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Abstract 

Network fault diagnosis aims at detecting and avoiding network problems, and 

thus increasing a network's availability, keeping downtimes to a minimum, and 

improving network performance. Mobile cellular network operators spend nearly a 

quarter of their revenue on network management and maintenance. A significant 

portion of that budget, is spent on resolving faults diagnosed in the system that 

degrade or disrupt cellular services. Historically, the operations to detect, diagnose 

and resolve issues were carried out by human experts. However, with growing cell 

density, diversifying cell types and increased complexity, this approach is becoming 

less and less viable, both technically and financially. To cope with this problem, 

research on self-healing solutions has gained significant momentum in recent years. 

One of the most desirable features of the self-healing paradigm is automated fault 

diagnosis. 

 

While several fault detection and diagnosis machine learning models have been 

proposed recently, these schemes have one common tenancy. They still rely on 

human expert contribution for fault diagnosis and prediction in one way or another. 

In this thesis, an AI-based fault diagnosis solution that offers a key step forward 

towards a completely automated self-healing system without requiring human 

expert input is proposed. The proposed solution leverages Convolutional Neural 

Network and Random Forests classifier based deep learning model which uses 

RSRP map images of faults generated. Comparison of the performance of the 

proposed solution against state-of-the-art solutions in literature that mostly use 

Naïve Bayes models, while considering seven different commonly occurring fault 
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types is performed. The comparison uncovers several advantages of the proposed 

approach. Results show that Random Forests classifier achieves high classification 

accuracy as compared to Convolutional Neural Networks and Naïve Bayes even with 

relatively small training data. 



1 
 

 

CHAPTER 1 

Introduction 

1.1 Fault Diagnosis Overview 
 

The last decade has witnessed unprecedented growth in the cellular network 

usage thereby making system operations more complex. Billions of dollars are spent 

in the United States alone by cellular operators to detect and diagnose faults [1]. 

With the genesis of 5G ultra dense network, fault management will be a primary 

challenge. It is not difficult to foresee that with such an amalgam of technologies 

and operational complexity required to configure, operate, optimize and maintain 

the networks the biggest challenges in the emerging cellular networks [2] would be 

to automate the fault diagnosis process.  

Typically, a single fault in the network system always produces a large amount 

of alarm information. Operators then have to depend on domain experts to 

diagnose the exact root cause and devise a solution. The drawback of this is that it is 

very time consuming and is prone to human errors given the unfathomable 

complexity of the system. From a network operator’s perspective, achieving 

accurate and timely diagnosis of the cause of the faults is critical for both improving 

subscriber perceived experience and maintaining network reliability. 

Network applications necessitate that network fault issues be resolved in a very 

short time. The complexity of fault diagnosis has led to emergence of current 
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solutions that combine expert input and an automated system. Although research is 

on-going, most of the current fault diagnosis systems were built on make-shift and 

incoherent basis. This involved simply transferring the knowledge of the human 

expert into a system that has the capability to reflect actions of a human expert 

when solving problems in a particular domain. But, by taking into consideration 

future emerging cellular networks, their complexity and shrinking profit margins; 

minimizing human interaction for fault diagnosis for Self-Organizing Networks 

(SON) would unquestionably be desirable [1] [2].  

This means that automation for reducing costs, handling complexity and 

maximizing resources efficiency will not only become a necessity, but future cellular 

networks will depend on it [1]. The main task of an automated fault diagnosis tool is 

to identify the cause of problem. The fault management process can be divided into 

three stages: fault detection, fault diagnosis and testing. This thesis focuses only on 

the fault diagnosis process which is of significant importance since the speed and 

the accuracy of the fault management process is heavily dependent on it. 

 

 

1.2 Previous Work and Motivation 

Several recent studies have explored fault diagnosis in cellular networks. 

