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Abstract

Ambitious targets for aggregate throughput, energy efficiency (EE) and ubiqui-

tous user experience are propelling the advent of ultra-dense networks. Inter-cell

interference and high energy consumption in an ultra-dense network are the prime

hindering factors in pursuit of these goals. To address this challenge, we investi-

gate the idea of transforming network design from being base station-centric to

user-centric. To this end, we develop mathematical framework and analyze multi-

ple variants of the user-centric networks, with the help of advanced scientific tools

such as stochastic geometry, game theory, optimization theory and deep neural net-

works. We first present a user-centric radio access network (RAN) design and then

propose novel base station association mechanisms by forming virtual dedicated

cells around users scheduled for downlink. The design question that arises is what

should the ideal size of the dedicated regions around scheduled users be? To an-

swer this question, we follow a stochastic geometry based approach to quantify the

area spectral efficiency (ASE) and energy efficiency (EE) of a user-centric Cloud

RAN architecture. Observing that the two efficiency metrics have conflicting op-

timal user-centric cell sizes, we propose a game theoretic self-organizing network

(GT-SON) framework that can orchestrate the network between ASE and EE fo-

cused operational modes in real-time in response to changes in network conditions

and the operator’s revenue model, to achieve a Pareto optimal solution. The de-

signed model is shown to outperform base-station centric design in terms of both

ASE and EE in dense deployment scenarios. Taking this user-centric approach as

a baseline, we improve the ASE and EE performance by introducing flexibility in

the dimensions of the user-centric regions as a function of data requirement for

each device. So instead of optimizing the network-wide ASE or EE, each user

device competes for a user-centric region based on its data requirements. This

xvi



competition is modeled via an evolutionary game and a Vickrey-Clarke-Groves

auction. The data requirement based flexibility in the user-centric RAN architec-

ture not only improves the ASE and EE, but also reduces the scheduling wait time

per user.

Offloading dense user hotspots to low range mmWave cells promises to meet the

enhance mobile broadband requirement of 5G and beyond. To investigate how

the three key enablers; i.e. user-centric virtual cell design, ultra-dense deploy-

ments and mmWave communication; are integrated in a multi-tier Stienen geom-

etry based user-centric architecture. Taking into account the characteristics of

mmWave propagation channel such as blockage and fading, we develop a statisti-

cal framework for deriving the coverage probability of an arbitrary user equipment

scheduled within the proposed architecture. A key advantage observed through

this architecture is significant reduction in the scheduling latency as compared to

the baseline user-centric model. Furthermore, the interplay between certain sys-

tem design parameters was found to orchestrate the ASE-EE tradeoff within the

proposed network design. We extend this work by framing a stochastic optimiza-

tion problem over the design parameters for a Pareto optimal ASE-EE tradeoff

with random placements of mobile users, macro base stations and mmWave cells

within the network. To solve this optimization problem, we follow a deep learn-

ing approach to estimate optimal design parameters in real-time complexity. Our

results show that if the deep learning model is trained with sufficient data and

tuned appropriately, it yields near-optimal performance while eliminating the is-

sue of long processing times needed for system-wide optimization.

The contributions of this dissertation have the potential to cause a paradigm

shift from the reactive cell-centric network design to an agile user-centric design

that enables real-time optimization capabilities, ubiquitous user experience, higher

xvii



system capacity and improved network-wide energy efficiency.
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CHAPTER 1

Introduction

1.1 Motivation for user-centric architectures in future cellular net-

works

Since the advent of LTE / LTE-A at the start of this decade, we have seen an

explosion of internet services that include online multimedia streaming, mobile

social networking and internet gaming. As the number of users and the complexity

of mobile applications increased exponentially, so did the mobile traffic growth in

recent years. According to the latest visual network index report from Cisco [6],

global mobile traffic will rise from 7.2 Exabytes per month in 2016 to reach 49.0

Exabytes per month by 2021. In addition to mobile data growth, use cases for fifth

generation of cellular networks (also known as ”5G”) which include augmented /

virtual reality, vehicular communication and inclusion of sensor devices as part of

internet-of-things (IoT) further adds to the complexity of data requirements.

So how will mobile operators provide gigabit experience and zero latency to sup-

port 5G services? As shown in Fig.1.1 [1], from the different possible avenues,

it has been well established in both academia as well as wireless network indus-

try that the major contribution will come from impromptu network densification.

However, network operators are facing numerous challenges arising from the dense

small deployment, high inter-cell interference being the primary culprit. Deploy-

ment wise, network densification increases the total cost of ownership (TCO) which

includes capital and operational expenditures (CAPEX, OPEX). As the average

revenue per user (ARPU) remains virtually flat, network operators are fearing a

1



Fig. 1.1: Impact on new 5G methodologies / technologies on capacity gain [1].

crisis situation where rising expenses may overcome the dwindling profit margins

[7]. To aggravate things further, impromptu cell deployments by mobile users

(MUs) render traditional cell planning strategies inept. The aforementioned id-

iosyncrasies of ultra-dense small cell networks call for a paradigm shift in network

design.

There was a time when it was believed that signal-to-interference ratio (SIR) dis-

tribution in dense wireless networks is independent of the base station (BS) density

assuming that the BSs are spatially distributed as Poisson point process (PPP)

with a power-law propagation model [8]. That implied that network can be densi-

fied infinitely to provide capacity gains without any bound. As exciting as it may

sound, the density invariance property seemed way too optimistic. Subsequent

works demonstrated the effect of exponential pathloss on SIR and showed the

coverage probability to approach zero at very high base station (BS) deployment
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densities. The multi slope pathloss model demonstrated that the area spectral effi-

ciency saturates at high BS densities to a finite value [9]. The interference-limited

behavior of ultra-dense networks (UDN) is not the only factor that requires a

paradigm shift in the network design. Other contributing factors of the UDN that

are pain points for a network operator are summarized below:

1. Cell Edge Problem in UDN: The ”cell edge” refers to the region in the

service area of mobile networks which receives cellular signals with significant

reference signal received power (RSRP) from nearby BSs. This reduces the

overall SIR for mobile users (MUs) in this region and hence limits the data

rate for these MUs. The reduction in inter-site distances in UDNs will only

worsen the cell-edge problem, as a multitude of nearby transmitting BSs will

increase manifold the interference at an arbitrary MU. To provide ubiquitous

user experience regardless of user location and movement, a new design

architecture must enable uniform quality of experience (QoE) across the

service region of the mobile network.

2. Deployment and Operational Costs of UDN: Overlaying dense small

cell networks is associated with high deployment, operational and mainte-

nance costs. The economical and ecological toll on the society in general,

and network operators in particular is a cause of concern. A mobile net-

work operator (MNO) has to undergo several processes for deployment of a

small BS (SBS). This includes gaining site and equipment approvals, price

negotiations with the city or landlord, deployment and provisioning of the

BS, ensuring efficiency backhaul and power availability, and confirming to

aesthetic and environmental regulations. Additionally, operational costs for

dense small cell deployments mainly come from power consumption in power

amplification and baseband processing as shown from project EARTH’s anal-
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Fig. 1.2: Measured component level power consumption.

ysis [10, 11, 12, 13, 14, 15, 16, 17] in Fig. 1.2. Clearly, we need system designs

that can overcome the challenge of high CAPEX and OPEX for UDN and

allow the network to operate at a level which balances the benefits of ultra-

dense deployment and additional deployment and network operating costs.

3. Differentiated user quality of service: The success of 5G will be depen-

dent on the provisioning of quality of service (QoS) for applications whose

demands, and nature are highly heterogenous. With the plethora of diverse

mobile applications, ranging from messaging services, such as WhatsApp to

social media such as Twitter and high definition video streaming, the qual-

ity of service requirement between MUs is highly non-uniform. Additionally,

the low bitrate internet-of-things sensor devices is further adding to the mix

of data requirement types. The future radio access network (RAN) design

should be well equipped to handle the volume and variety of the traffic

classes. Eventually, the aim is to re-design networks to provide high qual-
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ity of experience to all connected devices, at the optimal network operating

costs.

4. From reactive to proactive mode of operation: Current network opti-

mization approaches to deal with user traffic diversity are reactive in nature.

For instance, when there is a high data requirement, additional small BSs

are deployed in that spatio-temporal region. Considering the acute dynam-

ics of the future 5G networks, such approaches yield sub-optimal capacity

and energy efficiency gains. Different architectures such as Cloud RAN (C-

RAN) and control data separation architecture (CDSA) allow the flexibility

to turn off small BSs ON and OFF according to traffic variation. However,

to move towards truly proactive cellular networks, tools from artificial intel-

ligence and machine learning can be leveraged to design algorithms for SBS

discovery and selection, and radio resource allocation by switching ON/OFF

SBS proactively instead of reactively to jointly maximize both sum capacity

and energy efficiency without compromising QoE.

1.2 Research Objectives

In light of the discussion in section 1.1, the research presented in this dissertation

provides answers to the following questions:

i) How do we characterize a user-centric architecture, supported by C-RAN and

CDSA, in terms of ASE and EE while taking into account all dimensions of

ASE-EE interplay, for instance user-centric service zone sizes, SBS, macro BS

(MBS) and MU density, transmission powers and power consumption models,

QoE constraints, and spatio-temporal traffic variations, thereby enabling not
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only its design optimization but also a systematic and fair comparison with

the legacy architectures?

ii) Given that the optimal user-centric service zone size that maximizes SE is

different from that which maximizes EE (see Fig. 1.3 [18]), what combination

of user-centric service regions and other design parameters can be optimized

jointly to maximize both ASE and EE? How can we design a self-organizing

framework to dynamically adjust the user-centric design parameters such as

service zone size, SBS density, transmission powers and maximize both ASE

and EE while also leveraging spatio-temporal variations in user traffic?

iii) How feasible is a distributive architecture in which UEs compete for user-

centric service regions through collaborative or non-collaborative game mod-

els? How would the ASE, EE and user scheduling delay performance metrics

change if flexible sized service zones are employed in the user-centric design?

iv) Will user-centric architectures also be applicable at higher frequency mmWave

spectrum and yield similar ASE, EE performance gains as in the sub-6 GHz

spectrum? What is the optimal geometry of user-centric service zone regions,

for instance, circular, Voronoi regions, Stienen regions etc.?

v) From the analytical models for optimization of the network efficiency tradeoff

modelling in user-centric networks, what is the computational efficiency for

real-time optimization of design parameters in cellular networks? Can we

design artificial neural networks (ANNs) that can be trained to learn the map

between system parameters and corresponding efficiency optimization utility

function? How can the trained ANN be refined to improve the performance?

How close will the ANN performance be to the global optimum, and what

gains in real-time computation can be achieved using this approach?
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Fig. 1.3: EE-SE gain tradeoff characteristics in user-centric networks

1.3 Contributions

This dissertation addresses the aforementioned research questions. Analytical

models are developed, and 3GPP-compliant rigorous simulation studies are carried

out to find and validate the answers to the above questions. The key contributions

of the dissertation are outlined in the following section.

• This dissertation contributes by presenting a novel user-centric architecture

for dense small cell deployment in a C-RAN enabled cellular network. A

comprehensive statistical framework is developed for computation of the area

spectral and energy efficiency of a large-scale user-centric cloud radio access

network. We also propose a user-centric RRH clustering algorithm which

enables dynamic coverage extension and shrinkage by activating a single re-

mote radio head (RRH) within a specified demarcation around a scheduled

user based on max SIR gain criteria. The user-centric architecture ensures

uniform coverage and no cell-edge degradation for all the users irrespective

of their physical location. We demonstrate that there exists an optimal

cluster radius which maximizes the area spectral efficiency of the UC-RAN.
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It was also demonstrated that this optimal cluster radius is coupled with

the user density and hence must be adapted by a self-organization mecha-

nism. The link level performance is then employed to perform cost-benefit

analysis of the proposed protocol. More specifically, the amount of power

dissipated in the association process under the proposed protocol is consid-

ered as the cost of obtaining the throughput gains. The throughput-cost

ratio is hence essentially the energy efficiency of the user-centric C-RAN. It

was shown that there exists another optimal cluster radius which maximizes

the energy efficiency of the proposed network model. However, this is larger

to the one obtained under area spectral efficiency criterion. Consequently,

the throughput-energy consumption trade-off manifests itself in terms of di-

mensioning of the cluster radius in the user-centric model. Using a game

theoretic framework, we demonstrate that a self-organizing network (SON)

engine within the centralized base band unit (BBU) pools may be employed

to dynamically configure the optimal cluster size. Simulation results indi-

cated that: i) the SON mechanism allows more than 100x efficiency variation

through real-time adjustment in the Nash bargaining solution (NBS) bias pa-

rameter, ii) in comparison to current always-ON RRH deployments, selective

RRH activation offers high area spectral and energy efficiency gains, and iii)

significant SINR gains can be realized in both ASE and EE operating modes

by virtue of interference-free RRH cluster zones around each scheduled user.

• Next, we develop a game theoretic based user-centric model that attempts to

optimize the network efficiency metrics by taking into account the diversity of

user data demands within different spatio-temporal regions in the network.

More specifically, we propose a QoE-centric elastic framework for a dense

multi-tier cellular network deployment. The framework leverages the control

8



and data plane separation architecture (CDSA) for enabling selective SBS

activation within user equipment (UE)-centric virtual cells (also referred

to as service zones). The allocation of these virtually elastic service zones

around selected UEs is conducted via a central control base station (CBS)

and modeled through two game techniques, namely evolutionary and auction

games. Both the games are based on a utility minimization problem which

is a function of weighted mean UE throughput and usage-based UE service

demands. To illustrate the trade-offs between the game models, network level

performance is compared in terms of aggregate throughput, energy efficiency,

algorithm convergence speed and mean UE scheduling probabilities.

• The next contribution of this dissertation is analytical quantification and

analysis of a novel user-centric Stienen cell model for dense mmWave cellular

networks. In the proposed architecture, at most one remote radio head is ac-

tivated within non-overlapping user equipment-centric Stienen cells (S-cells)

generated within the Voronoi region around each UE. Under the presented

framework, we derive analytical models for the three key performance indica-

tors (KPIs): i) SINR distribution (used as an indicator for quality of service

(QoS)), ii) area spectral efficiency (ASE), and iii) energy efficiency (EE) as

a function of the three major design parameters in the proposed architec-

ture, namely UE service probability, S-cell radius coefficient and RRH de-

ployment density. The analysis is validated through extensive Monte Carlo

simulations. The simulation results provide practical design insights into

the interplay among the three design parameters, tradeoffs among the three

KPIs, sensitivity of each KPI to the design parameters as well as optimal

range of the design parameters. Results show that compared to current

non-user-centric architectures, the proposed architecture not only offers sig-
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nificant SINR gains, but also the flexibility to meet diverse UE specific QoS

requirements and trade between EE and ASE by dynamically orchestrating

the design parameters.

• Building on the earlier contributions of the dissertation, an optimization

framework for modeling the ASE-EE tradeoff in a multi-tier user-centric

Stienen network 130 model is designed using principles from stochastic opti-

mization. The framework integrates the randomness in the MBS, mmWave

RRH and UE locations and also penalizes rapid fluctuation in the formulated

utility function with changes in the network snapshots. It is seen that the

utility employed to model the ASE-EE tradeoff is highly non-convex with

the system parameters under consideration namely UE service probability,

S-cell radius coefficient and RRH activation percentage. The non-convexity

arises from randomness in the MBS, RRH and UE locations along with the

piecewise pathloss functions to differentiate between UEs having line-of-sight

(LoS) and non-line-of-sight (NLoS) connectivity with their respective serv-

ing RRHs. A deep neuro-evolution approach is then followed to map the

optimization parameters to the network statistics and system utility value.

A deep neural network (DNN) is trained on a set of data containing opti-

mization parameters, network statistics containing mean UE, MBS and RRH

Poisson point process (PPP) intensities, and the output utility value. The

trained DNN is tested on new network statistics and is shown to predict

very similar optimal parameters as the time intensive brute force method

and consequentially yields near-optimal utility values. The real-time DNN

optimization is further enhanced with hyperparameter tuning using genetic

algorithm (GA) method. Another refinement is made by data enrichment on

training data sub-space having higher sensitivity to the output utility. Our
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overarching goal is to demonstrate that real-time optimization of user-centric

networks is possible through a centralized SON engine, without significant

loss in performance.

1.4 Dissemination and Publications

Throughout the course of preparation for this dissertation, several dissemination

activities were carried out. These activities have resulted in the following presen-

tations and peer reviewed (accepted or pending) articles.

Journals:

J1. U. Hashmi, S. A. R. Zaidi and A. Imran, ”Enhancing Downlink QoS and En-

ergy Efficiency through a User-Centric Stienen Cell Architecture for mmWave

Networks”, IEEE Transactions on Green Communications and Networking,

2019, (submitted).

J2. M. Hartmann, U. Hashmi and A. Imran, ”Edge Computing in Smart Health

Care Systems: Review, Challenges and Research Directions”, Transactions

on Emerging Telecommunications Technologies, 2019, (accepted for publica-

tion).

J3. U. S. Hashmi, S. A. R. Zaidi and A. Imran, ”User-Centric Cloud RAN:

An Analytical Framework for Optimizing Area Spectral and Energy Effi-

ciency,” in IEEE Access, vol. 6, pp. 19859-19875, 2018. doi: 10.1109/AC-

CESS.2018.2820898

J4. U. Hashmi, U. Masood and A. Imran, ”On real-time optimization of multi-

tier user-centric Stienen networks: A sequential deep learning approach”,

IEEE IEEE Transactions on Vehicular Technology, 2019 (to be submitted).
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Conferences:

C1. U. S. Hashmi, A. Rudrapatna, Z. Zhao, M. Rozwadowski, J. Kang, R. Wup-

palapati and A. Imran, ”Towards Real-time User QoE assessment via Ma-

chine Learning on LTE network data”, 2019 IEEE 90th Vehicular Technology

Conference (VTC2019-Fall), Honolulu, HI, USA, 2019.

