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Abstract: Bio-oil produced from pyrolysis of lignocellulose biomass is regarded as a potential 

intermediate to synthesize renewable hydrocarbon fuels and chemicals. However, the utilization 

of bio-oil has been challenged by undesirable attributes associated with its high oxygen content. 

The current study is focused on effective technologies that address the issues with unwanted 

properties of bio-oil and result in a product that is compatible to the current refinery 

infrastructures in long term. The mechanisms that lead to unstable properties of bio-oil during 

storage and recent developments on methods to improve storage stability of bio-oil were 

reviewed in Chapter 1. The pyrolytic behavior of eastern redcedar wood, an invasive plant in 

Oklahoma was investigated in Chapter 2. Results showed that pyrolysis conditions, such as 

reaction temperature and heating rate, and feedstock wood zones (heartwood and sapwood) had 

significant effects on the distribution and composition of pyrolysis products. In addition, 

alpha/beta-cedrene, a high-value product extracted from slow pyrolysis of eastern redcedar, was 

in higher amount from heartwood than from sapwood. Torrefied switchgrass (Chapter 3) yielded 

a higher H/C ratio and lower O/C ratio. Torrefaction enhanced the production of sugar-based 

compounds and phenols during pyrolysis. Densification enhanced the degradation of 

carbohydrate components in biomass feedstock thus yielded more secondary pyrolysis products, 

such as furans, ketones and acetic acids. Methane incorporated into the hydrodeoxygenation of 

lignin-derived phenols and increased the aromatics yield (Chapter 4). Molybdenum modified 

HZSM-5 catalysts were found to promote deoxygenation of lignin-derived phenols, resulting in 

more simple aromatics. In Chapter 5, catalysis of torrefied switchgrass with the intervention of 

methane was performed in presence of molybdenum modified bimetallic catalysts, 

MoAg/HZSM-5 and MoZn/HZSM-5. Bimetallic loading catalysts demonstrated a higher 

reactivity towards methane activation. The maximum aromatic carbon yield of 39.31 % was 

achieved from catalysis of raw switchgrass under methane atmosphere over MoZn/HZSM-5 at 

700 °C. Torrefaction had no significant effect in improving the yield of aromatics from catalysis 

due to the loss of cellulose and concentration of lignin during torrefaction process. Catalysis of 

biomass with the intervention of cheap methane is a promising biomass upgrading technology.  
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CHAPTER I 

 

 

1. INTRODUCTION AND LITERATURE REVIEW: RECENT DEVELOPMENTS TO 

IMPROVE STORAGE AND TRANSPORTATION STABILITY OF BIO-OIL 

This review paper was published as “Z. Yang, A. Kumar, R. Huhnke, Review of Recent 

Developments to Improve Storage and Transportation Stability of Bio-oil, Renewable and 

Sustainable Energy Reviews, 50 (2015) 859-870”
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Abstract: The technology of fast pyrolysis is regarded as a promising route to convert 

lignocellulose biomass into liquid oil (bio-oil) which can be upgraded to transportable fuels and 

intermediate chemicals. However, the bio-oil is a complex mixture of organic compounds that are 

obtained in a non-equilibrium state. Therefore, the physical properties of bio-oil such as density, 

acidity, viscosity and chemical compositions change during storage and transportation. This 

change in properties during storage and transportation, also known as instability, is one of the 

most challenging problems in using bio-oil for any applications including as transportation fuels. 

This paper summarizes phenomena that lead to unstable properties of bio-oil and reviews recent 

developments in techniques used to improve the bio-oil properties for making bio-oil a stable 

intermediate product that can be easily handled and processed.  

Keywords: Biomass; Biofuels; Fast Pyrolysis; Bio-oil; Stabilization; Storage; Review 
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1.1. Introduction 

The research and development of renewable energy has gained much attention since the 

rise of crude oil price in 1970`s, especially on developing alternative fuels to satisfy both the 

rapid growth of worldwide economies and environmentally concerns[1, 2]. Biomass is considered 

as a sustainable resource for producing energy, fuels and alternative chemicals. Bio-based 

products prevail over conventional fossil-based products in reducing green-house gas effects 

because the production and use of biomass completes the carbon cycle in a short duration. 

Biomass can be converted into different forms of energy and fuels through numerous 

processes (e.g. biological, thermochemical and mechanical processes) according to the types of 

raw materials and objective products. Among various conversions, thermochemical methods, 

such as combustion, gasification, pyrolysis and hydrothermal pyrolysis, provide the most efficient 

and convenient ways to convert biomass into multiple forms of fuels and products in terms of 

power, renewable gaseous, liquid and solid fuels, and chemicals. In addition, most of the 

thermochemical conversions are flexible in accepting diverse feedstocks and are simpler systems 

than biochemical conversion systems. In the cadre of thermochemical conversions technologies, 

pyrolysis techniques offer efficient ways to produce solid, liquid and gaseous products depending 

on the need. The liquid product, known as bio-oil, has been regarded as a carrier of energy and a 

source of intermediate chemicals which can be substituted for conventional fossil fuels and 

chemicals. 

Pyrolysis cracks biomass thermally in the absence of oxygen resulting in solid (char), 

gaseous (syngas) and liquid (bio-oil) products. It is also the first step that occurs in combustion 

and gasification processes. Pyrolysis processes can be differentiated into three types according to 

operation conditions and objective products, as indicated in Table 1.1 [3-5]. Generally, low 

temperatures and long residence times facilitate high char yields. High temperatures and long 

residence times lead to high gas yields, while short residence times at moderate temperatures 

favor high production of liquid bio-oil. 
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Table 1.1. Types of pyrolysis [3, 6]. 

Pyrolysis 

processes 

Residence time Heating rate Temperature (K) Products 

Carbonization Days Very low ~673 Charcoal 

Torrefaction 10-60 min Low ~563 Solid 

Fast pyrolysis 0.5-5 sec Very high ~723 Bio-oil 

Flash pyrolysis <1 sec High <723 Bio-oil, gas 

Fast pyrolysis depolymerizes biomass at a rapid heating rate (~1000K/s) in the absence of 

oxygen. The generated vapors and aerosols are then quickly quenched to recover liquid oil (bio-

oil), which accounts for 60~95 wt. % of overall products, depending on the feedstock 

composition [6, 7]. The incondensable gases and solid residues lead to syngas and char, 

respectively, as byproducts. High liquid yields require high heat and mass transfer rates and short 

residence times (usually less than 2s) to hinder secondary cracking of vapors. Reducing feedstock 

particle size helps increase heat and mass transfer rates. Finally, the char residue must be 

separated from the reactor system to prevent vapors from cracking [8]. Numerous pyrolysis 

reactor configurations, such as ablative reactor, fluidized bed, circulating fluidized bed, fixed bed, 

vacuum reactor and auger reactor, have been investigated to enhance yield and quality of the bio-

oil [9-11]. Designs of new reactor configurations promising high liquid yield and optimum 

control are receiving significant attention, scale up and commercialization face major challenges. 

Bio-oil is a mixture of products of degradation of cellulose, hemicellulose and lignin 

performed with rapid heating and cooling. Bio-oil can be produced from various types of forest 

and agricultural wastes and energy crops, including rice husk, wheat straw, wood, paper and 

switchgrass [12, 13]. The yield and chemical composition of bio-oil depends on the distribution 

of cellulose, hemicellulose and lignin in the feedstock. Compared to biomass, bio-oil has a higher 

energy density and can be readily transported and stored. Compared to fossil fuels, bio-oil is not a 

contributor of new CO2 introduced into the atmosphere, since CO2 is consumed during the growth 

of the biomass feedstock. SOx and NOx emissions from combustion of bio-oil are also negligible 

because most biomass feedstocks contain trace amount of sulfur and nitrogen. Therefore, bio-oil 

is considered a clean and renewable liquid fuel which can serve as a direct substitute for fossil 
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fuels in boilers and turbines for heat and power generation. In addition, bio-oil can be a potential 

resource and platform for production of transportation fuels and chemicals with higher added 

value [14]. A summary of possible applications of bio-oil is given in Figure 1.1 [2]. Despite these 

promises, commercialization of bio-oil for fuels and chemicals production is limited due to its 

notoriously undesirable characteristics, such as high and changing viscosity, high water and 

oxygen contents, low heating value and high acidity.  

 
Figure 1.1 Applications of bio-oil. Adapted from [2] 

Compared to conventional fossil fuels, bio-oils are not chemically or thermally stable due 

to their significant contents of reactive oxygenates, low boiling point volatiles and solid residues 

[15]. Consequently, the chemical reactions continue to occur during recover, storage and 

transportation of the pyrolysis liquids. These reactions lead to the changes in bio-oil physical and 

chemical properties that include increase in viscosity, phase separation, increase in average 

molecular weight and varying chemical composition. Previous studies [16, 17] indicated that the 

bio-oil viscosity and average molecular weight increased significantly as the storage temperature 

and time increased. In particular, the impacts of storage temperature were much stronger than 
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those of storage time. For example, the increase in average molecular weight[17] after storage at 

80 °C for a week was equal to that after storage at room temperature for a year. In addition, the 

significant quantity of solid residue aggregates the changes in viscosity and average molecular 

weight of bio-oil discussed above, which makes bio-oil even more difficult to process and handle 

with. The changing viscosity with temperature creates additional challenges in feeding and 

injecting the fuel in a combustor, especially at low temperature. Clogging of filters and 

agglomeration of fuel transportation lines and the fuel circulation system frequently occur, [18] 

leading to major issues in operation and safety. In practice, bio-oils have to be preheated before 

injected into the combustor to reduce the viscosity. However, this method has been proved to be 

unsatisfactory since it raises another problem due to growth of particulates in the fuel feeding 

system[15]. The changing physiochemical properties of bio-oil during storage will require 

corresponding adjustments in the fuel feeding system and operation conditions, which may 

sacrifice performance of the combustor [15]. Therefore, the storage and transportation stability of 

bio-oil must be improved before it is stored, or transported to the end user or to the refineries for 

processing. 

The storage and transportation stability is one of the most critical properties of bio-oil 

that hinder its successful commercialization for fuels, chemical and power production. The bio-oil 

stability can be improved by reduction of oxygen content, especially removal of the oxygen 

heteroatoms that contribute to the high acid number, and also substantial removal of char 

fines[19]. A stabilized bio-oil should have a total acid number of less than 10 and char fines 

content of less than 0.5 wt. %. Considerable efforts during the last five to ten years have 

contributed to the development of measuring standards and methods of bio-oil stability so that 

improvements in the storage and transportation stability of bio-oil can be quantified [20, 21]. So 

far, extensive studies have been focused on the upgrading of bio-oil into advanced bioproducts 

and/or biofuels, and the state-of-art of bio-oil upgrading has been critically reviewed [22, 23]. 

However, only limited information is available on the comprehensive understanding of bio-oil 
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stability, including the mechanisms leading to instability, methods to quantitatively measure 

stability, the difference between stabilization and upgrading of bio-oil, and recent developments 

in techniques and methods to improve the storage and transportation stability of bio-oil. 

This review focuses on the recent developments in technologies to overcome challenges 

in using bio-oil with a special focus on its stabilization for storage and transportation. Economic 

and environmental issues and other challenges associated with these techniques are also 

discussed. 

1.2. Properties of bio-oil 

Bio-oil, also known as pyrolysis oil, bio-crude-oil, wood liquids, wood oil, liquid smoke, 

pyroligneous acid and liquid wood, is composed of a wide range of chemicals that are derived 

from depolymerization and degradation of cellulose, hemicellulose and lignin. The chemical 

composition of bio-oil is highly dependent on the pyrolysis conditions and variety of feedstock. 

Proximate and elemental analyses of bio-oil are similar to those of biomass from which it is 

derived, and contains a large number of oxygenated species and considerable water (as indicated 

in Table 1.2). These properties make bio-oil significantly different from conventional fuel oil. 

Table 1.2 Typical properties of bio-oil [13]. 

Physical property Bio-oil Heavy fuel oil 

Moisture content (wt. %) 15-30 0.1 

pH 0.5 - 

Specific gravity (@ 15 °C) 1.2 0.94 

Elemental compositions (wt. %)   

C 54-58 85 

H 5.5-7.0 11 

O 35-40 1.0 

N 0-0.2 0.3 

Ash 0-0.2 0.1 

HHV (MJ/kg) 16-19 40 

Viscosity (@ 50°C) (cP) 40-100 180 

Solids (wt. %) 0.2-1 1 

Distillation residue (wt. %) Up to 50 1 

                             *cP: centipoise, 1 cP=1 mPa·s 
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1.2.1. Water content 

The water content of bio-oil varies from 15 to 30 wt. % depending on the feedstock and 

the pyrolysis cooling conditions[6]. Bio-oil water is mainly the result of the original moisture 

content of feedstock and dehydration reactions during pyrolysis. The solubilizing effects of 

hydrophilic compounds (acids, alcohols, aldehydes and ketones) in the liquid products make it 

difficult to separate water from bio-oil. The water content has both positive and detrimental 

effects on bio-oil properties. Water lowers the heating value and flame temperature; however, it 

also lowers viscosity and increases pH which improves bio-oil quality. Typically, the water 

content of bio-oil is analyzed using Karl Fischer titrimetric method [24] following the ASTM E 

203. 

1.2.2. Oxygen content 

Although water is the most abundant compound in bio-oil contributing to bio-oil’s high 

oxygen content, bio-oil also contains up to 400 oxygenated organic compounds that contribute 

45~50 wt. % of the oxygen content in bio-oil [25]. High oxygen content results in bio-oil’s 

properties being different from those of conventional fossil fuels (hydrocarbons). For example, 

the heating value of bio-oil is less than half of that of conventional fuels. Moreover, bio-oil is 

immiscible with hydrocarbon fuels, and most of the oxygenated species are very reactive leading 

to its instability during storage and transportation [13]. Typically, the oxygen content of bio-oil is 

measured by performing an elemental analysis of C, H, S, and N in percent of weight, and the 

difference is considered as the oxygen content. 

1.2.3. Viscosity 

The viscosity of bio-oil varies widely [14] (35~1000 cP at 40 °C) depending on the 

feedstock and processing conditions used to generate bio-oil. Also, unlike hydrocarbon fuels, 

viscosity of bio-oil decreases rapidly above room temperature [6, 26] and changes with time 

during storage. As stated above, the addition of water can decrease the viscosity. Viscosity is also 

reduced with the addition of polar solvents such as methanol or acetone [27]. The bio-oil 
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viscosity test can be performed using capillary or rotary viscometers at different temperatures, but 

temperature of 20 and 40 °C are usually recommended [6]. 

1.2.4. Acidity 

Bio-oil is acidic (pH ranging from 2 to 3) due to the carboxylic acids formed during 

decomposition of biomass polymers[14]. This high acidity makes bio-oil very corrosive to 

materials used for transportation fuel pipelines and tanks which add to challenges in using bio-oil. 

The acidity of bio-oil is usually evaluated following ASTM D664 by measuring the total acid 

number (TAN, mg of KOH g-1) [9], which is the quantity of KOH in milligrams needed to 

neutralize the acids in one gram of the bio-oil. 

1.2.5. Ash Content 

Bio-oil ash content can cause problems in some applications. The ash composition is 

dominated by alkali metals (potassium and sodium), which are responsible for the severe 

corrosion of turbines and deposition of heating surfaces and pipes during combustion [13]. Also, 

some metals are highly catalytic (e.g. potassium) and facilitate secondary reaction of pyrolysis 

vapors, which leads to loss of liquid yield. Biomass pretreatment, such as washing with water or 

dilute acid, is effective in removing ash from the raw biomass [28]. The ash content is determined 

by measuring the amount of non-combustible residues in the bio-oil following ASTM D482. 

1.2.6. Aging and instability     

Bio-oil is an intermediate product that is generated by first thermal degradation of 

biomass at a very rapid heating rate and then condensation of vapors and aerosols into liquid at a 

fast quenching rate. The process; however, does not reach a thermodynamically equilibrium. 

Therefore, some of the species are still highly active, leading to changes in physical and chemical 

properties of bio-oil during storage and transport [16, 29, 30]. Bio-oil tends to age at room 

temperature once it is collected, especially with increasing temperature. The result can be an 

increase in viscosity, decrease in water content, loss of volatiles, and phase separation [3]. The 
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degree of change in these physical properties is due to the chemical reactions that increase the 

average molecular weight of the bio-oil [29, 31]. Oasmaa et al [32, 33] found that the principal 

compositional changes during aging include a decrease in carbonyl compounds, such as 

aldehydes and ketones and an increase in the water-insolubles which are mainly composed of 

lignin fragments, extractives and solid residue. 

The changes in chemical properties of bio-oil are usually associated with presence of 

highly active organic functional groups, such as aldehydes, alcohols, carboxylic acids, phenols 

and unsaturated hydrocarbons. Several chemical reactions that favor the thermodynamic 

equilibrium occurring during storage among these active compounds, are categorized into the 

following [17, 31, 34]: (1) formation of esters by esterification of alcohols and acids or by 

transesterification of two esters; (2) homopolymerization of aldehydes to form polyacetal 

oligomers; (3) addition of alcohol to aldehyde to form hemiacetals or acetals; (4) polymerization 

of phenol and aldehyde to form resins; (5) polymerization of furan derivatives; (6) reaction of 

alcohol with unsaturated aldehydes to form alkoxy aldehyde/acetal; (7) olefinic condensation; and 

(8) oxidation of alcohols and aldehydes to carboxylic acids. Besides these mechanisms mentioned 

above, Kim et al also [35] found that the low molecular weight components may participate in the 

polymerization with pyrolytic lignin, contributing to the increase of average molecular weight. 

Recently, few studies[36, 37] confirmed that the existence of free radicals was responsible for the 

bio-oil instability during storage. Solid char residues, that are comprised mainly of oxides and 

salts of metals, contribute to changes in bio-oil properties [22]. While char increases the viscosity 

of bio-oil, it offers plenty of catalytic sites for promoting several reactions [13]. It should also be 

noted that bio-oil is highly sensitive to heat and oxygen because some of bio-oil compounds are 

more reactive with the availability of heat and oxygen [14, 38]. Therefore, bio-oil must be sealed 

and kept away from heat sources. 
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1.3. Methods to measure the stability of bio-oil 

 As discussed in earlier sections, bio-oils are not as chemically or thermally stable as the 

conventional fossil fuels due to the high amount of reactive functional groups, solid residue and 

low boiling point volatiles[15, 21]. Changes of physical and chemical properties (e.g. phase 

separation, viscosity increase, increase of molecular weight, and change of acidity and moisture 

content, etc.) will occur in bio-oil during the storage, transportation and utilization in various 

conditions. The term “fuel stability” has been used to evaluate the resistance of a fuel to 

change[39]. Particularly, it can refer to “storage stability” at ambient conditions, defined as the 

ability of a fuel to retain its original properties during storage over an extended period of time 

without significant degradation [40]. Procedures for testing the storage stability of hydrocarbon 

fuels are available in ASTM standards [41, 42]. Generally, these standards are followed to test the 

fuel stability towards thermal and/or oxidizing environment. In addition, procedures for stability 

tests performed with accelerated methods [43, 44] are available in the standards so that the degree 

of aging is equivalent to if bio-oil had been stored in ambient conditions for a set time.  

Similar to hydrocarbon fuels, research activities on evaluation of bio-oil stability are 

focused on two aspects, that is, thermal stability and oxidative stability. Aging experiments have 

been carried out at various research institutions to assess the fuel stability of bio-oil [15, 45-52]. 

Nevertheless, no standardized methods for measuring the stability of bio-oils are available.  

1.3.1. Thermal stability test methods 

Thermal stability of a fuel is defined as the capability of the fuel to withstand elevated 

temperature stress for a reasonable time period without noticeable deterioration[39]. Accelerated 

thermal aging processes have been broadly adopted for thermal stability tests [21, 47, 48]. In an 

accelerated thermal aging experiment, the bio-oil is stored at an elevated temperature for a certain 

time, and the physical and chemical properties prior to and after the aging process are analyzed 

[53]. An example of the accelerated aging were described in a round robin study on bio-oil 

viscosity and stability from International Energy Agency (IEA) [21]. Briefly, the bio-oil samples 
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were heated in sealed bottles at 80°C for 24 h, and then cooled at room temperature for 1.5 h 

before analysis. Based on the results from accelerated aging experiments, different methods of 

measuring bio-oil stability were developed and evaluated. Since the aging process causes 

substantial changes in water-insolubles and carbonyl products, the compositional changes in these 

products are used to evaluate the thermal stability of bio-oil. Instead of measuring these changes 

directly, correlations have been developed between these compositional changes and measurable 

parameters. For instance, the increase in water-insolubles [53] can be correlated with the increase 

in the average molecular weight and the increase in viscosity of the wood bio-oil. Similarly, the 

change in carbonyl content can be correlated with the change in viscosity measured by 

accelerated aging test (24 h @80 °C)[15]. Consequently, stability test methods based on 

measurements of the thermal stability indicators, such as viscosity change, average molecular 

weight change, the change in carbonyl content have been established [21, 24, 33]. 

1.3.1.1. Stability test method based on viscosity change 

 Bio-oil viscosity is a key parameter to evaluate its practical application and fuel quality. 

The changing viscosity with time increases the difficulty and cost of fuel-pumping and combustor 

operation. The change in viscosity of bio-oil over time are usually associated with the increase in 

molecular weight resulted from the polymerization reactions that proceed in the bio-oil [46]. 

Hence, the measurement of viscosity increment has been considered as a direct indicator of bio-

oil stability [17, 21, 40, 45, 47, 54-56]. 

 Stability test based on viscosity change assesses the stability of bio-oil by measuring the 

absolute increase in viscosity during an accelerated aging test (24 h @80 °C). To develop 

analytical standards for measuring physical and chemical properties of bio-oil[21], IEA suggested 

that in order to achieve a good repeatability, the amount of bio-oil sample and the sample bottle 

must be carefully controlled so that the mass loss due to volatilization is less than 0.05 wt % [21]. 

In addition, viscosity of bio-oil samples should be measured as kinematic viscosity at 40 °C 
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following ASTM D 445. The stability value can be calculated as the percent of increase in 

viscosity after the aging test compared with the original viscosity [21, 53].  

1.3.1.2. Average molecular weight test method 

 In addition to the increased viscosity, increasing average molecular weight is another 

characteristic of bio-oil aging process. The main reason for the increase in molecular weight is the 

polymerization and condensation reactions of low molecular weight components during 

storage[31, 53]. The most common method for measuring the molecular weight distribution of 

bio-oil is gel permeation chromatography (GPC), also known as size exclusion chromatography 

(SEC) [10, 21, 24, 53]. In a GPC test, the bio-oil sample is prepared in a solution of 

tetrahydrofuran (THF). The injected sample is passed through two columns in series for 

separation and then detected by a refractive index (RI) detector[21]. The GPC must be calibrated 

against polystyrene standards for quantification. By evaluating the applicability of GPC methods 

to analyze pyrolysis oils and hydrodeoxgenated pyrolysis oils, Hoekstra et al. [57] suggested that 

GPC should not be used as a quantitative method to characterize bio-oil samples, because the RI 

detector response factors were not consistent among low and high molecular weight fractions. In 

addition,  GPC was recommended to compare the bio-oil samples with similar composition, e.g. 

bio-oils prepared with only incremental changes in reaction conditions [57]. 

1.3.1.3. Carbonyl products test methods 

 Carbonyl compounds (aldehydes and ketones), sugars, acids and water are the four major 

components of the water-soluble fractions of bio-oil [58]. Aldehydes and ketones are considered 

as the primary contributors of the bio-oil instability during storage. Due to their high reactivity, 

esterification, acetalization, aldol-condensation and other reactions that lead to the formation of 

dimers or polymers occur in the water-soluble fractions of bio-oil. Moreover, aldehydes could 

react with pyrolytic lignin in the water-insoluble fraction through phenol-formaldehyde 

condensation [48]. A linear correlation was observed between the change in carbonyl content and 

water-insoluble content [15] during the accelerated aging of bio-oil. 
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 Carbonyl contents can be measured by chemical titration or using analytical instruments. 

Oximation is one of the most general chemical titration methods used to determine the total 

carbonyl functional groups [59]. This method uses the reactions between hydroxylamine and 

aldehydes/ketones to form the corresponding oximes while carboxylic acids or esters do not 

react[60]. El Mansouri et al[59] measured carbonyl content in five different lignins using both 

oximating method and the differential UV-spectroscopy, and concluded that oximating method 

was more reliable for total carbonyl quantification. VTT[15] described detailed procedures on 

carbonyl titration tests, and a good repeatability was achieved. In addition, they found that the 

carbonyl content determined by carbonyl titration was not affected by the amount of acid 

compounds in the bio-oil. Although oximation titration was confirmed to be applicable for 

measuring the total carbonyl content in bio-oil, this method has not been confirmed by others.  

 Besides chemical titration, typical analytical spectroscopy methods such as Fourier 

Transform Infrared spectroscopy (FTIR), Gas Chromatography/Mass Spectrometry (GC/MS) and 

1H and 13C Nuclear Magnetic Resonance (NMR) are also widely used to determine the change in 

bio-oil carbonyl contents [47, 61, 62]. FTIR spectroscopy is a direct method to measure the 

compositional and structural changes of bio-oil during aging[45]. Due to complex nature of bio-

oil, FTIR spectral is not applicable to perform quantitative analysis[56]. Instead, FTIR is 

commonly used to provide the qualitative information on change in carbonyl by comparing the 

corresponding absorbance intensities prior to and after the aging process.  

GC/MS has been commonly used to identify and quantify the volatile components of bio-

oil[61]. However, due to the chemical complexity of bio-oil, it is impossible to perfectly separate 

all the compounds using a single column in GC. In Hilten`s study [45], no substantial 

compositional changes were observed in GC-MS results from whole bio-oil sample prior to and 

after aging even though noticeable physical changes occurred during aging. They concluded that 

such inconsistency was due to the narrow range of volatile compounds that GC-MS was able to 

detect. Oasmaa et al[58] recommended separating bio-oil into multiple fractions using solvent 
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fractionations, and then characterizing the compositional changes in each individual fraction. For 

example, carbonyl groups fall into the ether-solubles fraction, which are GC-eluted 

compounds[58]. Then, the change in carbonyl groups of bio-oil during aging can represent the 

compositional change in that fraction. To get quantitative information, a calibration must be 

performed for the selected compounds using corresponding calibration standards. However, 

calibration standards are not available for few target compounds. The variations in calibration 

procedures lead to poor reproducibility. Moreover, the poor separation of overlapping peaks 

poses challenges in identification of compounds with similar retention time. Hence, GC/MS is 

recommended as a qualitative or semi-quantitative tool to measure the change in carbonyl groups 

during aging process. 

Unlike GC/MS, which can only detect GC-eluted compounds, NMR analysis can be used 

to interpret structural information of whole bio-oil samples [63]. Different NMR analytical 

methods have been developed for specific applications. Among all the NMR methods, 1H, 13C-

NMR and distortionless enhancement polarization transfer (DEPT) methods are the most 

frequently used to characterize the bio-oil samples [64]. The percentages of carbon or hydrogen 

in different chemical functional groups (based on chemical shift) are interpreted, and hence, the 

relative concentration of functional groups in bio-oil can be estimated. NMR analysis has been 

used to characterize the compositional change in bio-oil during accelerated aging test [47, 48, 56, 

65]. The poor solubility of bio-oil in NMR solvents was one of the main challenges for the 

analysis [47]. 