Authors in [3] have proposed the use of Bayesian networks to diagnose faults. In [4] 

authors focused on self-healing, which included all the functionalities that targeted 

automating troubleshooting in the Radio Access Network (RAN) by using ‘if-then’ 

rules. Similarly, in [5] automated diagnosis in troubleshooting (TS) for Universal 
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Mobile Telecommunications System (UMTS) networks using a Bayesian network 

(BN) approach is proposed. Alarms are modeled as discrete random variables with 

two states: OFF or ON. KPIs are modeled as discrete random variables with two, 

three, or more states. The authors in [6] propose a system for automated diagnosis 

based on a Naïve Bayesian classifier which is then applied to the identification of 

the fault cause in GSM/GPRS, 3G or multi-systems networks.  

In [7] authors presented a self-healing framework developed for 3GPP Long 

Term Evolution (LTE) networks to provide a platform where the detection and 

compensation of cell outages are evaluated in realistic environments. Authors in [8] 

have compared thresholds obtained with three different algorithms such as 

knowledge-based method (TEXP), Entropy Minimization Discretization (EMD) and 

Selective Entropy Minimization Discretization. In [9] authors present an automatic 

unified detection and diagnosis framework to identify root causes of faults using 

unsupervised clustering. Five classification algorithms, namely Chi-squared 

automatic interaction detection (CHAID), quick unbiased efficient statistical tree 

(QUEST), Bayesian network, support vector machine (SVM) and classification and 

regression tree (CRT) were used.  

An integrated detection and diagnosis framework is presented in [10] where the 

model can identify anomalies and find the most probable root cause of not only 

severe problems but even smaller degradations as well. Another self-healing 

approach is proposed in [11], where an automatic framework for detection and 

diagnosis is described. This system is built based on expert knowledge, which is 

derived from the reports of previous fault cases. In [12], a few improvements to this 

this framework are discussed. The main contribution of this work is to include more 

sophisticated profiling and detection capabilities. 
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1.3 Research Objectives 

While the fault diagnosis problem has been investigated in several recent studies        

as discussed in Section 1.2, investigation of a pure machine learning model that 

eliminates the need for a domain expert contribution for fault diagnosis has not yet 

been researched on. Hence, the focus of this study is to identify several machine 

learning models that do the job of fault diagnosis without human expert input while 

leveraging a data set that does not have pre-defined fault types. The research 

objective is to incorporate a realistic machine learning model that uses seven 

commonly occurring fault types in the cellular network for fault diagnosis and then 

present several new insights based on the analysis. 

 

 

1.4 Contributions 

Although all the above-mentioned works contribute on similar lines in terms of 

automating the fault diagnosis process, the novel contributions of this thesis are 

outlined below: 

1. To the best of the authors’ knowledge, none of the existing studies have used 

Convolutional Neural Networks (CNN) and Random Forests models as 

proposed in this thesis.  

2. Existing studies use small pre-existing data sets limiting the number and 

types of faults that can be diagnosed. To overcome this limitation, in this 

study for the first time, a synthetic data set has been generated. The entire 

process of generating the dataset has been automated in Atoll RF Design 

Tool [13] by writing VBScripts. 
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3. Most existing studies still rely on input/domain knowledge from human 

expert in one form or other. In the proposed solution, no input from human 

experts is needed. The models are purely trained on Reference Signal 

Received Power (RSRP) map images which are labeled as faults. This thesis 

presents a pure deep learning model where no additional external 

information provided by experts is needed. 

4. The final contribution of this thesis is a comparison between Naïve Bayes 

solution that is the most widely investigated approach in literature for fault 

diagnosis, and our proposed Convolutional Neural Network and Random 

Forests based solutions. Results show that both Convolutional Neural 

Network and Random Forests outperform the prevailing Naïve Bayes fault 

diagnosis solutions and Random Forests even outperforms the Convolutional 

Neural Network (CNN). 

 

 

                 1.5 Articles Currently Under Review for Publication 

1. S. Bothe, U. Masood, H. Farooq and A. Imran, “AI based fault diagnosis in 

emerging cellular networks”, in IEEE GLOBECOM 2019 (submitted in May 2019) 

 

 

1.6 Organization 

The rest of this thesis is structured as follows: Data generation and pre-

processing methodology is presented in Chapter II and Chapter III respectively. 