C2. U. B. Farooq, U. S. Hashmi, J. Qadir, A. Imran and A. N. Mian, ”User

Transmit Power Minimization through Uplink Resource Allocation and User

Association in HetNets,” 2018 IEEE Global Communications Conference

(GLOBECOM), Abu Dhabi, United Arab Emirates, 2018, pp. 1-6. doi:

10.1109/GLOCOM.2018.8647409

C3. U. S. Hashmi, A. Islam, K. M. Nasr and A. Imran, ”Towards User QoE-

Centric Elastic Cellular Networks: A Game Theoretic Framework for Opti-

mizing Throughput and Energy Efficiency,”2018 IEEE 29th Annual Interna-

tional Symposium on Personal, Indoor and Mobile Radio Communications

(PIMRC), Bologna, 2018, pp. 1-7. doi: 10.1109/PIMRC.2018.8580747

C4. U. S. Hashmi, S. A. R. Zaidi, A. Darbandi and A. Imran, ”On the Efficiency

Tradeoffs in User-Centric Cloud RAN,” 2018 IEEE International Confer-

ence on Communications (ICC), Kansas City, MO, 2018, pp. 1-7. doi:

10.1109/ICC.2018.8422228

C5. S. Cetinkaya, U. S. Hashmi and A. Imran, ”What user-cell association algo-

rithms will perform best in mmWave massive MIMO ultra-dense HetNets?,”

2017 IEEE 28th Annual International Symposium on Personal, Indoor, and

Mobile Radio Communications (PIMRC), Montreal, QC, 2017, pp. 1-7.

doi: 10.1109/PIMRC.2017.8292248
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C6. U. S. Hashmi, A. Darbandi and A. Imran, ”Enabling proactive self-healing

by data mining network failure logs,”2017 International Conference on Com-

puting, Networking and Communications (ICNC), Santa Clara, CA, 2017,

pp. 511-517. doi: 10.1109/ICCNC.2017.7876181

1.5 Organization

The dissertation is structured as follows. Chapter 2 presents the background on

the different techniques utilized in the dissertation. These include: i) user-centric

architectures for 5G, and ii) application of game theory for optimization wireless

networks.Chapter 3 focuses on a non-elastic user-centric architecture in a Cloud

RAN deployment for dense networks. After detailing the system model, we explain

the user-centric RRH clustering algorithm and the one-to-one UE-RRH association

mechanism. We then quantify the area spectral and energy efficiencies of the 1st

tier elastic user-centric network. Integration of the SON framework for optimal

balance between the two efficiency metrics is also discussed before presenting the

numerical results. In chapter 4, our focus shifts on the user-level elasticity in

the user-centric networks where the pay off function and service zone modeling

around high priority UEs is characterized. The game models employed in the

work as UEs compete for the service zones are elaborated in detail. Following

that, we present analytical and simulation results for both the elastic models are

presented which show the performance enhancement over the non-elastic user-

centric models. In chapter 5, we propose and analyze a user-centric Stienen cell

architecture for densely deployed remote RRHs operating in mmWave frequency

spectrum. We develop a statistical framework for deriving the coverage probability

of an arbitrary UE scheduled within the proposed architecture. Quantification of

the ASE and EE is done both for single tier networks, with mmWave RRH coverage
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only, and multi-tier networks that have deployment of both sub-6 GHz MBS and

mmWave RRHs. The user-centric scheduling in both single-tier and multi-tier

scenarios is also presented. Numerical results and tradeoff analysis is done to

emphasize on the need of a SON engine to yield Pareto optimal tradeoff between

the network efficiency parameters. We extend this work in chapter 6, in which

we discuss the convexity of the proposed optimization formulation for a multi-tier

user-centric Stienen network. We then proceed to discuss the sequential learning

based approach to select optimal parameters and discuss its performance results

in comparison to the global optima. Refinements to the neural network model and

the improvement in performance is also presented. Finally, chapter 7 discusses the

conclusions and future work, and it thus concludes the dissertation.
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CHAPTER 2

Background and Preliminaries

Over the last decade or so, research community and experts in telecom indus-

try alike have unanimously agreed that frequency re-use through densification of

the network is the prime source to meet the exponential data demands in 5G

and beyond cellular networks. Around the same time, researchers from Ericsson

started discussion on why it is viable to consider 3-300 GHz spectrum for mobile

broadband applications [19]. Higher frequency band offers multiple advantages,

including high spectrum availability and small component sizes for mobile appli-

cations. A few years along the line, efforts began in trying to replicate the abilities

of human brain to extract the abstract characteristics from the feature data via

a computer device [20]. Deep learning, based on neural networks design, is able

to find hotspots, interference distribution and spectrum availability from a large

amount of network parameters. In this chapter, we will discuss some of the back-

ground principles and relevant works in literature within the areas covered in this

dissertation. This includes: i) user-centric networks in 5G and beyond, and ii)

application of game theory for resource optimization in wireless networks.

2.1 User-centric architectures for future cellular networks

The main concept behind a user-centric cellular architecture is a paradigm shift

from the base-station centric design to the philosophy of the network serving the

user. This means that the whole network optimization, be it interference manage-

ment, mobility management or resource management, will now be performed to
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enhance the user experience at individual basis [2]. The shift from network con-

trolling user to the network service user involves the decoupling of local service and

network service. This can be performed by decoupling of user and control plane,

where large range low frequency macro base stations act on the control plane, and

dense deployment of small cells provide the data plane for the users. One of the

prime challenges in the design of user-centric service is assignment of an access

point group (APG) to the user based on the mobility patterns. The access point

group assignment changes with every interval based on the speed and direction of

the user. An example of such grouping for two user terminals in consecutive time

slots is given as Fig. 2.1 [2].

Fig. 2.1: Access point grouping in consecutive time intervals [2].
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User-centric architectures have been shown to improve rate-per-user in different

scenarios, such as the cell free massive multiple-input-multiple-output (MIMO),

wherein a large number of distributed access points (APs) simultaneously and

jointly serve a small number of user devices [21]. In comparison with co-located

massive MIMO, the distributed massive MIMO where multiple user devices are

served by multiple-antenna APs using time-division duplexing (TDD). This cell-

free approach alleviates the cell-edge issues and improves the likely per-user through-

put [22]. The user-centric approach further improves not only the per-user data

rate but also reduces the backhaul requirements [23]. Other works have also shown

that the user-centric approach outperforms the cell free design in terms of per-user

throughout and optimal power allocation [24, 25].

User-centric architectures in mmWave spectrum need to take into account the

effects from blockages and different small-scale fading distributions (Nakagami,

Rayleigh and no fading). At low mmWave small cell deployment and high blockage

parameter scenarios, the system behaves as noise-limited and provides considerable

ergodic capacity gain [26]. In another paper, a user-centric adaptive clustering

method is proposed to improve the outage capacity and raise the tenth percentile

SINR by 12 dB [27]. The user-centric approach has also been employed as a

resource-aware energy-saving technique which aims at minimizing the total power

consumption of the system while keeping the data rate requirement at every user

as a constraint in the optimization framework [28]. In [29], a virtual user-centric

Cloud RAN cell design is proposed with the user at the center of circular virtual

cell served by multiple remote radio heads (RRHs) simultaneously. Optimal power

control in the form of maximal ratio transmission (MRT) is used at the RRHs.

The virtual size can be fluctuated to yield the maximum system capacity in at a

given RRH density. A power control strategy is presented from the user-centric
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perspective in [30]. All cooperative access points within a cooperation region will

receive power control requests from the user terminals. The size of the cooperating

region is the optimization parameter that maximizes the system spectral efficiency.

Finally, in [31], a self-organized, load-aware user-centric coordinated multi-point

(CoMP) clustering algorithm is presented to maximize spectral efficiency and load

balancing efficiency. Additional capacity generated by increasing the cluster size

is utilized for load balancing and a novel re-clustering algorithm is proposed to

distribute the traffic from highly loaded cells to neighbor cells with light load,

reducing the number of unsatisfied user equipments (UEs) significantly.

2.2 Game theory applications in wireless networks

Game theory has been around since mid-20th century as a science where multiple

agents interact to achieve their respective objectives [32]. Game theory has been

shown to have numerous applications in the fields of economics, social science, en-

gineering and computer science. There are multiple text books that present com-

prehensive discussion advanced game theory [33, 34]. Game theory also finds its

application in communications engineering, particularly for distributed resource

management. Some of these include power control [35, 36, 37], optimal pricing

strategies [38], congestion control [39], and load balancing [40]. Most of the lit-

erature on game frameworks in wireless networks applies statics games in which

the players make decisions simultaneously, without knowledge of the other players’

strategies. Examples of static games in wireless networks include power allocation

policies in wireless networks [41, 42, 37], and optimal resource allocation in cog-

nitive radio networks [43, 44]. On the other hand, in stochastic games, multiple

players take actions based on their respective state space and transition proba-

bilities in an attempt to maximize their utilities. For instance, stochastic games,
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when applied to access network selection in [45] has shown to achieve higher total

utility per user.

[46] is a relatively recent book on application of game theory in wireless networks.

The book first elaborates different game types, including non-cooperative games

[47], Bayesian games [48], differential games [47], evolutionary games [49], coop-

erative games [32] and auction theory [50]. It then highlights different wireless

network topologies which are catered by game theory. These include: i) cellular

and broadband wireless networks, ii) multi-hop networks, iii) cooperative trans-

mission networks, iv) cognitive radio networks, and v) internet networks. In Table

2.1, we summarize some major works which are relevant to the tasks undertaken

in this dissertation and elaborate their scope and methodology.
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Table 2.1: Some related works on Game Theory application in wireless networks

Reference Methodology Scope Results

Shih et al.
[51]

An economic framework for
incentivising resource sharing
by femto BS owners to other
users through monetory re-
wards from the operator in
a dense FBS deployment sce-
nario.

Co-existence of a frame-
work with users and fem-
tocells cooperating for op-
timal resource sharing.

Two-stage se-
quential game
shows better
revenue for femto
cell operators.

Semasinghe
et al. [52]

Evolutionary game theory
(EGT) to model the dis-
tributed subcarrier and power
level selection schemes for a
multi tier network.

Distributed resource allo-
cation in self-organizing
small cell networks under-
laying macrocell networks.

The distributed
algorithm shows
close to optimal
performance with
clear reduction in
processing time.

Kang et al.
[53]

The spectrum sharing prob-
lem in a heterogeneous net-
work is modelled as a resource
allocation price based Stackel-
berg game.

Interference control
schemes for both the
uplink and downlink
transmissions in spectrum-
sharing femtocell networks.

Low complexity
solution using
both uniform
and non-uniform
pricing strategies.

Pantisano
et al. [54]

A coalition game framework
is used where femto base sta-
tions(FBSs) have the choice
of suppressing interference in
a cooperative manner within
coalitions.

Decision making at the
FBS level based on the
tradeoff between the coop-
eration gains, in terms of
an increased revenue, and
the cost in terms of power
for information exchange.

The average pay-
off per femtocell is
enhanced for the
proposed method-
ology.

Zheng et al.
[55]

The interference mitigation
game has been modelled as an
exact potential game with the
potential function that maxi-
mizes the potential of players
(FBSs) locally or globally.

For optimal channel selec-
tion that is distributed and
fully dynamic in nature.

Yields better
performance than
reinforcement
learning and
linear-reward
learning.

Hashmi et
al. [56]

A distributed utility mini-
mization problem is developed
and solved using evolution-
ary game theory and Vickrey
Clark Groves (VCG) auction.

Incorporating the effect of
non-uniform user demands
across and within spatio-
temporal zones in user-
centric networks.

The proposed
model outper-
forms static
user-centric mod-
els in terms of
system through-
out and energy
efficiency.
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CHAPTER 3

Analysis of non elastic user-centric architectures in dense

Cloud RAN

High energy consumption in ultra-dense small cell networks is a paramount chal-

lenge that is a pain point for MNOs all over the globe. While different energy

saving schemes have been proposed, an additional challenge faced by the oper-

ators is to ensure ubiquitous service level to its customers. In this chapter, we

discuss the first contribution of the dissertation which is based on created non

elastic service regions around UEs for downlink scheduling. This 1st tier elastic-

ity in user-centric networks relies upon creating non-overlapping circular service

zones around high priority UEs. This results in a one-to-one UE-BS association

for each service zone such that a single BS is activated at max per service zone.

The service zone radius is employed as a control parameter to realize the desired

compromise between EE and ASE. The main feature of this macro level elastic-

ity is that the service regions around UEs are of uniform size in any given time

instance. Extensive system-level simulations demonstrate the high QoE possible

with such a user-centric framework. The tradeoff between the network efficiency

parameters enables the operator to choose the mode of operation according to it’s

business objectives.
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3.1 Introduction

3.1.1 Background

As the mobile data transmission is expected to grow 7-fold from 2016 to 2021 [6],

network densification through a conglomeration of diverse technologies (HetNets)

seems to be the viable way forward to 5G. Network operators are facing numerous

challenges arising from the dense small deployment, high inter-cell interference

being the primary culprit. Deployment wise, network densification increases the

total cost of ownership (TCO) which includes capital and operational expenditures

(CAPEX, OPEX). As the average revenue per user (ARPU) remains virtually flat,

network operators are fearing a crisis situation where rising expenses may overcome

the dwindling profit margins [7]. To aggravate things further, impromptu cell

deployments by mobile users (MUs) render traditional cell planning strategies

inept. The aforementioned idiosyncrasies of ultra-dense small cell networks call

for a paradigm shift in network design.

Certain promising disruptive 5G technologies such as massive MIMO and mmWave

are being considered for higher average user throughput in 5G. However, both of

these technologies, while offering higher network wide capacity, are likely to cost

more in terms of energy efficiency and location-independent uniform user Quality

of Experience (QoE). In this work, we investigate a User-centric Cloud Radio Ac-

cess Network (UC-RAN) architecture that has the potential to address the afore-

mentioned challenges. Conventional C-RAN allows centralizing and sharing of the

baseband processing between several small cells in a virtual baseband processing

unit (BBU) pool [57][58]. By separating baseband units from the radio access

units, the C-RAN architecture: (i) reduces the capital and operational expendi-

ture [58]; (ii) provides huge energy saving (due to centralized air-conditioning etc.)
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and (iii) provisions implementation of sophisticated coordination mechanisms for

reducing the co-channel interference [59]. However, there is one key 5G require-

ment that conventional C-RAN still fails to address, i.e. QoE. In conventional

C-RAN, the Quality of Service (QoS) varies significantly from cell center to cell

edge, same way it does in legacy networks, leading to poor QoE. UC-RAN on the

other hand has potential to virtually remove cell edges by shifting the pivot of the

cell design from the base station (BS) to the mobile user (MU) [2] [60]. The key

distinct feature of UC-RAN is that, a cell is built around a user and not around

the RRH or BS as in current networks [61]. This enables dynamic coverage as well

as higher gains at the user terminals through spatial diversity from having several

RRHs available to serve a user [59], [62].

The system design of user-centric architectures for small cell based networks has

sparked interest for research in this area, which includes but is not limited to access

point grouping mechanisms [63] [2], transmit power control strategies [30], interfer-

ence alignment [64], RAN selection [65], dynamic load balancing [31] and optimal

cluster dimensioning [59] [62] [61]. However, to the best of authors’ knowledge, the

analytical characterization of the area spectral and energy efficiencies and anal-

ysis of the impact different network parameters have on these efficiency metrics

remains terra incognita. To this end, in this article, we address some fundamental

design questions and propose a novel RRH clustering technique for designing effi-

cient large scale UC-RANs. Furthermore, we present a game theoretic framework

to trade-off between ASE and EE in dynamic fashion. This framework allows to

retain a pareto-optimal performance while accommodating varying network load

and operator’s priority between ASE and EE.
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Fig. 3.1: UC-RAN architecture with activation disc of radius Rcl for a served user.

3.1.2 Architectural Overview

With the assumption of ultra-dense RRH deployment, which is a plausible scenario

in future networks, inter-cell interference and network management issues due to

close BS-user spatial proximity become prominent. UC-RAN addresses these by

provisioning demand based baseband processing to RRHs and seamless coverage

to the users. In a UC-RAN architecture, the BBU pool turns ON the RRHs that

are required to serve a desired user at a certain QoS. The dynamic clustering of

RRHs allows users to be served seamlessly and provides uniform service experi-

ence regardless of user location and movement [59]. The user-centric cluster size

serves as a proxy to the minimum spatial separation between an arbitrary user

and its closest interfering RRH, thereby improving the average SINR at the user.

Furthermore, contrary to the traditional small cell networks where the energy

consumption and the handovers both increase with the density of the small cell
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RRHs, UC-RAN mitigates this problem by providing on demand coverage, i.e.,

by selectively turning ON as opposed to always turned ON RRHs. Additionally,

the throughput gains provided by distributed diversity alleviate the overhead of

cooperation.

Fig. 3.1 provides a graphical illustration of a UC-RAN with RRH clustering. The

RRHs are connected to the pool of BBUs via flexible front haul. The front haul

is usually an optical fiber where signaling is done using radio-over-fiber (RoF) or

common public radio interface (CPRI). Most of the signal processing at baseband

level is delegated to the BBUs. The RRH deployment is expected to be very

high density by leveraging the existing infrastructure (e.g. street lamp posts,

poles, side of buildings etc.). The key idea here is to dynamically select the

best RRH (in terms of SIR) within a circular area (virtual cell) of pre-defined

radius around selected users (based on scheduling priority) during each scheduling

interval. All other RRHs within the circle here after called cluster are kept OFF

thereby minimizing the interference. The aforementioned UC-RAN architecture

provides two-fold benefits: i) on-demand centralized processing at the BBU pools

caters to non-uniform user traffic that subsequently enables OPEX reduction by

as much as 30% [66], ii) user-centric RRH clustering reduces the number of nearby

interfering RRHs and eliminates cell-edge coverage issues, hence improving the

overall user experience.

3.1.3 Research Objectives

UC-RAN functions on resource pooling and virtual cell formation around sched-

uled users. The centralized user-centric RRH clustering not only reduces frequent

handovers but also increases the signal-to-interference-plus-noise-ratio (SINR) that

subsequently reduces the outage probability in dense networks. This in turn paves
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the way for increase in the system wide spectral efficiency. Additionally, selective

RRH activation enables reduced power consumption, hence making the network

more energy efficient. Effectively, the user-centric RRH clustering:

1) empowers UC-RAN to provide demand based coverage, i.e., the coverage can dy-

namically extend or shrink based on user density by intelligently switching RRHs

ON/OFF;

2) enables energy savings as an RRH is only turned ON when required to serve a

nearby user;

3) provides an efficient way to control the signal strength which is a function of

RRH cluster size (through both the maximum pathloss incurred and the number

of serving RRHs providing selection diversity gain);

4) enables effective interference protection to an MU by inducing repulsion between

RRH clusters (i.e., clusters are not allowed to overlap spatially which induces a

natural guard-zone for a scheduled MU).

A critical design parameter in UC-RAN is the RRH cluster size around an arbitrary

user. The cluster size may be defined in terms of number of nearby RRHs or an

area covered by a circular disk around the user. In our model which is the latter

case, the RRHs falling within the circular disk are designated to the corresponding

user in a given time slot. Subsequent SIR based RRH activation is performed from

amongst the RRHs within the cluster around the user. Increasing the cluster size

offers following gains: i) larger distances between user and interfering RRHs results

in larger link SINR and thus better link throughput; and ii) a larger cluster yields

high macro diversity gain through selection among the larger number of RRHs

in the cluster. However, the down side of a larger cluster is reduced spectrum

reuse and a lower number of users that can be served simultaneously. This in turn
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reduces system level capacity. Hence with a larger cluster, there are fewer higher

quality links as opposed to many low bit rate links (which occur with smaller

cluster radius). Another dimension of the trade-off that cluster radius offers is

the energy efficiency. Higher cluster radius keeps more RRHs off as compared to

lower cluster radius. In the back drop of these insights the goal of this paper is to

investigate following research questions:

• What is the optimal RRH cluster size that maximizes a key performance

indicator of capacity, i.e., area spectral efficiency?

• What is the cluster radius that yields optimal performance in terms of energy

efficiency?

• What parameters are crucial in defining the optimal cluster sizes that max-

imize these system efficiencies (ASE, EE)? How sensitive are the efficiencies

to variations in these parameters?

• Can we design a self-organizing framework to dynamically adjust the user-

centric RRH cluster size and trade between ASE and EE in UC-RAN to

cope with the spatio-temporal variations in user traffic?