1.3.2. Oxidative stability test methods 

 Oxidative stability refers to the susceptibility of a fuel to oxidative degradation. The 

oxidative aging leads to the formation of carboxylic acids, esters and reactive peroxides that 

catalyze the polymerization of unsaturated compounds [31]. Only limited information is available 

for measuring oxidative stability of bio-oil [45, 51, 52].  In Hilten`s study [45], two hydrocarbon 

fuel ASTM standard methods (D5340 and E2009) were compared to evaluate the oxidative 
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stability of bio-oil. The D5340 method is based on the measurement of solid contents formed 

during oxidative accelerated aging [66]. In this method, the original solids in bio-oil must be 

removed before test. ASTM E 2009, also known as oxidation onset temperature (OOT) test, 

determines the temperature at which oxidation starts by running the sample in a differential 

scanning calorimetry (DSC) [67]. The higher OOT indicates the higher oxidative stability and, 

vice versa. Hilten [45] concluded that determination of solid formation can be used as a standard 

method to measure the oxidative stability, but the filtration of bio-oil increased the difficulty of 

using this method. OOT method was considered a quick and easy method to determine the 

oxidative stability, and was also confirmed by other researchers [51, 52]. 

1.4. Approaches to Improve the Stability of Bio-oil  

It is critical to develop effective approaches to maintain the stability of bio-oil during 

storage and transport because unstable bio-oil with high viscosity creates challenges in pumping 

and handing the bio-oil during storage and transportation to the biorefinery or end-use 

application. The keys to improving the stability of bio-oil, as discussed above, are associated with 

viscosity reduction, eliminating the highly reactive organic compounds, mildly modifying bio-oil 

to reduce its reactivity and acidity and removal of the solid char residue. The latest developments 

in bio-oil stabilization techniques, categorized as physical and chemical methods, are discussed 

below. 

1.4.1. Physical methods  

1.4.1.1.  Solvents addition 

Typically, the addition of polar solvents has been shown to decrease the viscosity and 

rate of increase in the viscosity over time. Diebold et al [46] investigated effects of adding ethyl 

acetate, methyl isobutyl ketone and methanol, acetone, methanol, acetone, methanol and ethanol 

to reduce viscosity and aging rate of bio-oil. The results indicated that these additives not only 

lowered the initial viscosity but also reduced the rate of increase in the viscosity with time, 

among which methanol was the most effective additives tested to decrease the rate of aging. 
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Oasmaa et al [68] studied the change in bio-oil properties with age by adding three alcohols: 

methanol, ethanol and isopropanol. Among these alcohols tested, methanol was the most effective 

solvent in reducing the viscosity, and the bio-oil fluidity improved significantly as methanol 

concentration increased. Furthermore, the addition of alcohols effectively enhanced the solubility 

of the hydrophobic compounds, which consisted of high molecular weight lignin derivatives and 

extractives. The overall mechanism of alcohols addition to bio-oil can be summarized as follows.  

The chemical reaction [69] that leads to increase in average molecular weight of bio-oil was 

undermined by diluting the reactive chemical species (e.g. aldehydes and acids). In the meantime, 

the polymerization reactions of aldehyde groups which contribute to the increase of molecular 

weight of bio-oil could be reduced by competing reactions, such as acetalization and esterification 

between alcohols and aldehydes, ketones, and anhydrous sugars[70, 71]. Moreover, additives 

enhance depolymerization of large compounds into low molecular weight compounds through 

transesterification and transacetilization. One of the problems with adding solvents for improved 

viscosity appears to be a decrease in flash point [31, 68] that must be addressed to avoid fire 

hazards. Nonetheless, due to low cost and potential to improve energy content and aging 

properties of bio-oil, solvent addition has been recognized as one of the most efficient approaches 

to obtain a homogenized and less viscous product. 

1.4.1.2. Emulsification  

Another promising approach to decrease bio-oil viscosity is emulsification with other 

petroleum fuels, such as diesel. Interestingly, biodiesel which is a renewable fuel consisting of 

esters of fatty acids, has become one of the most popular fuels to decrease bio-oil viscosity 

because the resulting products are environmentally-friendly and compatible to fossil fuels. 

Emulsification involves two immiscible liquids in which droplets of one phase (the dispersed or 

internal phase) are encapsulated within a layer of another phase (the continuous or external phase) 

with the help of agitation and emulsifying agent (also known as surfactant). The quality of the 

final mixture is highly dependent on agitation intensity, surfactant concentration, operation 
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temperature and bio-oil to bio-diesel ratio[72, 73]. By investigating mixture stability at different 

operation conditions, Jiang et al [74, 75] concluded that viscosity at room temperature decreased 

significantly from 67.39×10-3 to 4.665×10-3 Pa·s and energy content was also improved from 

15.28 to 34.57 MJ/kg when 60% vol. of biodiesel was mixed with bio-oil Moreover, the results 

indicated that emulsification was a novel method to extract the pyrolytic lignin fraction from bio-

oil. Aging tests of the mixture with 60% vol. of biodiesel indicated that viscosity increased 

slightly within first 10~60 hours and then decreased in the next 120 hours until the end of the test, 

and the higher volumetric fraction of bio-oil in the mixture led to higher final viscosity.  

Garcia-Perez et al [76] carried out the blending of bio-oil and biodiesel by heating the 

mixture at 60°C using a water bath. They found that the compounds in organic phase of bio-oil, 

such as furans, sugars and oligomers, were more soluble in biodiesel than the compounds in 

aqueous phase. The viscosity of the bio-oil/biodiesel mixture increased slightly as the bio-oil 

concentration increased; however, it was much lower than that of original bio-oil. For example, 

the viscosity of organic phase of bio-oil obtained from pine chips dropped from 140.2 to 9 cP 

when mixed with 35 wt. % of biodiesel. However, the phase equilibrium of the two blends was 

dependent on temperature. More information on the effects of temperature on the phase 

equilibrium is needed. 

Zapata et al [77] found that the aqueous/oil emulsions can be stabilized by metal 

supported nanohybrid catalysts, and these catalysts further enhanced the simultaneous aldo-

condensation/hydrogenation reactions of carbonyl compounds, such as furfurals and ketones. The 

aqueous/oil biphasic emulsion also proved to be more advantageous for condensation than single 

phase which was due to the improved mass transfer between the phases that resulted from the 

extended interfacial area by the nanohybrid catalyst. 

In summary, emulsifying bio-oil with biodiesel is an effective way of improving bio-oil 

quality in terms of reduced viscosity and profoundly improved energy content. However, high 
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consumption of emulsification agents and energy input to generate sufficient agitation are current 

challenges for using this approach [3, 78]. 

1.4.1.3. Removal of solid char residue 

One of the main reasons for instability of bio-oil during storage is the metal ions hidden 

in char particles that act as catalysts triggering reactions, such as polymerization and 

condensation, resulting in an increase in viscosity [79]. Moreover, the alkali metals retained in 

char particles cause corrosion problems and deposit on the inner wall of transportation lines and 

can cause plugging problems. Char particles must be removed from bio-oil, especially for use as 

fuels. Cyclone separators are commonly used for char removal, but these are not effective in 

trapping fine particles (<10 µm).  

(a) Hot gas vapor filtration 

Hot gas vapor filtration is considered a promising technique to reduce the char content in 

bio-oil. Char particles are stripped from pyrolysis vapors before entering the quenching unit. The 

bio-oil obtained from using hot vapor filtration was found to have improved quality, such as 

lower solid contents, viscosity and alkali metal content compared with that obtained from using 

conventional cyclone separators [80-82].National Renewable Energy Laboratory (NREL) [83] 

tested vapor-phase filtration of bio-oil using two filter elements (porous sintered stainless-steel 

metal powder and sintered ceramic powder provided by Pall Corporation). Researchers found that 

alkali metal contents decreased significantly using hot gas filtration, and the bio-oil obtained 

through the ceramic filter was stable with viscosity increase rate being only one tenth than that of 

the bio-oil obtained through conventional cyclone system. In an accelerated aging test, Adisak et 

al[81] found that the bio-oil stability index, which was measured as the percent of viscosity 

change after aging decreased from 24.8 to 1.4 when hot vapor filter was applied during the 

production of rice straw derived bio-oil. 
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(b) Microfiltration 

Microfiltration, as one of the membrane-based particle removal techniques, has been 

widely used for removal of fine particles (0.02-10µm) in petroleum [84, 85] and water industries 

[86]. The membrane acts as a barrier that separates two bulk phases and controls the 

transportation of chemical components through both sides, which is driven by a driving force, 

such as electric field, pressure, temperature or concentration difference across the membrane [84]. 

Using tubular ceramic membranes (pore size: 0.5 and 0.8 µm) for microfiltration of bio-oil char 

particles, Javaid et al [85] showed that most of the char particles was removed, and bio-oil ash 

content decreased by nearly 60%. No significant variation was observed in chemical composition 

of bio-oil after microfiltration. Microfiltration is a promising method for removal of fine char 

particle from bio-oil. However, the mechanisms of char removal and the effect of operation 

conditions on fouling process are still unclear. 

In summary, char, the solid byproduct of fast pyrolysis, can act as a catalyst to crack 

volatiles reducing the yield of bio-oil. Therefore, there is a need to separate solids before the 

condensation of volatiles. Cyclone separators are most frequently used techniques to sequestrate 

the solids from gas streams; however, they are not effective for fine particles (<10 µm). 

Microfiltration is useful for trapping very fine particles (0.02-10 µm). However, selection, 

recovery and cost of membrane are barriers in using this technology. 

1.4.1.4. Other physical methods 

High-pressure homogenization (HPH) has also been widely used to stabilize bio-oil 

emulsions [87]. He et al [88] investigated using high-pressure homogenization ( up to 300 MPa) 

to treat bio-oil. Aging tests were also conducted at 40°C for 60 days to compare the storage 

stability of the homogenized bio-oil. The results indicated that the bio-oil viscosity decreased up 

to 30% at 100 MPa homogenization pressure; however, no significant viscosity decrease was 

observed at pressures above 100 MPa. This is because high pressure (>100 MPa) breaks weak 

bonds in macro molecules (e.g. partially degraded holocellulose, pyrolytic lignin polymers and 
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char) but is not capable of breaking strong covalent bonds. The aging test indicated that the rate 

of increase in viscosity of bio-oil treated with homogenization at 100 MPa was 0.0661 

centistrokes (cSt)/day, which was approximately 20% of untreated bio-oil. Similarly, a linear 

correlation was observed between the bio-oil viscosity and its molecular weight. Compared to 

emulsification and solvents addition, HPH aims to chemically transform the bio-oil composition. 

Technically, traditional physical methods, such as emulsification and solvents addition, do 

provide a short-term and simple solution to decrease the viscosity of raw bio-oil; however, the 

approaches that focus on changing composition of the bio-oil appear more effective for long-term 

stabilization of bio-oil. 

Most aging reactions involve reactive functional groups in water-soluble phase; therefore, 

physical separation of water-soluble phase from bio-oil is a promising method to improve the 

stability. Zheng et al. [78] separated the rice husk derived bio-oil into water-soluble phase (19 

wt%), distilled bio-oil (61 wt%) and residue (10 wt%) using reduced pressure distillation (80 °C, 

15mmHg). The properties of the distilled bio-oil were significantly improved compared with 

those of raw bio-oil. For example, the water content decreased from 25.2 to 0.01 wt%; the oxygen 

content reduced from 50.3 to 9.2 wt%; pH value increased from 2.8 to 6.8. Viscosity based 

stability tests also indicated that the viscosity change in distilled bio-oil was negligible. Reduced 

pressure distillation was a simple and efficient way to separate the reactive species from raw bio-

oil, which has the potential to improve the bio-oil stability. However, more up-scaled studies are 

required to identify optimum parameters to maximize distillation efficiency.  

1.4.2.  Chemical methods 

As discussed above, the instability of bio-oil during storage is due to the interaction 

between reactive oxygenated functional groups, such as carboxylic acids, alcohols, aldehydes and 

phenols. To improve bio-oil stability, removal of these functional groups has been extensively 

researched [89-94]. Table 1.3 summarizes current techniques for reactive oxygenated functional 

groups removal.
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Table 1.3 Summary of current technologies to remove reactive oxygenated functional groups from bio-oil. 

Methods Process condition Reaction mechanism Advantages Disadvantages References 

Esterification with 

alcohol and 

mineral acid 

catalysts 

Mild conditions Chemical reactions 

between acids and 

alcohols 

Applicable to improve 

oil qualities with low 

cost 

Only address 

acidity issues 

[95-98] 

Mild HDO Mild conditions 

(100~280 °C/low 

pressure), chemical 

needed: 

H2/CO, 

catalyst(e.g.,CoMo, 

HDS, NiMo,HZSM-5) 

Hydrogenation under 

mild conditions 

Reduced hydrogen 

input,  reduced 

handling cost of 

stabilized intermediates 

Carbon loss to the 

gas and solid phase 

[99-107] 

Catalytic cracking Severe conditions 

(>350 °C, 

100–2000 Psi), chemical 

needed: 

H2/CO or H2 donor 

solvents, 

catalyst (e.g., Ni/Al2O3-

TiO2) 

Crack large molecules 

into small molecules 

through 

decarboxylation and 

decarbonylation 

No hydrogen input, low 

cost 

Poor fuel quality, 

high coking 

[108, 109] 

Catalytic fast 

pyrolysis 

Mild conditions 

(350~600 °C, atmospheric 

pressure), zeolite catalysts 

Upgrade biomass 

derived volatiles 

through dehydration, 

deoxgenation, 

decarboxylation and 

decarbonylation 

Does not require 

hydrogen, high 

hydrocarbon 

conversion 

Catalyst coking [90, 91, 110-

113] 
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1.4.2.1. Esterification 

Bio-oil reacts with alcohols at room temperature through esterification or acetalization as 

shown in Figure 1.2. 

 

 
Figure 1.2 Reactions of esterification (1) and acetilization (2). Adapted from [8] 

 

The compounds that contain carboxylic acids and aldehydes in bio-oil can react with 

alcohols and are converted into esters and acetals, respectively. This process converts high polar 

organic compounds into low polar organic compounds leading to polarity difference in the bio-oil 

mixture, thus increasing the tendency of phase separation during storage. In addition, these 

reactions also lead to other desirable changes, such as reduced acidity, improved volatility and 

heating value, and better miscibility with diesel fuels [8]. Numerous researches have focused on 

catalytic esterification. The conversions of esters and acetals depend on reaction temperature, 

reaction time, and amounts and types of catalyst and alcohol used [96]. Traditionally, 

heterogeneous acid/base catalysts, homogeneous ionic liquid catalysts and aluminum silicate 

catalysts have been used for esterification of bio-oils[114]. Solid catalysts have been used for bio-

oil esterification to lower viscosity, increase HHV value, and decrease pH and water content. 

However, catalyst coking and poor recyclability limit its applications; therefore, novel catalysts 

are needed. Xiong et al [95] showed that after esterification, no carboxylic acids were detected in 

the upgraded bio-oil, and significant improvements in properties were also observed. These 

improvements included HHV increasing from 17.3 to 24.6 MJ/kg, kinetic viscosity decreasing 
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from 13.03 to 4.9 mm2/s, pH value increasing from 2.9 to 5.1 and moisture content decreasing 

from 32.8 to 8.2. In addition, the selectivity to esters was still high (over 92 %) after recycling the 

catalysts for five times. However, the most critical issue with this approach is the complex 

synthesis of the catalysts. Recently, bifunctional catalysts have been investigated for 

simultaneous esterification and acetalization of acids and aldehydes in bio-oil [90, 97]. Li et al 

[97] investigated the simultaneous catalytic esterification and acetalization of bio-oil with 

methanol using a commercial Amberlyst-70 catalyst (Rohm & Haas, Philadelphia, PA, USA.). In 

this condition, not only light fractions of bio-oil but also medium (e.g. phenols, furans and sugars) 

and heavy fractions (oligomeric compounds from cellulose, hemicellulose and lignin) of bio-oil 

react with alcohols, forming products with more stability and more volatility. 

1.4.2.2. Mild hydrodeoxygenation 

Challenges in using bio-oil are related to its high oxygen content, which can be overcome 

by hydrodeoxygenation (HDO). HDO treats the bio-oil at a moderate temperature range (300 ~ 

600 °C) under high pressure hydrogen atmosphere in the presence of heterogeneous 

catalysts[115]. During hydrodeoxygenation, the oxygen in the bio-oil was rejected in the form of 

water through a series of C-C, C-O-C and C-OH bond cleavage, and hydrogenation reactions 

[116, 117]. After HDO, the bio-oil is upgraded into an energy dense and non-corrosive product, 

such as naphtha, with oxygen content less than 2 wt. %[99]. However, cost of hydrogen 

consumption becomes one of the barriers in using HDO as this process requires high partial 

pressures of hydrogen. Like other catalytic processes, coking of catalysts under high temperature 

provides additional challenges.  

As an alternative of complete HDO, mild hydrodeoxygenation (mild HDO) reduces 

hydrogen consumption and catalysts cost, which makes the bio-oil a better intermediate feedstock 

that can be further processed in petroleum refineries. The overall strategy is to divide the original 

deoxygenation process into two stages: (i) raw bio-oil is stabilized at low temperature (100-

280°C) with trivial quantity of hydrogen, and then (ii) the intermediate is fed into a secondary 
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reactor at higher temperature (350-400°C) for further oxygen removal [100, 107, 118-120]. Mild 

HDO refers to the first low temperature stabilization step, in which carbonyl groups were 

hydrogenated into more stable alcohols[107]. French et al [101] used a sulfided Ni-Mo/ƴ-Al2O3 

catalyst to upgrade bio-oil in a two-stage hydrotreating process. In the first stage, bio-oil and 

catalyst were co-fed into a reactor and stabilized at 1000 psig and 280°C for one hour. Then, the 

reactor was heated to a final temperature 400°C and held at the temperature for 1 hour.  The 

oxygen content in the product decreased to 6.7 wt. %. The results suggested that mild HDO at 

these conditions was a feasible and economical method to remove the water and water-soluble 

compounds (e.g. carboxylic acids) with benefits of less hydrogen consumption and decreased 

acidity.  

Mild HDO does not result in final products, but provides a new route to produce a 

stabilized intermediate that can be accommodated in the existing petroleum refinery system for 

further processing. Considering both the quality and economics of bio-oil derived products, mild 

HDO holds promise and requires more research. Recently, a combined one-step 

hydrogenation/esterification (OHE) process was proposed to stabilize two major reactive 

functional groups in bio-oil, aldehydes and carboxylic acids [102]. Bifunctional mesoporous 

catalysts [104], e.g. hybrid silicas with platinum and organic acid groups (Pt/SBA15-PrSO3H), 

were used for OHE reaction. Using two bifunctional catalysts, Pt/SBA15-PrSO3H and Pt/SBA15-

ArSO3H, for OHE reaction of acetaldehydes and acetic acid as model compounds, Tang et al 

[103, 104] demonstrated that the arenesulfonic acid groups resulted in higher catalytic activity 

than propylsulfonic acid groups due to increased acid strength. In summary, mild HDO can be a 

cost-effective approach to partially remove bio-oil oxygen and produce a liquid compatible with 

petroleum refinery. However, more information on how hydrogen consumption impacts the 

oxygen removal efficiency is needed. 
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1.4.2.3. Catalytic cracking 

At a temperature range of  350-650°C [8] and relatively high pressure (up to2000 psi), 

catalytic cracking rejects bio-oil oxygen in the form of CO2 using, typically, zeolite catalysts (e.g. 

HZSM-5). Two types of catalytic cracking are frequently used for bio-oil treatment: catalytic 

cracking without hydrotreatment and hydrocracking. Catalytic cracking without hydrotreating 

removes a certain amount of oxygen through decarboxylation and decarbonylation reactions [99, 

121], which compromises the carbon conversion efficiency, leading to a lower H/C ratio and 

higher O/C ratio in the product compared to bio-oil upgraded through HDO[121]. HDO combines 

the catalytic cracking reactions under hydrogen atmosphere with the help of bifunctional 

catalysts, which enhances cracking reaction and hydrogenation reaction. Using Ru/ZrO2/SBA-15 

and Ru/SO4
2- /ZrO2/SBA-15 for cracking bio-oil in supercritical ethanol under hydrogen 

atmosphere, Tang et al [108] showed that bio-oil composition changed to stable simple organic 

compounds mixtures, including phenols, guaiacols, and esters. In addition, the HHV value 

increased from 27.87 MJ/kg to 34.94 MJ/kg. The hydrocracking suppressed the polymerization 

reaction, mitigating the catalyst coking problem.  

Catalytic hydrocracking is another approach to break down high molecular weight 

compounds of bio-oil. Qu et al [109] used a two-stage hydrotreating/cracking method to treat 

viscous heavy bio-oil. The bio-oil was evaporated at 250°C and then passed through a catalytic 

bed mixed with both hydrotreating catalyst and zeolite under hydrogen atmosphere at a 

temperatures ranging from 250 to 400°C. The results showed that the viscosity of bio-oil treated 

with hydrotreating/cracking at 400°C decreased from 8710 to 70 cP. Other bio-oil properties, 

such as higher heating value (HHV) and oxygen content, also improved and the proportion of 

lighter aromatic compounds, such as benzene, phenol and their derivatives, increased 

significantly. However, the properties of bio-oil during aging were not provided. 
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1.4.2.4. Catalytic fast pyrolysis 

Catalytic fast pyrolysis can convert biomass directly into aromatic hydrocarbons that fit 

into existing refinery infrastructure with zeolite catalysts [90, 91]. Fluidized bed reactors are 

typically used for pyrolysis due to their flexibility in accepting a wide variety of feedstocks and 

effective heat and mass transfer. In catalytic pyrolysis condition, biomass is thermally 

decomposed to volatiles (vapors) that pass over a catalyst bed, converting the vapors into stable 

and deoxygenated compounds. The cellulose and hemicellulose primarily decomposes into 

anhydrosugars, and lignin mainly forms coke [90]. The evolved anhydrosugars are converted into 

furan compounds through dehydration and rearrangement reactions. These furan compounds are 

then absorbed into the pores of zeolite catalysts, where multiple chemical reactions, such as 

decarbonylation, decarboxylation, dehydration and oligomerization, take place, resulting in 

aromatics and olefins [91]. The aromatic and olefin intermediate hydrocarbons can be further 

converted into polycyclic aromatic compounds through chemical reactions with other oxygenated 

compounds. Torren et al [91] summarized the conversion pathways of cellulose during catalytic 

fast pyrolysis, as shown in Figure 1.3.  
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Figure 1.3 The conversion path of cellulose during catalytic fast pyrolysis. Adapted with 

modification from [41] 

Mullen et al [112] investigated the catalytic pyrolysis behavior of lignin using analytical 

pyrolysis methods (Py-GC/MS) with two heterogeneous catalysts, HZSM-5 and CoO/MoO3. 

Lignin is a complex polymer of three aromatic monomers, p-coumaryl alcohol, coniferyl alcohol 

and sinapyl alcohol. These monomers degrade into complex methoxyphenols, such as guaiacols 

and syringols, which can be further converted into simple phenols or aromatic hydrocarbons 

depending on the types of catalysts used. 
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Error! Reference source not found. [112] shows the detailed conversion pathways of lignin 

during catalytic fast pyrolysis. Simple phenols are the main products derived from zeolite 

catalysis and are not likely to further convert into aromatic hydrocarbons because the phenols are 

easy to bond with active acid sites of zeolite catalysts, resulting in deactivation or choking of the 

catalyst [122]. The CoO/MoO3 catalyst tends to produce aromatics directly via deoxygenation of 

methoxyphenol groups. By co-pyrolysis of pine wood with alcohols (methanol, 1-propanol, 1-

butanol and 2-butanol) using ZSM-5 catalyst in a bubbling fluidized bed reactor, Zhang et al [90] 

found that selectivity of petrochemicals including benzene, toluene, xylene, ethylene and 

propylene can be optimized by manipulating the hydrogen to carbon effective (H/Ceff) ratio of the 

feed. H/Ceff is defined in                 d                      Equation 1.1; where H, C and O are the mole 

percent of hydrogen, carbon and oxygen, respectively.  
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Figure 1.4 The conversion pathway of lignin catalytic fast pyrolysis. (Adapted with 

modification from [60]) 

𝐻

𝐶𝑒𝑓𝑓
=

𝐻 − 2 ∗ 𝑂

𝐶
                 

 

The isotope technique was used to investigate the chemistry of co-pyrolysis of pine wood 

(12C) and methanol (13C) in this study. Results indicated that both feeds contributed to the 

production of aromatic compounds. The study also verified the assumption that co-feeding the 

biomass with cheap hydrogen donor [99] with high H/Ceff ratio (substitute of hydrogen gas) is 

effective in improving aromatics yield. However, a detailed economic assessment is still needed 

to provide information on how to minimize the production cost of aromatics through catalytic 

pyrolysis of biomass and alcohols. Patel et al [123] investigated catalytic pyrolysis of sugarcane 

bagasse using a supported molybdenum carbide (20 wt. % Mo2C/Al2O3) catalyst. The results 

indicated that as the weight percent of catalyst in the bed materials increased from 0 to 50%, the 

pH of bio-oil changed slightly; however, the viscosity decreased from 2780 to 19.7 cP. Also, a 

significant decrease in sugars and increase in furanics and phenolics were observed. This 

improvement in bio-oil viscosity is of great importance for its further processing or transport. 
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 To sum up, the major issues with bio-oil instability are due to its reactive oxygenated 

functional groups. Various methods have been researched to eliminate these oxygenated 

compounds but each has limitations. Esterification can only handle carboxylic acids and 

aldehydes. Mild HDO appear to be an effective and economic way to reduce oxygen content; 

however, aging of the treated oil has not been tested. Catalytic cracking and catalytic fast 

pyrolysis can reduce bio-oil polymerization; however, the catalysts can only enhance typical 

model reactions, while inhibitive effects of contaminates in real bio-oil is unproven. More 

research is needed on developing multifunctional catalysts and integrated catalysis. 

1.5. Conclusions and Recommendations 

Bio-oils produced from pyrolysis of lignocellulosic biomass have the potential to 

substitute fossil fuels in the future energy systems because bio-oil is a renewable fuel; raw 

materials are available abundantly, its use result in low pollutants emission; and it can directly 

substitute liquid transportation fuels. Bio-oil can also be used as a platform for production of 

high-value chemicals. However, the direct utilization of bio-oil is significantly challenged by its 

poor fuel quality associated with its undesirable attributes such as high water and oxygen content, 

acidity, and instability during storage and transportation.  

Bio-oil contains large amounts of reactive functional groups (e.g., carbonyl, hydroxyl, 

phenol and unsaturated carbon-carbon bonds.) and free radicals, which are likely to initiate 

spontaneous reactions such as polymerization, condensation and esterification during storage. 

These reactions are responsible for the varying properties of bio-oil during storage. Evaluation of 

the bio-oil stability has primarily focused on thermal stability, and oxidative stability of bio-oil is 

vastly unexplored. Accelerated thermal aging test is the most commonly used approach for 

assessing the thermal stability of bio-oil. Several stability indicators, such as viscosity change, 

increase in average molecular weight, and change in carbonyl content are recommended to 

characterize the stability of bio-oil during storage. Different testing methods have been developed 

based on the change in these stability indicators. However, in order to achieve a long-term 
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success in commercialization of bio-oil, the testing methods for assessing the stability of bio-oil 

during storage and transportation must be standardized and normalized so that improvement in 

stabilizing bio-oil can be measured. 

Approaches to improve stabilization of bio-oil can be categorized into physical and 

chemical methods. Physical methods include viscosity reduction and char removal, and chemical 

methods include removal of reactive functional groups. Briefly, physical methods, like solvents 

addition and emulsification with bio-diesel are both effective approaches of reducing viscosity 

and decreasing the viscosity changing rate of bio-oil during storage. Char removal techniques 

such as hot gas filtration and microfiltration are effective for trapping fine particles (<10 µm). 

Chemical methods focused on the removal of reactive oxygenated functional groups through 

various heterogeneous catalytic processes, such as esterification with alcohols, mild 

hydrodeoxygenation, catalytic cracking and catalytic fast pyrolysis. Through these processes, 

deoxygenated and less acidic liquids were produced, and hence the higher fuel stability is 

expected during storage. 

