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Chapter 1

Introduction

One of the fundamental problems in the theory of automorphic forms or repre-

sentations is the Ramanujan conjecture. Originally formulated by Ramanujan as

estimation for the Fourier coefficients of the weight 12 holomorphic cusp form ∆

over SL2(Z) on the upper half plane h, the conjecture has been generalized to func-

tions over a broader set of groups in terms of local representations of the associated

automorphic forms. To review it, let G be a reductive algebraic group over a number

field F , and let A := ⊗′ν6∞Fν be the ring of adeles for F , where Fν denotes the local

field at a place ν. Then, one of the old versions of the Ramanujan conjecture can

be stated as follows :

1.0.1. Conjecture: Let π ' ⊗′ν6∞πν be an irreducible cuspidal representation of

G(A), where πν denotes the local component of π at the place ν. Then πν is tempered

for every ν 6∞.

This naive version of the Ramanujan conjecture is known to be false with the

first numerical counter examples being found by Saito and Kurokawa [12]. Adrianov

[1], Maass [13] and Zagier [22] showed that the Saito-Kurokawa lift from elliptic cusp

forms to holomorphic Siegel cusp forms of degree two always violates the conjecture.
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Maass found explicit relations between the Fourier coefficients of the holomorphic

Siegel cusp forms which characterize the image of the lift (cf. [13]). We shall refer

to these as the Maass relations and to the image as the Maass space. In [9], Ikeda

generalized the process of Saito-Kurokawa lifts for holomorphic Siegel cusp forms

of higher degree. Kohnen and Kojima characterize the Maass space for Ikeda lifts

again via a similar process as that of Maass (cf. [10], [11]). Both these proofs rely

crucially on intermediate spaces of Jacobi forms.

While this naive version of the Ramanujan conjecture is strongly believed for the

general linear groups, the generalized version is expected only for generic cuspidal

representations of quasisplit reductive groups. Muto, Narita and Pitale in [15] pro-

vide a counterexample to the Ramanujan conjecture for GL2(B) over the division

quaternion algebra B with discriminant two. Note that GL2(B) is an inner form of

the split group GL4. Unlike the cases of Saito-Kurokawa and Ikeda, the construc-

tion in [15] does not involve any intermediate spaces of Jacobi forms. Instead, given

Fourier coefficients c(N) of f ∈ S(Γ0(2),−(1
4

+ r2

4
)) which is an eigenfunction of

the Atkin-Lehner involution, they directly define numbers A(β) (cf. (3.3)). Then

they show that these A(β) are the Fourier coefficients of some Ff ∈ M(GL2(O), r)

by using Maass Converse Theorem (cf. Theorem 3.1.1). Here M(GL2(O), r) is the

space of Maass forms on the 5-dimensional hyperbolic space with respect to GL2(O),

where O is the Hurwitz order in B (see Section 2.2 for details). They further show

that if f is a Hecke eigenform, then so is Ff and the representation ΠF ' ⊗′p6∞ΠF,p

of GL2(BA) corresponding to Ff is a counterexample to the Ramanujan conjecture.

They also show that the image of ΠF under the global Jacquet-Langlands correspon-

dence is the irreducible constituent of Ind
GL4(A)
P2,2(A)(| det |−1/2

A σf ×| det |1/2A σf ), where σf

is the automorphic representation of GL2(A) corresponding to f .

The question we want to answer here is the same as the one Maass answered
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for the Saito-Kurokawa case in [13]. More precisely, we want to characterize the

image of this lift, possibly in terms of recurrence relations between their Fourier

coefficients. We tackle this problem by first noticing that A(β) depends only on

K = |β|2, u and n when β = $u
2nβ0 as in (3.2) (cf. 4.1.1).

Definition 1.0.1. Let M∗(GL2(O), r) denote the subspace of

M(GL2(O), r) consisting of functions F whose Fourier coefficients

A(β) satisfy:

1. If β = $u
2nβ0 as in (3.2), then A(β) depend only on K = |β|2,

u and n. We shall then write A(β) as A(K, u, n).

2. A(K, u, n) satisfy the recurrence relations :

(a) A(K, u, n) = −3ε√
2
A(K

2
, u− 1, n)− A(K

4
, u− 2, n) for some ε ∈ {±1},

(b) A(K, u, n) =
∑

d|n d · A(K
d2
, u, 1) .

Note that there are no intermediate spaces of Jacobi forms. As a result, we

cannot just generalize any of the previous proofs of Maass, Kohnen or Kojima to

this case. Instead we take a completely different approach.

We would like to mention that there is a recent work of Pitale-Saha-Schmidt

(c.f. [17]) which provides a representation theoretic approach to Saito-Kurokawa

lifts which does not use Fourier-Jacobi forms. We note however that the paper is

only able to show a one way implication without Jacobi forms, where as we wish to

prove both ways.

It is easy to see that the Fourier coefficients of Ff satisfy condition (1). To show

that A(K, u, n) also satisfy condition (2a) and (2b), we use Legendre’s three-square

theorem to isolate c(N) as follows:
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Proposition 1.0.1. Let N = 4ab, where a, b are a non-negative integers and 4 - b.

With assumptions as in Theorem 4.3.1, we get

c(−N) =
A(2N, u, 1)√

2N
+ ε

A(N, u− 1, 1)√
N

(1.1)

where

u =


2a if b ≡ 1, 3 mod (4),

2a+ 1 if b ≡ 2 mod (4).

.

Now, we manipulate the defining sum of A(β) (c.f. (3.3)) using these c(N) to

show that A(K, u, n) indeed satisfy the recurrence relation (2b). The relation (2a)

follows from the fact that Ff is a Hecke eigenform at p = 2. Hence, we get

Theorem 1.0.2. Let f ∈ S(Γ0(2),−(1
4

+ r2

4
)) be an Atkin-Lehner eigenform with

eigenvalue ε ∈ {±1} and which is a Hecke eigenform at p = 2. Then Ff obtained in

Theorem 3.1.1 belongs to the Maass space M∗(GL2(O), r).

This allows us to determine a “necessary” condition for any F ∈M(GL2(O), r)

to be a lift. We would like to show a theorem that this is also a “sufficient” condition.

If F ∈ M∗(GL2(O), r), we can still isolate c(N) as before and now the question

reduces to showing these are the Fourier coefficients of some f ∈ S(Γ0(2),−(1
4
+ r2

4
)).

As a first approach one can try to use the Maass converse theorem to show the

automorphy of a function f with Fourier coefficients {c(N)}. The difficulty is that

the analytic properties of the Dirichlet series associated with F do not translate

into analytic properties of Dirichlet series obtained from {c(N)}. To approach this

problem by representation theory, we first add the condition that F is a Hecke

eigenform for all primes p and obtain the following theorem.
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Theorem 1.0.3. Let F ∈M∗(GL2(O, r) such that F is a cuspidal Hecke eigenform.

Then, there exists f ∈ S(Γ0(2),−(1
4

+ r2

4
)), a Hecke eigenform, such that F = Ff .

We denote by ΠF ' ⊗p6∞ΠF,p the automorphic representation of GL2(BA) asso-

ciated with F . Let the image of ΠF under the global Jacquet Langlands map be Π '

⊗p6∞Πp, a representation of GL4(A). For a cuspidal representation σ of GL2(A),

we denote by MW(σ, 2) the Langlands quotient of Ind
GL4(A)
P2,2(A)(| det |1/2A σ×| det |−1/2

A σ),

following the notation of Badulescu and Renard from [5]. The strategy of the proof

now is to show that Π = MW(σ, 2) for σ an irreducible cuspidal automorphic rep-

resentation of GL2(A). We show that ΠF,p is the unique irreducible constituent of

some unramified principal series representation Ind
GL4(Qp)

B4(Qp) (χ1×χ2×χ3×χ4) where

each χi is an unramified character of Q×p described in the following proposition.

Proposition 1.0.2. For every odd prime p, there is a λp ∈ C such that, up to the

action of the Weyl group, χi are given by the formula

χ1(p) = p1/2
λp +

√
λ2
p − 4

2
; χ2(p) = p1/2

λp −
√
λ2
p − 4

2
;

χ3(p) = p−1/2
λp +

√
λ2
p − 4

2
; χ4(p) = p−1/2

λp −
√
λ2
p − 4

2
(1.2)

This is the most crucial result of the paper. The fact that χi are related in this

special way and are not arbitrary is an important consequence of the action of the

Hecke algebra and recurrence relations from Definition 1.1 (2b). For p = 2, the

structure of the local component ΠF,2 can be obtained from the action of the Hecke

algebra and relation (2a). The component ΠF,∞ follows from Section 6.1 of [15].

Conditions on the Satake parameters give us that Π is indeed of the form MW(σ, 2)

for some σ representation of GL2(A). For an odd prime p, let χp be the unramified

character of Q×p such that χp(p) =
λp+
√
λ2p−4

2
. At the prime p =∞, let χ∞(a) = |a|s
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where s =
√
−1r
2

. For the prime p = 2, let χ be an unramified character of Q×2 with

χ(2) = −ε for ε as in condition (2a) of Definition 4.1.1.

Proposition 1.0.3. Let σ = ⊗p6∞σp be the irreducible cuspidal automorphic rep-

resentation of GL2(A) such that Π = MW(σ, 2) as above. Then

σp =


Ind

GL2(Qp)

B2(Qp) (χp × χ−1
p ) for odd p <∞,

χStGL2 for p = 2,

Ind
GL2(R)
B2(R) (χ∞ × χ−1

∞ ) for p =∞.

(1.3)

We then look at the distinguished vector in σ to find a function f associated to σ.

As σ2 is Steinberg and σ∞ is principal series, we can show that f ∈ S(Γ0(2),−(1
4

+

r2

4
)) as required. We complete the proof by showing that c(N) are indeed the Fourier

coefficients of f implying F = Ff .

To generalize Theorem 1.0.3 to all F ∈ M∗(GL2(O), r) we first show that

M(GL2(O), r) is finite dimensional and has a Hecke eigenbasis of operators that

commute with their adjoint. With this, proving that M∗(GL2(O), r) is a Hecke in-

variant subspace suffices as this implies thatM∗(GL2(O), r) has a Hecke eigenbasis

Fi ∈ M∗(GL2(O), r) which are lifts of fi ∈ S(Γ0(2),−(1
4

+ r2

4
)). By linearity of the

defining condition (3.3), F =
∑

i aiFi would be a lift of
∑

i aifi.

We prove that M∗(GL2(O), r) is Hecke invariant by showing that for all the

Hecke operators Ti, the image under their action Ti(F ) satisfies the conditions of

Definition 4.1.1. The condition that Fourier coefficients of Ti(F ) depend only on

K, u and n is obtained by writing the coefficients of Ti(F ) in terms of A(K, u, n) the

Fourier coefficients of F . Since each of these coefficients depends only on K, u and

n, so do the coefficients of Ti(F ). Condition (2a) is equivalent to F being a Hecke

eigenform at prime p = 2 so it is valid for all F ∈ M∗(GL2(O), r). Condition (2b)
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is shown by computing the recurrence sum for (Ti,pF )(K, u, n) and showing that it

is equal to
∑

d|n d(Ti,pF )(K/d2, u, 1). Hence we get the result:

Theorem 1.0.4. The following are equivalent.

1. F is a lift from an Atkin-Lehner eigenform f ∈ S(Γ0(2),−(1
4

+ r2

4
)) with

eigenvalue ε ∈ {±1} and which is a Hecke eigenform at p = 2.

2. F is an element of the space M∗(GL2(O), r)

7



Chapter 2

Automorphic forms on

5-dimensional hyperbolic space

2.1 Algebraic groups and

the 5-dimensional hyperbolic space

Following the notation of Muto, Narita and Pitale in [15], let B be the definite

quaternion algebra over Q with discriminant 2. In terms of the basis {1, i, j, k},

B = Q + Qi+ Qj + Qk with i, j, k satisfying

i2 = j2 = k2 = −1, ij = −ji = k.

GL2(B) will be the group of elements of M2(B) whose reduced norms are non-zero.

Let H = B⊗QR be the Hamilton quaternion algebra with x→ x̄ the main involution

of H. Let tr(x) = x + x̄ and ν(x) = xx̄ be the reduced trace and reduced norm of

x ∈ H respectively, with |x| =
√
ν(x).
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The general linear group G := GL2(H) admits an Iwasawa decomposition

G = Z+NAK,

where

Z+ :=


c 0

0 c

 ∣∣∣∣∣c ∈ R×+

 , N :=

n(x) =

1 x

0 1

 ∣∣∣∣∣x ∈ H

 ,

A :=

ay =

√y 0

0
√
y−1

 ∣∣∣∣∣y ∈ R+

 , K :=
{
k ∈ G : tk̄k = 12

}
.

The quotient G/Z+K can be realized as


y x

0 1

 ∣∣∣∣∣y ∈ R×+, x ∈ H

 .

