voids. Here, poly(methyl methacrylate) 

(PMMA) beads were used to generate the templates and the sizes of the PMMA beads were varied by 

changing the concentration of methyl methacrylate used in synthesis of PMMA.  

 

Several methods have been used to analyze the periodic structures, such as opals and inverse opals. For 

example, small-angle x-ray diffraction (SAXS),25, 26 Transmission Electron Microscopy (TEM),27-29 

Scanning Electron Microscopy (SEM),30, 31 and diffraction of light.32 However, there are few studies 

that use image analysis techniques to determine the structure of inverse opals. In chapter 3, a 

methodology was introduced to determine the structure of the inverse opal films made using the co-

assembly technique. Here, SEM images of inverse opals made with different ratios of concentrations 

of colloids to tetraethyl orthosilicate were analyzed for the size of the voids, interplanar distance, center-

to-center distance, the extra amount of silica on the surface, and percentage of surface cracks. Moreover, 

it was shown that the lattice orientations of voids can be determined from 2D-fast Fourier transform 

(2D-FFT) analysis.  

 

Dynamic changes in the position of the stopband are important in sensing applications. A photonic 

crystal which can change the position of the stopband reversibly in the presence of an analyte is 

considered as a visual sensor. Since hydrogels can significantly change their volume in response to 

external stimuli, such as solvents, temperature, lights, ionic strength, etc., hydrogels are ideal candidates 

for inverse opal photonic sensors. Poly(HEMA)-based hydrogels, with modifications, are extensively 

studied as materials for optical sensors.33-36 In chapter 4, a study was conducted using 

poly(HEMA/DMAEMA/TEGDMA) to produce the matrix of inverse opal films. This polymer is 

known to swell remarkably in solvents such as N,N-dimethyl formamide (DMF), dimethyl sulfoxide 

(DMSO), methanol, ethanol, and ethylene glycol.37 Here, a new methodology was introduced to 

increase the mechanical and dimensional stability of the hydrogel inverse opal film.  
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CHAPTER II 
 

 

AN OVERVIEW OF PHOTONIC CRYSTALS 

 

2.1  Photonic crystals 

Photonic crystals (PhCs) are a unique type of materials that control the propagation of light. PhCs 

can be classified as natural1, 38, 39 and synthetic.40 The microstructures seen in insects,41-45 birds,46-49 

gemstones,50 reptiles, aquatic species,51-53 etc., provide examples for natural PhCs. Artificial 

materials containing a periodic array of microstructures are considered synthetic PhCs. Unlike 

pigments that absorb or emit certain wavelengths of light, PhCs produce colors due to the reflection 

of light by microstructures.1 These microstructures have materials with regular arrays of high and 

low refractive indices.  

 

PhCs are classified into three subcategories based on the direction of periodicity: 1D, 2D, 3D 

(Figure 2-1). Bragg grating is an example for 1D-PhCs. The patterned structures of the scales of a 

butterfly wing are a good example of a natural 2D-PhC. Opal gemstones such as Ethiopian opals 

and Australian opals are well-known examples for 3D-PhCs. The most common 3D-PhC lattice 

types are face-centered cubic (fcc), woodpile, spiral lattice, and quasi-diamond lattice.54 Since the 

propagation of light interferes in all dimensions, 3D-PhCs have many potential applications, and 

the fabrication of artificial 3D-PhCs has been broadly studied.55-60
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Figure 2-1: A cartoon representation of (a) 1D, (b) 2D, and (c) 3D-photonic crystals. 

 

2.2 Significance and applications 

In semiconductors, a periodic potential influences the motion of electrons and creates allowed and 

forbidden electronic energy states. The forbidden states generate the electronic bandgap. Similarly, 

in PhCs, dielectric structures are periodically arranged and can prohibit the propagation of some 

frequencies of electromagnetic waves, creating energy gaps known as photonic bandgaps.61 

Manipulation of light in various ways can be achieved by engineering the bandgap by changing the 

lattice parameters or introducing artificial defects, such as line defects or point defects.13, 62-64  A 

line defect is a disturbance introduced to a line of the periodic array that allows the propagation of 

light along only the direction of the defect that acts as a waveguide.65 A point defect introduces a 

defect only to a certain point of the lattice and results in a photonic nanocavity that can trap light.66 

Photonic circuits can be fabricated by introducing waveguides and nanocavities to the same PhC.67 

Furthermore, by changing a lattice parameter such as interplanar distance; the bandgap of the PhC 

can be manipulated to alter the wavelength of the reflected light. This feature can be used in 

applications such as displays68 and sensors.34 PhCs can even improve the photocatalytic activity of 
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a system by increasing the absorbance of light, resulting the slow photon effect, where the speed 

of light decreases near the photonic bandgap.69  

 

2.3 Photonic band structure 

A photonic band gap is achieved when propagation of certain frequencies of light are prohibited in 

all possible directions inside a photonic material. The interrupted frequencies cause a gap in the 

transmitted light. In 1887, Lord Rayleigh proved the existence of a 1D photonic bandgap, and 

almost a century later Eli Yablonovitch and Sajeev John have confirmed the 2D and 3D photonic 

bandgaps.2, 3 The finding of the 2D and 3D bandgap was inspired by the work of Charles Galton 

Darwin, who had introduced the dynamical theory of X-ray diffraction.70 In order to have a 3D 

photonic bandgap, two important features – electromagnetic wave polarization and higher 

refractive index contrast – must be introduced to the dynamical theory.  

 

The Maxwell equations govern macroscopic electromagnetism and the propagation of light in a 

dielectric media. The four Maxwell equations are  

 
∇ × 𝐸 +

𝜕𝐵

𝜕𝑡
= 0 (2-1) 

 
∇ × 𝐻 −

𝜕𝐷

𝜕𝑡
= 𝐽 (2-2) 

 ∇ ∙ 𝐵 = 0 (2-3) 

and  

∇ ∙ 𝐷 = 𝜌 

 

(2-4) 

where B is the magnetic induction field, D is the electric displacement, J is the electric current 

density, and ρ is the free charge density. Since the structure is constant over time and there are no 

current or free charges, both J and ρ are set to zero. Moreover, D and E are related to each other 

via a power series. Usually, PhCs are made of transparent, macroscopic, and isotropic materials, 
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hence a relationship between D and E is obtained by assuming smaller field strengths and no 

material dispersion71 and the relationship is given by 

 𝐷 = 𝜀0𝜀𝐸 (2-5) 

Also, a relationship between B and H can be obtained: 

 𝐵 = 𝜇0𝜇𝐻 (2-6) 

The ε0 is the vacuum permittivity, ε is the relative permittivity, µ0 is the vacuum permeability, and 

µ is the relative permeability; for many dielectric materials, µ is close to unity.  From all the 

assumptions mentioned above and using equation (2-5) and (2-6) Maxwell’s equations are 

simplified to: 

 
∇ × 𝐸(𝑟, 𝑡) + 𝜇0

𝜕𝐻(𝑟, 𝑡)

𝜕𝑡
= 0 (2-7) 

 
∇ × 𝐻(𝑟, 𝑡) − 𝜀0𝜀

𝜕𝐸(𝑟, 𝑡)

𝜕𝑡
= 0 (2-8) 

 
∇ ∙ 𝐻(𝑟, 𝑡) = 0 (2-9) 

 
∇ ∙ 𝜀𝐸(𝑟, 𝑡) = 0 (2-10) 

Since the Maxwell equations are linear and E and H depend on both space and time, both fields can 

be separated to:  

 𝐸(𝑟, 𝑡) = 𝐸(𝑟)𝑒−𝑖𝜔𝑡 (2-11) 

 𝐻(𝑟, 𝑡) = 𝐻(𝑟)𝑒−𝑖𝜔𝑡 (2-12) 

where ω is the frequency. Application of equation (2-11) and (2-12) to Maxwell’s curl equations 

yields 

 ∇ × 𝐸(𝑟) = 𝑖𝜔𝜇0𝐻(𝑟) (2-13) 

 ∇ × 𝐻(𝑟) = −𝑖𝜔𝜀0𝜀(𝑟)𝐸(𝑟) (2-14) 

By solving equation (2-14), and substituting ∇×E to the equation (2-13) the master equation can 

be derived,  
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∇ ×  (

1

𝜀(𝑟)
∇ × H(r)) =

𝜔2

𝑐2
𝐻(𝑟) (2-15) 

where c is the speed of light and c = 1⁄√(ε0 μ0). Similarly, an equation can be derived for the elec-

tric field. For simplicity, only the magnetic field is considered for the next step. Equation (2-15) 

has a form of an eigenvalue problem, where H is the eigenvector. The operator ∇× (1/(ε(r)) ∇) is 

known as the Hermitian operator, which has positive and real values. So, the wave equation can be 

written in terms of the magnetic field as: 

 
∇ × (

1

𝜀(𝑟)
∇ × H(r)) = 𝑘2𝐻(𝑟) (2-16) 

where k2 is the eigenvalue and k = ω/c. From Bloch theorem, 

 
 𝐻(𝑟) = ℎ𝑘(𝑟)𝑒𝑖𝑘∙𝑟  (2-17) 

Furthermore, application of the Bloch theorem for the magnetic field [equation (2-17)] to the 

master equation (2-16) yields: 

 
(∇ + 𝑖𝑘) ×

1

𝜀𝑟

(∇ + 𝑖𝑘) × ℎ𝑘 = (
𝜔𝑘

𝑐
) ℎ𝑘 (2-18) 

The variational theorem is used to obtain the lowest eigenmode, where 

 
(

𝜔𝑘

𝑐
) = 𝑚𝑖𝑛

∫|(∇ + 𝑖𝑘)ℎ𝑘|2 𝑑Ω

∫ 𝜀|ℎ𝑘|2 𝑑Ω
 (2-19) 

In order to minimize equation (2-19), the denominator has to be maximized. This is possible only 

if the magnetic field is in the high dielectric medium (ε is higher). So, the mode with the lowest 

order stays in the highest dielectric medium, whereas the next eigenmode resides in the lowest 

dielectric medium; the difference is responsible for the photonic bandgap (Figure 2-2). Since the 

wave vector of a photon, k, (k = 2 π/ λ) is related to the angular frequency, ω, by ω = k/c, the plot 

between ω and k will show the possible states for a particular PhC. The following equation gives 

the band structure for a 1D-PhC:72  

 𝜔 = 𝑐𝑘
𝑛⁄  (2-20) 

where n is the refractive index of the material, which is equal to √ε.  
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Figure 2-2: The photonic bandgap of a 1D-PhC, where (a) shows the appearance of the bandgap 

and (b) shows the lower and higher limits of propagation of the wave. 

 

There are two modes of propagation of a wave: Transverse Electric (TE), where electric field does 

not exist in the direction of propagation and Transverse Magnetic (TM), where magnetic field does 

not exist in the direction of propagation. In order to have a complete bandgap, there should be a 

gap for both TE and TM modes. A 2D-PhC made of cylinders has a bandgap for the TE mode 

whereas a 2D-PhC made of connected lattice with veins has a bandgap for TM mode. Furthermore, 

when there is a high symmetry in the lattice there is a high probability to have a bandgap. If all 

three requirements are combined, a complete bandgap is obtained. For example, hexagonal arrays 

in Figure 2-3b have a complete bandgap. The 2D-PhCs have band gaps only in certain directions 

but 3D-PhCs have complete bandgaps in all directions.  
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Figure 2-3: Three possible types of 2D-PhCs (a) dielectric blobs (top), connective veins (bottom), 

and (b) hexagonal arrays. Dielectric blobs have a band gap for TE mode, connective veins have a 

bandgap for TM mode, and hexagonal arrays have a band gap for both TE and TM modes. 

 

2.4 Light diffraction by Photonic crystals 

Electromagnetic radiation with shorter wavelengths, such as X-rays, which pass through an atomic 

crystal, interfere with the periodicity of atoms, and scatter. If the waves reflected by the crystal 

planes are in the same phase, constructive interference results, and if they are out of phase 

destructive interference results. Therefore, waves generate diffraction patterns when passing 

through an atomic crystal. The diffracted intensities and angles are used to determine the crystal 

structure, for an instance, in X-ray crystallography. Similarly, PhCs diffract light when the 

wavelength of the incident light has the same magnitude as the spacing between micro-structures.73 

Consequently, light diffraction is used to study the structure and properties of PhCs.  
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Bragg’s law gives a good approximation to the constructive interference of waves reflected by 

crystal planes. In contrast to X-ray diffraction, the effective refractive index of the PhCs should be 

taken into account as it becomes significant for the diffraction of light. To get a better 

approximation of the reflected wavelength, known as the stopband, Snell’s law can be combined 

with Bragg’s law.72 The waves reflected by a PhC are shown in Figure 2-4.  

 

Figure 2-4: Light diffraction by a photonic crystal, where θ1 is the angle of incident light, θ2 is the 

angle of refracted light corresponded to Snell’s law, ϑ1 is the angle of reflected light due to Bragg’s 

reflection, ϑ2 is the angle of light exiting from the PhC, n1 is the refractive index of the surrounding 

environment, and neff is the effective refractive index of the PhC. (Modified from work published 

by Baryshev et al.)74     

 

Since colloidal particles assemble into fcc structures, the specular reflection of the (111) plane of 

an fcc lattices is widely used as a model study for the light reflection by 3D-PhCs. According to 

Bragg’s law for a 3D photonic lattice, the wavelength of the reflected wave is given by74  

 

 
𝜆 =  

2𝑑𝑛𝑒𝑓𝑓 cos 𝜃2

𝑚
 (2-21) 
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where d is the interplanar distance, θ2 is the angle of the incident light for Bragg’s reflection, neff is 

the effective refractive index of the PhC, and m is the order of the incident light. There are many 

studies that evaluate the lowest order of diffraction, where m =1, by fcc PhCs75-81 and the above 

equation is simplified to: 

Furthermore, from the Snell’s law 

 

where θ1 and θ2 are the angles measured to the normal at the boundary of the two media with 

different refractive indices n1 and n2, respectively. Equation (2-23) can be further simplified by 

incorporating the air-PhC interface: 

The combination of Bragg’s and Snell’s law from equation (2-22) and (2-24) gives82-84  

The neff  can be calculated as follows;85  

 
𝑛𝑒𝑓𝑓 =  𝑛1𝜙 + 𝑛2(1 − 𝜙) (2-26) 

where ϕ is the volume fraction occupied by the medium having a refractive index of n1. When the 

angle of incident light is equal to zero and when one substitutes equation (2-26) for neff, equation 

(2-25) becomes,  

Since Bragg’s law assumes equal contribution from all the planes for light reflection and does not 

encounter the attenuation of light, the dynamic diffraction theory is incorporated into Bragg’s 

equation.83, 86 The relationship between Bragg’s reflection (λb) and reflection from dynamic diff-

raction theory (λd) is as follows;87  

 𝜆 =   2𝑑𝑛𝑒𝑓𝑓 cos 𝜃2 (2-22) 

 sin 𝜃1

sin 𝜃2
=  

𝑛2

𝑛1
 (2-23) 

 sin 𝜃2 =  
1

𝑛𝑒𝑓𝑓
 sin 𝜃1  (2-24) 

 𝜆 =  2𝑑√𝑛𝑒𝑓𝑓
2 − sin2 𝜃1. (2-25) 

 
𝜆 =  2𝑑[𝜙𝑛1 + (1 − 𝜙)𝑛2] (2-27) 
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 𝜆𝑑 =  𝜆𝑏(1 +
𝜓

2
) 

(2-28) 

where ψ is  

 
𝜓 = 3𝜙

𝑟2 − 1

𝑟2 + 2
 (2-29) 

Here r is the ratio of the refractive indices of the two dielectric materials where 

 𝑟 =  
𝑛1

𝑛2
 (2-30) 

The combination of equations (2-27) and (2-28) gives: 

 
𝜆 =  2𝑑[𝜙𝑛𝑎 + (1 − 𝜙)𝑛𝑠] (1 +

𝜓

2
) 

(2-31) 

Here, n1 and n2 was substituted by the refractive indices of air (na) and spheres (ns) respectively. 

Since the reflection caused by the (111) planes of an fcc crystal is responsible for its most intense 

stopband, the interplanar distance d can be related to the size of the spheres (D) to obtain:88  

 
𝜆 =  1.632𝐷[𝜙𝑛𝑎 + (1 − 𝜙)𝑛𝑠] (1 +

𝜓

2
) 

(2-32) 

  
 

2.5 Self-assembly 

Self-assembly is a unique phenomenon, where the objects assemble themselves with specific 

interactions between each other but without any significant external modification. This phenome-

non can be seen everywhere in nature including biological and non-biological environments.19, 89 

In the self-assembly of particles, interactions such as dipole-dipole,90 depletion,91-93 or capillary 

forces94, 95 control the assembly. Due to the simplicity and inexpensiveness of the process, self-

assembly is introduced as a technique for the fabrication of new materials, especially the PhCs.88, 

96-98 Currently, expensive and complex methods, such as chemical vapor deposition,99 molecular 

beam epitaxy,100-102 and lithographic techniques,97, 103, 104 such as optical,105 X-ray,106 scanning 

probe,107  nanoimprint,108 and electron beam,109 are used to fabricate PhCs.103, 104 These methods are 
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not only expensive but also slow and result PhCs limited to a thickness of few layers. In contrast, 

self-assembly results in PhCs with a thickness of a few to a several hundred layers.  

 

2.6 Opals and inverse opals (IOs) as PhCs 

An opal is a type of gemstone composed of silica and it is a well-known example of a natural PhC. 

The name opal is derived from Sanskrit word “upala,” which means precious stone.110 These 

gemstones show iridescence when viewed in different angles. This iridescence is due to the peri-

odic close-packed arrangement of silica beads with diameters of several hundreds of nanometers. 

Microstructures containing close-packed spheres are generally referred to as opals. In the opal, the 

interstitial sites among the close-packed spheres contain a medium of low refractive index, such as 

air (n=1). When the refractive indices are reversed, an inverse opal is obtained. The Figure 2-5 

shows a cartoon representation of an opal and inverse opal.  

 

Figure 2-5: Schematic representation of (a) an opal and (b) an inverse opal. 

 

The photonic bandgap is one of the most interesting features of a PhC. A complete bandgap is 

possible when the propagation of light is forbidden for all states of directions and polarizations. 

However, some PhCs have incomplete or pseudo band gaps, where the propagation of light is 

forbidden in only some directions that are sometimes referred to as “stopbands.” Theoretically, for 

opaline structures, a complete band gap is obtained if the contrast of the refractive indices is higher 

than 2.9 (n1/n2 > 2.9), which is not possible with most opals. The opals usually have pseudo 
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bandgaps, whereas complete bandgaps can be easily achieved with inverse opals. Laser resonance 

cavities, waveguides, inhibitors of spontaneous emission, etc., are good examples for the 

application of PhCs with complete bandgaps.111 

 

2.7 Fabrication of opals and inverse opals 

The majority of synthetic opals are made of silica or polymer colloids, where the colloids are 

arranged into an fcc or hcp crystal and the interstitial sites are usually filled with air.112 Poly(methyl 

methacrylate) (PMMA) and polystyrene (PS) polymers are widely used to generate colloids for the 

fabrication of opals and inverse opal structures.  

 

There are various methods to fabricate opals;72, 113, 114 of these, sedimentation and evaporative 

assembly are used frequently. Sedimentation is conducted using gravity or electric fields,115, 116 and 

evaporative assembly involves the evaporation of the dispersant of the colloids. Sedimentation 

methods are good for the fabrication of thick films of opals; whereas, evaporative assembly is good 

for thin films. The colloids are vertically117 or horizontally118  deposited onto a substrate, but 

horizontal deposition results in opals with uneven thickness. Even though vertical deposition yields 

a much more uniform colloidal crystal, there are some drawbacks, such as the formation of a 

thickness gradient and difficulty with the fabrication of thin films with large colloids. These 

drawbacks can be minimized by controlling the evaporation temperature, applying vertical 

temperature gradient, mechanical agitation, and isothermal heating. Figure 2-6a shows a typical 

evaporative vertical assembly setup, where a substrate is submerged in a colloidal solution and kept 

open to the environment for the evaporation of solvent.  
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Figure 2-6: Schematic representation of vertical deposition of colloids on a substrate, where (a) is 

the vertical deposition of colloids and (b) is the co-assembly of colloids.  

 

The inverse opals are made of various materials such as SiO2,
119 Al2O3,

120 TiO2,
98, 121, 122 CeO2,

111 

GaAs,123 V2O5,
124 and ZrO2,

88, 125 etc. Even polymers, such as hydrogels, have been used to fab-

ricate inverse opals. Voids of an inverse opal are usually filled with air and the contrast of refractive 

indices of the matrix and voids determines the properties of the PhC.  

 

Usually, inverse opals are fabricated by infiltrating a sol-gel precursor solution into the interstitials 

sites of a self-assembled opal, which is condensed and forms a solid after hydrolysis. The solid 

matrix starts drying as the solvent is evaporated. Next, the template is removed chemically or 

physically. Various sacrificial templates are used for the fabrication process such as PMMA, PS 

and silica. Mostly, the silica templates are removed using dilute hydrofluoric acid, and polymer 

templates by calcination. The calcination not only removes any adsorbed solvent or trapped by-

products but also facilitates further condensation of the 3D solid network. Usually, fabrication of 

inverse opals utilizes sol-gel precursors to build up the matrix. However, the inverse opals made 
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with conventional infiltration technique have numerous defects. Also, the vertical deposition of 

colloids itself generates defects, such as polycrystallinity and cracks, which will be transferred to 

the inverse opal. Moreover, it is difficult to control the amount of the precursor added to the 

template, which results in poor or over infiltration. So there is a need for a better technique to 

fabricate inverse opals with a good quality. To improve the quality of inverse opals, research has 

been conducted on controlled template deposition of colloids, such as assembly of colloids under 

negative pressure,126 capillary-enhanced processes,127 vertical depo-sitions combined with a 

piezoelectric actuator,128 etc.  

 

Co-assembly is a simple technique that is used to fabricate Inverse opals with good quality. In co-

assembly both colloids and the sol-gel precursor are mixed in the same solution and the self-

assembly and infiltration take place simultaneously. Once the process is completed the template is 

removed.20 This method reduces the main drawbacks of the infiltration technique, such as the 

excess or lack of precursor, poor assembly of colloids, and presence of multiple domains. It is 

reported that the presence of a sol-gel precursor and colloids in the same solution is beneficial as 

the precursor aids on the assembly of colloids; this results in a single crystalline domain and can be 

extended to several centimeters in length.20 Figure 2-6b shows a schematic representation of the 

co-assembly technique.      
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CHAPTER III 
 

 

FABRICATION OF DEFECT-FREE INVERSE OPALS WITH VARAIBLE STOPBANDS 

 

3.1 Introduction 

Opals and inverse opals, two major types of self-assembled structures, provide good examples of 

photonic crystals that result from the periodic arrangement of colloids and voids, respectively.  Self-

assembly techniques continue to be studied as an alternative to lithographic methods because while 

photonic structures generated by lithographic methods are intricate and functional, the fabrication 

is cumbersome, time consuming, and expensive.12-15, 129, 130 Self-assembly is finding application in 

photonics,131-133 catalysis,133,134 sensing,34, 135 and tissue engineering.136 Applications of opals and 

inverse opals in sensing and photonics make use of the structural color that results from the 

periodicity of the structures. Inverse opal films can be fabricated by filling the interstitial sites of 

self-assembled colloids with a precursor solution and then removing the template (assembly of 

colloids) by means of heat or chemical dissolution. The co-assembly is a technique that is used for 

fabrication of inverse opal films where the colloids and the matrix material (a sol-gel precursor) 

assemble simultaneously. According to Hatton, et al.,20 co-assembly reduces defects of the inverse 

opal structure significantly, resulting in high-quality thin films that have large, ordered domains. 