In this contribution, we take the first step towards analytical treatment of the

above mentioned design issues and answering the key research question at hand,

i.e., what is the optimal cluster size around a scheduled user? Amongst recent

works, studies in [59] and [62] are most relevant. However, our analysis differs in

three key aspects: 1) [59] and [62] leverage user-centric architectures to optimize

virtual cluster radius that maximizes the system capacity. On the other hand,

we present a framework to simultaneously analyze ASE and EE in a UC-RAN.

2) Unlike [59] where the proposed clustering is overlapping (scenarios where a
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single RRH may simultaneously serve multiple MUs), our model builds on non-

overlapping user-centric clusters resulting in a one-to-one RRH-MU association

during a given time slot. 3) Contrary to analysis in prior studies, we take into

account variations in user density. By employing principles from stochastic geom-

etry to model the thinned user and RRH densities in a particular time slot, we

analyze the overall system efficiency more accurately. This allows investigation of

relationship between key design parameters such as pathloss exponent and SINR

threshold on ASE and EE for given user and RRH densities.

3.2 Network Model

3.2.1 Spatial Model of the Network

We consider a cloud radio access network under-laid within a large-scale cellu-

lar network. Both the small cell RRHs and MUs are assumed to be spatially

distributed across the macrocells (see Fig. 3.2). The spatial distribution of the

RRHs and the MUs is captured by two independent stationary Poisson point

processes (SPPPs): ΠCLR ∈ R2 and ΠMU ∈ R2 with intensities λCLR and λUSR

respectively. Specifically, at an arbitrary time instant, the probability of finding

ni ∈ N, i ∈ {RRH,MU} RRHs/MUs inside a typical macro-cell with area foot-

print A ⊆ R2 follows the Poisson law with mean measure Λi(A) = λiv2(A). The

mean measure is characterized by the average number of RRHs/MUs per unit area

(i.e. λCLR and λUSR ) and the Lebesgue measure [67] v2(A) =
∫
A dx on R2, where

if A is a disc of radius r then v2(A) = πr2 is the area of the disc.
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3.2.2 Channel Model

The channel between a UC-RAN RRH x ∈ ΠCLR and an arbitrary MU y ∈

ΠMU is modeled by hxyl(||x − y||). Here hxy ∈ E(1) is a unit mean exponential

random variable which captures the impact of a Rayleigh fading channel between

an RRH and an MU. The small-scale Rayleigh fading is complemented by a large-

scale pathloss modeled by l(||x − y||) = K||x − y||−α power-law function. Here

||x − y|| is the distance between x and y, K is a frequency dependent constant

and α ≥ 2 is an environment/terrain dependent pathloss exponent. The fading

channel gains are assumed to be mutually independent and identically distributed

(i.i.d.). Without any loss of generality, we will assume K = 1 for the rest of this

discussion. It is assumed that the communication is interference limited and hence

the thermal noise is negligible. Furthermore, we assume that all RRHs employ the

same transmit power PCLR.

3.3 User-centric Clustering in UC-RAN

In this article, we propose a user-centric clustering mechanism for the UC-RANs.

More specifically, we envision a scenario where out of the multitude of small cell

RRHs deployed in close proximity of an intended MU, a single RRH that provides

the best channel gain (and consequently the highest signal-to-interference ratio

(SIR)) is activated to serve that MU. The proximity or neighborhood of an MU

is characterized by the cluster radius Rcl. The proposed user-centric clustering

mechanism (Algorithm 3.1, Fig. 3.2) yields Π′MU and Π′CLR which is the set of

scheduled MUs and activated RRHs during a particular time slot respectively.

As specified by Algorithm 3.1, the macro-cell or the BBU data center assigns a

mark/tag pUSR ∼ U(0, 1) to each MU. These marks correspond to the downlink
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scheduling priority of the MUs. More specifically, the lower the value of the mark,

the higher is the priority of the user to be served by the RRHs. Effectively,

these marks can be thought of as the timers corresponding to each MU which are

decremented on each time slot where service to this MU is deferred. A MU is

scheduled for a downlink transmission iff it has highest scheduling priority in its

neighborhood. In other words, there is no other MU in a disc of radius Rcl centered

at MU with a higher priority. This round robin scheduling scheme ensures fair DL

scheduling among MUs1. Notice that this disc also characterizes the size of the

RRH cluster from which MU is being served. For a fixed Rcl, the percentage of

MUs served in a given transmission time interval (TTI) is a function of relative

RRH and MU PPP densities, i.e., if λUSR >> λCLR, the average wait time before

an arbitrary MU is served will be longer as compared to the scenario with same

order MU and RRH densities.

The activation of RRHs is coupled with the user-centric scheduling mechanism

(Algorithm 3.1). Only the RRHs which lie in the neighborhood of the scheduled

users and provide the best propagation channel gain to their respective MUs are

activated by the macro base station (MBS) (or BBU pool). This implies that each

scheduled MU has a set of nearby RRHs that defines its user-centric RRH cluster.

From this cluster of RRHs, only one that yields the highest SINR at the user is

activated. Consequentially, there is at max one activated RRH that lies within

a user-centric circular disk of area πR2
cl. Effectively, activation of RRHs is on

demand basis which provides UC-RAN capability of self-organizing the coverage

to cope with the spatio-temporal variations of the user demography.

One might argue that such a non overlapping user-centric clustering scheme may

result in service holes, i.e. there may exist MUs that are not associated with any

1The case with MUs having non-uniform scheduling priorities will be covered in future ex-
tensions of this work.
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Fig. 3.2: User-centric RRH clustering in a UC-RAN. Each scheduled user is served by
a single RRH in its respective cluster that maximizes its received SIR. The user-centric

scheduling is based on p
{x}
USR values with lower marks corresponding to high scheduling

priorities.

RRHs due to empty RRH clusters around those MUs. Since we are considering

dense small cell deployments with comparable λCLR and λUSR, user-centric RRH

clusters with realistic Rcl will hardly be void. In the unlikely scenario of a void

cluster though, user clustering strategies [68] may be employed where nearby MUs

are grouped together and optimization is performed on the MU clusters rather

than individual MUs2. Furthermore, it is known that best RRH activation with

a proximity constraint provides dual benefits of low outage probability and high

power efficiency in dense deployment scenarios [69].

2In the interest of space, detailed discussion and evaluation of MU clusters will be presented
in future publications.
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Algorithm 3.1 User-centric clustering for C-RAN
Data: ΠMU ,ΠCLR,Rcl

Result: Π′MU ,Π′CLR
Π′MU←∅,Π′CLR←∅;
foreach x ∈ ΠMU do

FPRIO[x]← U(0, 1)
end
foreach x ∈ ΠMU do

p
{x}
USR ← FPRIO[x] p

{x}
SCH ← 1 foreach y ∈ ΠMU do

if y 6= x then

if y ∈ b(x, 2Rcl) and p
{y}
USR > p

{x}
USR then

p
{x}
SCH ← 0

else
continue

end

else
continue

end

end
foreach r ∈ ΠCLR do

if r ∈ b(x, Rcl) and p
{x}
SCH == 1 then

if hrxl(||r − x||) > hr′xl(||r′ − x||),∀r′ ∈ ΠCLR, r
′ ∈ b(x, Rcl), r

′ 6= r
then

Π′CLR ∪ {r}
end

end

end

if p
{x}
SCH == 1 then
Π′MU ∪ {x}

end

end

3.4 Quantifying the Area Spectral Efficiency of a UC-RAN

In the previous section, we presented an outline of a user-centric clustering algo-

rithm for a UC-RAN. As is obvious from the algorithm, the size of the cluster

employed for scheduling is a critical system design parameter. Optimal dimen-

sioning of the Rcl is necessitated by the fact that:

32



1. The cluster size determines the number of the active RRHs at any given

time. In turn the density of active RRHs shapes the co-channel interference

experienced by a scheduled MU.

2. The radius of the cluster, also characterizes the number of concurrently

scheduled MUs per unit area.

3. The dimensions of a cluster also determine the number of RRHs serving a

scheduled MUs. This in turn determines the diversity gain experienced due

to spatially distributed RRHs.

The area spectral efficiency of a UC-RAN network is strongly coupled with these

three factors. In this section, our objective is two fold:

• To characterize the area spectral efficiency of a large scale UC-RAN.

• To investigate the optimal dimensioning of the cluster radius for maximizing

the throughput potential of the UC-RAN.

3.4.1 Signal Model

Consider a scheduled user x ∈ Π′MU . Let Scop(x, Rcl) = Π′CLR ∩ (x, Rcl) be the

unique RRH which is fed by the same BBU as x and selected to serve x on the basis

of the scheduling criteria (Algorithm 1). Furthermore, let ΠI = Π′CLR\Scop(x, Rcl)

be the set of RRHs which are concurrently scheduled to serve y 6= x,∀y ∈ Π′MU .

In this article, we assume that the UC-RAN employs the RRH selection to serve

its intended MU. Under RRH selection transmission the received signal at x can

be written as (3.1), where maxi∈Scop hixl(||x− i||) is the channel gain between the

serving RRH and the MU x, maxj∈Π′CLR∩(y,Rcl) hxjl(||x − j||) is the interference

33



rx =
√
PCLR max

i∈Scop
hixl(||x− i||)sx +

∑
y∈Π′MU ,y 6=x

√
PCLR max

j∈Π′CLR∩(y,Rcl)
hjxl(||x− j||)sy + ϕx.

(3.1)

experienced at x due to RRH j serving MU y and sk is the message signal trans-

mitted to MU k by its selected RRH. PCLR is the transmit power employed by the

RRH and ϕx is the additive white Gaussian noise (AWGN) at the receiver front

end 3.

3.4.2 Probe Cluster

In order to characterize the area spectral efficiency of a UC-RAN, quantification

of the success probability for a scheduled MU is essential. The key hurdle in char-

acterizing the performance arises from the fact that unlike ΠMU the point process

of the scheduled users Π′MU is non-stationary. A closer inspection of Π′MU reveals

that it is indeed a modified version of a type II Matern hardcore process [67]. For-

tunately, for such processes it is well established that they can be approximated by

an equidense SPPP with appropriate modified intensity [70], [71]4. Consequently,

Π′MU can be approximated by a SPPP with the intensity

λ
{EF}
USR =

1− exp(−4πλUSRR
2
cl)

4πR2
cl

. (3.2)

3We notice that even with the induced spatial repulsion between MUs which consequently
thins the PPPs of serving MUs and activated RRHs, the noise power at served MUs is negligible
as compared to the aggregate interference. In other words, the network operates in a saturated
conditions and the links are interference limited.

4This is validated by employing Ripley’s K function [67] for both PPPs. It is observed that
the K function of equi-dense PPP forms a lower bound on the Ripley’s K function of scheduled
MUs. The bound is very tight as the results are indistinguishable. In subsequent discussion, the
equi-dense approximation is further validated by comparing theoretical area spectral efficiency
of C-RAN against Monte-carlo simulation results.
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Notice that since the user-centric clusters are considered non over lapping, the

minimum distance between any two user-centric clusters should be 2Rcl. Exploit-

ing the stationary characteristics of the resultant SPPP, it is sufficient to focus on

a typical MU. According to Silvnyak’s theorem [67], the law of the SPPP does not

change by addition of a single point. Hence we add a probe MU at origin. More-

over, the received signal (rx(o)) in Eq. (3.1) can now be simplified with ri = ||i−o||

and ry = ||y − o||. For the sake of compactness, we will drop the index o for the

rest of the discussion (e.g., hio = hi).

3.4.3 Lower-bound on the Success Probability of Scheduled MU

From Eq. (3.1) the received SIR at the probe MU can be expressed as

SIR = ΓMU =
maxi∈Scop hil(ri)∑

j∈ΠI
hjl(rj)

. (3.3)

Notice that Scop is a function of the non-stationary Poisson point process Π′CLR.

Proposition 3.1 (Moments of Aggregate Interference). The mean and

variance of the aggregate interference experienced by a typical MU during a user-

centric algorithm can be approximated as follows

κ1 = E(I) =
2πλCLR[1− exp(−[1− exp(−4πλUSRR

2
cl]/4)]

(α− 2)(Rcl)α−2(λCLRπR2
cl)

, (3.4)

κ2 = V(I) =
πλCLR[1− exp(−[1− exp(−4πλUSRR

2
cl]/4)]

(α− 1)(Rcl)2(α−1)(λCLRπR2
cl)

,

where λCLR is the density of the UC-RAN RRHs, α is the pathloss exponent and

Rcl is the radius of UC-RAN cluster.

Proof: Consider the SPPP ΠCLR, then under user-centric clustering algorithm,

for each scheduled user, only a single RRH which resides in the vicinity as well
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pACT
(a)
= Pr [Π′MU ∩ b(r, Rcl) 6= ∅|r ∈ Π′CLR}.{hrl(rr) > hjl(rj)|j ∈ Π′CLR, j 6= r}] ,
= [1− Pr{Π′MU ∩ b(r, Rcl) = ∅|r ∈ Π′CLR}] .Pr{hrl(rr) > hjl(rj)|j ∈ Π′CLR, j 6= r},

=
[
1− exp(−λ{EF}USR πR

2
cl)
]
.(1/[λCLRπR

2
cl]),

=
1− exp(−[1− exp(−4πλUSRR

2
cl]/4)

λCLRπR2
cl

.

(3.5)

as provides maximum channel gain to that user is activated by the macro-cell. A

natural implication of this policy is that the resulting PPP Π′CLR is non-stationary.

However, like Π′MU it can be approximated with an equivalent SPPP with modified

density λCLR.pACT . Here pACT is the activation probability for the RRH and can

be computed as (3.5), where (a) follows from the fact that a BS is only activated if:

i) there is a scheduled user within distance Rcl, and ii) there is no other BS within

this distance of that user that can provide better channel gain. Now noticing that

ΠI = Π′CLR\Scop(o, Rcl), we can precisely describe ΠI = Π′CLR\b(o, Rcl). Hence

the mean and the variance can be computed using Campbell’s theorem [67] as

follows

κ1 = E(I) = E

 ∑
j∈Π′CLR\b(o,Rcl)

hjl(rj)

 ,

= 2πλCLRpACT

∫ ∞
Rcl

E(H)r1−αdr,

(3.6)

and similarly
κ2 = 2πλCLRpACT

∫ ∞
Rcl

E(H2)r1−2αdr. (3.7)

Substituting E(H) = E(H2) = 1 in (3.6) and (3.7) concludes the proof.

�

Remarks
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1. From (3.4), we notice that the average aggregate interference experienced

by an MU increases with an increase in the user density. For the fixed den-

sity of RRH, the only parameter that designer can adjust to compensate for

the increase in the user density is to reduce the size of the cluster. While

reducing the cluster size will increase the number of RRHs activated by

accommodating more users, it also reduces the interference protection avail-

able to each MU link. More specifically, the small number of large clusters or

large number of small clusters may lead to a similar co-channel interference

environment.

2. The average interference experienced by an MU decreases with an increase

in pathloss. This follows from the fact that with an increase in pathloss,

signals attenuate more rapidly and hence the aggregate interference power

is reduced. However, the signal strength is also reduced for the same reason.

Proposition 3.2 (Link success probability for a scheduled MU). The

link success probability of the probe MU served under the proposed user centric

clustering and RRH selection scheme algorithm can be lower-bound as follows

Psuc(γth, R2
cl) ≥ 1− exp

(
−λCLRπδ

γδthκ
δ
1

γ(δ, γthκ1R
α
cl)

)
, (3.8)

where γth is the MU’s desired SIR threshold, δ = 2
α

and γ(a, b) =
∫ b

0
tα−1 exp(−t)dt

is the lower incomplete Gamma function.

Proof: Consider the probe MU scheduled under the proposed clustering mecha-

nism, the link success probability for this MU is given by
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Psuc(γth, R2
cl) = Pr{ΓMU > γth},

= 1− Pr{ΓMU ≤ γth},

= 1− EI [Pr{max
i∈Scop

hil(ri) ≤ Iγth}︸ ︷︷ ︸
A1

].

(3.9)

The term A1 = Pr{maxi∈Scop hil(ri) ≤ Iγth} can be computed by noticing the fact

the Scop is a SPPP inside a finite area b(o, Rcl) and we can construct a Marked PPP

by assigning the fading marks to each i ∈ Scop 5. Additional Bernoulli or indicator

marks are assigned to the PPP such that the intensity of modified process6 can

be expressed as
λS(r, h) = λCLR2πr1(hl(r) ≥ Iγth)fH(h). (3.10)

Now A1 can be computed by the void probability of the modified point process as

A1 = exp

−
∫ ∞

0

∫ Rcl

0

λs(r, h)drdh︸ ︷︷ ︸
Λs

 , (3.11)

The mean measure Λs can be evaluated by

ΛS = λCLR2π

∫ Rcl

0

∫ ∞
0

r1(hl(r) ≥ Iγth)fH(h)drdh,

(a)
= λCLR2π

∫ Rcl

0

rPr(h ≥ Iγthr
α)dr,

= λCLR2π

∫ Rcl

0

r exp(−Iγthrα)dr,

=
λCLRπδ

γδthI
δ
γ(δ, γthIR

α
cl),

(3.12)

where (a) follows from the CDF of the exponential function. Employing (3.11)

and (3.12), we obtain

5A detailed discussion on the Marked PPP is beyond the scope of this article. Interested
readers should refer to [67].

6The modified intensity corresponds to the dependently thinned point process.
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Psuc(γth, R2
cl) = 1− EI

[
exp

(
−λCLRπδ

γδthI
δ
γ(δ, γthIR

α
cl)

)]
,

(b)

≥ 1− exp

(
−λCLRπδ

γδthκ
δ
1

γ(δ, γthκ1R
α
cl)

)
.

where κ1 = EI(I) from (3.4) and (b) follows from the Jensen’s inequality.

�

The area spectral efficiency of the large scale UC-RAN is defined as the number

of bits/s which can be transmitted over a unit Hertz bandwidth per second in

the area of 1 square meter. In other words, the area spectral efficiency measures

the amount of information that is flowing through a unit area when one Hertz of

bandwidth is employed. The lower bound on the link success probability (which

is equivalent to the coverage probability) can be employed to establish a lower

bound on the area spectral efficiency of the UC-RAN as

TCLR = λ
{EF}
USR log2(1 + γth)Psuc(γth, R2

cl), (3.13)

where λ
{EF}
USR is the effective density of the scheduled user defined in (3.2). As is

clear from (3.13), the area spectral efficiency of the UC-RAN is strongly coupled

with the cluster size. Intuitively, increasing the cluster size decreases the effec-

tive number of scheduled users. However it also increases both the SIR (due to

lower number of nearby interfering RRHs) and the interference protection margin.

Essentially, this implies that there exists an optimal radius for the cluster which

will balance these two opposite effects to maximize the attainable area spectral

efficiency.

3.5 Energy Efficiency Analysis

In previous sections, we focused on the spectral performance of the proposed UC-

RAN. While the proposed user-centric mechanism exploits centralized processing
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in cloud to harness the distributed diversity gains, an important issue from net-

work operator/designers perspective is the cost associated with these gains. More

specifically, from an energy consumption perspective the cost-benefit analysis can

be formulated in terms of energy efficiency. The network or link level energy effi-

ciency characterizes the number of bits that can be transmitted per unit usage of

available spectrum at the expense of one Joule in one second.