This gives a realization of the 5-dimensional real hyperbolic space.

2.2 Lie algebras

The Lie algebra g of G is M2(H) and has an Iwasawa decomposition

g = z⊕ n⊕ a⊕ k

9



. Here

z :=


c 0

0 c

 ∣∣∣∣∣c ∈ R

 , n :=


0 x

0 0

 ∣∣∣∣∣x ∈ H

 ,

a :=


t 0

0 −t

 ∣∣∣∣∣t ∈ R

 , k :=
{
X ∈M2(H)| tX̄ +X = 02

}
.

where z, n, a and k are the Lie algebras of Z+, N,A and K respectively.

To consider the root space decomposition of g with respect to a, let H :=1 0

0 −1

 and let α be the linear form of a such that α(H) = 1. Then {±2α}

is the set of roots for (g, a). For z ∈ H we put

E
(z)
2α :=

0 z

0 0

 , E(z)
−2α :=

0 0

z 0

 .
The set {E(1)

2α , E
(i)
2α , E

(j)
2α , E

(k)
2α } (respectively {E(1)

−2α, E
(i)
−2α, E

(j)
−2α, E

(k)
−2α}) form a basis

of n (respectively a basis of n̄ :=


0 0

x 0

 ∣∣∣∣∣x ∈ H

). Let za(k) := {X ∈ k | [X,A] =

0 ∀A ∈ a}, then g decomposes into

g = (z⊕ za(k)⊕ a)⊕ n⊕ n̄.

Consider the Lie group SL2(H) consisting of elements in GL2(H) with their reduced

norms 1. Its Lie algebra is g0 = sl2(H) consisting of elements in M2(H) with their

reduced traces zero.

10



We introduce the differential operator Ω defined by the infinitesimal action of

Ω :=
1

32
H2 − 1

4
H +

1

8

∑
z∈{1,i,j,k}

E
(z)2

2α . (2.1)

This differential operator Ω coincides with the infinitesimal action of the Casimir

element of g0 on the space of right K-invariant smooth functions of G/Z+. In what

follows, we shall refer to it as the Casimir operator.

2.3 Automorphic forms

For λ ∈ C and a discrete subgroup Γ ∈ SL2(R), we denote by S(Γ, λ) the space of

Maass cusp forms of weight 0 on the complex upper half plane h whose eigenvalue

with respect to the hyperbolic Laplacian is −λ.

For a discrete subgroup Γ ⊂ GL2(H) and r ∈ C, letM(Γ, r) denote the space of

smooth functions F on GL2(H) which satisfy the following conditions :

1. Ω · F = −1
2

(
r2

4
+ 1
)
F , where Ω is the Casimir operator defined in (2.1),

2. for any (z, γ, g, k) ∈ Z+ × Γ×G×K, we have F (zγgk) = F (g),

3. F is of moderate growth.

For automorphic forms of SL2(R) we will concern ourselves only with the con-

gruence subgroup Γ0(2) ∈ SL2(R) of level 2. For the choice of a discrete subgroup

of GL2(H), note that the definite quaternion algebra B has a unique maximal order

O given by:

O = Z + Zi+ Zj + Z
1 + i+ j + ij

2
,

called the Hurwitz order. The discrete subgroup we shall consider in this case will

be GL2(O).

11



We denote by

S := Z(1− ij) + Z(−i− ij) + Z(−j − ij) + Z(2ij) (2.2)

the dual lattice of O with respect to the bilinear form on H×H defined by Re = 1
2
tr.

We denote by $2 := (1 + i) which is the uniformizer of B ⊗Q Q2.

Lemma 2.3.1. We have S = $2O

In terms of S, any F ∈M(GL2(O), r) has a Fourier expansion of the form

F (n(x)ay) = u(y) +
∑

β∈Sr{0}

A(β)y2K√−1r(2π|β|y)e2π
√
−1Re(βx). (2.3)

Here Kα, with α ∈ C, is the modified Bessel function, which satisfies the differential

equation

y2d
2Kα

dy2
+ y

dKα

dy
− (y2 + α2)Kα = 0.

We call F cuspidal if u(y) = 0.

12



Chapter 3

Lifting to GL(2) over a division

quaternion algebra by Muto,

Narita and Pitale

3.1 Construction of lift

We first define the set of primitive elements of S, denoted Sprim, by

Sprim := {β ∈ S r {0} | $2|β,$2
2 - β, n - β for all odd integers n}. (3.1)

Any β ∈ S r {0} can then be uniquely written as

β = $u
2 · n · β0, (3.2)

where u is a non-negative integer, n is an odd positive integer and β0 ∈ Sprim.

Let c(N) be the Fourier coefficients of f ∈ S(Γ0(2),−(1
4

+ r2

4
)). Assuming it is

13



an Atkin-Lehner eigenfunction with eigenvalue ε ∈ {±1}, set

A(β) := |β|
u∑
t=0

∑
d|n

(−ε)tc
(
− |β|2

2t+1d2

)
. (3.3)

With A(β) as above, Muto, Narita and Pitale prove the following theorem.

Theorem 3.1.1 (Theorem 4.4 in [15]). Let f ∈ S(Γ0(2),−(1
4

+ r2

4
)) with Fourier

coefficients c(N) and eigenvalue ε of the Atkin-Lehner involution. Define

Ff (n(x)ay) :=
∑

β∈Sr{0}

A(β)y2K√−1r(2π|β|y)e2π
√
−1Re(βx) (3.4)

with {A(β)}β∈Sr{0} as in ( 3.3). Then we have Ff ∈ M(GL2(O), r) and Ff is a

cusp form. Furthermore, Ff 6≡ 0 if f 6≡ 0.

The fundamental tool used in the proof is the following converse theorem of

Maass [14].

Theorem 3.1.2 (Maass). Let {A(β)}β∈Sr{0} be a sequence of complex numbers such

that

A(β) = O(|β|κ) (∃κ > 0)

and put

F (n(x)ay) :=
∑

β∈Sr{0}

A(β)y2K√−1r(2π|β|y)e2π
√
−1Re(βx).

For a Harmonic polynomial P on H of degree l we introduce

ξ(s, P ) := π−2sΓ

(
s+

√
−1r

2

)
Γ

(
s−
√
−1r

2

) ∑
β∈Sr{0}

A(β)
P (β)

|β|2s
,

which converges for Re(s) > l+4+κ
2

. Let {Pl,ν}ν be a basis of Harmonic polynomials

on H of degree l.
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Then F ∈M(ΓT , r) is equivalent to the condition that, for any l, ν, the ξ(s, Pl,ν)

satisfies the following three conditions.

1. It has analytic continuation to the whole complex plane.

2. It is bounded on any vertical strip of the complex plane.

3. The functional equation

ξ(2 + l − s, Pl,ν) = (−1)lξ(s, P̂l,ν)

holds, where P̂ (x) := P (x̄) for x ∈ H.

Here, ΓT is the subgroup of GL2(O) generated by

0 −1

1 0

 ,
1 β

0 1

 (β ∈ O).

3.2 Action of the Hecke operators

Let G(A) = GL2(BA), where BA denotes the adelization of B, and let U be the

compact subgroup of G(A) given by Πp<∞GL2(Op), where Op denotes the p-adic

completion of O at a finite prime p. For a complex number r ∈ C, the space of

automorphic forms for G, denoted M(G(A), r), is defined as follows.

Definition 3.1. Let M(G(A), r) be the space of smooth functions Φ on G(A) sat-

isfying the following conditions:

1. Φ(zγgufu∞) = Φ(g) for any (z, γ, g, uf , u∞) ∈ ZA × G(Q) × G(A) × U × K,

where ZA denotes the center of G(A),

2. Ω · Φ(g∞) = −1
2

(
r2

4
+ 1
)

Φ(g∞) for any g∞ ∈ G(R) = GL2(H),
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3. Φ is of moderate growth.

The class number of G with respect to U is one, which means that G(A) =

G(Q)G(R)U . We can thus view F ∈ M(GL2(O), r) as a smooth function ΦF on

G(A) given by

ΦF (γg∞uf ) = F (g∞) ∀(γ, g∞, uf ) ∈ G(Q)× G(R)× U.

Hence, M(G(A), r) 'M(GL2(O), r).

Section 5 of [15] proves that if f is a Hecke eigenform, then Ff is also a Hecke

eigenform. For each place p 6∞ let Gp := GL2(Bp) for Bp = B⊗QQp. For any finite

prime p 6= 2, we have GL2(Bp) ' GL4(Qp). Let Op be the p-adic completion of O as

above. Then, for p 6= 2, Op 'M2(Zp) and GL2(Op) ' GL4(Zp). Set Kp = GL2(Op)

for all p <∞.

According to [20], the Hecke algebra of GL2(Bp) with respect to GL2(Op) is

generated by: 
{ϕ±1

1 , ϕ2} if p = 2

{φ±1
1 , φ2, φ3, φ4} if p 6= 2.

Here ϕ1, ϕ2 denote the characteristic functions of

K2

$2 0

0 $2

K2, K2

$2 0

0 1

K2

respectively, whereas φ1, φ2, φ3, φ4 denote the characteristic functions of KphiKp
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where hi, 1 6 i 6 4 are



p

p

p

p


,



p

p

p

1


,



p

p

1

1


,



p

1

1

1


respectively for p 6= 2. We will define the set Cp := {α ∈ O | ν(α) = p}/O×. The

following Proposition 5.8 from [15] allows us to explicitly compute the action of the

Hecke operators on the Fourier coefficients A(β) of F ∈M(GL2(O), r).

Proposition 3.2.1 ( Proposition 5.8 from [15]). 1. Let p = 2 and h =

$2 0

0 1

.

We obtain

(K2hK2 · F )β = 2(A(β$−1
2 ) + A(β$2)).

2. Let p be an odd prime and β ∈ S r {0}.

(a) When h =



p

p

p

1


,

(KphKp · F )β = p(
∑
α∈Cp

A(βᾱ−1) +
∑
α∈Cp

A(ᾱβ)).
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(b) When h =



p

1

1

1


,

(KphKp · F )β = p(
∑
α∈Cp

A(α−1β) +
∑
α∈Cp

A(βα)).

(c) When h =



p

p

1

1


,

(KphKp · F )β = (p2A(p−1β) + p2A(pβ) + p
∑

(α1,α2)∈Cp×Cp

A(α−1
1 βα2)).

3.3 Automorphic representation corres-

ponding to the lifting

The above action of the Hecke algebra allows us to find the Hecke eigenvalues for

Ff in terms of the Hecke eigenvalues of f .

Proposition 3.3.1. Let f ∈ S(Γ0(2),−(1
4

+ r2

4
)) be a Hecke eigenform with eigen-

value λp for every odd prime p and the Atkin-Lehner eigenvalue ε. Then F = Ff

as defined in Theorem 3.1.1 is a Hecke eigenform with eigenvalues µp 1, µp 2, µp 3, µp 4

for φ1, φ2, φ3, φ4 respectively at every odd prime p and 2µ1, µ2 2 for ϕ1, ϕ2 at p = 2.
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They are related as

µp 1 = 1, µp 2 = µp 4 = p(p+ 1)λp, µp 3 = p2λ2
p + p3 + p (3.5)

and

µ2 1 = 1, µ2 2 = −3
√

2ε. (3.6)

This is proved in Proposition 5.9, 5.11 and 5.12 of [15]. Let the representation πF

denote the irreducible cuspidal automorphic representation of GL2(BA) correspond-

ing to Ff with BA := ⊗′p6∞Bp generated by right translates of ΦF (as in Definition

3.1). πF is cuspidal as Ff is a cusp form and the irreducibility follows from the

strong multiplicity-one result for GL2(BA) (c.f. [4],[5]). Let πF = ⊗′pπp, where πp an

irreducible admissible representation of GL2(Bp) for p <∞ and π∞ is an irreducible

admissible representation of GL2(H).

Let B2 and B4 denote the group of upper triangular matrices in GL2 and GL4

respectively. Then, for p < ∞ and odd, πp is the unique spherical constituent of

the unramified principal series representation Ind
GL4(Qp)

B4(Qp) (χ1 × χ2 × χ3 × χ4) where

χi are unramified character of Q×p given by

χ1(p) = p1/2
λp +

√
λ2
p − 4

2
, χ2(p) = p1/2

λp −
√
λ2
p − 4

2
,

χ3(p) = p−1/2
λp +

√
λ2
p − 4

2
, χ4(p) = p−1/2

λp −
√
λ2
p − 4

2
. (3.7)

For p = 2, π2 is the unique spherical constituent of the unramified principal

series representation Ind
GL2(B2)
B2(Q2) (χ1 × χ2) with

χ1($2) = −
√

2ε, χ2($2) = −1/
√

2ε. (3.8)
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At the prime p =∞, the archimedian component π∞ is isomorphic to the prin-

cipal series Ind
GL2(H)
B2(H) (χ±

√
−1r/2) with

χs


a ∗

0 d


 = ν(ad−1)s. (3.9)

These local representations are explicitly constructed in Section 6 of [15].
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Chapter 4

Maass space in M(GL2(O), r)

4.1 Definition of the Maass space

We will call the image of the lift constructed in Theorem 3.1.1 toM(GL2(O), r) as

the Maass space. To characterize the functions in the Maass space, we first define

the following subspace.