For deployment of physical methods such as solvent addition and emulsification, further 

research on recovery of solvents and surfactants is critical. Among all the chemical methods, mild 

HDO appears to be a cost-effective technique to reduce bio-oil oxygen content, but its effect on 

aging is currently unknown. Catalytic fast pyrolysis is a promising method to produce liquid fuels 

that are expected to be more stable than traditional bio-oil. The resistance of catalysts towards 

deactivation is a major issue in use of catalysts during pyrolysis. In addition, multifunctional 

catalysts and integrated catalysis that are effective with multiple substrates are critically needed. 

Combinations of multiple approaches might be effective. Detailed economic analysis of each 

approach is also crucial for its successful commercialization. Understanding of reaction 

mechanisms in both thermal and oxidative aging processes would benefit the standardization of 

bio-oil stability test methods as well as the design of processes that produce high quality bio-oil.
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CHAPTER II 

2. PYROLYSIS OF EASTERN REDCEDAR: DISTRIBUTION AND CHARACTERISTICS OF 

FAST AND SLOW PYROLYSIS PRODUCTS 

This research paper was published as “Z. Yang, A. Kumar, R. Huhnke, M. Buser, S. Capareda, 

Pyrolysis of eastern redcedar: Distribution and characteristics of fast and slow pyrolysis products, 

Fuel, 166 (2016) 157-165.”
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Abstract: Eastern redcedar is a problematic plant in Oklahoma due to its extinguished 

environmental flexibility and rapid expansion. Pyrolysis, thermally converting solid biomass 

polymers into liquid fuel intermediate, solid char and gaseous products, is one promising 

approach to use redcedar for the production of sustainable fuels. The objective of this study was 

to investigate effects of eastern redcedar wood zones (heartwood and sapwood), pyrolysis 

temperature (450 and 500 °C) and pyrolysis types (slow at lab-scale and fast at micro-scale) on 

distribution and composition of pyrolysis products. In fast pyrolysis conditions, the products were 

dominated by anhydrous sugars, phenols and guaiacols. The total yield of lignin-derived 

compounds from heartwood was higher than sapwood at 500 °C but not significantly different at 

450 °C. In slow pyrolysis conditions, acetic acid and furfural were the two most abundant species 

in bio-oil. Slow pyrolysis products consisted of significantly less branched compounds of phenols 

and guaiacols as compared to fast pyrolysis products. Cedar oil components (alpha/beta-cedrene) 

were only produced at slow pyrolysis conditions and its maximum yield (21.04±1.08 area %) of 

was obtained from heartwood at 500 °C. Heartwood produced significantly more cedrenes than 

sapwood. 

Keywords: Eastern redcedar; Pyrolysis; Cedar wood oil; Bio-oil 
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2.1. Introduction 

 Depletion of fossil fuels and increase in greenhouse gases emissions justifies the need to 

develop innovative energy technologies that are both alternative and sustainable. Biomass is 

considered as one of the potential energy resources that can maintain the energy and 

environmental sustainability mainly due to its abundance and CO2 neutrality [124]. Biomass can 

be converted into fuels and energy through a number of different processes, among which 

thermochemical processes, namely gasification, pyrolysis and hydrothermal liquefaction, are 

promising technologies for production of renewable energies, fuels and chemicals [125, 126]. 

Pyrolysis converts biomass into multiple fuel products like solids (biochar), liquid 

fractions (bio-oil) and gaseous products (syngas) by thermally decomposing biomass under a 

medium temperature (~600˚C) in an inert atmosphere [127]. The operation conditions (e.g. 

temperature, heating rate, and residence time) can be adjusted to maximize the production of each 

product. Production of bio-oil has received great interest since the liquid is easier to store and 

transport than solid biomass feedstock to use as fuel. Bio-oil can be used in several applications, 

such as: direct boiler combustion for heat and power; transportation fuels that substitute 

traditional fossil fuels; or platforms for chemical production because it is composed of numerous 

organic species [14]. The properties of bio-oil are distinctly different from fossil based resources. 

Its undesirable qualities such as low heating value, high moisture content, acidity, viscosity and 

chemical instability towards temperature cause significant challenges to the application of bio-oil 

as a fuel [22, 128]. To obtain bio-oil with high yield and quality, considerable research [11, 129-

134] has been focused on designing and optimizing the pyrolysis conditions, such as increasing 

heating rates, using fine particle size feedstocks and decreasing residence time for heating and 

quenching. In addition, various reactor configurations and liquid collection systems have been 

developed and researched to improve the quality of bio-oil [129, 135-137]. 

 During pyrolysis, cellulose, hemicellulose and lignin follow different decomposition 

pathways, leading to different products. The cellulose and hemicellulose primarily degrade into 
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anhydrosugars and then convert into furan compounds through dehydration and rearrangement 

reactions [138]. Lignin primarily depolymerizes into phenols and methoxyphenols, such as 

guaiacols and syringols. Methoxyphenols can be further converted into simple phenols through 

demethoxylation and cracking[112]. Pyrolysis performance and end-product quality were 

dependent on the biomass properties that can vary because of crop variety, production practices, 

and climate. Even in the same species of woody biomass, the chemical compositions of sapwood 

(SW) and heartwood (HW) zones are significantly different. HW is the outer part of wood with a 

darker color and older cambial age than SW. A radial decrease in lignin content with cambial age 

is usually observed in individual tree species, e.g. the lignin contents in teak HW and SW are 37.3 

and 35.4 wt. %, respectively [139]. In addition, the lignin compositions, such as H-lignin (p-

hydroxyphenyl subunits), G-lignin (guaiacyl subunits) and S-lignin (syringyl subunits) vary in 

different wood zones, e.g. the content of S-lignin is higher in HW than SW of teakwood [139]. 

The extractive content of HW is usually higher than that of SW [140], e.g. the total extractives in 

the HW of Acacia melanoxylon was about twice of that in the SW [141]. The extractives decrease 

pulp yield and increase the consumption of pulping chemicals in paper industry [142]. Thus, 

understanding the effect of chemical compositional diversity of wood zones on pyrolysis products 

is important for optimizing conditions that enhance effective utilization of both sapwood and 

heartwood fractions for bio-oil production through pyrolysis. 

 Eastern redcedar is native to the Eastern United States [143, 144]. More than seven 

million acres of Oklahoma is occupied by eastern redcedar [145].  The continued spread of 

eastern redcedar has created severe negative impacts on the local ecosystems, such as loss of 

native plants and birds, reduction of forage production and livestock handling, impacts on soil 

hydraulic properties, and increased severity of wildfires [146-148].  

 Current utilization of eastern redcedar has mainly focused on cedar wood oil extraction, 

which is used in the production of fragrances, essential oils, insecticides and antifungals [145, 

149]. Several techniques have been used to recover cedar wood oil, including steam distillation, 
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solvent extraction and super critical fluid extraction. Oil yield depends primarily on the 

techniques used and the properties of the wood. On average, oil yield from eastern redcedar 

ranges from 1 to 4.6 wt. % [150]. These low oil recovering rates are a concern. Therefore, the 

development of alternative conversion techniques and processes with high efficiency, such as 

biomass pyrolysis, is critically needed. Multiple valuable products, such as fuels, chemicals, 

syngas and char, can be produced simultaneously from biomass pyrolysis process. The pyrolysis-

derived bio-oil could either be upgraded to transportation fuel in biorefineries or used for 

chemical extraction. Biochar, a porous material, can be used as a source of carbon sequestration, 

soil amendment and contaminants adsorbents for water and soil [151]. Syngas could be burned 

for heat and power, or converted into chemicals through fermentation or Fischer-Tropsch 

synthesis [125]. Moreover, pyrolysis process is less energy intense as compared to steam 

distillation [145].  

 To date, there is limited information on pyrolysis of eastern redcedar for fuels production. 

The purpose of this study was to evaluate performance and properties of end-products obtained 

from pyrolysis of softwood and heartwood of eastern redcedar. Both analytical and lab-scale 

pyrolysis reactors were be used to perform fast and slow pyrolysis study, respectively.  

2.2. Materials and Methods 

2.2.1. Biomass characterization 

 Eastern redcedar SW and HW crumbles were obtained from Forest Concepts, LLC 

(Auburn, WA, USA).  The SW and HW were ground separately using a Wiley Mill (Thomas 

Model 4 Wiley® Mill) in Biosystems and Agricultural Engineering Laboratory at Oklahoma 

State University, using a 0.5 mm screen size. The ground samples were stored in zip-lock bags at 

room temperature.  

 Compositional analysis of eastern redcedar SW and HW including extractives, 

carbohydrates and lignin content was conducted following National Renewable Energy 

Laboratory (NREL) protocols [152, 153]. Detailed procedures were previously reported [154, 
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155]. Moisture, volatile matter and ash contents of SW and HW were determined according to 

ASAE standard S358.2, ASTM D3175 and ASTM E1755-01, respectively. The fixed carbon 

content was calculated by dry basis weight percentage difference. The ultimate analysis was 

performed using an elemental analyzer (Exeter Analytical CE-440, Chelmsford, MA, USA) at 

Midwest Microlab following ASTM D3176. The higher heating value (HHV) was measured with 

a Parr 6200 Bomb Calorimeter (model 6200, Parr Instrument Co., Moline, Ill). 

2.2.2. Experimental design 

 Pyrolysis runs were carried out in a factorial design with two treatments, redcedar wood 

zones and pyrolysis temperatures for both fast and slow pyrolysis. The two wood zones were 

sapwood and heartwood. Pyrolysis temperatures were 450 and 500 ºC. Fast pyrolysis runs were 

replicated three times and slow pyrolysis runs were replicated twice.  

2.2.3. Fast pyrolysis: Py-GC/MS 

 A commercial pyroprobe (model 5200, CDS Analytics Inc.) attached to a gas 

chromatography/mass spectrometry (Agilent 7890GC/5975MS) system was used for fast 

pyrolysis of eastern redcedar wood. The probe had a computer-controlled heating element and 

held a sample in the middle of a quartz tube (25 mm length, 1.9 mm ID). The actual temperature 

difference between the filament and sample varies 50-125 ºC depending on the filament 

temperature [156, 157]. The temperature difference between the filament and sample was not 

measured during the study and was assumed to be 100 ºC based on the literature[156]. Prior to 

pyrolysis, the ground eastern redcedar sample was screen sieved, and material with a particle size 

less than 106 µm was oven dried for 24 hrs. About 0.5 mg of the dried sample was loaded into the 

quartz tube. The sample was then pyrolyzed to the set temperature with a heating rate of 1000 

°C/s and maintained for 20 s. The volatiles evolved from biomass pyrolysis were conveyed from 

the probe into an adsorbent (Tenax-TA™) trap using ultrapure helium (99.99 vol. %), and the 

trap temperature was maintained at 40 °C. The condensable bio-oil components were captured by 

the trap, and the permanent gases were purged from the trap using helium. The bio-oil 
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components were evaporated by heating the trap to a temperature of 300 ºC, and the gases were 

pumped into GC/MS through a heated transfer line for volatile component analysis.  

 The GC contained a DB-5 capillary column (30 mL×0.32 mm ID, 0.25 µm film 

thickness). The GC oven temperature was set to maintain 40 °C for 4 min, and then increased at a 

rate of 5 °C/min to 280 °C and held for 20 min. The injector temperature was held at 250 °C. The 

split ratio was set at 30:1. Helium (purity: 99.99 vol. %) was used as the carrier gas at a flow rate 

of 1 mL/min. Pyrolysis products were identified by comparing the mass spectrum with National 

Institute of Standards and Technology (NIST) mass spectral library.  

2.2.4. Slow pyrolysis: Parr reactor 

 A commercial reactor (Series 4570 HP/HT, Parr Instrument Company, Moline, Illinois, 

USA) was used for slow pyrolysis study. The reactor vessel is made of 316 stainless steel with a 

volume of 0.5 L. The vessel was heated by a cylindrical ceramic fiber electrical heater using a 

controller (Series 4840, Parr Instrument Company, Moline, IL, USA). The temperature inside the 

vessel was monitored by a J-type thermocouple. A pressure transducer (0~5000 psi) was used to 

measure the pressure build-up inside the reactor.  

 Approximately 50 g of crumbled Eastern redcedar wood sample was loaded into the 

reactor vessel for each test run. Prior to pyrolysis, the reactor vessel was purged with ultra-high 

pure nitrogen gas (99.99 vol. %) at 10 psi for 20 min to create an inert atmosphere. The reactor 

was then heated to the set temperature (450 or 500 °C) at a constant heating rate of 6 °C/min. The 

pressure inside the reactor vessel was allowed to increase to 100 psi as the temperature and gas 

production increased. Pressure was maintained at 100 psi by opening the outlet gas valve 

manually by a quarter turn to release the producing gases. The reaction was maintained at the set 

temperature for 30 min. Then, the heater was turned off to allow the reactor to cool to room 

temperature. 

 The liquid product was collected from flasks under the condensers and weighed. The char 

collected in the reactor vessel was weighed. The yield of produced gases was measured by 
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difference of weight percent. Gas sample was collected using a 0.5 L Tedlar sampling bag, and 

the composition was measured using a gas chromatograph (model CP3800, Varian Inc., CA) with 

a packed column (HayeSep DB-100/120, Alltech Associates, Inc., Deefield, Ill.) and a thermal 

conductivity detector (TCD). 

2.2.5. Pyrolysis product characterization 

 The bio-oil samples were kept in a refrigerator at 4 °C prior to analysis. The physical 

properties analyses, including moisture content, specific gravity, pH value and higher heating 

value were conducted according to ASTM standard (D 7544-12). The moisture content of bio-oil 

was determined by KF Titrino 701 (Metrohm USA Inc.) at Kansas State University following the 

ASTM D 1744 protocol using hydranal as titrant [132]. The specific gravity of the bio-oil was 

measured using a pycnometer (2 mL, ACE GLASS INC. Vineland, NJ) according to ASTM 

D891-09. The pH value of bio-oil sample was determined using a pH meter (Mettler Toledo) 

following ASTM D7544-12. The higher heating value (HHV) of bio-oil and bio-char was 

measured using a bomb calorimeter (model 6200, Parr Instrument Co., Moline, Ill.). Ultimate 

analysis of bio-oil and bio-char was performed using an Exeter Analytical CE-440 (Exter 

Analytical. Inc., Chelmsford, MA) at Midwest Microlab, LLC (Indianapolis, IN). All 

measurements were performed at room temperature, and each measurement was repeated twice, 

the average of which was recorded as the final value. 

 The main chemical components of bio-oil were analyzed by gas chromatography/mass 

spectrometry (GC/MS, Agilent 7890/5975). The analysis procedure was the same as used for the 

pyroprobe pyrolysis treatments. Bio-oil samples were prepared as 0.02 g/mL solutions in 

methanol, and were filtered through a 0.45 µm micro-filter to remove the particles prior to 

injection into 5975 series mass selective detector. The m/z values corresponding to the fragment 

ions of the compounds were recorded for each compound. Bio-oil samples were fully scanned 

over an m/z range of 30 ~500.  
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2.2.6. Carbon balance and energy yield calculation 

 Carbon balance was performed to investigate the carbon distribution in bio-oil, biochar 

and syngas using Error! Reference source not found..  

𝑻𝒐𝒕𝒂𝒍 𝒄𝒂𝒓𝒃𝒐𝒏 = (𝑪𝒃𝒊𝒐−𝒐𝒊𝒍 × 𝒀𝒃𝒊𝒐−𝒐𝒊𝒍 + 𝑪𝒄𝒉𝒂𝒓 ×  𝒀𝒄𝒉𝒂𝒓 + 𝑪𝒔𝒚𝒏𝒈𝒂𝒔 × 𝒀𝒔𝒚𝒏𝒈𝒂𝒔) × 𝟏𝟎𝟎 

Equation 2.1 

Where 

Cbio-oil = carbon content in bio-oil (wt. %),  

Cchar = carbon content in bio-char (wt. %), 

Csyngas = carbon content in syngas (wt. %), 

Ybio-oil = yield of bio-oil (wt. %), 

Ychar = yield of bio-char (wt. %), and 

Ysyngas = yield of syngas (wt. %). 

Energy yield (%) was defined as the portion of energy that contained in the biomass feed 

recovered in the pyrolysis products (                     Equation 2.2). 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑦𝑖𝑒𝑙𝑑(%) =
𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑦𝑖𝑒𝑙𝑑 (𝑤𝑡 %)×𝐻𝐻𝑉𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝐻𝐻𝑉𝑏𝑖𝑜𝑚𝑎𝑠𝑠
× 100                       Equation 2.2 

Where  

HHVproduct = higher heating value of the pyrolysis products (MJ/kg), and 

HHVbiomass = higher heating value of the biomass (MJ/kg). 

2.3. Results and Discussion 

2.3.1. Characterization of eastern redcedar SW and HW 

 Physical properties and chemical constituents of eastern redcedar are listed in Table 2.1 

[35]. Glucan, a polysaccharide of D-glucose, generally represents cellulose content. SW and HW 

had similar cellulose contents. Hemicellulose content was characterized by pentose (xylan and 

arabinan) and hexose (galactan and mannan). The total hemicellulose of SW was 19.2±0.7 wt. %. 

Total hemicellulose content of HW was similar to that of SW. The lignin content of HW was not 

significantly different from that of SW. Extractives of HW were higher than that of SW. This 
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discrepancy could be due to the transport of extractives from transition zone (between the SW 

and HW) to the HW zone [158]. The ash content of HW was significantly higher than that of SW. 

SW contained 1.5 wt. % higher fixed carbon content than HW.  

Table 2.1 Chemical composition, proximate and ultimate analysis of SW and HW zones of 

eastern redcedara
 [154]. 

                              Chemical compositions (wt. %) 

 Sapwood Heartwood 

Glucan 34.7 ± 0.5 34.6 ± 0.0 

Xylan(C5) 8.9 ± 0.2 8.5 ± 0.0 

Arabinan(C5) 1.0 ± 0.0 0.7 ± 0.0 

Galactan 2.6 ± 0.0 3.0 ± 0.1 

Mannan 6.7 ± 0.4 7.4 ± 0.0 

Ligninb 33.7 ± 0.4 34.3 ± 0.1 

Extractives 4.0 ± 0.0 4.9 ± 0.2 

                              Proximate analysis (w.b. wt. %) 

 Sapwood Heartwood 

Moisture content  8.64±0.25 9.42±0.04 

Volatile matter  72.13±0.30 71.83±0.30 

Ash content  0.12±0.06 1.14±0.25 

Fixed carbon  19.10±0.24 18.28±0.60 
 a

Values listed above are means ± standard error of two subsamples. 
           b

Acid soluble lignin and acid insoluble lignin are included in lignin content. 

2.3.2. Fast pyrolysis 

 The compositions of bio-oil obtained from pyrolysis of eastern redcedar can be 

categorized into eight groups: ketone, acid, anhydrous sugar, pyran, furan, phenol, guaiacol and 

nitrogen containing compounds according to functional groups. The distribution (area %) of the 

eight groups the two pyrolysis temperatures are shown in Error! Reference source not found. 

(450 ºC) and Figure 2.2 (500 ºC). The major compounds obtained from the two wood zones and 

two pyrolysis temperatures are provided in Table 2.2. All of the major bio-oil compounds found 

in bio-oil obtained from SW also existed in bio-oils obtained from HW but their quantities 

differed. 
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Figure 2.1 Fast pyrolysis products of eastern redcedar wood at 450 ºC (SW/HW= 

sapwood/heartwood, 450/500=pyrolyzed at 450/500 °C). 

 
Figure 2.2 Fast pyrolysis products of eastern redcedar wood at 500 ºC (SW/HW= 

sapwood/heartwood, 450/500=pyrolyzed at 450/500 °C). 

2.3.2.1. Fast pyrolysis: Effects of wood zone on bio-oil composition 

Pyrolysis products obtained at 450 °C showed that anhydrous sugar (11.90 % for SW, 

and 15.63 % for HW) and guaiacol (40.80 % for SW, and 38.20 % for HW), primary products 

derived from depolymerization of cellulose and lignin structures, were the two most abundant 

species detected. This was consistent with the results of chemical composition analysis that 

glucan and lignin were the two dominant constituents in eastern redcedar wood. Levoglucosan 
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and D-Allose were the two dominant sugar compounds. These two sugar compounds had 

relatively large standard deviations, which might be due to the variation in biomass constituents, 

especially cellulose between the biomass samples used. As reported by others [156], this variation 

also explains significant changes in the anhydrous sugar yield in the repeated experiments. 

Anhydrous sugar yield obtained from SW was not significantly different from that obtained from 

HW at 450 ºC. Effect of wood zone on the total guaiacols yield was not significant but the wood 

zone significantly affected several guaiacol compounds. For example, 2-methoxy-4-propylphenol 

derived from HW (5.92±1.88 area %) was significantly higher than that derived from SW, and 2-

methoxy-4-(1-propenyl)-phenol-(Z) derived from SW was significant higher than that derived 

from HW. There was no difference in total yield of furans from SW and HW. This can be 

attributed to the similar cellulose contents of both wood fractions (Error! Reference source not 

ound.). Furans are mainly derived from levoglucosan, the primary pyrolysis product from 

cellulose, via dehydration, decarboxylation and decarbonylation [159]. Among furans, 3, 5-

dihydroxy-2-methyl-4H-pyran-4-one was the only pentose derived pyran that was identified. 

Acetic acid was the only acid compound detected in the pyrolysis product of SW and HW. Acid 

compounds were thought to be mainly derived from the elimination of the active O-acetyl groups 

linked to the xylan chain [160]. Ketones derived from SW and HW were significantly different. 

The total yield of phenols obtained from pyrolysis of HW was 4.30±1.22 area %, which was 

significantly higher than that of SW. Phenols and guaiacols, lignin originated groups, were 

42.46±5.52 and 42.50±8.64 area % in SW and HW pyrolysis products, respectively. Syringols 

were not detected in the pyrolysis product indicating that eastern redcedar wood lignin was 

composed of Guaiacol-Hydroxyphenyl (G-H) structure. Suchithra et al. [156] also observed the 

absence of syringols in the pyrolysis products of pine wood. The absence of syringols was 

attributed to the lack of syringyl monomer in the pine lignin structures. Lignin structure in soft 

woods, such as pine wood and eastern redcedar were found to predominantly (over 95%)  
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composed of G-units [161]. 1, 4-dimethyl-3-pyrazolidinone (a heterocyclic oxygenated 

compound) was the only nitrogen containing compound.  

2.3.2.2. Fast pyrolysis: Effects of temperature on bio-oil composition 

 Figure 2.2 shows the product distribution of eastern redcedar at 500 ºC. The total yield of 

lignin derived compounds from SW and HW increased to 47.38±0.74 and 54.28±2.61 area %, 

respectively. Phenols derived from both SW and HW increased significantly as the pyrolysis 

temperature increased from 450 to 500 ºC. Phenols were mainly the result of decomposition of 

lignin oligomers and guaiacols. Both processes are thermodynamically favorable, therefore leads 

to an increase in phenols. Guaiacols from both SW and HW were not significantly affected by the 

temperature increase. Guaiacols and phenols from HW were significantly higher than that from 

SW. Furans from both SW and HW increased significantly as the pyrolysis temperature increased 

from 450 to 500 ºC. The increase in temperature favored the degradation of levoglucosan and 

other anhydrous sugars. 

 Both HW and SW produced similar yields of lignin derived compounds at the low 

temperature (450 ºC). Increase in temperature facilitated the depolymerization of lignin and 

levoglucosan in both SW and HW, leading to increased phenols, guaiacols and furans. At the high 

pyrolysis temperature (500 ºC), lignin derived compounds from SW and HW were significantly 

different. As shown in Table 2.3, the interaction of temperature and wood zone was significant 

only on the yield of ketones. By comparing the ketone yield, it can be concluded that ketone yield 

was more sensitive to the variation in pyrolysis temperature than the variation in wood zone. The 

ketone yield was found to decrease with increase in temperature probably due to the increase in 

secondary pyrolysis reaction rates with increase in temperature, leading to formation of lighter 

gaseous compounds at 500 °C [162, 163]. 
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Table 2.2 Pyrolysis products of eastern redcedar wood from Py-GC-MSa (SW/HW450/500= 

sapwood/heartwood pyrolyzed at 450/500 °C). 

Chemicals Group SW450 HW450 SW500 HW500 

Cellulose/Hemicellulose derived compounds (Area %) 

Acetic acid Acid 2.11±0.84 1.55±0.45 2.36±0.41 2.00±0.06 

1,2-Cyclopentanedione Ketone 2.58±0.07 1.29±0.41 - - 

2-Cyclopenten-1-one, 2-

hydroxy-3-methyl- 

Ketoneb 1.18±0.15 - 1.01±0.16 - 

4H-Pyran-4-one, 3,5-

dihydroxy-2-methyl- 

Pyran 1.87±0.29 2.38±0.40 1.66±0.21 2.38±0.37 

2-Furanmethanol Furan 1.03±0.11 - 1.25±0.67 - 

Furfural Furan 1.88±0.23 1.80±0.43 2.10±0.49 2.28±0.07 

2-Furancarboxaldehyde, 5-

methyl- 

Furan - 1.05±0.43 - 1.07±0.31 

2(5H)-Furanone Furan 1.77±0.14 - 1.88±1.01 1.10±0.08 

2(3H)-Furanone, 5-methyl- Furan - - 2.08±0.44 1.50±0.82 

5-Hydroxymethylfurfural Furan 1.64±0.28 1.87±0.41 1.83±0.21 2.46±0.03 

Glutaraldehyde Sugar 1.27±0.15 1.01±0.22 1.43±0.53 1.09±0.07 

Levoglucosan Sugar 5.43±2.84 3.68±1.57 6.56±5.00 1.19±0.73 

D-Allose Sugar 2.76±0.60 9.13±11.95 3.97±2.54 6.34±4.16 

α-D-Glucopyranoside Sugar 1.38±0.96 1.82±1.64 1.21±0.19 1.81±0.10 

                                                                                                                     Lignin derived 

compounds (Area %) 

P-cresol Phenol - - 1.04±0.06 1.19±0.18 

Catechol Phenol 1.66±0.09 2.32±0.76 2.27±0.52 3.73±0.45 

1,2-Benzenediol, 3-methyl- Phenol - 1.98±0.24 1.64±0.06 3.64±0.32 

Phenol, 2-methoxy- Guaiacol 4.24±0.87 3.44±0.81 3.74±0.04 4.17±0.10 

Creosol Guaiacol 5.94±1.35 6.56±1.50 5.64±1.16 9.21±1.58 

2-Methoxy-4-vinylphenol Guaiacol 6.91±1.03 6.39±1.51 6.46±1.05 7.87±0.88 

2-Propanone,1-(4-hydroxy-3-

methoxyphenyl)- 

Guaiacol 2.81±1.83 2.45±1.64 2.19±1.12 1.62±0.30 

Apocynin Guaiacol 1.33±0.27

  

1.56±0.68 1.55±0.17 2.47±0.30 

Vanillin Guaiacol 2.11±0.30 1.94±0.68 2.42±0.32 2.57±0.32 

Eugenol Guaiacol 1.37±0.26 1.00±0.26 1.35±0.11 1.38±0.10 

Homovanillic acid Guaiacol 2.20±0.47 1.84±0.81 1.88±0.04 2.35±0.32 

Phenol, 2-methoxy-4-propyl- Guaiacol 2.08±0.72 5.92±1.88 2.31±0.41 5.63±1.03 

Phenol, 4-ethyl-2-methoxy- Guaiacol 1.65±0.70 1.96±0.93 1.32±0.31 2.54±0.44 

Phenol, 2-methoxy-4-(1-

propenyl)-, (Z)- 

Guaiacol 5.69±1.22 1.67±2.30 5.04±1.06 4.55±0.41 

Phenol,4-(3-hydroxy-1-

propenyl)-2-methoxy- 

Guaiacol 1.73±1.24 - 2.01±1.92 - 

Nitrogen containing compounds (Area %) 

3-Pyrazolidinone, 1,4-dimethyl Nitrogen 2.47±0.44 4.06±0.78 2.65±0.21 4.31±0.11 

Total  69.82 72.81 72.38 80.08 
a “-”means the relative peak area percentage of the detected compound is less than 1 %. 
b 

Values listed above are means ± standard deviation of three subsamples. 
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Table 2.3 Results of two-way ANOVA analysis (p-values): Effects on pyrolysis temperature 

and wood zone one yields of pyrolysis product groups. 