Due to a large spatio-temporal variance in user traffic, energy efficiency can be

significantly improved in dense urban environment through efficient ON/OFF ac-

tivation [72]. In order to quantify the energy consumption-throughput trade-off,

our prime focus here is the energy consumption associated in discovering the best

RRH for the association. To that end, we only focus on this additional energy

which is required for the discovery purpose and can be considered as the overhead

incurred for harnessing the diversity gain. Note that during the discovery process,

each RRH is required to estimate the channel gain from the scheduled MU which

comes at the expense of energy dissipation.

The power consumption of a standalone RRH was investigated in the project

EARTH [73]. The proposed power consumption model provides accurate esti-

mates of dissipated power in different building blocks such as antenna interface,

cooling, power amplifiers and baseband processing. The model was extended by

parameterization with the C-RAN efficiency in [74]. In this article, our primary

interest is to compute the total power consumed in the discovery process in each

user cluster. Thus, we propose a modified power consumption model which is

inspired by [74] and [73]. Mathematically, the power consumption of the discovery

process can be quantified as:

PCRAN = ωCRAN(M, θ)P0 + ∆uPu + Pou, (3.14)
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where Pu is the transmit power employed by the MU, Po is the fixed power con-

sumption of the RRH in listening mode, ∆u is the radio frequency dependent

component of power consumption at the MU, ωCRAN(M, θ) is the the UC-RAN

coefficient and Pou is the fixed circuit power consumed at the MU. The UC-RAN

coefficient is coupled with the number of RRHs in each cluster (denoted by M) and

a parameter θ which parameterizes the implementation efficiency. More specifi-

cally, ωCRAN(M, θ) ≤ M captures the performance gains due to consolidated archi-

tecture of UC-RAN. The lower the value of ωCRAN(M, θ), the lesser is the amount

of power dissipated in each cluster. A simple parameterization of the efficiency

coefficient from can be obtained as follows:

ωCRAN(M, θ) = θM, 0 ≤ θ ≤ 1 (3.15)

where θ = 1 captures the least efficient UC-RAN implementation. The mathe-

matical expression for determining average number of RRHs in each cluster (M)

is given in Lemma1.

Lemma III.I: The average number of RRHs within each user-centric cluster, i.e.

M, is the complement of the void probability of the RRHs, i.e. M = 1−e−λCLRπR2
cl .

Proof: Consider that ΠCLR is an SPPP with intensity λCLR, then under user-

centric scheme, the average number of RRHs within a circular area of radius Rcl is

given by λCLRπR
2
cl. Since each user-centric cluster can have at most one RRH, the

average number of RRHs is the complement of the probability that an arbitrary

cluster would at least one RRH within its foot-prints, i.e.

M = Pr{ΠCLR ∩ b(x, Rcl) 6= ∅|x ∈ Π′MU},

= 1− Pr{ΠCLR ∩ b(x, Rcl) = ∅|x ∈ Π′MU},

= 1− exp{−πλCLRR2
cl}.
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The average power consumption of each cluster can then be written as

PCRAN = ωCRAN(1− exp{−πλCLRR2
cl}, θ)Po + ∆uPu + Pou. (3.16)

Notice that in this analysis we are mainly focusing on the power consumed at MU

for re-broadcasting the pilot signal and the power consumed at RRHs to estimate

channel from this pilot. We do not consider the power consumption at macro

BS for initial transmission of pilot signal, since this cannot be regarded as an

energy overhead. Such transmission is part of the macro BS operation even in the

traditional cellular networks.

The network wide average energy efficiency is defined to be as the ratio of sus-

tainable throughput for each scheduled MU and the average power consumption

times the number of scheduled users. Mathematically

ηEE =
B log2(1 + ΓICRAN)

ωCRAN(1− exp[−λCLRπR2
cl], θ)Po + ∆uPu + Pou

, (3.17)

where B is the employed bandwidth (assumed unity for subsequent discussion)

and ΓICRAN is the effective SIR defined in (18).

Remarks:

1. The per user throughput scales as O(λ
1/δ−1
CLR ) while the average power con-

sumption of each cluster involved in discovery process scales asO(1−e−λCLR).

This implies that both the user throughput and the power consumption are

increasing functions of the RRH density. However, as λCLR increases, the

power consumption quickly saturates to:

Po + ∆uPu + Pou as ωCRAN(M, θ)→ 1.
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2. Similar to RRH density, it is obvious that the throughput and power con-

sumption are monotonically increasing functions of the cluster radius (Rcl).

Due to the saturation of the power consumption though, the optimal cluster

radius which maximizes the energy efficiency of the UC-RAN would be the

maximum possible cluster size as per network operator’s design specifica-

tions.

3. These two observations lead to an important design question, i.e., how dif-

ferent the EE-optimal cluster size is as compared to the cluster radius which

maximizes the network wide area spectral efficiency? Also, since an energy

efficient design would prefer a larger cluster size compromising on the area

spectral efficiency, is there a way to work out a balance between these two

parameters. The rest of our discussion will be formed across this design

issue.

3.6 SON Framework for RRH Cluster Size Optimization

The GT based SON engine is embedded within the centralized BBU pool for

real-time adjustment of RCLR to optimize a system level efficiency parameter of

interest with respect to terrain environment, user demographics, RRH deployment

scenario and network operator’s spatio-temporal revenue model (see Fig.3.3). The

variation in the cluster size models the dynamic tradeoff between ASE and EE in

our bargaining game model. The proposed GT-SON framework with the sequence

of steps in dynamic cluster size adjustment for modeling the ASE-EE tradeoff is

given in Fig. 3.3.

To analytically express the ASE-EE tradeoff, we formulate a two-player coopera-

tive bargaining game where both ASE and EE are modelled as virtual game players
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that independently estimate the best cluster size for maximizing their respective

utility functions. We will see later that due to a large dissimilarity in cluster

size preferences of the players, each player’s payoff is affected by the cluster size

selection made by the other player. However, both players can mutually benefit

through the cooperative game where they negotiate for the RCLR that achieves

optimal ASE-EE tradeoff. Using Nash’s axiomatic model, it is well known that

the Nash bargaining solution (NBS) achieves a pareto-optimal solution, i.e. the

optimal tradeoff in the utilities of the players in such cooperative games [46].

Fig. 3.3: GT-SON Framework in UCRAN

If the players can be denoted by the set N = {1, 2}, where player i = 1 denotes

ASE, player i = 2 denotes EE and Si denotes the set of all feasible payoffs to an

arbitrary MU i as

Si = {Ui|Ui = Ui(RCLR), RCLR ∈ R : RCLR > 0}. (3.18)

Let us define the space S as the set of all feasible payoffs that players i ∈ N can

achieve when they collaborate, i.e.

S = {U = (u1, u2)|u1 ∈ S1, u2 ∈ S2} (3.19)
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where u1(x1) is the utility of the first player and u2(x2) is the utility of the second

player such that

s1 = u1(x1) = [ASE(RCLR)]β, (3.20)

s2 = u2(x2) = [EE(RCLR)]1−β (3.21)

and x1 = x2 = RCLR ∈ R : RCLR > 0. β ∈ [0, 1] is the exponential bias factor

in NBS that defines the bargaining power (or the tradeoff) division between the

two players. We also define the disagreement space D ∈ S as the set of the two

disagreement points d = (d1, d2) where d1 = u1(D) and d2 = u2(D) represent

the payoffs for the two players if the bargaining process fails and no outcome is

reached. For our game, we set d = (0, 0) thus giving both players uniform leeway

to improve their utilities. [18] shows that the NBS in such parametric cooperative

games exists only if the utility functions for the players form convex and compact

sets.

Proposition 3.3. The utility and disagreement spaces in the proposed GT-SON

framework constitute a two-player bargaining problem defined by (S, d) where S ∈

R2, d ∈ S and the resulting unique bargaining outcome is pareto-optimal.

Proof: A bargaining problem can be defined as the pair (S, d) if: i) S is a convex

and compact set, ii) There exists some s ∈ S such that s > d, i.e. s1 > d1

and s2 > d2. It is quite obvious that S is compact and since d = (0, 0), positive

utilities for our players satisfies the 2nd condition. This leaves behind the question

whether S is convex which holds true if: ∀ε : 0 ≤ ε ≤ 1, if Ua = (ua1, u
a
2) ∈ S1

and U b = (ub1, u
b
2) ∈ S2, then εUa + (1 − ε)U b ∈ S. From (3.13), we see that

εua1 + (1− ε)ub1 = [λ̄MU log2(1 + γth)P̄ ]β where P̄ = [ε(Pasuc)β + (1− ε)(Pbsuc)β] and
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since we know that 0 ≤ Pasuc, Pbsuc, β ≤ 1, the sum in (3.22) forms a convex set, i.e.

εua1 + (1− ε)ub1 ∈ S1. (3.22)

Similarly, from (3.17), we see that εua2 + (1 − ε)ub2 = [ λ̄MU log2(1+γth)P̄
λRRH ¯pACT (MθP0+∆uPu)

](1−β),

where the numerator is convex from (3.22) and denominator is convex since ¯pACT =

ε(paACT )1−β + (1− ε)(pbACT )1−β and 0 ≤ paACT , pbACT , β ≤ 1. Therefore,

εua2 + (1− ε)ub2 ∈ S2. (3.23)

From (3.22) and (3.23), we conclude that εUa + (1− ε)U b ∈ S which satisfies the

conditions for convexity for set S. According to Nash’s axiomatic approach [46],

there exists a unique solution for the two-player bargaining problem which is the

pair of utilities (s∗1, s
∗
2) that solves the following optimization problem:

max
(s1,s2)

(s1 − d1)(s2 − d2), (s1, s2) ∈ S ≥ (d1, d2). (3.24)

�

Proposition 3 implies that for an arbitrary MU x, the optimal cluster size ”Ropt
CLR,x”

is obtained through the solution of a convex optimization problem (also known as

Nash Product (NP)) which for our model can be given by

RoptCLR,x = max
RCLR,x

[ASE(RCLR,x)]β[EE(RCLR,x)]1−β. (3.25)

Notice that the computational complexity of the GT-SON engine is a function

of the cluster size granularity, i.e. O(NCLR) where NCLR denotes the number of

distinct cluster sizes over which the optimization in (3.25) is performed. As the

processing times are independent of MU or RRH densities, real-time implementa-
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tion of the GT-SON optimization framework is practically realizable and scalable

throughout the network.

3.7 Performance Analysis

In this section, we discuss the analytical trends and Monte Carlo simulation results

by employing a 3GPP standard compliant LTE network simulator. The first tier

elasticity is performed by optimization of the mathematical developed in Chapter

3.6. For simulation, we consider a two tier HetNet with a tri-sector hexagonal

MBS of radius 500 m. We consider a single sector of the MBS covering an area

of 73850 m2 where MUs and small cell RRHs are uniformly distributed according

to their independent SPPPs. Without loss of generality, the channel power gains

between all MUs and RRHs are assumed unity. We assume uniform transmit

power of 30 dBm for all RRHs. Other power consumption parameters are taken

from [18]. Simulation results are averaged over 1000 Monte Carlo trials.

3.7.1 ASE, EE performance under varying β

Table 3.1: Cluster sizes and efficiency loss at different bargaining weightage

β RNBS
CLR (m) %ASELoss %EELoss

A 0,0.25,0.5,0.75,1 51,33,22,13,6 87,71,45,19,0 0,9,36,68,91

B 0,0.25,0.5,0.75,1 22,15,9,6,5 84,66,39,6,0 0,9,36,64,77

C 0,0.25,0.5,0.75,1 42,28,19,12,6 81,60,38,17,0 0,8,33,67,92

D 0,0.25,0.5,0.75,1 19,12,9,6,5 78,53,28,6,0 0,8,31,54,62

From the analytical results in (3.13), (3.17) and (3.25), we investigate the variation

in the optimal cluster size and the efficiency metrics as β is shifted between ASE-

optimal (β = 1) and EE-optimal (β = 0) points. The GT-SON engine optimizes

RCLR on the following fixed network parameters: λMU = 10−2/m2, θ = 0.5,
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Fig. 3.4: User-centric RRH clustering under different β values.

γth = 4 dB, and 0 < RCLR ≤ 100 m. An illustration of the user-centric clusters

when different β values are employed is given in Fig. 3.4. Table 3.1 shows that

while lower β values result in larger user-centric clusters corresponding to high

average SINR, higher β ensures that moer number of users are simultaneously

scheduled reducing the average latency for a UE.

The ASE results in Fig. 3.5(a) indicate around the same ASE-optimal cluster

size of 5m for variations in pathloss exponent and RRH deployment densities.

It is seen that higher RRH densities yield superior system throughput which is

understandable considering pACT is expected to increase with λRRH . It is also

noted that α = 4 yields more than two-fold increase in ASE as compared to α = 3.

Since mmWave network propagation studies [75] have indicated higher pathloss

due to blocking effects, the UCRAN is expected to yield more system capacity at

mmWave spectrum by virtue of relatively larger MU-interfering RRH distances.

EE results in Fig. 3.5(b) indicate optimal RCLR to be the highest possible cluster

size because of the combined effect of increased throughput and reduced power

consumption with increase in RCLR. Like ASE, the maximum EE is achieved
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Fig. 3.5: (a) ASE and (b) EE at different β values when varying the λRRH and α. The
NBS for each use case is shown separately for ASE and EE at β values of 0, 0.25, 0.5,

0.0.75 and 1 and denoted by �, N, F , H and � respectively.

at higher RRH density and pathloss exponents. This implies that the GT-SON

engine will most effectively utilize the ASE-EE tradeoff with gain variations of

over 100% through appropriate β adjustment in ultra-dense mmWave networks.

3.7.2 User QoE Performance Analysis

Users’ QoE analysis is conducted through SINR distribution between MUs with

network parameters: λMU = 10−2/m2, λRRH = 10−3/m2, α=4, θ = 0.5, γth = 4

dB and bandwidth B=1 Hz. Both the MU and RRH deployments are performed

using uniform PPPs and average performance results are obtained via Monte Carlo

simulations. We use two variants of the proposed user-centric approach: i) RRH

cluster size deployment that maximizes ASE henceforth referred as UC(ASE), and

ii) cluster size deployment that maximizes EE henceforth referred as UC(EE). To

compare the performance with a standard non user-centric PPP deployment, we

follow the approach in [8] and represent it as NUC. Results in Fig. 3.6 show that

even with the most data throughput efficient user-centric design, we obtain a SINR
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Fig. 3.6: Downlink SINR cdf comparison between user-centric and non user-centric
approaches

gain of over 20 dB for almost 50% of the users. The ruggedness in the cdf graph of

UC(EE) in comparison to the other two CDFs is because of lower number of users

in the thinned PPP λ̄MU which is a direct consequence of the larger cluster sizes

in EE optimization. The 5 percentile SINR performance (for the cell-edge users

with worst SINR in conventional networks) is also significantly improved for user-

centric approaches with about 20 dB and 40 dB gain with UC(ASE) and UC(EE)

respectively. Clearly the user-centric approach eliminates cell-edge degradation

and guaranteed high QoE for every user regardless of its physical location.
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Fig. 3.7: (a) ASE and (b) EE comparison of UC(ASE), UC(EE) and NUC approaches
with different RRH densities

3.7.3 Performance comparison with non user-centric networks

Fig. 3.7 compares the system wide ASE and EE of the user-centric approaches with

the baseline scheme at different RRH densities and λMU = 10−2/m2, α=4, θ = 0.5

and γth = 4 dB. Fig. 3.7(a) reveals that as the RRH deployment density increases,

UC(ASE) emerges as the most data efficient scheme. While NUC exhibits uniform

ASE, UC(ASE) by virtue of increased Psuc exhibits highest system capacity. On

the other hand, UC(EE), though not throughput efficient by any regards, yields

more than 5 times power efficient network as compared to NUC approach (fig.

3.7(b)). This observation highlights the inherent ASE-EE tradeoff available to the

network operator by adjusting β via the GT-SON and choosing the appropriate

RRH cluster size.

3.7.4 Scheduling rate under varying RRH and UE densities

In order to study the impact of dense RRH deployment, Fig. 3.8 depicts the mean

scheduling success rate for the MUs under different β and deployment density
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Fig. 3.8: Mean scheduling success rate versus β under different λCLR/λUSR.

(λCLR
λUSR

) scenarios. For each scenario, we simulate 1000 consecutive transmission

time intervals (TTIs) for λUSR = 4x10−4. Using user-centric RRH clustering

(Chapter 3.2), we update the pUSR and RRH clusters for each TTI which allows

us to estimate the mean number of MUs that are scheduled for DL transmission

under each simulation scenario. The results in Fig. 5.5 show rapid increase in the

scheduling probability as we move towards ASE regime. However, we notice that

as RRH deployment density increases to λUSR/2, the scheduling success doubles

to 48% as compared to 24% in case of λUSR/4 and λUSR/8 for β = 1. This implies

that increasing small cell deployment density in ASE mode allows higher number

of concurrent DL transmissions that consequently reduces main scheduling delay

for an arbitrary user in UC-RAN.
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3.8 Conclusion

In this chapter, we developed a comprehensive statistical framework for compu-

tation of the area spectral and energy efficiency of a large-scale user-centric cloud

radio access network (UC-RAN). We proposed a user-centric RRH clustering al-

gorithm which enables dynamic coverage extension and shrinkage by activating a

single remote radio head within a specified demarcation around a scheduled user

based on max SIR gain criteria. The user-centric architecture ensures uniform

coverage and no cell-edge degradation for all the users irrespective of their phys-

ical location.We demonstrated that there exists an optimal cluster radius which

maximizes the area spectral efficiency of the UC-RAN. It was also demonstrated

that this optimal cluster radius is coupled with the user density and hence must

be adapted by a self-organization mechanism.

The link level performance was then employed to perform cost-benefit analysis of

the proposed protocol. More specifically, the amount of power dissipated in the

association process under the proposed protocol is considered as the cost of ob-

taining the throughput gains. The throughput-cost ratio is hence essentially the

energy efficiency of the UC-RAN. It was shown that there exists another optimal

cluster radius which maximizes the energy efficiency of the UC-RAN. However,

this is larger to the one obtained under area spectral efficiency criterion. Con-

sequently, the throughput-energy consumption trade-off manifests itself in terms

of dimensioning of the cluster radius in UC-RAN. Using a game theoretic frame-

work, we demonstrated that a SON engine within the centralized BBU pools may

be employed to dynamically configure the optimal cluster size. Simulation results

indicated that: i) the SON mechanism allows more than 100x efficiency variation

through real-time adjustment in the NBS bias parameter, ii) in comparison to
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current always-ON RRH deployments, selective RRH activation in UC-RAN offers

high area spectral and energy efficiency gains, particularly when λCLR > λUSR,

and iii) significant SINR gains can be realized in both ASE and EE operating

modes by virtue of interference-free RRH cluster zones around each scheduled

user.
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CHAPTER 4

QoE based Elastic user-centric networks

In the chapter 3, we discussed the macro level elasticity in user-centric networks.

The main question we will discuss in this chapter is what if UEs have different

data demands, which is the actual case in real networks. Will a one size fit all

scheme work better for the overall network performance? In this chapter, we

introduce the idea of a 2nd tier elastic user-centric cellular networks, where the

optimization for user-centric service zones is carried out individually for all UEs.