This is in contrast to inverse opal films made with the conventional technique, where the self-

assembly and infiltration of the sol-gel precursor occur in two consecutive steps, which leads to a 

significant amount of defects in inverse opals.  
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Long-range order is required for maximum functionality, but the fundamental issue with the self-

assembly of colloids is the cracks associated with the drying process that disrupt periodicity.137-141 

Other defects include the presence of multiple crystal domains, colloid vacancies, and colloidal 

dislocations.  Even though many methods have been proposed to improve the self-assembly 

technique,22-24, 142, 143 enhancing the overall quality of the fabricated materials remains challenging.  

Previous studies have shown that co-assembly can improve upon cracks and yield inverse opals 

having long-range order in the centimeter length scale.20  

 

In this study, the effects of three parameters on the overall quality of the fabricated inverse opals 

produced by the co-assembly process were investigated. The parameters include varying the 

concentration of the colloids, the concentration of the sol-gel precursor, and the rate of hydrolysis. 

Thresholding, a semi-quantitative image analysis technique, was used to assess the defects that 

result in the fabricated inverse colloidal crystal films with respect to the aforementioned 

parameters. Our results show that the number of defects reached to a minimum when the 

concentrations of colloids and tetraethyl orthosilicate were changed to 1.3 mg/mL and 1.9 mg/mL. 

It was further revealed that the mild hydrolysis of tetraethyl orthosilicate facilitates the reduction 

of cracks. Also, the position of the stopband was tuned by synthesizing poly(methyl methacrylate) 

colloids with different sizes for use as templates of inverse opal films.   

 

3.2 Materials and methods 

3.2.1 Materials and Instruments 

Chemicals were used as received. Methyl methacrylate (99%), ethylene glycol dimethacrylate 

(98%), ammonium persulfate ((NH4)2S2O8, 98%), 1-dodecanethiol (98%), and tetraethyl 

orthosilicate (TEOS, 98%) were obtained from Sigma-Aldrich Chemicals (St. Louis, MO). 

Absolute ethyl alcohol (EtOH), sulfuric acid (H2SO4, 95.0-98%), and ACS reagent grade 

hydrochloric acid (HCl, 36.5-38.0%) were purchased from Pharmco-AAPER (Brookfield, CT). 
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ACS reagent grade hydrogen peroxide (H2O2, 30% (w/w)) was bought from Ricca chemical 

company (Arlington, TX). Silicon wafers (p-type Si:B[100], Ro = (1-100) Ω cm) were acquired 

from El-Cat Inc. (Ridgefield Park, NJ) and fused quartz slides were purchased from Technical 

Glass Products, Inc. (Snoqualmie, WA).  Opal films were fabricated on microscope slides 

(premium) obtained from Fisher Scientific (Fair Lawn, NJ). The surface of the substrates was 

cleaned using a corona treater (Electro technique products incorporation BD-20). The images of 

the thin films were taken using a scanning electron microscope (SEM, FEI Quanta 600 FE-ESEM) 

and light microscope (Olympus IX 83). Particle sizes were measured using both particle size 

analyzer (Malvern instrument Nano-ZS90) and SEM images. The thin film deposition was carried 

out in a convection oven (Binder ED 115) and calcination was conducted in a tube furnace 

(Thermolyne 2110). Transmittance spectra were taken using a UV-Vis spectrophotometer (Cary 50 

Bio) in transmittance mode. Image analysis was conducted using Image J 1.48v (Wayne Rasband, 

National Institutes of Health, USA) and Photoshop CS6 software (Adobe Systems Inc.). All the 

graphs were plotted using OriginPro 9 software (OriginLab Corporation). Water was deionized at 

a resistance of 18.1 Ω/cm using a Barnstead NanopureTM water purification system. 

 

3.2.2 Synthesis of poly(methyl methacrylate) colloids 

Poly(methyl methacrylate) (PMMA) colloids were prepared by adding ammonium persulfate 

(0.100 g) to a flask containing deionized water at 80 °C. After stirring the solution for 1 h, a pre-

sonicated mixture of methyl methacrylate (9.25 mL), ethylene glycol dimethacrylate (47.4 µL), and 

1-dodecanethiol (23.7 µL) was added and the stirring was continued for 3 h. The resulting colloidal 

solution was purified by centrifugation. The particle size, zeta potential, and polydispersity index 

of the colloidal particles were determined using a particle size analyzer (Nano-ZS90, Malvern 

Instruments). The particle size and the polydispersity of the air-dried polymer colloids were 

measured using SEM images as mentioned elsewhere.144, 145 Briefly, random images of PMMA 

particles placed on a 1 cm × 1 cm silicon wafer were taken and image processing soft-ware (ImageJ) 
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was used to measure the diameter of the particles. The polydispersity was determined by taking the 

square of the ratio between the standard deviation and mean particle diameter.  

 

The size of the PMMA colloidal particles was varied by changing the amount of monomer used in 

the synthesis. The sizes of 298(±15) nm, 354(±14 nm), 391(±13) nm, 438(±15) nm, and 465(±19) 

nm were obtained for the colloids synthesized by using the respective amounts of the monomer: 

4.9 g (5.25 mL), 6.7 g (7.25 mL), 8.6 g (9.25 mL), 10.4 g (11.25 mL), and 12.3 g (13.25 mL). 

 

3.2.3 Preparation of TEOS stock solution 

A tetraethyl orthosilicate stock solution was prepared by mixing 0.1 M HCl, ethanol, and tetraethyl 

orthosilicate in a ratio of 1:1.5:1 (by weight) followed by stirring the mixture for 1 h.  

 

3.2.4 Fabrication of opal and inverse opal films 

Both opal and inverse opal films were fabricated either on silicon wafers, glass microscope slides, 

or fused quartz slides (with dimensions of 10 mm × 50 mm) as necessary. The substrates were 

cleaned using piranha solution (1:2 mixture of H2O2 and H2SO4) and treated with a corona treater 

prior to use. The opal films were fabricated using vertical deposition, where the substrates (silicon 

wafers and glass slides) were submerged vertically in a dilute colloidal solution and heated in an 

oven at 65 °C for 20 h. The evaporative co-assembly technique was used for the fabrication of 

inverse opal films.20 The co-assembled technique is similar to the fabrication process of the opal 

films except for the addition of tetraethyl orthosilicate into the colloidal solution. In this study, two 

sets of inverse opal films were fabricated. The first set of films was fabricated by varying the 

concentration of colloids at a constant concentration of tetraethyl orthosilicate (1.9 mg/mL). The 

colloid concentrations were the following: 0.4 mg/mL, 0.7 mg/mL, 1.0 mg/mL, 1.3 mg/mL, and 

1.6 mg/mL. For the second set of inverse opal films, the concentration of colloids (1.3 mg/mL) 

remained constant while the concentration of tetraethyl orthosilicate was varied as follows:             
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1.0 mg/mL, 1.3 mg/mL, 1.6 mg/mL, 1.9 mg/mL, and 2.2 mg/mL. The resulting co-assembled films 

(length ~18 mm) were calcined in a tube furnace by heating for 2 h at 500 °C with a 5 h ramping 

time of 95 °C/h. Opal and inverse opal films were fabricated on glass microscope slides or fused 

silica glass for evaluation by optical microscopy. Images of the fabricated films were taken using 

an Olympus IX 83 light microscope with a 20× objective along the direction of fabrication (for ca. 

1 mm from the top) and stitched together. 

 

3.2.5 Defect analysis of inverse opal films using SEM images 

 

Figure 3-1: Quantification of a defected area using thresholding. (a) An SEM image of an inverse 

opal film made with 0.4 mg/mL of colloids and 1.9 mg/mL of tetraethyl orthosilicate. The SEM 

image is stitched to generate an area of 90 mm2, and then divided into 25 small rectangles (1.8 mm 

× 2.0 mm). (b) A binary image that represent the area of the small rectangle indicated by the black 

open square in panel (a); the defects were highlighted in black and the differentiation between the 

two gray contrasts values was done by adjusting the thresholding window (c). 

 

The use of binary images to analyze defects has precedence in the study of fractures in con                     

-crete. 146, 147 In this study, the SEM images (8-bit) were converted to binary images by thresholding 

using ImageJ 1.48v (Wayne Rasband, National Institutes of Health, USA). The total defected area 
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was highlighted by adjusting the thresholding window manually, determined from the “measure” 

in-built function, and reported as a percentage of the total area. The sample area (90 mm2) of the 

inv-erse opal film was selected for the analysis and imaged using SEM (voltage-20 kV, spot size-

3.0, magnification-100×, and under the same brightness and contrast). Later, the SEM images were 

stit-ched together to remove the overlaps and an image of the entire area was obtained (Figure 3-

1). Next, this image was divided into 25 sections (each having an area of 3.6 mm2). Each section 

was analyzed individually and combined to obtain the total area of defects.    

 

3.3 Results and Discussion 

3.3.1 Colloidal Assembly 

Koh, et al.148 proposed a mechanism for the self-assembly of colloids, which includes three distinct 

stages. First, near the pinned contact line of the meniscus, hydrated colloids arrange with a large 

lattice parameter due to the Derjaguin, Landau, Verwey, and Overbeek (DLVO) potential barrier148. 

As the meniscus recedes, the volume fraction of colloids increases and capillary forces facilitate 

the nucleation. The second stage arrives as the meniscus passes the first pinned contact line, where 

the colloids assemble with a lower lattice parameter. At this stage, the solvent is filled into the 

interstitial sites between the colloids. Finally, solvent at the interstitial sites evaporates, which 

results in hollow spaces. The sizes of the colloids decrease during the process since the colloids 

become dehydrated with the evaporation of the solvent.  

Table 3-1: Size distribution and zeta potential of PMMA colloids.  

 

 

 

 Wet colloids Dry colloids 

Size /nm 460(±5) 345(±20) 

Polydispersity 0.19 0.06 

Zeta potential /mV 58.0(±0.7) -  
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Figure 3-2:  Representative SEM image of PMMA particles (345 nm) synthesized by emulsion 

polymerization.  

 

The colloids used in this study were made out of poly(methyl methacrylate) (PMMA)               

(Figure 3-2). Both the sizes and the zeta potential (ζ) of the colloids were measured to determine 

the stability of the colloidal suspension. The sizes of the colloids were determined using a particle 

size analyzer (wet) and SEM images (dry) as mentioned in the procedures. There was a difference 

of ~100 nm in sizes between the dry and wet colloids (Table 3-1). The polydispersity of dry colloids 

was calculated from the square ratio of the standard deviation and mean particle diameter. The 

polydispersity of the dry colloids was 0.06. As previously reported, when the polydispersity of the 

colloids is lower than 0.07 (dry), better close-packing is observed.145 As measured by light 

scattering, the polydispersity index (PdI) of the wet colloids synthesized was ~0.04, which falls in 

the range of monodisperse colloids (<0.05).149 A colloidal solution is considered stable when the 

zeta potential is between ±40 and 60 mV.150-152 The measured zeta potential of the PMMA colloids 

synthesized in this experiment was ~60 mV (Table 3-1).  
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3.3.2 Inverse Opals Made by Co-assembly    

Co-assembly was used to fabricate the inverse opal films: tetraethyl orthosilicate was used as the 

sol-gel precursor and PMMA colloids were the sacrificial template. Then, the crystal structure was 

determined using SEM images. There are two possible crystal structures for a close-packed 

arrangement of colloids: hexagonal close-packed (hcp) and face centered cubic (fcc). The fcc 

structure has three distinct alternating layers of colloids or voids stacked in an A-B-C sequence and 

hcp has an A-B stacking sequence of colloids or voids. Here, the crystal structure of inverse opal 

films was determined by analyzing the arrangement of voids at a crack, and confirmed to be fcc. 

Castañeda-Uribe, et al.,153 previously used a similar analysis to determine the crystal arrangement 

of an opal film using SEM images. As seen in Figure 3-3, three alternating layers were observed 

in the fabricated inverse opal films, which suggest the A-B-C arrangement of the fcc structure.   

 

The size of the voids of inverse opal films was measured using SEM images and found to be 

270(±20) nm. The void size is smaller compared to the size of the dry colloidal template (345 nm). 

The reduction in the void size is likely caused by the volume expansion of the silica network that 

results from heating at high temperatures (500 °C) during the calcination process that can deform 

the PMMA colloids. 
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Figure 3-3: (a) An SEM image of an inverse opal film with a crack; the colored circles show the 

fcc crystal arrangement of voids; the inset shows the area of the crack that was used for the analysis. 

(b) The layer by layer arrangement of voids confirms the fcc crystal structure of the inverse opal 

film: green - layer A, red - layer B, and blue - layer C; the diagram (right-bottom) clearly shows 

the arrangement of voids in the layers is fcc; yellow circles - layer A, orange circles - layer B, and 

light blue circles - layer C. 

 

3.3.3 Inverse Opal Structures: Effect of Colloidal Concentration 

3.3.3.1 Quantification of Defects  

In the vertical deposition method, evaporation of the solvent facilitates a convectional flux of 

colloidal particles towards the thinning region of the meniscus onto the substrate. This region has 

a high volume fraction of colloidal particles with a low interplanar distance, which ultimately 

results in the nucleation step in the formation of colloidal crystal. When there is a low concentration 

of particles, the particles are arranged as a few layers at the pinned contact line of the meniscus. 

Subsequently, the meniscus recedes to the minimum contact angle that it can possibly have with 

the substrate and slips to a new pinned contact line with a new contact angle. Since the 
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concentration of particles is not sufficient, the packing of the colloidal particles can be seen only at 

regular intervals and the stick-slip bands are created.154, 155 In co-assembly, a mixture of colloids 

and a sol-gel precursor is used to produce the colloidal composite; hence both the concentration of 

colloidal particles and the sol-gel precursor should influence the quality of the resultant inverse 

opals.   

 

Figure 3-4: SEM images of the types of defects observed in the inverse opal films made by the co-

assembly technique. (a) An SEM image showing a stick-slip band (dark contrast) and an overlayer 

of silica on an inverse opal film (the colloidal template was made with 0.4 mg/mL of colloids and 

1.9 mg/mL of tetraethyl orthosilicate). The inset shows a magnified area on an edge of the stick-

slip band (the stick-slip band on the left and the overlayer on the right are separated by a close 

packed arrangement of voids) and (b) a magnified SEM image of the light gray area of (a).  

    

To study the effect of the colloidal concentration on the quality of inverse opal films, a set of inverse 

opal films was fabricated by changing the concentration of PMMA colloids, from 0.4 mg/mL to 

1.6 mg/mL, while keeping the concentration of tetraethyl orthosilicate constant (1.9 mg/mL). SEM 

was used to analyze the defects in the inverse opal films. Here, defects larger than 1µm that could 

be easily observed in SEM images taken at a low magnification (100×) are referred to as 

macroscopic defects. The types of macroscopic defects found in the inverse opal films made by co-

assembly include stick-slip bands, overlayers, and cracks. Stick-slip bands are areas where there is 

no assembly of colloids (for direct opals) or voids (for inverse opals). Overlayers are the areas 
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where a thin layer of silica is deposited on the top surface of the close-packed voids. Stick-slip 

bands and overlayers can be identified in the SEM images since they appear dark gray in contrast, 

whereas closely packed voids appear light gray (Figure 3-4). The dark gray area shown in        

Figure 3-4a is a stick-slip band where an area of non-colloidal assembly is surrounded by close-

packed voids (a magnified area is shown in the inset). The light gray area has well-ordered voids, 

and overlayers are present in some places.    

 

According to previous studies, defects can be analyzed by differentiating segments of gray values 

using binary images.146, 147, 156 In these binary images, the defected area is highlighted in black while 

the rest is in white. As mentioned earlier, in the SEM images of the inverse opals, the defects appear 

dark gray while defect-free areas appear in light gray. Since it is not possible to differentiate the 

stick-slip bands from the overlayers, defects as a whole were quantified using image analysis. To 

differentiate the segments of gray values (dark and light contrast) the SEM images of the inverse 

opals were converted to binary images using the thresholding method. For this analysis, an area of 

90 mm2 was selected from the top of each the inverse opal film (see section 3.2.5 and Figure 3-1a 

for more details). The number of defects was reported as a percentage of the total area that was 

analyzed (90 mm2).  

 

As depicted by the graph in Figure 3-5e, at low concentrations of colloids (0.4 mg/mL and 0.7 

mg/mL), more than 46% of the total area of the inverse opal films is defected. The percentage of 

the defected area increased up 77% at a colloidal concentration of 0.7 mg/mL and reached ~1% at 

1.3 mg/mL. Even though the percentage of defects was ~1% at high colloidal concentrations                  

(1.3 mg/mL and 1.6 mg/mL), triangular-shaped cracks were observed in the inverse opal films at 

1.6 mg/mL. The cracks, mostly observed at the bottom of the thin film, originated from the edges 

and propagated toward the center (Figure 3-6). 



29 
 

 

Figure 3-5: Stitched SEM images of inverse opal films made with PMMA colloids (345 nm) of 

different concentrations: (a) 0.4 mg/mL, (b) 0.7 mg/mL, (c) 1.0 mg/mL, and (d) 1.3 mg/mL. The 

concentration of colloids was varied, while keeping the concentration of tetraethyl orthosilicate 

constant (1.9 mg/mL). (e) Graph of the percentage of defects (analyzed using thresholding of SEM 

images) as a function of the concentration of colloids.  

 

Figure 3-6: An SEM image (100×) of an inverse opal film made with 1.6 mg/mL of colloids and 

1.9 mg/mL of tetraethyl orthosilicate. The inset showing a triangular shaped crack is obtained at a 

higher magnification (1000×). The images were taken at the bottom of the thin film.     
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3.3.3.2 Crystal Orientation 

The (111) plane of an fcc crystal of an inverse opal film has voids arranged in a hexagonal pattern 

parallel to the substrate.27, 157 Hatton, B. et al., reported that even though the expected growth 

direction is <112>, inverse opals has preferential growth along <110> direction. The SEM images 

shown in Figure 3-7 verified that inverse opals made with a high concentration of colloids          

(>1.3 mg/mL) growth along <110> family of planes (red color arrow in Figure 3-7b).20 We have 

observed a mix of <112> and <110> growth directions (Figure 3-7a) when low colloidal 

concentrations (<1.3 mg/mL) were used in the fabrication process, but when the concentration 

increases (>1.3 mg/mL) the crystal preferentially grows along the <110> direction. Further analysis 

was conducted using 2D Fast Fourier Transform (2D-FFT), and from the analysis, it is clear that 

the top plane of the inverse opal films is (111) and the hexoganal pattern of spots indicate the long-

range of order of the inverse opal film (insets, Figure 3-7a and b).  

 

Figure 3-7: Magnified SEM images of inverse opal films made by using (a) 0.7 mg/mL of colloids 

and (b) 1.3 mg/mL of colloids, where insets represent the FFT images of the particular SEM image. 

Red arrows show the growth direction of the respective colloidal crystal. (c) A schematic 

representation of orientations of voids in the (111) plane along the growth direction of colloids; the 

expected growth direction is [112].    
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3.3.3.3 Spectrophotometric Analysis  

When an inverse opal film is exposed to the visible range of electromagnetic radiation, the specific 

wavelength of the reflected light is known as the stopband. Since inverse opal films have an fcc 

crystal structure, and the top surface has a (111) crystal plane, the most intense stopband is due to 

the reflection of light from (111) planes, which determines the color of an inverse opal film. If the 

inverse opal is polycrystalline then other planes can also contribute to the color of an inverse opal 

film. For an example, the final color of an inverse opal film can be a mix of reflections of light 

from the (111), (220), (200) and (311) planes.88 The stopband due to the reflection from the (200) 

planes are less intense, and the peak appears close to the main (111) diffraction, mostly it is 

indistinguishable in the spectrum. 158 The position and the shape of the stopband are useful to 

determine the quality of the inverse opals. The wavelength of a stopband of a photonic crystal is 

related to the interplanar distance by the following equation,  

 

which is a combination of Bragg’s law and Snell’s law. Here, λ is the wavelength of the stopband, 

dhkl is the interplanar distance between two crystal planes, m is the order of the incident light, ϕ is 

the volume fraction of the matrix (silica), nm is the refractive index of the matrix, and nv is the 

refractive index of voids (air). Since the most intense stopband is due to the reflection of light from 

the (111) plane of the fcc crystal, dhkl can be related to the void size (D) and the following equation 

can be obtained for the first order reflection.  

The wavelength of the stopband can be varied by tuning the interplanar distance (d) or the volume 

fraction of the voids (ϕ). The interplanar distance depends on the size of the voids and the close-

packed arrangement of voids. The stopband wavelength of our inverse opal films was calculated, 

from the equation (3-2), using the following parameters: volume fraction of 0.74 (for a perfect 

 
𝜆 =  

2𝑑ℎ𝑘𝑙

𝑚
[𝜙𝑛𝑣 + (1 − 𝜙)𝑛𝑚] 

(3-1) 

 𝜆 = 1.632𝐷[𝜙𝑛𝑣 + (1 − 𝜙)𝑛𝑚] (3-2) 
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close-packed inverse opal crystal), interplanar distance of 260 nm, and the refractive index of 1.459 

for silica and 1.000 for air. Here, the interplanar distance was measured from the cross section of 

an inverse opal film, which shows spheroidal voids resulting from the anisotropic shrinkage of 

silica during calcination.159 The interplanar distance was measured along the minor axis of voids. 

According to the calculation, the stopband should be positioned at 580 nm; however, a shift in the 

stopband was observed when the concentration of colloids was varied. Figure 3-8 demonstrates 

the transmittance spectra of inverse opal films made with colloids at different concentrations        

(0.4 mg/mL to 1.6 mg/mL) and 1.9 mg/mL of tetraethyl orthosilicate. At the colloidal 

concentrations of 0.7 mg/mL and 1.3 mg/mL, the stopband was observed at 605 nm and 550 nm, 

respectively. Further increasing the colloidal concentration to 1.6 mg/mL shifted the stopband to 

595 nm. The inverse opal film made using 0.4 mg/mL of colloids did not show any stopband at all 

due to poor packing of the colloids. Quasi-amorphous assemblies show an angle-independent 

stopband while amorphous assemblies do not show any stopband at all.160, 161 The crystallinity of 

the inverse opal films was further confirmed by the angle dependency of the stopband where the 

stopband is blue shifted as the angle of incident wavelength increases.153 The transmittance spectra 

of all the inverse opal films showed an angle dependency, which indicates a close-packed 

arrangement of colloids. The quality of the inverse opal structure can be evaluated in terms of the 

width of the stopband and the intensity. The wider the band, the greater is the influence of the 

adjacent wavelength to the reflected color, leading to a mixing of colors.  The width of the stopband 

increases as a result of inhomogeneity of the d-spacing or the refractive index of the crystal. 