Chapter IV presents the framework of the fault diagnosis model which includes 
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CNN, Naïve Bayes and Random Forests models used in this thesis. Performance 

analysis and numerical results are presented in Chapter V. Chapter VI concludes 

the thesis and future work is presented in Chapter VII. 
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CHAPTER 2 

                 Data Generation  

The dataset used in this thesis consists of RSRP map images generated in the 

Atoll RF design tool. Atoll is a multi-technology wireless network design and 

optimization platform that supports initial design to densification and 

optimization of the network. The area under consideration is the city of 

Brussels spanning over 800 km2. 

 

Fig. 2.1: Spatial representation of the Base-Stations  

As seen in Fig 2.1, 291 transmitters have been positioned around the city over 15 

clutter classes which have been included in this framework and each base-

station (BS) has 3 transmitters connected to it. For our analysis, 120 

transmitters i.e. 40 BS have been considered. Also, to minimize the boundary 
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effect, all transmitters are kept functional. Table I summarizes the network 

default settings before any fault is induced. In this data generation technique, 7 

faults have been generated one a time. These are generated in the BS in the area 

of interest. RSRP map images were created for each instance when an error is 

triggered and are later fed into the aforementioned models. Fig 3 represents the 

RSRP map images for ‘transmitter off’ and ‘site outage’ faults in one of the BS as 

encircled.  

 

System 
Parameters 

Values 

Cellular Layout 120 Macrocell sites 

Sectors 3 sectors per BS 

Simulation Area 800 km2 

Path Loss Model Ray-tracing 

Land Cover (Clutter) 
Types 

15 different classes 

BS Transmit Power 43dBm 

Cell Individual Offset 0 dBm 

Antenna Tilt 0 deg 

Antenna Gain 18.3dBm 

Carrier Frequency 2100 MHz 

Geographic Information Ground Heights + 
Building Heights + 

Land Use Map 

Table 1: Network Scenario Default Settings 
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Seven most commonly occurring faults in real networks were simulated in 

Atoll to generate the synthetic data as described below: 

1. Cell Outage (C.O): This error was created by turning each transmitter off 

one at a time.  

2. Site Outage (S.O): A BS consisting of 3 transmitters was turned off at one 

time.  

3. Transmission Power (TxP): An error in the transmission power of the BS 

was induced. The default value of 43 dBm was varied between 25 dBm to 

35 dBm with a step size of one to trigger the error.  

4. CIO Positive (CIO+): To account for handover parameter error, the CIO 

was increased to 10 dB from its default value of 0 dB.  

5. CIO Negative (CIO-): A second error in CIO was created by reducing the 

CIO value from its default value of 0 dB to negative 10 dB.  

6. Antenna Uptilt (AU): The tilt angle of the antenna was increased from 0 

degrees to 25 degrees.  

7. Antenna Downtilt (AD): Antenna tilt was decreased from its original 

value of 0 degrees to negative 25 degrees.  
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                             (a) Normal Scenario                              (b) Transmitter Off 

    

      
               (c) Site Outage 

 
Fig. 2.2: Comparison of different faults generated in the network 
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CHAPTER 3 

                            Data Pre-Processing 

This dataset has 1961 colored images of size 553 x 578 divided into 8 classes 

namely Normal Scenario, C.O., S.O., TxP, CIO+, CIO-, AU and AD. Among 

these images, 1372 have been segregated for training and remaining 589 are 

used for testing. The advantage of using RSRP map images over raw data for 

fault diagnosis, as most prior studies do, is that there is no need for 

identification of smart input features or labeling required from experts. No 

preprocessing of the data is done before feeding it to the CNN.  

 

 

 

 

 

 

Fig. 3.1: Conversion of an image to a 1-D vector 
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Since images are simply RSRP maps, in real network such maps can be 

generated using MDT data and then fed to the proposed diagnosis framework.  

However, since Naïve Bayes and Random Forests do not take images as 

inputs, 1-D matrices corresponding to the RSRP map images are generated. The 

associated label for each class are induced in the vector. 

A digital Grey-scale image is represented by a pixel matrix. Each pixel of 

such an image is presented by one integer from the set {0,...,255}. The numeric 

values in pixel presentation uniformly change from zero (black pixels) to 255 

(white pixels). RGB images are represented with three Greyscale images 

matrices (one for each red, green and blue color).  