In summary, we will model elastic user-centric service zones with variable sizes

to model the disparity in the data demands of the UEs. Game theory would be

applied in tandem with concepts from stochastic geometry to model the bargain

of the S-Zone modeling between UEs.

4.1 Introduction

4.1.1 Background

Network densification through the use of small cells is considered a viable solution

for meeting the capacity targets in future cellular networks (i.e. 5G). While den-

sification is inevitable, it has a couple of major associated problems that persist

as a bottle neck in network planning: i) high inter-cell interference and ii) low

energy efficiency [1]. Though upcoming 5G technologies such as massive multiple

input multiple output (MIMO) and millimeter wave (mmWave) offer promising

prospects for increased system capacity, they may not address the aforementioned
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issues. Redesigning the network orchestration in cell planning from the traditional

base station (BS)-centric to a user equipment (UE)-centric approach [2] has been

recently envisioned as a first step to address these challenges [62]. This user-

centric (UEC) architecture guarantees a higher energy efficiency (EE) along with

location-independent uniform Quality of Experience (QoE). Analysis in [18] has

shown that the cell density that yields optimal EE is different than that which

yields maximum outage capacity. In [4], we leverage this analysis to propose a

UEC network deployment solution where an ultra-dense network is deployed, and

is then orchestrated between EE and area spectral efficiency (ASE) optimal modes

by intelligently switching OFF/ON small cells. This switching ON and OFF is

done by creating non-overlapping exclusion zones around high priority UEs within

which only one small cell is turned ON during each scheduling instant. The size

of the exclusion zone is then used as a control parameter to realize the desired

compromise between EE and ASE. However, due to diversity in mobile data us-

age trends, a static network wide optimal exclusion zone size does not offer the

elasticity to optimize individual user’s QoE in different spatio-temporal zones.

4.1.2 Architectural Overview

In this chapter, we present and introduce a second tier of elasticity within UEC

systems that integrates non-uniform exclusion zones centered around users. These

non-uniform exclusion zones, which we call as service zones (S-Zones), cater for

data demand disparity between spatio-temporal zones as well as the diversity of

data requirements from user applications (for instance HD video streaming v/s

whatsapp messaging) within a single spatio-temporal zone. The basic premise

behind deploying virtual flexible service zones around mobile users is to control

the interference limit that a user can experience while still getting the throughput

56



sufficient for its data needs. For instance, high definition real-time gaming appli-

cations will require a high throughput and low latency communication link, which

can be guaranteed if the signal to interference ratio (SINR) is sufficiently high.

To ensure that, the controller will assign this user a large service zone to not only

assign it larger number of resources, but also to reduce interference from concur-

rent downlink transmissions for other users. The same is true other way round for

IoT based sensor devices that require low throughput transmission, and hence a

relatively moderate SINR. Consequently, a smaller service zone would suffice for

their data requirements.

This demand based UEC scheme is an ideal candidate for implementation in a

control-data separation architecture (CDSA) [76] where small cells referred to as

data base stations (DBSs) provide data services to UEs while macro base stations

also referred to as control base stations (CBSs) provide necessary control and

signaling. While CBSs provide the essential coverage, intelligent activation/de-

activation of the DBSs enables potential for significant energy savings in CDSA.

In addition to this, CDSA can offer better spectral efficiency mainly because of

selection diversity that stems from large number of DBSs in dense deployments.

Centralized coordination at the CBS solves the cell discovery problem for DBSs

in a conventional BS-centric architecture. In the proposed UEC framework, this

allows for turning DBSs ON/OFF, depending upon an individual UE’s S-Zone

size and the propagation link quality between that UE and the DBSs within its

S-Zone.

The analysis of strategies UEs may adapt while competing for downlink (DL)

resources to meet their data requirements in a UEC CDSA is the focus of this

chapter. To this end, we investigate the application of game theoretic techniques

which have been well known for resource management and interference mitiga-
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tion in dense small cell networks [77] [52]. In particular, we apply auction and

evolutionary game techniques (referred to as AGT and EGT respectively), with

users as game players adapting strategies to secure DL scheduling within virtually

interference free S-Zones. While there has been significant research in user-centric

networks in recent times [78],[79], to the best of our knowledge, analysis of sec-

ond tier elasticity in user-centric CDSA that caters to non-uniform user demands

remains a terra incognita. This work is a first attempt to analyze the tradeoff of

game theoretic techniques for UE level demand based CDSA architecture.

4.1.3 Research Objectives

Our prime objective in this part of the dissertation is to evaluate the perfor-

mance of distributive game theory models in the context of resource allocation for

dense user-centric networks. Using the CDSA as the enabler for the technological

framework, we present a system model that links the activation of DBSs to user

requirements as well as the level of interference in the environment surrounding

the scheduled users. The research questions that this chapter aims to answer are

the following:

• What is a plausible utility model for distributed games in user-centric net-

works?

• How will the user scheduling look like for downlink scheduling in demand

oriented user-centric architectures?

• Can we identify game models that yield higher network efficiency than its

competitors, and under what network conditions do they show superior per-

formance?
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Fig. 4.1: S-Zones concept illustration in UE-centric CDSA architectures.

To answer these questions, a detailed comparative analysis is presented using two

game theoretic techniques, namely evolutionary game and auction theory. Both

the games are based on a distributed utility minimization problem. The evolution-

ary game involves iterative action strategy adjustment by the UEs, whereas the

auction game comprises UEs bidding their true valuation with the aim of winning

the auction and securing virtual S-Zones for DL scheduling.

4.2 Network Model

Fig. 4.1 shows a UE-centric based CDSA network model where users having a high

payoff (used interchangeably with utility) are served by a single DBS providing best

channel quality (e.g. CQI (channel quality indicator) measure) within their virtual

service zones respectively. Each scheduled UE is the center of an S-Zone with an

active DBS. The remaining DBSs within and outside the S-Zones are turned OFF

to reduce inter-cell interference as well as lower overall power consumption. The

area of S-Zones around scheduled UEs is adjustable based on individual UE’s
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throughput requirements. This two-tier CDSA with elastic service zone model

consists of a central CBS providing essential control and signaling functionalities

to the UEs while the DBSs serve the UEs with DL data transmissions. Based on

the channel feedback by the UEs, the CBS allocates S-Zones to scheduled users

based on outcome of game models (Section 4.3) during each transmission time

interval (or TTI).

Borrowing from well established tools in stochastic geometry [67], we model the

spatial distributions of DBSs and UEs using two independent stationary Poisson

point processes (SPPPs): ΠDBS ∈ R2 and ΠUE ∈ R2 with intensities λDBS and λUE

respectively. Specifically, at an arbitrary time instant the probability of finding

ni ∈ N, i ∈ {DBS,UE} DBSs/UEs inside a typical macro-cell with area foot-print

A ⊆ R2 follows the Poisson law with mean measure Λi(A) = λiv2(A) [62]. The

mean measure is characterized by the average number of DBSs/UEs per unit area

(i.e., λDBS\λUE ) and the Lebesgue measure [67] v2(A) =
∫
A dx on R2, where if A

is a disc of radius r then v2(A) = πr2 is the area of the disc.

4.2.1 Channel Model

The channel between a DBS x ∈ ΠDBS and an arbitrary UE y ∈ ΠUE is modeled by

hxyl(||x−y||). Here hxy ∼ E(1) is a unit mean exponential random variable which

captures the impact of a Rayleigh block-fading channel between x and y. The

small-scale Rayleigh fading is complemented by a large-scale path-loss modeled

by l(||x − y||) = K||x − y||−α power-law function. ||x − y|| is the Euclidean

distance between x and y, K is a frequency dependent constant and α ≥ 2 is an

environment/terrain dependent path-loss exponent. The fading channel gains are

assumed to be mutually independent and identically distributed (i.i.d.). Without

any loss of generality, we assumeK = 1 for the rest of this discussion. Furthermore,
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we assume that all DBSs employ the same transmit power.

4.2.2 UE-Centric DBS Scheduling

The first step in DBS scheduling is identification of high priority users to be

scheduled in a given TTI. The second step is creation of non-overlapping circular

S-Zones centered around each UE selected to be served in that TTI. The size of

the S-Zone is the parameter of optimization and will be discussed later. Each

UE is then served by a DBS within its S-Zone that provides strongest received

signal power. The remaining DBSs are switched off. The size of circular S-Zone

around a scheduled UE x is characterized by a variable radius RSZ,x which is a

function of x’s data requirements and the interference from nearby active DBSs.

The CBS is responsible for control signaling to all the UEs within its footprints.

In addition, the CBS also assigns scheduling priorities in the form of a mark/tag

pUE ∼ U(0, 1) to each UE. The marked PPP [67] formed as a result of user-centric

scheduling impacts the downlink scheduling priority of the UEs. More specifically,

the lower the value of the mark, the higher is the priority of the UE to be scheduled.

Effectively, these marks can be thought of as the timers corresponding to each UE

that are decremented in each time slot where DL service to this UE is deferred.

Based on the channel quality measure between the DBSs and the UEs, the CBS

decides and activates the relevant DBSs for DL transmission to the scheduled UEs.

The advantages of such UEC scheduling is two-fold: firstly, due to non-overlapping

S-Zones, the interference experienced by a scheduled UE is considerably reduced

and secondly, on-demand activation of DBSs provides the network self-organizing

capabilities to cope with spatio-temporal variations in user demography.

One might argue that such a one-to-one UE-DBS association within a non overlap-

ping user-centric S-Zone scheme may result in service holes, i.e. there may exist
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UEs that are not associated with any DBSs due to empty UE-centric S-Zones.

Since we are considering dense small cell deployments with λDBS and λUE of the

same order, UE-centric S-Zones with realistic areas will hardly be void. In the

unlikely scenario of a void S-zone though, user clustering strategies [68] may be

employed where nearby UEs are grouped together and optimization is performed

on the UE clusters rather than individual UEs. Furthermore, it is known that best

DBS activation with a proximity constraint provides dual benefits of low outage

probability and high power efficiency in dense deployment scenarios [69].

4.3 Payoff functuon and S-Zone Modeling

Payoff function: We model the payoff of a UE x as ux = δ(τ̄ − τx(RSZ,x)) +

(1 − δ)(τd,x − τx(RSZ,x)); where τx(RSZ,x) is the achievable data throughput for

x, τ̄ = 1
N

∑N
n=1 τn is the mean achievable user throughput (considering N active

UEs) of the spatio-temporal zone estimated through a central entity (such as the

CBS) and τd,x is x’s variable throughput demand based on the application usage.

0 ≤ δ ≤ 1 is a weight priority index, controllable via CBS, with factor δ enforcing

uniform throughput regardless of service demand disparity while 1−δ allows users

with high scheduling priority to selfishly meet their data demands at the expense

of non-priority users.

The first component of the payoff measures the utility of a UE in terms of the

penalty (positive / negative) depending upon how much lesser / greater the UE’s

achievable throughput is to the mean achievable throughput of all UEs. Similarly,

the second component of the payoff determines the penalty associated with how

deviant the achievable throughput is to the UE’s actual service based throughput

demand at a given S-Zone radius. Using this novel characterization of payoff, we

can formulate the optimization problem to be solved by the game models for a UE
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x’s payoff as a function of RSZ,x and given as

min
RSZ,x

|δ(τ̄ − τx(RSZ,x)) + (1− δ)(τd,x − τx(RSZ,x))|. (4.1)

S-Zone radius: The achievable throughput for a UE x is expressed using Shan-

non’s theorem as

τx(RSZ,x) = log2(1 + SINR(RSZ,x)), (4.2)

where the S-Zone size dependent received signal to interference ratio (SINR) at x

when served by DBS y can be written as follows:

SINR(RSZ,x) =
maxy∈ΠDBS∩(x,RSZ,x)hxyl(||x− y||)

No +
∑

z∈ΠI
hxzl(||x− z||)

. (4.3)

ΠDBS∩(x, RSZ,x) is the thinned PPP representing the DBSs within the UE-centric

virtual circular cell of area πR2
SZ,x around x, ΠI denotes the thinned PPP of

interfering DBSs, i.e. the active DBSs in S-Zones other than that centered around

x, and No is the variance of the additive white Gaussian noise at x.

To ensure that the UE-centric S-Zones are within practical dimensions, we tried

several mathematical formulations of RSZ,x as a function of λDBS, λUE and γx.

Drawing insights from extensive simulation based experiments with different DBS

and UE densities, we propose the following model to characterize the S-Zone area

around a UE x served by a DBS y1:

RSZ,x =
||x− y|| ln(λDBS)

(1− γx) ln(λUE)
, (4.4)

where 0.1 ≤ γx ≤ 0.9 is the application based variable UE demand with normal

distribution N(0.5, 0.1). The limits on the UE demand ensures avoiding circum-

1Note that the formulation for RSZ,x is done for the parameters considered in Section 4.4.
A different formulation may be required for suburban and sparsely deployed DBS regions.
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stances when UEs with extremely high/low service demands request impractically

high/low S-Zone radii.

4.4 Game Formulations for UE-Centric Zone Scheduling

We leverage both evolutionary (EG) and auction (AG) games to determine optimal

S-Zone sizes by solving the optimization problem in (4.1). Let N={1,2,...,N}

denote the set of UEs participating in each game iteration. Each UE x demands

a certain throughput τd,x, which is a function of the variable demand variable γx,

such that τd,x ∝ γx. For this work, we consider a linear relationship, τd,x = Kγx+ε,

where ε is the UE specific noise in the throughput demand. The throughput

demand τd,x in turn determines the S-Zone radius RSZ,x through iterative update

in γx until convergence is achieved for the utility in (4.1). The CBS calculates and

communicates τ̄ to every UE within its coverage so that they may adjust γx with

the objective of solving (4.1).

4.4.1 Evolutionary Game

In the context of an evolutionary game for S-Zone size optimization, each UE

adapts its demand strategy according to the received payoff in (4.1). This evolu-

tion of the game allows the population states to evolve over time. For this work,

we are considering two UE population states: over-served and under-served ex-

pressed as UEOS and UEUS respectively. An over-served UE is characterized by a

negative utility in (4.1) indicating surplus resources in terms of higher achievable

throughput as compared to the mean throughput and/or the application based

throughput demand. The action strategy for over-served UEs is an adjustment in

their S-Zone size through a prefixed step reduction in γx. Similarly, the under-
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served UEs with positive utilities increase their S-Zone areas through a prefixed

step increase in γx, within the demand constraints (Step 1, Algorithm 2).

The evolutionary game in Algorithm 2 is governed by principles of replicator dy-

namics [52], according to which the number of UEs selecting a particular strategy

will increase if that action yields close to zero payoff. The frequency for a par-

ticular action strategy is given by Xs = Ns
N

. Ns is the number of UEs selecting

strategy s where s ∈ S = {increase γx, reduce γx}.

Algorithm 4.1 EG algorithm
1: Each UE chooses a throughput demand τd,x based on the application usage. The
disparity in τd,x is modeled by assuming that the UE demand γx has a normal
distribution, i.e. γx ∼ N(0.5, 0.1), and constraints 0.1 ≤ γx ≤ 0.9. Iteration
counter is set to i = 1.
2: Based on the channel gains and γx values, the CBS calculates RSZ,x, creates
virtual S-Zones around high priority UEs and turns ON a single DBS per S-Zone.

Elaborating mathematically, a UE x is scheduled iff p
{x}
UE < p

{x′}
UE ;∀x ∈ ΠUE,x

′ ∈
ΠUE ∩ (x, RSZ,x),x′ 6= x.
3: The scheduled UEs observe SINR(RSZ,x) and subsequently the achievable
throughput τx(RSZ,x) which is sent to the CBS.
4: The CBS calculates τ̄ and broadcasts it to all UEs.
5: Each scheduled UE computes its utility ux and adjusts γx. If ux > 0, then
γx = min(γx + 0.05, 0.9); if ux < 0, then γx = max(γx − 0.05, 0.1); and left
unchanged otherwise.
6: Update p

{x}
UE , increment i and go to step 2 while i < imax.

imax is the maximum number of simulation iterations for a given network config-

uration. The EG based strategy adaptation algorithm functions in a distributive

manner where each UE adapts its individual strategy to optimize (4.1). Addition-

ally, the algorithm relieves the CBS from centralized optimization computation,

making its implementation scalable throughout the network.
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4.4.2 Auction Game

Auction theory allows players to intelligently select their strategies in order to

gain maximum resources. For our work, we adapt the Vickrey Clark Groves (VCG)

auction mechanism which is known for ensuring assurance of truthfulness from the

players as well as maximization of fairness [80]. Also called the ”sealed-bid second-

price auction”, this auctioning scheme awards the bid to the highest bidder who

pays an amount equivalent to the second highest bid. Contrary to the first price

auctions, VCG auctions prevent selfish players from cheating because bidding the

true valuation is the weakly dominant strategy in this model [46]. This guarantees

that under most general circumstances, VCG will yield bid winners as players with

highest valuations.

In contrast to EG where S-Zone assignment was dependent upon p
{x}
UE alone, in AG

(Algorithm 3), we integrate the utility ux within the bidders’ (or UEs’) valuation

structure as

bx =
1

p
{x}
UE [δ(τ̄ − τx(RSZ,x)) + (1− δ)(τd,x − τx(RSZ,x))]

. (4.5)

As seen from (4.5), the UEs with optimal utilities are rewarded with higher bid

values. Each iteration in the AG is a new game as the winners of the conducted

auctions are assigned S-Zones by the CBS and barred from further bidding. Be-

cause we analyze system level performance metrics, the cost paid by UEs after

winning the bids is irrelevant for this work. However, we employ a VCG auction

due to its relevance to wireless networks [81]. Moreover, the existing framework

can be analyzed in extensions of this work and include the effect of UE cost when

modeling the network over large number of TTIs.
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Algorithm 4.2 AG algorithm
Steps 1-4 same as EG algorithm.
5: Each UE participating in the auction calculates its bid value bx and sends it to
the CBS.
6: The CBS chooses a player as the winner of the auction if its bid is not lower
than any other player that can form a non-overlapping S-Zone with the existing
S-Zones, i.e. a UE x is the auction winner iff bx > bx′ ; ∀x,x′ ∈ Π

′
UE, where Π

′
UE

refers to the UEs whose RSZ,x (and RSZ,x′) allow non-overlapping S-Zones with
past auction winners.
7: The CBS removes the auction winner in current iteration from future bidding.
New bidding round (step 5) continues until there is no new winner.

8: CBS schedules auction winners, updates p
{x}
UE and i. Go to step 3 and re-evaluate

the metrics for existing players. Continue until i < imax.

Table 4.1: Simulation parameters

Parameter Value
Simulation area dimensions (|A|) 100 m x 100 m

λUE|A| 400
λDBS|A| 50, 100, 150

α 4
δ 0, 0.25, 0.5, 0.75, 1

Power consumption parameters
Po, Pu, ∆u and Pou 6.8, 1, 4 and 4.3 W

θ 0.5
imax 100

No. of Monte Carlo realizations 1000

4.5 Performance Analysis

We will now discuss the simulation results for a range of efficiency parameters to

evaluate the performance of the game theoretic techniques in question, i.e. EGT

and AGT within the 2nd tier elastic CDSA framework elaborated in Chapter 4.4.