Definition 4.1.1. Let M∗(GL2(O), r) denote the subspace of cusp forms F in

M(GL2(O), r) Fourier coefficients A(β) satisfy:

1. If β = $u
2nβ0 as in (3.2), then A(β) depend only on K = |β|2, u and n. We

shall then write A(β) as A(K, u, n).

2. A(K, u, n) satisfy the recurrence relations :

(a) A(K, u, n) = −3ε√
2
A(K

2
, u− 1, n)− A(K

4
, u− 2, n) for some ε ∈ {±1} ,

(b) A(K, u, n) =
∑

d|n d · A
(
K
d2
, u, 1

)
.

We will define A(K, u, n) = 0 if u is negative. These recurrence relations are

similar to those of Maass in the case of Saito-Kurokawa lifts in [13].
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4.2 Isolating c(-N)

All our information about the Fourier coefficients {A(β)}β∈Sr{0} of Ff is obtained

from the Fourier coefficients c(−N) of f from equation (3.3). To do any successful

manipulation of A(β), we would ideally like to have a formula for c(−N) in terms

of the Fourier coefficients A(β).

Proposition 4.2.1. Let f ∈ S(Γ0(2),−(1
4

+ r2

4
)) be an Atkin-Lehner eigenform with

eigenvalue ε ∈ {±1} and which is a Hecke eigenform at p = 2. We will denote by

the Fourier coefficients of f by {c(N)}. Let Ff be as in Theorem 3.1.1. For N = 4ab

with a, b non-negative integers and 4 - b, we get

c(−N) =
A(2N, u, 1)√

2N
+ ε

A(N, u− 1, 1)√
N

(4.1)

where

u =


2a if b ≡ 1, 3 mod (4)

2a+ 1 if b ≡ 2 mod (4)

Note that there is more than one β with the same K, u and n. However, by

construction in equation (3.3) all such β give the same A(β). As such, c(−N) is

well defined in terms of β representatives of A(K, u, n). We will need the following

lemmas for the proof of Proposition 4.2.1.

Lemma 4.2.1. β = (x+ yi+ zj + wij) ∈ Sprim iff |β|2 ≡ 2 mod 4 and gcd(β) :=

gcd(x, y, z, w) = 1.

Proof. First, we prove the following claim.

Claim 1. Let β ∈ O. Then β ∈ S iff |β|2 ≡ 0, 2 mod 4.

Proof of claim. Simplifying the condition from (2.2), we see that x+ y + z +w ≡ 0
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mod 2 and therefore x2 + y2 + z2 + w2 ≡ 0 mod 2 or equivalently x2 + y2 + z2 +

w2 ≡ 0, 2 mod 4. If β ∈ O such that |β|2 ≡ 0 mod 2 then by parity conditions

x+ y + z + w ≡ 0 mod 2 implying β ∈ S. Hence, β ∈ S iff |β|2 ≡ 0, 2 mod 4.

Now, consider an element β1 ∈ S with gcd(β1) = 1 such that β1 /∈ Sprim. Then

by definition of Sprim in (3.1) this means β1 = $2
2β for some β ∈ O. Now, |$2

2|2 = 4

hence, 4||β1|2 implying |β1|2 ≡ 0 mod 4.

Conversely, for β ∈ S if |β|2 ≡ 0 mod 4 then |$−1
2 β|2 ≡ 0, 2 mod 4. Since

$−1
2 = 1−i

2
it is an easy verification that $−1

2 β ∈ O. Then by claim, $−1
2 β ∈ S.

Therefore, β ∈ $2S which is to say β /∈ Sprim.

Therefore, β ∈ S satisfies |β|2 ≡ 2 mod 4 with gcd(β) = 1 iff β /∈ $2S and

equivalently β ∈ Sprim as required.

For any N , the easiest way for there to exist a β with gcd(β) = 1 and |β|2 = 2N

is if w = 1 with x2 + y2 + z2 = 2N − 1. By Legendre’s three square Theorem, an

odd number 2N − 1 cannot be written as a sum of three squares iff 2N − 1 ≡ 7

mod 8⇔ 2N ≡ 0 mod 8⇔ N ≡ 0 mod 4. However, if x2 + y2 + z2 = 2N − 1 and

x, y, z are all odd then 4|(x2 + y2 + z2 + 1) and hence β /∈ Sprim.

Lemma 4.2.2. If N ≡ 1, 3 mod 4, then there is a β ∈ Sprim such that

c(−N) =
A(β)√

2N
. (4.2)

Proof of Lemma 4.2.2. If N ≡ 1, 3 mod 4 then 2N − 1 ≡ 1, 5 mod 8 respectively.

Therefore, by Legendre’s theorem, there exist x, y, z ∈ Z, not all odd, such that

2N − 1 = x2 + y2 + z2. Hence, by Lemma 4.2.1, β = (x+ yi+ zj + ij) ∈ Sprim and
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β = $0
2 · 1 · β. Then (3.3) becomes

A(β) = |β|c
(−|β|2

2

)
=
√

2Nc(−N).

Solving for c(−N) gives the required result.

If N ≡ 2 mod 4, we can still find x, y, z ∈ Z such that x2 +y2 +z2 +12 = 2N . As

|β|2 = 2N ≡ 0 mod 4, β ∈ S but β /∈ Sprim by Lemma 4.2.1. However, $−2
2 β /∈ S

as |$−2
2 β|2 ≡ 1 mod 4. Therefore β = $1

2 · 1 · β0 for some β0 ∈ Sprim.

If N ≡ 0 mod 4 then one cannot find x, y, z ∈ Z such that x2 + y2 + z2 = 2N .

In that case, write N = 4ab with 4 - b. Then, we can find x, y and z such that

x2 + y2 + z2 + 1 = 2b. This allows us to find β ∈ S such that |β|2 = 2N and

β = $2a
2 · 1 · β0 if b ≡ 1, 3 mod 4 and β = $2a+1

2 · 1 · β0 if b ≡ 2 mod 4 with

β0 ∈ Sprim.

Lemma 4.2.3. If N ≡ 0, 2 mod 4, then ∃β ∈ S such that

c(−N) =
A(β)√

2N
+ ε

A($−1
2 β)√
N

. (4.3)

Proof of Lemma 4.2.3. Let β = $u
2 · 1 · β0 ∈ S with |β|2 = 2N as in the remark

before the lemma. Unlike Lemma 4.2.2, in this case u 6= 0. Following (3.3), we get

A(β) =|β|
u∑
t=0

(−ε)tc
(
− |β|

2

2t+1

)
=
√

2Nc(−N) +
√

2N
u∑
t=1

(−ε)tc
(
− |β|

2

2t+1

)
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But

u∑
t=1

(−ε)tc
(
− |β|

2

2t+1

)
=
−ε√
N

√
N

u−1∑
t=0

(−ε)tc
(
−|β|

2/2

2t+1

)

=
−ε√
N

√
N

u−1∑
t=0

(−ε)tc
(
−|$

−1
2 β|2

2t+1

)
=
−ε√
N
A($−1

2 β).

Rearranging the terms gives us the required result.

Proof of Proposition 4.2.1. Let N = 4ab with a and b as in the statement of the

proposition. If b ≡ 1, 3 mod 4 then by Lemma 4.2.2, we can find β′ ∈ Sprim such

that |β′|2 = 2b. Then β = $2a
2 β
′ has |β|2 = 2N , u = 2a and n = 1. Hence, in this

case A(β) = A(2N, 2a, 1). Then A($−1
2 β) = A(N, 2a− 1, 1) and the first condition

of the proposition follows from Lemma 4.2.3. If a = 0 then we are in case of Lemma

4.2.2 with A(N,−1, 1) = 0.

If b ≡ 2 mod 4 then we can find β′ = $2 ·1 ·β0 ∈ S such that β = $2a
2 β
′ satisfies

A(β) = A(2N, 2a + 1, 1) and A($−1
2 β) = A(N, 2a, 1). The second condition of the

proposition now follows from Lemma 4.2.3.

4.3 First result

Now that we have an explicit formula for the Fourier coefficients c(−N) in terms

of the Fourier coefficients A(K, u, n) of Ff , we can prove our first result towards

identifying the image of the lift.

Theorem 4.3.1. Let f ∈ S(Γ0(2),−(1
4

+ r2

4
)) be an Atkin-Lehner eigenform with

eigenvalue ε ∈ {±1} and which is a Hecke eigenform at p = 2. Then Ff obtained in

Theorem 3.1.1 belongs to the subspace M∗(GL2(O), r).
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Proof. The Fourier coefficients of Ff are given in terms of the Fourier coefficients of

f as in equation (3.3) by:

A(β) = |β|
u∑
t=0

∑
d|n

(−ε)tc
(
− |β|2

2t+1d2

)
.

The only properties of β used in here are |β|, u and n. Replacing |β| with |β|2 we

can say that the Fourier coefficients A(β) of Ff are depend only on |β|2, u and n,

satisfying the first condition of Definition 4.1.1.

To prove equation (2b), we use the value of c(−N) from (4.1) and substitute

A(K, u, n) for A(β). Doing so, we get:

A(K, u,n) =
√
K

u∑
t=0

∑
d|n

(−ε)tc
(
− K

2t+1d2

)

=
√
K

u∑
t=0

∑
d|n

(−ε)t
(
A(K/(2td2), u− t, 1)√

K/(2td2)

+ ε
A(K/(2t+1d2), u− t− 1, 1)√

K/(2t+1d2)

)

=
√
K
∑
d|n

(
u∑
t=0

(
(−ε)tA((K/d2)/2t, u− t, 1)√

(K/d2)/2t

− (−ε)t+1A((K/d2)/2t+1, u− (t+ 1), 1)√
(K/d2)/2t+1

))

=
√
K
∑
d|n

A(K/d2, u, 1)√
K/d2

=
∑
d|n

dA(K/d2, u, 1)

For equation (2a), note that Ff is Hecke eigenform by Proposition 5.9 of [15] for

p = 2 since we have assumed the same for f . Then, by Proposition 5.10 of [15], the
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Fourier coefficients of the lift Ff satisfy

2(A(β$2) + A(β$−1
2 )) = −3

√
2εA(β)

with A(β$−1
2 ) = 0 if u = 0. Writing it in terms of K, u and n, we get

2(A(2K, u+ 1, n) + A(K/2, u− 1, n)) = −3
√

2εA(K, u, n)

or equivalently

A(K, u, n) =
−3ε√

2
A(
K

2
, u− 1, n)− A(

K

4
, u− 2, n)

for u > 1 with A(K
4
, u− 2, n) = 0 for u = 1.

We now wish to prove the converse of Theorem 4.3.1 which is to show that our

‘necessary’ condition is also ‘sufficient’. We do so first in Theorem 6.1.1 for the case

of Hecke eigenforms and then in Theorem 6.3.1 for the general case.
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Chapter 5

The Jacquet-Langlands

correspondence for

GL(2, B)↔ GL(4)

5.1 Description of the automorphic representa-

tion

If F is a cuspidal Hecke eigenform, let the automorphic representation associated

with it be denoted by ΠF ' ⊗′p6∞ΠF,p. At every prime p, the local component ΠF,p

is a spherical representation of GL2(Bp) with Bp = B ⊗ Qp. The representation is

cuspidal since the Hecke eigenform F is cuspidal.

For every odd p <∞ we have GL2(Bp) ∼= GL4(Qp). From Section 5.2 and 6.1 of

[15], we have ΠF,p is the unique irreducible constituent of some unramified principal

series representation Ind
GL4(Qp)

B4(Qp) (χ1 × χ2 × χ3 × χ4) where each χi is an unramified

character of Qp.
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For F ∈ M∗(GL2(O), r), the characters χ1, χ2, χ3, χ4 have a special form. This

is proved in the next proposition.

Proposition 5.1.1. For every odd prime p, there is a λp ∈ C such that, up to the

action of the Weyl group, χi are given by the formula

χ1(p) = p1/2
λp +

√
λ2
p − 4

2
; χ2(p) = p1/2

λp −
√
λ2
p − 4

2
;

χ3(p) = p−1/2
λp +

√
λ2
p − 4

2
; χ4(p) = p−1/2

λp −
√
λ2
p − 4

2
(5.1)

The proof of the proposition will use [15, Lemma 5.10].