Groups Temperature 

Woo

d 

Zone 

Temperature*Wood Zone 

Ketone 0.00 0.012 0.025 

Acid 0.021 0.011 0.23 

Sugar 0.61 0.96 0.44 

Pyran 0.049 0.85 0.43 

Furan 0.004 0.72 0.32 

Phenol 0.00 0.001 0.84 

Guaiacol 0.18 0.74 0.23 

N containing 

Compound 
0.45 0.00 0.90 

Lignin derived 

Compound 
0.024 0.28 0.28 

 

2.3.3. Slow pyrolysis 

2.3.3.1. Slow pyrolysis: Effects of temperature and wood zone on pyrolysis products 

distribution 

 The yields of bio-oil, biochar and syngas obtained from slow pyrolysis of HW and SW 

and at 450 and 500 °C (shown in Table 2.4) were not significantly different, except that biochar 

yield obtained from SW was significantly higher than that from HW at 500 °C. Biochar and total 

volatile (bio-oil + syngas) yields were comparable with those reported from slow pyrolysis of 

woody biomass, such as pine and fir wood [164-166]. Bio-oil yields from slow pyrolysis reported 

in this study and literature [167] are typically much lower than bio-oil yield (up to 60 wt %) from 

fast pyrolysis using auger and fluidized bed reactors at 500 °C [168, 169]. The high bio-oil yields 

of fast pyrolysis are due to its high heating rate and short gas residence time. In an auger reactor 

system, biomass moves continuously through the auger and heated via the thermal conduction 

between the reactor wall and biomass with a temperature gradient of 100-150 °C, with a 

residence time of approximately 8 s [169]. Owing to the fluidizing medium, high heating rate can 

be achieved in fluidized bed with short gas residence time (<2 s). High heating rate and short gas 

residence time are believed to enhance the rapid fragmentation of biomass and mitigate the 
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secondary cracking of tar [170], resulting in the high bio-oil yield.  The Parr reactor system used 

in this study for slow pyrolysis was operated at a low heating rate (6 °C/min). In addition, the 

volatiles evolved from the reactor were in absence of any carrier gases.  

Table 2.4 Distribution of products from slow pyrolysis of eastern redcedar woods 

(SW/HW450/500= sapwood/heartwood pyrolyzed at 450/500 °C). 

Products (wt. %) SW450 HW450 SW500 HW500 

Bio-oil  A35.9±0.16a A33.2±5.52 A33.4±3.11 A34.3±1.39 

Biochar  A31.4±1.41 A32.6±2.62 A30.9±0.42 B29.3±0.14 

Syngas  A32.7±1.34 A34.2±0.16 B35.7±0.89 A36.4±1.35 
aValues listed above are means ± standard deviation of two subsamples. 
*Means with the same letters under the same column are not significantly different at 5% level. 

2.3.3.2. Slow pyrolysis: Effects of temperature and wood zone on bio-oil properties and 

composition 

 All bio-oil samples were brown in color and heterogeneous liquids with two phases, the 

organic phase in the bottom and the aqueous phase on the top.  The moisture contents of bio-oil 

samples shown in Table 2.5 were higher (above 60%,) than those reported in the literature (20-40 

wt. %) [171]. High moisture contents reduce bio-oil energy content and also lead to the phase 

separation during the storage [3]. The carbon, hydrogen and oxygen contents of bio-oil samples 

ranged from 52.69 to 57.81 wt. %, 7.51 to 8.75 wt. %, and 33.32 to 38.91 wt. %, respectively and 

were comparable with the results previously reported [171, 172]. The low heating values of bio-

oil samples (shown in Table 2.5) were lower than those of bio-oil derived from forestry residue 

(21 MJ/kg dry basis) reported in the literature [171]. The low bio-oil pH could cause corrosion 

issues during the storage and transportation. 
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Table 2.5 Characteristics of bio-oil obtained from slow pyrolysis of eastern redcedar woodb (SW/HW450/500= sapwood/heartwood 

pyrolyzed at 450/500 °C). 

Bio-oil 

sample 

Moisture 

(wt. %) 
Ca (wt. %) Ha (wt. %) Na (wt. %) Oa (wt. %) 

Higher 

heating valuea 

(MJ/kg) 

pH 
Specific 

gravity 

SW450 A84.16±4.10 A68.98±14.91 A7.11±0.08 A0.21±0.14 A23.71±15.13 A31.00±5.24 A2.52±0.21 A1.01±0.001 

HW450 B77.64±7.62 A53.27±19.58 A7.24±1.19 B0.11±0.01 A39.38±18.40 B17.42±7.96 A2.45±0.06 A1.02±0.01 

SW500 B79.31±0.08 A52.69±2.34 B8.30±0.47 B0.10±0.00 A38.91±2.80 B14.19±6.69 A2.38±0.04 A1.00±0.02 

HW500 B78.9±2.16 A57.81±3.86 B8.75±0.23 B0.12±0.05 A33.32±3.58 B17.29±7.07 A2.36±0.08 A1.02±0.01 
a Values are converted to dry basis. 
b 

Values listed above are means ± standard deviation of two subsamples. 
* Means with the same letters under the same column are not significantly different at 95% level.
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 Bio-oils were mainly composed of carboxylic acids, ketones, furans, aromatics, phenols, 

guaiacols and olefins, as shown in Table 2.6. Acetic acid and furfural were the most abundant 

species identified in the bio-oil compounds. For example, acetic acid and furfural accounted for 

approximately 18 and 22 area %, respectively, for all bio-oil compounds identified from SW at 

pyrolysis temperature of 450 °C. Similar findings have also been observed in beech wood derived 

bio-oils [173]. Acetic acid was expected to form by primary decomposition of monosaccharides 

derived from hemicellulose [174]. The substantial quantity of acetic acid was responsible for the 

high bio-oil acidity as shown in Table 2.5. Ketones detected in bio-oils were 1-hydroxy-2-

butanone, cylcopentanone and 2-methyl-2-cyclopenten-1-one, which confirm findings in the 

literature [10, 175]. Furan derivatives were dominated by furfural; derived from ring-open and 

rearrangement of monosaccharides in hemicellulose [174]. The observation of aromatic 

hydrocarbons was the major qualitative difference between the identified compounds from the 

fast and slow pyrolysis. The reaction mechanisms of aromatics production from lignocellulosic 

biomass has been well documented [91, 112, 159, 176]. Aromatics are derived from a series of 

reactions such as decarbonylation and oligomerization associated with furan compounds [159]. 

Lignin is a minor contributor to the production of aromatics even though its chemical structure is 

built on aromatic phenols blocks. Noticeable compositional differences on lignin derived products 

were observed between the fast (Table 2) and slow pyrolysis runs (Table 2.6). Guaiacols, 

especially those derived directly from degradation of lignin monomers (e.g. 2-Methoxy-4-

vinylphenol, Vanillin, 2-methoxy-4-(1-propenyl)- phenol(Z)-, etc.), were the dominant lignin 

derived groups detected from fast pyrolysis runs, while simple phenols were the major chemical 

group for the slow pyrolysis runs. The qualitative difference could be due to the additional 

cracking of primary lignin derived products when exposed to the thermal environment. 

Alpha/beta-cedrenes were two hydrocarbon isomers sharing the formula C15H24, which were 

commonly identified in essential oils [177] as well as cedar wood oil [145]. Significant 

quantitative differences between alpha and beta-cedrene were observed between the bio-oils 
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produced in the slow pyrolysis runs. Also, HW produced significantly more total cedrenes than 

SW, suggesting that HW is more suitable than SW for extraction of this value-added chemical. It 

should be noted that these two species were not detected in the fast pyrolysis runs. These results 

indicated that slow pyrolysis were more favorable for the extraction of alpha/beta-cedrenes than 

fast pyrolysis, one of the main components of cedar wood oil. 

Table 2.6 Composition of bio-oil from slow pyrolysis of eastern redcedar woodsa 

(SW/HW450/500= sapwood/heartwood pyrolyzed at 450/500 °C). 

Chemicals Group SW450 HW450 SW500 HW500 

                                                                      Cellulose/Hemicellulose derived compounds 

(Area %) 

acetic acid Acid 18.18±1.45 11.25±1.52 18.15±0.16 9.75±1.84 

propanic acid Acid 2.42±3.17 2.42±0.36 3.42±0.62 2.32±0.85 

1-hydroxy-2-butanone Ketoneb 2.54±0.31 1.49±0.28 2.09±0.66 1.21±0.26 

Cylcopentanone Ketone 2.92±0.28 1.79 3.58 1.54±0.13 

2-Cyclopenten-1-one, 2-

methyl- 
Ketone 4.42±0.46 1.56±0.56 2.58±0.91 1.51±0.25 

Furfural Furan 22.69±0.40 26.20±2.16 20.10±3.39 21.80±3.23 

2-Furanmethanol Furan 3.61±1.54 - 1.47±0.26 - 

Ethanone, 1-(2-furanyl)- Furan 0.99±0.15 - - - 

2-Furancarboxaldehyde, 5-

methyl- 
Furan 3.16±0.57 4.46±0.97 2.94±0.21 4.43±0.38 

                                                                                  Lignin derived compounds (Area %) 

Toluene Aromatic 1.97±1.02 - - - 

p-Xylene Aromatic 1.90±0.14 1.65±0.59 1.54±0.51 1.77±0.67 

Phenol Phenol 4.27±2.08 3.04±0.12 3.25±1.24 3.55±1.30 

Phenol, 2-methyl- Phenol 2.43±0.79 2.54±0.19 1.83±0.39 2.71±2.07 

p-Cresol Phenol 1.31±0.68 1.67±0.63 - - 

Phenol, 2-methoxy- Guaiacol 10.34±1.63 7.98±0.67 10.13±1.82 5.22±0.03 

Creosol Guaiacol 4.28±0.02 5.71±0.33 4.24±0.14 4.34±0.61 

                                                                                       Cedar oil compounds (Area %) 

(-)-alpha-cedrene Olefin 8.39±1.12 12.97±1.08 8.65±1.46 18.15±0.74 

(+)-beta-cedrene Olefin 2.27±0.32 1.93±0.93 1.81±0.10 2.89±0.34 
     a “-”means the relative peak area percentage of the detected compound is less than 0.5 %. 
      b 

Values listed above are means ± standard deviation of two subsamples. 

 

2.3.3.3. Slow pyrolysis: Effects of temperature and wood zone on properties of biochar and 

syngas 

 Table 2.7 summarizes the elemental analysis and energy content for both unprocessed 

and biochar eastern redcedar SW and HW. Comparing the unprocessed components, HW had 
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higher carbon content than SW. The C/H and O/C molar ratios for HW were 0.74 and 0.71, 

repectively, while these ratios were 0.73 and 0.77, respectively, for SW.  The energy content of 

unprocessed HW was significantly higher than that of unprocessed SW. Pyrolysis led to a 

significant increase of carbon content and a significant decrease of hydrogen and oxygen content 

in the biochar compared with the unprocessed sample, as indicated in Table 2.7. The C/H ratios 

of biochar obtained at 450 °C were 2.34 and 2.7 for SW and HW, respectively, which were 

comparable to wood waste results reported in literature [171]. The carbon and oxygen content 

variation that resulted from pyrolysis also contributed to the significant increase in the biochar 

heating value, e.g., the heating value of SW biochar obtained at 450 °C increased 58% compared 

with that of unprocessed SW.
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Table 2.7 Characterization of bio-char from slow pyrolysis of eastern redcedar woods (SW/HW450/500= sapwood/heartwood pyrolyzed at 

450/500 °C). 

Bio-char sample C (d.b. wt. %)a H (d.b. wt. %) O (d.b. wt. %) N (d.b. wt. %) S (d.b. wt. %) Higher heating 

value (MJ/kg) 

Unprocessed SW 46.45 5.33 47.64 0.19 0.16 A19.84±0.077 

Unprocessed HW 48.23 5.44 45.96 0.21 0.15 A20.22±0.13 

SW450 *A84.35±2.19 B3±0.14b A11.45±2.48 A0.45±0.07 A0.4±0.15 B31.36±0.40 

HW450 B87.4±0.28 A2.7±0.3 B8.95±0.21 A0.4±0.1 A0.4±0.1 B33.77±2.19 

SW500 *A85.8±2.97 A2.4±0.2 A10.85±2.90 B0.35±0.07 B0.35±0.07 C29.98±2.50 

HW500 B88.88±0.45 A2.6±0.15 B7.75±0.07 B0.35±0.07 A0.4±0.1 D32.95±0.17 
a Values are dry base ash free. 
b 

Values listed above are means ± standard deviation of two subsamples. 
*Means with the same letters under the same column are not significantly different at 95% level.
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A statistical analysis (unpaired t-test) was performed to evaluate the effects of SW and 

HW on the derived biochar compositions. The results showed that biochar obtained from HW 

contained significantly higher carbon and lower oxygen contents than that obtained from SW for 

both temperatures investigated. Comparing the carbon, hydrogen and oxygen content of SW and 

HW before and after pyrolysis, it was determined that the extent of variation (increase/decrease in 

percent) was similar, indicating that biochar composition differences between SW and HW could 

be attributed to the unprocessed sample chemical composition. 

 Syngas obtained from pyrolysis of eastern redcedar contained four major species, H2, 

CO, CH4 and CO2 (Table 2.8). The gross calorific value of the syngas was estimated using the 

individual gas component higher heating values given in literature [178]. The syngas obtained 

from HW had a significantly higher gross calorific value (GCV) than that from SW. This could 

be due to the high yields of CO and CH4 and low yield of CO2 in the syngas obtained from HW 

pyrolysis. Phan et al. [166] reported that syngas obtained from waste wood composition at 650 °C 

pyrolysis temperature contained 30.5 vol. % CO, 44.7 vol. % CO2, 7.0 vol. % H2, and 14.7 vol. % 

CH4 with a GCV of 12.6 MJ/Nm3, which was comparable to the GCV of syngas obtained from 

HW at 500 °C in this study. Researchers also observed CO and CO2 maximize at temperature of 

500 °C, whereas hydrogen continue to increase with pyrolysis temperature. 

Table 2.8 Composition of syngas obtained from slow pyrolysis of eastern redcedar woods 

(SW/HW450/500= sapwood/heartwood pyrolyzed at 450/500 °C). 

Sample H2 (vol. %) CO (vol. %) CH4 (vol. %) CO2 (vol. %) 

Gross calorific 

value (MJ/Nm3) 

SW450 *A3.09±1.04a A34.65±1.33 A11.16±1.13 

A51.11±0.

83 A9.21±0.75 

HW450 *A3.01±1.05 B37.27±0.89 B14.51±1.77 

B44.56±4.

62 B10.87±0.95 

SW500 B3.92±0.73 A34.70±0.97 B14.31±1.22 

C47.07±0.

99 B10.58±0.70 

HW500 A3.14±0.09 C40.42±1.34 C16.41±2.60 

D40.03±4.

04 C12.04±1.22 
a 

Values listed above are means ± standard deviation of two subsamples. 
* Means with the same letters under the same column are not significantly different at 5% level. 
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2.3.3.4. Slow pyrolysis: Carbon and energy balances 

The percentages of carbon transferred from biomass into bio-oil, biochar and syngas 

during the pyrolysis process was estimated using Error! Reference source not found., and the 

esults are shown in Table 2.9. Over 90 wt. % of carbon transfer was achieved in the pyrolysis 

products, with most being retained in the biochar. The secondary tar cracking instigated by the 

slow pyrolysis condition could have promoted the production of syngas and reduced the 

production of liquid, hence low carbon transfer into bio-oil was expected. Figure 2.3 shows the 

distribution of energy transferred to the pyrolysis products of eastern redcedar wood. Much of the 

energy (up to 50%) was retained in the biochar after pyrolysis. Less than 10 % of the energy 

transferred to bio-oil. 

 
Figure 2.3 Energy recovery for pyrolysis of eastern redcedar wood in slow pyrolysis runs 

(SW/HW450/500= sapwood/heartwood pyrolyzed at 450/500 °C). 

Table 2.9 Carbon balance of the products obtained from slow pyrolysis of eastern redcedar 

woods (S/HW450/500= sapwood/heartwood pyrolyzed at 450/500 °C). 

Sample 
Carbon in bio-

oil (wt. %) 

Carbon in 

biochar (wt. %) 

Carbon in 

syngas (wt. %) 
Total (wt. %) 

SW500 7.84 57.08 27.00 91.92 

HW500 8.82 54.00 27.73 90.54 
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2.4. Conclusions 

This study investigated the pyrolytic behavior of eastern redcedar heartwood (HW) and 

sapwood (SW) in two process conditions (fast at micro-scale and slow pyrolysis at lab-scale) and 

at two temperatures (450 and 500 °C). Eastern redcedar wood was characterized by a G-H type 

lignin because of lack of S-lignin units in bio-oil. In fast pyrolysis conditions, bio-oils produced 

were dominated by primary products, such as anhydrous sugars, phenols and guaiacols. At 

450 °C, ketones in bio-oils obtained from SW produced were significantly higher than that 

obtained from HW. There was no significant difference on the total yield of lignin-derived 

products from SW and HW; however, SW yielded fewer phenols and more guaiacols than HW. 

When temperature increased to 500 °C, HW yielded more lignin-derived products than SW.  

Bio-oils produced from slow pyrolysis were dominated by small molecules, such as 

acetic acid, furfural and simple phenols that are derived from the decomposition of primary 

products. Cedar oil components (alpha/beta-cedrene) were only produced at slow pyrolysis 

conditions, indicating that slow pyrolysis could be used as an alternative way to extract cedar oil. 

The maximum yield (21.04±1.08 area %) of alpha/beta-cedrene was obtained from heartwood at 

500 °C. Heartwood produced significantly more alpha/beta-cedrene than sapwood.
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CHAPTER III 

3. EFFECTS OF TORREFACTION AND DENSIFICATION ON SWITCHGRASS 

PYROLYSIS PRODUCTS 

This research paper was published as a research paper in the journal of Bioresource Technology 

“Z. Yang, M. Sarkar, A. Kumar, J.S. Tumuluru, R.L. Huhnke, Effects of torrefaction and 

densification on switchgrass pyrolysis products, Bioresource Technology, 174 (2014) 266-273.”.
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Abstract: The pyrolysis behaviors of four types of pretreated switchgrass (torrefied at 230 and 

270 °C, densification, and torrefied at 270 ºC followed by densification) were studied at three 

temperatures (500, 600, 700 ºC) using a pyroprobe attached to a gas chromatogram mass 

spectroscopy (Py-GC/MS). Torrefied switchgrass had improved hydrogen to carbon ratio and 

energy content compared with raw switchgrass. Contents of anhydrous sugars and phenols in 

pyrolysis products of torrefied switchgrass were higher than those in pyrolysis products of raw 

switchgrass. As the torrefaction temperature increased from 230 to 270 °C, the contents of 

anhydrous sugars and phenols in pyrolysis products increased whereas content of guaiacols 

decreased. High pyrolysis temperatures (600 and 700 °C as compared to 500 °C) enhanced 

decomposition of lignin and anhydrous sugars, leading to increase in phenols, aromatics and 

furans. Densification enhanced depolymerization of cellulose and hemicellulose during pyrolysis. 

Keywords: Torrefaction; Densification; Switchgras; Pyrolysis; Py-GC/MS 
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3.1. Introduction 

Alternative energy sources can play an important role in reducing the dependence on 

fossil fuels and meeting the future energy demands [156, 179]. Biomass has been identified as an 

alternative, clean and carbon dioxide (CO2) neutral energy source to produce liquid transportation 

fuels or biofuels and other forms of energy [180]. Switchgrass, a perennial, warm-season grass 

native to the prairies of North America, has emerged as an ideal biomass to produce biofuels 

because of its high yields of about 15 Mg ha-1 [181, 182], environmental benefits such as a 95% 

reduction in soil erosion and 90% reduction in pesticide and fertilizer usage and the ability to 

tolerate diverse growing conditions[183] . However, similar to other biomass, properties of 

switchgrass such as low energy and bulk densities, and high moisture content create challenges 

for storage, transportation and conversion into final fuels, chemicals and power [184]. 

Pretreatments such as torrefaction and densification can be used to improve properties of 

switchgrass because pretreating biomass results in the breakage of its lignin structure and 

decomposition of cellulose and hemicellulose structure rendering the biomass more accessible to 

be pyrolyzed [157, 185]. Torrefaction is a thermochemical process which occurs at temperatures 

between 200 and 300°C in an inert atmosphere resulting in a hydrophobic product with improved 

physical and chemical properties and an increased energy density [186]. Densification increases 

bulk density of the biomass by converting loose biomass into pellets and briquettes having more 

uniformity and higher bulk density [184, 187]. A combination of torrefaction and densification 

may provide additional benefits by increasing both the bulk and energy densities while making 

biomass hydrophobic. 

Biomass is converted into biofuels via two processes namely biochemical and 

thermochemical conversion processes. Pyrolysis is one of the thermochemical conversion 

methods to produce liquid fuels and chemicals. In this process biomass is rapidly heated to 450-

550°C in an inert atmosphere with a short residence time resulting in char, vapors and aerosols 

(bio-oil), and gas [171, 188]. The bio-oil produced is a dark brown liquid and a complex mixture 
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of water (20-25 wt.%) and polar organics (75-80 wt.%) [2]. Bio-oil can be used in several 

applications such as boilers, furnaces, turbines and internal combustion engines for heat, power or 

electricity generation [14]. However its adverse characteristics such as instability, low heating 

value, high density, viscosity, acidity, water and oxygen create challenges in its utilization [179, 

188]. 

Few studies have been performed on pyrolysis of torrefied and densified biomass [157, 

189, 190]. However, there has been no published report on effects of pretreatments on the bio-oil 

components obtained from pyrolysis of switchgrass. Hence, the objective of this study was to 

investigate the effects of torrefaction and densification pretreatments and pyrolysis temperatures 

on the bio-oil components obtained from pyrolysis of switchgrass. 

3.2. Materials and methods 

3.2.1. Biomass characterization 

Kanlow Switchgrass (Panicum Virgatum) grown at the Plant and Soil Sciences 

department at Oklahoma State University was selected as the biomass feedstock. Bales of Kanlow 

switchgrass were chopped using a Haybuster tub grinder (H1000, Duratech Industries 

International Inc. Jamestown, N.D) with a screen size of 25 mm. The chopped switchgrass was 

then ground using a hammer mill (Bliss Industries, Ponca City, Oklahoma) with a mesh size of 4 

mm and sent to Idaho National Laboratory (INL, Idaho Falls) for pretreatments. Four types of 

pretreatment included torrefaction at 230°C and 270°C for 30 min residence time, densification, 

and combined torrefaction and densification (torrefaction at 270°C for 30 min followed by 

densification). More details on the operation conditions of pretreatments can be found in our 

previous study [191]. The mass loss during torrefaction pretreatment at 230 and 270 °C was 25.01 

wt % and 36.70 wt %, respectively. The loss could be due to the releasing of moisture, 

condensable and non-condensable volatiles.  

Proximate analysis (contents of moisture, volatile, ash and fixed carbon) of biomass 

sample was determined using a furnace (model 3-550A, Dentsply Prosthetics, PA). The moisture, 
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volatile and ash contents were determined following ASAE standard S358.2 (ASABE Standards, 

2006), ASTM D3175 and ASTM E1755-01, respectively. The fixed carbon content was 

determined by subtracting the volatile and ash contents from the total biomass on dry basis. The 

ultimate analysis of biomass was measured using an elemental analyzer (PerkinElmer 2400 Series 

II CHNS/O Elemental Analyzer, Shelton, CT). 

The Higher Heating Value (HHV) of biomass was measured using an adiabatic Parr 6200 

Bomb Calorimeter (model A1290DDEB, Parr Instrument Co., Moline, Ill). 0.5 g of biomass 

sample was pelletized using a pellet press and the pellet was kept in a nickel crucible and burned 

inside a bomb calorimeter surrounded by a water jacket. The sample was ignited by a 10 cm 

length aluminum wire in presence of oxygen. The wire was placed in such a way that only the tip 

touched the pellet. Upon ignition, the released heat transferred to the water jacket causing 

temperature to rise. The increase in temperature was used to calculate HHV of the sample. The 

HHV measurements were done three times and the average value was reported. 

3.2.2. Py-GC experiments 

Pyrolysis experiments were performed in a commercialized pyrolyzer (model no. 5200, 

CDS Analytics Inc.). The probe had a computer-controlled heating element which held a sample 

in a quartz tube (25 mm long, 1.9 mm i.d.). Pyrolysis experiments were conducted at three 

temperatures (500, 600 and 700 °C) at a constant heating rate of 1000 °C/s. About 1 mg of 

biomass sample was loaded for pyrolysis experiment using helium gas as the inert gas. The 

volatiles evolved from biomass pyrolysis were carried from the probe into an adsorbent (Tenax-

TA™) trap, which was maintained at 40 °C. The condensable bio-oil components were captured 

by the trap, and the permanent gases were purged out with helium. Then, the bio-oil components 

were evaporated by heating the trap to 300 ºC, and then were directed into a gas 

chromatography/mass spectrometry (Agilent 7890GC/5975MS) through a heated transfer line for 

analysis of bio-oil compounds. 
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The GC column was equipped with a DB-5 capillary column (30 mL×0.32mm I.D., 0.25 

µm film thickness). The GC oven temperature was set to maintain at 40 °C for 4 min, and then 

the temperature was programmed at a rate of 5 °C/min to 280 °C and maintained for 20 min. The 

injector temperature was 250 °C, and the split ratio was set to 30:1. Helium (purity: 99.99%) was 

used as the carrier gas at a flow rate of 1mL/min. 

3.2.3. Experiment design  

 A full factorial experimental design was used with two factors namely switchgrass 

pretreatment and pyrolysis temperatures. Five levels of switchgrass pretreatment were a) no 

pretreatment (raw switchgrass), b) torrefaction at 230°C, c) torrefaction at 270°C, d) 

densification, e) combined torrefaction and densification (torrefaction at 270°C followed by 

densification). Three levels of pyroprobe (pyrolysis) temperatures were 500, 600 and 700°C.  

3.3. Results and discussions 

3.3.1. Effects of pretreatment on switchgrass properties 

The results of proximate and ultimate analysis of raw and pretreated switchgrass were 

indicated in Table 3.1[191]. It can be seen that moisture contents of switchgrass decreased after 

pretreatment with torrefaction at 230 and 270 ºC. However, moisture content of pellets 

(switchgrass with densification and combined pretreatments) was not compared with others 

because pellets were further dried after densification to allow storing those safely. The volatile 

content decreased after pretreating with torrefaction at 230 °C and continued to decrease as the 

torrefaction temperature increased to 270 ºC due to the partial decomposition of biomass 

polymers (cellulose, hemicellulose and lignin) and release of light volatiles[192]. On the other 

hand, densification did not show significant effect on switchgrass volatile content. However, the 

combined pretreatment of torrefaction and densification resulted in the least volatile content 

(62.63 wt. %). Ash content of switchgrass was significantly affected only by the high temperature 

torrefaction and combined torrefaction and densification pretreatments, which can be due to the 
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high loss of volatile content. Fixed carbon content was significantly affected at all pretreatment 

conditions except densification. The highest fixed carbon content was observed when switchgrass 

was pretreated with combined torrefaction and densification (31.45 wt. %) and followed by 

pretreated with torrefaction at 270 and 230 °C, respectively. The ultimate analysis results 

indicated that the carbon content increased significantly by torrefaction and combined 

pretreatments with torrefaction and densification. In addition, the carbon content increased 

significantly as the torrefaction temperature increased from 230 to 270 °C. Inverse trend was 

observed for both hydrogen and oxygen content in both raw and pretreated switchgrass. 