The basic simulation parameters are given in Table 4.1.
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4.5.1 Aggregate Throughput performance

The aggregate throughput is calculated numerically as the sum of the achievable

throughput of the served UEs within a TTI, i.e. λDBS,Act|A|
∑λDBS,Act|A|

1 τx where

λDBS,Act|A| denotes the number of activated DBSs (or served UEs) in the network.

The results in Fig. 4.2 reveal contrasting trends with varying δ and DBS densi-

ties under considered game theoretic algorithms. While the EGT demonstrates

reduction in throughput for the range of DBS densities considered as δ increases,

the AGT shows increasing throughput trends for denser DBS deployments with

an increase in δ. The trends are disruptive for δ = 1 which is the pure fairness

centric scheduling scheme and takes no consideration of users’ QoE requirements.

As far the deployment density is concerned, EGT is the superior scheme for λUE/8

DBS density. For denser networks with mean DBS deployment density of 3λUE/8,

AGT is clearly the preferred game model. The findings highlight the necessity of

a SON implementation within the CBS for intelligent and dynamic adaptation of

game model as a function of both λDBS and δ to maximize the system throughput.

4.5.2 Energy Efficiency performance

To estimate the EE of an elastic CDSA under UE-centric architecture, we take

inspiration from the work of award winning European project EARTH [82] and

apply relevant modifications to construct a power consumption model for a UE-

centric CDSA given as

PCDSA = λDBS,Act|A|(θPo + ∆uPu + Pou), (4.6)

68



Fig. 4.2: System throughput comparison of EGT and AGT.

where Po, Pu and Pou denote fixed power consumption of an active DBS, transmit

power of a UE terminal and circuit power consumed at UE terminal during dis-

covery respectively [83]. 0 ≤ θ ≤ 1 is a system deployment efficiency parameter

with θ = 1 capturing least energy efficient deployment. The power consumption

of the CDSA as seen from Eq. (4.6) is an increasing function of the DBS density

and a decreasing function of the average UE S-Zone area.

Although AGT (Fig. 4.3) demonstrates comparable EE performance for λDBS =

λUE/4 and δ ≤ 0.5; for most of the simulated scenarios, EGT is a clear winner.

This can be attributed to a larger average S-Zone area for the EGT implementation

which reduces the average number of concurrent DL transmissions and hence more

DBSs are deactivated.
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Fig. 4.3: Energy Efficiency comparison of EGT and AGT.

4.5.3 Convergence Analysis

To analyze the convergence of the algorithms, we plot the average payoff received

by UEs using EGT and AGT (Fig. 4.4). It can be seen that the system converges

to equilibrium relatively faster with AGT. Particularly at low DBS densities, for

instance at λDBS = λUE/8 in fig. 5.8b, the mean UE utility converges to 0 almost

instantly. Not only does the AGT outperform EGT in convergence speed, but also

in achieving optimal UE utility, i.e. by minimizing |ux|. Negative utilities for EGT

indicate UEs receiving sufficiently high SINR to attain achievable throughputs

exceeding the desired levels needed to optimize (4.1). The root cause for the

non-ideal UE utility distribution with EGT can be traced back to UE demand

constraints (0.1 ≤ γx ≤ 0.9) which bars the UEs with high negative utilities to

further reduce the S-Zone size and increase their utility.
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Fig. 4.4: Convergence of (a) EGT and (b) AGT algorithms for an elastic UEC CDSA
network.

4.5.4 UE Scheduling success

The expected delay for a UE to be scheduled is analyzed by plotting the mean

served UE ratio (
λDBS,Act

λUE
) under variable DBS densities and δ values (Fig. 4.5).

The served UE ratio represents the expected number of scheduled UEs after equi-

librium is achieved for the EGT and AGT games. The smallest wait time is

observed for AGT scheme with λDBS = 3λUE/8 where an arbitrary UE is expected

to be re-scheduled after every 5th or 6th TTI. For λDBS = λUE/8, EGT marginally

outperforms AGT while AGT exhibits higher scheduling success for δ ≥ 0.5 when

λDBS = λUE/4. The simulation results in fig. 5.9 once again reiterate the practical-

ity of a SON engine capable of adjusting δ and alternating between game models

to yield desired service delay times within UE-centric CDSA.

4.5.5 Performance Comparison with first tier user-centric elasticity

Fig. 4.6 shows the performance gains in terms of aggregate system throughput

(Fig. 4.6(a)) and energy efficiency (Fig. 4.6(b)) for the proposed UE-centric

elastic CDSA in comparison to the uniform user-centric service regions proposed
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Fig. 4.5: UE Scheduling Success probabilities with EGT and AGT algorithms.

in Chapter 3 [3]. The network models with fixed user-centric regions in [3] to

maximize ASE and EE are referred to as FS(ASE) and FS(EE) respectively. The

variable-sized QoE-centric service zones proposed in this work with EGT and AGT

implementations are referred to as VS(EGT) and VS(AGT) respectively. Clearly,

the proposed model outperforms ”one-size fits all” strategy both in terms of system

throughout and EE by virtue of assigning flexible user-centric service zones that

are appropriately sized to meet an arbitrary UE’s data requirements. While AGT

yields higher data throughput, particularly at high λDBS, the EGT is more energy

efficient. Once again, this result reiterates the need for an intelligent SON enabled

CBS that can switch the game models to support a higher data throughout (or

energy efficiency).

72



0.005 0.01 0.015
λ

DBS

0

100

200

300

400
A

g
g

re
g

a
te

 T
h

ro
u

g
h

p
u

t
FS(ASE)

FS(EE)

VS(EGT)

VS(AGT)

0.005 0.01 0.015
λ

DBS

0

0.5

1

1.5

2

2.5

E
E

 (
b

it
s
/s

/J
)

FS(ASE)

FS(EE)

VS(EGT)

VS(AGT)

(b)(a)

Fig. 4.6: (a) System throughput and (b) EE comparison of uniform user-centric [3] and
QoE-centric service zone approaches with different DBS densities.

4.6 Conclusion

In this chapter, we presented an elastic cellular network framework capable of

catering to individual UE QoE requirements. The QoE flexibility is realized

through virtual interference free service zones centered around scheduled UEs. We

proposed a distributed utility minimization problem to model appropriate S-Zone

formations around the UEs. To evaluate the optimization of S-Zone allotment to

UEs, we conducted a detailed comparative analysis using evolutionary and auction

based game implementations at a centralized CBS. We investigated different key

performance indicators including aggregate network throughput, energy efficiency,

mean UE scheduling probability and algorithm convergence speed. Simulation

results were presented for performance evaluation of the algorithms in terms of

aggregate system throughput, energy efficiency, user scheduling ratio and mean

algorithm convergence time. It was demonstrated that the proposed QoE based

user-centric service zone provisioning yields better performance as compared to a

UE-centric network with static system-wide service zone area. Our analysis advo-
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cates integration of an intelligent self-organizing network (SON) engine [84] within

the proposed UEC CDSA network architecture. The SON engine would optimize

a network efficiency metric by dynamically shifting game strategies with respect

to network dynamics and spatio-temporally varying operator’s business model.
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CHAPTER 5

Stienen model based mmWave user-centric networks

In chapters 3 and 4, we presented user-centric models with circular service regions

around UEs with high scheduling priorities (in chapter 2) and those UEs that

won distributive games (in chapter 3). However, in both these central and dis-

tributed game mechanisms, the common feature was the circular geometer of the

service region. The obvious drawback of the circular geometry is lower number of

possible non overlapping service regions. In the scheduling algorithm, this corre-

sponds to a longer wait time for an arbitrary UE. For future 5G, in which ultra

reliable low latency communication (URLLC) is an integral component, a longer

scheduling wait time is not desirable. This chapter presents an analytical frame-

work for performance characterization of a novel Stienen cell based user-centric

architecture operating in millimeter wave spectrum. In the proposed architec-

ture, at most one remote radio head (RRH) is activated within non overlapping

user equipment (UE)-centric Stienen cells (S-cells) generated within the Voronoi

region around each UE. Under the presented framework, we derive analytical mod-

els for the three key performance indicators (KPIs): i) SINR distribution (used as

an indicator for quality of service (QoS)), ii) area spectral efficiency (ASE), and

iii) energy efficiency (EE) as a function of the three major design parameters in

the proposed architecture, namely UE service probability, S-cell radius coefficient

and RRH deployment density. The analysis is validated through extensive Monte

Carlo simulations. The simulation results provide practical design insights into

the interplay among the three design parameters, tradeoffs among the three KPIs,

sensitivity of each KPI to the design parameters as well as optimal range of the
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design parameters.

5.1 Introduction

5.1.1 Background

Ultra-dense deployment of small cells using higher frequency bands, such as mil-

limeter wave (mmWave), is being widely accepted in both academia and industry

as the prime course to meet the ever growing data demands in future cellular

networks, vis-a-vis 5G and beyond. Unlike some earlier studies, it has now been

established that densification alone does not yield linear gains in coverage probabil-

ity. In fact, the coverage probability shows a decreasing trend at high base station

(BS) densities as the network transitions from a noise-limited to an interference-

limited system [85]. To aggravate matters further, high operational expenditures

and energy consumption associated with dense deployments take a toll on the

network operators by further reducing the already dwindling profit margins.

Designing and operating the network in a user equipment (UE)-centric fashion

instead of the traditional cell-centric design has gained traction recently as a viable

strategy for 5G and beyond [2]. Shifting the network design pivot from the BS to

the UE not only ensures ubiquitous coverage and UE specific differentiated quality

of service (QoS) to the UEs in dense deployments, but also provides a mechanism

for selective BS activation that ensures reduced energy consumption. Recent works

have quantified the area spectral efficiency (ASE) and energy efficiency (EE) in a

user-centric Cloud radio access network (C-RAN) [62, 3]. The network design in

both these works relies upon creating non-overlapping circular service zones around

high priority UEs. This results in a one-to-one (1-1) UE-BS association for each

service zone such that a single BS is activated at max per service zone. The service
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zone radius is employed as a control parameter to realize the desired tradeoff

between EE and ASE. However, the disjoint circular user-centric service zones in

the mentioned works cause high latency, specially within dense user hotspots, due

to longer wait times in downlink (DL) scheduling.

5.1.2 Architectural Overview

In this chapter, a novel user-centric architecture based on Stienen cells around

UEs is analyzed for downlink scheduling in ultra-dense deployment scenarios. The

Stienen model, introduced in 1982 [86] considers the maximal ball inscribed within

the Poisson Voronoi cell and centered at the generating point of the Voronoi cell.

In simple terms, Stienen model is a union of non overlapping circular cells with a

diameter that has the exact same distribution as the nearest neighbor distance of

a Poisson point process. In the proposed architecture, all the BSs within a UE-

centric Stienen cell (S-cell) are associated to its centroid UE. The Stienen cells are

bounded by the Voronoi tessellation generated through the UE positions on the

x-y plane (see Fig. 1). The Stienen model offers manifold advantages compared to

the already conceived user-centric architectures: i) it integrates the randomness

in BS deployment as well as user locations, ii) it enables flexibility to capture the

effect of polygonal user-centric service regions, something that the one-size-fits-all

strategy fails to do, and iii) it gives an opportunity for all the UEs to be scheduled,

provided the BS deployment is sufficiently dense to ensure presence of at least one

BS within each UE-centric S-cell.

By employing stochastic geometry principles, we obtain the analytical framework

to determine the coverage bounds in the proposed user-centric Stienen architec-

ture. While deployment of a large number of BSs is capable of enhancing coverage

for an arbitrary UE, the energy consumption becomes significant. Our model tack-
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les the dual problem of maintaining high throughput as well as energy efficiency

through the selective BS activation mechanism. We consider operating activated

BSs within S-cells at high frequency mmWave band on DL because: i) experi-

mental trials have indicated suitability of mmWave communications due to high

spectrum availability per channel [87]; ii) higher frequencies allow implementation

of small-sized antenna arrays to facilitate narrow directional beams and longer

transmission ranges; and iii) larger free space pathloss and directional DL trans-

missions at mmWave frequencies reduce the unwanted interference from nearby

BSs. Additionally, the UE-BS pair proximity within the Stienen model ensures

resilience to blockage effects that occur at larger UE-BS distances. Furthermore,

since the mmWave cells do not interfere with existing sub-6 GHz BSs, they can be

deployed within existing deployments and enable architectures such as Cloud RAN

enabled heterogeneous networks and control-data separation architecture (CDSA)

[76].

5.1.3 Research Objectives

User-centric architectures have been well investigated for both mmWave and sub-6

GHz deployments. However, analytical characterization and performance analysis

of the Stienen based model in user-centric mmWave network remains terra incog-

nita. In this chapter, we investigate the relevance of this system model in future

ultra dense 5G networks, thereby reducing this research gap. To this end, the

main research questions investigated are summarized as follows:

• How would DL scheduling within a Stienen based user-centric model look

like in dense mmWave wireless networks?

• How does directional communication in mmWave impact the inter-cell in-
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terference, particularly for the user-centric Stienen cell model?

• Can we formulate closed form expressions for the efficiency parameters, i.e.

ASE and EE for the proposed user-centric S-cell model?

• What are the advantages of the proposed model in comparison with the

earlier proposed circular shaped

• How do the efficiency formulations change to incorporate a second tier (MBS)

within the network?

• Does there exist some ASE-EE tradeoff by varying a parameter of interest

within the user-centric S-cell network>

For this purpose, we validate the formulated expressions through extensive Monte

Carlo simulations. The simulation results provide practical design insights into

the interplay among the three design parameters, tradeoffs among the three KPIs,

sensitivity of each KPI to the design parameters as well as optimal range of the

design parameters.

5.2 Network Model

5.2.1 Spatial Model

We consider the downlink of a two-tier ultra-dense network consisting of one sub-

6 GHz MBS that has mmWave RRHs and UEs spatially distributed across its

foot-prints. Both the RRHs and UEs are assumed to be outdoors. This is to

limit number of parameters in our model for simplicity. For indoor users, building

penetration losses can be accounted for by appropriate scaling of the signal and in-

terference powers. The spatial distributions for RRHs and UEs are modelled using
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Scheduled UE

Non-scheduled UE

Activated RRH

De-activated RRH

Voronoi Cell 
boundary
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Angularly 
interfering 

UE-RRH pair

Fig. 5.1: The UE-centric S-cell architecture. The Voronoi tessellation of the plane
is formed by ΦUE. The circles around UEs represent S-cell edges at ζ = 1/2. S-cell

boundaries are not drawn to scale.

two independent homogeneous Poisson point processes (HPPPs) ΦRRH and ΦUE

with intensities λRRH and λUE respectively. The UE locations act as generating

points for the UE-centric Voronoi tessellation. Each RRH is associated to a UE

based on its physical location on the Voronoi plane. This implies that each RRH

can at the most serve a single UE which is spatially closest to the RRH during a

transmission time interval (TTI).

5.2.2 User-Centric Stienen Cell Geometry

To visualize a Stienen based user-centric cell design, consider the UEs as generating

points of a 2-dimensional Poisson-Voronoi Tessellation. Every point in the convex

polygons generated by the UEs is closer to its generating UE than to any other.

Now a UE-centric Stienen cell can be formed by constructing around each UE a

circular disk with a radius that is less than or equal to half of the distance between

the UE and its closest neighbor (see Fig. 16.2). The resulting S-cell regions form
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a Poisson hard sphere model, which by definition is formed when the interiors of

the disks centered at the generating points of the parent Poisson process do not

overlap almost surely. The radius of the S-cell around a UE uj ∈ ΦUE is given as:

Rj = min
uk

ζ || uj − uk ||;uj, uk ∈ ΦUE, j 6= k, (5.1)

where 0 < ζ ≤ 1/2 is the S-cell radius coefficient that models the flexibility

in S-cell size. As ζ → 0, the S-cell size around UEs becomes negligible. For

ζ = 0.5, we obtain the largest possible S-cell sizes around each UE without overlap

with adjacent S-cells. The coefficient provides control on modeling the S-cell sizes

around UEs and is particularly useful in load balancing between RRHs and MBS

in multi-tier networks. Note that ζ = 0.5 creates the nearest neighbor model

proposed by Stienen in [86].

We can observe from Fig. 6.2 that the user-centric Voronoi cells can be divided

into two regions; the one within the circular Stienen cells and the other which

is outside. This demarcation is particularly useful to ensure that as long as the

serving RRH is within the Stienen cell, a UE will not have any interfering RRH

in a neighboring cell, that is spatially closer to the UE than its serving RRH.

5.2.3 Dual Slope LOS Ball Pathloss Model

Propagation in mmWave band in known to be severely impacted by blocking,

atmospheric attenuation and low diffraction around obstacles. To effectively ex-

hibit the blockage effects at high frequencies, a tri-state model is commonly used

[88], according to which, a UE-RRH link can be in a line-of-sight (LOS), non-line-

of-sight (NLOS) or outage state. A LOS link occurs when there is no blockage

between a UE and its serving RRH. A NLOS link, on the other hand, occurs
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when the UE-serving RRH link is blocked, but the UE still receives sufficient sig-

nal strength through multipath components. An outage state refers to infinite

pathloss, i.e., when the UE-RRH spatial separation is high enough to an extent

that communication is not possible. The probability distribution for the tri-state

model is based on experimental trials [87] and expressed as (5.2).

pLOS(r) = [1−max (0, 1− 181.27 exp(−r/30))] exp(−r/67.1),

pNLOS(r) = [1−max (0, 1− 181.27 exp(−r/30))] (1− exp(−r/67.1)) ,

pOUT(r) = 1− pLOS(r)− pNLOS(r).

(5.2)

For analytical tractability, we use an equivalent LOS ball approximation where the

pathloss is expressed as a Bernoulli random variable [89] with the assumption that

all UE-RRH links are LOS within a distance constraint. If pLOS(r) and pNLOS(r)

are the probabilities of a LOS and NLOS link between a UE and mmWave RRH

at distance r respectively, then for the LOS ball radius of Ro,

pLOS(r) = 1; if r ≤ Ro, and

pNLOS(r) = 1; if r > Ro.

(5.3)

The described LOS ball model has been shown to simplify mathematical deriva-

tion in the system-level analysis at the cost of only a minor difference from the

actual SINR distribution [90]. Although pLOS(r) for different UE-RRH links is not

independent, it has been shown that the dependence is weak [91]; therefore we ig-

nore potential blockage correlations in our model. Log-normal shadowing may be

considered, but is not used to maintain the tractability of the model. From (5.3),

the distinct pathloss behavior for LOS and NLOS links in our work is expressed

as:
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PL(r) = ALOSr
αLOS ; if r ≤ Ro, and

= ANLOSr
αNLOS ; if r > Ro,

(5.4)

where αLOS and αNLOS are the terrain and operating frequency dependent pathloss

exponents for LOS and NLOS links respectively. The intercepts ALOS and ANLOS

may be assumed identical if same closed-in reference distance is employed [92].

Note that high αNLOS values result in sufficiently large PL(r), effectively causing

the UE-RRH links to be in outage as r increases.

5.2.4 mmWave Beamforming

It is assumed that both the UEs and RRHs are equipped with antenna arrays to

perform directional beamforming. We assume a sectorized antenna gain pattern to

allow for constant array gains within the main lobe and side lobe. We also consider

perfect channel knowledge between a UE and its serving RRH which enables them

to adjust their beam steering orientation to achieve maximum directionality gain.