Lemma 5.1.1 ([15, Lemma 5.10]). Let β ∈ Sprim. Then

#{α ∈ Cp : p|βα} = #{α ∈ Cp : p|αβ} =


1 if p | |β|2,

0 if p - |β|2

In addition, p2 does not divide αβ or βα for any α ∈ Cp

Here Cp := {α ∈ O|ν(α) = p}/O× with #(Cp) = (p+ 1). In terms of A(K, u, n),

if A(β) = A(K, 0, 1) with p - K then A(αβ) = A(βα) = A(pK, 0, 1) for every

α ∈ Cp. If p | K then there are unique α1, α2 ∈ Cp (not necessarily different) such

that A(α1β) = A(βα2) = A(pK, 0, p) and A(αβ) = A(βα) = A(pK, 0, 1) in every

other case.

Proof of Proposition 5.1.1. It is enough to show that the Hecke eigenvalues µp 1, µp 2,

µp 3, µp 4 for F satisfy the equation (3.5). The fact that this is enough follows from

the proof of Proposition 6.2 from [15]. We will follow notation of Proposition 3.2.1

for the Hecke algebra and refer to diagonal matrices given before it by h2, h3 and h4

respectively.
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Since the Maass form F is non-zero, at least one of the Fourier coefficients

A(K, u, n) is non-zero. This implies, from the recurrence conditions of Definition

4.1.1, that there exists at least one K such that A(K, 0, 1) 6= 0. Let K = pnK0

where K0 is co-prime to p. Then we claim that

λp =
A(pn+1K0, 0, 1) + A(pn−1K0, 0, 1)

A(pnK0, 0, 1)
(5.2)

with A(pn−1K0, 0, 1) = 0 if n = 0.

Case 1: K = p0K0 i.e. to say p - K. Let β such that A(β) = A(K, 0, 1).

By Lemma 5.1.1, for every α ∈ Cp, we have βα−1 /∈ O and p - αβ. Therefore,

A(βᾱ−1) = 0 and A(ᾱβ) = A(pK, 0, 1) for every α ∈ Cp. Then, condition 2(a) of

Proposition 3.2.1 implies

(Kph2Kp · F )β =p
( ∑
α∈Cp

A(βᾱ−1) +
∑
α∈Cp

A(ᾱβ)
)

=p
( ∑
α∈Cp

0 +
∑
α∈Cp

A(pK, 0, 1)
)

=p(p+ 1)A(pK, 0, 1).

Hence, we get µp 2 = p(p + 1)λp with λp given in (5.2) as required. The same

exact argument also proves that µp 4 = p(p+ 1)λp.
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To show µp 3 = p2λ2
p + p3 + p, we use condition 2(c) of Propositon 3.2.1 and get

(Kph3Kp · F )β =
(
p2A(p−1β) + p2A(pβ) + p

∑
(α1,α2)∈Cp×Cp

A(α−1
1 βα2)

)
=p2 · 0 + p2A(p2K, 0, p) + p((p+ 1)A(K, 0, 1))

=p2A(p2K, 0, p) + (p2 + p)A(K, 0, 1)

=p2(pA(K, 0, 1) + A(p2K, 0, 1))

+p(p+ 1)A(K, 0, 1) (5.3)

=p3A(K, 0, 1) + pA(K, 0, 1)

+p2(A(p2K, 0, 1) + A(K, 0, 1)).

The A(p−1β) = 0 since p - β. By Lemma 5.1.1, for each α2 there is a unique α1

such that α−1
1 βα2 ∈ O. Hence, there are total (p + 1) copies of A(K, 0, 1), one for

each α2. For (5.3), we are using our recurrence relation (2b) of Definition 4.1.1 to

expand A(p2K, 0, p) = pA(K, 0, 1) + A(p2K, 0, 1).

It now suffices to prove A(p2K, 0, 1) + A(K, 0, 1) = λ2
pA(K, 0, 1) to show µp 3 =

p2λ2
p + p3 + p as in (3.5). However, we know λ2

pA(K, 0, 1) = λp(λpA(K, 0, 1)) =

λp(A(pK, 0, 1)) from the argument for µp 2. Let β′ be such that A(β′) = A(pK, 0, 1).
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Then, it follows that

p(p+ 1)λpA(pK, 0, 1) =(Kph2Kp · F )β′

=p
( ∑
α∈Cp

A(β′ᾱ−1) +
∑
α∈Cp

A(ᾱβ′)
)

=p(A(K, 0, 1) + A(p2K, 0, p)

+ pA(p2K, 0, 1)) (5.4)

=p(A(K, 0, 1) + pA(K, 0, 1) + A(p2K, 0, 1)

+ pA(p2K, 0, 1)) (5.5)

=p(p+ 1)(A(K, 0, 1) + A(p2K, 0, 1)).

We use Lemma 5.1.1 to expand out the sums to obtain (5.4). Since p|pK, there

exists a unique α ∈ Cp such that α−1β′ ∈ O and A(β′ᾱ−1)

= A(K, 0, 1) for that α. A(β′ᾱ−1) = 0 in the other p cases. In the second sum,

there exists a unique α ∈ Cp such that A(ᾱβ′) = A(p2K, 0, p). In the other p cases,

A(ᾱβ′) = A(p2K, 0, 1). We use the recurrence relation (2b) of Definition 4.1.1 again

to obtain (5.5). Hence, µp 3 = p2λp + p3 + p as required, completing the first case.

Case 2: K = pnK0 with n > 0. Let β be such that A(β) = A(pnK0, 0, 1) where
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K0 is an even number co-prime to p.

(Kph2Kp · F )β =p
( ∑
α∈Cp

A(βᾱ−1) +
∑
α∈Cp

A(ᾱβ)
)

=p(A(pn−1K0, 0, 1) + A(pn+1K0, 0, p)

+ pA(pn+1K0, 0, 1))

=p(A(pn−1K0, 0, 1) + A(pn+1K0, 0, 1)

+ pA(pn−1K0, 0, 1) + pA(pn+1K0, 0, 1)) (5.6)

=p(p+ 1)(A(pn−1K0, 0, 1) + A(pn+1K0, 0, 1)).

We use Lemma 5.1.1 again to write the sums in terms of A(K, u, n). As p|pnK0

but p - β, there exists a unique α ∈ Cp such that βα−1 ∈ O, for which A(βᾱ−1) =

A(pn−1K0, 0, 1). As before, A(βᾱ−1) = 0 in all the other p cases. In the second

sum, there exists a unique α ∈ Cp such that A(ᾱβ) = A(pn+1K0, 0, p). In the

other p cases, A(ᾱβ) = A(pn+1K0, 0, 1). We obtain equation (5.6) then by using the

recurrence relation (2b) of Definition 4.1.1 to expand A(pn+1K0, 0, p). Hence, we

get µp 2 = p(p+ 1)λp with λp given in (5.2) as required. Once again, the same exact

argument also proves that µp 4 = p(p+ 1)λp.

To show that µp 3 = λ2
pp

2 + p3 + p, we have to consider two subcases: n = 1 and

n > 2. We will set both cases up and prove them together. Subcase 1: Letting
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n = 1, we get

(Kph3Kp · F )β =
(
p2A(p−1β) + p2A(pβ) + p

∑
(α1,α2)∈Cp×Cp

A(α−1
1 βα2)

)
=p2 · 0 + p2A(p3K0, 0, p) + p((p+ 1)A(pK0, 0, 1)

+pA(pK0, 0, 1))

=p2(pA(pK0, 0, 1) + A(p3K0, 0, 1))

+(2p2 + p)A(pK0, 0, 1) (5.7)

=p3A(pK0, 0, 1) + pA(pK0, 0, 1) + p2(A(p3K0, 0, 1)

+2A(pK0, 0, 1)).

We will again use Lemma 5.1.1 to simplify the terms in the summation. The first

term, A(p−1β) = 0 as p - β. Since p|pk, there exist unique α′2 ∈ Cp such that p|βα′2.

For that α′2, A(α−1
1 βα′2) = A(pK0, 0, 1) for every α1 ∈ Cp. In the other p cases of α2’s,

there exists a unique α1 ∈ Cp such that α−1
1 βα2 ∈ O and A(α−1

1 βα′2) = A(pK0, 0, 1).

We use the recurrence relation (2b) of Definition 4.1.1 to expand A(p3K0, 0, p) to

obtain (5.7).
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Subcase 2: n > 2

(Kph3Kp · F )β

=
(
p2A(p−1β) + p2A(pβ) + p

∑
(α1,α2)∈Cp×Cp

A(α−1
1 βα2)

)
=p2 · 0 + p2A(pn+2K0, 0, p) + p(pA(pnK0, 0, 1)

+A(pnK0, 0, p) + pA(pnK0, 0, 1))

=p2(pA(pnK0, 0, 1) + A(pn+2K0, 0, 1))

+p((2p+ 1)A(pnK0, 0, 1) + pA(pn−2K0, 0, 1)) (5.8)

=p2(A(pn+2K0, 0, 1) + A(pn−2K0, 0, 1) + 2A(pnK0, 0, 1))

+(p3 + p)A(pnK0, 0, 1).

Once again, using Lemma 5.1.1 to simplify the summation, we get A(p−1β) = 0

as p - β. Since p|pnK0, there exists a unique α′2 ∈ Cp such that p|βα′2. Since now

p | βα′2, there exists a unique α1 ∈ Cp such that (α−1
1 βα′2) = A(pnK0, 0, p). In

other p cases of α1, A(α−1
1 βα′2) = A(pnK0, 0, 1). In the other p cases of α2’s there

exist unique α1’s such that α−1
1 βα2 ∈ O and A(α−1

1 βα′2) = A(pnK0, 0, 1). We use

recurrence relation (2b) twice, more precisely, once for the p2A(pn+2K0, 0, p) and

once for A(pnK0, 0, p) to obtain (5.8).

To prove µp 3 = p2λp + p3 + p in both subcase 1 and subcase 2, it suffices

to show that A(pn+2K0, 0, 1) + A(pn−2K0, 0, 1) + 2A(pnK0, 0, 1) = λ2
pA(pnK0, 0, 1)

where A(pn−2K0, 0, 1) = 0 for the first subcase. For this, we use the identity

λp
(
A(pn+1K0, 0, 1) + A(pn−1K0, 0, 1)

)
= λ2

pA(pnK0, 0, 1) from before. All that is

left to show now is that A(pn+2K0, 0, 1) + A(pnK0, 0, 1) = λpA(pn+1K0, 0, 1) and

A(pnK0, 0, 1)+A(pn−2K0, 0, 1) = λpA(pn−1K0, 0, 1). Both of these are easy to prove

and follow from the computation of (Kph2Kp · F )β done at the start of Case 2.
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Thus, the Hecke eigenvalues µp 1, µp 2, µp 3, µp 4 for F satisfy the equation (3.5) as

required. Rest of the proof follows from the proof of Proposition 6.2 in [15].

Proposition 5.1.1 gives us the exact structure of ΠF,p for all odd primes p. Next

we give a description of ΠF,2 and ΠF,∞.

Proposition 5.1.2. a) The local component ΠF,2 is the unique irreducible con-

stituent of the unramified principal series representation Ind
GL2(B2)
B2(B2) (χ1 × χ2) with

χ1, χ2 unramified characters of B×2 such that

χ1($2) = −
√

2ε, χ2($2) = −1/
√

2ε.

b) At the prime p = ∞, the archimedean component ΠF,∞ is isomorphic to the

principal series representation Ind
GL2(H)
B2(H) (χ±

√
−1r
2

) where

χs


a ∗

0 d


 = ν(ad−1)s

Proof of Proposition 5.1.2. a) For the structure of ΠF,2, it is again enough to show

that the Hecke eigenvalues 2µ1, µ2 2 satisfy the equation (3.6). The proof of this is

simpler than the odd prime case. From the Maass space condition (2a) in Definition

4.1.1, we have

A(2K, u+ 1, n) =
−3ε√

2
A(K, u, n)− A(

K

2
, u− 1, n)

which gives us

2(A(2K, u+ 1, n) + A(K/2, u− 1, n)) = −3
√

2εA(K, u, n).
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Let β ∈ S such that A(β) = A(K, u, n). Then, in terms of β, the above condition

can be written as

2(A(β$2) + A(β$−1
2 )) = −3

√
2εA(β).

Comparing with condition 1 of Proposition 3.1, we get that the Hecke eigenvalue

µ2 2 = −3
√

2ε. Rest of the argument follows from Sections 5.2 and 6.1 of [15].

b) The proof for the structure of ΠF,∞ is the same as in Section 6.1 of [15] since

we still have a Maass form with Casimir eigenvalue −1
2

(
r2

4
+ 1
)

.