Densification has no significant effects on the carbon and oxygen contents according to statistical 

analysis using Duncan multiple range tests. The HHV of switchgrass was increased at all 

pretreatment conditions except densification. The increase in HHV could be due to decreased 

oxygen to carbon (O/C) and hydrogen to carbon (H/C) ratios in the switchgrass pretreated with 

torrefaction compared with raw switchgrass. This fact can be also seen in the Van Krevelen 

diagram shown by Sarkar et al [191]. 

Table 3.1Proximate and ultimate analysis and HHV of pretreated switchgrass (adapted 

from Sarkar et al., 2014).(SG=switchgrass, T230=switchgrass torrefied at 230 °C, 

T270=switchgrass torrefied at 270 °C, DEN=densified switchgrass, T270+DEN=Switchgrass 

pretreated by combined torrefaction and densification, same in Table 3.2 ~Table 3.4.) 

                                     Proximate analysis (w.b. wt. %) 

 Raw SG T230 T270 DEN T270+DEN 

Moisture 

content  

9.80±0.65* 2.39±0.61 2.05±1.04 5.05±0.78 7.44±0.15 

Volatile matter  80.63±0.18 78.99±0.54 67.52±0.93 80.23±0.54 62.63±0.23 

Ash content  3.50±0.44 3.63±0.15 4.98±0.50 3.62±0.14 5.91±0.16 

Fixed carbon  15.87±0.42 17.38±0.45 27.51±1.38 16.15±0.67 31.45±0.38 

                                      Ultimate analysis (d.b. wt. %) 

 Raw SG T230 T270 DEN T270+DEN 

Carbon 47.37±0.03 52.79±0.16 59.16±0.45 47.11±0.29 52.09±0.34 

Hydrogen 6.61±0.18 5.77±0.27 4.67±0.28 5.93±0.12 5.13±0.11 

Oxygen 43.97±0.35 39.58±0.59 34.53±1.00 45.44±0.37 41.34±0.15 

Nitrogen 0.62±0.01 0.32±0.08 0.44±0.18 0.29±0.01 0.39±0.01 

Sulfur 1.43±0.13 1.54±0.08 1.20±0.08 1.24±0.04 1.05±0.06 

HHV (MJ/kg) 20.60±0.69 23.53±0.19 27.11±0.27 19.14±0.25 22.27±0.32 
*Values listed above are means ± standard deviation of three samples. 
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3.3.2. Characterization of pyrolysis products 

 The chemical compositions of pyrolysis products of raw and pretreated switchgrass 

obtained at three temperatures (500, 600 and 700 ºC) are classified into different families as 

shown in Figure 3.1~Figure 3.3 in terms of relevant peak areas. More than 100 compounds were 

identified by comparing the spectrum with the MS library. The pyrolysis products can be 

classified into various families according to their functional groups, such as ketones, anhydrous 

sugars, furans, phenols, guaiacols, syringols, aromatics and carboxylic acids, and this result is 

comparable with literature [156, 189]. Among these groups, ketones, anhydrous sugars, furans 

and carboxylic acids are derived from decomposition of cellulose and hemicellulose, and the 

remaining groups are derived from decomposition of lignin derived oligomers. Table 3.2,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3 and Table 3.4 list the major compounds (with relative peak area >=1 %) and their 

relative area percentages obtained from the pyrolysis of raw and pretreated switchgrass at 500, 

600 and 700 °C, respectively. All the listed chemical compounds were sorted according to their 

chemical families and the source they derived from. It can be seen that majority of the 
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compounds are oxygenated polar species. Although most of the compounds in pyrolysis products 

obtained from both raw and pretreated switchgrass were similar, their quantity (and hence yield) 

differed. 

 
Figure 3.1 Product distribution of raw and pretreated switchgrass pyrolyzed at 500 °C 

(SG=switchgrass, T230=switchgrass torrefied at 230 °C, T270=switchgrass torrefied at 270 

°C, DEN=densified switchgrass, T270+DEN=Switchgrass pretreated by combined 

torrefaction and densification, same in Figure 3.2 and Figure 3.3). 

Table 3.2 Pyrolysis products of raw and torrefied switchgrass obtained at 500 ºCa. 

(SG=switchgrass, T230=switchgrass torrefied at 230 °C, T270=switchgrass torrefied at 270 

°C, DEN=densified switchgrass, T270+DEN=Switchgrass pretreated by combined 

torrefaction and densification, same in  
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Table 3.3 and Table 3.4.) 

Chemicals Group Raw 

SG 

T230 T270 DEN T270+DEN 

                                                                    Cellulose/Hemicellulose derived compounds 

(Area %) 

Benzofuran, 2,3-dihydro- Furans 6.36 4.14 2.30 9.45 4.14 

Furfural Furans 3.08 2.25 1.78 4.25 - 

Furan, 2-methyl- Furans 1.44 1.65 1.63 3.09 2.49 

2-Furancarboxaldehyde, 5-

methyl- 

Furans 1.28 1.35 1.53 1.31 2.02 

2(3H)-Furanone, 5-methyl- Furans - 2.08 1.87 - 1.85 

5-Hydroxymethylfurfural Furans - 1.18 1.07 1.02 - 

Acetic acid Acid 2.95 1.40 - 4.24 1.66 

3,4-Altrosan Sugars 3.08 3.42 - - - 

.beta.-D-Glucopyranose, 1,6-

anhydro- 

Sugars 5.96 7.27 13.36 - 5.90 

D-Allose Sugars 2.40 5.15 5.14 - 1.66 

1,2-Cyclopentanedione Ketones 2.07 - - 1.46 - 

1,2-Cyclopentanedione, 3-

methyl- 

Ketones 1.12 - 1.53 - - 

2-Cyclopenten-1-one, 2-

hydroxy-3-methyl- 

Ketones - 1.26 - 1.77 1.76 

                                                                                 Lignin derived compounds (Area %) 

Phenol Phenols - 1.17 1.61 - 1.64 

p-Cresol Phenols 1.02 1.47 2.31 - 2.18 

Catechol Phenols 1.55 1.89 3.00 1.62 2.58 

Phenol, 4-ethyl- Phenols - - 1.04 - 1.21 

2-Methoxy-4-vinylphenol Guaiacols 5.79 4.22 2.66 7.00 4.14 

1,2-Benzenediol, 3-methoxy- Guaiacols - - 1.73 - 1.64 

Phenol, 4-ethyl-2-methoxy- Guaiacols - - 1.77 - 1.70 

Creosol Guaiacols 2.11 - 3.87 2.24 3.26 

Phenol, 2-methoxy- Guaiacols 1.98 2.19 - 1.89 2.30 

Benzoic acid, 4-hydroxy-3-

methoxy- 

Guaiacols 1.76 - 1.85 - 1.08 

3,5,-dimethoxyacetophenone Syringols 2.44 - - 1.27 1.51 

Phenol, 2,6-dimethoxy-4-(2-

propenyl)- 

Syringols 1.32 1.25 - 1.46 1.63 

Phenol, 2,6-dimethoxy- Syringols 1.55 2.56 2.19 2.08 2.53 

Toluene Aromatics - 1.10 1.16 1.45 1.50 
 a “-”means the peak area percentage of the detected compound is less than 1 %.  

3.3.2.1. Effects of torrefaction 

Significant compositional variation can be found between the pyrolysis products of raw 

and torrefied switchgrass. As shown in Figure 3.1, anhydrous sugars, furans, phenols and 
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guaiacols are the four most abundant groups identified in the pyrolysis product of both raw and 

torrefied switchgrass. At 500 ºC pyrolysis temperature, anhydrous sugar content increased from 

11.71 area % of raw switchgrass to 16.96  area % of switchgrass torrefied at 230 ºC, to 19.19 area 

% of switchgrass torrefied at 270 ºC. However, increase in the anhydrous sugars content due to 

torrefaction was not consistent when pyrolysis temperature increased to 600 and 700 °C, as 

shown in Figure 3.2 and Figure 3.3.One of the major anhydrous sugars listed in Table 3.2 (at 

pyrolysis temperature of 500 °C), 1 was  6-anhydro-β-D-Glucopyranose (also known as 

levoglucosan). Levoglucosan was found to increase from 5.96 area % of raw switchgrass to 7.27 

area % of switchgrass torrefied at 230 ºC, and then to 13.36 area % of switchgrass torrefied at 270 

ºC. The furans content increased slightly from 15.14 area % of raw switchgrass to 16.99 area % 

of switchgrass torrefied at 230 ºC, however, no significant variation was observed in switchgrass 

torrefied at 270 ºC and 230 °C. Among the furans listed Table 3.2, both 2, 3-dihydro-benzofuran 

and furfural decreased dramatically after torrefaction initially, and continued to decrease as the 

torrefaction temperature increased from 230 to 270 °C. However, no consistent trend was 

observed for other furans identified and listed as the major compounds. Few earlier studies on 

pyrolysis of torrefied biomass reported that furans content decreased by torrefaction when 

pyrolysis temperature was ranging from 480 to 650 °C [157, 189, 193]. Interestingly, in this 

study, the decreasing trend for furans was noticeable when pyrolysis temperature increased to 600 

and 700 °C, as shown in Figure 3.2 and Figure 3.3.  
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Figure 3.2 Product distribution of raw and pretreated switchgrass pyrolyzed at 600 °C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3 Pyrolysis products of raw and torrefied switchgrass obtained at 600 ºCa. 

Chemicals Group Raw 

SG 

T230 T270 DEN T270+DEN 

                                                                    Cellulose/Hemicellulose derived compounds 

(Area %) 

Benzofuran, 2,3-dihydro- Furans 9.33 5.80 2.99 9.11 5.085 

Furfural Furans 4.84 2.96 1.78 3.24 2.88 

Furan, 2-methyl- Furans - 2.86 - - 2.15 

2-Furancarboxaldehyde, 5-methyl- Furans 1.94 1.55 1.84 1.42 2.49 

2(3H)-Furanone, 5-methyl- Furans 1.44 1.97 - 2.35 2.54 
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5-Hydroxymethylfurfural Furans - 1.34 1.23 1.21 1.32 

2-Furanmethanol Furans 1.20 1.10 1.04 1.22 1.27 

2(5H)-Furanone Furans 1.59 1.10 - - 1.13 

Acetic acid Acid 1.49 2.09 - 3.40 1.42 

3,4-Altrosan Sugars 1.13 1.64 - - - 

.beta.-D-Glucopyranose, 1,6-

anhydro- 

Sugars 2.38 4.93 - 4.40 - 

D-Allose Sugars - 5.59 3.74 - 1.11 

2-Cyclopenten-1-one, 2-hydroxy-3-

methyl- 

Ketones 1.33 1.61 1.93 1.38 1.91 

                                                                           Lignin derived compounds (Area %) 

Phenol Phenols 1.47 2.33 3.20 1.62 3.69 

p-Cresol Phenols 2.22 - 5.10 - 4.13 

Catechol Phenols 3.08 3.70 5.49 3.08 5.22 

4-Ethylcatechol Phenols - - 1.26 - 1.15 

Phenol, 2-methyl- Phenols 1.03 - 2.22 - 2.18 

Phenol, 4-ethyl- Phenols 1.27 1.35 1.95 1.03 1.76 

1,2-Benzenediol, 3-methyl- Phenols 1.51 - 2.50 1.72 2.01 

1,2-Benzenediol, 4-methyl- Phenols 1.68 2.07 3.81 2.04 2.82 

2-Methoxy-4-vinylphenol Guaiacols 6.46 4.52 1.75 5.95 2.43 

Creosol Guaiacols 2.29 2.17 1.11 1.69 1.02 

Phenol, 2-methoxy- Guaiacols 1.44 1.51 1.33 1.30 1.12 

Phenol, 2,6-dimethoxy-4-(2-

propenyl)- 

Syringols 1.29 - - 1.29 - 

Phenol, 2,6-dimethoxy- Syringols 1.82 1.95 1.67 1.78 1.66 

Toluene Aromatics 2.11 2.15 2.63 2.09 2.97 

Benzene Aromatics 3.87 - 1.43 - 1.27 

p/o-Xylene Aromatics - 1.02 - - 1.31 

Benzene, 1,3-dimethyl- Aromatics 1.00 - 1.44 - - 
a “-”means the relative peak area percentage of the detected compound is less than 1 %. 

As for lignin-derived compounds, at 500 °C pyrolysis temperature, the phenols in 

pyrolysis products of two torrefied switchgrass were 7.92 and 13.23 area %, which was 

significantly higher than that in pyrolysis products of raw switchgrass (5.59 area %). Similar 

increasing trend was also noticeable for pyrolysis at 600 and 700 °C, as shown in Figure 3.2 and 

Figure 3.3.Consistently, significant increasing trend was also observed for typical phenol 

compounds (listed in Table 3.2) i.e. phenols, p-cresol and catechol that increased from less than 1, 

1.02 and 1.55 to 1.61, 2.31 and 3.00 area %, respectively. Guaiacols, the main oxygenates derived 

from lignin oligomers slightly decreased on torrefaction (14.80 area % of switchgrass torrefied at 

230 to 15.10 area % of raw switchgrass). 2-Methoxy-4-vinylphenol, one of the dominant 

guaiacols decreased significantly from 5.79 to 2.66 area %. The guaiacols content decreased more 
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significantly as the severity of torrefaction increased at 600 °C pyrolysis temperature, i.e. the total 

area % of guaiacols obtained in raw switchgrass decreased from 14.43 to 5.20 compared to that 

obtained from switchgrass torrefied at 270 °C. However, for 700 ºC pyrolysis, the content of 

guaiacols increased slightly from 8.73 to 9.80 area % after torrefaction at 230 ºC, but no 

significant change was observed between switchgrass torrefied at 230 and 270 ºC. 

The above analysis of pyrolysis products obtained from raw and torrefied switchgrass 

indicate that torrefaction promotes the production of anhydrous sugars and phenols. Hence, 

torrefaction can promote pyrolysis-based biorefinery by producing multiple high-value chemicals 

in only few conversion steps. Toluene was the only aromatic compound identified in the pyrolysis 

products of both raw and torrefied switchgrass at 500 °C with small increase in the toluene 

content after torrefaction. Similar results were reported in the literature [156]. Aromatics larger 

than toluene could have condensed in the trap or be in low concentration. Other simple 

oxygenates such as ketones and carboxylic acids were also detectable. Ketones were dominated 

by cycloketones with five carbon rings that are derived from deploymerization of levoglucosan or 

conversion of 5-hydroxymethylfurfural [156]. Acetic acid was the primary carboxylic acid in the 

pyrolysis products of raw and torrefied switchgrass, the content of which decreased from 2.95 to 

less than 1 area % after torrefaction at 270 °C. This finding is consistent with results  reported in 

the literature [189, 193].  

The variation in the composition of pyrolysis product obtained from raw and torrefied 

switchgrass was due to partial decomposition of cellulose and hemicellulose during torrefaction 

[189]. Thermal stability, decomposition rates and decomposition products of the three biomass 

components (cellulose, hemicellulose and lignin) differ. Hemicellulose is considered as the most 

thermally unstable component, whose decomposition mainly occurs at 220-315 °C, whereas 

lignin is the most stable one, whose degradation occurs at a broader temperature range at 160-900 

°C [194, 195]. In addition, the pyrolysis products from these three components are also extremely 

different. The pyrolysis of hemicellulose mainly produces small molecules such as ketones, acetic 
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acids and furfural. Cellulose is the dominant source for the production of anhydrous sugars and 

furans and lignin produces most of the phenols and phenol derivatives. Previous studies also 

found strong interaction effects of hemicellulos- cellulose and cellulose-lignin[196, 197] during 

pyrolysis. On one hand, hemicellulose is believed to decompose prior to cellulose and form a 

liquid film wrapping around the surface of cellulose which inhibits the decomposition of 

cellulose, thus leads to a decrease in the production of anhydrous sugars. On the other hand, the 

cellulose derived volatiles act as an H-donor that stabilizes the lignin derived compounds (e.g. 

guaiacols and syringols), which act as an H-acceptor via O-CH3 homolysis to produce phenols 

and methane[198]. The interaction of hemicellulose-cellulose could be mitigated or eliminated 

and the interaction of cellulose-lignin could be promoted by torrefaction pretreatment which 

removes most hemicellulose from the raw biomass[199] and concentrates cellulose and lignin as 

a result. This may explain the increase of anhydrous sugars and phenols in the pyrolysis product 

of switchgrass pretreated by torrefaction. By analyzing the volatile products of biomass 

torrefaction, previous studies [192, 199] have shown that hemicellulose and cellulose derived 

compounds such as acetic acids, hydroxyl ketones, furans and levoglucosan are the dominant 

while lignin derived compounds such as phenols, guaiacol and vanillin were negligible in the 

volatile product. Our finding further confirmed that chemical transformation during torrefaction 

process affects composition of pyrolysis products obtained from the torrefied biomass. 

3.3.2.2. Effects of pyrolysis temperature 

The composition of pyrolysis products obtained from both raw and torrefied switchgrass 

at elevated temperature (600 and 700 °C) were different from those obtained at pyrolysis 

temperature of 500 °C. The four most abundant groups (anhydrous sugars, furans, phenols and 

guaiacols) obtained at 500 °C pyrolysis were still dominant in the pyrolysis products at 600 and 

700 °C. However, the content of aromatic compounds obtained at 500 °C pyrolysis temperature 

was lower than that obtained at the elevated pyrolysis temperatures (600 and 700 °C). As shown 

in Figure 3.2, the aromatics contents of raw switchgrass, switchgrass torrefied at 230 and 270°C 
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were 7.74, 4.77 and 9.98 area %, respectively at 600 °C, and then increased to 12.18 and 8.25 

area at 700 °C, respectively. In addition, aromatics other than toluene such as benzene, xylenes, 

and styrene were also detected (as shown in  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3 and Table 3.4). Other polymeric aromatic compounds such as naphthalenes 

were also detected but in low concentration. The aromatics were mainly derived from 

decomposition of lignin-derived oligomers such as guaiacols and syringols [156], and the 

decomposition rate increased with increase in pyrolysis temperature. The guaiacols content for 

raw switchgrass, switchgrass torrefied at 230 and 270 °C decreased from 15.10, 14.80, and 14.25 

area % at 500 °C to 14.43, 12.48 and 5.20 area % at 600 °C, and further decreased to 8.73 and 

9.80 area % at 700 °C. Similar decreasing trend was also observed for syringols. On the contrary, 

the phenols in switchgrass pyrolysis products of raw and torrefied at 230 °C increased from 5.59 

and 7.92 area % at 500 °C to 16.54 and 17.06 area % at 600 °C and further increased to 17.32 and 

21.34 area % at 700 °C, respectively. The conversion path way of lignin during pyrolysis includes 

three processes[112, 157]: depolymerization of lignin, conversion of lignin monomers into 
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guaiacols or syringols, conversion of guaiacols or syringols into simple phenols and aromatic 

compounds (Figure 3.4). Phenols are derived from either depolymerization of lignin or 

decomposition of lignin oligomers such as guaiacols [112], and these reactions are highly 

enhanced at elevated temperature.  

 
Figure 3.3 Product distribution of raw and pretreated switchgrass pyrolyzed at 700 °C. 

Table 3.4 Pyrolysis products of raw and torrefied switchgrass obtained at 700 ºCa. 

Chemicals Group Raw 

SG 

T230 T270 DEN T270+DEN 

                                                                    Cellulose/Hemicellulose derived compounds 

(Area %) 

Benzofuran, 2,3-dihydro- Furans 10.71 6.30 3.13 9.69 3.81 

Furfural Furans 3.82 2.94 - 3.17 - 

Furan, 2-methyl- Furans - - 2.80 - 2.41 

Furan, 2,5-dimethyl- Furans - - 2.23 - 2.12 

2-Furancarboxaldehyde, 5-methyl- Furans 1.71 

 

1.63 1.06 1.17 1.61 

2(3H)-Furanone, 5-methyl- Furans - 2.46 1.78 1.59 - 

5-Hydroxymethylfurfural Furans - 1.39 1.21 - - 

2-Furanmethanol Furans - 1.22 - 1.33 - 

Acetic acid Acid 4.01 2.07 1.58 - 1.33 

D-Allose Sugars - 5.78 - 2.82 3.61 

.beta.-D-Glucopyranose, 1,6-

anhydro- 

Sugars 1.05 6.62 - 4.94 3.55 

2-Cyclopenten-1-one, 2-hydroxy-

3-methyl- 

Ketones 1.08 - 1.30 1.13 1.00 
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1,2-Cyclopentanedione Ketones 1.97 1.36 - - 1.69 

                                                                      Lignin derived compounds (Area %) 

Phenol Phenols 2.99 2.83 5.01 2.03 3.52 

p-Cresol Phenols 2.95 - - - 3.72 

Catechol Phenols 3.90 4.44 3.20 2.80 2.58 

Phenol, 2-methyl- Phenols 1.24 1.02 2.05 2.01 1.43 

Phenol, 4-ethyl- Phenols 1.44 1.46 1.40 - 1.10 

Phenol, 2,4-dimethyl- Phenols 1.19 1.17 1.72 - 1.40 

1,2-Benzenediol, 3-methyl- Phenols 1.64 1.89 - - - 

1,2-Benzenediol, 4-methyl- Phenols 2.29 2.76 1.39 1.50 - 

2-Methoxy-4-vinylphenol Guaiacols 4.45 3.79 2.25 6.37 2.35 

Creosol Guaiacols - 2.57 1.89 1.81 1.08 

Phenol, 2-methoxy- Guaiacols - 1.47 1.78 1.44 1.28 

Phenol, 2,6-dimethoxy- Syringols 1.37 2.07 1.72 2.04 1.18 

Toluene Aromatics 3.80 3.15 4.30 2.97 3.86 

Benzene Aromatics 2.55 1.61 3.49 - 3.07 

Xylene Aromatics 1.24 1.16 1.42 - - 

Styrene Aromatics 1.28 - 1.78 - 1.22 
a “-” means the relative peak area percentage of the detected compound is less than 1 %. 

The content of anhydrous sugars in pyrolysis products of raw switchgrass, switchgrass 

torrefied at 230 and 270 °C obtained at 600 °C and 700 °C decreased significantly compared to 

those obtained at 500 °C. In detail, the content of dominant anhydrous sugar compound, 

levoglucosan obtained from pyrolysis of raw SG dropped from 5.96 to 2.38 and then to 1.05 area 

% when pyrolysis temperature increased from 500 to 700 °C. On the contrary, furans, increased 

with increase in pyrolysis temperature. This was also noticeable when comparing the content of 

typical furan compound, such as 1, 3-dihydro-benzofuran at the three pyrolysis temperatures. 

Numerous efforts have been done to investigate the mechanism of cellulose pyrolysis [160, 174, 

200, 201]. Basically, cellulose first decomposes into oligosaccharides [202], known as active 

cellulose and then further degrades into anhydrous monosaccharides such as levoglucosan and D-

Allose, and these monosaccharides can further transform by dehydration, decarboxylation or 

decarbonylation to form furans or fragment to form simpler linear carbonyl compound such as 

hydroxyacetaldehyde. Levoglucosan is considered an important pyrolytic product, which can be 

either utilized in organic synthesis or hydrolyzed into glucose for bioethanol production [203]. 

The maximum yield of levoglucosan reported in the literature was 40 wt % using pure cellulose 
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as the substrate [204], however, yield from pyrolysis of lignocellulosic biomass is expected to be 

much lower due to the catalytic effect of inorganic metals [203]. 

 
Figure 3.4 The conversion pathway of lignin catalytic fast pyrolysis. Adapted with 

modification from [27] 

3.3.2.3. Effect of densification 

By comparing compositions of pyrolysis products obtained from raw switchgrass, 

densified switchgrass, switchgrass torrefied at 270 °C and switchgrass pretreated by combined 

torrefaction and densification at 500 ºC pyrolysis, it can be seen that the yield of anhydrous 

sugars decreased significantly due to densification, i.e. the anhydrous sugars obtained from 

densified switchgrass dropped from 11.71 to 2.41 area % compared to those obtained from raw 

switchgrass. However, the sugar content increased after densification at 600 and 700 °C 

pyrolysis. On the other hand, furans content of densified and torrefied-densified switchgrass 

increased to 25.66 and 19.37 area % compared to those from non-densified samples which were 

observed at 15.14 and 16.28 area %. It should also be noticed that acetic acid content of densified 

and torrefied-densified switchgrass were 4.24 and 4.51 area %, respectively, which increased by 

1.5 and 2 folds of that from non-densified switchgrass. In addition, cycloketones content also 

increased significanty due to densification. These results indicate that densification promoted the 
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depolymerization of hemicellulose and cellulose resulting in production of furans, cycloketones 

and ring-scission products such as acetic acids. Densification also mildly promoted production of 

lignin-derived compounds such as guaiacols and lowered yield of phenols. As can be observed 

from Figure 3.1, phenols content of densified and torrefied-densified switchgrass dropped to 4.88 

and 11.56 area % from 5.59 and 13.23 area %, respectively. The guaiacols obtained from 

densified and torrefied-densified switchgrass increased to 16.63 and 16.11 area %, respectively, 

compared to that from non-densified switchgrass. The proximate and ultimate analysis indicated 

that densified swichgrass was insignificantly different to raw switchgrass. In addition, previous 

study [205] confirmed that densification process had no significantly impact on the chemical 

composition (cellulose, hemicellulose and lignin content) of raw switchgrass. The morphological 

analysis of pretreated switchgrass in our previous study[191] confirmed that the destruction of 

fibrous structure by shear force during the extrusion process led to the exposure of the interior 

structure. This variation may affect micro-scale heat and mass transfer during the pyrolysis, e.g. 

the decomposition may initiate from interior material rather than propagate from outer surface of 

the particles, thereby leading to the variation in the pyrolysis products. 

The effect of pyrolysis temperature on the pyrolysis product obtained from densified 

switchgrass was very different from that obtained from torrefaction. As seen in Figure 3.1~Figure 

3.3, the anhydrous sugars contents of densified switchgrass and switchgrass pretreated by 

combined torrefaction and densification increased significantly from 2.41, 8.40 to 8.89 and 12.10 

area %, respectively, as the pyrolysis temperature increased from 500 to 700 °C. However, 

anhydrous sugars obtained from both pyrolysis of switchgrass torrefied at 230 and 270 ºC 

decreased significantly as the pyrolysis temperature increased from 500 to 700 ºC, i.e. the 

anhydrous obtained from pyrolysis of switchgrass torrefied at 270 ºC decreased from 19.19 to 

6.92 and then further to 1.49 area %. Furans of densified switchgrass decreased from 25.66 to 

20.25 area % when pyrolysis temperature increased from 500 to 600 °C, followed by a slight 

increase to 21.46 area % at 700 °C pyrolysis. Compared to densification, the furans obtained from 
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switchgrass torrefied at 230 ºC increased consistently from 16.99 to 20.23 area % as the pyrolysis 

temperature increased from 500 to 700 °C. Phenols of densified switchgrass increased from 4.88 

to 16.12 area % first as the pyrolysis temperature increased from 500 to 600 °C, followed by a 

decrease to 13.50 area %. As comparison to densification, the phenols obtained from pyrolysis of 

switchgrass torrefied at 230 °C increased consistently from 7.92 to 21.34 area % as the pyrolysis 

temperature increased from 500 to 700 °C. Guaiacols compound of densified switchgrass 

decreased from 16.63 to 12.13 area % as the pyrolysis temperature increased from 500 to 600 °C, 

and no significant variation was observed at 700 °C. By contrast, the guaiacols obtained from 

pyrolysis of switchgrass torrefied at 230 °C decreased consistently from 14.80 to 9.80 area % as 

the pyrolysis temperature increased from 500 to 700 °C. The aromatic compounds increased 

consistently as the pyrolysis temperature increased for switchgrass pretreated by either 

torrefaction or densification. For both densified switchgrass and switchgrass pretreated by 

torrefaction and densification, aromatics increased from 0.22 and 2.25 to 7.22 and 16.07, 

respectively. The highest aromatics yield was 17.70 area % derived from 700 ºC pyrolysis of 

switchgrass torrefied at 270 °C.  