Inhomogeneity of the d-spacing reduces with the increments of the concentration of the colloids  

and increases again after 1.3 mg/mL. The inverse opal films made with 1.3 g/mL gave the narrowest 

stopband with the highest intensity indicating the best quality. 
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Figure 3-8: (a) Transmittance spectra of inverse opal films made with colloids at different 

concentrations (0.4 mg/mL, 0.7 mg/mL, 1.0 mg/mL, 1.3 mg/mL, and 1.6 mg/mL) and 1.9 mg/mL 

of tetraethyl orthosilicate; (b) the transmittance spectra of an inverse opal film made with                 

1.3 mg/mL of colloids and 1.9 mg/mL of tetraethyl orthosilicate with different angles of incident 

light; (c) A graph showing the position of the stopband at different angles of incident light (for an 

inverse opal film made with 1.3 mg/mL of colloids); the stopband blue-shifted as the angle of 

incident light is increased. 

 

To determine the effect of the colloidal concentration itself to the position and the shape of the 

stopband, by decoupling the effect from tetraethyl orthosilicate, a series of opal films were made 

by varying the concentration of colloids (0.7 mg/mL, 1.0 mg/mL, 1.3 mg/mL, 1.6 mg/mL, and       

1.9 mg/mL). As previously reported, the thickness of the opal films increases with the concentration 

of colloids.117, 162 For opal films, an increase in the intensity of the stopband is expected with the 

increase in the number of layers of colloids.163 However, as seen in Figure 3-9, the intensity of the 

stopband increases with the concentration of colloids up to 1.6 mg/mL of colloids and then 

decreased. When the concentration of colloids exceeded 1.3 mg/mL, cracks were evident at the 

bottom of the thin film and, with further increments in the colloidal concentration, the cracks star-

ted to propagate toward the top of the film. The formation of cracks might be the reason for the 

reduction of the intensity of the stopband at 1.6 mg/mL of colloids. Furthermore, no significant 



34 
 

shift was observed in the wavelength of the stopband obtained for the opal films (Figure 3-9a); 

hence the shift of the wavelength of the stopbands of the inverse opal films made using different 

concentrations of colloids is due to the defects introduced at a later stage of fabrication.  As well, 

the width of the stopbands was found to be more or less the same for all the opal films. From Figure 

3-8 and Figure 3-9, we can conclude that the shifts and the variations of the stopbands recorded 

for the inverse opal films were caused by the poor quality of some inverse opal films but not by the 

variation of the thickness resulting from different concentrations of colloids. 

 

Figure 3-9: (a) Transmittance spectra for the opal films made by changing the concentration of 

colloids (0.4 mg/mL, 0.7 mg/mL, 1.0 mg/mL, 1.3 mg/mL, 1.6 mg/mL, and 1.9 mg/mL). (b) A graph 

that shows the variation of the intensity of stopbands of opal films based on the concentration of 

colloids (the concentrations of colloids are the same as mentioned in (a)).   

 

3.3.4 Inverse Opal Structures: Effect of Tetraethyl Orthosilicate 

3.3.4.1 Analysis of Defects 

For this part of the study, a set of inverse opal films were prepared by changing the concentration 

of tetraethyl orthosilicate in the working solution as 1.0 mg/mL, 1.3 mg/mL, 1.6 mg/mL,                  

1.9 mg/mL, and 2.2 mg/mL. The concentration of colloids was maintained constant at 1.3 mg/mL, 

since it was determined to result in fewer defects (for more details refer Section 3.3.3.1). The 
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fabricated inverse opal films contained cracks, but were free of stick-slip bands and overlayers, 

which were the main types of defects observed in the inverse opal films when the concentration of 

colloids was varied.  

 

As shown in Figure 3-10, two main types of cracks, which were classified as microscopic and 

macroscopic, were observed. The microscopic cracks were shorter than 10 µm and visible only at 

high magnifications (>15,000× – insets of Figure 3-10), whereas the macroscopic cracks were 

larger than 100 µm and visible even at low magnifications (<100×). As concentration of tetraethyl 

orthosilicate increased, the shape of the macroscopic cracks was changed. At low concentrations 

of tetraethyl orthosilicate (1.0 mg/mL), a partially connected network of cracks (Figure 3-10a) was 

observed and the network became fully connected as the concentration of tetraethyl orthosilicate 

was increased (Figure 3-10b). Furthermore, the area between two branches of the network 

broadened with an increase in the concentration of tetraethyl orthosilicate. Once the tetraethyl 

orthosilicate concentration reached an optimum value (1.9 mg/mL) cracks were completely 

disappeared.  

 

Quantification of defects (cracks) was done using the same method mentioned in section 3.3.3. 

Both macroscopic and microscopic cracks decreased with increasing tetraethyl orthosilicate 

concentration. Figure 3-11 shows an SEM image of a highly defective inverse opal film: the 

concentration of tetraethyl orthosilicate is 1.0 mg/mL and the concentration of colloids is 1.3 

mg/mL. Since most cracks were < 2µm in width, at low magnifications most of these cracks were 

barely seen. Therefore, only the area of macroscopic cracks can be measured from the image 

analysis (thresholding). When the SEM images were taken at high magnifications (16,000×), voids 

interfered with thresholding; hence, for this analysis only images taken at a low magnification 

(100×) were used. The defects were highest at lowest concentration of the tetraethyl orthosilicate 

and reduced as the tetraethyl orthosilicate concentration increases.  
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Figure 3-10: SEM images of the types of defects seen in the inverse opal films made by using 

different concentrations of tetraethyl orthosilicate. The colloidal concentration was constant at 1.3 

mg/mL). SEM images of inverse opal films prepared at (a) 1.0 mg/mL, (b) 1.3 mg/mL, and (c) 1.6 

mg/mL of tetraethyl orthosilicate. The insets represent higher magnified images (16,000×) of (a), 

(b), and (c).  

 

 

Figure 3-11: (a) An SEM image of an inverse opal film made with 1.0 mg/mL of tetraethyl 

orthosilicate and 1.3 mg/mL of colloids. The inset shows a magnified area of the inverse opal film. 

(b) The graph of percentage of defects (analyzed using SEM images) vs the concentration of 

tetraethyl orthosilicate. 
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The study was further extended to explain the formation of cracks in the inverse opal films made 

by co-assembly. According to the previous studies, factors such as particle size,164 chemical 

composition,165, 166 relative humidity,167 film thickness,168, 169 temperature,170 etc., are important to 

control the shape and the size of the cracks. It was further reported that there is a critical film 

thickness to be free of cracks.171  As reported by Lazarus and Pauchard,171 when the thickness 

increased beyond the critical thickness, the type of cracks changed, from isolated junctions to 

sinuous cracks, to partially connected network, to fully connected network, to delamination, and to 

spiral cracks that were observed at the highest thickness.  Since the parameters such as temperature, 

particle size, and relative humidity were not changed in our study, the thickness of the film was 

assumed to have a major effect on cracks. According to our results, the cracks present in the inverse 

opal films changed depending on the tetraethyl orthosilicate concentration, which suggests an 

influence of tetraethyl orthosilicate concentration towards the film thickness. Therefore, it is 

important to investigate the effect of the concentration of tetraethyl orthosilicate on the thickness 

of the inverse opal films and thereby on the formation of cracks.  

    

The color of a thin film depends on the thickness.172 Since the transparent thin films can undergo 

constructive interference with the waves reflected by front and back surfaces, thin films with 

thickness gradient will have set of colors.172 The Figure 3-12a shows a set stitched optical 

microscopy images of inverse opals films made with varying concentrations of tetraethyl 

orthosilicate. The images were taken for ~1 mm distance from the top and cover an area of            

~0.2 mm2.  The differences in the color indicate that the thickness of the inverse opal films changes 

with the concentration of tetraethyl orthosilicate.  
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Figure 3-12: (a) Stitched light microscopy images of the inverse opal films made by changing the 

concentrations of tetraethyl orthosilicate, the images obtained for ~1 mm distance from the top of 

the film were stitched to acquire the large images (growth direction of the films are left to right); 

the different colors are due to the variation of the thickness of the inverse opal films; (b) variation 

of the thickness measured by a light microscope for 3 mm intervals, where only the 0 mm (starting 

point – top of the film), 6 mm and 12 mm were plotted; the inset shows an inverse opal film with 

imaginary horizontal and vertical lines and the thickness was measured at the intersections of the 

lines.  

 

The thickness of the inverse opal films made with varying concentration of tetraethyl orthosilicate 

was measured using a light microscope with Z-stacking capability (OLYMPUS IX83). The 

thickness measured using Z-vertical displacement is not accurate.  As shown in Figure 3-12b, the 

thickness was measured at 0 mm, 6 mm, and 12 mm distances from top along the growth direction. 

As previously reported for colloidal crystals, the thickness of the thin film gradually increases along 

the growth direction due to the development of a concentration gradient of colloids over the 

fabrication period.173, 174  This explains the higher thickness at the bottom of the of the inverse opal 

films. However, in most of the inverse opal films, only a slight increase was observed in the 

thickness as the color of the film did not change significantly over a short distance. In contrast to 
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the films fabricated at other concentrations, the inverse opal film made at 1.3 mg/mL of tetraethyl 

orthosilicate showed a notable increase in the thickness (Figure 3-12b). The film thickness 

increased when the tetraethyl orthosilicate concentration increased from 1.0 mg/mL to 1.9 mg/mL 

which was confirmed by the different colors of the thin films. Even the cracks were seen at different 

thicknesses and the areas that have the same color showed the cracks with a similar morphology. 

The bluish-green area had very few cracks as seen in the micrographs. As depicted by the graph in 

Figure 3-12b, as the concentration of tetraethyl orthosilicate increased, the film thickness reached 

to a maximum and then decreased at the 6 mm mark. The highest thickness (~22.5 µm) was 

recorded at 1.3 mg/mL of tetraethyl orthosilicate, then decreased to ~15.0 µm at 1.6 mg/mL and 

remained the same upon reaching 1.9 mg/mL. Further increase in tetraethyl orthosilicate 

concentration slightly decreased the thickness of the film (~11.0 µm at 2.2 mg/mL).  

 

At 1.9 mg/mL of tetraethyl orthosilicate, the inverse opal films did not have cracks. Thus, the 

corresponding thickness of ~15.0 µm can be considered as the critical thickness. A slight increase 

in the thickness beyond its critical value causes the formation of partially connected cracks in the 

inverse opal films.171  As described earlier, the inverse opal films prepared at 1.0 mg/mL of 

tetraethyl orthosilicate had partially connected networks of cracks; but the film thickness was less 

than the critical value (~15.0 µm) (Figure 3-12b).  

 

Cracks are generated in inverse opal films as a result of volume shrinkage caused by the evaporation 

of the dispersant during the drying process.174 It is also reported that the drying rate can significantly 

affect the stress applied to the thin film yielding cracks, where a slow drying rate yields few 

cracks.175 As seen in the Figure 3-13, in the inverse opal films prepared in this study, the cracks 

were propagating along the direction of the assembly. As well, more cracks can be found near the 

edges of the inverse opal film than in the center. Formation of more cracks near the edges and the 
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origination of cracks from the edges might be associated with the faster drying rate at the edges. 

Moreover, the high amount of cracks in inverse opals made of low concentrations of tetraethyl 

orthosilicate can be explained as follows; during the calcination process, tetraethyl orthosilicate 

acts as the binding agent between colloids. At low concentrations, the amount of tetraethyl 

orthosilicate is not sufficient to hold the colloids in place. Lack of binding agent applies an 

additional stress on the inverse opal films causing the cracks. As well, when the binding agent is 

insufficient, the colloids tend to be close to each other. The center-to-center distance of voids in the 

inverse opal films proves this. At low concentrations of tetraethyl orthosilicate, the center-to-center 

distance of voids (obtained from top surface view of inverse opals) was ~380 nm which is less than 

the ~400 nm, the center-to-center distance observed in the films with minimal defects where the 

tetraethyl orthosilicate was sufficient to keep the colloids in place.   

 

Figure 3-13: An SEM image of an inverse opal film taken at a low magnification showing the 

propagation of cracks in the inverse opal films and the inset shows the direction of cracks. 

     

3.3.4.2 Crystal Orientation 

Another interesting feature that was observed with changing tetraethyl orthosilicate was the change 

in the growth direction of the colloidal crystal. The prominent crystal growth orientation at low 
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concentrations of tetraethyl orthosilicate showed a mix of <110> and <112>, and the <110> 

direction became prominent at high concentrations of tetraethyl orthosilicate (above 1.9 mg/mL). 

As a consequence of shifting growth directions between different orientations (i.e. <110> and 

<112>), at low concentrations of tetraethyl orthosilicate, the inverse opal films showed a large 

number of domains. As seen in the SEM image in Figure 3-13, the area between two large domains 

consisted of many small domains that had different orientations (the black arrows indicate the 

growth direction of individual domains). In Figure 3-13 the two major domains with the prominent 

growth direction of <110> are separated by the dark line whereas the gray lines separate the small 

domains with different orientations.  

 

 

 

Figure 3-14: An enlarged SEM image showing the domains with different orientations. Insets show 

the FFT images of selected areas.  

 

Other than shift in the crystal growth direction, square arrays were observed in some places (middle 

region of Figure 3-14).  The hexagonal arrays are the most favorable assembly of colloids in a 

colloidal crystal. However, a study published by Cong  and Cao showed that under low 
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temperatures (< 50 °C) and in the presence of surfactant considerable amount of square arrays is 

produced.173 According to their study, the square arrays were formed as a result of restrained free 

motion of particles at low temperatures and low surface tension due to surfactants.  In our study, 

we have used the same PMMA particles (345 nm), colloidal concentration, and fabrication 

conditions (e.g. temperature) except for the concentration of tetraethyl orthosilicate. Moreover, 

these square arrays were seen in the inverse opals made with low concentrations of tetraethyl 

orthosilicate. Therefore, in co-assembly, the sol-gel precursor concentration plays an important role 

in the arrangement of colloids.   

 

3.3.4.3 Spectrophotometric Analysis  

According to the Figure 3-15, when the concentration of tetraethyl orthosilicate has increased the 

stopband was blue shifted up to 1.6 mg/mL and then red shifted after 1.9 mg/mL. The shift of the 

stopband might be due to the changes in the lattice parameters caused by the poor close packing at 

low concentrations. The inverse opal films made using low concentrations of tetraethyl orthosilicate 

had a large number of defects. The intensity of the stopbands was increased with increasing 

tetraethyl orthosilicate concentration.  The decrease in the intensity of the stopband must have an 

influence from the scattering of light due to cracks. Even though the stopbands appeared at an 

almost the same wavelength in both inverse opal films made from 1.9 mg/mL and 1.6 mg/mL of 

tetraethyl orthosilicate, the latter had more cracks and a less intense stopband compared to the 

former. Furthermore, the inverse opal film made with 2.2 mg/mL had the most intense stopband 

due to the presence of the least amounts of defects.  
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Figure 3-15: (a) Transmittance spectra of inverse opal films made with tetraethyl orthosilicate at 

different concentrations (1.0 mg/mL, 1.3 mg/mL, 1.6 mg/mL, 1.9 mg/mL, and 2.2 mg/mL) and 1.3 

mg/mL of colloids. (b) A graph that shows the variation of the intensity of stopbands of inverse 

opal films based on the concentration of tetraethyl orthosilicate (the concentrations of tetraethyl 

orthosilicate are the same as mentioned in (a)). 

  

3.3.5 Microscopic Defects Analysis   

In this analysis, several types of defects were considered as microscopic defects. A point that is 

displaced from or inserted into an irregular spot in a crystal lattice is called as a point defect.176 

There are several types of point defects: insertion of an impurity atom into a lattice point, vacancy, 

insertion of an extra atom to the lattice, and insertion of an impurity atom to an interstitial site. 

Since the inverse opal films were fabricated by using a colloidal lattice, similar types of point 

defects can be present in the inverse opal films. In the inverse opal films, the voids act as the lattice 

points and the absence, misplacement, or difference in the size of voids are considered as point 

defects. Here, the absence of a void was counted as a vacancy (V) and a void of which the size 

significantly deviated from the average size was analyzed as a size defect (S). Also, the voids that 

were shifted in positions were considered as dislocations (L). The dislocations were usually found 

in places where the grain boundaries were present. The collapse of the wall between two voids was 
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recognized as a wall defect (W). The cracks propagated along the surface of the thin film were 

identified as surface cracks (C) and the cracks penetrated deep into the film were counted as deep 

cracks (D). When analyzing the cracks, the length was manually measured and reported as the 

approximate values. Figure 3-16 shows the type of microscopic defects seen in the inverse opal 

films.  

 

Figure 3-16: Types of microscopic defects found in the inverse opal films: (a) void defects (V), 

size defect (S), dislocations (L), and wall defects (W) and (b) surface cracks (C) and deep cracks 

(D). 

 

The analysis of microscopic defects was conducted using SEM images taken at 16,000× and the 

defects were calculated from ImageJ software. The defects were reported as the defect density (the 

number of voids per unit area). To evaluate the size defects (S), the size of voids was measured 

using the “analyze particle” option in the ImageJ software. The outliers were identified for a series 

of void sizes and considered as defective voids (or size defects). The maximum possible area of a 

void is 0.095 μm2 (as the size of colloids is 0.345 μm).  Therefore the higher and lower limits for 

the determination of outliers were set to 0.110 μm2 and 0.040 μm2, respectively.  
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Figure 3-17: The defect density calculated for the inverse opal films made by varying the 

concentration of tetraethyl orthosilicate, the concentration of colloids was kept constant at 1.3 

mg/mL.  

 

The first set of samples were prepared by varying the concentration of colloids (at 1.9 mg/mL of 

tetraethyl orthosilicate). Unlike the vacancies, which are negligible at some colloidal concen-

trations, the size defects were observed at all concentrations (Figure 3-17). However, the size 

defects may appear greater than the actual amount due to the presence of overlayers (e.g. inverse 

opals made with changing colloidal concentration – 0.4 and 0.7 mg/mL of colloids). The silica 

overlayers partially covered some voids resulting a high density of size defects (S). Line defects 

and wall defects did not show any trend with respect to the colloidal concentration. Moreover, none 

of the cracks were seen in these inverse opal films. 

 

The second set of samples were prepared by varying the concentration of tetraethyl orthosilicate 

(at 1.3 mg/mL of colloids). At the lowest concentration of tetraethyl orthosilicate (1.0 mg/mL or 

TEOS 1.0), the lowest density of size defects was reported (Figure 3-17). Both TEOS 1.0 and 
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TEOS 1.3 showed high densities of surface cracks (C), which propagated to a similar length. As 

described earlier, the poor infiltration of tetraethyl orthosilicate at low concentrations caused the 

high density of cracks. The density of surface cracks was comparatively higher than the density of 

deep cracks (D).  The cracks significantly reduced beyond TEOS 1.6. There was no significant 

effect from the colloidal concentration on microscopic defects. Low tetraethyl orthosilicate 

concentrations resulted surface cracks whereas high concentrations caused size defects.   

 

3.3.6 Inverse Opal Structures: Effect of HCl Concentration 

The sol-gel process starts with the hydrolysis step, which can be catalyzed by acid or base catalytic 

agents. Mineral acids are commonly used as acid catalysts. According to Iler's description,177 water 

facilitates the hydrolysis process, which is followed by the condensation reactions where Si-O-Si 

bonds form. Further condensation generates colloidal silica particles (sol), which are 1-100 nm in 

size. The size and the internal cross-links of the particles depend on the pH and the ratio between 

water and tetraethyl orthosilicate. In the co-assembly technique that we have used for fabrication 

of inverse opal films, the silica sol particles fill the interstitial spaces between PMMA colloids due 

to the capillary forces. When the silica sol particles link together with condensed silica molecules, 

the gelation starts and produces a solidified silica network. The drying step of the fabrication 

process removes the solvent from the pores of the interconnected network of silica and, if the pores 

are smaller than 20 nm, the capillary forces generate cracks. As the formation of cracks depends on 

the silica network, the cracks can be minimized by controlling the rates of hydrolysis and 

condensation.178 The sol-gel process of tetraethyl orthosilicate is shown in the Scheme 3-1. 
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Scheme 3-1: The sol-gel process of silica in the presence of tetraethyl orthosilicate (TEOS) as the 

sol-gel precursor. 

 

In this study, the hydrolysis of tetraethyl orthosilicate was acid catalyzed. Therefore, the main 

purpose of this experiment was to investigate the effect of concentration of acid on the quality of 

the inverse opal films. The tetraethyl orthosilicate stock solution was prepared, as reported 

elsewhere,20 by mixing HCl (aq) [the concentrations of HCl solutions was changed as follows: 1.0 

×10-4 M (pH 4), 1.0 ×10-3 M (pH 3), 1.0 ×10-2 M (pH 2), 1.0 ×10-1 M (pH 1), and 1.0 M (pH 0)], 

ethanol and tetraethyl orthosilicate in the weight ratio of 1:1.5:1 followed by stirring for 1 h. Ethanol 

facilitates the dissolution of tetraethyl orthosilicate while water helps the hydrolysis. During the 

stirring period, the hydrolysis of tetraethyl orthosilicate is started.  
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Figure 3-18: Stitched SEM images of Inverse opal films made at 1.3 mg/mL of colloids and 1.9 

mg/mL of tetraethyl orthosilicate, where the tetraethyl orthosilicate stock solution was made by 

using HCl solutions a different pH values: (a) pH 0.0 (1.0 M), (b) pH 2.0 (1.0×10-2 M), (c) pH 3.0 

(1.0×10-3 M), and (d) pH 4.0 (1.0 × 10-4 M), the concentrations of HCl solutions are mentioned in 

the parentheses and the insets show the magnified SEM images of the respective inverse opal film; 

(f) the percentage of defects as a function of pH of the HCl solution. 

 

In the fabrication process, the catalytic activity of the acid plays an important role as the gelation 

time increases at elevated pH values.179 It was observed that the tetraethyl orthosilicate stock 

solutions prepared by adding HCl solutions at pH 4 and pH 3 solidified completely within seven 

days whereas the solutions made with HCl solutions at pH 2, pH 1, and pH 0 did not solidify even 

after 14 days. As shown in Figure 3-18, the acid solutions at pH 0 and 1 resulted in very few defects 

in the inverse opal films, while the pH 2 acid solution caused a large number of defects, especially 

a large overlayer (inset of Figure 3-18b). Our results show that low acid concentrations used in the 

tetraethyl orthosilicate stock solution caused more cracks as a consequence of fast gelation, which 

applied an additional stress on the film. On the contrary, slow gelation supported by high acid 
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concentrations improved the quality of inverse opal films by producing fewer cracks. The cracks 

seen in the samples made using acid solutions of both pH 3 and 4 (insets of Figure 3-18c and d), 

cannot be quantified by thresholding (for more details see Section 3.3.4.1). Since 0.1 M solution 

of HCl was used in the fabrication of inverse opals with changing both colloidal and tetraethyl 

orthosilicate concentrations (Section 3.3.3 and 3.3.4), the effect due to the HCl concentration for 

the formation of defects was minimized.   