5.2 Jacquet Langlands correspondence

Let BA denote the adelization of B with Bp = B ⊗Q Qp as before. Badulescu and

Renard in Theorem 1.4 of [5] give a map G from the automorphic representations

on GL2(BA) to those on GL4(A). Let DGL2(BA) and DGL4(A) denote the discrete

series representations of GL2(BA) and GL4(A) respectively. For G′ = GL2(B2) or

GL2(H) and G = GL4(Q2) or GL4(R) respectively, we denote by C(G′) the category

of smooth representations of G′ (in the non-archimedean case) or the category of

Harish-Chandra modules (in the archimedean case) with a fixed maximal compact

subgroup K of G′. Let R(G′) denote the Grothendieck group of the category of

finite length representations in C(G′). If g ∈ GLn(Bp) in the non-archimedean

case for some n or g ∈ GLn(H) for the archimedean case, we say that g is regular

semisimple if the characteristic polynomial of g has distinct roots in an algebraic

closure of Qp or C respectively. If π ∈ R(G), then we denote by Θπ the function

character of π as a locally constant map, stable under conjugation, defined on the

set of regular semisimple elements of G. We say that g′ ∈ G corresponds to g ∈

GL4(Q2) or GL4(R) respectively if g and g′ are regular semisimple and have the same
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characteristic polynomial and we write g ↔ g′. For a unitary irreducible smooth

representation u of G, we say that u is compatible if there is a unique unitary smooth

irreducible representation u′ of G′ such that Θu(g) = ε(u)Θu′(g
′) for any g ↔ g′,

where ε(u) ∈ {−1, 1}. We denote the map u→ u′ by |LJv| where v = 2 or ∞. We

say a discrete series π of GL4(A) is B− compatible if πv is compatible at both v = 2

and v =∞.

Theorem 5.2.1 (Theorem 1.4 of [5]). a) There is a unique map

G : DGL2(BA)→ DGL4(A) such that for every π′ ∈ DGL2(BA), if π = G(π′),

then one has:

• π is B-compatible

• if v 6= 2,∞, then πv = π′v

• if v = 2 or v =∞, then |LJv|(πv) = π′v

The map G is injective. The image of G is the set of all B-compatible discrete

series of GL4(A).

b) If π′ ∈ DGL2(BA), then the multiplicity of π′ in the discrete spectrum is one

(multiplicity one theorem).

c) If π′, π′′ ∈ DGL2(BA) and π′v ' π′′v for almost all v, then π′ = π′′ (strong

multiplicity one theorem)

For a representation π of GLn, we will say π = MW(σ, k) if a discrete series

representation π is the unique irreducible quotient of the induced representation

ν(k−1)/2σ × ν(k−3)/2σ × . . .× ν−(k−1)/2σ. Here σ is cuspidal and ν is the global char-

acter given by product of local characters i.e. absolute value of reduced norm. For

GL4, the possible values of k will be 1,2 or 4. In each of these cases, σ will be
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a cuspidal representation of GL4, GL2 and GL1 respectively over the appropriate

group.

Let Π denote the image of ΠF under G. We will use following results from Propo-

sition 18.2 of [5] to find conditions on Π.

Proposition 5.2.1 (Proposition 18.2 of [5]). Let π = MW(ρ, k) be a representation

of GL4(A).

a) There exists kρ ∈ {1, 2} such that π is B-compatible if and only if kρ | k.

b) Let π′ be a discrete series of GL2(BA) and let π = G(π′). Then π′ is cuspidal

if and only if π is of the form MW(ρ, kρ).

By Proposition 18.2 part b) of [5], since ΠF is cuspidal, its image Π is of the

form MW(σ, kσ). By Proposition 18.2 part a) of [5], kσ | d when the dimension of

the division algebra is d2. In our case, the division algebra is a quaternion algebra,

so d = 2. Hence, kσ | 2 implying kσ = 2 or kσ = 1. The latter condition is same as

σ being cuspidal.

Proposition 5.2.2. Let F ∈ M∗(GL2(O), r) be a cuspidal Hecke eigenform with

ΠF the associated representation of GL2(BA). Then G(ΠF ) = MW(σ, 2) for some

cuspidal representation σ of GL2(A).

Proof. We will show that G(ΠF ) = Π is not cuspidal, which is equivalent to showing

kσ 6= 1. Since kσ = 1 or kσ = 2, this proves the proposition.

For the sake of contradiction, assume kσ = 1. Therefore, Π is a cuspidal auto-

morphic representation of GL4(A). Then, by equation (14) of Sarnak [19], for every

odd prime p we have

∣∣∣logp

(
|αi (Πp)|p

)∣∣∣ 6 1

2
− 1

42 + 1
.
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Here αi(Πp) denotes the i-th Satake parameter of Π at prime p, | |p denotes the

p-adic valuation and the outer | | denotes the standard absolute value. We have

αi(Πp) = χi(p) with χi(p) as given in (5.1). This, in particular, tells us that

∣∣∣∣∣∣logp

∣∣∣∣∣p1/2
λp ±

√
λ2
p − 4

2

∣∣∣∣∣
p

∣∣∣∣∣∣ 6 1

2
− 1

42 + 1

and ∣∣∣∣∣∣logp

∣∣∣∣∣p−1/2
λp ±

√
λ2
p − 4

2

∣∣∣∣∣
p

∣∣∣∣∣∣ 6 1

2
− 1

42 + 1
.

Therefore, we can write

∣∣∣∣∣∣logp

(∣∣p±1/2
∣∣
p

)
+ logp

∣∣∣∣∣λp ±
√
λ2
p − 4

2

∣∣∣∣∣
p

∣∣∣∣∣∣ 6 1

2
− 1

17
. (5.9)

Let logp

(∣∣∣∣λp+
√
λ2p−4

2

∣∣∣∣
p

)
= α+ and logp

(∣∣∣∣λp−√λ2p−4

2

∣∣∣∣
p

)
= α− for convenience of

notation. Note that α+ + α− = 0. Then (5.9) implies that

∣∣∣∣12 + α+

∣∣∣∣ 6 1

2
− 1

17

∣∣∣∣12 + α−
∣∣∣∣ 6 1

2
− 1

17∣∣∣∣−1

2
+ α+

∣∣∣∣ 6 1

2
− 1

17

∣∣∣∣−1

2
+ α−

∣∣∣∣ 6 1

2
− 1

17

In particular, we get that

−1

2
+

1

17
6

1

2
+ α+ 6

1

2
− 1

17
and − 1

2
+

1

17
6
−1

2
+ α+ 6

1

2
− 1

17
.

Simplifying, we get

−1 +
1

17
6 α+ 6 − 1

17
and

1

17
6 α+ 6 1− 1

17
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both of which cannot be simultaneously true. This gives us a contradiction to

our starting assumption that kσ = 1. Hence, kσ 6= 1 which implies kσ = 2 as

required.

From Proposition 5.2.2 we obtain an irreducible cuspidal automorphic represen-

tation σ of GL2(A). We will next describe the local components of σ and use that

to construct f ∈ S(Γ0(2),−(1
4

+ r2

4
)) which can lift to F .

5.3 Description of σ

Let σ be as from Proposition 5.2.2, with σ ' ⊗p6∞σp. For an odd prime p, let χp be

the unramified character of Q×p such that χp(p) =
λp+
√
λ2p−4

2
for λp as in Proposition

5.1.1. At the prime p =∞, let χ∞(a) = |a|s where s =
√
−1r
2

. For the prime p = 2,

let χ be an unramified character of Q×2 with χ(2) = −ε for ε as in condition (2a) of

Definition 4.1.1.

Proposition 5.3.1. Let σ ' ⊗p6∞σp be the irreducible cuspidal automorphic rep-

resentation of GL2(A) from Proposition 5.2.2. Then

σp =


Ind

GL2(Qp)

B2(Qp) (χp × χ−1
p ) for odd p <∞,

χStGL2 for p = 2,

Ind
GL2(R)
B2(R) (χ∞ × χ−1

∞ ) for p =∞.

(5.10)

Proof. We will use the local Jacquet-Langlands map

C : GL2(Bp)→ GL4(Qp)

to explicitly write down σp at each prime p. We will use the same notation for the
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map from GL2(H) to GL4(R). The groups GL2(Bp) and GL4(Qp) are isomorphic

for every odd prime p, hence following section 1.5 of [5] the maps is identity for odd

prime p. For p = 2, the map is described in Theorem 3.2 of [4] and in Section 1.3 of

[5] for p =∞.

Since the C map is identity at every odd prime p, we have ΠF,p = Πp where Πp is

the local component of Π at prime p. Let P2,2 denote the 2,2-parabolic subgroup of

GL4. From Proposition 5.2.2 we know that ΠF,p = MW(σp, 2). We also know that

ΠF,p is the spherical constituent of Ind
GL4(Qp)

B4(Qp) (χ1 × χ2 × χ3 × χ4). We will denote

Ind
GL4(Qp)

B4(Qp) (χ1 × χ2 × χ3 × χ4) by Ind
GL4(Qp)

B4(Qp) (χ′) for ease of notation. The reduced

norm here is just ν = | det |.

If ΠF,p = MW(σp, 2), then such a σp is unique (see [18] Section 8). Hence, to

show the structure of σp, it is enough to prove the following claim:

Claim 2. For every odd prime p,

Ind
GL4(Qp)

B4(Qp) (χ1 × χ2 × χ3 × χ4) ' Ind
GL4(Qp)

P2,2(Qp)(ν
1/2σp × ν−1/2σp)

for σp = Ind
GL2(Qp)

B2(Qp) (χp × χ−1
p ).

Using method similar to 6.5 in [16], define the map

L : Ind
GL4(Qp)

P2,2(Qp)(ν
1/2σp × ν−1/2σp)→ Ind

GL4(Qp)

B4(Qp) (χ′)

by

(Lh)(g) := (h(g))(I2, I2).

Here h is a function in Ind
GL4(Qp)

P2,2(Qp)(ν
1/2σp× ν−1/2σp) and In is the identity matrix

in GLn(Qp). We have to show this map is well defined and is an isomorphism.

To show that L is well-defined we have to prove that for any A ∈ B4, Lh satisfies
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(Lh)(Ag) = δ
1/2
B4 (A)χ′(A)(Lh)(g). For A =



a ∗ ∗ ∗

0 b ∗ ∗

0 0 c ∗

0 0 0 d


we have

δ
1/2
B4 (A)χ′(A)(Lh(g)) =

= |a3bc−1d−3|1/2χ1(a)χ2(b)χ3(c)χ4(d)(Lh(g))

= |a|3/2|b|1/2|c|−1/2|d|−3/2|a|1/2χp(a)|b|1/2χ−1
p (b)

|c|−1/2χp(c)|d|−1/2χ−1
p (d)(Lh(g))

= |a|2|b||c|−1|d|−2χp(a)χ−1
p (b)χp(c)χ

−1
p (d)(Lh(g))
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On the other hand

(Lh)(Ag) =

=

∣∣∣∣∣∣∣det

a ∗
0 b


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣det

c ∗
0 d


∣∣∣∣∣∣∣
−1

ν1/2


a ∗

0 b


 ν−1/2


c ∗

0 d





σp


a ∗

0 b


 , σp


c ∗

0 d



h(g)

 (I2, I2)

= |a||b||c|−1|d|−1|a|1/2|b|1/2|c|−1/2|d|−1/2h(g)


a ∗

0 b

×
c ∗

0 d




= |a||b||c|−1|d|−1|a|1/2|b|1/2|c|−1/2|d|−1/2

|a|1/2|b|−1/2χp(a)χ−1
p (b)|c|1/2|d|−1/2χp(c)χ

−1
p (d)h(g)(I2, I2)

= |a|2|b||c|−1|d|−2χp(a)χ−1
p (b)χp(c)χ

−1
p (d)h(g)(I2, I2)

= |a|2|b||c|−1|d|−2χp(a)χ−1
p (b)χp(c)χ

−1
p (d)(Lh(g))

= δ
1/2
B4 (A)χ′(A)(Lh(g))

To prove injectivity, we look at two functions h1 and h2 in

Ind
GL4(Qp)

P2,2(Qp)(ν
1/2σp × ν−1/2σp). By definition, then Lh1 = Lh2 implies h1(g)(I2, I2) =

h2(g)(I2, I2) for every g. Applying ((ν1/2σp)(s1)×(ν−1/2σp)(s2)) for s1, s2 ∈ GL2(Qp)

to both sides, we get h1(g)(s1, s2) = h2(g)(s1, s2). Therefore, h1 = h2.

To show that it is an isomorphism, we construct an inverse map

L̃ : Ind
GL4(Qp)

B4(Qp) (χ′)→ Ind
GL4(Qp)

P2,2(Qp)(ν
1/2σp × ν−1/2σp)
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given by

(L̃h)(g)(b1, b2) = h


b1 0

0 b2

 g


for b1, b2 ∈ B2(Qp). We can verify that it is well defined by similar computation as

above and it is easy to see that L ◦ L̃ is identity. Hence L is an isomorphism of

representation.