 

    

Fig. 3.2: Grey-scale RSRP map used as input to CNN model 

All the RSRP map images are also converted to Grey-scale to be fed in these 

models to compare the networks’ performance between Grey-scale and RGB input 
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data. A representation of this is shown in fig 3.2. 
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CHAPTER 4 

Framework for Fault Diagnosis 

 

 

 

Fig. 4.1: Framework for a Fault Diagnosis Model 

                               Fig 4.1 summarizes the framework for fault diagnosis model. In this section, the different 

                               machine learning models implemented in this thesis are discussed. 

4.1 Convolutional Neural Network 

CNNs also known as ‘ConvNet’, are Artificial Neural Networks (ANN) that have 

been most commonly used for analyzing images. Apart from image analysis they 

can also be used for other data analysis or classification problems as well. This 

pattern detection is what makes CNNs so useful for images analysis. What 

differentiates them from the standard multi-layer perceptron or MLP is that they  
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have hidden layers called convolutional layers in addition to non-convolutional 

layers. The CNN was first introduced by Yann LeCun et al. for gradient-based 

learning applied to document recognition on the MINST dataset [14]. Since then it 

has been applied in various research such as sentence classification [15], face 

recognition [16], traffic signal recognition [17] and many more.  

 

 

 

 

 

Fig. 4.2: Representation of a Convolutional Neural Network Model 

 

To start, the CNN receives an input feature map: a three-dimensional matrix 

where the size of the first two dimensions corresponds to the length and width of 

the images in pixels. The size of the third dimension corresponds to the number of 

channels of an image. The CNN comprises a stack of modules, each of which 

performs three operations: convolution, transformation and pooling. To our model, 

RGB and Grey-scale RSRP map image have been provided. The basic architecture 

includes a convolutional layer consisting of predefined number of filters, called the 

feature map, which learns the features from the input image. During a convolution, 

the filters effectively slide over the input feature map grid horizontally and 

vertically, one pixel at a time, extracting each corresponding tile. For each filter-tile 

pair, CNN performs element-wise multiplication of the filter matrix and the tile 
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matrix, and then sums all the elements of the resulting matrix to get a single value.  

Each of these resulting values are the outputs in the convolved feature matrix. 

During training, the CNN ‘learns’ the optimal values for the filter matrices that 

enable it to extract meaningful features from the input feature map. As the number 

of filters applied to the input increases, so does the number of features the CNN can 

extract. However, the trade-off is that filters compose the majority of resources 

expended by the CNN, so training time also increases as more filters are added. 

Following each convolution operation, the CNN applies a Rectified Linear Unit 

(ReLU) transformation to the convolved feature, in order to introduce nonlinearity 

into the model. The equation for ReLU can be written as follows: 

f(x) = max (0, x)………………… (1) 

where x is the input to the neuron. ReLU can allow the model to account for non-

linearities and interactions. Neurons are only locally connected by filters, followed 

by a pooling layer of fixed size 2x2.  

For this model max-pooling is implemented. This max- pooling layer down 

samples the convolved feature, reducing the number of dimensions of the feature 

map, while still preserving the most critical feature information and to control over 

fitting. In a fully connected layer, all the neurons consider every activation in the 

previous layer. Each layer learns its weights and biases using gradient descent in 

small mini-batches of training samples. In this model, the batch size to train is 32 

and the number of output classes is 8. Learning rate is set to 0.001 and the 

maximum number of epochs is 100. Since the neurons in a fully connected layer 

have connections to all activations in the previous layer, their activations can be 

computed with a matrix multiplication followed by a bias offset. In the 
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convolutional layer the neurons are connected only to a local region in the input, 

and only those many the neurons in a convolutional volume share parameter. 

However, the neurons in both layers still compute dot products, so their functional 

form is identical. The last fully-connected layer holds the output. 

 

4.2 Naïve Bayes Classifier Model 

Naïve Bayes classifiers are a collection of classification algorithms based on Bayes 

Theorem with strong (naïve) independence assumptions between the features. It is a 

family of algorithms where all of them share a common principle, i.e. every pair of 

features being classified is independent of each other. It is a classifier that is able to 

predict, given an observation of an input, a probability distribution over a set of 

classes, rather than only giving the output for the most likely class that the 

observation should belong to. Naïve Bayes is particularly useful for large data sets. 