For the sake of simplicity, we do not consider errors in channel estimation and

synchronization (time and/or frequency) in this work. Given M ∈ {UE,RRH},

let GM, gM and θM denote the main lobe gains, side lobe gains and half power

beamwidths (HPBWs) respectively of the UEs and RRHs. Then the directivity

gain for a desired UE-RRH link is GUEGRRH. Assuming that the angle of arrival

of an interfering beam at a typical UE is independent and uniformly distributed

between (0, 2π], the directivity gain GI is a discrete random variable with the

probability distribution given in [89] and mean interference gain for an arbitrary

UE expressed as:
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E(GI) =
θUEθRRH

4π2
GUEGRRH +

θUE

2π

1− θRRH

2π
GUEgRRH +

1− θUE

2π

θRRH

2π
gUEGRRH +

(1− θUE)(1− θRRH)

4π2
gUEgRRH.

(5.5)

5.2.5 Channel Model

Due to the limited scattering behavior of mmWave signals, the Rayleigh fading

model commonly used for sub-6 GHz band is not applicable [92]. Therefore, we

assume independent Nakagami fading for each UE-RRH link with NL and NN

representing the LOS and NLOS parameters respectively. The small-scale fading in

signal power given by |h| under the Nakagami assumption is a normalized Gamma

random variable. We assume NL and NN to be positive integers. Furthermore,

shadowing is not assumed for the sake of tractability.

5.3 Downlink Association Scheme user-centric S-cell networks

A typical UE is associated to an RRH within its S-cell using the smallest pathloss

criteria. The smallest PL(r) criteria ensures the maximum average SINR to each of

the scheduled UEs. To cater for system limitations and interference management,

we introduce a UE selectivity parameter pUE ∈ (0, 1] that is a random thinning

factor denoting the percentage of UEs that will be considered for DL service in a

given TTI. Here, pUE = 1 implies that all the UEs that have at least one RRH in

their S-cell will be scheduled for DL. Consequently, the served UEs form a thinned

PPP ΦEF
UE characterized by an intensity that is a function of pUE as well as the

RRH and UE densities and given by

λEF
UE = pUE(1− pemp)λUE, (5.6)
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where pemp is the probability that a S-cell has no RRH to serve the associated UE.

To evaluate the empty S-cell probability, we first express the probability density

function (pdf) of the number of RRHs within the S-cell of a UE (see Lemma 2 in

[93]) as

fnRRH
(nRRH) =

λUEζ
−2

λUEζ−2 + λRRH

(
λRRH

λRRH + λUEζ−2

)nRRH

. (5.7)

The empty S-cell probability can simply be calculated by putting nRRH = 0 in

(5.7), i.e.

pemp =
λUEζ

−2

λUEζ−2 + λRRH

. (5.8)

To illustrate the effect of variable S-cell sizes, Fig. 5.2 shows the circular areas

around UEs with different ζ values. As ζ increases, the number of RRHs within

S-cells also increases, thereby increasing the intensity of the PPP representing

interfering RRHs. This user scheduling scheme within the user-centric S-cell ar-

chitecture is summarized as algorithm 1. Here, b(x, r) denotes a ball of radius r

centered at a point x.

From the practical implementation perspective, in the event of a RRH-free S-cell,

user clustering strategies [68] may be employed where nearby UEs are grouped

together and optimization is performed on the UE clusters rather than individual

UEs. Such strategies are beyond the scope of this work and can be a topic of

future extensions of this work.
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Fig. 5.2: The UE-centric Stienen cell sizes with different ζ values.

5.4 Distance Distribution to Angularly Interfering RRHs

In this chapter, we characterize the distribution of the distance between a typical

UE scheduled on DL and the activated RRHs outside the UE’s S-cell that have

completely aligned antenna beams with the UE’s directional beam. As discussed

in section II-E, the probability of such an event occurring is θUEθRRH

4π2 . We focus

on the angularly interfering RRHs, also called ”angular interferers”, because they

contribute the largest share of interference at an arbitrary UE due to maximum

directivity gain. Exploiting the well-known fact that the distance between the

nearest neighbors in a 2-D Poisson process is Rayleigh distributed [8], we can

write the distribution of the distance between an arbitrary UE and its serving

RRH given as ro in Fig. 6.2 as:

fro(r) = 2πrpUEλUE exp(−πr2pUEλUE). (5.9)

The tight packing in a Voronoi cell structure, especially in user hotspots, will

inevitably give rise to scenarios with interfering RRHs co-located in close vicinity
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Algorithm 5.1 UE scheduling algorithm in a user-centric S-cell network

Inputs: ΦRRH, ΦUE, pUE, ζ
Outputs: Φ′RRH, Φ′UE

1: Initialize the set of scheduled UEs and the RRHs serving within the user-centric
S-cells at any given time slot as Φ′UE, Φ′RRH ← ∅.
2: Update ΦEF

UE by thinning ΦUE with a factor of pUE.
3: For each x ∈ ΦEF

UE, estimate the size of S-cell as Rx = ζdx, where dx is the
distance to the nearest UE in ΦEF

UE.
4: Update Φ′RRH and Φ′UE for the current time slot using the following conditions:
foreach x ∈ ΦEF

UE do
if x ∩ b(x, Rx) 6= ∅, ∀x ∈ ΦEF

UE then
Φ′UE ∪ {x}
foreach y ∈ ΦRRH do

if y ∈ b(x, Rx) then
if PLx,y < PLx,y′ ,∀y′ ∈ ΦRRH,y

′ ∈ b(x, Rx),y′ 6= y then
Φ′RRH ∪ {y}

end

end

end

else
continue.

end

end
5: Serve all the scheduled users Φ′UE from the associated RRHs in Φ′RRH.
6: Go to step 1.

to the serving RRH. However, the requirement for narrow beam directionality in

mmWave systems reduces the chances of exact alignment between a UE and an

interfering RRH. Additionally, inherent to the Voronoi cell design, a UE-angularly

interfering RRH pair must lie on opposite sides of the RRH serving that UE.

This induces a mean minimum repulsion distance between a UE and an angularly

interfering RRH which is equivalent to E(fro(r)).

Proposition 5.1. The distribution of the distance between a typical UE and its

ith nearest angular interferer in a UE-centric S-cell network can be characterized
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as

fri(r) = (r2i−1)

(
pUEλUE(1− pemp)θUEθRRH

4π

)i
2

Γ(i)
exp

(
−r2pUEλUE(1− pemp)θUEθRRH

4π

)
.

(5.10)

Proof: The probability that the distance between an arbitrary UE and its ith

nearest angular interferer is at least r is essentially the probability that there exist

exactly i− 1 angular interferers inside the circular region of area πr2 around that

UE. Mathematically, it is expressed as

Fri(r) = 1 +
(λAIRRHπr

2)

(i− 1)!
exp(−λAIRRHπr

2), (5.11)

where λAIRRH is the mean intensity of the PPP ΦAIRRH representing angularly

interfering RRHs around an arbitrary UE. For characterization of λAIRRH, we

first define ΦIRRH which is the PPP representing interfering RRHs, i.e. activated

RRHs outside a UE’s S-cell. Due to 1-1 UE-RRH association, the distribution of

interfering RRHs is identical to the served UEs. Using Slivnyak’s theorem [67], we

can express the mean intensity of ΦIRRH represented by λIRRH as λIRRH = λEF
UE =

pUE(1− pemp)λUE.

Now, the angularly interfering RRHs is simply a subset of interfering RRHs con-

taining the RRHs having completely aligned antenna beams with the considered

UE. This implies that ΦAIRRH is a thinned version of ΦRRH. Stating more precisely,

the mean intensity of the number of angularly interfering RRHs to an arbitrary

UE is dependent on the following factors:

• The number of UEs scheduled for service per unit area, which is controllable

by an adjustable parameter pUE.
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• The probability that the Stienen cell around a UE would have an RRH within

its covered area. The size of the Stienen cell is adjustable via ζ.

• The probability that the antenna bore-sights of a UE and an activated RRH

outside its S-cell are completely aligned.

Keeping the conditions stated above in consideration, the mean intensity of ΦAIRRH

is expressed as

λAIRRH =
pUEλUE(1− pemp)θUEθRRH

(2π)2
. (5.12)

Substituting (5.12) in (5.11) and differentiating to find the probability density

function yields (5.10). Note that for omni-directional transmission, ΦAIRRH essen-

tially converges to ΦIRRH, which is the union of angularly interfering RRHs and

interfering RRHs with misaligned antenna beams with UE.

�

5.5 Coverage Probability and Area Spectral Efficiency in a UE-Centric

S-cell

Now that we have discussed the distance distribution of the angular interferers, we

will proceed towards characterization of the coverage probability of a UE within a

UE-centric S-cell design. Consider a scheduled UE x ∈ ΦUE. Let o ∈ (ΦRRH∩S(x))

be the RRH that yields minimum pathloss and is selected for DL service within x’s

S-cell area ”S(x)” which is mathematically given as S(x) = b(x, Rx). We consider

the aggregate interference from both the angularly and non-angularly interfering

RRHs. We have already seen in chapter 5.4 that the mean intensity of the PPP

representing the interfering RRHs is given by λIRRH = λUE(1 − pemp). Without
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loss of generality, we use the Silvnyak’s theorem [67] and focus our analysis on the

arbitrary UE x assumed to be located at the origin. With this assumption, the

downlink SINR is given as:

SINR =
maxo∈(ΦRRH∩S(x)) hoGUEGRRHPL(ro)

σ2 +
∑

i∈ΦIRRH
hiE(GI)PL(ri)

, (5.13)

where ro and ri are the relative distances of UE x with its DL scheduled and

interfering RRHs respectively. σ2 is the variance of the additive white Gaussian

noise (AWGN) at the UE front end.

Once the interference is characterized, we can approximate the link success proba-

bility which represents the percentage of users with adequate link channel quality

with the connected RRHs for DL. We can represent the QoS demands represented

numerically through an SINR threshold γth. In this case, the coverage probability

while taking into account the distinct fading characteristics and pathloss behaviors

of LOS and NLOS links and is given by Theorem 5.1.

Theorem 5.1: The link coverage probability of an arbitrary UE served under the

proposed user-centric S-cell design and a one-to-one UE-RRH association scheme

can be expressed as

Pcov(γth) =

NL∑
n=1

(−1)n+1

(
NL

n

)∫ Ro

0

exp(
−nηLγthσ

2rαLOS

GUEGRRH

) exp(−ILL(γth, r)) exp(−ILN(γth, r))fro(r)dr

+

NN∑
n=1

(−1)n+1

(
NN

n

)∫ ∞
Ro

exp(
−nηNγthσ

2rαNLOS

GUEGRRH

) exp(−INL(γth, r)) exp(−INN(γth, r))fro(r)dr.

(5.14)

The terms ILL, ILN, INL and INN in (5.14) can be evaluated from equations (5.15)-

(5.18).
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ILL(γth, r) = 2πλIRRH

4∑
k=1

bk

∫ Ro

r

F

(
NL,

nηLākγthr
αLOS

NLtαLOS

)
tdt. (5.15)

ILN(γth, r) = 2πλIRRH

4∑
k=1

bk

∫ ∞
Ro

F

(
NN,

nηLākγthr
αLOS

NNtαNLOS

)
tdt. (5.16)

INL(γth, r) = 0. (5.17)

INN(γth, r) = 2πλIRRH

4∑
k=1

bk

∫ ∞
r

F

(
NN,

nηNākγthr
αNLOS

NNtαNLOS

)
tdt. (5.18)

Eq. (5.17) is a direct consequence of the Ball LOS approximation model according

to which if a UE is being served by an RRH in NLOS region (i.e. ro > Ro),

no interfering RRH will have a LOS link with that UE. The quantities āk, bk,

F (N, x) and ηi used in equations (5.15)-(5.18) are given by equations (5.19)-(5.22)

respectively.

āk =

[
GUEGRRH

GUEGRRH

,
GUEgRRH

GUEGRRH

,
gUEGRRH

GUEGRRH

,
gUEgRRH

GUEGRRH

]
. (5.19)

bk = [
θUEθRRH

(2π)2
,
θUE

2π
(1− θRRH

2π
),

(1− θUE

2π
)
θRRH

2π
, (1− θUE

2π
)(1− θRRH

2π
)].

(5.20)
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F (N, x) = 1− 1

(1 + x)N
. (5.21)

ηi = Ni(Ni!)
− 1
Ni . (5.22)

Proof: See Appendix A.

�

The system-wide area spectral efficiency is measured as the number of bits which

can be transmitted per Hertz bandwidth per second within 1 squared meter area.

We discuss the ASE for two different DL transmission mechanisms:

Fixed Rate Transmission

In a fixed rate transmission, all UEs which meet the SINR criteria for DL trans-

mission are scheduled with uniform data rate links. The potential throughput for

a UE-centric S-cell architecture in this scenario can be quantified as

ASEFR = λEF
UE log2(1 + γth)Pcov(γth). (5.23)

Adaptive Rate Transmission

In this system, each UE is provided a DL data rate which is proportional to its

SINR, subject to meeting the SINR threshold criteria. Mathematically, the ASE
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in this situation may be expressed as

ASEAR =
1

A
∑
u∈ΦEF

UE

log2(1 + SINRu); if SINRu > γth, (5.24)

where A is the total network area under consideration. As is clear from (5.23) and

(6.5), the area spectral efficiency of the UE-centric S-cell is strongly coupled with

pUE. Intuitively, a higher pUE increases the effective number of scheduled users.

However it also lowers the SINR due to shorter mean distance of a UE to its closest

interfering RRH. In the results section, through evaluation of the attainable area

spectral efficiency, we will investigate which of the two opposite effects is dominant

in the proposed architecture.

5.6 UE-Centric S-cell architecture in a Multi-tier Network

Until now, we have analyzed how a UE-centric Stienen cell architecture is modeled

for a single tier network where UEs are only served if there resides at least one

mmWave RRH within its S-cell area as depicted in Algorithm 1. Needless to point

out, this gives rise to longer wait times and even results in network outage (due to

larger UE-serving RRH distance) in sparse RRH deployment regions. It is there-

fore pertinent to include the analysis of a multi-tier system with MBS tier serving

the UEs which do not have any RRH within their S-cell at sub-6 GHz. There is a

two-fold advantage of this approach: firstly, operating the MBS and RRH tier in

different frequency bands avoids any co-tier interference, and secondly, it is well

known that propagation loss on sub-6 GHz band is less severe as compared to

mmWave, allowing MBS to serve UEs at larger distances. With respect to UE

association, the mechanism will have slight modifications as compared to Algo-

rithm 1. All the UEs that are void of RRHs within their S-cell are connected to

93



their respective MBS for DL coverage. Let us consider that ΦMBS and ΦUE,MBS are

PPPs, with mean intensities λMBS and λUE,MBS respectively, and represent MBS

deployment density and UEs served by MBSs respectively. Unlike RRH deploy-

ment which is impromptu and hence is modelled well by PPP, MBS deployment

is likely to be well planned. Therefore, to model realistic MBS deployment, we

induce repulsion between the PPP representation of MBS tier. This is done by

modeling it as a type II Matern hardcore process [67] where we choose a subset

of the original PPP with a distance constraint. Mathematically, the thinned PPP

representation of MBS is given by

λEF
MBS =

1− exp(−4πλMBSR
2
MBS)

4πR2
MBS

. (5.25)

(5.25) implies that the minimum allowable distance between adjacent MBSs is

2RMBS. The analytical characterization of network level KPIs for the proposed

UE-centric S-cell under the multi-tier network is presented below:

5.6.1 SINR

The SINR at a UE x connected to a RRH or MBS is dependent on the presence of

an RRH within its S-cell and is given by a piece-wise function in (5.26). For the

UEs connected to MBSs, we consider Rayleigh fading environment. This implies

that when x ∈ ΦUE,MBS, the channel gain (ho and hi) is assumed to be a unit

mean exponential random variable and pathloss at x from an RRH y is modeled

by l(||x− y||) = ||x− y||−αMBS power-law function.

SINRMT =


maxo∈ΦRRH∩S(x) hoGUEGRRHPL(ro)

σ2+
∑

i∈ΦIRRH
hiE(GI)PL(ri)

x ∈ Φ′UE

maxo∈ΦMBS
hoPL(ro)

σ2+
∑

i∈ΦMBS′
hiPL(ri)

x ∈ ΦUE,MBS

(5.26)
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5.6.2 Coverage Probability

For a multi-tier network, the coverage probability is dependent on both the SINR

threshold γth and the probability of a UE being served by an RRH, which is a

function of ζ and pemp. Mathematically, the coverage probability is given by

Pcov,MT(γth) = (1− pemp)Pcov(γth) + pempPcov,MBS(γth), (5.27)

where Pcov(γth) is the coverage probability of a UE connected to a mmWave RRH

given by (5.14) while Pcov,MBS(γth) is the probability that the SINR at an arbitrary

UE served by an MBS exceeds the QoS threshold, i.e. SINR ≥ γth. The coverage

probability Pcov,MBS(γth) is inspired from the work in [8] for the Rayleigh fading

scenario and expressed as

Pcov,MBS(γth) = πλMBS

∫ ∞
0

exp

(
−πλMBSr

[
1 + γ

2/αMBS

th

∫ ∞
γ
−2/αMBS
th

1

1 + vαMBS/2
dv

]
− γthσ2rαMBS/2

)
dr,

(5.28)

where αMBS is the pathloss exponent for the propagation on MBS tier.

5.6.3 Area Spectral Efficiency

In the same spirit as Section 5.5, the area spectral efficiency for a multi-tier network

can be evaluated for fixed rate and adaptive rate transmissions as (5.29) and (5.30)

respectively:

ASEFR,MT = λUEpUE log2(1 + γth)[(1− pemp)Pcov(γth) + pempPcov,MBS(γth)].

(5.29)
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ASEAR,MT =
1

A
[
∑
u∈ΦEF

UE

log2(1 + SINRu) +
∑

v∈ΦUE,MBS

log2(1 + SINRv)], (5.30)

where SINRu and SINRv are the SINR quantities for RRH and MBS connected

UEs respectively and given by (5.26).

5.7 Energy Efficiency Analysis

The power consumption of a stand-alone small cell RRH is investigated in the

project EARTH [73]. This model was extended further to integrate the benefits

of centralized processing in [74]. Taking inspiration from these works, we formu-

late the power consumption for both the MBSs and small cell RRHs as a linear

combination of fixed power and load dependent power consumption components.

Mathematically, the total power consumption of the two-tier network can be sim-

plified as

P = |A|{λEF
MBS (AMBSPMBS,Tx +BMBS)︸ ︷︷ ︸

MBS-Tier Power

+ λUEpUE(1− pemp)Pcov(γth) (ARRHPRRH,Tx +BRRH)︸ ︷︷ ︸
Activated RRH-Tier Power

+BRRH (λRRH − λUEpUE(1− pemp)Pcov(γth))︸ ︷︷ ︸
De-activated RRH-Tier Power

}.

(5.31)

BMBS (and BRRH) denotes the fixed power consumption of an MBS (and RRH).