Claim 3. At prime p =∞,

|C|(ΠF,∞) ' Ind
GL4(R)
P2,2(R)(ν

1/2σ∞ × ν−1/2σ∞)

for σ∞ = Ind
GL2(R)
B2(R) (χ∞ × χ−1

∞ ) with χ∞(a) = |a|s and s =
√
−1r
2

.

For p =∞, note that calculations in Section 6 of [15] for the description of Π∞

are for a general element F ∈ M(GL2(O), r) and are independent of any lifting

properties. Hence, ΠF,∞ is the irreducible component of Ind
GL2(H)
B2(H) (χ′s × χ′−1

s ) with

χ′s = ν ′s(x) and s =
√
−1r
2

. Here ν ′ denotes the reduced norm of H at infinity and is

equal to the square root of the absolute value.

Following Section 1.3 from [4], the image of the Jacquet-Langlands correspon-

dence is Ind
GL4(R)
P2,2(R)(ξs×ξ−1

s ) where ξs = |C|(χ′s) and ξ−1
s = |C|(χ′−1

s ). Here ξs, ξ
−1
s are

characters of GL2(R) with ξs = χs ◦ det and χs(a) = |a|s for s =
√
−1r
2

. Therefore,

Π∞ = Ind
GL4(R)
P2,2(R)(ξs × ξ−1

s ). Now, Ind
GL4(R)
P2,2(R)(ξs × ξ−1

s ) is the irreducible quotient of

Ind
GL4(R)
P2,2(R)(τs× τ−s) where τs = Ind

GL2(R)
B2(R) (| |1/2 χs× | |−1/2 χs). Hence, we obtain the
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following isomorphism

Ind
GL4(R)
P2,2(R)(τs × τ−s)

' Ind
GL4(R)
B4(R) (| |1/2 χs × | |−1/2 χs × | |1/2 χ−s × | |−1/2 χ−s)

' Ind
GL4(R)
B4(R) (| |1/2 χs × | |1/2 χ−s × | |−1/2 χs × | |−1/2 χ−s)

' Ind
GL4(R)
P2,2(R)(ν

1/2σs × ν−1/2σs)

where σs = Ind
GL2(R)
B2(R) (χs × χ−s) and ν = | det |.

However, we know from global Jaquet Langlands of Section 5.2 that Π∞ is also

of the form MW (σ∞, 2) which is the irreducible quotient of Ind
GL4(R)
P2,2(R)(ν

1/2σ∞ ×

ν−1/2σ∞). Hence, by uniqueness, we get σ∞ = σs as in the claim.

Structure of σp for p odd and p = ∞ cases is proved by the claims above. We

will now show case p = 2.

Let ρ and ρ′ be unitary representations of GL2(Q2) and B×2 respectively such

that C(ρ′) = ρ. At prime p = 2, Theorem 3.2 from [5] tells us C(u(ρ′, 2)) = u(ρ, 2)

where

u(ρ, k) = Lg(Πk−1
i=0 ν

(k−1)/2−iρ), u(ρ′, k) = Lg(Πk−1
i=0 ν

′(k−1)/2−iρ′)

with Lg denoting the unique irreducible quotient. Here, ν = | det | and ν ′ is the

reduced norm. In our case, we have u(ρ, 2) = Π2 and u(ρ′, 2) = ΠF,2. We know

ΠF,2, unlike at odd primes p, is a representation of GL2(B2). On the other hand have

Π2 = MW(σ2, 2), hence k = 2. Therefore, ΠF,2 = Ind
GL2(B2)
B2(Qp) (χ1 × χ2) = MW(ρ′, 2).

Hence, ρ′ is a one dimensional representation of B× given by a character χ′ = χ ◦ ν ′

for an unramified character χ of Q×2 . Comparing with Proposition 5.2, we get

χ′($2) = −ε. According to Section 56 of [7] such a character corresponds to twisted
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Steinberg representation χSt of GL2(Q2). Hence, σ2 = χSt with χ(2) = −ε.
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Chapter 6

Main Theorem

6.1 Distinguished vector in σ

Theorem 4.3.1 showed the ‘necessary’ condition that if a given F ∈ M(GL2(O), r)

is a lift then F ∈ M∗(GL2(O), r). We wish to prove a converse of Theorem 4.3.1,

i.e. the ‘sufficient’ condition. We will first show this under the extra hypothesis

that F is a Hecke eigenform and in the last section prove it in all generality for all

F ∈M∗(GL2(O), r).

Theorem 6.1.1. Let F ∈ M∗(GL2(O), r) such that F is a cuspidal Hecke eigen-

form. Then, there is a f ∈ S(Γ0(2),−(1
4

+ r2

4
)), a Hecke eigenform, such that

F = Ff .

From Section 5.3, we know that σp is unramified principal series at every prime

p 6= 2. Hence, the new vector at every prime p 6= {2,∞} is the unique spherical

vector ψp stable under Kp = GL2(Zp). At p = ∞, we have the unique weight zero

fixed vector ψ∞ which is stable under K∞ = O2(R).

At p = 2, the representation is an unramified twist of Steinberg and hence the
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conductor is p. Therefore, the new vector ψ2 is invariant under

K2 =


a b

c d

 ∣∣∣a, d ∈ Z×2 , b ∈ Z2, c ∈ 2Z2

 .

Let ψ = ⊗p6∞ψp ∈ Vσ. It satisfies

ψ(zγgk) = ψ(g) for γ ∈ GL2(Q), z ∈ Z(GL2(A)), k ∈ Πp6∞Kp.

For g∞ =

a b

c d

 ∈ GL2(R), let g∞(i) = ai+b
ci+d

= τ ∈ h. Consider the function

fψ : h → C associated to ψ defined as fψ(τ) = fψ(g∞(i)) = ψ(g∞ ⊗p<∞ 1p) where

1p is the identity of GL2(Qp). Then, for γ ∈ Γ0(2) we have

fψ(γ(τ)) = ψ((γg∞)⊗p<∞ 1p)

= ψ((⊗p6∞γ−1)((γg∞)⊗p<∞ 1p)) ∵ ⊗p6∞γ−1 ∈ GL2(Q)

= ψ(g∞ ⊗p<∞ γ−1)

= ψ((g∞ ⊗p<∞ 1p)k) k = (1⊗p<∞ γ−1)

= ψ(g∞ ⊗p<∞ 1p) ∵ k ∈ Πp6∞Kp

= fψ(τ)

Hence fψ is invariant under the action of Γ0(2). Since the local representation

σ∞ at p =∞ associated with the vector ψ∞ is principal series, the function fψ is a

Maass form.

Following Lemma 9 from [3] for n = 1, the map ψ → fψ is Hecke equivariant.

The structure of σp from Section 5.3 allows us to find the Hecke eigenvalues for

fψ at all odd prime p < ∞. Following Proposition 3.1.2 of [21], the function fψ
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is an eigenfunction of the Atkin-Lehner involution with eigenvalue −χ(2) = ε from

(5.10) and Hecke eigenvalue λ2 = χ(2) = −ε. By Proposition 4.6.6 of [6], the Hecke

eigenvalue for odd primes p with σp = Ind
GL2(Qp)

B2(Qp) (χp × χ−1
p ) would be (χp(p) +

χ−1
p (p)) = λp. Note that we are using the action of the Hecke algebra as in (30) of

[3] here, hence the lack of p1/2.

The eigenvalue for the hyperbolic Laplacian is obtained from the Hecke eigen-

value at infinity as by Proposition 2.5.4 from [6]. Following the notation from Bump

[6], in this case, s1 =
√
−1r
2

and s2 = −
√
−1r
2

. Hence, s = 1
2
(
√
−1r + 1) = 1+

√
−1r

2
.

Then, the eigenvalue for the Laplacian is given by s(1 − s) =
(

1
4

+ r2

4

)
. Hence, fψ

belongs to S(Γ0(2),−(1
4

+ r2

4
)) as required. We will do an additional verification

that this fψ does indeed lift to F . This will complete the proof of Theorem 6.1.1.

6.2 Fourier coefficients of fψ

Let N = 4ab, where a, b are non-negative integers and 4 - b. For F ∈M∗(GL2(O), r)

we can define a sequence of numbers

c(−N) :=
A(2N, u, 1)√

2N
+ ε

A(N, u− 1, 1)√
N

(6.1)

where

u =


2a if b ≡ 1, 3 mod (4)

2a+ 1 if b ≡ 2 mod (4)
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It can be proved that this sequence of numbers {c(−N)} satisfy (3.3) in terms of

K, u and n just by reversing the argument in proof of Theorem 4.3.1.

A(K, u,n) =
∑
d|n

dA(K/d2, u, 1)

=
√
K
∑
d|n

A(K/d2, u, 1)√
K/d2

=
√
K
∑
d|n

(
u∑
t=0

(
(−ε)tA((K/d2)/2t, u− t, 1)√

(K/d2)/2t

− (−ε)t+1A((K/d2)/2t+1, u− (t+ 1), 1)√
(K/d2)/2t+1

))

=
√
K

u∑
t=0

∑
d|n

(−ε)t
(
A(K/(2td2), u− t, 1)√

K/(2td2)

+ ε
A(K/(2t+1d2), u− t− 1, 1)√

K/(2t+1d2)

)

=
√
K

u∑
t=0

∑
d|n

(−ε)tc
(
− K

2t+1d2

)

We will show that fψ ∈ S(Γ0(2),−(1
4

+ r2

4
)) lifts to F by showing that these {c(N)}

are the coefficients of f for all N < 0. This is to say, if cψ(N) are the Fourier

coefficients of fψ, then c(−N) = cψ(−N) for all N > 0.

For every odd prime p, since fψ is a Hecke eigenform, cψ(N) satisfy

p
1
2 cψ(pN) + p

−1
2 cψ(N/p) = λpcψ(N). (6.2)

by equation (5.7) of [15], with cψ(N/p) = 0 if p - N . Rewriting, we get

cψ(pN) = p−1/2λpcψ(N)− p−1cψ(N/p). (6.3)
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Since f is a Hecke eigenform at prime p = 2, from equation (5.6) of [15], its Fourier

coefficients also satisfy

cψ(2N) = − ε
2
cψ(N). (6.4)

Equations (6.3) and (6.4) together allows us to write cψ(−N) in terms of cψ(−1),

λp and ε for all N . This also shows that cψ(−1) is in fact non-zero.

Lemma 6.2.1. The sequence of numbers {c(N)} as defined in (6.1) satisfy equations

(6.2) and (6.4)

Proof. To prove {c(N)} satisfy (6.2), we will use that

λp =
A(pn+1K0, u, 1) + A(pn−1K0, u, 1)

A(pnK0, u, 1)
.

Note that this statement is slightly different than our claim in (5.2) since we no longer

assume u = 0. This statement is still true however, since the Hecke computation

from Proposition 3.1 (b) holds true for any general A(K, u, n) and not just with

A(K, 0, 1) as we used for Proposition 5.1.1. It can also be calculated explicitly via

the same argument as in proof of Proposition 5.1.1. In the computation below, we
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assume c(−N/p) = 0 and A(N/p, u− 1, 1) = 0 are 0 if p - N .

p
1
2 c(−pN) + p

−1
2 c(−N/p)

=

(
p1/2A(2pN, u, 1)√

2pN
+ εp1/2A(pN, u− 1, 1)√

pN

)
+

(
p−1/2A(2N/p, u, 1)√

2N/p
+ εp−1/2A(N/p, u− 1, 1)√

N/p

)

=
A(2pN, u, 1)√

2N
+ ε

A(pN, u− 1, 1)√
N

+
A(2N/p, u, 1)√

2N
+ ε

A(N/p, u− 1, 1)√
N

=

(
A(2pN, u, 1) + A(2N/p, u, 1)√

2N

)
+

(
ε
A(pN, u− 1, 1) + A(N/p, u− 1, 1)√

N

)
=
λpA(2N, u, 1)√

2N
+ ε

λpA(N, u− 1, 1)√
N

=λp

(A(2N, u, 1)√
2N

+ ε
A(N, u− 1, 1)√

N

)
=λpc(−N)

Thus, {c(−N)} satisfy (6.2). To show equation (6.4), we use the condition (2a)

from Definition 4.1.1. From c(−N) as in (6.1), we get

c(−2N) =
A(4N, u+ 1, 1)√

4N
+ ε

A(2N, u, 1)√
2N

=

(
−3ε√

2

A(2N, u, 1)√
4N

− A(4N, u− 1, 1)√
4N

)
+ ε

A(2N, u, 1)√
2N

=
−3ε

2

A(2N, u, 1)√
2N

+ ε
A(2N, u, 1)√

2N
− A(N, u− 1, 1)

2
√
N

=
−ε
2

A(2N, u, 1)√
2N

− 1

2

A(N, u− 1, 1)√
N

=
−ε
2
c(−N)
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Since c(N) satisfy (6.2) and (6.4), c(−1) is also not 0. Then, we can normalize

the Fourier coefficients cψ(−N) so that cψ(−1) = c(−1). Since both {c(−N)} and

{cψ(−N)} satisfy (6.2) and (6.4), this implies c(−N) = cψ(−N) for allN . Therefore,

the Fourier coefficients of fψ satisfy (3.3) and hence, it is a Hecke eigenform in

S(Γ0(2),−(1
4

+ r2

4
)) whose lift Ff = F , completing the proof of Theorem 6.1.1.