3.4. Conclusions 

The effects of torrefaction and densification on pyrolysis products of switchgrass were 

investigated. Torrefied switchgrass produced a higher quantity of anhydrous sugars and phenols 

than raw switchgrass. The content of anhydrous sugars and phenols also increased as the 

temperature of torrefaction increased. Densification enhanced the depolymerization of cellulose 

and hemicellulose thus promoted the production of small molecules such as furans, ketones and 

acids. Higher pyrolysis temperature favored decomposition of lignin and anhydrous sugars, 

resulting in increased yields of phenols, aromatics and furans. 
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CHAPTER IV 

4. INTEGRATION OF BIOMASS CATALYTIC PYROLYSIS AND METHANE 

AROMATIZATION OVER MO/HZSM-5 CATALYST
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Abstract: The development of an effective process to convert bio-oil into intermediate platforms 

that are compatible with the existing refinery infrastructure is highly needed. To overcome the 

high cost of hydrogen consumption in conventional bio-oil upgrading processes, this paper 

reports a novel process that converts three major biomass constituents (cellulose, hemicellulose 

and lignin) directly into liquid fuels via pyrolysis in the presence of methane over molybdenum 

impregnated HZSM-5 catalysts. The carbon yield of total aromatics from lignin increased from 

12.80 to 15.13 % when pyrolysis atmosphere switched from helium to methane in presence of 

HZSM-5 support. However, methane was not effective in improving the aromatics yield from 

cellulose and hemicellulose in presence of Mo-modified HZSM-5 catalysts. The molybdenum 

impregnated catalyst was found to promote deoxygenation of lignin-derived phenols. The carbon 

yield of polyaromatics from lignin was 5.47 % in presence of HZSM-5 support under methane, 

compared to 2.61 % that obtained in presence of Mo2C/HZSM-5.  

Keywords: biomass catalytic pyrolysis; methane aromatization; aromatic hydrocarbons; 

bifunctional catalysts 
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4.1. Introduction 

Lignocellulose biomass is the only carbon-based renewable resource that has the 

potential to alleviate our dependence on fossil fuels and mitigate global warming and other 

environmental issues associated with the use of fossil fuels [206]. Fast pyrolysis has been 

considered to be a promising and sustainable route to convert solid biomass into liquid fuel. In 

pyrolysis, biomass is rapidly decomposed into vapors, aerosols and solid char thermochemically 

under an inert atmosphere in a mild temperature range (400~600 ºC), followed by a rapid 

condensation to recover a liquid product, which is 60-75 wt % of the biomass feed [171, 207, 

208]. Bio-oil can be combusted as a fuel in a burner for power generation, or used in engines or 

turbines [14]. Bio-oil can also be further upgraded to transportation fuels and chemicals that are 

currently produced by petroleum refineries [3, 14]. However, bio-oil suffers from several 

negative attributes associated with its high oxygen content, such as low energy content, high 

viscosity, corrosiveness, thermal instability, and immiscibility with petroleum fuels. These 

negative attributes of bio-oil pose significant challenges to the facilities in refineries and end 

users for effectively utilizing bio-oil in existing infrastructure [22, 31]. Therefore, there is a 

critical need for developing methods to enhance bio-oil properties.  

One of the most common bio-oil upgrading techniques is deoxygenation. Most 

deoxygenation methods require heterogeneous catalysts to initiate reactions such as dehydration, 

decarboxylation, decarbonylation and hydrodeoxygenation, that convert the raw bio-oil into a 

deoxygenated product [209]. However, these upgrading processes typically require high pressure 

of hydrogen and consist of multiple steps that increase process complexity and cost. Therefore, 

catalytic fast pyrolysis (CFP), which combines biomass pyrolysis and catalytic upgrading in a 

single reactor system, has emerged as a more efficient and economical process [3, 210]. 

Extensive studies have been conducted to improve the yield of targeted petroleum chemicals (e.g. 

benzene, toluene, ethylbenzene and xylenes, collectively known as BTEX) using zeolite catalysts 

[90, 211-216]. The selectivity of these petrochemicals during CFP increased with increasing feed 
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H/Ceff ratio, which is defined in                                                  Equation 4.1, where H, C, and O 

are the mole percentages of hydrogen, carbon and oxygen, respectively, in the feed [209, 210, 

217]. In addition, catalyst deactivation rate decreased with increasing H/Ceff ratio [210]. 

𝐻

𝐶𝑒𝑓𝑓
=

𝐻−2𝑂

𝐶
                                                 Equation 4.1 

 The H/Ceff ratio of biomass varies from 0 to 0.3 making it not suitable for production of 

petrochemicals due to rapid deactivation of zeolites [210]. To correct for the low H/Ceff, a 

hydrogen-rich donor can be co-fed into the reactor with the biomass to increase the overall H/Ceff 

ratio of the feed. A number of studies [210, 218, 219] have demonstrated that co-feeding alcohols 

such as methanol and propanol can significantly improve the petrochemicals yields due to a 

synergistic effect of alcohols and pyrolysis vapors. 

 Methane, the major component of natural gas, can be an ideal hydrogen donor for CFP of 

biomass for petrochemicals production due to its low cost and high H/Ceff of 4. Typically, 

conversion of methane into higher hydrocarbons requires multiple steps: first, methane is 

converted into synthesis gases (H2 and CO) via steam reforming or partial oxidation, and then 

further converted into hydrocarbon fuels and chemicals via Fischer-Tropsch (FT) synthesis. This 

reaction route is highly energy intensive due to the need for high reaction temperature and 

pressures. Furthermore, FT products have wide chain lengths that require further cracking and 

aromatization [220]. Therefore, one-step methane dehydroaromatization methodologies that 

utilize metal modified HZSM-5 catalysts for the production of selected aromatic hydrocarbons 

have been the focus of recent studies [220-223]. The reaction mechanism for methane 

aromatization with metal zeolites is believed to occur in two steps as indicated in Figure 4.1. 

Initially, methane reacts to form intermediate radicals such as CHx (x<4), H·, C2Hy
+ (y=3, 5) on 

metal sites, and then these radicals oligomerize into olefins or aromatics on the acidic sites of the 

zeolite [220, 224]. Thermodynamic analysis [220] showed an increasing trend for coke deposition 

as the methane conversion increases. Hence, deposition of carbon on the catalyst is thought to be 
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a key challenge in methane aromatization. To overcome catalyst deactivation due to the carbon 

deposition, oxygenates (e.g. CO, CO2, O2, and NO) were co-fed during the methane aromatization 

process [225-227]. Several studies also investigated the impacts of co-feeding oxygenates and 

coals in methane aromatization. By co-feeding methane with CO2, acetic acid and formic acid 

mixtures onto a Mo/HZSM-5 catalyst, Bedard et al. [228] and concluded that methane 

dehydroaromatization was highly dependent on thermodynamic equilibrium, while the addition of 

oxygenates had no effect on the net rate of benzene synthesis. Jin et al. [229]  conducted coal 

pyrolysis over Mo/HZSM-5 catalyst under methane and hydrogen atmosphere, and found that the 

total liquid yield under methane atmosphere was significantly higher than that under hydrogen 

atmosphere. Liu and Wang et al. [230, 231] found that by integrating coal pyrolysis with CO2 

reforming of methane, the liquid yield increased by 60 and 80 wt. % as compared to the liquid 

yield obtained by coal pyrolysis under nitrogen and hydrogen, respectively. Additionally, by 

using deuterated methane CD4, they concluded that the free radicals released from coal cracking 

were stabilized by the intermediates, such as CHx (x<4), H· and C2Hy
+ (y=3, 5) produced from 

CO2 reforming of methane. 

 

Figure 4.1 Reaction mechanisms for methane aromatization [220]. 

The hypothesis of this study was that catalytic deoxygenation of biomass-derived vapors 

and methane aromatization can be combined to maximize the yield of hydrocarbons. However, 

before studying reaction mechanisms of aromatics production through co-pyrolysis of biomass 

and methane over HZSM-5 catalyst, it was imperative to understand the behavior of the three 

major biomass components (i.e. cellulose, hemicellulose and lignin) and their individual 

contributions to the targeted hydrocarbons. The reaction pathways for each of these components 

during CFP have been well studied [156, 212, 214, 232]. Carlson et al. [212] developed a four-
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step reaction pathway for conversion of cellulose into aromatics over HZSM-5 catalysts. In the 

first step, cellulose thermally decomposes into anhydrous sugars and other oxygenates. Second 

step involves dehydration of the anhydrous sugars to form furans in presence of catalyst. In the 

third step, furans convert into olefins inside the acid pores of zeolite through a series of 

decarboxylation, dehydration and decarbonylation reactions. Finally, the olefins oligomerize into 

aromatics. A similar reaction mechanism [157] was proposed for hemicellulose, and furans were 

thought to be the common intermediates derived from thermal degradation of hemicellulose and 

cellulose. Mullen et al. [214] hypothesized that lignin depolymerizes into small olefins that can 

repolymerize into aromatics over HZSM-5 catalysts. Phenol was found to be the end product of 

deoxygenation of lignin-derived monomers, and could not be further reduced into oxygen-free 

aromatics because of rapid catalyst coking due to diffusion into catalyst channels. However, the 

impacts of methane on the pyrolysis reaction pathways of cellulose, hemicellulose and lignin are 

not available in literature.  

The objective of this study was to investigate pyrolysis of cellulose, hemicellulose and 

lignin (major biomass constituents) over two Mo-modified HZSM-5 catalysts (MoO3/HZSM-5 

and Mo2C/HZSM-5) in methane atmosphere. MoO3 and Mo2C were selected as the Mo species 

because they have shown difference in reactivity towards methane activation [233].  

4.2. Materials and methods 

4.2.1. Biomass model components 

 Avicel PH 105 Cellulose (FMC Biopolymer, Philadelphia), beech wood xylan (Sigma 

Aldrich, St. Louis) and Kraft lignin (Sigma Aldrich, St. Louis) were used as models of cellulose, 

hemicellulose and lignin, respectively. All the biomass models were used as received without any 

further treatment. Results of elemental analysis of the feedstock are listed in Table 4.1. 
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Table 4.1 Elemental analysis of the feedstock as received basis. 

 Elemental analysis (wt. %) 

Feedstock C H N O 

Cellulose 42.09 6.32 0.18 51.51 

Hemicellulose 39.79 6.09 0.22 51.32 

Lignin 61.59 5.63 0.89 30.7 

 

4.2.2. Catalysts preparation 

 ZSM-5 zeolites (Si to Al molar ratio of 30 and nominal surface area of 425 m2/g) in the 

ammonium (Alfa Aesar Company, VA 20191, USA) were calcined in air at 550 ºC for 4 h to 

make protonated form of HZSM-5. The precursor for Mo was (NH4)6Mo7O24·4H2O (Sigma 

Aldrich, St. Louis, USA), and was purified by recrystallization from water. The Mo species were 

impregnated on the HZSM-5 support using wet impregnation method. 1 g of HZSM-5 support 

was degassed under vacuum for 24 h and then was impregnated with a solution containing 

ammonium heptamolybdate (3.5 wt %) and ammonia (1.4 wt %) for 16 h at room temperature. 

Ammonia was added to prevent the ammonium heptamolybdate from precipitating within the 

HZSM-5 to form molybdic acid. After 16 h, the mixture was centrifuged to separate the solid. 

The supernatant liquid was then decanted and the centrifuge tubes were placed in a -25˚C freezer 

for 5 h to freeze the liquid within the pores of the zeolite. The samples were then freeze-dried on 

a lyophilizer for 24 h. The resulting powder was then calcined in air at 550 ºC for 4 h to yield 

MoO3/HZSM-5. The synthesis of Mo2C/HZSM-5 catalyst followed the same procedure as 

MoO3/HZSM-5 but used a different precursor solution as described by Wang et al [234]. This 

precursor solution contained the same concentrations of ammonia heptamolybdate and ammonia 

but also contained 3.8 % by weight of hexamethylenetetramine (HMT). Unlike the MoO3/HZSM-

5, the Mo2C/HZSM-5 was calcined at 700 °C for 2 h in a flow of helium. 

4.2.3. Catalysts characterization 

Powder X-ray diffraction (XRD, Bruker D8-A25-ADVANCE diffractometer) was used 

to characterize the crystallinity of the metal impregnated catalysts. The test was performed using 
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Cu Kα radiation at 40 kV and 100 mA at a continuous scanning at step size of 0.02º, 0.5 s per step 

over a scanning range from 5° to 70° (2θ). Data analysis was carried out with MDI Jade 6.5 

software (Materials Data Inc., Livermore, CA, USA). 

The pore structures of metal impregnated catalysts were determined by isothermal 

nitrogen adsorption at 77 K using a surface area analyzer (Autosorb-1C, Quantachrome, Boynton 

Beach, FL, USA). Prior to the analysis, catalysts were degased at 300 ºC for 12 hrs. The surface 

area was calculated according to Brunauer-Emmett-Teller (BET) theory. External surface area, 

micropore area, and pore volume were derived using a t-plot method [235]. The amount of Mo in 

the catalysts was measured using inductively coupled plasma-atomic emission spectroscopy (ICP-

AES; ThermoScientific, Waltham, MA, USA). 

 The surface morphology was characterized by scanning electron microscope (SEM; FEI 

Quanta 600, Hillsboro, OR, USA). To measure the metal dispersion on the catalysts, energy 

dispersive X-ray spectroscope (EDS; Evex EDS, Belle Mead, NJ, USA) with X-ray dot mapping 

was used. 

4.2.4. Pyrolysis-GC-MS 

Catalytic pyrolysis experiments were carried out in a commercial micro pyrolyzer 

(Pyroprobe model 5200, CDS Analytical Inc., Oxford, PA). The detailed experimental procedure 

has been described in a previous study [236]. About 0.3 mg of feedstock and 3 mg of catalysts 

were loaded into a quartz tube and separated into two layers with quartz wool as shown in Figure 

4.2. The samples were heated to 700 ºC at a filament heating rate of 1000 °C/s and then held at 

700 °C for 90 s. The volatiles produced were analyzed using a gas chromatography/mass 

spectrometry (Agilent 7890GC/5975MS) system connected to the pyroprobe by a transfer line. 

The chromatographic separation was performed using a DB-5 capillary column (30 mL×0.32mm 

I.D., 0.25 µm film thickness). The GC oven was held at 40 °C for 4 min, and then increased to 

280 °C at a ramping rate of 5 °C/min and held for 20 min. The injector temperature was kept at 
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250 °C, and the split ratio was set to 30:1. Helium (purity: 99.99%) was used as the carrier gas at 

a flow rate of 1 mL/min. 

 
Figure 4.2 Schematic diagram of sample loading. 

The compounds were identified by comparing the peaks with National Institute of 

Standards and Technology (NIST) mass spectral library. Quantification of targeted compounds 

was performed by calibrating with known concentrations of working standards into GC/MS. The 

carbon yield and aromatics selectivity was calculated using                    Equation 4.2 and     

Equation 4.3.  
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𝐶𝑎𝑟𝑏𝑜𝑛 𝑦𝑖𝑒𝑙𝑑 =
𝑀𝑜𝑙𝑒𝑠 𝑜𝑓 𝑐𝑎𝑟𝑏𝑜𝑛 𝑖𝑛 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑀𝑜𝑙𝑒𝑠 𝑜𝑓 𝑐𝑎𝑟𝑏𝑜𝑛 𝑖𝑛 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑚𝑜𝑑𝑒𝑙𝑠
                   Equation 4.2 

𝐴𝑟𝑜𝑚𝑎𝑡𝑖𝑐𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑀𝑜𝑙𝑒𝑠 𝑜𝑓 𝑐𝑎𝑟𝑏𝑜𝑛 𝑖𝑛 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑎𝑟𝑜𝑚𝑎𝑡𝑖𝑐 𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑀𝑜𝑙𝑒𝑠 𝑜𝑓 𝑐𝑎𝑟𝑏𝑜𝑛 𝑖𝑛 𝑎𝑙𝑙 𝑞𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑎𝑟𝑜𝑚𝑎𝑡𝑖𝑐 𝑠𝑝𝑒𝑐𝑖𝑒𝑠
    Equation 4.3 

4.2.5. Experimental design 

 A full factorial experimental design was used with three independent parameters: two 

pyrolysis atmospheres (helium and methane), three biomass components (cellulose, hemicellulose 

and lignin) and three impregnated metal precursors (None, MoO3 and Mo2C). All the experiments 

were run in triplicate. The average and standard deviation were used to compare carbon yields 

and selectivity. 

4.3. Results and discussion 

4.3.1. Catalysts characterization 

 The phases present in HZSM-5 and Mo modified HZSM-5 catalysts were determined by 

XRD technique as shown in Figure 4.3. The main diffraction peaks of HZSM-5 were present at 

2θ=7.96° (011), 8.87° (200), 23.11° (051), 23.96° (033), and 24.43° (313) and matched those 

reported in typical zeolite structure [237, 238]. The XRD patterns of MoO3/HZSM-5 and 

Mo2C/HZSM-5 were similar to that of HZSM-5 indicating that the crystal structure of HZSM-5 

was retained after impregnating with Mo species. However, no Mo-containing crystalline phases 

were observed in the patterns of the metal modified catalysts. This may be attributed to either low 

loading of Mo, as shown in the ICP (Table 4.3), or formation of amorphous or highly 

nanocrystalline phase. The relative degree of crystallinity of the catalysts, the ratio of integrated 

peak areas of the samples over that of reference sample in the range of 2θ=22.5 to 25°, was 

calculated according to ASTM standard D5758-01 [239]. For this study, three major diffraction 

peaks at the positions of 23.11° (051), 23.96° (033), and 24.43° (313) were used to determine the 

degree of crystallinity. HZSM-5 support was used as the reference sample, since it exhibited the 

highest intensities at these positions. Table 4.2 summarizes the crystallinity and the average 

crystallite size obtained from the major diffraction peaks of all three catalysts. Crystallinities of 
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both Mo-modified catalysts were lower than that of the HZSM-5 support. The decrease of 

crystallinity was due to the dispersion of Mo species in the support. 

 The catalysts porous structure, BET surface area, pore volume and average pore size as 

determined from nitrogen isothermal adsorption at 77 K are shown in Table 4.3 and Figure 4.4. 

All the catalysts showed a rapid increase of adsorbed volume of nitrogen at low relative pressure 

(less than 10-3) followed by a slow increase, indicating that adsorption occurred mainly on 

micropores. The nitrogen isotherms of HZSM-5 support and MoO3/HZSM-5 were type IV in the 

Brunauer classification, corresponding to the narrow hysteresis loop at P/P0=0.5~0.9 (shown on 

the isotherm plot, Figure 4.4). However, the Mo2C/HZSM-5 exhibited a type I isotherm with no 

observable hysteresis loop in its adsorption isotherm. BET surface area (480 m2/g) of HZSM-5 

support was higher than the nominal specific surface area (425 m2/g) provided by the 

manufacturer (Table 4.3), which is due to calcination. Micropore area accounted for up to 70 % 

of total surface area in both the HZSM-5 support and the Mo-modified catalysts, and this further 

confirmed the dominance of micropores in all of the catalysts. The incorporation of Mo species 

led to a slight decrease in the BET surface area and micropore volume of MoO3/HZSM-5 and 

Mo2C/HZSM-5. The decrease in BET area and micropore volume can be attributed to deposition 

of the Mo species within the channels of the HZSM-5 support. 
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Figure 4.3 XRD patterns of catalysts. 

 

 

Table 4.2 Relative crystallinity and crystallite sizes of catalysts. 

Catalysts Crystallinity (%) aAverage crystallite size (nm) 

HZSM-5 100 b52.7±0.6 

MoO3/HZSM-5 92.45 59.9±0.9 

Mo2C/HZSM-5 92.74 58.2±0.8 
aAverage crystallite size estimated from the major diffraction peaks at position of 7.96° (011), 

8.87° (200), 23.11° (051), 23.96° (033), and 24.43° (313). 
bValue reported as the mean ± estimated standard deviation. 
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Figure 4.4 N2 isothermal adsorption plot of catalysts. 

 

Table 4.3 BET surface area, pore volume, pore size, and Mo content of the catalysts. 

  

The morphologies of HZSM-5 support and the Mo-modified catalysts are shown in Fig. 

4. The HZSM-5 support was an agglomeration of cubic or spherical particles within sizes ranging 

from 38.3 to 185.2 nm (Figure 4.5 (a, d)). The standard cubic or spherical crystals that were 

clearly observed in HZSM-5 are difficult to identify in the microstructure of MoO3/HZSM-5 

(Figure 4.5 (b)) and Mo2C/HZSM-5 (Figure 4.5 (c)). Both of these catalysts exhibited compact 

clusters that were made up of crystals with irregular geometrical profile. The images obtained 
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HZSM-5 479 345 134 0.119 0.448 3.69 N/A 
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from X-ray mapping (Figure 4.6) show that the major elements, such as Mo, Si, and Al in the 

Mo-modified catalysts were dispersed uniformly throughout the imaged microstructures. The 

EDS results (Table 4.4) indicate that both MoO3/HZSM-5 and Mo2C/HZSM-5 had similar Mo 

content.  

  
(a) (b) 

  
(c) (d) 

Figure 4.5 SEM images of catalysts: (a) HZSM-5, (b) MoO3/HZSM-5, (c) Mo2C/HZSM-5, 

(d) particle size of HZSM-5. 
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(a-1) (b-1) 

  
(a-2) (b-2) 

  
(a-3) (b-3) 
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(a-4) (b-4) 

Figure 4.6 X-ray mapping of elemental composition within the selected microstructure of 

(a) MoO3/HZSM-5 and (b) Mo2C/HZSM-5, Red: Mo; Green: Si; Blue: Al. 

Table 4.4 Relative contents of Mo, Si and Al within selected microstructure in Figure 4.6. 

Catalysts Mo (wt. %) Si (wt. %) Al (wt. %) 

MoO3/HZSM-5 23.56 72.84 3.60 

Mo2C/HZSM-5 24.05 71.33 4.63 

 

4.3.2. Catalyst activity tests 

 The products from catalytic pyrolysis of cellulose, hemicellulose and lignin in the 

presence of HZSM-5 supported catalysts were mostly aromatic hydrocarbons (all products listed 

in Table 4.5). These products were grouped into (a) simple aromatics, such as BTEX, (b) benzene 

derivatives, such as alkybenzene, indanes and indenes, and (c) polyaromatics, such as 

naphthalenes and phenanthrene and (d) oxygenates, such as phenols and methoxyphenols. There 

was no difference in the compounds from cellulose and hemicellulose since they were both 

polysaccharides. Simple phenols were the only oxygenates detectable in the products of cellulose 

and hemicellulose. Methoxyphenols (e.g. 2-methylphenol, creosol, etc.) and catechol were only 

identified in the products derived from lignin. The reaction atmosphere (helium or methane) did 

not affect the compounds produced during catalytic pyrolysis but changes in their relative 

concentrations were observed. 
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Table 4.5 List of compounds identified from catalytic pyrolysis products (CE=Cellulose, 

HC=Hemicellulose, LN=Lignin, same for other parts of this paper). 

Compound Category CE HC LN 

Benzene BTEX a* * * 

Toluene BTEX * * * 

Ethylbenzene BTEX * * * 

Styrene BTEX * * * 

p-Xylene BTEX * * * 

o-Xylene BTEX * * * 

Phenol Oxygenates * * * 

Benzene, 1,2,3-trimethyl- Benzene derivatives * * * 

Indane Benzene derivatives * * * 

Indene Benzene derivatives * * * 

Phenol, 2-methyl- Oxygenates * * * 

p-Cresol Oxygenates * * * 

Phenol, 2-methoxy- Oxygenates   * 

2-Methylindene Benzene derivatives * * * 

1H-indene, 1-methyl- Benzene derivatives * * * 

Naphthalene Polyaromatics * * * 

Creosol Oxygenates   * 

Catechol Oxygenates   * 

Phenol, 4-ethyl-2-methoxy- Oxygenates   * 

Methylnaphthalene Polyaromatics * * * 

2-Methoxy-4-vinylphenol Oxygenates   * 

Dimethylnaphthalene Polyaromatics * * * 

Fluorene Polyaromatics * * * 

Phenanthrene Polyaromatics * * * 

Anthracene, 1-methyl- Polyaromatics * * * 
aCompounds detected in the catalytic pyrolysis products of individual biomass constituent. 

4.3.2.1. Catalytic pyrolysis of cellulose 

 Aromatic hydrocarbons were found to be the major products derived from cellulose, 

whereas the oxygenates were trivial (Table 4.6). The total carbon yield of aromatics varied across 

different HZSM-5 supported catalysts, with a low of 16.63±2.09% for MoO3/HZSM-5 under inert 

atmosphere and a maximum of 35.00±4.37% for HZSM-5 under inert atmosphere (Table 4.6). 

Tukey`s multiple comparison showed that pyrolysis atmosphere (helium and methane) had no 

significant effect on the yield of individual aromatic groups and total aromatic hydrocarbons. 

ANOVA analysis revealed that the performance of the three HZSM-5 supported catalysts was 

different. MoO3/HZSM-5 yielded the lowest amount of aromatic hydrocarbons, whereas HZSM-5 

support yielded the highest amount of aromatics. However, the difference between HZSM-5 

support and Mo2C/HZSM-5 was not significant.  
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The tornado plot in Figure 4.7 shows the aromatics selectivity of products, namely 

benzene, toluene, ethylbenzene, p/o-Xylene, benzene derivatives and polyaromatics from 

cellulose under helium and methane atmospheres. It can be seen that all HZSM-5 supported 

catalysts have high selectivity (up to 70%) towards BTEX. Among all the aromatics, the 

selectivity for toluene was the highest for all of the catalysts, with a maximum of 32.87% with 

MoO3/HZSM-5 under helium. The pyrolysis environment did not have significant impact on the 

selectivity for aromatic. However, the impacts of Mo impregnation on aromatics selectivity were 

noticeable. With MoO3/HZSM-5, the selectivity for polyaromatics significantly decreased, 

whereas selectivities for the benzene and toluene increased significantly as compared for the 

other two HZSM-5 supported catalysts. Polyaromatics are commonly viewed as indicators for 

coke formation that may lead to catalyst deactivation during catalytic fast pyrolysis. By 

comparing aromatics yield and selectivity, it can be concluded that HZSM-5 deactivated during 

impregnation with MoO3. Generally, there are three common reasons to account for catalyst 

deactivation: (1) poisoning of active sites by catalyst coking; (2) blockage of pores by catalyst 

coking; (3) reduction in number/strength of active sites [233]. In this case, MoO3/HZSM-5 

showed the lowest selectivity towards polyaromatics, indicating low tendency towards coking. 

Therefore, the low catalytic reactivity of MoO3/HZSM-5 could be attributed to the reduction in 

acidity of HZSM-5 support during impregnation. To verify this assumption, the MoO3/HZSM-5 

catalyst was treated with a solution of nitric acid followed by calcination. After acidification, the 

catalytic reactivity was restored (data not shown).  

Table 4.6 Carbon yield from catalytic pyrolysis of cellulose (wt. %) (He=Helium, 

Me=Methane,)a. 