Bayes’ theorem can be defined as follows: 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

Where, A and B are events and P(B) ≠ 0  

• P(A/B) is a conditional probability defining the likelihood of event A 

occurring given that B is true. 

• P(B/A) is the likelihood of event B occurring given that A is true.  

• P(A) and P(B) are the probabilities of observing A and B independently of 

each other; also known as the marginal probability. 

To read the data-set consisting of images, a vector in which each row is a 1-D 

array associated to an image is created. Next, an array which contains the associated 

label for each class, i.e. all the fault labels used in this thesis as described above were 
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added to the vector. The Naïve Bayes classifier combines this model with a decision 

rule: a function which maps an observation to an appropriate action. The 

corresponding classifier, a Bayes classifier, is the function that assigns a class label. 

The Bayes classifier used in this thesis is Gaussian Naïve Bayes classifier and can be 

expressed as: 

P (xi | y) = 
1

√2𝜋𝜎𝑦
2 exp (- 

(𝑥𝑖−𝜇𝑦)2

2𝜎𝑦
2 ) 

where xi denotes the feature vector and y is the class variable. σy and µy are estimated 

using maximum likelihood. The class with the highest probability is considered as 

the most likely class. This is also known as Maximum A Posteriori (MAP).  

The MAP for a hypothesis is:  

MAP(H) = max(P(H|E)) (4) 

                                         = max((P(E|H) ∗P(H))/P(E)) (5) 

                            = max(P(E|H) ∗P(H)) (6) 

P(E) is evidence probability, and it normalizes the result. The advantage of using 

Naïve Bayes is that it is fast to predict class of test data set. It also performs well in 

multi-class prediction. When assumption of independence holds, a Naïve Bayes 

classifier performs better compared to other models like logistic regression and less 

training data is needed. But the downside of using Naïve Bayes is that if categorical 

variables have a category (in test data set), which were not observed in training data 

set, then model will assign a 0 (zero) probability and will be unable to make a 

prediction. This is often known as Zero Frequency. To take into account Zero 

frequency issues, a few techniques that are often used are m-estimates and Laplace 

estimates. The parameter m is also known as pseudo count (virtual examples) and is 

used for additive smoothing. It prevents the probabilities from being 0.   For m=1 it 



19  

is called Laplace smoothing. 

4.3 Random Forests 

A third model in the proposed framework is the Random Forests classifier. A 

decision tree is a flowchart-like tree structure where an internal node represents 

feature, the branch represents a decision rule and each leaf node represents the 

outcome. Decision tree can handle categorical and numerical data. The decision tree 

constructs a set of rules which are used to predict a class to classify complex 

situations. Decision tree can become much more powerful when used as ensembles. 

These ensembles create state of the art machine learning algorithms that can 

outperform neural networks in some cases [18]. The most popular ensemble 

technique is Random Forests. 

 Although decision tree have their own advantages viz: easy interpretation and 

straightforward visualization, perform well on large datasets and are extremely fast, 

this model does not take into account the global optimum. However, choosing the 

best result at a given step does not ensure that leaf node would lead to the optimal 

decision. Also, decision tree are prone to over fitting, especially when a tree is 

particularly deep. Ideally, minimum of both, error due to bias and error due to 

variance are desired. Because of the above-mentioned disadvantages, Random 

Forests can be used to mitigate these problems well. A Random Forest is simply a 

collection of decision trees whose results are aggregated into one final result. Their 

ability to limit over fitting without substantially increasing error due to bias is why 

they are such powerful models.  

One-way Random Forests reduce variance is by training on different samples of 

the data. It uses Boostrap resampling method to extract multiple samples from 

original samples and construct sub datasets, and then uses the sub dataset to form 
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the base decision tree and train it. The bootstrap method is a statistical technique for 

estimating quantities about a population by averaging estimates from multiple small 

data samples. A second way is by using a random subset of features. This means, for 

a set of 8 features, Random Forests will only use a certain number of those features 

in each model.  