6.3 Main result for non-Hecke eigenforms

We would like to generalize the result of Theorem 6.1.1 to all F ∈ M∗(GL2(O), r).

We will do so by proving that M(GL2(O), r) has a Hecke eigenbasis and showing

that the Maass space M∗(GL2(O), r) is stable under the action of all the Hecke

operators given in Proposition 3.2.1. If M∗(GL2(O), r) is stable, then it has a

Hecke eigenbasis {Fi} which are lifts of some {fi} for fi ∈ S(Γ0(2),−(1
4

+ r2

4
)) by

Theorem 6.1.1. Then by linearity of the defining condition (3.3), F =
∑

i aiFi would

be a lift of
∑

i aifi ∈ S(Γ0(2),−(1
4

+ r2

4
)). Let Γ ⊂ GL2(O) be a subgroup of finite

index. For Maass forms F,G overM(Γ, r) with one of them cuspidal, we can define

their Petersson inner product by

〈F,G〉 =
1

V ol(Γ\GL2(O))

∫
Γ\GL2(H)/Z+K

F (g)G(g)dg (6.5)

where the Haar measure dg is given by dxdy
y2

when g =

y x

0 1

 as in Section 2.1.

Proposition 6.3.1. M(GL2(O), r) has a basis of forms that are simultaneous eigen-

vectors of the Hecke algebra ⊗H(Gp, Kp) and the subspace of cusp forms has an
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orthogonal basis of Hecke eigenfunctions with respect to the Petersson inner product

on the 5-dimensional hyperbolic as in (6.5)

Proof. The Hecke algebra acting onM(GL2(O), r) is ⊗H(Gp, Kp) as in Section 5.2

of [15]. By Theorem 6 from Section 8 of [20], the algebra H(Gp, Kp) is commutative

for every prime p.

By Theorem 1 on page 8 of [8], dim(M(GL2(O), r)) < ∞. This means the

spaceM(GL2(O), r) is a finite dimensional vector space with a commutative algebra

⊗H(Gp, Kp) of operators acting on it. The final step in the proof is to show that the

operators commute with their adjoint with respect to the Petersson inner product.

Let g be such that KpgKp is one of the generators of the Hecke algebraH(Gp, Kp)

which according to Proposition 3.2.1 are h1, h2, h3 and h4 for odd p and

$2 0

0 $2


and

$2 0

0 1

 for p = 2. Let KpgKp = tiKpgi = tigiKp. Then Kpg
−1Kp = tiKpg

−1
i

and Kpg
−1zKp = tiKpg

−1
i z for z ∈ Z an element of the center. Let F,G be cusp

forms in M(GL2(O), r). To find the adjoint operator under the Petersson inner

product of (6.5), we can look at

〈T (g)F,G〉 =
∑
i

〈F |gi , G〉 =
∑
i

〈F |gi , G|z〉

=
∑
i

〈F |gi , G|z|g−1
i
|gi〉

=
∑
i

〈F,G|zg−1
i
〉

=
∑
i

〈F, T (zg−1)G〉.
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Hence, to show that the Hecke operators commute with their adjoint, it suffices to

show that T (zg−1) is a generator up to a element of the center. Note that while

F,G are cusp forms with respect to GL2(O), the forms G|zg−1 might be modular

only with respect to some smaller subgroup Γ hence hence we define Petersson inner

product for general subgroup Γ rather than just GL2(O).

Now, taking z =

$2 0

0 $2

 and the Weyl group element w =

0 1

1 0

 ∈ K2,

we can see that K2gK2 = K2wzg
−1wK2. Similarly, taking z =

[
p
p
p
p

]
and

w =

[
1

1
1

1

]
∈ Kp, we can show that Kph2Kp = Kpwzh

−1
4 wKp, Kph3Kp =

Kpwzh
−1
3 wKp and Kph4Kp = Kpwzh

−1
2 wKp. Letting Tp,i denote the Hecke operator

of KphiKp, this shows

T ∗2,1 = T2,1, T ∗2,2 = T2,2,

and

T ∗p,1 = Tp,1, T ∗p,2 = Tp,4, T ∗p,3 = Tp,3, T ∗p,4 = Tp,2

for every prime odd p > 2.

Theorem 6.3.1. The following are equivalent.

1. F is a lift from an Atkin-Lehner eigenform f ∈ S(Γ0(2),−(1
4

+ r2

4
)) with

eigenvalue ε ∈ {±1} and which is a Hecke eigenform at p = 2.

2. F is an element of the space M∗(GL2(O), r)

Proof. As mentioned before, it is enough to show that M∗(GL2(O), r) is stable

under the action of the Hecke Algebra. We will prove that for any Hecke operator

Tp,i and any F ∈ M∗(GL2(O), r), the image of the action Tp,iF ∈ M∗(GL2(O), r)

by showing Tp,iF satisfies all the conditions of Definition 4.1.1.
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Condition 1 of Definition 4.1.1 follows from the fact that we can write the coef-

ficients A′(β) of Tp,iF in terms of A(K, u, n) using Proposition 3.2.1 by case by case

decomposition similar to proof of Proposition 5.1.1. We showed in proof of Propo-

sition 5.1.2 that condition (2a) is actually equivalent to F being a Hecke eigenform

at prime p = 2. Hence, T2,2F = −(3
√

2ε)F for all F ∈ M∗(GL2(O), r). Checking

the recurrence relations for Tp,iF where p is an odd prime requires computation. We

will show this case by case with A(β) = A(pmK, u, pln) where p - Kn. Our cases

will be for Tp,2F and Tp,3F with m = 2l and m > 2l. The computation for Tp,4 is

identical to Tp,2 and hence will not be shown separately.

To simplify computation, we will use a simpler version of our recurrence relation.

A(pmK, u, pln) =
∑
d|pln

dA

(
pmK

d2
, u, 1

)

=
l∑

i=0

∑
d′|n

pid′A

(
pmK

p2id′2
, u, 1

)
(6.6)

=
l∑

i=0

pi
∑
d′|n

d′A

(
pm−2iK

d′2
, u, 1

)

=
l∑

i=0

piA(pm−2iK, u, n). (6.7)

To obtain (6.6), we wrote d = pid′ and split the sum over d | pln into sum over

0 6 i 6 l and d′ | d.

For ease of notation, we will refer to the Fourier coefficients of the Tp,iF in terms

of K, u and n as Tp,iF (K, u, n). In terms of recurrence relation (6.7), the result we

want to show will be

Tp,iF (pmK, u, pln) =
l∑

i=0

piTp,iF (pm−2iK, u, n).
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Case 1: We will start with computation for Tp,2F and m = 2l. By convention

any term A(pmK, u, pln) = 0 if either l or m is negative. In this case, pl exactly

divides pmK so β = plβ0 with p - |β0|2. Therefore, by Lemma 5.1.1, we have

Tp,2F (pmK, u,pln) =

=(p+ 1)A(pm+1K, u, pln) + (p+ 1)A(pm−1K, u, pl−1n)

=(p+ 1)(A(pm+1K, u, pln) + A(pm−1K, u, pl−1n))

and

Tp,2F (pmK, u, n) =pA(pm+1K, u, n) + A(pm+1K, u, pn)

+A(pm−1K, u, n)

=pA(pm+1K, u, n) + pA(pm−1K, u, n)

+A(pm+1K, u, n) + A(pm−1K, u, n)

=(p+ 1)(A(pm+1K, u, n) + A(pm−1K, u, n)).

Note, we are using our recurrence relation from step 2 to step 3 to expand the terms

with pn. Hence,

l∑
i=0

piTp,2F (pm−2iK, u, n) =

=
l−1∑
i=0

piTp,2F (pm−2iK, u, n) + plTp,2F (K, u, n)

=
l−1∑
i=0

pi(p+ 1)(A(pm+1−2iK, u, n) + A(pm−1−2iK, u, n))

+ pl(p+ 1)(A(pK, u, n) + 0)

58



We compare that with

Tp,2F (pmK, u, pln) = (p+ 1)(A(pm+1K, u, pln) + A(pm−1K, u, pl−1n))

=(p+ 1)

(
l∑

i=0

piA(pm+1−2iK, u, n) +
l−1∑
i=0

piA(pm−1−2iK, u, n)

)

=(p+ 1)

(
l−1∑
i=0

piA(pm+1−2iK, u, n) +
l−1∑
i=0

piA(pm−1−2iK, u, n)

)

+ pl(p+ 1)A(pK, u, n)

to obtain the desired result.

Case 2: Now, consider the computation for Tp,2F with m > 2l. The expansion

for Tp,2F (pmK, u, n) from Case 1 is still valid here. Hence,

l∑
i=0

piTp,2F (pm−2iK, u, n) =

=
l∑

i=0

pi(p+ 1)(A(pm+1−2iK, u, n) + A(pm−1−2iK, u, n))
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In this case, β = plβ0 but p | |β0|2. Therefore, by Lemma 5.1.1, we have

Tp,2F (pmK, u, pln) =

=pA(pm+1K, u, pln) + A(pm+1K, u, pl+1n)

+pA(pm−1K, u, pl−1n) + A(pm−1K, u, pln)

=p
l∑

i=0

piA(pm+1−2iK, u, n) +
l+1∑
i=0

piA(pm+1−2iK, u, n)

+p
l−1∑
i=0

piA(pm−1−2iK, u, n) +
l∑

i=0

piA(pm−1−2iK, u, n)

=(p+ 1)
l∑

i=0

piA(pm+1−2iK, u, n) + pl+1A(pm−1−2lK, u, n)

+(p+ 1)
l−1∑
i=0

piA(pm−1−2iK, u, n) + plA(pm−1−2lK, u, n)

=(p+ 1)
l∑

i=0

piA(pm+1−2iK, u, n) + (p+ 1)plA(pm−1−2lK, u, n)

+(p+ 1)
l−1∑
i=0

piA(pm−1−2iK, u, n)

=(p+ 1)

(
l∑

i=0

piA(pm+1−2iK, u, n) +
l−1∑
i=0

piA(pm−1−2iK, u, n)

)
.

Comparing the two sums we have the equality.

Case 3: Now we move on to the computation for Tp,3F , starting with m = 2l.

Once again we have pl exactly dividing pmK so β = plβ0 with p - |β0|2. Therefore,
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by Lemma 5.1.1, we have

Tp,3F (pmK, u, pln) =

=p2A(pm−2K, u, pl−1n) + p2A(pm+2K, u, pl+1n)

+p(p(p+ 1)A(pmK, u, pl−1n) + (p+ 1)A(pmK, u, pln))

=p2A(pm−2K, u, pl−1n) + p2A(pm+2K, u, pl+1n)

+(p2 + p)(pA(pmK, u, pl−1n) + A(pmK, u, pln))

and

Tp,3F (pmK, u, n) =

=p2(0) + p2A(pm+2K, u, pn)

+p(pA(pmK, u, n) + pA(pmK, u, n) + A(pmK, u, pn))

=p2A(pm+2K, u, pn) + 2p2A(pmK, u, n) + pA(pmK, u, pn)

=p2(pA(pmK, u, n) + A(pm+2K, u, n)) + 2p2A(pmK, u, n)

+p(pA(pm−2K, u, n) + A(pmK, u, n))

=p2A(pm+2K, u, n) + p2A(pm−2K, u, n)

+(p3 + 2p2 + p)A(pmK, u, n).
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Hence,

l∑
i=0

piTp,3F (pm−2iK, u, n) =

=
l∑

i=0

pi(p2A(pm−2−2iK, u, n) + p2A(pm+2−2iK, u, n)

+(p3 + 2p2 + p)A(pm−2iK, u, n))

=
l−1∑
i=0

pi(p2A(pm−2−2iK, u, n) + p2A(pm+2−2iK, u, n)

+(p3 + 2p2 + p)A(pm−2iK, u, n))

+pl(p2A(p2K, u, n) + (p3 + 2p2 + p)A(K, u, n))

We separated the term of i = l since it expands differently for the case of pm−2−2i.
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Comparing it with

Tp,3F (pmK, u, pln) =

=p2A(pm−2K, u, pl−1n) + p2A(pm+2K, u, pl+1n)

+(p2 + p)(pA(pmK, u, pl−1n) + A(pmK, u, pln))

=p2

l−1∑
i=0

piA(pm−2−2iK, u, n) + p2

l+1∑
i=0

piA(pm+2−2iK, u, n)

+(p2 + p)

(
p
l−1∑
i=0

piA(pm−2iK, u, n) +
l∑

i=0

piA(pm−2iK, u, n)

)

=p2

l−1∑
i=0

piA(pm−2−2iK, u, n) + p2

l−1∑
i=0

piA(pm+2−2iK, u, n)

+p2plA(p2K, u, n) + p2pl+1A(K, u, n)

+(p2 + p)

(
p
l−1∑
i=0

piA(pm−2iK, u, n) +
l∑

i=0

piA(pm−2iK, u, n)

)

+(p2 + p)plA(K, u, n)

=
l−1∑
i=0

pi(p2A(pm−2−2iK, u, n) + p2A(pm+2−2iK, u, n)

+(p3 + 2p2 + p)A(pm−2iK, u, n))

+pl(p2A(p2K, u, n) + (p3 + 2p2 + p)A(K, u, n))

we get that the two sums are equal as required.