 

3.3.7 Synthesis of PMMA Colloids with Different Sizes (Analysis of Dry and Wet Particle 

Sizes) 

 

 

Figure 3-19: The sizes of PMMA colloids synthesized by using different monomer masses of 4.9 

g (5.25 mL), 6.7 g (7.25 mL), 8.6 g (9.25 mL), 10.4 g (11.25 mL), and 12.3 g (13.25 mL). 
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Here, an investigation was conducted on the fabrication of inverse opal films with PMMA colloids 

of different particle sizes in order to tune the stopband.180 The parameters such as concentrations 

of the initiator, monomer, surfactant etc., influence the particle size of the PMMA colloids. It was 

found that the concentration of monomer can be successfully used to significantly change the size 

of the particles in a linear fashion (Figure 3-19). According to Figure 3-19, the monomer volume 

showed linear relationship with the particle size, both dry and wet, and had good R2 values (0.98) 

in both cases. Colloids with particle sizes ranging from 300 to 465 nm (dry) were synthesized from 

the procedure that we used.  

 

3.3.7.1 Inverse Opal Films Fabricated using Colloids of Different Sizes 

The opal and inverse opal films were fabricated by using the PMMA colloids of different particle 

sizes in order to study the effect of the size of colloids on the quality of the thin films. Here, the 

quality was evaluated by SEM images and optical spectroscopy. 

 

3.3.7.2 Analysis of SEM Images 

SEM images of the opal and inverse opal films showed close-packed arrangements of colloids and 

voids, respectively. The hexagonal arrays of particles and voids are clearly visible in these SEM 

images (Figure 3-20). The two-dimensional fast Fourier transform (2D-FFT) images also 

confirmed the long-range periodicity of the opal and inverse opal samples. The PMMA colloids 

were less stable under the electron beam of SEM and the movement of colloids in the opal films 

was observed. Furthermore, expansion of the cracks was also observed under the long exposure of 

the opal films to the electron beam. The deterioration of the colloidal film can be minimized by 

applying conditions such as low vacuum and low voltage; but, the images were not as sharp as the 

images taken under high vacuum and voltage. However, the SEM images provide a clear view of 

morphology and assembly of the colloids. Unlike the opal films, the inverse opal films were stable 
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under the harsh conditions (high vacuum and electron beam) used in the SEM imaging (Figure 3-

20b).  

 

Figure 3-20: (a)The SEM images of opal films made with varying particle sizes (300-465 nm)     

(b) Inverse opal films made with colloids having same size as (a). The average size of colloids 

(opals) and voids (inverse opals) are mentioned in each image. The insets show 2D-FFT images of 

each SEM image.   

 

3.3.7.3 Optical spectroscopy analysis of the opal and inverse opals made with different sizes 

of colloids  

Since the wavelength of the stopband is directly proportional to the void size, the color of the films 

can be tuned to higher wavelengths by increasing the size of the colloids in the sacrificial template. 

The optical spectra obtained for the opal films fabricated from the colloids with dry particle sizes 

of 300 nm, 355 nm, 390 nm, 440 nm, and 465 nm, showed strong stopbands at 640 nm, 730 nm, 

835 nm, 905 nm, and 960 nm, respectively (Figure 3-21a).  Transmittance spectra of the opal films 

show clear stopbands that gradually shift towards the near-infrared (NIR) region as the particle size 

increases (Figure 3-21a). Stopbands at 490 nm, 560 nm, 620 nm, and 740 nm were obtained for 

inverse opal films made with PMMA colloids having dry particle sizes of 355 nm, 390 nm, 440 

nm, and 465 nm respectively. No stopband was observed for the films made by using colloids of 

300 nm because it might have shifted to the UV region. Theoretically, the corresponding stopband 
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should appear at 390 nm if the volume fraction of the voids is assumed to be 0.74 and the shape of 

the voids is spherical. The stopbands obtained for the inverse opal films were blue shifted from the 

stopbands of opal films when both films were fabricated by using the colloids of the same size. 

Furthermore, the dependency of the stopband on the angle of incident light was also studied and 

found out that the stopband was blue shifted with the increments of the angle indicating good 

periodicity.  

 

Figure 3-21: (a) Digital photographs of opal films and inverse opal films (IOs) were taken at an 

angle to the light source which was kept parallel to the surface; (b) transmittance spectra of opal 

films fabricated with varying particle sizes (300 nm, 355 nm, 390nm, 440 nm, and 465 nm);            

(c) transmittance spectra of inverse opal films made with particle sizes mentioned in (b); the sizes 

of the voids were mentioned in the legend (240 nm, 265 nm, 285 nm, 350 nm, and 400 nm).    
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3.4 Conclusion 

In this study, we have optimized the conditions to produce defect-free inverse opal films using the 

co-assembly technique. Parameters such as colloidal concentration, tetraethyl orthosilicate 

concentration, and pH of the acid solution used to prepare the tetraethyl orthosilicate stock solution 

affect the quality of the inverse opal films significantly. Even though there are several other factors 

that control the quality of the inverse opal films, the optimum concentrations of colloids and 

tetraethyl orthosilicate are crucial for the fabrication process. Defects such as stick-slip bands form 

due to low concentrations of colloids and overlayers result from the high concentration of tetraethyl 

orthosilicate. The ratio of colloids to tetraethyl orthosilicate is critical to minimizing the presence 

of cracks.  Slow hydrolysis of tetraethyl orthosilicate  improves the quality of the inverse opal films. 

As well, we have synthesized PMMA colloids with different sizes. Since there is a good linear 

relationship between the particle size and the stopband wavelength, by changing the size of the 

colloids, it is possible to fabricate the inverse opal films that can reflect light in the full range of the 

visible light; hence leading to potential applications, such as displays and sensors.  
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CHAPTER IV 
 

 

DETERMINATION OF THE STRUCTURE OF SILICA INVERSE OPALS USING  

SEM IMAGES 

 

4.1 Introduction 

An inverse opal is a crystalline material that consists of submicron size voids arranged in a long-

range order. The periodic arrays of voids interfere with the light passing through them and prevent 

the propagation of certain wavelengths (band gap). Therefore inverse opals are extensively studied 

as a potential material for photonic crystals.181-183 Other than photonics, 2, 184 these materials have 

potential applications in data storage,185 sensors,135 scaffolding,186 and in optoelectronics.187 The 

inverse opal crystals are generally fabricated via infiltration of a sol-gel precursor into the 

interstitial sites of self-assembled colloids followed by removal of the colloidal template.27, 96, 157, 

181, 188 Since the conventional fabrication technique that is based on infiltration generates several 

defects in the inverse opal structure, co-assembly was developed to reduce the number of defects 

in the produced inverse opal films.20 In this method, the inverse opals are fabricated using a solution 

containing both colloids and sol-gel precursor and then the colloidal template is removed.  
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The structure of the inverse opals determines the photonic properties; thus, it is important to analyze 

the structure of the fabricated inverse opals. The periodic arrangement of voids in an inverse opal 

can be analyzed using small-angle x-ray diffraction (SAXS),25, 26 Transmission Electron 

Microscope (TEM),27-29, 189 Scanning Electron Microscope (SEM),30, 31 and diffraction of light.32  

Image analysis techniques of SEM or TEM images can provide more information.  A digital image 

represents a real object as a combination of pixels with different intensities of colors. For example, 

an 8-bit grayscale image has 256 shades of possible gray values for a pixel.190 The position of these 

gray values in the 2-dimensional grid is seen as the image. The distance between two discrete 

objects can be calculated using the scaling factor of the image. Hence, small objects can be analyzed 

using images taken with digital cameras. Not only can one define the positions of objects in the real 

space, but also information such as periodicity, crystallinity, etc., can be obtained by analyzing 

images. Fourier transformation is a useful tool that is used for the analysis of the periodicity of an 

object and also can be combined with other image analysis techniques. The Fourier transformation 

breaks the space domain signal of an image to a frequency domain signal which is composed of 

series of sinusoidal signals. Any periodicities in the original image appear as a spot pattern in the 

resulting image of a periodic/crystalline material.191 Since inverse opal photonic crystals have 

periodicities in their microstructures, Fast Fourier transform (FFT) can be used to determine the 

structure.111, 180, 192, 193  

   

The structure of the inverse opal films such as the assembly of voids, domains, lattice orientation, 

and cracks fabricated via co-assembly was analyzed in more detail. In chapter 3, we have reported 

that the quality of the inverse opal films depends on the concentration of the colloids and the 

tetraethyl orthosilicate. There, we have used both image thresholding, and ultraviolet-visible 

spectroscopy to analyze defects of inverse opal films. In this chapter, we focus mainly on the 

structure of the inverse opals. Also, we have investigated the use of 2-D fast Fourier transform   
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(2D-FFT) to analyze the crystalline domains in inverse opals. Here, the SEM images were analyzed 

to quantify the surface filling fraction of silica and fraction of surface defects. Furthermore, we 

have introduced methodologies to determine the optimum ratio of colloids to tetraethyl orthosilicate 

and to analyze the uniform periodicity of fabricated thin films.   

  

4.2 Materials and Methods 

4.2.1 Materials  

All the chemicals were used as received unless otherwise it is mentioned. Ethylene glycol 

dimethacrylate (98%), methyl methacrylate (99%), 1-dodecanethiol (C12H26S, 98%), ammonium 

persulfate ((NH4)2S2O8, 98%) and tetraethylorthosilicate (TEOS, 98%) were purchased from 

Sigma-Aldrich Chemicals (St. Louis, MO). Absolute ethyl alcohol and ACS reagent grade 

hydrochloric acid (HCl, 36.5-38.0%) were purchased from Pharmco-AAPER (Brookfield, CT). 

ACS reagent grade hydrogen peroxide (H2O2, 30% (w/w)) was purchased from Ricca chemical 

company (Arlington, TX). Silicon wafers (p-type Si:B[100], Ro = (1-100) Ω  cm) were purchased 

from El-Cat Inc. (Ridgefield Park, NJ). The surface of the silicon substrates was treated using a 

corona treater (Electro-Technic Products, BD-20). A water purification system (Barnstead 

NanopureTM), at a resistance of 18.1 Ω/cm, was used to obtain deionized water.  

 

4.2.2 Methods 

4.2.2.1 Synthesis of Colloidal Particles 

Poly(methyl methacrylate) (PMMA) colloids with particle size of 345(±20) nm were synthesized 

by emulsion polymerization, and characterized as described in chapter 3. Briefly, ammonium 

persulfate (0.1 g) was added to a three-neck round bottom flask containing deionized (DI) water 

(45.0 mL) at 80 °C. Then the solution was stirred at 400 RPM for 1 h. Meanwhile, methyl 

methacrylate (9.25 mL), ethylene glycol dimethacrylate (47.4 μL) and 1-dodecanethiol (23.7 μL) 
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were mixed in a glass vial and sonicated for 5 min. Afterward, the sonicated mixture was injected 

into the three-neck round bottom flask and stirred for 3 h. Resultant colloids were purified by 

centrifugation (45 min. at 4,500 RPM) and washed three times with DI water. The resulting pellet 

was re-dispersed in DI water to prepare a colloidal PMMA working solution. The size of the res-

ulting particles was measured using scanning electron microscope (SEM) (FEI Quanta 600 FE).  

 

4.2.2.2 Fabrication of Inverse Opal Films 

Inverse opal films were fabricated using the co-assembly process as previously reported,20 where 

Si substrates, cleaned in piranha solution and treated with a BD-20 handheld corona treater 

(Electro-technique products Inc.), were vertically suspended in a vial containing a solution of 

colloids and tetraethyl orthosilicate in the desired ratio (the tetraethyl orthosilicate stock solution 

was prepared by mixing 0.1 M HCl, 200 proof ethanol, and tetraethyl orthosilicate in a 1:1.5:1 mass 

ratio). The ratio between the concentrations of colloids to tetraethyl orthosilicate (Col/TEOS) in 

the mixture was varied as follows: 0.21, 0.37, 0.53, 0.68, 0.84, 1.00, and 1.30. The solvent was 

evaporated slowly over a 24 h period at 65°C in a Binder™ oven and allowed to deposit onto the 

substrate. The films were then calcined in air using a Thermolyne 2110 tube furnace at 500 °C for 

2 h with a 5 h ramp time to remove the polymer template and partially sinter the SiO2 structure.    

 

4.2.2.3 Image Analysis 

Determination of size of voids 

The top surface of the inverse opal films was imaged using SEM at a magnification of 16000× and 

the images were analyzed using ImageJ 1.48v software (Wayne Rasband, National Institutes of 

Health, USA). The size of the voids (300 voids from each Col/TEOS ratio) was measured using the 

“analyze particles” function of ImageJ. The 2D-FFT algorithm was used to analyze the interplanar 

distance of voids and the lattice orientations of the inverse opals.  
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Determination of area of surface defects 

The percentage area of surface defects analyzed using the following method:  three random SEM 

images were analyzed for each inverse opal film made with different ratios of Col/TEOS. The SEM 

images were converted to 8-bit grayscale binary images using the Otsu thresholding method in 

ImageJ. To determine the area corresponding to defects (Adefects), the areas of voids (Avoids) and silica 

(Asilica) have to be deduced from the total ( Atotal) and the percentage of defects (%Adefects) can be 

determined by,  

  

The area of voids (Avoids) was calculated using the analyze particle option in the ImageJ software 

and converted to percentage. The following parameters were set for the analyze particle option to 

minimize the errors by eliminating defective areas: size-0.05 to 0.10 µm2, circularity-0.75 to1.00, 

and edges were excluded. Since the percentage area of silica (Asilica) was unable to be calculated 

directly, a different method was used. A region with a good periodicity was selected in each SEM 

image and the area of voids (avoids) was determined as mentioned earlier. The area of silica in that 

region was found out by subtracting the area of voids (avoids) from the total (atotal) and the percentage 

of silica is given by,  

 

Then, percentage area of defects (% Adefects) was determined by substituting Avoids and  Asilica into the 

previous equation (Equation(4-1)). 

 

 

 

 
%𝐴𝑑𝑒𝑓𝑒𝑐𝑡𝑠 =  

[𝐴𝑡𝑜𝑡𝑎𝑙 − ( 𝐴𝑣𝑜𝑖𝑑𝑠 +  𝐴𝑠𝑖𝑙𝑖𝑐𝑎)]

𝐴𝑡𝑜𝑡𝑎𝑙
 × 100 

(4-1) 

 %𝐴𝑠𝑖𝑙𝑖𝑐𝑎 =  
(𝑎𝑡𝑜𝑡𝑎𝑙 − 𝑎𝑣𝑜𝑖𝑑𝑠)

𝑎𝑡𝑜𝑡𝑎𝑙
× 100 

(4-2) 
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4.3 Results and discussion 

 

4.3.1 Analysis of the close-packed arrangement of voids 

 

Figure 4-1: SEM images of inverse opal films made with different ratios of colloids and tetraethyl 

orthosilicate: (a) 0.21, (b) 0.53, and (c) 1.3. 

 

Figure 4-2: The graph of position of the stopband with varying ratios of Col/TEOS.  

 

The inverse opal films were fabricated by changing the ratio of concentration of PMMA colloids 

(size = 345 nm) to tetraethyl orthosilicate (Col/TEOS) in working solutions (Col/TEOS - 0.21, 0.37, 

0.53, 0.68, 0.84, 1.00, and 1.30). After removing the template (colloids), the resulting thin films 

were imaged under SEM. Figure 4-1 shows SEM images of inverse opal films made with three 

different ratios of Col/TEOS. The images are arranged in the order of increasing ratio of Col/TEOS 
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(left to right: 0.21, 0.53, and 1.3). The quality of the inverse opal films varied depending on the 

ratio of Col/TEOS where the higher Col/TEOS ratios resulted in highly defective films. As well, 

the shape and the position of a stopband is an indication of the quality of an inverse opal film. In 

Chapter 3, the variation of the shape of stopbands with respect to the varying concentrations of 

colloids and tetraethyl orthosilicate was discussed in detail. Figure 4-2 shows the variation of the 

position of the stopband with the ratio of Col/TEOS. Even though the stopband varies with 

Col/TEOS, a proper trend was not observed. As the structure determines the optical properties of 

these inverse opals; it is worthwhile to study the influence of Col/TEOS to the structure of the 

fabricated inverse opals. 

 

Figure 4-3: Variation of the (a) void size and (b) interplanar distance as a function of Col/TEOS 

ratio.  

 

The size of the voids of the inverse opals varies with the ratio of Col/TEOS. The size of voids was 

analyzed from the SEM images of top view of the fabricated inverse opals. According to the graph 

in Figure 4-3a, the ratios above 1.0 yielded the highest void size while the lowest size of the voids 

corresponded to the ratio of ~0.6. The size variation may result either from (1) the expansion of 

silica during calcination or (2) the filling of an additional amount of silica on the top surface of 

inverse opal films. Since both colloids and tetraethyl orthosilicate simultaneously assemble during 

the co-assembly, both components collectively determine the structure of the colloidal film. All 
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samples were calcined under the same temperature program; hence the same rate can be assumed 

for the shrinkage of colloids in each case. Under these conditions, it is difficult to determine the 

reason for variation of void size depending on the ratio of Col/TEOS; therefore, a 2D-FFT was 

conducted for the SEM images. 

 

Two dimensional fast Fourier transform (2D-FFT) is a useful analysis technique to study the 

structure of a crystalline material. It was adopted to study materials with large periodic structures, 

such as opals and inverse opals.32, 180, 194, 195 The Fourier transformation of an image consisting of 

m rows and n columns and can be represented as191 

 

where h and k are spatial frequencies. The spot pattern resulting from the analysis can be used to 

calculate the interplanar distance and center-to-center distance of voids in an inverse opal film. 

Since the angle between center-to-center distance and the interplanar distance is 30°, the 

relationship between the interplanar distance (d) and the center-to-center distance (a) is given by 

According to Figure 4-3b, the variation of the interplanar distances with the Col/TEOS ratio 

follows a trend different from the trend seen for the variation of void sizes.  At low ratios of 

Col/TEOS the interplanar distance was at ~345 nm and does not vary significantly. When the 

Col/TEOS ratio reached 1.0, the interplanar distance decreased to ~330 nm. Even though the size 

of voids varies when the Col/TEOS ratio is below 1.0, the interplanar distance stays constant. This 

means that the size variation of the voids (Col/TEOS ratio below 1.0) is not due to the shrinkage of 

the lattice. For further evaluation of the variation of size of voids, an SEM image of a cross-section 

of an inverse opal film was taken.  

 
𝐹(ℎ, 𝑘) =  ∑ ∑ 𝐼(𝑛, 𝑚)exp [(2𝜋𝑖

𝑁⁄ )(ℎ𝑛 + 𝑘𝑚)]

𝑁−1

𝑚=0

𝑁−1

𝑛=0

 (4-3) 

 
𝑑 = 𝑎 cos (30) (4-4) 
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Figure 4-4: (a) SEM images of a cross-section of an inverse opal film made at the Col/TEOS ratio 

of 0.68, the top inset shows the 2D-FFT image and the bottom shows the schematic representation 

of the FFT pattern with two different interplanar distances and (b) the same SEM image converted 

with lookup tables (invert LUT) of ImageJ for better visualization of the structure; the top inset is 

an enlarged image of (b) showing surface filling of silica, real and measured sizes of a void, and 

the gap between two voids and the bottom inset shows the size of a void as seen from the top view.     

  

As seen in Figure 4-4, the inverse opal films made using co-assembly showed spheroidal voids. 

As well, additional amounts of silica were seen on the surface (labelled as surface filling in Figure 

4-4b-inset). The silica matrix of the inverse opal is resulted from the sol-gel chemistry of silica. 

According to the sol-gel process tetraethyl orthosilicate hydrolyzed and condensed to form sol 

particles which are later interconnected with each other to from a network (gel). This network 

further condensed during calcination which results in shrinkage in the matrix.178, 196 According to 

the previous study published by Phillips et al., spheroid shaped voids were produced when the 

inverse opal films were fabricated on rigid substrates.159 Since colloids are attached to the substrate, 

during calcination, shrinkage of the silica matrix occurs along one direction. We have calcined our 

samples at 500 °C and our results were comparable with the data published by Phillips et al. Since 

the voids are spheroidal in shape, there are two different interplanar distances for the inverse opal 

crystal (inset of Figure 4-4a). From the top surface view, voids have a circular shape and the size 
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of the voids for the inverse opal film (Col/TEOS ratio of 0.68) shown in Figure 4-4 is 286(±13) 

nm. However, the actual void size (measured from the cross section) is 223(±13) nm and 336(±20) 

nm along the minor and major axes respectively. As the background is darker in the original image, 

an inverse lookup table (inverse LUT) was used to clearly visualize the geometry of the void 

(Figure 4-4b). The inset (top) of Figure 4-4b shows an enlarged part of the cross-section close to 

the surface of the thin film. It is evident that a gap is present between two adjacent voids and that 

there is an additional amount of silica on the top surface layer of the voids, which is referred here 

as surface filling. 

 

 

Figure 4-5: (a) A cross section and a top view of inverse opals where D is the diameter of a void 

and x is the gap between two voids when half of the space is filled with silica (along the minor axis 

of a void). (b) A cross section and a top view of an inverse opal with additional amounts of silica 

(surface filling) filled onto the surface layer of voids where d is the diameter of a void and s is the 

gap between two voids when more than half of the space is filled with silica. The dashed line 

represents the true diameter of a void. The x and s are measured along the line that connects centers 

of two adjacent voids.   
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As seen in Figure 4-5, the surface filling reduces the size of the voids measured from the top surface 

of an inverse opal. Here, we have set the gap between two voids (x) when the space in between is 

halfway filled with silica (along the minor axis of a void) as the ideal condition. In the presence of 

a surface filling, the gap between two voids (s) is larger than the ideal (s > x).  

 

Figure 4-6: (a) The variation of the gap (s) between two voids observed from the top surface view. 

The s is the difference between the center-to-center distance (a) and the size of voids (D)) (b) A 

schematic representation of the arrangement of voids on silica matrix where x is the ideal gap 

between voids and n is the half of the difference between s and x. (c) The gap between two voids 

(x), and (d) the surface filling fraction (n%) of silica as functions of the Col/TEOS ratio.  