Thus, in each tree a minimum number of random features can be utilized. If 

many trees in forest are used, eventually most or all of the features would have been 

included. Random Forests are a strong modeling technique and much more robust 

than a single decision tree. Random Forests also offer a good feature selection 

indicator. Random Forests use Gini importance or mean decrease in impurity (MDI) 

to calculate the importance of each feature. The Gini coefficient measures the 

inequality among values of a frequency distribution. A Gini coefficient of zero 

expresses perfect equality.  

A Gini coefficient of 1 or 100% expresses maximal inequality among values. 

However, a value greater than one may occur if some data points represent negative 

contribution to the total. For larger groups, values close to or above 1 are very 

unlikely in practice. The Random Forests classifiers parameters need to be set, 

consist of number of trees, number of features, impurity function and stop criteria. 

Generally, the default values have been used for this. The maximum number of 

iterations chosen is 100. The depth of tree is limited to 5 levels. The overall accuracy 

and Kappa Coefficient obtained by RGB images are 77.82% and 0.63, respectively. 

For the Grey-scale images, these values are 87.16%, and 0.79 respectively. 
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CHAPTER 5 

 

Performance Analysis 

In this section, the results of the proposed methods have been presented. All 

the models explained earlier perform better for Grey-scale images than RGB 

images. As seen in Fig 5.1, a visible difference in accuracy can be noted. This 

difference in accuracy can be attributed to the increase in the number of kernels.  

 

Fig. 5.1: Graph of Accuracy for Grey-scale and RGB images 

The kernel size for Grey-scale image is k x k x 1 whereas it is k x k x 3 for an 

RGB image. Depending on the number of kernels, the number of parameters 

increases proportionally. Furthermore, large dimensional vectors are almost equally 

spaced and hence are difficult to separate by a classifier. This can be accredited to 

the curse of dimensionality phenomena. Although no substantial information is 

added in an RGB image, it in turn adds to more compute and memory intensive 
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training time due to large number of input parameters. Hence, feeding these models 

with a Grey-scale image rather than an RGB image results in a better classification 

accuracy. The Random Forests model has the highest classification accuracy 

followed by CNN and Naïve Bayes. Some classifier combination techniques like 

ensembling, bagging and boosting may improve Naïve Bayes classification accuracy, 

but these methods would not help since their purpose is to reduce variance. Naïve 

Bayes has no variance to minimize. Accuracy of CNN saturates after a particular 

number of epochs as the model has limited number of data samples to train from. 

Neural Networks show best results when the number of data points or images are 

very large in number. Loss values of the CNN model on the test dataset are 

represented in fig 5.2.  

 

Fig. 5.2: Graph of loss values for Grey-scale and RGB images for CNN model 

Classification accuracy of individual fault parameters obtained from Random 

Forests classifier are represented in fig 5.3. Classification accuracy for S.O. is the 

highest for RGB images while C.O. are better classified in Grey-scale images. Also, a 

very small degree of antenna tilt results in a noticeable change in the RSRP map 

images therefore enabling Random Forests to better classify them as compared to 

TxP faults. 
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Fig. 5.3: Random Forests prediction accuracy for individual faults 
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CHAPTER 6 

   Conclusion 

Fault diagnosis is a the highly desirable feature in emerging complex and dense 

cellular networks to not only reduce operational costs but also to improve quality of 

experience. In this thesis, a first of its kind CNN and Random Forests based fault 

diagnosis solutions that outperform the prevailing, Naïve Bayes fault diagnosis 

schemes in existing literature is presented. Another key advantage of proposed 

solution is that unlike existing solutions in literature, it does not require human 

domain knowledge for manual feature extraction. This advantage is achieved by 

feeding RSRP data in form of images to train the models instead of conventional 

approach of using raw fault data to train the models. In real networks, these images 

can be created using MDT reports or RSRP measurements gathered from other 

sources. The results indicate that the proposed model can flag all seven faults in the 

fed images. This framework can be used as a part of the self-healing module in 

emerging networks. 
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CHAPTER 7 

                 Future Work 

For future works, the performance of proposed solution in presence of multiple 

faults concurrently would be investigated. Furthermore, a neuromorphic computing 

model would be implemented to compare its performance to the previously 

researched models. 