Trial 

Aromatics Total 

Aromatic 

HCs Oxygenates BTEX 

Benzene 

derivatives Polyaromatics 

He, HZSM-5 23.67±3.19a 4.29±0.43a 7.03±1.28a 35.00±4.37a 0.78±0.11b 

Me, HZSM-5 23.70±3.40a 3.72±0.30a,b 7.04±0.44a 34.47±3.98a 0.75±0.23b 

He, 

MoO3/HZSM-5 12.30±1.74b 2.15±0.27c 2.18±0.23b 16.63±2.09b 0.86±0.10b 
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Me, 

MoO3/HZSM-5 13.33±2.54b 2.48±0.76b,c 2.67±0.49b 18.47±3.60b 0.96±0.36b 

He, 

Mo2C/HZSM-5 20.41±4.33a 4.46±1.02a 5.80±0.34a 30.67±5.67a 1.60±0.33a 

Me, 

Mo2C/HZSM-5 17.69±1.26a,b 3.56±0.36a,b 6.20±0.49a 27.46±1.79a 1.28±0.21a,b 
aMeans in the same column with no letter in common are significantly different (p < 0.05) from 

the Tukey’s HSD test. The letters (a-c) superscripts refer to the highest estimates to the least. 

 
Figure 4.7 Aromatics selectivity of catalytic pyrolysis products of cellulose. 

4.3.2.2. Catalytic pyrolysis of hemicellulose 

 The product yield from catalytic pyrolysis of hemicellulose is shown in Table 4.7. The 

total aromatics yield from hemicellulose was significantly lower than that from cellulose. For 

instance, the carbon yield of total aromatics from cellulose and hemicellulose in the presence of 

HZSM-5 under helium was 35.00±4.37 and 19.48±1.26%, respectively. These values are in good 

agreement with those reported in the literature [240]. Although both cellulose and hemicellulose 

are carbohydrates, hemicellulose is thermally less stable than cellulose. Therefore, the cracking of 

hemicellulose in the presence of a zeolite is easier than that of cellulose. This is confirmed from 

the high yield of gaseous products from the catalytic pyrolysis of hemicellulose reported in other 
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studies [240, 241]. Similar to the results of cellulose, methane shows no significant effects in 

improving the yield of aromatics of hemicellulose.  

 The selectivity of aromatic products from catalytic pyrolysis of hemicellulose is shown in 

Figure 4.8. All of the HZSM-5 supported catalysts yielded product compositions with the 

selectivity of BTEX up to 70%. The maximum BTEX selectivity of 79.14% was achieved when 

MoO3/HZSM-5 was used under methane environment. Cellulose and hemicellulose yielded 

similar selectivities for toluene, ethylbenzene and polyaromatics. Variations are noticeable in the 

yields of benzene, xylene and benzene derivatives from cellulose and hemicellulose. The 

selectivity of benzene and benzene derivatives was lower for hemicellulose than that for 

cellulose. However, the selectivity for xylene showed opposite trend. For example, benzene 

selectivity dropped from 17.58 to 14.41%, xylene selectivity increased from 17.67 to 23.01%, and 

benzene derivatives selectivity decreased from 12.29 to 11.36% when hemicellulose was used 

instead of cellulose. The introduction of methane had an impact on the formation of some of the 

aromatic compounds. As shown in Figure 4.8, the benzene selectivity under methane was slightly 

higher than that under helium, and this difference was significant (p<0.05) with MoO3/HZSM-5 

and Mo2C/HZMS-5 as the catalysts. In contrast, the selectivity of benzene derivatives under 

methane was slightly lower than that under helium, and the difference was significant with 

HZSM-5 and MoO3/HZSM-5 catalysts. The impacts of impregnated Mo species on formation of 

aromatics for hemicellulose were similar to that observed for cellulose. No significant differences 

in aromatic yields were observed between HZSM-5 support and Mo2C/HZSM-5. However, 

MoO3/HZSM-5 did yield more toluene and benzene and less polyaromatics than the HZSM-5 and 

Mo2C/HZSM-5 catalysts. 

Table 4.7 Carbon yield from catalytic pyrolysis of hemicellulose (wt. %)a. 

Trial 

Aromatics 

Total 

Aromatic HCs Oxygenates BTEX 

Benzene 

derivatives Polyaromatics 

He, HZSM-5 12.99±0.96a 2.29±0.06a 4.20±0.32a 19.48±1.26a 0.31±0.02a 

Me, HZSM-5 12.45±0.51a 1.45±0.08a,b 3.95±0.27a 17.84±0.77a 0.25±0.07a 
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He, 

MoO3/HZSM-5 7.29±1.05b 1.11±0.30a,b 1.25±0.21b 9.65±1.56b 0.35±0.06a 

Me, 

MoO3/HZSM-5 7.47±0.79b 0.79±0.29b 1.22±0.26b 9.48±1.34b 0.24±0.07a 

He, 

Mo2C/HZSM-5 13.00±1.54a 2.21±0.99a 3.90±0.53a 19.10±2.96a 0.74±0.48a 

Me, 

Mo2C/HZSM-5 13.34±1.20a 1.47±0.48a,b 3.76±0.54a 18.57±1.82a 0.67±0.64a 
aMeans in the same column with no letter in common are significantly different (p < 0.05) by the 

Tukey’s HSD test. The letters (a-b) superscripts refer to the highest estimates to the least. 

 
Figure 4.8 Aromatics selectivity of catalytic pyrolysis products of hemicellulose. 

4.3.2.3. Catalytic pyrolysis of lignin 

 The carbon yields of catalytic pyrolysis products from lignin are shown in Table 4.8. The 

total carbon yields of lignin were even lower than those of hemicellulose. Therefore, the rank 

order of three biomass constituents in terms of yielding aromatics was cellulose > hemicellulose 

> lignin, which is consistent with other results reported [240, 241]. Also, it should be noted that 

the oxygenate yield from lignin was significantly higher than that from either cellulose or 

hemicellulose. Lignin is primarily depolymerized into phenolic compounds during pyrolysis. The 

low reactivity of these phenols in HZMS-5 is responsible for the high yield of oxygenates from 
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lignin [214, 240]. Methane slightly increased the yield of BTEX, polyaromatics and total 

aromatics but the change was not statistically significant. MoO3/HZSM-5 had the lowest 

aromatics yield among all three catalysts. This is likely due to deactivation during catalyst 

impregnation as discussed above.  

 The tornado plot in Figure 4.9 shows the aromatic selectivity of products from lignin. The 

selectivity of polyaromatics from lignin was the highest among biomass components. The 

maximum polyaromatics selectivity from lignin reached up to 36% in the presence of HZMS-5, 

while the selectivity was only 20% from cellulose and hemicellulose. This variation could also be 

attributed to the conversion of the lignin-derived phenols into polyaromatics and coke through 

polycondensation in the channel of HZSM-5 [240]. Effect of methane was only significant on the 

selectivity of benzene and benzene derivatives with HZSM-5. However, the carbon yields of 

lignin-derived BTEX and polyaromatics under methane were higher (but not significant) than 

those under Helium. Also, impregnation with the Mo species significantly changed the selectivity 

of aromatics (Figure 4.9). In general, the presence of Mo increased selectivity of BTEX and 

decreased selectivity of polyaromatics. Transition metals such as Ni, Co, and Mo have shown to 

catalyze deoxygenation of phenolic compounds to form aromatics leading to their widespread use 

in hydrodeoxygenation (HDO) of bio-oil compounds [209, 242, 243]. Rather than ending up as 

polyaromatics and coke in the channels of HZSM-5, lignin-derived phenolic compounds may 

have incorporated into the active sites of the Mo species, where hydroxy and methoxy groups, 

possibly, directly stripped from the aromatic rings. Zheng et al. [244] demonstrated that 

Mo2N/Al2O3 exhibited a high selectivity of monocyclic aromatics and an extremely low 

selectivity of polyaromatics (2.2%) from lignin. In the current study, Mo impregnated HZSM-5 

acted as a bifunctional catalyst: Mo species provided active sites for deoxygenation and the Lewis 

and Bronsted acid sites in HZSM-5 were responsible for the aromatization of lignin-derived 

olefins. The increase in BTEX selectivity and decrease in polyaromatics is the synergistic result 

of these two mechanisms. 
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Table 4.8 Carbon yield from catalytic pyrolysis of lignin (wt. %)a. 

Trial 

Aromatics 

Total Aromatic 

HCs Oxygenates BTEX 

Benzene 

derivatives Polyaromatics 

He, HZSM-5 6.73±0.56a,b 1.38±0.17a 4.70±0.90a 12.80±1.59a,b 1.40±0.41a 

Me, HZSM-5 8.41±0.39a 1.26±0.03a 5.47±0.17a 15.13±0.45a 1.40±0.43a 

He, 

MoO3/HZSM-5 3.34±1.26c 0.49±0.34a 0.67±0.58d 4.50±1.99d 1.19±0.77a 

Me, 

MoO3/HZSM-5 4.60±0.65b,c 0.48±0.17a 1.09±0.21c,d 6.17±1.03c,d 1.35±0.65a 

He, 

Mo2C/HZSM-5 6.31±0.58a,b 1.30±0.54a 2.30±0.16b,c 9.90±1.20b,c 1.70±0.37a 

Me, 

Mo2C/HZSM-5 7.03±1.08a 1.21±0.94a 2.61±0.63b 10.85±2.62a,b 1.45±0.74a 
aMeans in the same column with no letter in common are significantly different (p < 0.05) by the 

Tukey’s HSD test. The letters (a-d) superscripts refer to the highest estimates to the least. 

 
Figure 4.9 Aromatics selectivity of catalytic pyrolysis products of lignin. 

4.3.2.4. Role of methane and reaction network 

 As discussed above, methane significantly increased aromatic hydrocarbon yield from 

lignin but did not significant effect the aromatic hydrocarbon yield from cellulose and 

hemicellulose. Even with only HZSM-5 support, the carbon yield of aromatics obtained with 

methane was higher than that obtained under helium (Table 4.8). These results imply that 
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methane can incorporate into lignin derived phenols directly and form aromatics through HDO 

without being activated on the active sites on Mo species. Lignin-derived intermediates, such as 

guaiacols and phenols can be converted into aromatics through a series of reactions like 

dehydration, demethylation and transalkylation that occur in the HDO process [157]. These 

reactions are promoted under a hydrogen-rich environment, possibly provided by reforming of 

methane with water that evolved from lignin degradation. The reaction pathway on conversion of 

lignin over HZSM-5 supported catalysts under methane is summarized in Figure 4.10. However, 

to validate this reaction pathway and further understand the reaction mechanisms, an isotope 

labeling study using deuterated methane (CD4) or 13C containing biomass model compound as the 

feed is needed. The fact that the yield of aromatic compound from carbohydrates was not very 

sensitive to reaction atmosphere, suggest that the Mo-based catalysts might not have activated 

methane efficiently.  

O

OH

O
OH

O

OH

HO

O

 

Figure 4.10 Conversion pathways of lignin with methane. 

4.4. Conclusions 

This study investigated catalytic pyrolysis of three biomass constituents (cellulose, 

hemicellulose and lignin) under both helium and methane atmospheres in the presence of HZSM-

5 and HZSM-5 supported molybdenum-based catalysts. Cellulose contributed most to the 

production of aromatic hydrocarbons followed by hemicellulose and lignin. The introduction of 
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methane enhanced hydrodeoxygenation of lignin-derived phenols leading to increased aromatics 

yield in presence of HZSM-5 zeolites. The carbon yield of total aromatics from lignin increased 

from 12.8 to 15.13 % when pyrolysis atmosphere changed from helium to methane in presence of 

HZSM-5 support. However, in contrast to our expectation, methane was not effective in 

improving the aromatics yield from cellulose and hemicellulose. The active sites provided by Mo 

species facilitated the deoxygenation of lignin-derived phenols and thus inhibited the production 

of polyaromatics and coke.
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CHAPTER IV 

5. CO-PYROLYSIS OF TORREFIED BIOMASS AND METHANE OVER MOLYBDENUM 

MODIFIED BIMETALLIC HZSM-5 CATALYST FOR HYDROCARBONS PRODUCTION
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Abstract: Catalysis of torrefied switchgrass under methane atmosphere was performed over 

molybdenum modified bimetallic catalysts. Compared with other molybdenum-only catalysts 

(MoO3/HZSM-5 and Mo2C/HZSM-5), bimetallic catalysts demonstrated a higher reactivity 

towards methane activation. Higher reaction temperatures favored the yield of aromatics under 

both helium and methane atmospheres. The maximum aromatic yield of 39.31 % was achieved 

from co-catalysis of raw switchgrass and methane over MoZn/HZSM-5 at 700 °C. Torrefaction 

had no effect on the aromatics yield. Aromatics yield of switchgrass torrefied at 270 °C was 

lower than that torrefied at 230 °C. The reduction of aromatics from torrefied switchgrass is due 

to the loss of cellulose and concentration of lignin during torrefaction.  

Keywords: biomass catalytic pyrolysis; methane activation; aromatic hydrocarbons; bimetallic 

catalysts; HZSM-5 
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5.1. Introduction 

Alternative energy resources, such as hydroelectric, solar, geothermal, wind power and 

biomass have played important roles in ensuring the national energy security and mitigating 

environmental impacts that associated with the utilization of fossil fuels. Biomass is even more 

attractive and important than other alternative energy resources listed above because other than 

meeting energy demands, biomass is the only sustainable source of organic carbon capable of 

producing petroleum like products and chemicals, ranging from plastic products to oils that are 

used in vehicles [115, 245]. Various methods of producing biofuels and biobased products from 

biomass have been under development, and these methods can be generally categorized as either 

biochemical or thermochemical processes. Fast pyrolysis is a promising thermochemical process 

due to its high yield of liquid product known as bio-oil, which is reported up to 90 wt. % 

depending on the feedstock and process conditions [6]. Bio-oil can be either burned as a fuel in 

various applications such as boilers, gas turbines and diesel engines, or served as a platform for 

synthesis of chemicals such as levoglucosan, acetic acid, phenol compounds and aromatic 

hydrocarbons [14, 246]. However, the final application of bio-oil to end users is greatly limited 

due to its negative attributes such as high water and oxygen content, high viscosity and acidity, 

low heating value and instability during storage. Moreover, these attributes, especially the high 

oxygen content (up to 40 wt. %) [6] make bio-oil incompatible with crude oil, thus resulting in 

more challenges and cost to modify the existing refining infrastructures. Fuel products can be 

evaluated by their O/C and H/C ratios, and the ones with lower O/C and higher H/C ratios result 

in higher quality fuels [209]. Hence, reducing the oxygen content of bio-oil prior to its final 

application or refinery is critical. A number of methods have been used to upgrade the properties 

of bio-oil chemically, which can be broadly classified as hydrodeoxygenation, catalytic cracking 

and catalytic fast pyrolysis [3, 13, 102]. In addition to these bio-oil upgrading techniques, a 

thermal pretreatment (torrefaction) appears promising since the oxygen in raw biomass can be 

partially removed before biomass is introduced into the pyrolysis reactor. 
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Torrefaction is a slow pyrolysis process that occurs in a temperature range of 200-300 ºC 

[186]. During torrefaction, biomass partially decomposes and releases most of the moisture and 

part of volatiles, resulting in a hydrophobic solid product with improved grindability and 

increased energy density [247] . Torrefied switchgrass showed higher H/C and lower O/C as 

compared to raw switchgrass [191]. The three major biomass constituents (cellulose, 

hemicellulose and lignin) behaved differently under thermal pretreatment due to their different 

thermal stabilities. Typically, hemicellulose is the least stable under thermal pretreatment, 

whereas lignin is the most stable [195]. Zheng et al. [199] found that hemicellulose was the major 

component that decomposed during torrefaction (at 240-320 ºC), and cellulose began to 

decompose at 280 ºC, while lignin concentrated as the temperature of torrefaction increased. 

 Several studies concluded that torrefaction increased deoxygenated compounds, such as 

simple phenols and sugars, but decreased oxygenated derived phenols such as guaiacols and small 

oxygenated compounds including furans and acids [248-250]. Recently, several studies [251-253] 

suggest that torrefaction could be an effective thermal pretreatment to improve the selectivity of 

aromatic hydrocarbons over HZSM-5 catalysts during pyrolysis. Zheng et al. [253] found that 

high torrefaction temperatures (270 to 300 ºC) significantly decreased aromatic compounds and 

increased coke yield. Adhikari et al. [254, 255] found that high acidity of the HZSM-5 resulted in 

higher aromatics yield from both torrefied cellulose and lignin. A reaction pathway for torrefied 

cellulose catalytic pyrolysis was also proposed. The glycosidic bonds connecting monomers of 

cellulose were partially cleaved due to torrefaction, leading to an open chain structure that can be 

further converted into aromatics [254]. 

 Large reserves of natural gas have motivated the development of methods to convert 

methane, the major component of natural gas to higher value chemical and hydrocarbon fuels 

[221]. Methane can be converted to hydrocarbons through both indirect and direct approaches. 

Two indirect conversion approaches have been extensively studied, one of which is based on the 

steam/CO2 reforming of methane into synthesis gas (CO and H2) followed by Fischer-Tropsch 
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synthesis, and the other one involves the partial oxidation of methane into methanol and dimethyl 

ether (DME) which can be further converted to gasoline [222, 256]. Also, there are two direct 

(oxidative and non-oxidative) approaches for methane conversions into higher hydrocarbons. In 

the early 1980s, Keller and Bhasin pioneered the research on oxidative coupling of methane 

(OCM), a high temperature exothermic process (~1200 K) that converts methane into ethylene 

and ethane under oxygen atmosphere [257, 258]. However, low C2 yields (less than 30 % in 

theory) due to further oxidation of these products into CO/CO2 and engineering difficulties 

resulting from the heat of reaction become the major challenges for the further development of 

OCM process [222].  

Recently, an increasing interest has been focused on the non-oxidative direct methane 

aromatization (DMA) process, which selectively converts methane into aromatic hydrocarbons, 

especially benzene, toluene, ethylbenzene and xylenes (BTEX) in presence of bifunctional zeolite 

catalysts [223, 233, 259]. Transition metal based catalysts like tungsten (W) and molybdenum 

(Mo) are considered as the most promising components for DMA [260-262]. The metal 

components are responsible for the hydro/dehydrogenation and the acid sites provided by zeolites 

are responsible for the aromatization [259]. During the DMA process, there is an initial stage that 

is crucial for the activation of methane, also known as “the introduction period” during which 

molybdenum oxides are reduced to more active components like molybdenum carbide (Mo2C) or 

Molybdenum oxycarbide (MoCxOy) [220]. Molybdenum carbide species, formed through the 

partial reduction of molybdenum oxide are believed to be involved with the cleavage of C-H 

bonds, resulting in methyl radicals, which can undergo oliomerization and cyclization reactions 

on acid sites of zeolites to form aromatics [260, 262, 263].  

Addition of oxygenates (CO, CO2, NO) have also significantly improved the efficiency of 

the catalysts by mitigating the carbon deposition issues [220, 228]. Several studies [229-231] 

found the coupling effects of coal-derived volatiles and methane when co-processed in the 

presence of Mo/HZSM-5 catalysts to further improve the aromatics yield at a temperature range 
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of 600~900 °C. A mechanism was proposed [229, 230] that the intermediate radicals, such as 

CHx (x<4), H· and C2Hy
+ (y=3, 5) degraded from methane, combined with free radicals, released 

from thermal cracking of coals, and formed aromatics on the acid site of HZSM-5 catalysts via 

dehydration, decarboxylation and oglimerization. Besides, methane conversion has been proven 

to increase significantly in the presence of higher hydrocarbons, especially unsaturated 

hydrocarbons, at a low temperature (400~600 °C) and atmospheric pressure over HZSM-5 

catalyst loaded with Zn or Ag [264-267]. These previous results inspired our novel process for 

production of hydrocarbons from biomass through coupling biomass pyrolysis and methane 

dehydroaromatization. It is hypothesized that biomass pyrolysis can offer various motivators, 

such as light alkane/alkenes and oxygenates that promote methane DMA process, thus 

maximizing the hydrocarbon yields. To date, limited information on this integrated process for 

biomass and natural gas is available in the literature. 

 In this study, we combined torrefaction pretreatment and co-pyrolysis with methane to 

improve the aromatics yields through biomass catalytic fast pyrolysis process using bimetallic 

catalysts. It is hypothesized that both torrefaction pretreatment and co-feeding of methane will 

improve the H/Ceff ratio of the reactant, which would result in high aromatics yield. The specific 

objective of this study was to investigate the co-pyrolysis of methane with raw and torrefied 

biomass feedstocks to selectively improve BTEX (benzene, toluene, ethylbenzene and xylenes) 

yield in presence of a molybdenum modified HZSM-5 catalyst. The effects of torrefaction, 

torrefaction temperature, pyrolysis temperature and reaction atmosphere on the aromatic 

hydrocarbon yields were investigated.  

5.2. Materials and methods 

5.2.1. Biomass characterization  

Raw switchgrass, obtained from Plant and Soil Sciences Department at Oklahoma State 

University, was processed in a Wiley Mill (Thomas Model Wiley® Mill, USA) with a screen size 

of 0.5 mm for size reduction. The compositional analysis of the switchgrass, including cellulose, 
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hemicellulose, lignin and extractives was performed at Kansas State University according to the 

procedure provided by National Renewable Energy Laboratory (NREL) [268]. The results of 

proximate and ultimate analysis were reported in our previous paper [191].   

5.2.2. Torrefaction 

 Grounded switchgrass was sent to Idaho National Laboratory (INL, Idaho Falls) for 

thermal pretreatment. The detailed description of torrefaction procedures were outlined 

previously [191]. Briefly, biomass samples were torrefied at 230 and 270 ºC in a torrefaction 

reactor system for 30 min and then exited from the bottom of the reactor through a horizontal 

auger. 

 To eliminate the impacts of mineral contents, the feedstock was purified by washing with 

diluted acid and deionized water. Briefly, 5 g of feedstock was washed with 0.1 N HNO3 under 

stirring for 3 hrs, and then the acid was filtered through a funnel, followed by 3~5 washes with 

deionized water until the solution reached to central. Then, the purified feedstock was dried 

overnight at 105 °C for use. 

5.2.3. Catalyst preparation 

ZSM-5 zeolites (Si/Al=30, surface area=425 m2/g) were purchased in ammonium form 

(Alfa Aesar Company, VA, USA), and were calcined in the air at 550 ºC for 4 hrs to make 

protonated HZSM-5. The synthesis of MoO3/HZSM-5 and Mo2C/HZSM-5 is provided in in 

Chapter 4. MoAg/HZSM-5 was synthesized by impregnating MoO3/HZSM-5 with a solution of 

silver acetate (0.5 wt. %) for 24 h. The catalyst was separated by centrifugation and then freeze 

dried followed by calcination at 700 °C. Figure 5.1 depicted the synthesis route of bimetallic 

MoZn/HZSM-5 catalyst. The detailed synthesis procedures were described elsewhere [269]. 

Then, the catalyst sample was freeze dried and calcined in a flow of helium at 700 °C for 2 h.  
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5.2.4. Catalysts characterization 

Powder X-ray diffraction (XRD, Bruker D8-A25-ADVANCE diffractometer) was used 

to characterize the crystallinity of the metal impregnated catalysts. The test was performed using 

Cu Kα radiation at 40 kV and 100 mA at a continuous scanning at step size of 0.02º, 0.5s per step 

over a scanning range from 5° to 70° (2θ).  

The pore structures of metal impregnated catalysts were determined by isothermal 

nitrogen adsorption at 77 K using a surface area analyzer (Autosorb-1C, Quantachrome, Boynton 

Beach, FL, USA). Prior to the analysis, catalysts samples were degased at 300 ºC for 12 hrs. The 

specific surface area was calculated according to Brunauer-Emmett-Teller (BET) theory. External 

surface area, micropore area, and pore volume were derived based on t-plot method [235]. The 

quantity of molybdenum in catalysts was measured using inductively coupled plasma-atomic 

emission spectroscopy (ICP-AES; ThermoScientific, Waltham, MA, USA). 

 The catalyst morphology was characterized by transmission electron microscope (TEM; 

JEOL JEM-2100) coupled with an energy dispersive X-ray spectroscopy (EDS; Evex 

Nanoanalysis) operated at 200 kV. Prior to the test, the catalyst samples were suspended in 

isopropanol and then dispersed on a copper grid. 
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Figure 5.1 Synthesis of MoZn/HZSM-5 catalyst 

5.2.5. Py-GC-MS experiments 

Pyrolysis experiments were performed in a commercialized pyrolyzer (model no. 5200, 

CDS Analytics Inc.), which was connected to an Agilent gas chromatograph/mass spectrometer 

(7890GC/5975MS). A detailed description about the experimental procedures were stated 

elsewhere [248]. For the sample loading, biomass sample was sandwiched between two catalyst 

layers. The biomass sample and catalyst layers were separated by quartz wool so that only 

pyrolysis vapors of biomass sample would pass through the catalyst layers. The pyrolysis 

products were analyzed with an Agilent 7890GC/5975MS using a DB-5 capillary column (30 

mL×0.32mm I.D., 0.25 µm film thickness). The GC/MS ramping method was similar as 

described in our previous paper [248].  

The compounds were identified by comparing the peaks with National Institute of 

Standards and Technology (NIST) mass spectral library. Quantification of targeted compounds 

was performed after calibration by injecting different known concentrations of working standards 
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into GC/MS. The carbon yield and selectivity was calculated using                   Equation 5.1 and           

Equation 5.2. 

𝐶𝑎𝑟𝑏𝑜𝑛 𝑦𝑖𝑒𝑙𝑑 =
𝑀𝑜𝑙𝑒𝑠 𝑜𝑓 𝑐𝑎𝑟𝑏𝑜𝑛 𝑖𝑛 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑀𝑜𝑙𝑒𝑠 𝑜𝑓 𝑐𝑎𝑟𝑏𝑜𝑛 𝑖𝑛 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑚𝑜𝑑𝑒𝑙𝑠
                  Equation 5.1 

𝐶𝑎𝑟𝑏𝑜𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑀𝑜𝑙𝑒𝑠 𝑜𝑓 𝑐𝑎𝑟𝑏𝑜𝑛 𝑖𝑛 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑀𝑜𝑙𝑒𝑠 𝑜𝑓 𝑐𝑎𝑟𝑏𝑜𝑛 𝑖𝑛 𝑎𝑙𝑙 𝑞𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑠𝑝𝑒𝑐𝑖𝑒𝑠
          Equation 5.2 

5.2.6. Experimental design 

 The effects of molybdenum modified HZSM-5 catalysts (HZSM-5, MoO3/HZSM-5, 

Mo2C/HZSM-5, MoAg/HZSM-5 and MoZn/HZSM-5), pyrolysis temperature (400, 500, 600, 700 

and 800 °C) and torrefaction pretreatment (no torrefaction, torrefaction at 230 °C and torrefaction 

at 270 °C) were investigated individually using single factor design. The experiments were 

performed under helium and methane atmospheres. All experiments were replicated at least three 

times. 

5.3. Results and discussion 

 The weight percentages of carbohydrates, lignin and ash in raw and torrefied switchgrass 

are shown in Table 5.1. Among these carbohydrates, glucan denotes cellulose and xylan and 

arabinan are the two compounds to characterize hemicellulose. In addition, the weight loss due to 

torrefaction pretreatment is also shown in the table. This weight loss includes moisture, 

condensable and non-condensable vapors that evolve during the process of torrefaction. It should 

be noted that the values of compositional analysis of torrefied switchgrass shown in Table 5.1 are 

normalized by weight loss during torrefaction so that the values are reported as a fraction of raw 

switchgrass. The major compositional changes of switchgrass torrefaction involve the 

decomposition of hemicellulose and partial decomposition of cellulose and lignin. As shown in 

Table 5.1, the composition of switchgrass was significantly affected by torrefaction. As the 

torrefaction temperature increased, the content of cellulose and hemicellulose decreased 

significantly. The degradation of cellulose was approximately correlated with torrefaction 
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temperature. However, the degradation of hemicellulose was drastic even at lower torrefaction, 

for example, the xylan content dropped from 26.34 to 7.58 wt. %. It is known that hemicellulose, 

the most unstable content in biomass, decomposes rapidly at the temperature range of 220-315 °C 

[195]. The lignin content increased steadily as the torrefaction temperature increased, showing 

that lignin is the most stable component during torrefaction, thus its content increases due to rapid 

loss of carbohydrates. 