 

The surface filling was determined as a percentage (n%) where the complete coverage of a void by 

silica was set as 100%.  In Figure 4-6a, the difference between the center-to-center distance (a) 

and the size of voids (D) was measured as the gap between two voids (s). The difference, s, 
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increases up to 115 nm (at 0.53 ratio of Col/TEOS) and then decreases. The lowest s value (50 nm) 

is obtained when the ratio of Col/TEOS is 1.3. At this level, the void size is 333(±12) nm, which is 

closer to the void size (336 nm) measured from the cross-section of the inverse opal film made at 

the Col/TEOS ratio of 0.68 (Figure 4-4); hence, we can assume that at this ratio (1.3) there is no 

surface filling (n% = 0). The value of s at this stage must be equal to x. Considering above factors 

and assuming the size of the voids is equal to 333 nm, a relationship between the x and a can be 

derived: 

 
𝑥 = 𝑎 − 333 (4-5) 

Furthermore, a relationship between x and the additional amount of silica between voids on the 

surface (n) can be derived: 

 
𝑛 = 𝑠

2⁄ − x
2⁄  (4-6) 

The fraction of the excess amount of silica on the surface (n%) can be obtained with the following 

assumption; when the surface filling is 100% then,  

 
𝑛 = 𝐷

2⁄  (4-7) 

So the fraction of surface filling is 

 

𝑛(%) =
𝑛

𝐷
2⁄

× 100 
(4-8) 

The variation of x with respect to the ratio of Col/TEOS shows a similar trend as the variation of 

interplanar distance (Figure 4-6c). When the Col/TEOS ratio is below 1.0, the gap between the 

voids is 70 nm and above 1.0 is 50 nm. The small gap observed above the ratio of 1.0 must be due 

to the lesser amount of tetraethyl orthosilicate. Since tetraethyl orthosilicate is insufficient above 

the Col/TEOS ratio of 1.0, condensation of silanol groups during the calcination leads to shrinkage 

of the lattice which ultimately leads to cracks. 
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The surface filling fraction with respect to the ratio of colloids and tetraethyl orthosilicate is shown 

in Figure 4-6d. According to Figure 4-6d, the surface filling approaches zero when the ratio 

reaches 1.0. The highest fraction is obtained when the ratio is ~0.6. The quality of the film at this 

ratio is good compared to the others (refer Chapter 3 for more details). This means tetraethyl 

orthosilicate plays a vital role in the co-assembly process to improve the quality of the resulting 

thin films. This was further confirmed by correlating this finding with the corresponding stopbands.     

 

Figure 4-7: The variation of the volume fraction of silica with respect to the Col/TEOS ratio. 

 

According to Figure 4-7, both the volume fraction of the silica and the void size (Figure 4-3a) of 

inverse opals made with varying ratios of Col/TEOS showed a similar trend. Moreover, both 

volume fraction of silica and the void size showed an inverse behavior with the surface filling 

fraction of silica. Therefore, the lowest volume fraction of silica is obtained at the maximum surface 

filling fraction of silica. The volume fraction of silica was obtained using the following equation:   

 

 
𝜆 =  

2𝑑ℎ𝑘𝑙

𝑚
[𝜙𝑛𝑎 + (1 − 𝜙)𝑛𝑠] 

(4-9) 
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Here, λ is the wavelength of the stopband, dhkl is the interplanar distance between two crystal planes, 

m is the order of the incident light, ϕ is the volume fraction of silica, ns is the refractive index of 

silica (1.459), and na is the refractive index of air (1.000). Considering first order reflection (m=1), 

the volume fraction of the inverse opals made with varying Col/TEOS ratios was calculated. Since 

the size of actual void does not change significantly with Col/TEOS ratio, the void size along the 

minor axis (from the cross section of an inverse opal film) was taken as 220 nm. As there are two 

different gaps between voids, 50 nm was considered as the gap for Col/TEOS ratios of 1.0 and 1.3, 

and 70 nm was used for the rest of the ratios. The center-to-center distance (a) was calculated for 

each sample by adding both 70 nm and 50 nm to 220 nm for the corresponding samples. Then dhkl 

was calculated by using Equation (4-4). The variation of the stopband with Col/TEOS ratio was 

similar to the variation of the volume fraction with Col/TEOS except for the ratios of 1.0 and 1.3; 

this is due to the shift in dhkl  (Figure 4-2).     

    

4.3.2 Analysis of the percentage of surface defects  

The surface defects present in the inverse opal films made by the co-assembly technique were 

quantified from the SEM images. The analysis was conducted for random images that were taken 

from the samples and the defects were quantified as a percentage with respect to the unit area of 

the analysis (300 nm). When the amount of tetraethyl orthosilicate is reduced, more cracks were 

seen; hence, it is worthwhile to study the effect of the tetraethyl orthosilicate toward the quality of 

the inverse opal films. Here, the analysis was conducted using the films made at the ratios of 

colloids to tetraethyl orthosilicate that is higher than 0.6. because cracks were observed at higher 

ratios of Col/TEOS.  
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Figure 4-8: A representation of different types of areas present in a top view of an inverse opal; 

the areas occupied by voids (gray), silica (green) and defects (red). The image shown here was 

taken at a magnification of 50,000× for clear identification of different type of areas. (Images with 

16,000× magnification was used for the actual analysis).  

 

A perfect crystal should have a surface with a uniform close-packed void arrangement. For a given 

area, there should be a maximum number of voids that can fill the space. The area of defects can 

be calculated by subtracting the area of voids (Avoids) from thetotal (Atotal ). Since these inverse opals 

have significant amount of silica in the space between voids, a correction for the area covered by 

silica (Asilica) has to be conducted. The Asilica can be determined by analyzing a small area without 

defects, where the area covered with voids (avoids) is subtracted from total (atotal) (Equation (4-2)). 

The corrected area percentage of defects was calculated using Equation (4-1). The results were 

plotted against the ratio of colloids to tetraethyl orthosilicate (Figure 4-9).       
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Figure 4-9: (a) The corrected area percentage of surface defects and (b) the fraction of silica with 

respect to the ratio of colloids to tetraethyl orthosilicate (Col/TEOS).   

 

According to Figure 4-9a, the percentage of defects reduces significantly when the ratio of 

Col/TEOS reaches to 0.6. The highest amounts of defects were seen in the samples made with the 

ratios of 1.0 and 1.3. There is a notable difference in defects between ratios of 1.0 and 0.8. However, 

as seen in Figure 4-9b, the %Asilica is reduced when the amount of tetraethyl orthosilicate is low. 

The results suggest that the optimum ratio of Col/TEOS, that is needed to form inverse opal films 

without surface defects, is 0.8. Below 0.8, the additional amount of tetraethyl orthosilicate is 

condensed and deposited on the top surface.   

 

4.3.3 Analysis of the structural arrangement of voids in inverse opal films  

The 2D-FFT algorithm generates a spot pattern, resembling the long-range order of voids. Figure 

4-10a shows an SEM image of an inverse opal film along a (111) plane of the fcc crystal. Moreover, 

the angle between two adjacent rows of voids is 60° and this is clearly visible in the reciprocal 

lattice (Figure 4-10b). As shown in Figure 4-10b, the 2D-FFT image with spots is arranged into a 

hexagonal pattern, which is generally observed for fcc crystals. 189 The hexagonal pattern appeared 

on the FFT image is a 30o rotation of the hexagonal pattern of voids in the SEM image, as the 2D-

FFT image represents the reciprocal space.  
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Figure 4-10: (a) An SEM image of a (111) crystal plane of an fcc crystal lattice; the inset shows 

the fcc arrangement of spheres and the (111) plane and (b) a 2D-FTT image of the SEM image in 

(a) and the inset represents the lattice points in the reciprocal lattice projected along the zone axis 

of [1̅11].  

 

The reciprocal lattice vector is equal to the cosine value of the real space lattice vector. Also, the 

reciprocal lattice vector is equal to the interplanar distance (d) and the real lattice vector is equal to 

the center-to-center distance (a) of voids [Equation (4-4)]. Here, the reciprocal lattice vector is the 

same for all spots and the value is 0.34 µm/cycle. As reported by Blanford, et al., the reciprocal 

lattice vector of a two-dimensional diffraction pattern of an fcc crystal, projected on [111] axis, is 

the same for all spots. Moreover, the reciprocal lattice of an fcc crystal has a bcc lattice structure 

and this reciprocal lattice produces a hexagonal spot pattern around the zone axes of [111].197 Inset 

of Figure 4-10b shows the appearance of the spots around the zone axis of [1̅11]. The spots around 

the zone axis are lattice points. However, some of the lattice points in the reciprocal plane are 

forbidden and will not be visible in a diffraction pattern. For an example, points such as 011, 112, 

110, 211, etc., will not appear in a diffraction pattern of an fcc lattice. Instead when the projected 

axis is [1̅11] then the lattice points of 202, 220, 022̅, 2̅02̅, 2̅2̅0, and 02̅2 are seen on the resulting 

spot pattern.197 
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Figure 4-11: (a) An SEM image of a surface an inverse opal film, where inset shows the 2D-FFT 

pattern and the plot profile of the spots inside the box is labeled as b is shown at (b). The inset of 

(b) is the 3D profile of the first cycle of the FFT spot pattern, where the color represents the intensity 

of each spot.  

 

The plot profile of a 2D-FFT image separates each spot based on their gray values. The white color 

has the highest gray value of 255 for an 8-bit grayscale image. In this analysis, the background was 

subtracted to remove any interference. This reduced the gray value of the spots as a whole but it 

reduces the background noise significantly. Since the highest brightness is for the spots at the first 

cycle, these spots have the highest gray value. Figure 4-11 shows an SEM image of an inverse opal 

film with long-range order of porosity, where inset shows the 2D-FFT image. As seen in Figure 4-

11 b, the plot profile of the spots inside the horizontal box in the FFT image (inset of Figure 4-

11a), shows a symmetrical pattern of peaks with different gray values. The relative distance of each 

spot is projected with an arbitrary scale. Moreover, the profile is symmetric and the gray value of 

the spots decreases as they are positioned far away from the zone axis. The inset of Figure 4-11b 

is a three-dimensional profile of the first cycle of the FFT image. The color represents the gray 

value of each spot. The plot profiles showed in the Figure 4-11b are for an inverse opal film with 

long-range order of voids. 

 



72 
 

 

Figure 4-12: (a) An SEM image of an inverse opal film with two distinct domains including their 

2D-FFT images, (b) The FFT analyzed image of the entire SEM image in (a) showing separation 

of two distinct spot patterns for the first cycle; the inset on top shows the shift of the spot pattern 

due to two distinct domains and bottom shows the 3D plot profile of the first cycle, (c) and (d) 

represent the plot profiles of spots at line x and y respectively.     

 

An FFT image of a sample that has two domains consists of two different hexagonal arrangements 

of spots. Since both arrangements have the same reciprocal lattice vectors, the geometry of the 

hexagonal patterns should be the same. However, depending on the orientation of the domains the 

two spot patterns can be shifted from each other. If these two orientations are significantly different 

then the shift should be visible in the FFT analysis. In order to test this, an area of an inverse opal 

sample with two major domains was considered. The SEM image of this particular area is shown 

in Figure 4-12a, and the 2D-FFT analysis for each orientation is inserted at each place. The Figure 
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4-12b shows the FFT analysis for the entire SEM image. According to Figure 4-12b, there is a 

significant difference in the orientations of these two domains as the first cycle has 12 spots. The 

shift of the lattice point 202 and 220 is shown in the top inset of the Figure 4-12b and the orientation 

shift between the two patterns is measured to be 20°. The 3D profile of the gray values for the FFT 

analysis of the whole area showed doublets of peaks arranged around the zone axis. These doublets 

represent the orientation shift and one has higher gray value compared to the other. The higher gray 

value must correspond to the major domain (labeled as x in the Figure 4-12a) and the other is for 

the minor domain (y). The plot profiles of both x and y are shown in Figure 4-12c and d 

respectively.         

 

 

Figure 4-13: The 2D-FFT analysis for a sample with multiple domains: (a) 2D-FFT image, the 

inset shows the cartoon representation of the shift in the lattice orientation, (b) 3D-plot profile of 

the FFT image, (c), (d), and (e) the plot profiles obtained along the axes shown in (a) as c, d, and e 

respectively.    
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As seen in Figure 4-13, when the number of domains increases the spots in the FFT have an 

elongated shape.  Also, Figure 4-13b is the 3D plot profiles taken for the FFT images of Figure 4-

13a. The broad peaks result from multiple lattice orientations. Since the lattice orientation shift is 

small, the hexagonal arrangement is preserved. The plot profiles (Figure 4-13c, d, and e) also 

confirmed this observation as the individual patterns are similar to a lattice with one domain.  

 

As seen in Figure 4-14, the split in the central peak (the zone axis) is due to a crack. The Figure 

4-14a shows such an SEM image of an inverse opal film with a crack and Figure 4-14b shows the 

3D plot profile with a split in the center peak. The Figure 4-14c shows an SEM image of a sample 

that has several cracks including a crack that separates the image into two. Even though there are 

many cracks still useful information about the orientation of the lattice can be obtained from the 

3D plot profiles. However, the amount of cracks affects the intensities of the peaks.     

 

Figure 4-14: The 2D-FFT analysis of inverse opal films with cracks: (a) A crack that separates the 

SEM image into two, (b) 3D plot profile of (a), (c) an SEM image that shows multiple cracks, (d) 

3D plot profile of (c).   
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4.4 Conclusion 

Here, we conclude that the image analysis tools can be successfully used to obtain valuable 

information of the structure of inverse opal films. Furthermore, we have introduced a technique to 

determine the close-packed arrangement of voids and percentage of surface defects. According to 

our analysis, the structure of the inverse opal films depends on the ratio of colloids to tetraethyl 

orthosilicate. Most importantly, we have explained the presence of a significant gap between the 

voids and an extra surface layer of silica in some inverse opal samples. The surface filling fraction 

is increased with Col/TEOS ratio up to the ~0.6 and then decreased. Once the ratio is reached to 

1.0, cracks started to appear in the resulting films. The quality of the films depends on the ratio of 

colloids to tetraethyl orthosilicate and when the ratio is ~0.6 the inverse opals with the best quality 

is obtained. We have also shown that the plot profiles of the 2D-FFT images can be successfully 

used to determine the periodicity in the presence of multiple lattice orientations.    
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CHAPTER V 
 

 

FABRICATION OF POLY(2-HYDROXYETHYL METHACRYLATE)-BASED 

 INVERSE OPAL HYDROGEL AS A POTENTIAL ORGANIC SOLVENT SENSOR 

 

5.1 Introduction 

The periodic microstructures in a photonic crystal diffract light and constructive interferences of 

the reflected waves determine the color of the material. Reversible changes in the refractive index 

or in the spacing of the grating, induced by an external stimulus, enable the use of photonic crystals 

in sensing applications. Visible color changes are possible with photonic sensors. Unlike inorganic 

colloidal structures, hydrogel photonic crystals can be made to be responsive to external stimulus 

by virtue of changing their chemistry. Hydrogels, three-dimensional network polymers, can 

reversibly absorb or desorb water by changing their volume. Most of these polymers are responsive 

to other organic solvents. The swelling of a hydrogel, resulting from absorption of large quantity 

of solvents, can be controlled by changing the composition of the monomers, functionalizing the 

surface, introducing new functional groups, or changing the cross-link density;198, 199  

 

The fabrication of photonic hydrogels is challenging. Depending on the fabrication technique, the 

photonic hydrogel sensors are categorized into various types such as, holographic sensors,200-203 

crystalline colloidal array sensors,83, 204, 205 and inverse opal sensors.206-209 The inverse opal hydro-

gel sensors are relatively more advantageous than the other types due to high diffraction effi- 
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ciency.210  Generally, inverse opal hydrogels are fabricated by infiltration of monomer mixtures to 

self-assembled colloidal crystals followed by the removal of the template. Poly(2-hydroxyethyl 

methacrylate) or poly(HEMA)-based hydrogels are synthetic hydrogels, which are widely used as 

inverse opal hydrogels due to their properties such as, high versatility,211 easy preparation, optical 

transparency,212, 213 biocompatibility,214-216 etc. However, the poor sensitivity of poly(HEMA) - the 

homopolymer of HEMA - limits its potential uses in  sensing applications. Therefore, various 

modifications have been introduced to improve the sensitivity of the poly(HEMA) hydrogels. For 

an example, co-polymerization of HEMA with other monomers such as acrylic acid,217 3-acryl-

amidophenylboronic acid,34 and N-isopropylacrylamide for sensing pH, glucose, and temper-

ature,35 respectively. Since poly(HEMA) shows a noticeable response (swelling) to ethanol, the 

poly(HEMA) based hydrogels are studied as ethanol sensors36; however, they have not been 

thoroughly investigated for sensing other organic solvents. Furthermore, most fabrication 

techniques yield hydrogel inverse opal films with low mechanical stability which can be improved 

by transferring the hydrogel to another substrate.218 Nevertheless, the transfer of the hydrogel 

creates problems in obtaining uniform swelling. Another strategy that can increase the mechanical 

and dimensional stability is to fabricate a thin zone of inverse opal structure on top of a bulk 

hydrogel.219 The objective of this study is to fabricate poly(HEMA) based inverse opal hydrogels 

with high mechanical stability and to investigate their potential to use in sensing organic solvents.      

 

A hydrogel composed of HEMA, N,N-(dimethylamino)ethyl methacrylate (DMAEMA), and 

tetraethylene glycol dimethacrylate (TEGDMA) was used to fabricate an inverse opal hydrogel. 

Opal films made out of silica colloids were used as the templates. Photo polymerization was used 

to polymerize the monomers. Here, a new simple methodology was introduced to yield inverse opal 

hydrogels with high mechanical strength by using a poly(dimethylsiloxane) (PDMS) mold. 

Moreover, the swelling behavior of the poly(HEMA/DMAEMA/TEGDMA) hydrogels was studied 

as a response to pH, and concentrations of salt (NaCl) in the aqueous solutions to evaluate the 
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potential of developing  pH and salt sensors. As previously reported poly(HEMA/DMAEMA-

/TEGDMA) hydrogels show significant swelling in organic solvents, such as N,N-dimethyl form-

amide (DMF), Dimethyl sulfoxide (DMSO), methanol, ethanol, and ethylene glycol. 

   

5.2 Materials and methods 

5.2.1 Materials and instruments 

The silica particles (350 nm) were obtained as dry particles from NanoCym (Scottsdale, AZ). The 

silicon elastomer (PDMS - SYLGARDTM 184) was purchased from Dow Corning (Midland, MI).  

The 2-hydroxyethyl methacrylate (HEMA, 97%), N,N-(dimethylaminoethyl)methacrylate 

(DMAEMA, 98%), 2-hydroxy-2-methylpropiophenone (97%), tetraethylene glycol dimeth-

acrylate (TEGDMA, ≥ 90%), were obtained from Sigma-Aldrich (St. Louis, MO). Absolute ethyl 

alcohol (EtOH), ACS reagent grade hydrochloric acid (HCl, 36.5-38.0%), and sulfuric acid (H2SO4, 

95.0-98%) were bought from Pharmco-AAPER (Brookfield, CT). ACS reagent grade hydrogen 

peroxide (H2O2, 30% (w/w)) was purchased from Ricca chemical company (Arlington, TX). 

Silicon wafers (p-type Si:B[100], Ro = (1-100) Ω cm) were acquired from El-Cat Inc. (Ridgefield 

Park, NJ). Microscope slides (premium) were purchased from Fisher Scientific (Fair Lawn, NJ). 

The surface of the substrates was treated using a corona treater (Electro-Technic Products, BD-20). 

The electron microscopy images were taken using a scanning electron microscope (SEM, FEI 

Quanta 600 FE). A convection oven (Binder ED 115) was used for the deposition of the silica opal 

films. Transmittance spectra were taken using a UV-Vis spectrophotometer (Cary 50 bioBio) in 

transmittance mode. The graphs were plotted using OriginPro 9 software (OriginLab Corporation). 

A water purification system (Barnstead NanopureTM), at a resistance of 18.1 Ω/cm, was used to 

obtain deionize water. The JT Baker® buffered oxide etchant [6:1 mixture of ammonium Fluoride 

(NH4F) to hydrofluoric acid (HF)] was purchased from Capitol Scientific, Inc. (Austin, TX). The 

buffer oxide etching was conducted at Helmerich Research Center, OSU-Tulsa.  
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5.2.2 Methods 

5.2.2.1 Synthesis of poly(HEMA/DMAEMA/TEGDMA) hydrogels  

The hydrogel was prepared by thoroughly mixing HEMA, DMAEMA, TEGDMA and 2-hydroxy-

2-methylpropiophenone in a ratio of 38:2:1:1 (mol/mol) respectively, with the solvent mixture 

containing water and ethylene glycol (1:1 mol/mol). The composition of the polymer was adapted 

from a study, previously published by You et al.220  

 

5.2.2.2 Investigation of the swelling behavior of poly(HEMA/DMAEMA/TEGDMA) 

hydrogels as a response to pH and concentration of salt  

The hydrogels (75 mm x 25 mm x 4 mm) were synthesized in PDMS molds and cut into small 

pieces with desired size (25 mm x 10 mm x 4 mm) to use in the experiment. The PDMS molds 

were prepared by mixing SylgardTM 184 silicone elastomer and curing agent (10:1 wt. %) and 

poured over the template, made from glass slides (75 mm x 25 mm x 4 mm), in a petri dish. Then 

the mixture was degassed in a vacuum to remove all the air bubbles, and thermally cured in an oven 

(BarnsteadTM) at 75 °C for 5 – 6 h.  After fabrication, the hydrogel samples were purified in DI 

water for 4 days and dried in a vacuum desiccator until hydrogels reached a constant weight. The 

dehydrated hydrogels were immersed in solutions with different pH and salt concentrations for 

predetermined time periods (0, 10, 20, 30, 40, 50, 60, 70 and 80 min for pH solutions and 0, 70, 

140, 350, 420, 660, and 1415 min for salt solutions). At the end of each time period, the hydrogels 

were taken out, blotted with a paper tissue to remove excess solution, and the weight was measured 

using an analytical balance. The swelling behavior of the hydrogel was investigated in different pH 

values between pH 2.2 and 7.0; the series of solutions was prepared by changing the pH in 0.4 

increments. The buffer solutions were made using 0.2 M K2HPO4 and 0.1 M citric acid. As well, 

the swelling of the hydrogel was studied at different NaCl concentrations of 1.0, 0.1, and 0.01 M.  
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In both experiments, the percent mass swelling ratio (%Qm) was determined, by means of solvent 

uptake, at each time point using the following equation: 

(%𝑄𝑚) =  
(𝑚𝑠 − 𝑚𝑑) 

𝑚𝑑
× 100% (5-1) 

Here, ms is the mass of the swollen hydrogel, and md is the mass of the dry hydrogel.    

 

5.2.2.3 Fabrication of silica opal thin films 

Silica colloids (350 nm) were dispersed in absolute ethanol to prepare the working solution. The 

concentration of colloids in the working solution was 20 mg/mL. Then a substrate, glass or silicon 

wafer, was dipped in a vial containing the silica colloid suspension and heated in a convection oven 

at 65 °C for 24 h to evaporate the solvent. 

 

5.2.2.4 Fabrication of inverse opal hydrogels  

A schematic representation of the fabrication process of inverse opal hydrogels is shown in Figure 

5.1. Briefly, a PDMS mold was fabricated using a glass template. After removing the template, a 

silica opal film fabricated on a glass slide or a silicon wafer was placed in the well, the monomer 

mixture was poured over the opal film and cured with 365 nm UV light for 90 s using a DymaxTM 

light curing system (225 mW/cm2, Model 5000 Flood). The hydrogel-silica composite, peeled off 

from the PDMS mold, was trimmed to remove the excess hydrogel. To separate the silicon wafers 

from the composite, the composites were submerged in DI water for 24 h. Finally, the hydrogel-

silica composite with the glass substrate and the composites (separated from silicon wafers) were 

subjected to 2% HF etching (etched on buffered oxide (6:1 mixture of NH4F to HF) until the 

substrate is detached from the hydrogel - ~2 days) to remove the silica beads. The glass slides were 

expected to detach from the composite during HF etching. 
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Figure 5-1: The schematic representation of the fabrication of inverse opal hydrogels. 