7.1 Neuromorphic AI empowered root cause analysis 

of faults in emerging networks  

The goal of this approach is to assess how similar the decision mechanisms of 

convolutional networks are to the corresponding mechanisms in the human cortex. 

This offers a tool for neuroscience to understand the dynamic processes of learning 

and development in the brain and applying brain inspiration to generic cognitive 

computing.  

This concept was developed by Carver Mead [19], in the late 1980s, describing 

the use of very-large-scale integration (VLSI) systems containing electronic analog 

circuits to mimic neuro-biological architectures present in the nervous system. In 

the medium term we may expect neuromorphic technologies to deliver a range of 

applications more efficiently than conventional computers, for example to deliver 

speech and image recognition capabilities in smart phones. (Currently such 

capabilities are available only using powerful cloud resources to implement the 
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recognition algorithms). These will require small-scale neuromorphic accelerators 

integrated with the application processor, using a fraction of the resources of a 

single chip. Large-scale systems may be used to find causal relations in complex 

data from science, finance, business and government. Based on the causal relations 

detected such neuromorphic systems may be able to make temporal predictions on 

different time-scales. 

 

7.2 Natural Intelligence vs Artificial Intelligence 

Key advantages of neuromorphic computing compared to traditional 

approaches are energy efficiency, execution speed, adaptability robustness against 

local failures, the ability to learn and diverse cell types at individual nodes. Talking 

in terms of image recognition in the human brain, there are two complementary 

paths of scene perception in humans. First, an object-centered approach, in which 

components of a scene are segmented and serve as scene descriptors. And second, 

space-centered approach, in which spatial layout and global properties of the whole 

image or place act as the scene descriptors. In the proposed solution, the notion of 

which method of image recognition is utilized by the neuromorphic model would be 

discussed. 

 

7.3 Nengo  

Nengo [20] is a neural simulator based on a framework called the Neural 

Engineering Framework (NEF). The Neural Engineering Framework (NEF) [21] is 

one set of theoretical methods that are used in Nengo for constructing neural 
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models. The NEF is based on Eliasmith & Anderson’s (2003) book from MIT Press.  

Nengo is highly extensible and flexible. You can define your own neuron types 

and learning rules, get input directly from hardware, build and run deep neural 

networks. It is a large-scale modeling approach that can leverage single neuron 

models to build neural networks with demonstrable cognitive abilities. 

 

7.4 Nengo Neural Network [22] 

Neurons communicate through unidirectional connections called synapses. 

When a neuron spikes, it releases neurotransmitter across the synapse, it causes 

some amount of current to be imparted in the postsynaptic (downstream) neuron. 

Many factors affect the amplitude of the imparted current; which can be 

summarized in a scalar connection weight representing the strength of the 

connection between two neurons. In order to compute any function, the connection 

weights are set between two populations to be the product of the decoding weights 

for that function in the first population, the encoding weights for the downstream 

population, and any linear transform. 

The Node represents non-neural information, such as sensory inputs and motor 

outputs. It can be used to model a complex experimental environment that both 

provides input to the neural model and responds to the neural model's 

output.The Connection describes how nodes and ensembles are connected. 

The Probe gathers data during a simulation for later analysis. 

The Network encapsulates a functionally related group of interconnected nodes and 

ensembles. 
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The Model encapsulates a Nengo model. Several signals are created for each 

high-level Nengo object; for example, for each ensemble, the simulator creates 

signals that represent the high-level input signal that will be encoded to input 

currents, and the encoding weights. The ensemble also contains a neural 

population, for which the simulator creates signals that represent input currents, 

bias currents, membrane voltages, and refractory times for each cell. 

7.5 Initial Results: 

 

Table 2: Image Classification Accuracy of a Neuromorphic Model 

The classification accuracy on the test data set is represented in Table 2. As 

discussed in chapter 5, the model tends to classify Grey-scale images better than 

RGB images.  

 

Fig 7.5:  Classification Accuracy of Neuromorphic model as  

compared to previously researched models
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Also, the neuromorphic model performs better than CNN, Naïve Bayes and 

Random Forests models. A representation of the accuracy comparison is shown in 

fig 7.5. 
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