Table 5.1 Compositional analysis of raw and torrefied switchgrass (wt. %)a 

(SG=switchgrass, T230=torrefied at 230 °C, T270=torrefied at 270 °C). 

Sample  Glucan Xylan Arabinan Lignin Ash 

Weight 

Loss 

Raw SG 38.46±0.69a 26.34±0.54a 3.41±0.32a 21.40±0.24c 1.91±0.10a NA 

T230 SG 27.08±0.27b 7.58±0.12b 1.28±0.12b 23.48±0.08b 1.43±0.02b 25.01 

T270 SG 17.09±0.16c 2.75±0.002c 0.96±0.07b 33.98±0.10a 1.98±0.04a 36.07 

aMeans in the same column with no letter in common are significantly different (p < 0.05) from 

the Tukey’s HSD test. The letters (a-d) superscripts refer to the highest estimates to the least. NA: 

not applicable. 

5.3.1. Catalysts characterization 

 The XRD patterns of HZSM-5 support, MoAg/HZSM-5 and MoZn/HZSM-5 were shown 

in Figure 5.2. No additional diffraction peaks were found after modified with metal impregnation, 

indicating that the framework of HZSM-5 was not affected during metal impregnation. 

Furthermore, the intensities of diffraction peaks at 7-10° increased whereas the intensities of 

diffraction peaks at 23-25° decreased after impregnation of metals, indicating a lattice distortion 

of the HZSM-5 support. 

 The morphologies of bimetallic molybdenum modified HZSM-5 catalysts were further 

characterized with transmission electron microscopy technique. As shown in Figure 5.3 (a), metal 

particles were highly dispersed on the surface of HZSM-5 support with a particle width ranged 

from 8 to 12 nm (data not shown). The EDS elemental analysis of MoAg/HZSM-5 indicated the 

existence of silver but not molybdenum. Thus, these metal particles could be only derived from 
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silver species. Metal particles were not visible on TEM image of MoZn/HZSM-5 (Figure 5.3 (b)), 

which might suggest that Zn species did not present in the form of ZnO crystals but incorporated 

into the structure of HZSM-5 as cations Zn2+. 

 
Figure 5.2. XRD patterns of HZSM-5, MoAg/HZSM-5 and MoZn/HZSM-5 

  
(a) (b) 

Figure 5.3 TEM images of MoAg/HZSM-5 (a) and MoZn/HZSM-5 (b), mag=40000x 
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5.3.2. Effects of molybdenum modified catalysts on co-catalysis of biomass and methane 

 Products of catalytic pyrolysis of raw switchgrass are mostly aromatic hydrocarbons, 

which can be grouped into BTEX, benzene derivatives (alkyl benzenes, indane and indenes) and 

polyaromatics (naphthalenes, fluorene and anthracene). Pyrolysis products of raw switchgrass 

obtained under different molybdenum modified catalysts are summarized in Table 5.2. The 

maximum carbon yields of BTEX (27.27 %) and total aromatics (39.31 %) were obtained using 

MoZn/HZSM-5 under methane atmosphere. The catalytic pyrolysis was also performed using 

only methane in presence of Mo-modified HZSM-5 zeolites (Figure 5.4). The results indicated 

that the higher aromatics yield from catalytic pyrolysis of switchgrass under methane was due to 

the synergistic effect of methane and biomass-derived vapors in presence of Mo-modified 

HZSM-5 zeolites. The reactivity of individual molybdenum catalyst towards co-catalysis of 

biomass and methane was revealed by comparing the pair of values associated with helium or 

methane. When methane is introduced in the feed, the carbon yield of aromatics increased in 

presence of HZSM-5, MoO3/HZSM-5, MoAg/HZSM-5 and MoZn/HZSM-5 compared with the 

aromatics carbon yield obtained using the same catalyst under helium atmosphere. However, the 

results of Tukey`s multiple comparison indicated that the improvement in aromatics carbon yield 

due to methane is significant only with MoZn/HZSM-5, and in this case the aromatic carbon yield 

and BTEX carbon yield increased from 29.53 % and 20.06 % (without methane) to 39.31 % and 

27.27 % (with methane), respectively. It is also worth noting that the impregnation of 

molybdenum species varied the reactivity of HZSM-5 catalyst. In general, the reactivity of 

catalysts with molybdenum loading (e.g. MoO3/HZSM-5 and Mo2C/HZSM-5) reduced compared 

with that of only support. However, when the support is loaded with bimetallic molybdenum 

species, such as MoAg/HZSM-5 and MoZn/HZSM-5, the catalytic reactivity recovered or even 

further improved. In detail, the carbon yields of BTEX obtained with MoAg/HZSM-5 under 

helium and methane were 17.01 and 20.27 %, respectively, which were similar to that obtained in 

presence of support only. And, the carbon yields of BTEX obtained in presence of MoZn/HZSM-
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5 (helium: 20.06 %, methane: 27.27 %) were higher than that obtained in presence of HZSM-5 

(helium: 17.24 %, methane: 21.22 %).  The difference in catalytic reactivity of Mo-loading and 

bimetallic catalysts indicated that single Mo species did not effectively activate methane. Also, 

the carbon yield of polyaromatics obtained with both Mo-loaded and bimetallic HZSM-5 

catalysts were lower than that obtained with the support only. Carbon yields of oxygenates, which 

include mainly phenolic compounds, were low (varying from 0.76 % with HZSM-5 to1.59 % 

with MoZn/HZSM-5).  

 Production of aromatic hydrocarbons from biomass involves a series of acid-catalyzed 

dehydration, decarboxylation, and decarbonylation, followed by oligomerization in the channel of 

zeolite [217]. As a result, the biomass oxygen is removed in the form of H2O, CO2 and CO. The 

maximum theoretical carbon yield of aromatic hydrocarbons can be achieved when only 

dehydration and decarboxylation occur [240]. The theoretical yield of aromatics, which is 

characterized as CH1.2 [270] from switchgrass can be derived from     Equation 5.3: 

𝑛𝐶𝐻1.68𝑂0.697 (𝑅𝑆𝐺)
∆
→ 0.824𝑛 𝐶𝐻1.2 + 0.176𝑛 𝐶𝑂2 + 0.345𝑛 𝐻2𝑂    Equation 5.3 

In this study, the maximum aromatics carbon yield obtained from switchgrass under helium was 

29.53 %, which corresponds to 35.8 % of the theoretical carbon yield. When methane is 

introduced, the theoretical carbon aromatics yield increases because all carbon in the feedstocks 

(biomass and methane) can be theoretically converted into aromatic products, while oxygen is 

removed as H2O (     Equation 5.4). 

𝑛𝐶𝐻1.68𝑂0.697 (𝑅𝑆𝐺) +0.32𝑛 𝐶𝐻4

∆
→ 1.32𝑛 𝐶𝐻1.2 + 0.69𝑛 𝐻2𝑂     Equation 5.4 

As shown in      Equation 5.4, the theoretical aromatics carbon yield obtained from switchgrass 

increases by approximately 60 % through intervention of methane. In this study, the maximum 

aromatics carbon yield obtained under methane was 39.31 %, which correspond to 29.78 % of the 

theoretical yield. 
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Table 5.2 Carbon yield from raw switchgrass in presence of HZSM-5 supported catalysts (C 

%)a (He=Helium, Me=Methane). 

Trial 

Aromatics 

Total 

Aromatic HCs Oxygenates BTEX 

Benzene 

derivatives Polyaromatics 

 He, HZSM-5 17.24±5.17b,c,d 3.28±1.28a,b 6.92±2.20a,b 27.43±8.56b,c,d 0.77±0.43b 

Me, HZSM-5 21.22±1.94b 3.14±0.39b 8.25±0.57a 32.62±2.43a,b 0.76±0.22b 

 He, 

MoO3/HZSM-

5 13.42±1.12d 2.52±0.47b 3.07±0.76d 19.01±2.32d 1.11±0.33a,b 

 Me, 

MoO3/HZSM-

5 15.74±1.20b,c,d 2.68±0.39b 3.46±0.61c,d 21.87±2.19c,d 1.11±0.17a,b 

He, 

Mo2C/HZSM-

5 16.50±0.56b,c,d 3.42±0.19a,b 5.09±0.46b,c,d 25.02±1.19b,c,d 1.19±0.10a,b 

 Me, 

Mo2C/HZSM-

5 15.11±0.41c,d 2.71±0.092b 4.81±0.48b,c,d 22.63±0.96c,d 0.95±0.13a,b 

He, 

MoAg/HZSM-

5 17.01±0.79b,c,d 2.69±0.33b 4.04±0.33c,d 23.75±1.36b,c,d 0.78±0.26b 

 Me, 

MoAg/HZSM-

5 20.27±1.25b,c 2.97±0.53b 4.91±0.42b,c,d 28.15±1.90b,c,d 1.01±0.27a,b 

He, 

MoZn/HZSM-

5 20.06±1.13b,c 3.71±0.30a,b 5.76±0.11b,c 29.53±1.31b,c 1.35±0.17a,b 

Me, 

MoZn/HZSM-

5 27.27±1.85a 4.88±0.65a 7.16±0.65a,b 39.31±2.87a 1.59±0.15a 
aMeans in the same column with no letter in common are significantly different (p < 0.05) from 

the Tukey’s HSD test. The letters (a-d) superscripts refer to the highest estimates to the least. 
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Figure 5.4 Total aromatics yield from methane, raw switchgrass under helium (RSG_He) 

and raw switchgrass under methane (RSG_Me) atmospheres 

The aromatics selectivity (shown in Figure 5.5) of compounds obtained under helium 

with each catalyst was almost similar to that obtained under methane, indicating that methane had 

no significant effect on the selectivity of particular compounds during catalysis. The variations on 

aromatics selectivity across different HZSM-5 catalysts were obvious. MoAg/HZSM-5 yielded 

the highest benzene selectivity, which reached up to 24.53 and 26.97 % under helium and 

methane atmosphere, respectively. In return, the lowest selectivity of xylenes was also observed 

for MoAg/HZSM-5. Also, MoAg/HZSM-5 yielded the lowest selectivities of benzene derivatives 

and ethylbenzene among all the molybdenum modified catalysts. These results indicated that the 

active sites provided by Ag in MoAg/HZSM-5 system were responsible for the dealkylation of 

alkylated aromatics into benzene. Precious metal such as Pt, Pd and Ag are highly active for 

hydrogenation reactions. The detailed reaction mechanism [271] involves cleavage of alkyl side 

chains and simultaneous hydrogenation (Figure 5.6). In addition, the highest selectivity for 

polyaromatics was obtained with only the support, indicating that impregnation of metals could 

have suppressed polymerization of aromatics, leading to polyaromatics or coke deposition. 
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Figure 5.5 Aromatics selectivity of products from raw switchgrass in the presence of 

HZSM-5 supported catalysts. 

 The results of aromatics carbon yield show that single molybdenum modified HZSM-5 

catalysts are not effective in catalyzing breakage of C-H bond in methane. The bimetallic 

catalysts (MoAg/HZSM-5 and MoZn/HZSM-5) behave as a bifunctional catalyst during the co-

catalysis of biomass and methane. The HZSM-5 framework is mainly responsible for cracking of 

biomass-derived volatiles through a series of dehydration, decarboxylation, decarbonylation and 

oligomerization reactions to form aromatics. Whereas, the metals, especially the Ag and Zn 

species, provide active sites for methane activation, resulting in methyl radicals that can 

incorporate into the structure of biomass-derived organics, thus increase organics available for 

aromatization in the HZSM-5 channel. The aromatics yield with Mo-Ag was lower than that with 

Mo-Zn, but benzene selectivity followed opposite trend. This might be the outcome of 

competition between methane activation and hydrodealkylation of alkylated benzenes, since Ag 

provides active sites for both reactions. The reactions shown in Figure 5.6 indicated a carbon loss 

in the form of alkanes through dealkylation, and this might explain why the total yield of 

aromatics in presence of Mo-Ag loaded catalyst is lower than that in presence of Mo-Zn loaded 
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one. Therefore, taking the catalytic reactivity and aromatic loss into consideration, MoZn/HZSM-

5 showed the best catalytic performance in co-conversion of biomass and methane. 

 

Figure 5.6 Reactions of hydrodealkylation of Xylenes and ethylbenzene. 

5.3.3. Effects of reaction temperature on co-catalysis of biomass and methane 

 The effect of pyrolysis temperature on the carbon yield of different groups of aromatics 

from raw switchgrass catalysis in presence of MoZn/HZSM-5 was shown in Figure 5.7. It can be 

seen that the increase in temperature increased the carbon yield of aromatics at temperature 

starting from 400 and reached to peak at 700 °C and then dropped. Methane outperformed helium 

in producing aromatics across the whole reaction temperature range. In addition, the gap of the 

total aromatics yield (Figure 5.7 (a)) between helium and methane also increased as the reaction 

temperature increased and maximized at 600 °C (71 %). These results indicated that methane 

activation through incorporation with biomass catalysis could occur at a temperature (400 °C) 

much lower than that required in methane aromatization (700°C) [220]. He et al. [272, 273] also 

reported the synergistic effects of methane and biomass pyrolysis in promoting the yield and H/C 

ratio of bio-oil using Zn and Ag loaded catalysts at a lower temperature range of 300 to 600 °C. 

 The trends of different aromatic groups such as BTEX, polyaromatics and benzene 

derivatives versus temperature (Figure 5.7 (b ~ d)) were similar to that of total aromatics. The 
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sensitivity of carbon yield towards reaction temperature declined in the order of 

BTEX>polyaromatics>benzene derivatives.  
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(c) 

 
(d) 

Figure 5.7 Carbon yield of aromatic hydrocarbons as a function of pyrolysis temperature 

(a) ~ (d): Total hydrocarbons, BTEX, Polyaromatics and Benzene derivatives. 

The aromatics selectivity for the major compounds versus reaction temperature is plotted 

in Figure 5.8. As shown in Figure 5.8 (a), benzene selectivity increased steadily across the whole 

reaction temperature. Also, the difference between helium and methane atmosphere was not 

significant until the temperature reached 800 °C. Toluene selectivity, fluctuating from 27.01 

(400°C under helium) to 29.10 % (600 °C under methane), was not sensitive to reaction 

temperature (Figure 5.8 (b)). However, reaction atmosphere does seem to affect toluene 
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selectivity. The selectivity of alkylated benzenes other than toluene, including ethylbenzene and 

xylenes, decreased as the reaction temperature increased as shown in Figure 5.8 (c) and (d). The 

opposite trends of benzene and C8 alkylated benzenes with temperature suggested that 

dealkylation reactions were favored thermally, thus the equilibrium was driven forward to 

produce more benzene when temperature increased. Benzene derivatives selectivity (Figure 5.8 

(e)) decreased sharply when temperature increased from 400 to 500 °C followed by no noticeable 

variation until 700 °C under both helium and methane atmosphere. At 800 °C, methane yielded 

even lower selectivity than that from 700 °C, whereas helium still yielded similar selectivity with 

that from 500 to 700 °C. The selectivity of polyaromatics (Figure 5.8 (f)) increased gradually and 

peaked at 700 °C. It was worth noting that the selectivity of polyaromatics under methane was 

lower than that under helium when temperature was equal to or higher than 600 °C. Polyaromatic 

compound, formed by the oligomerization of aromatic rings is considered as an indicator of 

catalyst coking. The results suggest that incorporation of methane into biomass catalysis pyrolysis 

could reduce the generation of polyaromatics and thus undermine catalyst coking. 
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(f) 

Figure 5.8. Aromatics selectivity of catalysis products of raw swichgrass as a function of 

operation temperature (a) ~ (f): Benzene, Toluene, Ethylbenzene, Xylenes, Benzene 

derivatives and Polyaromatics. 

5.3.4. Effects of torrefaction on co-catalysis of biomass and methane 

 To investigate the impacts of torrefaction on the aromatics production from co-catalysis 

of biomass and methane, raw switchgrass, switchgrass torrefied at 230 °C and switchgrass 

torrefied at 270 °C were pyrolyzed at 700 °C in the presence of MoZn/HZSM-5 catalyst. The 

aromatics carbon yields are summarized in Table 5.3. The torrefied switchgrass did not yield 

more aromatics than raw switchgrass as expected, and the maximum aromatics carbon yield of 

39.31 % was obtained from raw switchgrass under methane atmosphere. Furthermore, the 

aromatics carbon yield decreased sharply as the torrefaction temperature increased from 230 to 

270 °C. In contrast, oxygenates yield decreased as the torrefaction temperature increased. Similar 

to raw switchgrass, the carbon yield of different groups of aromatics and total aromatics derived 

from torrefied switchgrass was also affected by co-feeding methane. However, the increase in 

aromatics carbon yield due to incorporation of methane decreased as the torrefaction temperature 

increased. The aromatics carbon yield from switchgrass torrefied at 230 °C was 22.40 % in 

helium, compared with 27.49 % in methane atmosphere. Similarly, the aromatics carbon yield 
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from switchgrass torrefied at 270 °C increased from 13.73 to 18.17 % when pyrolysis 

environment switched from helium to methane. Neupane et al. [274] studied catalytic pyrolysis of 

torrefied pine wood in presence of HZSM-5 (Si/Al=30) zeolite using Py-GC/MS at 550 °C. In 

their study, weight loss during torrefaction at 225 °C for 45 min was 25.85 %, which was 

comparable to weight loss of 25.01 % obtained in the current study. The torrefied pine wood 

yielded a BTEX of 13.13 % [274], which was less than BTEX yield of 15.62 % obtained from 

switchgrass in this study (Table 5.3). However, aromatics carbon yield of 26.68 % obtained from 

torrefied pine wood was higher than that of 22.40 % obtained from switchgrass torrefied at 230 

°C. The difference in aromatics carbon yield from switchgrass and pine wood with similar 

torrefaction severity could be attributed to the difference in reaction temperature or the difference 

in catalyst reactivity. Our results confirm that MoZn/HZSM-5 increased yield and selectivity of 

BTEX (targeted aromatic hydrocarbons) as compared to only HZSM-5. 

Table 5.3 Carbon yield of catalysis products of raw and torrefied switchgrass (C 

%)a(SG=switchgrass, T230=torrefied at 230 °C, T270=torrefied at 270 °C, He=Helium, 

Me=Methane). 

Trial 

Aromatics 

Total Aromatic 

HCs Oxygenates BTEX 

Benzene 

derivatives Polyaromatics 

RSG, He 20.06±1.13b 3.71±0.30a,b 5.76±0.11a,b 29.53±1.31b 1.35±0.17a,b 

RSG, Me 27.27±1.85a 4.88±0.65a 7.16±0.65a 39.31±2.87a 1.59±0.15a 

T230, He 15.62±1.38b,c 2.42±0.19c,d 4.04±0.19c,d 22.40±1.69c,d 0.64±0.48b,c 

T230, 

Me 19.38±0.53b 3.05±0.42b,c 5.06±0.72b,c 27.49±1.56b,c 0.92±0.28a,b,c 

T270, He 10.33±1.02d 1.35±0.22d 2.05±0.18e 13.73±1.33e 0.48±0.20c 

T270, 

Me 13.42±2.29c,d 1.73±0.60d 3.02±0.72d,e 18.17±3.61d,e 0.59±0.23c 
aMeans in the same column with no letter in common are significantly different (p < 0.05) from 

the Tukey’s HSD test. The letters (a-e) superscripts refer to the highest estimates to the least. 

 The aromatics selectivity of raw and torrefied switchgrass in both helium and methane 

atmosphere is illustrated in Figure 5.9. No difference in aromatics selectivity was observed 

between helium and methane. The selectivity of BTEX from catalytic pyrolysis under helium was 

67.91 % for raw switchgrass, compared with 70.69 and 75.25 % for switchgrass torrefied at 230 

and 270 °C, respectively. For instance, the selectivity of benzene and toluene from catalysis of 
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raw switchgrass under helium was 18.40 and 27.52 %, respectively. As the torrefaction 

temperature increased, the selectivity of benzene and toluene under helium increased from 20.21 

and 29.21 %, respectively, at torrefaction temperature of 230 °C to 21.10 and 31.46 %, 

respectively, at torrefaction temperature of 270 °C. On the contrary, the selectivity of 

polyaromatics and benzene derivatives declined in the order of raw switchgrass>switchgrass 

torrefied at 230 °C>switchgrass torrefied at 270 °C. The variation in aromatics selectivity with 

torrefaction and torrefaction temperature are consistent with that reported in literature [199, 253].  

 
Figure 5.9 Aromatics selectivity of catalysis product from raw and torrefied switchgrass. 

5.3.5. Effect of biomass components on co-catalysis of biomass and methane 

 To investigate the correlation between contents of biomass major components (cellulose, 

hemicellulose and lignin) and its aromatics carbon yield from the catalytic pyrolysis, biomass 

components (Table 5.1) was plotted against total aromatics yields (Table 5.3) in Figure 5.10. The 

contents of two carbohydrates (cellulose and hemicellulose) were correlated positively with the 

aromatics carbon yield. In contrast, content of lignin negatively correlated with the aromatics 
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yield. These results proved that aromatics yield from biomass components follow the order of 

cellulose > hemicellulose > lignin, which is consistent with the findings reported in previous 

studies [240, 241, 274]. Therefore, the lower aromatics yield obtained from torrefied switchgrass 

(as compared to raw switchgrass) could be attributed to the decrease in cellulose content and 

increase in lignin content during torrefaction. In order to maximize the aromatics yield from 

torrefied biomass, torrefaction reactor design and conditions should be optimized to increase the 

cellulose fraction and decrease the lignin fraction.  
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(c) 

Figure 5.10 Aromatics carbon yield vs. weight percentages of cellulose (a), hemicellulose (b) 

and lignin (c) in samples pyrolyzed at 700 °C with MoZn/HZSM-5. 

5.4. Conclusions  

 Co-catalysis of torrefied switchgrass and methane was investigated over molybdenum 

modified HZSM-5 catalysts. Bimetallic catalysts (MoAg/HZSM-5 and MoZn/HZSM-5) were 

more effective in catalyzing methane activation than molybdenum-only loaded (MoO3/HZSM-5 

and Mo2C/HZSM-5) catalysts. A maximum aromatics yield obtained from raw switchgrass under 

methane atmosphere in presence of MoZn/HZSM-5 was 39.31 %, which was 33 % higher than 

that under helium atmosphere. Methane incorporation increased aromatics yield by up to 71 % at 

600 °C. However, contrary to our expectation, torrefaction pretreatment did not increase the 

aromatics yield due to the reduced cellulose content and increased lignin content during 

torrefaction. The aromatic yield is highly dependent on the relative contents of cellulose, 

hemicellulose and lignin in biomass samples. Aromatic yield follows the trend of 

cellulose>hemicellulose>lignin. 
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CHAPTER VI 

6. SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK 
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6.1. Summary 

The current study was conducted to improve the quality of the bio-oil produced from 

pyrolysis of lignocellulose biomass and to seek innovative pathways for producing renewable 

hydrocarbons. The pyrolytic behavior of eastern redcedar sapwood and heartwood were 

investigated under both fast and slow pyrolysis conditions at two temperatures (450 and 500 °C). 

Eastern redcedar wood demonstrated a G-H type lignin structure. The composition of bio-oil from 

fast pyrolysis condition was significantly affected by wood zones and reaction temperature; 

however, the interaction of these two effects was not significant for most bio-oil compounds. 

Slow pyrolysis yielded significantly more secondary pyrolysis products such as acetic acid, 

furfural and simple phenols than fast pyrolysis. In addition, slow pyrolysis turned out to be an 

alternative method to extract alpha/beta-cedrene, the major component of cedar oil.  

Torrefaction and densification not only modified the physiochemical properties of 

switchgrass but also affected its pyrolysis product composition. Torrefaction enhanced the 

production of sugar-based compounds and phenols from pyrolysis. Densification enhanced the 

degradation of cellulose and hemicellulose thus promoted the production of secondary pyrolysis 

compounds, such as acetic acid, ketones and furans.  

The final two chapters of this dissertation demonstrated an innovative biomass upgrading 

process with the intervention of low-cost methane to produce aromatic hydrocarbons in presence 

of molybdenum modified HZSM-5 zeolite. Of the three biomass constituents, cellulose was found 

to be the major contributor to the production of aromatics followed by hemicellulose and lignin. 

The introduction of methane enhanced the hydrodeoxygenation of lignin-derived phenols into 

aromatics. However, methane did not show any effect on improving production of aromatics from 

catalysis of cellulose or hemicellulose in presence of molybdenum-only modified HZSM-5 

zeolites. The molybdenum modified HZSM-5 zeolites enhanced the deoxygenation of phenols 

thus inhibited the generation of polyaromatics during catalysis of lignin.  
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To improve the performance of the co-catalysis of biomass and methane, HZSM-5 zeolite 

was modified by loading bimetallic molybdenum-containing compounds, resulting two new 

catalysts MoAg/HZSM-5 and MoZn/HZSM-5, respectively. Both catalysts showed higher 

reactivity towards methane activation than molybdenum-only loaded catalysts. MoAg/HZSM-5 

tended to catalyze dealkylation of alkylated benzenes thus yielded a product with high selectivity 

towards benzene. A dramatic increase in the yield of aromatic hydrocarbons was noticed when 

MoZn/HZSM-5 was used for catalysis of switchgrass under methane atmosphere. The maximum 

carbon yield of total aromatics of 39.31 % was obtained from catalysis of raw switchgrass under 

methane at 700 °C. The yield of aromatic hydrocarbons from catalysis was not further improved 

by pretreating the biomass feedstock via torrefaction as expected, because the significant loss of 

cellulose and concentration of lignin during torrefaction. 

The present study provided a conceptual methodology on biomass-to-liquid process 

(BTL) through the integration of multiple upgrading processes, such as torrefaction, catalytic fast 

pyrolysis, and methane aromatization. Catalytic pyrolysis of biomass with the intervention of 

methane is a very promising technique for the hydrocarbon production. This combined 

conversion process has many benefits. Methane can be activated and incorporated into the carbon 

chain of biomass derived volatiles and thus improve the yield and quality of liquid product. In 

addition, the operational cost for bio-oil upgrading could be significantly reduced by switching 

from conventional hydrotreating processes to this combined process with the intervention of 

methane. The research and development on this co-conversion process is still at an early stage.  

6.2. Future work 

Recommendations for further exploration are: 

I. Reaction mechanisms and kinetics study  

Although the current study proved the synergistic effect of methane activation and 

catalysis of biomass in presence of metal modified HZSM-5 zeolite, the detailed reaction 
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mechanisms associated with methane activation and the incorporation of methyl intermediates 

into the carbon chain of biomass-derived molecules are not fully understood. More advanced 

analytical techniques, such as isotopic labeling can be employed. In addition, methane activation 

appears to be the rate limiting step of the whole combined process. The kinetic study on methane 

activation is required to provide guidance on the selection of operation parameters for 

optimization. 

II. Lab-scale operational study 

The current study demonstrated proof-of-concept of an innovative process which 

synergistically converted biomass and methane into liquid hydrocarbon fuels. A study is needed 

to determine how this new concept fits industry. The proposed process should be tested on a lab-

scale experiment unit to obtain operational data to support the feasibility of this new technology. 

III. Techonoeconomic study on production of aromatics 

An economic analysis of this synergistic process can be performed to estimate the yield 

of aromatic products and the production costs based on the experimental data obtained from the 

lab-scale study. Sensitivity analysis is required to understand the effects of operational parameters 

during production on the product yield and costs thus to maximize the profits of this process. 
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