 

5.3 Results and discussion 

5.3.1 Swelling behavior of the poly(HEMA/DMAEMA/TEGDMA) hydrogel in response to 

pH and concentration of salt 

The swelling behavior of the poly(HEMA/DMAEMA/TEGDMA) hydrogel with pH of the medium 

is mainly due to the presence of N,N-(dimethylamino)ethyl methacrylate (DMAEMA) monomer 

units. The pKa of DMAEMA is 8.44,221 and poly(N,N-(dimethylamino)ethyl methacrylate) 

[poly(DMAEMA)] is 7.5.222 Thus the pH response for poly(HEMA/DMAEMA/TEGDMA) 

hydrogel can be expected in acidic pH. In this study, the swelling behavior of poly(HEMA/-

DMAEMA/TEGDMA) hydrogel in response to pH was evaluated in solvents having pH values of 

from 2.2 to 7.0 with 0.4 increments. The hydrogel showed a small change in %Qm (< 20%) in 

response to pH. The mass swelling ratio followed a similar trend as shown in Figure 5-2a, in all 

solutions regardless of the pH value. As shown by the graph in Figure 5-2b, the increase in pH 

caused decrease in swelling from 18% (at pH 2.2) to 8% (at pH 7.0). Since the pH of the solution 

was maintained at the desired value using buffers, the salts (ionic strength) might have influenced 

the swelling of the hydrogels.223, 224  
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Figure 5-2: Mass swelling ratio (%Qm) as a function of (a) time at pH 5.6, (b) pH at 40 min, (c) 

time in salt solutions with different salt (NaCl) concentrations, and (d) concentration of salt (NaCl) 

at 1415 min (24 h).  

 

To analyze the swelling behavior of poly(HEMA/DMAEMA/TEGDMA) hydrogel, the samples 

were swollen in 1.0, 0.1, and 0.01 M NaCl solutions. The %Qm was remarkably increased with time 

at the lowest concentration of NaCl (0.01 M) used in the experiment. In each NaCl solution, the 

swelling was rapid at the beginning (up to ~70 min) and then slowed (Figure 5-2c).  It has been 

shown that the swelling of hydrogels has a prominent effect from the ionic strength of the 

surrounding environment.223, 224 Availability of water decreases as the salt concentration increases, 

which may also contribute to the decrease in swelling.     
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5.3.2 Fabrication of silica opal films 

 

Figure 5-3: (a) A silica opal film fabricated on a glass slide; (b) A glass vial containing silica 

dispersed in water (8 mg/mL) kept undisturbed for 12 h; (c) Transmittance spectrum of a silica opal 

film made out of silica colloids dispersed in water.  

 

The silica opal films were fabricated on glass slides using vertical deposition technique, where the 

samples were heated at 55 ºC in an oven for 24 h. Even though, the silica particles were well 

dispersed in water by agitation and sonication at the beginning of the experiment, ~1/4 volume 

fraction of silica colloids was settled within 12 h. The poor stability of silica colloids in water 

resulted in short opal films (2-3 cm) (Figure 5-3). The size of the colloids used in this experiment 

was 350 nm and a stopband was observed at 730 nm for the fabricated opal film. Since there is a 

relationship between the size of the particles and the position of the stopband, for a first order 

reflection, the expected stopband wavelength (λ) can be determined from the following equation;  

 𝜆 =  1.632𝐷[𝜙𝑛𝑠 + (1 − 𝜙)𝑛𝑎] (5-2) 

Here, D is the size of the particles, m is the order of the incident light, ϕ is the volume fraction of 

the matrix (air), ns is the refractive index of the silica, and na is the refractive index of air. For silica 

opal films with perfect close-packed arrangement of colloids (ϕ = 0.74) and the expected position 

of the stopband is 765 nm.  
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Figure 5-4: (a) Three silica opal films fabricated with silica colloids dispersed in ethanol; the 

concentrations of silica was (A) 8 mg/mL, (B) 10 mg/mL, and (C) 20 mg/mL; (b) transmittance 

spectra obtain for the silica opal films made with different concentrations of silica.   

 

According to the previous studies, ethanol is another solvent which can be used to disperse silica 

colloids.218, 225, 226 In contrast to water-dispersed silica colloids, which yielded short opal films, silica 

colloids dispersed in ethanol resulted in long opal films (> 5 cm). Four dispersions with different 

concentrations of colloids (8, 10, 15, and 20 mg/mL) were used to fabricate the opal films. The 

temperature also had an influence on the intensity of the stopband and 55 °C was found as the 

optimum temperature. According to the observations (Figure 5-4) the best films were fabricated in 

solutions with 20 mg/mL of colloids at 55 °C. As seen in Figure 5-4, the intensity of the stopband 

increased with increasing silica concentration. However, beyond 20 mg/mL significant further 

improvement was not achieved. It is difficult to disperse silica particles entirely in ethanol, at high 

concentrations. Compared to the silica opal films fabricated with water as the dispersant, the opal 

films made in ethanol as the dispersant showed less intense stopbands. Usually, the intensity of the 

stopband depends on the number of layers of the thin film (Chapter 3). However, the position of 

the stopband is 750 nm, which is closer to the expected value (765 nm). The position of the stopband 

is an indication of the better close-packing of silica particles.    
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5.3.3 Fabrication of inverse opal hydrogels 

 

 

Figure 5-5: Two general methods were used for the infiltration of a monomer mixture to an opal 

film: (a) opal film is covered with a cover slide and dipped in the monomer mixture, where the 

monomers infiltrate into the interstitial sites via capillary forces and (b) the opal film is held at an 

angle of ~15°, and the monomer mixture is poured on top of the film and the excess solution is 

allowed to drain.  

 

The two conventional methods used to infiltrate monomer mixtures to hydrogels are shown in 

Figure 5-5. In the first method, the silica opal film is covered with another slide and partially 

immersed in the monomer mixture.227 The second method uses a silica opal film inclined at an 

angle ~15° and the monomer mixture is dropped onto the top of slide and the excess is drained.36 

The resulting inverse opal hydrogels fabricated from both methods are thin and difficult to handle. 

In this study, a new, alternative methodology was introduced to infiltrate the hydrogel, using a 

PDMS mold, where we had more control over the thickness of the resulting films. Here, a PDMS 

mold was prepared with a well (the depth was 2 mm) to place the silica opal film (Figure 5-1). 

Once the monomer mixture is poured into the well and photopolymerized the composite film can 

be detached from the mold. The resulting inverse opal hydrogel, after removing the silica template, 
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has two zones: a thin zone with the inverse opal structure (patterned zone), and a thick zone in 

which only the polymer is present with no structure (unpatterned zone). The thin, patterned zone 

containing the inverse opal structure is responsible for the sensing applications while the thick, 

unpatterned zone provides the mechanical stability and dimensional stability. The thickness of the 

unpatterned zone can be controlled by changing the depth of the well in the PDMS mold. Moreover, 

this unpatterned zone aids the diffusion of the analytes toward the patterned sensing region.  

However, the infiltration of the monomer mixture was poor in this new method; but, can be 

significantly improved by leaving the monomer-filled PDMS molds under a vacuum in a desiccator 

for 48 h. As well, the removal of the hydrogel from the substrate, without damaging the inverse 

opal structure, was also challenging.  

 

 

Figure 5-6: (a) Silica opal film fabricated on a glass slide (left) and a silicon wafer (right); (b) 

Hydrogel-silica opal composite made, using a PDMS mold, by infiltrating the monomer mixture 

for 24 h; (c) An SEM image of a silica opal film fabricated on a glass slide and the inset shows an 

SEM image of a silica opal-hydrogel composite film (infiltrated for 48 h with the monomer 

mixture). 
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Initially, the hydrogel was mechanically peeled off or immersed in a solvent i.e. water or ethanol 

to separate the substrate from the silica opal-hydrogel composite film by swelling the hydrogel. 

The glass substrate was hard to separate from the composite either mechanically or by swelling in 

a solvent. On the contrary, the silicon wafer substrate was easy to remove from the composite by 

swelling the hydrogel in DI water, which can be attributed to the weak interactions between the 

silica colloids and silicon surface. However, the silica opal film started to peel off from some places 

upon leaving in contact with the monomer mixture for 48 h in a vacuum desiccator (Figure 5-6). 

Since it is essential to keep the opal film in the monomer mixture for 48 h in a vacuum desiccator 

for a better infiltration, glass slides were used as the substrate in future experiments.  After 

fabrication, the silica-hydrogel composites were separated from the glass slide by using a 2% HF 

solution (soaked in the HF solution for ~2 days). Once the substrate was separated from the 

composite, the composite was soaked in HF solution for another 24 h for the completion of the 

etching of the silica colloidal template. As seen in Figure 5-7, the template was successfully etched 

from the silica opal-hydrogel composites made by infiltrating the monomer mixture for 48 h.   

 

 

Figure 5-7: Hydrogel films after etched in HF solutions: (a) the hydrogel monomer mixture was 

infiltrated for few mins; (b) the monomer mixture was infiltrated for 48 h in a vacuum desiccator.  
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5.4 Conclusion and future directions 

This study introduces a new methodology to fabricate inverse opal hydrogels which can be used as 

a potential sensor to detect organic solvents. This fabrication involves several steps: fabrication of 

silica opal films, infiltration of the monomer mixture, photopolymerization of monomers to 

synthesize the polymer, and removal of the template. Here, it is shown that silica particles dispersed 

in ethanol can be successfully used to fabricate long silica opal films with a good quality, using 

both glass microscope slides and silicon wafers as the substrate for the opal films. Even though the 

silicon substrate was easily removed from the opal-hydrogel composite by swelling the hydrogel, 

the stability of the opal film was poor when the monomer mixture is not infiltrated for 48 h in a 

vacuum. Therefore, the use of glass as the substrate for fabricating opal films was advantageous in 

this new method. Moreover, the glass substrate and the silica opal template were simultaneously 

removed from the composite by HF etching. Since the poly(HEMA/DMAEMA/TEGDMA) inverse 

opal hydrogels has a response to organic solvents such as N,N-dimethyl formamide (DMF), 

Dimethyl sulfoxide (DMSO), methanol, ethanol, and ethylene glycol an inverse opal hydrogel 

sensor can be fabricated. As well, a shift of the stopband might be observed in response to the salt 

concentration as the poly(HEMA/DMAEMA/TEGDMA) hydrogel showed a notable change in 

swelling at low salt concentrations; thus the potential of this inverse opal hydrogel to be used in 

salt sensing applications can also be evaluated.  

 

 

   



89 
 

REFERENCES 
 

1. Srinivasarao, M., Nano-Optics in the Biological World:  Beetles, Butterflies, Birds, and Moths. 

Chemical Reviews 1999, 99 (7), 1935-1962. 

2. Yablonovitch, E., Inhibited Spontaneous Emission in Solid-State Physics and Electronics. 

Physical Review Letters 1987, 58 (20), 2059-2062. 

3. John, S., Strong localization of photons in certain disordered dielectric superlattices. Physical 

Review Letters 1987, 58 (23), 2486-2489. 

4. John, S.; Quang, T., Collective Switching and Inversion without Fluctuation of Two-Level 

Atoms in Confined Photonic Systems. Physical Review Letters 1997, 78 (10), 1888-1891. 

5. Mekis, A.; Chen, J. C.; Kurland, I.; Fan, S.; Villeneuve, P. R.; Joannopoulos, J. D., High 

Transmission through Sharp Bends in Photonic Crystal Waveguides. Physical Review Letters 

1996, 77 (18), 3787-3790. 

6. Lin, S.-Y.; Chow, E.; Hietala, V.; Villeneuve, P. R.; Joannopoulos, J. D., Experimental 

Demonstration of Guiding and Bending of Electromagnetic Waves in a Photonic Crystal. Science 

1998, 282 (5387), 274-276. 



90 
 

7. Haibin, N.; Ming, W.; Wei, C., Sol-gel co-assembly of hollow cylindrical inverse opals and 

inverse opal columns. Optics Express 2011, 19 (27), 25900-25910. 

8. Ni, H.; Wang, M.; Li, L.; Chen, W.; Wang, T., Photonic-Crystal-Based Optical Fiber Bundles 

and Their Applications. IEEE Photonics Journal 2013, 5 (4), 2400213-2400213. 

9. Wadsworth, W. J.; Percival, R. M.; Bouwmans, G.; Knight, J. C.; Russell, P. S. J., High power 

air-clad photonic crystal fibre laser. Optics Express 2003, 11 (1), 48-53. 

10. Altug, H.; Vučković, J., Photonic crystal nanocavity array laser. Optics Express 2005, 13 

(22), 8819-8828. 

11. Hirose, K.; Liang, Y.; Kurosaka, Y.; Watanabe, A.; Sugiyama, T.; Noda, S., Watt-class high-

power, high-beam-quality photonic-crystal lasers. Nature Photonics 2014, 8, 406-411. 

12. Lin, S. Y.; Fleming, J. G.; Hetherington, D. L.; Smith, B. K.; Biswas, R.; Ho, K. M.; Sigalas, 

M. M.; Zubrzycki, W.; Kurtz, S. R.; Bur, J., A three-dimensional photonic crystal operating at 

infrared wavelengths. Nature 1998, 394, 251-253. 

13. Qi, M.;  Lidorikis, E.;  Rakich, P. T.;  Johnson, S. G.;  Joannopoulos, J. D.;  Ippen, E. P.; 

Smith, H. I., A three-dimensional optical photonic crystal with designed point defects. Nature 

2004, 429, 538. 

14. Lai, N. D.;  Liang, W. P.;  Lin, J. H.;  Hsu, C. C.; Lin, C. H., Fabrication of two- and three-

dimensional periodic structures by multi-exposure of two-beam interference technique. Optics 

Express 2005, 13 (23), 9605-9611. 



91 
 

15. Aoki, K.;  Miyazaki, H. T.;  Hirayama, H.;  Inoshita, K.;  Baba, T.;  Sakoda, K.;  Shinya, N.; 

Aoyagi, Y., Microassembly of semiconductor three-dimensional photonic crystals. Nature 

Materials 2003, 2, 117. 

16. Meseguer, F.; Blanco, A.; Mı́guez, H.; Garcı́a-Santamarı́a, F.; Ibisate, M.; López, C., 

Synthesis of inverse opals. Colloids and Surfaces A: Physicochemical and Engineering Aspects 

2002, 202 (2), 281-290. 

17. Edrington, A. C.; Urbas, A. M.; DeRege, P.; Chen, C. X.; Swager, T. M.; Hadjichristidis, N. , 

Xenidou, M.; Fetters, L. J.; Joannopoulos, J. D.; Fink, Y.; Thomas, E. L., Polymer‐Based 

Photonic Crystals. Advanced Materials 2001, 13 (6), 421-425. 

18. Galisteo‐López, J. F.; Ibisate, M.; Sapienza, R.; Froufe‐Pérez, L. S.; Blanco, Á.; López, C., 

Self‐Assembled Photonic Structures. Advanced Materials 2011, 23 (1), 30-69. 

19. Whitesides, G. M.; Grzybowski, B., Self-Assembly at All Scales. Science 2002, 295 (5564), 

2418-2421. 

20. Hatton, B.;  Mishchenko, L.;  Davis, S.;  Sandhage, K. H.; Aizenberg, J., Assembly of large-

area, highly ordered, crack-free inverse opal films. Proceedings of the National Academy of 

Sciences of the United States of America 2010, 107 (23), 10354-10359. 

21. Hernán, M.;  Francisco, M.;  Cefe, L.;  Álvaro, B.;  S., M. J.;  Joaquín, R.;  Amparo, M.; 

Vicente, F., Control of the Photonic Crystal Properties of fcc‐Packed Submicrometer SiO2 

Spheres by Sintering. Advanced Materials 1998, 10 (6), 480-483. 



92 
 

22. Wong, S.;  Kitaev, V.; Ozin, G. A., Colloidal Crystal Films:  Advances in Universality and 

Perfection. Journal of the American Chemical Society 2003, 125 (50), 15589-15598. 

23. Miguez, H.; Tetreault, N.; Hatton, B.; Yang, S. M.; Perovic, D.; Ozin, G. A., Mechanical 

stability enhancement by pore size and connectivity control in colloidal crystals by layer-by-layer 

growth of oxide. Chemical Communications 2002,  (22), 2736-2737. 

24. Wang, L.; Zhao, X. S., Fabrication of Crack-Free Colloidal Crystals Using a Modified 

Vertical Deposition Method. The Journal of Physical Chemistry C 2007, 111 (24), 8538-8542. 

25. Vos, W. L.; Megens, M.; van Kats, C. M.; Bösecke, P., X-ray Diffraction of Photonic 

Colloidal Single Crystals. Langmuir 1997, 13 (23), 6004-6008. 

26. Megens, M.; van Kats, C. M.; Bösecke, P.; Vos, W. L., In Situ Characterization of Colloidal 

Spheres by Synchrotron Small-Angle X-ray Scattering. Langmuir 1997, 13 (23), 6120-6129. 

27. Holland, B. T.; Blanford, C. F.; Stein, A., Synthesis of Macroporous Minerals with Highly 

Ordered Three-Dimensional Arrays of Spheroidal Voids. Science 1998, 281 (5376), 538-540. 

28. Zhou, W. L.; Xu, L.; Zakhidov, A. A.; Baughman, R. H.; Wiley, J. B., Structure and 

Nanocrystallites of Ni and NiO Three Dimensional Ordered Macromeshes. MRS Proceedings 

2011, 703, V9.19. 

29. Yan, H.; Zhang, K.; Blanford, C. F.; Francis, L. F.; Stein, A., In Vitro Hydroxycarbonate 

Apatite Mineralization of CaO−SiO2 Sol−Gel Glasses with a Three-Dimensionally Ordered 

Macroporous Structure. Chemistry of Materials 2001, 13 (4), 1374-1382. 



93 
 

30. Cheng, B.; Ni, P.; Jin, C.; Li, Z.; Zhang, D.; Dong, P.; Guo, X., More Direct Evidence of the 

fcc Arrangement for Artificial Opal. Optics Communications 1999, 170 (1), 41-46. 

31. Míguez, H.; Meseguer, F.; López, C.; Mifsud, A.; Moya, J. S.; Vázquez, L., Evidence of FCC 

Crystallization of SiO2 Nanospheres. Langmuir 1997, 13 (23), 6009-6011. 

32. Nishijima, Y.; Juodkazis, S., Optical Characterization and Lasing in Three-Dimensional Opal-

Structures. Frontiers in Materials 2015, 2 (49). 

33. Lee, Y.‐J.;  Braun, P.V.; Tunable Inverse Opal Hydrogel pH Sensors. Advanced Materials 

2003, 15 (7‐8), 563-566. 

34. Lee, Y.-J.; Pruzinsky, S. A.; Braun, P. V., Glucose-Sensitive Inverse Opal Hydrogels:  

Analysis of Optical Diffraction Response. Langmuir 2004, 20 (8), 3096-3106. 

35. Shin, J.; Han, S. G.; Lee, W., Dually tunable inverse opal hydrogel colorimetric sensor with 

fast and reversible color changes. Sensors and Actuators B: Chemical 2012, 168, 20-26. 

36. Pernice, R.; Adamo, G.; Stivala, S.; Parisi, A.; Busacca, A. C.; Spigolon, D.; Sabatino, M. A.; 

D’Acquisto, L.; Dispenza, C., Opals infiltrated with a stimuli-responsive hydrogel for ethanol 

vapor sensing. Optical Materials Express 2013, 3 (11), 1820-1833. 

37. Jayasinghe, H. G.; Tormos, C. J.; Khan, M.; Madihally, S.; Vasquez, Y., A soft lithography 

method to generate arrays of microstructures on hydrogel surfaces. Journal of Polymer Science 

Part B 2018, 56: 1144-1157.  



94 
 

38. Vukusic, P.; Sambles, J. R., Photonic structures in biology. Nature 2003, 424, 852. 

39. Parker, A. R., Natural photonic engineers. Materials Today 2002, 5 (9), 26-31. 

40. Johnson, S. G.; Joannopoulos, J. D., Designing synthetic optical media: photonic crystals. 

Acta Materialia 2003, 51 (19), 5823-5835. 

41. Stavenga, D. G.; Otto, J. C.; Wilts, B. D., Splendid coloration of the peacock spider Maratus 

splendens. Journal of The Royal Society Interface 2016, 13 (121). 

42. Song, C. X.; Liu, F.; Hao, Y. H.; Hu, X. H.; Zhang, Y. F.; Liu, X. H., Multilayer manipulated 

diffraction in flower beetles Torynorrhina flammea: intraspecific structural colouration variation. 

Journal of Optics 2014, 16 (10), 105302. 

43. Andrew Richard, P.; Zoltan, H., Diffractive optics in spiders. Journal of Optics A: Pure and 

Applied Optics 2003, 5 (4), S111. 

44. Hinton, H. E.; Gibbs, D. F.; Silberglied, R., Stridulatory files as diffraction gratings in 

mutillid wasps. Journal of Insect Physiology 1969, 15 (4), 549-552. 

45. Yoshioka, S.; Kinoshita, S., Wavelength-selective and anisotropic light-diffusing scale on the 

wing of the Morpho butterfly. Proceedings of the Royal Society B: Biological Sciences 2004, 271 

(1539), 581-587. 

 



95 
 

46. Zi, J.; Yu, X.; Li, Y.; Hu, X.; Xu, C.; Wang, X.; Liu, X.; Fu, R., Coloration Strategies in 

Peacock Feathers. Proceedings of the National Academy of Sciences 2003, 100 (22), 12576-

12578. 

47. Morimoto, G.; Yamaguchi, N.; Ueda, K., Plumage Color as a Status Signal in Male–male 

Interaction in the Red-flanked Bushrobin, Tarsiger cyanurus. Journal of Ethology 2006, 24 (3), 

261-266. 

48. Tsuyoshi, U.; Garuda, F.; Gen, M.; Kiyoshi, M.; Akinori, K.; Takeo, K.; Takahiko, H., 

Numerical Study on the Structural Color of Blue Birds by a Disordered Porous Photonic Crystal 

Model. Europhysics Letters 2014, 107 (3), 34004. 

49. Saranathan, V.; Forster, J. D.; Noh, H.; Liew, S.-F.; Mochrie, S. G. J.; Cao, H.; Dufresne, E. 

R.; Prum, R. O., Structure and Optical Function of Amorphous Photonic Nanostructures from 

Avian Feather Barbs: A Comparative Small Angle X-ray Scattering (SAXS) Analysis of 230 Bird 

Species. Journal of The Royal Society Interface 2012, 9 (75), 2563-2580. 