Case 4: Finally, let m > 2l with A(pm−2−2lK, u, n) = 0 if m = 2l+ 1. Then, we

have
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l∑
i=0

piTp,3F (pm−2iK, u, n) =

=
l∑

i=0

pi(p2A(pm+2−2iK, u, pn) + 2p2A(pm−2iK, u, n)

+pA(pm−2iK, u, pn))

=
l∑

i=0

pi(p2(A(pm+2−2iK, u, n) + pA(pm−2iK, u, n))

+2p2A(pm−2iK, u, n) + p(A(pm−2iK, u, n) + pA(pm−2−2iK, u, n)))

=
l∑

i=0

pi(p2A(pm−2−2iK, u, n) + p2A(pm+2−2iK, u, n)

+(p3 + 2p2 + p)A(pm−2iK, u, n)

Note, we are using our recurrence relation from step 1 to step 2 to expand the terms

with pn.
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We compare that with

Tp,3F (pmK, u,pln) = p2A(pm−2K, u, pl−1n)

+p2A(pm+2K, u, pl+1n) + p(p2A(pmK, u, pl−1n)

+2pA(pmK, u, pln) + A(pmK, u, pl+1n))

=p2

l−1∑
i=0

piA(pm−2−2iK, u, n) + p2

l+1∑
i=0

piA(pm+2−2iK, u, n)

+p3

l−1∑
i=0

piA(pm−2iK, u, n) + 2p2

l∑
i=0

piA(pmK, u, n)

+p
l+1∑
i=0

piA(pmK, u, n)

=p2

l−1∑
i=0

piA(pm−2−2iK, u, n) + p2

l∑
i=0

piA(pm+2−2iK, u, n)

+p2pl+1A(pm−2lK, u, n) + p3

l−1∑
i=0

piA(pm−2iK, u, n)

+2p2

l∑
i=0

piA(pmK, u, n) + p
l∑

i=0

piA(pmK, u, n)

+ppl+1A(pm−2−2lK, u, n).

Rearranging the sum, we get

Tp,3F (pmK, u, pln) =
l∑

i=0

pi(p2A(pm−2−2iK, u, n)

+
l∑

i=0

pip2A(pm+2−2iK, u, n)

+
l∑

i=0

pi(p3 + 2p2 + p)A(pm−2iK, u, n)

=
l∑

i=0

piTp,3F (pm−2iK, u, n)
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as required.
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Appendix A

Converse theorem for Γ0(4)

A.1 Converse Theorem

Following the method of construction of Muto, Narita and Pitale in [15], a possible

approach to the problem is via a proper converse theorem. If we could use the two

recurrence relations from Definition 4.1.1 and Proposition 4.2.1, we can perhaps

infer about the analytic properties of C(−N) from A(β). The following proposition

fulfills the role of the required converse theorem for the case N = 4.

Proposition A.1. If a Maass form f ∈ S(Γ0(2),−(1
4
+ r2

4
)) has a Fourier expansion∑∞

−∞ an
√
yKν(2π|n|y)e2πinx with a0 = 0 and if

Λ(s, f) := N (
s−1/2

2
)π(−s+ε)Γ

(s+ ε+ ν

2

)
Γ
(s+ ε− ν

2

)∑ an
ns

satisfies the functional equation Λ(s, f) = (−1)εΛ(1 − s, f) with ε = 0 if an = a−n

and ε = 1 if an = −a−n for N 6 4, then f is a Maass form over Γ0(N).

We will use Lemma 1.9.2 from [6] to prove this proposition.
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Lemma A.2 (1.9.2). If f is an eigenvector for the Laplace operator, then f(iy) =

∂f(iy)
∂x

= 0 for all y > 0 ⇒ f(z) = 0 for all z.

Proof. Action of γ doesn’t change Laplace invariance and leaves the eigenvalue un-

changed. Hence, h(z) is also a Laplace eigenfunction and we can use the above

lemma to it. From the existence of Fourier expansion, we know that f(z) is invari-

ant under [ 1 1
0 1 ]. Since these two matrices generate Γ0(N) for N 6 4, we would have

shown f(z) is Γ0(N) invariant.Now [ 0 −1
N 0 ][ 1 −1

0 1 ][ 0 −1
N 0 ]−1 = [ 1 0

N 1 ]. So showing that

f(iy) = ±f(γ′(iy)) for γ′ = [ 0 −1
N 0 ] is enough.

If f is an odd Maass form with expansion
∑∞
−∞ an

√
yKν(2π|n|y)e2πinx with

a0 = 0 then f(x + iy) =
∑∞

1 an
√
yKν(2π|n|y)i sin(2πnx). The terms of e2πinz

involving cos(2πnx) cancel for an and a−n and hence are omitted. Then f(iy) =∑∞
1 ani

√
yKν(2π|n|y)sin(0) = 0 for all y > 0.

If f is an even form then ∂f
∂x

is odd and vice versa. Hence, showing that f(iy) =

f(γ′(iy)) for an even form and ∂f
∂x

(iy) = ∂f
∂x

(γ′(iy)) for an odd form is sufficient.

Even Case: We know from Equation 1.9.10 from [6] that if f(x+ iy) is an even

form with Fourier expansion
∑∞
−∞ an

√
yKν(2π|n|y)e2πinx with a0 = 0, then

∫ ∞
0

f(iy)ys−
1
2
dy

y
=

1

2
π−sΓ

(
s+ ν

2

)
Γ

(
s− ν

2

)
L(s, f) (A.1)

where L(s, f) =
∑

an
ns . Defining

Λ(s, f) := N (
s−1/2

2
)π−sΓ

(
s+ ν

2

)
Γ

(
s− ν

2

)
L(s, f) (A.2)

we get ∫ ∞
0

f(iy)ys−
1
2
dy

y
=

1

2
N−(

s−1/2
2

)Λ(s, f).
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Therefore,

f(iy) = 2
1

2πi

∫
(c)

N−(
s−1/2

2
)Λ(s, f)y−(s−1/2)ds

by the Mellin inversion formula 1.5.5 from [6]. If Λ(s, f) = Λ(1− s, f), then

f(iy) = 2
1

2πi

∫
(c)

N−(
s−1/2

2
)Λ(1− s, f)y−(s−1/2)ds.

Let s′ = 1−s, then ds′ = −ds, s−1/2 = 1/2−s′ and N−(
s−1/2

2
) = N−(

s′−1/2
2

)N (s′−1/2).

∴ f(iy) =2
−1

2πi

∫
(c)

N−(
s′−1/2

2
)Λ(s′, f)N (s′−1/2)y(s′−1/2)ds′

=2
−1

2πi

∫
(c)

N−(
s′−1/2

2
)Λ(s′, f)(Ny)(s′−1/2)ds′

=− 2
1

2πi

∫
(c)

N−(
s−1/2

2
)Λ(s, f)

(
1

Ny

)−(s−1/2)

ds

=− f
(

i

Ny

)
=− f

(
−1

iNy

)

Therefore, f(iy) = ±f(γ′(iy)) where γ′ =

 0 −1

N 0

.

Odd Case: If f(z) is an odd form, then consider g(z) = 1
4πi

∂f
∂x

(z). In this case,

we prove the relation g(iy) = ± 1
Ny2

g(γ′(iy)) which is essentially the equality of first

partials. The Fourier expansion is g(z) =
∑∞
−∞ nan

√
yKν(2π|n|y)e2πinx. Therefore,

∫ ∞
0

g(iy)y(s+1)− 1
2
dy

y

=
1

2
π−(s+1)Γ

(
s+ 1 + ν

2

)
Γ

(
s+ 1− ν

2

) ∞∑
1

nan
ns+1

=
1

2
π−(s+1)Γ

(
s+ 1 + ν

2

)
Γ

(
s+ 1− ν

2

)
L(s, f)
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where L(s, f) =
∑∞

1
an
ns as before.

So define

Λ(s, f) = N (
s+1−1/2

2
)π−(s+1)Γ

(
s+ 1 + ν

2

)
Γ

(
s+ 1− ν

2

)
L(s, f).

Then ∫ ∞
0

f(iy)ys+1− 1
2
dy

y
=

1

2
N−(

s+1−1/2
2

)Λ(s, f).

Therefore,

g(iy) = 2
1

2πi

∫
(c)

N−(
s+1−1/2

2
)Λ(s, f)y−(s+1−1/2)ds

by the Mellin inversion formula from 1.5.5 from [6]. Now if Λ(s, f) = −Λ(1− s, f),

then

g(iy) = 2
−1

2πi

∫
(c)

N−(
s+1/2

2
)Λ(1− s, f)y−(s+1/2)ds.

Let s′ = 1− s, then ds′ = −ds, s+ 1/2 = 3/2− s′. Also, let y′ = 1
Ny

. Therefore,
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y = 1/Ny′ and Ny′ = 1/y

∴ g(iy) =2
−1

2πi

∫
(c)

N−(
3/2−s′

2
)Λ(s′, f)y(s′−3/2)ds′

=2
1

2πi

∫
(c)

N−(
3/2−s′

2
)Λ(s′, f)(Ny′)(s′−3/2)ds′

=2
1

2πi

∫
(c)

N−(
3/2−s′

2
)Λ(s′, f)(Ny′)−(s+1/2)(Ny′)2ds′

=2
1

2πi

∫
(c)

N−(
3/2−s′

2
)Λ(s′, f)N−(s+1/2)y′−(s+1/2)(Ny′)2ds′

=2
1

2πi

∫
(c)

N−1N−(
s′+1/2

2
)Λ(s′, f)y′−(s+1/2)(Ny′)2ds

=2
1

2πi

∫
(c)

N−(
s′+1/2

2
)Λ(s′, f)

(
1

Ny

)−(s+1/2)

N−1

(
1

y

)2

ds

=2
1

2πi

(
1

Ny2

)∫
(c)

N−(
s′+1/2

2
)Λ(s′, f)

(
1

Ny

)−(s+1/2)

ds

=

(
1

Ny2

)
g

(
i

Ny

)
=

1

Ny2
g

(
−1

iNy

)

as required.

A.2 Discussion of possible application

Let

ζ(s, P ) := π−2sΓ

(
s+

√
−1r

2

)
Γ

(
s−
√
−1r

2

) ∑
β∈Sr{0}

A(β)
P (β)

|β|2s

where P is a harmonic polynomial of degree l. Then ζ(s, P ) converges for Re(s) >

l+4+k
2

. Let {Pl,ν}ν be the basis of Harmonic polynomials of degree l on H. Then,

Maass converse theorem implies F with coefficients A(B) belongs toM(ΓT ; r) if for

all l ∈ Z and for all ν, the following 3 conditions are satisfied:

71



1. ζ(s, Pl,ν) has analytic continuation to whole complex plane,

2. ζ(s, Pl,ν) is bounded on any vertical strip of the complex plane,

3. the functional equation ζ(2+l−s, Pl,ν) = (−1)lζ(s, P̂l,ν) holds, where P̂l,ν(x) :=

P (x) for all x ∈ H.

We would like to use this fact with a suitable P to garner information about C(−N).

However, for each N there are a lot of β with |β|2 = 2N , so we need to make a

smart choice for P .

First observation: l cannot be odd. For odd l, P (β) = −P (−β) where as

A(β) = A(−β). Hence, ζ(s, P ) = 0 for every odd degree harmonic P .

Second observation: By Lemma 4.2.1, β can be primitive only when d = 1

and u = 0 if and only if |β|2 ≡ 2 (mod 4). Hence, u for β is basically all the

extra powers of 2 in β. Now d for β and β are equal. At the same time, |β| = |β|,

hence both β and β have the same u. Therefore, they have the same absolute value,

common odd divisor as well as power of $2. In other words, A(β) = A(β).

With both of these observations, we can look for polynomials which might be

suitable. However, even after testing various polynomials none of them appear

to be helpful. Either too little terms are eliminated or no good terms remain and

computation complexity increases too fast with every increase in degree. A heuristic

reason for the lack of suitable polynomials is that the information we are trying to

gain is too specific in the whole space. So this approach seems not to be working.
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