50. Sanders, J. V., Colour of Precious Opal. Nature 1964, 204, 1151–1153. 

51. Aizenberg, J.; Tkachenko, A.; Weiner, S.; Addadi, L.; Hendler, G., Calcitic Microlenses as 

Part of the Photoreceptor System in Brittlestars. Nature 2001, 412, 819-822. 

52. Armstrong, S., Photonic Crystals Aid Fish's Night Vision, Nature Photonics 2012, 6, 575. 

 



96 
 

53. Gur, D.; Politi, Y.; Sivan, B.; Fratzl, P.; Weiner, S.; Addadi, L., Guanine-Based Photonic 

Crystals in Fish Scales Form from an Amorphous Precursor. Angewandte Chemie International 

Edition 2013, 52 (1), 388-391. 

54. Sukhoivanov, I. A.; Guryev, I. V., Introduction to Photonic Crystals. In Photonic Crystals: 

Physics and Practical Modeling, Sukhoivanov, I. A.; Guryev, I. V., Eds. Springer Berlin 

Heidelberg: Berlin, Heidelberg, 2009; pp 1-12. 

55. Noda, S.; Tomoda, K.; Yamamoto, N.; Chutinan, A., Full Three-Dimensional Photonic 

Bandgap Crystals at Near-Infrared Wavelengths Science 2000, 289 (5479), 604-606. 

56. Ho, K. M.;  Chan, C. T.;  Soukoulis, C. M.;  Biswas, R.; Sigalas, M., Photonic band gaps in 

three dimensions: New layer-by-layer periodic structures. Solid State Communications 1994, 89 

(5), 413-416. 

57. Fleming, J. G.; Lin, S.-Y., Three-dimensional photonic crystal with a stop band from 1.35 to 

1.95 µm. Optics Letters 1999, 24 (1), 49-51. 

58. Megens, M.;  Wijnhoven, J. E. G. J.;  Lagendijk, A.; Vos, W. L., Fluorescence lifetimes and 

linewidths of dye in photonic crystals. Physical Review A 1999, 59 (6), 4727-4731. 

59. Noda, S.;  Imada, M.;  Okano, M.;  Ogawa, S.;  Mochizuki, M.; Chutinan, A., Semiconductor 

three-dimensional and two-dimensional photonic crystals and devices. IEEE Journal of Quantum 

Electronics 2002, 38 (7), 726-735. 

 



97 
 

60. Ogawa, S.;  Imada, M.; Noda, S., Analysis of thermal stress in wafer bonding of dissimilar 

materials for the introduction of an InP-based light emitter into a GaAs-based three-dimensional 

photonic crystal. Applied Physics Letters 2003, 82 (20), 3406-3408. 

61. Soukoulis, C. M., Photonic band gap materials: the "semiconductors" of the future? Physica 

Scripta 1996, 1996 (T66), 146. 

62. Ogawa, S.;  Imada, M.;  Yoshimoto, S.;  Okano, M.; Noda, S., Control of Light Emission by 

3D Photonic Crystals. Science 2004, 305 (5681), 227-229. 

63. Lee, W.; Pruzinsky, S; Braun, P. Multi‐Photon Polymerization of Waveguide Structures 

Within Three‐Dimensional Photonic Crystals. Advanced Materials 2002, 14 (4), 271-274. 

64. Taton, T. A.; Norris, D. J., Defective Promise in Photonics. Nature 2002, 416, 685-686. 

65. Joannopoulos, J. D.; Villeneuve, P. R.; Fan, S., Photonic Crystals: Putting a New Twist on 

Light. Nature 1997, 386, 143-149. 

66. Yan, Q.;  Wang, L.;  Zhao, X. S.; Artificial Defect Engineering in Three‐Dimensional 

Colloidal Photonic Crystals. Advanced Functional Materials 2007, 17 (18), 3695-3706. 

67. Notomi, M.; Shinya, A.; Mitsugi, S.; Kuramochi, E.; Ryu, H. Y., Waveguides, Resonators 

and Their Coupled Elements in Photonic Crystal Slabs. Opt. Express 2004, 12 (8), 1551-1561. 

68. Arsenault, A. C.; Puzzo, D. P.; Manners, I.; Ozin, G. A., Photonic-crystal Full-colour 

Displays. Nature Photonics 2007, 1, 468-472. 



98 
 

69. Zheng, X.; Meng, S.; Chen, J.; Wang, J.; Xian, J.; Shao, Y.; Fu, X.; Li, D., Titanium Dioxide 

Photonic Crystals with Enhanced Photocatalytic Activity: Matching Photonic Band Gaps of TiO2 

to the Absorption Peaks of Dyes. The Journal of Physical Chemistry C 2013, 117 (41), 21263-

21273. 

70. Darwin, C. G., XXXIV. The theory of X-ray reflexion. The London, Edinburgh, and Dublin 

Philosophical Magazine and Journal of Science 1914, 27 (158), 315-333. 

71. Joannopoulos, J. D.; Johnson, S. G.; Winn, J. N.; Meade, R. D., Photonic Crystals: Molding 

the Flow of Light, Second Edition. Princeton University Press: 2011. 

72. Armstrong, E.; O'Dwyer, C., Artificial Opal Photonic Crystals and Inverse Opal Structures - 

Fundamentals and Applications from Optics to Energy Storage. Journal of Materials Chemistry C 

2015, 3 (24), 6109-6143. 

73. Hiltner, P. A.; Krieger, I. M., Diffraction of Light by Ordered Suspensions. The Journal of 

Physical Chemistry 1969, 73 (7), 2386-2389. 

74. Baryshev, A. V.; Kosobukin, V. A.; Samusev, K. B.; Usvyat, D. E.; Limonov, M. F., Light 

Diffraction from Opal-based Photonic Crystals with Growth-induced Disorder: Experiment and 

Theory. Physical Review B 2006, 73 (20), 205118. 

75. Astratov, V. N.; Bogomolov, V. N.; Kaplyanskii, A. A.; Prokofiev, A. V.; Samoilovich, L. 

A.; Samoilovich, S. M.; Vlasov, Y. A., Optical Spectroscopy of Opal Matrices with CdS 

Embedded in its Pores: Quantum confinement and photonic band gap effects. Il Nuovo Cimento 

D 1995, 17 (11), 1349-1354. 



99 
 

76. Vlasov, Y. A.; Astratov, V. N.; Karimov, O. Z.; Kaplyanskii, A. A.; Bogomolov, V. N.; 

Prokofiev, A. V., Existence Of A Photonic Pseudogap for Visible Light in Synthetic Opals. 

Physical Review B 1997, 55 (20), R13357-R13360. 

77. Bogomolov, V. N.; Gaponenko, S. V.; Germanenko, I. N.; Kapitonov, A. M.; Petrov, E. P.; 

Gaponenko, N. V.; Prokofiev, A. V.; Ponyavina, A. N.; Silvanovich, N. I.; Samoilovich, S. M., 

Photonic Band Gap Phenomenon and Optical Properties of Artificial Opals. Physical Review E 

1997, 55 (6), 7619-7625. 

78. Reynolds, A.; López-Tejeira, F.; Cassagne, D.; J. García-Vidal, F.; Jouanin, C.; Sánchez-

Dehesa, J., Spectral Properties of Opal-based Photonic Crystals having a SiO2 Matrix. Physical 

Review B 1999, 60 (16), 11422-11426. 

79. Golubev, V. G.; Hutchison, J. L.; Kosobukin, V. A.; Kurdyukov, D. A.; Medvedev, A. V.; 

Pevtsov, A. B.; Sloan, J.; Sorokin, L. M., Three-Dimensional Ordered Silicon-Based 

Nanostructures in Opal Matrix: Preparation and Photonic Properties. Journal of Non-Crystalline 

Solids 2002, 299-302 (Part 2), 1062-1069. 

80. Thijssen, M. S.; Sprik, R.; Wijnhoven, J. E. G. J.; Megens, M.; Narayanan, T.; Lagendijk, A.; 

Vos, W. L., Inhibited Light Propagation and Broadband Reflection in Photonic Air-Sphere 

Crystals. Physical Review Letters 1999, 83 (14), 2730-2733. 

81. van Driel, H. M.; Vos, W. L., Multiple Bragg Wave Coupling in Photonic Band-gap Crystals. 

Physical Review B 2000, 62 (15), 9872-9875. 

 



100 
 

82. Ge, J.; Yin, Y., Responsive Photonic Crystals. Angewandte Chemie International Edition 

2011, 50 (7), 1492-1522. 

83. Rundquist, P. A.; Photinos, P.; Jagannathan, S.; Asher, S. A., Dynamical Bragg Diffraction 

from Crystalline Colloidal Arrays. The Journal of Chemical Physics 1989, 91 (8), 4932-4941. 

84. Robert, J. S.; David, J. K., Theoretical Analysis of the Crystalline Colloidal Array Filter. 

Applied. Spectroscopy 1986, 40 (6), 782-784. 

85. Hiltner, P. A.; Papir, Y. S.; Krieger, I. M., Diffraction of Light by Nonaqueous Ordered 

Suspensions. The Journal of Physical Chemistry 1971, 75 (12), 1881-1886. 

86. Liu, L.; Li, P.; Asher, S. A., Fortuitously Superimposed Lattice Plane Secondary Diffraction 

from Crystalline Colloidal Arrays. Journal of the American Chemical Society 1997, 119 (11), 

2729-2732. 

87. Zachariasen, W. H., Theory of X-Ray Diffraction in Crystals. Dover Publications: 2004. 

88. Schroden, R. C.; Al-Daous, M.; Blanford, C. F.; Stein, A., Optical Properties of Inverse Opal 

Photonic Crystals. Chemistry of Materials 2002, 14 (8), 3305-3315. 

89. Grzybowski, B. A.; Wilmer, C. E.; Kim, J.; Browne, K. P.; Bishop, K. J. M., Self-Assembly: 

from Crystals to Cells. Soft Matter 2009, 5 (6), 1110-1128. 

90. Titov, A. V.; Král, P., Modeling the Self-Assembly of Colloidal Nanorod Superlattices. Nano 

Letters 2008, 8 (11), 3605-3612. 



101 
 

91. Wang, D.; Hore, M. J. A.; Ye, X.; Zheng, C.; Murray, C. B.; Composto, R. J., Gold Nanorod 

Length Controls Dispersion, Local Ordering, and Optical Absorption in Polymer Nanocomposite 

Films. Soft Matter 2014, 10 (19), 3404-3413. 

92. Baranov, D.; Fiore, A.; van Huis, M.; Giannini, C.; Falqui, A.; Lafont, U.; Zandbergen, H.; 

Zanella, M.; Cingolani, R.; Manna, L., Assembly of Colloidal Semiconductor Nanorods in 

Solution by Depletion Attraction. Nano Letters 2010, 10 (2), 743-749. 

93. Savenko, S. V.; Dijkstra, M., Phase Behavior of a Suspension of Colloidal Hard Rods and 

Nonadsorbing Polymer. The Journal of Chemical Physics 2006, 124 (23), 234902. 

94. Denkov, N.; Velev, O.; Kralchevski, P.; Ivanov, I.; Yoshimura, H.; Nagayama, K., 

Mechanism of Formation of Two-Dimensional Crystals orom Latex Particles On Substrates. 

Langmuir 1992, 8 (12), 3183-3190. 

95. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M., Self-Assembly of 10-μm-

Sized Objects into Ordered Three-Dimensional Arrays. Journal of the American Chemical 

Society 2001, 123 (31), 7677-7682. 

96. Xia, Y.; Gates, B.; Yin, Y.; Lu, Y., Monodispersed Colloidal Spheres: Old Materials with 

New Applications. Advanced Materials 2000, 12 (10), 693-713. 

97. López, C., Three-Dimensional Photonic Bandgap Materials: Semiconductors for Light. 

Journal of Optics A: Pure and Applied Optics 2006, 8 (5), R1. 

 



102 
 

98. Halaoui, L. I.; Abrams, N. M.; Mallouk, T. E., Increasing the Conversion Efficiency of Dye-

Sensitized TiO2 Photoelectrochemical Cells by Coupling to Photonic Crystals. The Journal of 

Physical Chemistry B 2005, 109 (13), 6334-6342. 

99. Wanke, M. C.; Lehmann, O.; Müller, K.; Wen, Q.; Stuke, M., Laser Rapid Prototyping of 

Photonic Band-Gap Microstructures. Science 1997, 275 (5304), 1284-1286. 

100. Lucie, M.; Sang Mo, Y.; Sergei, V. K.; Sylvie, S.-C.; Catherine, D., A Review of Molecular 

Beam Epitaxy of Ferroelectric Batio 3 Films on Si, Ge and Ga as Substrates and Their 

Applications. Science and Technology of Advanced Materials 2015, 16 (3), 036005. 

101. Gong, Q.; Hu, X., Photonic Crystals: Principles and Applications. Pan Stanford: 2014. 

102. de Sousa Pereira Meneses e Vasconcelos, H. C.; Gonçalves, M. C., Overall Aspects of Non-

Traditional Glasses: Synthesis, Properties and Applications. Bentham Science Publishers: 2016. 

103. Campbell, M.; Sharp, D. N.; Harrison, M. T.; Denning, R. G.; Turberfield, A. J., Fabrication 

of Photonic Crystals for The Visible Spectrum by Holographic Lithography. Nature 2000, 404, 

53. 

104. Pradeesh, K.; Rao Kotla, N.; Ahmad, S.; Dwivedi, V. K.; Prakash, G. V., Naturally Self-

Assembled Nanosystems and Their Templated Structures for Photonic Applications. Journal of 

Nanoparticles 2013, 2013, 13. 

105. Zhang, P. Q.; Xie, X. S.; Guan, Y. F.; Zhou, J. Y.; Wong, K. S.; Yan, L., Adaptive Synthesis 

of Optical Pattern for Photonic Crystal Lithography. Applied Physics B 2011, 104 (1), 113-116. 



103 
 

106. Feiertag, G.; Ehrfeld, W.; Freimuth, H.; Kolle, H.; Lehr, H.; Schmidt, M.; Sigalas, M. M.; 

Soukoulis, C. M.; Kiriakidis, G.; Pedersen, T.; Kuhl, J.; Koenig, W., Fabrication of Photonic 

Crystals by Deep X-Ray Lithography. Applied Physics Letters 1997, 71 (11), 1441-1443. 

107. Yuan, L.; Herman, P. R., Laser Scanning Holographic Lithography for Flexible 3D 

Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors. Scientific Reports 

2016, 6, 22294. 

108. Sang Hoon, K.; Ki-Dong, L.; Ja-Yeon, K.; Min-Ki, K.; Seong-Ju, P., Fabrication of Photonic 

Crystal Structures on Light Emitting Diodes by Nanoimprint Lithography. Nanotechnology 2007, 

18 (5), 055306. 

109. Vogelaar, L.; Nijdam, W.; van Wolferen, H. A. G. M.; de Ridder, R. M.; Segerink, F. B.; 

Flück, E.; Kuipers, L.; van Hulst, N. F., Large Area Photonic Crystal Slabs for Visible Light with 

Waveguiding Defect Structures: Fabrication with Focused Ion Beam Assisted Laser Interference 

Lithography. Advanced Materials 2001, 13 (20), 1551-1554. 

110. Eckert, A. W., The World of Opals. Wiley: 1997. 

111. Waterhouse, G. I. N.; Waterland, M. R., Opal and Inverse Opal Photonic Crystals: 

Fabrication and Characterization. Polyhedron 2007, 26 (2), 356-368. 

112. Marlow, F.; Muldarisnur; Sharifi, P.; Brinkmann, R.; Mendive, C., Opals: Status and 

Prospects. Angewandte Chemie International Edition 2009, 48 (34), 6212-6233. 

 



104 
 

113. Stöber, W.; Fink, A.; Bohn, E., Controlled Growth of Monodisperse Silica Spheres in the 

Micron Size Range. Journal of Colloid and Interface Science 1968, 26 (1), 62-69. 

114. Braun, P. V.; Wiltzius, P., Electrochemically Grown Photonic Crystals. Nature 1999, 402, 

603-604. 

115. Trau, M.; Saville, D. A.; Aksay, I. A., Field-Induced Layering of Colloidal Crystals. Science 

1996, 272 (5262), 706-709. 

116. Jiang, P.; Bertone, J. F.; Hwang, K. S.; Colvin, V. L., Single-Crystal Colloidal Multilayers 

of Controlled Thickness. Chemistry of Materials 1999, 11 (8), 2132-2140. 

117. Wang, L.; Wan, Y.; Li, Y.; Cai, Z.; Li, H.-L.; Zhao, X. S.; Li, Q., Binary Colloidal Crystals 

Fabricated with a Horizontal Deposition Method. Langmuir 2009, 25 (12), 6753-6759. 

118. Tétreault, N.;  Míguez, H;  Ozin,  G.  A.; Silicon Inverse Opal—A Platform for Photonic 

Bandgap Research. Advanced Materials 2004, 16 (16), 1471-1476. 

119. Waterhouse, G. I. N.; Chen, W.-T.; Chan, A.; Jin, H.; Sun-Waterhouse, D.; Cowie, B. C. C., 

Structural, Optical, and Catalytic Support Properties of γ-Al2O3 Inverse Opals. The Journal of 

Physical Chemistry C 2015, 119 (12), 6647-6659. 

120. Nishimura, S.; Abrams, N.; Lewis, B. A.; Halaoui, L. I.; Mallouk, T. E.; Benkstein, K. D.; 

van de Lagemaat, J.; Frank, A. J., Standing Wave Enhancement of Red Absorbance and 

Photocurrent in Dye-Sensitized Titanium Dioxide Photoelectrodes Coupled to Photonic Crystals. 

Journal of the American Chemical Society 2003, 125 (20), 6306-6310. 



105 
 

121. Somani, P. R.; Dionigi, C.; Murgia, M.; Palles, D.; Nozar, P.; Ruani, G., Solid-State Dye PV 

Cells Using Inverse Opal TiO2 Films. Solar Energy Materials and Solar Cells 2005, 87 (1), 513-

519. 

122. Nelson, E. C.; Dias, N. L.; Bassett, K. P.; Dunham, S. N.; Verma, V.; Miyake, M.; Wiltzius, 

P.; Rogers, J. A.; Coleman, J. J.; Li, X.; Braun, P. V., Epitaxial Growth of Three-Dimensionally 

Architectured Optoelectronic Devices. Nature Materials 2011, 10, 676. 

123. Sakamoto, J. S.; Dunn, B., Hierarchical Battery Electrodes Based on Inverted Opal 

Structures. Journal of Materials Chemistry 2002, 12 (10), 2859-2861. 

124. Nishijima, Y.; Ueno, K.; Juodkazis, S.; Mizeikis, V.; Misawa, H.; Maeda, M.; Minaki, M., 

Tunable Single-Mode Photonic Lasing from Zirconia Inverse Opal Photonic Crystals. Optics 

Express 2008, 16 (18), 13676-13684. 

125. Zhang, J.; Liu, H.; Wang, Z.; Ming, N., Assembly Of High-Quality Colloidal Crystals Under 

Negative Pressure. Journal of Applied Physics 2008, 103 (1), 013517. 

126. Chung, Y.-W.; Leu, I.-C.; Lee, J.-H.; Hon, M.-H., Influence of Humidity on the Fabrication 

of High-Quality Colloidal Crystals via a Capillary-Enhanced Process. Langmuir 2006, 22 (14), 

6454-6460. 

127. Zhang, J.; Luo, X.; Yan, X.; Zhu, G., Fabrication of High-Quality Colloidal Crystal Films by 

Vertical Deposition Method Integrated With a Piezoelectric Actuator. Thin Solid Films 2010, 518 

(18), 5204-5208. 



106 
 

128. Wendt, J. R.; Vawter, G. A.; Gourley, P. L.; Brennan, T. M.; Hammons, B. E., 

Nanofabrication of Photonic Lattice Structures in GaAs/AlGaAs. Journal of Vacuum Science & 

Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and 

Phenomena 1993, 11 (6), 2637-2640. 

129. García-Santamaría, F.; Miyazaki, H. T.; Urquía, A.; Ibisate, M.; Belmonte, M.; Shinya, N.; 

Meseguer, F.; López, C., Nanorobotic Manipulation of Microspheres for On-Chip Diamond 

Architectures. Advanced Materials 2002, 14 (16), 1144-1147. 

130. Arsenault, A. C.; Clark, T. J.; von Freymann, G.; Cademartiri, L.; Sapienza, R.; Bertolotti, 

J.; Vekris, E.; Wong, S.; Kitaev, V.; Manners, I.; Wang, R. Z.; John, S.; Wiersma, D.; Ozin, G. 

A., From Colour Fingerprinting to the Control of Photoluminescence in Elastic Photonic Crystals. 

Nature Materials 2006, 5 (3), 179-184. 

131. Blanco, A.; Chomski, E.; Grabtchak, S.; Ibisate, M.; John, S.; Leonard, S. W.; Lopez, C.; 

Meseguer, F.; Miguez, H.; Mondia, J. P.; Ozin, G. A.; Toader, O.; van Driel, H. M., Large-scale 

Synthesis of a Silicon Photonic Crystal With a Complete Three-Dimensional Bandgap Near 1.5 

Micrometres. Nature 2000, 405 (6785), 437-440. 

132. Rinne, S. A.; Garcia-Santamaria, F.; Braun, P. V., Embedded Cavities and Waveguides in 

Three-Dimensional Silicon Photonic Crystals. Nature Photonics 2008, 2 (1), 52-56. 

133. Guan, G.; Zapf, R.; Kolb, G.; Hessel, V.; Löwe, H.; Ye, J.; Zentel, R., Preferential CO 

Oxidation Over Catalysts with Well-Defined Inverse Opal Structure in Microchannels. 

International Journal of Hydrogen Energy 2008, 33 (2), 797-801. 



107 
 

134. Lee, K.; Asher, S. A., Photonic Crystal Chemical Sensors:  pH and Ionic Strength. Journal 

of the American Chemical Society 2000, 122 (39), 9534-9537. 

135. Lee, J.; Shanbhag, S.; Kotov, N. A., Inverted Colloidal Crystals as Three-Dimensional 

Microenvironments For Cellular Co-Cultures. Journal of Materials Chemistry 2006, 16 (35), 

3558-3564. 

136. Han, W.; Li, B.; Lin, Z., Drying-Mediated Assembly of Colloidal Nanoparticles into Large-

Scale Microchannels. ACS Nano 2013, 7 (7), 6079-6085. 

137. Allain, C.; Limat, L., Regular Patterns of Cracks Formed by Directional Drying of a 

Collodial Suspension. Physical Review Letters 1995, 74 (15), 2981-2984. 

138. Jagla, E. A., Stable Propagation of an Ordered Array of Cracks During Directional Drying. 

Physical Review E 2002, 65 (4), 046147. 

139. Lidon, P.; Salmon, J.-B., Dynamics of Unidirectional Drying of Colloidal Dispersions. Soft 

Matter 2014, 10 (23), 4151-4161. 

140. Tirumkudulu, M. S.; Russel, W. B., Cracking in Drying Latex Films. Langmuir 2005, 21 

(11), 4938-4948. 

141. Míguez, H.; Meseguer, F.; López, C.; Blanco, Á.; Moya, J. S.; Requena, J.; Mifsud, A.; 

Fornés, V., Control of the Photonic Crystal Properties of fcc‐Packed Submicrometer SiO2 

Spheres by Sintering. Advanced Materials 1998, 10 (6), 480-483. 



108 
 

142. McLachlan, M. A.; Johnson, N. P.; Rue, R. M. D. L.; McComb, D. W., Thin Film Photonic 

Crystals: Synthesis and Characterisation. Journal of Materials Chemistry 2004, 14 (2), 144-150. 

143. Klein, S.; Manoharan, V.; Pine, D.; Lange, F., Preparation of Monodisperse PMMA 

Microspheres in Nonpolar Solvents by Dispersion Polymerization with a Macromonomeric 

Stabilizer. Colloid and Polymer Science 2003, 282 (1), 7-13. 

144. Pusey, P. N.; Zaccarelli, E.; Valeriani, C.; Sanz, E.; Poon, W. C. K.; Cates, M. E., Hard 

Spheres: Crystallization and Glass Formation. Philosophical Transactions of the Royal Society A: 

Mathematical, Physical and Engineering Sciences 2009, 367 (1909), 4993-5011. 

145. Nemati, K. M., Fracture Analysis of Concrete Using Scanning Electron Microscopy. 

Scanning 1997, 19 (6), 426-430. 

146. Nemati, K. M.; Stroeven, P., Stereological Analysis of Micromechanical Behavior of 

Concrete. Materials and Structures 2001, 34 (8), 486-494. 

147. Koh, Y. K.; Yip, C. H.; Chiang, Y.-M.; Wong, C. C., Kinetic Stages of Single-Component 

Colloidal Crystallization. Langmuir 2008, 24 (10), 5245-5248. 

148. Malvern.com. Inform white paper, Dynamic Light Scattering Common Terms Defined 2015. 

https://www.malvernpanalytical.com/en/learn/knowledgecenter/Whitepapers/WP111214DLSTer

msDefined.html 

 

https://www.malvernpanalytical.com/en/learn/knowledgecenter/Whitepapers/WP111214DLSTermsDefined.html
https://www.malvernpanalytical.com/en/learn/knowledgecenter/Whitepapers/WP111214DLSTermsDefined.html


109 
 

149. Lu, G. W.; Gao, P., CHAPTER 3 - Emulsions and Microemulsions for Topical and 

Transdermal Drug Delivery A2 - Kulkarni, Vitthal S. In Handbook of Non-Invasive Drug 

Delivery Systems, William Andrew Publishing: Boston, 2010; 59-94. 

150. O'Brien, R. W.; Midmore, B. R.; Lamb, A.; Hunter, R. J., Electroacoustic Studies of 

Moderately Concentrated Colloidal Suspensions. Faraday Discussions of the Chemical Society 

1990, 90 (0), 301-312. 

151. Hanaor, D.; Michelazzi, M.; Leonelli, C.; Sorrell, C. C., The Effects of Carboxylic Acids on 

the Aqueous Dispersion and Electrophoretic Deposition of ZrO2. Journal of the European 

Ceramic Society 2012, 32 (1), 235-244. 

152. Castañeda-Uribe, O. A.; Salcedo-Reyes, J. C.; Méndez-Pinzón, H. A.; Pedroza-Rodríguez, 

A. M., Fabrication and Optical Characterization of a High-Quality Fcc-Opal-Based Photonic 

Crystal Grown by The Vertical Convective Self-Assembly Method. Universitas Scientiarum 

2010, 15 (2), 150-158. 

153. Tan, K. W.; Koh, Y. K.; Chiang, Y.-M.; Wong, C. C., Particulate Mobility in Vertical 

Deposition of Attractive Monolayer Colloidal Crystals. Langmuir 2010, 26 (10), 7093-7100. 

154. Tan, K. W.; Li, G.; Koh, Y. K.; Yan, Q.; Wong, C. C., Layer-by-Layer Growth of Attractive 

Binary Colloidal Particles. Langmuir 2008, 24 (17), 9273-9278. 

155. Shapiro, L. G.; Stockman, G. C., Computer Vision. Prentice Hall: 2001. 

156. Zhao, X. S.; Su, F.; Yan, Q.; Guo, W.; Bao, X. Y.; Lv, L.; Zhou, Z., Templating Methods for 



110 
 

Preparation of Porous Structures. Journal of Materials Chemistry 2006, 16 (7), 637-648. 

157. Fudouzi, H., CHAPTER 3 Opal Photonic Crystal Films with Tunable Structural Color. In 

Responsive Photonic Nanostructures: Smart Nanoscale Optical Materials, The Royal Society of 

Chemistry: 2013; 44-62. 

158. Phillips, K. R.; Vogel, N.; Hu, Y.; Kolle, M.; Perry, C. C.; Aizenberg, J., Tunable 

Anisotropy in Inverse Opals and Emerging Optical Properties. Chemistry of Materials 2014, 26 

(4), 1622-1628. 

159. Jin, C.; Meng, X.; Cheng, B.; Li, Z.; Zhang, D., Photonic Gap in Amorphous Photonic 

Materials. Physical Review B 2001, 63 (19), 195107. 

160. Ueno, K.; Inaba, A.; Sano, Y.; Kondoh, M.; Watanabe, M., A Soft Glassy Colloidal Array in 

Ionic Liquid, which Exhibits Homogeneous, Non-Brilliant and Angle-Independent Structural 

Colours. Chemical Communications 2009,  (24), 3603-3605. 

161. Gu, Z.-Z.; Fujishima, A.; Sato, O., Fabrication of High-Quality Opal Films with 

Controllable Thickness. Chemistry of Materials 2002, 14 (2), 760-765. 

162. Maurin, I.; Moufarej, E.; Laliotis, A.; Bloch, D., Optics Of An Opal Modeled with a 

Stratified Effective Index and the Effect of The Interface. J. Opt. Soc. Am. B 2015, 32 (8), 1761-

1772. 

163. Dufresne, E. R.; Corwin, E. I.; Greenblatt, N. A.; Ashmore, J.; Wang, D. Y.; Dinsmore, A. 

D.; Cheng, J. X.; Xie, X. S.; Hutchinson, J. W.; Weitz, D. A., Flow and Fracture in Drying 



111 
 

Nanoparticle Suspensions. Physical Review Letters 2003, 91 (22), 224501. 

164. Lee, W. P.; Routh, A. F., Why Do Drying Films Crack? Langmuir 2004, 20 (23), 9885-

9888. 

165. Pauchard, L.; Abou, B.; Sekimoto, K., Influence of Mechanical Properties of Nanoparticles 

on Macrocrack Formation. Langmuir 2009, 25 (12), 6672-6677. 

166. Dragnevski, K. I.; Routh, A. F.; Murray, M. W.; Donald, A. M., Cracking of Drying Latex 

Films: An ESEM Experiment. Langmuir 2010, 26 (11), 7747-7751. 

167. Atkinson, A.; Guppy, R. M., Mechanical stability of sol-gel films. Journal of Materials 

Science 1991, 26 (14), 3869-3873. 

168. Groisman, A.; Kaplan, E., An Experimental Study of Cracking Induced by Desiccation. EPL 

(Europhysics Letters) 1994, 25 (6), 415. 

169. Gauthier, G.; Lazarus, V.; Pauchard, L., Shrinkage Star-Shaped Cracks: Explaining The 

Transition from 90 Degrees to 120 Degrees. EPL (Europhysics Letters) 2010, 89 (2), 26002. 

170. Lazarus, V.; Pauchard, L., From Craquelures to Spiral Crack Patterns: Influence of Layer 

Thickness on the Crack Patterns Induced by Desiccation. Soft Matter 2011, 7 (6), 2552-2559. 

171. Kitagawa, K., Thin-Film Thickness Profile Measurement by Three-Wavelength Interference 

Color Analysis. Appl. Opt. 2013, 52 (10), 1998-2007. 



112 
 

172. Cong, H.; Cao, W., Colloidal Crystallization Induced by Capillary Force. Langmuir 2003, 

19 (20), 8177-8181. 

173. Teh, L. K.; Tan, N. K.; Wong, C. C.; Li, S., Growth Imperfections in Three-Dimensional 

Colloidal Self-Assembly. Applied Physics A 2005, 81 (7), 1399-1404. 

174. Shokri, N.; Zhou, P.; Keshmiri, A., Patterns of Desiccation Cracks in Saline Bentonite 

Layers. Transport in Porous Media 2015, 110 (2), 333-344. 

175. Tilley, R. J. D., Defects in Solids. Wiley: 2008. 

176. Iler, R. K., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface 

Properties and Biochemistry of Silica. Wiley: 1979. 

177. Hench, L. L.; West, J. K., The Sol-Gel Process. Chemical Reviews 1990, 90 (1), 33-72. 

178. Brinker, C. J., Glasses and Glass Ceramics from Gels Hydrolysis and Condensation of 

Silicates: Effects on Structure. Journal of Non-Crystalline Solids 1988, 100 (1), 31-50. 

179. Blanford, C. F.; Carter, C. B.; Stein, A., A Method for Determining Void Arrangements in 

Inverse Opals. Journal of Microscopy 2004, 216 (3), 263-287. 

180. Galisteo-López, J. F.; Ibisate, M.; Sapienza, R.; Froufe-Pérez, L. S.; Blanco, Á.; López, C., 

Self-Assembled Photonic Structures. Advanced Materials 2011, 23 (1), 30-69. 

181. Velev, O. D.; Lenhoff, A. M., Colloidal Crystals as TemplatesfFor Porous Materials. 



113 
 

Current Opinion in Colloid & Interface Science 2000, 5 (1), 56-63. 

182. Holland, B. T.; Blanford, C. F.; Do, T.; Stein, A., Synthesis of Highly Ordered, Three-

Dimensional, Macroporous Structures of Amorphous or Crystalline Inorganic Oxides, 

Phosphates, and Hybrid Composites. Chemistry of Materials 1999, 11 (3), 795-805. 

183. Wijnhoven, J. E. G. J.; Vos, W. L., Preparation of Photonic Crystals Made of Air Spheres in 

Titania. Science 1998, 281 (5378), 802-804. 

184. Lanata, M.; Cherchi, M.; Zappettini, A.; Pietralunga, S. M.; Martinelli, M., Titania Inverse 

Opals for Infrared Optical Applications. Optical Materials 2001, 17 (1), 11-14. 

185. Cumpston, B. H.; Ananthavel, S. P.; Barlow, S.; Dyer, D. L.; Ehrlich, J. E.; Erskine, L. L.; 

Heikal, A. A.; Kuebler, S. M.; Lee, I. Y. S.; McCord-Maughon, D.; Qin, J.; Röckel, H.; Rumi, 

M.; Wu, X.-L.; Marder, S. R.; Perry, J. W., Two-Photon Polymerization Initiators for Three-

Dimensional Optical Data Storage and Microfabrication. Nature 1999, 398, 51-54. 

186. Zhang, Y. S.; Zhu, C.; Xia, Y., Inverse Opal Scaffolds and Their Biomedical Applications. 

Advanced Materials 2017, 29 (33), 1701115. 

187. Painter, O.; Lee, R. K.; Scherer, A.; Yariv, A.; O'Brien, J. D.; Dapkus, P. D.; Kim, I., Two-

Dimensional Photonic Band-Gap Defect Mode Laser. Science 1999, 284 (5421), 1819-1821. 

188. Lytle, J. C.; Stein, A., Recent Progress in Syntheses and Applications of Inverse Opals and 

Related Macroporous Materials Prepared by Colloidal Crystal Templating. In Annual Review of 

Nano Research, World Scientific: 2011; 1-79. 



114 
 

 

189. Blanford, C. F.; Do, T. N.; Holland, B. T.; Stein, A., Synthesis Of Highly Ordered 

Macroporous Minerals: Extension of the Synthetic Method to Other Metal Oxides and Organic-

Inorganic Composites. MRS Proceedings 2011, 549, 61. 

190. Dougherty, E. R.; Lotufo, R. A., Hands-on Morphological Image Processing. Society of 

Photo Optical: 2003. 

191. Aubert, E.; Lecomte, C., Illustrated Fourier Transforms for Crystallography. Journal of 

Applied Crystallography 2007, 40 (6), 1153-1165. 

192. Casillas, D. C.; Wilkinson, D. C.; Lai, C. H.; Wilke, S. K.; Ignatowich, M. J.; Haile, S. M.; 

Dunn, B. S., High‐Temperature Structural Stability of Ceria‐Based Inverse Opals. Journal of the 

American Ceramic Society 2017, 100 (6), 2659-2668. 

193. Mishchenko, L.; Hatton, B.; Kolle, M.; Aizenberg, J., Patterning Hierarchy in Direct and 

Inverse Opal Crystals. Small 2012, 8 (12), 1904-1911. 

194. Palacios-Lidón, E.; Juárez, B. H.; Castillo-Martínez, E.; López, C., Optical and 

Morphological Study of Disorder in Opals. Journal of Applied Physics 2005, 97 (6), 063502. 

195. Nicolas, S.; Benjamin, R.; Jean‐Pierre, G.; A., C. J.; Emmanuel, F., Investigation of Hidden 

Periodic Structures on SEM Images of Opal‐Like Materials using FFT and IFFT. Scanning 2014, 

36 (5), 487-499. 



115 
 

196. Scherer, G. W., Effect Of Shrinkage On The Modulus of Silica Gel. Journal of Non-

Crystalline Solids 1989, 109 (2), 183-190. 

197. Wilkes, P., Solid State Theory in Metallurgy. Cambridge University Press: 1973. 

198. Buenger, D.; Topuz, F.; Groll, J., Hydrogels in Sensing Applications. Progress in Polymer 

Science 2012, 37 (12), 1678-1719. 

199. Peppas, N. A.; Ottenbrite, R. M.; Park, K.; Okano, T., Biomedical Applications of Hydrogels 

Handbook. Springer New York: 2010. 

200. Blyth, J.; Millington, R. B.; Mayes, A. G.; Frears, E. R.; Lowe, C. R., Holographic Sensor 

for Water in Solvents. Analytical Chemistry 1996, 68 (7), 1089-1094. 

201. Millington, R. B.; Mayes, A. G.; Blyth, J.; Lowe, C. R., A Hologram Biosensor for 

Proteases. Sensors and Actuators B: Chemical 1996, 33 (1), 55-59. 

202. Spooncer, R. C.; Al-Ramadhan, F. A.; Jones, B. E., A Humidity Sensor using a Wavelength-

Dependent Holographic Filter with Fibre Optic Links. International Journal of Optoelectronics. 

1992, 7 (3), 449-452. 

203. Yetisen, A. K., Fundamentals of Holographic Sensing. In Holographic Sensors, Springer 

International Publishing: Cham, 2015; 27-51. 

204. Carlson, R. J.; Asher, S. A., Characterization of Optical Diffraction and Crystal Structure in 

Monodisperse Polystyrene Colloids. Applied  Spectroscopy  1984, 38 (3), 297-304. 



116 
 

205. Yuanjin, Z.; Xiangwei, Z.; Zhongze, G., Photonic Crystals in Bioassays. Advanced 

Functional Materials 2010, 20 (18), 2970-2988. 

206. Ueno, K.; Matsubara, K.; Watanabe, M.; Takeoka, Y., An Electro‐ and Thermochromic 

Hydrogel as a Full‐Color Indicator. Advanced Materials 2007, 19 (19), 2807-2812. 

207. Saito, H.; Takeoka, Y.; Watanabe, M., Simple And Precision Design of Porous Gel as a 

Visible Indicator for Ionic Species and Concentration. Chemical Communications 2003,  (17), 

2126-2127. 

208. Takeoka, Y.; Watanabe, M., Template Synthesis and Optical Properties of Chameleonic 

Poly(N‐isopropylacrylamide) Gels using Closest‐Packed Self‐Assembled Colloidal Silica 

Crystals. Advanced Materials 2003, 15 (3), 199-201. 

209. Barry, R. A.; Wiltzius, P., Humidity-Sensing Inverse Opal Hydrogels. Langmuir 2006, 22 

(3), 1369-1374. 

210. Yetisen, A. K.; Butt, H.; Volpatti, L. R.; Pavlichenko, I.; Humar, M.; Kwok, S. J. J.; Koo, 

H.; Kim, K. S.; Naydenova, I.; Khademhosseini, A.; Hahn, S. K.; Yun, S. H., Photonic Hydrogel 

Sensors. Biotechnology Advances 2016, 34 (3), 250-271. 

211. Seidel, J. M.; Malmonge, S. M., Synthesis of Polyhema Hydrogels for Using as 

Biomaterials. Bulk and Solution Radical-Initiated Polymerization Techniques. Materials 

Research 2000, 3, 79-83. 

212. Wichterle, O.; LÍM, D., Hydrophilic Gels for Biological Use. Nature 1960, 185, 117. 



117 
 

213. Chirila, T. V.; Chen, Y. C.; Griffin, B. J.; Constable, I. J., Hydrophilic Sponges Based on 2‐

Hydroxyethyl Methacrylate. I. Effect of Monomer Mixture Composition on The Pore Size. 

Polymer International 1993, 32 (3), 221-232. 

214. Chirila, T. V.; Constable, I. J.; Crawford, G. J.; Vijayasekaran, S.; Thompson, D. E.; Chen, 

Y.-C.; Fletcher, W. A.; Griffin, B. J., Poly(2-Hydroxyethyl Methacrylate) Sponges as Implant 

Materials: In Vivo and in Vitro Evaluation of Cellular Invasion. Biomaterials 1993, 14 (1), 26-38. 

215. Oxley, H. R.; Corkhill, P. H.; Fitton, J. H.; Tighe, B. J., Macroporous Hydrogels for 

Biomedical Applications: methodology and morphology. Biomaterials 1993, 14 (14), 1064-1072. 

216. Kon, M.; de Visser, A. C., A poly(HEMA) Sponge for Restoration of Articular Cartilage 

Defects. Plastic and Reconstructive Surgery 1981, 67 (3), 288-294. 

217. Lee, Y.-J.; Braun, P. V., Tunable Inverse Opal Hydrogel pH Sensors. Advanced Materials 

2003, 15 (7‐8), 563-566. 

218. Wei, H.; Xiaobin, H.; Binyuan, Z.; Fan, Z.; Di, Z., Tunable Photonic Polyelectrolyte 

Colorimetric Sensing for Anions, Cations and Zwitterions. Advanced Materials 2010, 22 (44), 

5043-5047. 

219. Couturier, J.-P.; Wischerhoff, E.; Bernin, R.; Hettrich, C.; Koetz, J.; Sütterlin, M.; Tiersch, 

B.; Laschewsky, A., Thermoresponsive Polymers and Inverse Opal Hydrogels for the Detection 

of Diols. Langmuir 2016, 32 (17), 4333-4345. 

 



118 
 

220. You, J.-O.; Auguste, D. T., Conductive, Physiologically Responsive Hydrogels. Langmuir 

2010, 26 (7), 4607-4612. 

221. van de Wetering, P.; Zuidam, N. J.; van Steenbergen, M. J.; van der Houwen, O. A. G. J.; 

Underberg, W. J. M.; Hennink, W. E., A Mechanistic Study of the Hydrolytic Stability of Poly(2-

(dimethylamino)ethyl methacrylate). Macromolecules 1998, 31 (23), 8063-8068. 

222. Samsonova, O.; Pfeiffer, C.; Hellmund, M.; Merkel, O. M.; Kissel, T., Low Molecular 

Weight pDMAEMA-block-pHEMA Block-Copolymers Synthesized via RAFT-Polymerization: 

Potential Non-Viral Gene Delivery Agents? Polymers 2011, 3 (2), 693. 

223. Gupta, N. V.; Shivakumar, H. G., Investigation of Swelling Behavior and Mechanical 

Properties of a pH-Sensitive Superporous Hydrogel Composite. Iranian Journal of 

Pharmaceutical Research : IJPR 2012, 11 (2), 481-493. 

224. Zhang, M.; Cheng, Z.; Zhao, T.; Liu, M.; Hu, M.; Li, J., Synthesis, Characterization, and 

Swelling Behaviors of Salt-Sensitive Maize Bran–Poly(acrylic acid) Superabsorbent Hydrogel. 

Journal of Agricultural and Food Chemistry 2014, 62 (35), 8867-8874. 

225. Wang, J.; Han, Y., Tunable Multiresponsive Methacrylic Acid Based Inverse Opal 

Hydrogels Prepared by Controlling the Synthesis Conditions. Langmuir 2009, 25 (3), 1855-1864. 

226. Yang, Q.; Peng, H.; Li, J.; Li, Y.; Xiong, H.; Chen, L., Label-Free Colorimetric Detection of 

Tetracycline using Analyte-Responsive Inverse-Opal Hydrogels Based on Molecular Imprinting 

Technology. New Journal of Chemistry 2017, 41 (18), 10174-10180.Shi, D.; Zhang, X.; Yang, Z.; 

Liu, S.; Chen, M., Fabrication of PAM/PMAA Inverse Opal Photonic Crystal Hydrogels by a 



119 
 

"Sandwich" Method and Their pH And Solvent Responses. RSC Advances 2016, 6 (89), 85885-

85890. 

227. Shi, D.;  Zhang, X.;  Yang, Z.;  Liu, S.; Chen, M., Fabrication of PAM/PMAA inverse opal 

photonic crystal hydrogels by a "sandwich" method and their pH and solvent responses. RSC 

Advances 2016, 6 (89), 85885-85890. 

 



 

VITA 

 

      Ujith S. K. Madduma-Bandarage 

Candidate for the Degree of 

Doctor of Philosophy 
 

Thesis:   FABRICATION AND CHARATERIZATION OF INVERSE OPALS WITH 
TUNABLE STOPBANDS 

 

Major Field:  Chemistry 

 
Biographical: 

 

Education: 

• Completed the requirements for the Doctor of Philosophy in Chemistry at Oklahoma 
State University, Stillwater, Oklahoma in July, 2018. 

• Completed the requirements for the Bachelor of Science in Chemistry at University of 

Kelaniya, Kelaniya, Sri Lanka in 2010. 

 

Experience:   

• Graduate Research/ Teaching Assistant (Year 2012- 2018), Oklahoma State University, 
Stillwater, Oklahoma, USA. 

• Research fields – Material science, Nano-material synthesis, photonic materials   

• Teaching Assistant (Year 2010- 2011), Department of Chemistry, University of Kelaniya, 

Sri Lanka. 

• Teaching Assistant (Year 2011- 2012), Department of Chemistry, Open University, Sri 

Lanka. 
 

Publication: 

Thushara J. Athauda, Ujith S. K. Madduma-Bandarage, and Yolanda Vasquez, “Integration of 
ZnO/ZnS nanostructured materials into a cotton fabric platform,” RSC Advances, 2014, 4, 61327-

61332. 

 

Awards: 

• 3rd place for the oral presentation at Annual Research Symposium in 2016 at Oklahoma 
State University Stillwater. 

• 2nd place for the poster presentation at ACS Pentasectional in 2017 at Cameron 

University campus, Lawton, Oklahoma. 

 
Professional Memberships:   

• Member of the American Chemical Society (2014 – Present) 

• Golden Key International Honour Society (2014 – Present) 

 