This is the energy cost which is bore by the network regardless of the number

of UEs requesting DL service. The coefficients AMBS (and ARRH) lump together

frequency dependent response of a power amplifier and several other factors within

MBS (and RRH). The coefficients Ai and Bi, where i ∈ {MBS,RRH} are expressed

as
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Ai =
1

ηPA
i (1− σfeed

i )(1− σMS
i )(1− σDC

i )(1− σcool
i )

, and (5.32)

Bi =
Pi,RF + Pi,BB

(1− σMS
i )(1− σDC

i )(1− σcool
i )

. (5.33)

Note that we are considering an always ON MBS deployment to avoid coverage

holes and provide uninterrupted control/signaling to the UEs. The power saving in

the proposed architecture will thus come from intelligently turning OFF mmWave

RRHs that are not providing DL data services to UEs. For detailed explanation of

the power consumption parameters, readers are referred to [73]. The network wide

EE is analyzed for adaptive rate transmission scenario in our work and expressed

mathematically as

EE =
A[ASEAR,MT]

P
. (5.34)

EARTH’s segmentation of the power consumption employed in this work allows us

to analyze the amount of energy saving possible when an RRH is turned OFF. It is

well known that the major chunk of power consumption in a cellular BS takes place

within the power amplifier. By dynamic shutting down of the power amplifier and

the associated transmission unit, there is significant energy saving, especially in

dense deployments. In the next section, we will look at the potential power saving

in terms of EE variation with adjustments in three network parameters: i) served

UE percentage, ii) RRH deployment density, and iii) user-centric S-cell sizes.
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Table 5.1: Simulation parameters

Parameter Value
Simulation area dimensions (|A|) 100 m x 100 m

λUE|A|; λRRH|A|; λMBS|A| 400;400;16
pUE [0.25 0.5 0.75 1]

θUE, θRRH [7o 10.9o]
GUE; GRRH;gUE; gRRH 10 dB; 10 dB; -3 dB; -3 dB;
Ro (from (5.2)); NL; NN 46.5 m; 3; 2

Pathloss exponents: αLOS; αNLOS; αMBS 2.4; 4.7; 3
ALOS, ANLOS 1

RMBS 50 m
PMBS,Tx; PRRH,Tx 10 W; 1 W

ηPA
RRH,σfeed

RRH,σMS
RRH,σDC

RRH,σcool
RRH,PRRH,RF, PRRH,BB 0.0025,0,0.1,0.08,0, 0.4 W,1.2 W

ηPA
MBS,σfeed

MBS,σMS
MBS,σDC

MBS,σcool
MBS,PMBS,RF,PMBS,BB 0.388,0,0.07,0.06,0.09, 10.9 W,14.8 W

ARRH; BRRH; AMBS; BMBS 23.22; 1.932; 3.24; 32.3
No. of Monte Carlo realizations 100000

5.8 Performance Analysis

In this chapter, we present numerical as well as Monte Carlo simulation results

to evaluate the validity of the developed model. After ensuring accuracy of the

models, we compare the performance of the proposed UE-centric S-cell architec-

ture in mmWave networks with the conventional architecture. We also discuss

the interplay between the network parameters and their impact on ASE and EE

in a multi-tier user-centric S-cell network. Unless otherwise specified, the basic

simulation parameters used in our analysis are given in Table 5.1.

5.8.1 Model Validation

We validate the expression for SINR coverage probability derived in Theorem 5.1

in Fig. 5.3. The plot shows close agreement between the simulations and the

derived analytical results, particularly at high γth regimes. We observe that the

analytical model holds true for variations in both ζ (Fig. 5.3 (a)) and pUE (Fig.
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Fig. 5.3: SINR coverage probability at: (a) different ζ and pUE=1, (b) different pUE

and ζ = 0.5.

5.3(b)), keeping the other parameter fixed. Fig. 5.3 also depicts a decrease in

coverage probability at higher ζ and pUE for the same SINR threshold. This is

intuitive because a larger pUE reduces the average UE-interfering RRH distance.

As a consequence, the average interference increases which reduces the coverage

probability of an arbitrary UE. Similarly, a larger ζ means larger S-cell area which

increases the probability of a UE being served due to presence of at least one RRH

within its S-cell (see Fig. 5.2). In other words, higher ζ results in greater number

of activated RRHs which increases the overall interference for an arbitrary UE.

To validate the distance distribution of angularly interfering RRHs derived in

section 5.4, we compare the analytical and Monte Carlo simulation results for

λIRRH in Fig. 5.4. Results show the formulated model to be quite accurate for

variations in both pUE and ζ for a range of RRH densities. Another interesting

observation from Fig. 5.4. is the high sensitivity of interfering RRH density to

ζ. Increasing ζ by 2 at pUE = 1 yields an interfering RRH density increase of

about 220% while the same increase in pUE at ζ = 0.5 yields only 35% increase in

interfering RRHs.

99



Fig. 5.4: Interfering RRH density validation at different ζ and pUE values.

5.8.2 Sensitivity Analysis

Next, we analyze the gradient of coverage probability with respect to UE selection

probability and the S-cell size in Fig. 5.5. Keeping uniform intervals for the

possible range of pUE and ζ, we note that the rate of change of coverage probability

is far more sensitive to an interval change in ζ. Negative gradient is observed for

the entire range of pUE and ζ which makes sense because an increase in either of

these parameters results in a larger number of interfering RRHs and a subsequent

reduction in coverage probability. The peak absolute value for dPcov
dpUE

and dPcov
dζ

occur at pUE = 0.34 and ζ = 0.35 respectively. However, the rate of coverage

change per interval variation in ζ is almost 3 times as compared to when pUE is

varied. This is in agreement with Fig. 5.4 which demonstrated higher increase in

interfering RRHs with a unit increase in ζ.
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Fig. 5.5: Gradient of coverage probability with respect to: (a) pUE and (b) ζ.

Both Figs. 5.5(a) and 5.5(b) demonstrate that the impact on coverage probability

reduction is found to be less severe in sparse RRH deployments. The results

provide design insights for the proposed UE-centric S-cell network, for instance,

with regards to choosing between UE selection parameter adjustment and S-cell

size adjustment or appropriate combination of the two for optimizing coverage.

5.8.3 QoE Enhancement in User-Centric S-cell Network

Users’ QoE analysis is conducted through SINR distribution between UEs at dif-

ferent pUE and ζ values in Fig. 5.6. To compare the QoE performance with a

standard non user-centric PPP deployment, we follow the approach in [90] and

represent it as “NUC”. Results in Fig. 5.6 (a) for a single tier mmWave network

show that the UE-centric S-cell approach yields an SINR gain ranging from 40 dB

to 65 dB for almost 50% of the users. Following the same trend from Figs. 5.4 and

5.5, the SINR observed a marked gain from a decrease in ζ. As discussed earlier,

the increase in SINR at lower ζ values is a result of thinning of the PPP ΦIRRH
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Fig. 5.6: Downlink SINR cdf comparison between user-centric S-cell and non user-
centric approaches in (a) single-tier and (b) multi-tier networks.

and a consequent increase in the average interferer distance.

The multi-tier SINR cumulative distribution function (cdf) in Fig. 5.6(b) shows

some interesting trends. We observe a clear distinction between the SINR of the

UEs connected to the MBS and mmWave RRH tiers. More specifically, three

distinct regions can be identified from the multi-tier SINR distribution plot in

Fig. 5.6(b): i) the majority of UEs having SINR less than -10 dB SINR for all the

simulation cases; ii) a set of UEs with SINR between 25 dB and 50 dB for ζ = 0.5;

and iii) a set of UEs with SINR above 70 dB for ζ = 0.5. These jumps of 35 dB

and 20 dB are observed as we transition from sub-6 GHz MBS connected UEs

to NLOS mmWave RRH connected UEs, and then from NLOS to LOS mmWave

RRH connected UEs respectively.

For the same S-cell size, a denser RRH deployment pushes more UEs to the RRH

tier. Although the number of UEs connected to mmWave RRH tier increases,

the resulting average SINR for the tier is lower as compared to a sparse RRH

deployment due to a higher number of interfering mmWave RRHs. This allows

the network operator to fluctuate the design parameters and choose between a

small number of UEs connected to mmWave RRHs with extremely high user QoE
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or a larger number of UEs connected to mmWave RRHs with moderately lower

QoE.

5.8.4 ASE, EE Performance in Single-tier User-Centric S-cell Net-

works

In this chapter, we investigate the system wide ASE performance in fixed rate

as well as adaptive rate transmission scenarios and the impact of pUE, ζ, θRRH

and λRRH on ASE. Results in Fig. 5.7 reveal that fixed rate ASE is a monoton-

ically increasing function of both ζ and pUE. This implies that the increase in

λEF
UE accompanied by a higher pUE dominates the decrease in the SINR coverage

probability observed in Fig. 5.3. Similar to the earlier presented results in Fig.

5.5, ASEFR is more sensitive to ζ with the steepest gradient at pUE = 1.

Fig. 5.8 presents the Monte Carlo simulation results for the adaptive rate area

spectral efficiency and energy efficiency for the single tier UE-centric S-cell net-

work. We observe a significant increase in the ASE (Fig. 5.8 (a)) as the density
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Fig. 5.8: ASE and EE variation with UE selection parameter, RRH densities and
transmission beamwidths.

of RRH deployments increases. The overall trend for ASE with regards to pUE is

monotonic increase, with the increment being almost 46% as pUE goes from 0.1

to 0.2. For pUE > 0.5, we only observe a marginal gain in ASE upon further

increments in pUE, keeping all other network parameters constant. Additionally,

we observe a marginal ASE reduction with wider antenna beamwidths as a result

of higher λAIRRH when θUE (and / or) θRRH are increased.

The network wide EE plotted as Fig. 5.8 (b) peaks on average for 0.4 ≤ pUE ≤ 0.6.

As expected, the EE results show opposite trend for dense RRH deployments as

a high number of activated mmWave RRHs contribute towards additional energy

costs for the operator. There is no observable link between EE and the UE (and

RRH) transmission beamwidths. We observe a slight increase in EE for wider

beamwidths when λRRH = 1
2
λUE and λRRH = 2λUE, but a decrease in the case

of λRRH = λUE. From a network operator’s perspective, the findings highlight

the necessity of a SON implementation in order to determine the right balance

between maximizing net throughput and minimizing cost per bit.
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5.8.5 Performance Comparison with Fixed Size User-Centric Net-

works

Fig. 5.9 shows the performance gains in terms of adaptive rate area spectral

efficiency (Fig. 5.9 (a)), energy efficiency (Fig. 5.9 (b)) and mean UE scheduling

ratio (Fig. 5.9 (c)) for the proposed UE-centric S-cell architecture in comparison to

the non-elastic fixed sized circular user-centric service regions proposed in earlier

works [4]. The network models with fixed user-centric regions in [4] to maximize

ASE and EE are referred to as FS(ASE) and FS(EE) respectively. The S-cell user-

centric network used for comparison is configured at pUE = 1 and ζ = {0.25, 0.5}.

Clearly, the proposed model at ζ = 0.5 outperforms both extremes of the earlier

“one-size fits all” strategy in terms of system throughout at dense mmWave RRH

deployment scenarios at the cost of marginal EE loss as compared to FS(ASE).

The user-centric S-cell at ζ = 0.25 exhibits higher efficiency than FS(EE) for all

the three measures at λRRH ≥ 2λUE. This is because denser deployments reduce

empty S-cells and due to shorter UE-RRH spatial distance, higher throughput

is achieved which increases both ASE and EE. In addition to higher aggregate

throughput, Fig. 5.9 (c) shows that the user-centric S-cell network also reduces
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Fig. 5.10: UE load distribution between MBS and RRH tiers and achievable throughput
fairness index in a two-tier user-centric S-cell network.

mean waiting time for an arbitrary UE from 2.5 TTIs in FS(ASE) to 2 TTIs

when ζ = 0.5. This can be traced to the non-conflicting nature of the proposed

user-centric S-cell design where all the UEs that have at least one mmWave RRH

within their S-cell are scheduled on DL. On the other hand, scheduling success in

the non-flexible user-centric model in [4] depends upon both the probability of cell

overlap with nearby UEs and probability of presence of a serving mmWave RRH

within the user-centric cell.

5.8.6 ASE, EE Performance in Multi-Tier User-Centric S-cell Net-

works

In Fig. 5.10, we compare the inter-tier load distribution for three different S-cell

sizes at ζ = 1/8, ζ = 1/4 and ζ = 1/2. ζ = 1/2 yields the most proportionate UE

distribution between the MBS and mmWave RRH tiers. Apparently, setting a high

ζ value seems the most obvious choice for offloading a congested MBS-tier. This is

because a higher ζ pushes a large number of UEs from the MBS to mmWave RRH

tier. A large ζ value not only allows more UEs connected served by the RRH tier
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Fig. 5.11: ASE and EE trends with different pUE, ζ and λRRH values.

to avail the wider mmWave spectrum, but also reduces the average interference

at a typical UE due to highly directional transmission in mmWave RRH tier as

opposed to omni-directional transmission from interfering MBSs in the sub-6 GHz

MBS tier.

To assess the uniformity in the achievable throughput amongst UEs, we apply the

Jain’s fairness equation [94] on the UE throughput in a given TTI. The Jain’s

fairness index (JFI) values plotted in Fig. 5.10 exhibit highest values at ζ = 1/8

when a large proportion of UEs is connected to the MBS tier. The JFI dips

below 10 % for all the considered RRH deployment and pUE scenarios at ζ = 1/4

when the UEs in mmWave connectivity are mostly within LOS boundary due to

smallness of the UE-centric S-cell regions. As a result, there is a large disproportion

between SINRs of UEs connected to mmWave RRHs and sub-6 GHz MBS tier.

Nevertheless, the fairness index improves at ζ = 1/2 when the number of UEs

connected to mmWave RRHs increases, particularly in the NLOS regions. Another

interesting observation from the JFI results is that while a dense RRH deployment

and sparse UE selection maximizes fairness at ζ = 1/2, the vice versa exhibits

highest fairness at ζ = 1/8. This trend can be explained from the inter-tier
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UE distribution graph. The JFI is maximized (and UE throughput disparity is

minimized) when we have the least mmWave load percentage at ζ = 1/8. However,

at ζ = 1/2, higher mmWave tier percentage results in more UEs experiencing

similar QoS, and hence increasing overall JFI.

Hitherto, we have seen how the network level ASE and EE behave with variations

in the three adjustable network parameters, i) S-cell size (characterized via ζ),

ii) UE selection probability (pUE), and iii) mmWave RRH deployment density

(λRRH). The question that begs further analysis is whether there is an optimal

combination of these parameters which simultaneously maximizes the network

wide ASE and EE. Fig. 5.11 plots the adaptive rate ASE and EE for the multi-

tier user-centric S-cell network under variation, within practical range, of each

parameter while keeping the other two constant. The overall trend for ASE is

positive for increments in each of the three parameters. However, the percentage

ASE gain resulting from a unit increase in pUE is far less as compared to the ASE

gains achieved from increasing ζ and λRRH. Moving on to multi-tier EE, we observe

no visible trend with pUE. Just like the single tier network, the EE behaves in the

exact opposite fashion as compared to ASE with variation in RRH density. As the

S-cell size increases from ζ = 0.1 to ζ = 0.4, we observe almost 4 times gains in

EE. However, on further increment to ζ = 0.5, there is a decrease in EE for all four

network configurations involving different pUE and λRRH combinations. Although

larger S-cell sizes increase the sum throughput due to a high proportion of UEs

connected to mmWave RRHs, this is accompanied by a higher percentage of NLOS

mmWave links. The high pathloss associated with NLOS mmWave connections

limits the throughput gains which is eventually overshadowed by the additional

power consumption due to a higher number of activated RRHs. The results in

Fig. 5.11 once again re-emphasize the need of an optimization framework within
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an intelligent SON engine integrated in a central entity to dynamically adjust ζ,

pUE and λRRH and maximize the formulated network wide ASE-EE tradeoff utility.

The next chapter will be dedicated to designing such an optimization framework,

and evaluation of its convexity and ability to yield global optima for a pre-fixed

range of investigated design parameters.

5.8.7 SON framework for network-wide efficiency tradeoff

In the preceding chapters, we observed the SINR gains offered by our user-centric

S-cell design. On one hand, the average user SINR (or QoE) decreases with an in-

crease in pUE, however on the other, the sum throughput increases monotonically

with pUE, particularly at high ζ regimes. This is because a higher pUE corresponds

to a larger population of UEs being candidates for DL scheduling in a specific

time instance. Similarly, a larger ζ and λRRH increases the sum throughput by

virtue of a lower pemp. Due to mmWave beamforming and interferer thinning, in-

creased RRH deployment density does not impact the interference environment to

the same extent as omni-directional sub-6 GHz Rayleigh environment and the net-

work continues to operate in noise limited mode. While an operator may achieve

high throughput targets through dense mmWave network deployment with our

proposed model, it severely compromises on the network energy efficiency. Ad-

ditionally, one cannot ignore the increased capital expenditures (CAPEX) due to

large scale RRH deployment and operating expenditure (OPEX) on account of

power consumption of the denser mmWave tier. A centralized SON engine can be

leveraged to provide real-time optimal network parameters, i.e. RRH deployment

density, S-cell size and the user selection probability according to the operator’s

desired throughput-cost balance. An example of such framework is presented in

Fig. 5.12 that may operate at different modes: (i) high throughput mode dur-
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Fig. 5.12: SON Framework for dynamic network operating mode adjustment in a
user-centric S-cell network.

ing peak traffic durations, and (ii) energy efficient mode during night hours. The

SON engine shall also take into account all related costs including mmWave cell

deployment expenditure, power consumption, and maintenance costs within the

optimization framework.

5.9 Conclusion

In chapter 5 of this dissertation, we proposed a user-centric Stienen cell network ar-

chitecture capable of offering higher system capacity and improved received signal

quality in dense deployment scenarios, compared to non user-centric conventional

cellular architectures. Since current models for cellular network performance anal-

ysis are not applicable to the proposed architecture, we developed a comprehensive

statistical framework for analytical characterization of the area spectral efficiency
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and energy efficiency of the novel cellular architecture. We presented user-centric

scheduling schemes for two network layouts: i) a single-tier network where each

UE is served by a single mmWave RRH that resides within its S-cell, and ii) a

multi-tier network with a sub-6 GHz macro base station tier overlaid on top of

the mmWave RRH tier. While mmWave RRHs are dedicated to serve users in

close proximity, the users with void Stienen cells are connected to the macro BSs

in the multi-tier design, resulting in a higher average user quality of experience.

We further characterized the distance distribution between an arbitrary UE and

the angularly interfering RRHs that cause significant interference within mmWave

networks.

Our analysis validates the usefulness of the proposed architecture in the form

of large SINR gains achieved by virtue of minimizing interference within virtual

Stienen zones around scheduled users. We also observed higher network level ca-

pacity and lower scheduling delays when compared with a benchmark user-centric

architecture from literature. Numerical results based on the derived expressions

reveal practical design insights by characterizing the interplay among three design

parameters namely S-cell size, user service probability and RRH density; and the

network wide KPIs; i.e. ASE and EE. Extensive simulation results show that

from the three design parameters, the KPIs are more sensitive to the Stienen cell

size and RRH deployment density. While the ASE is optimized in a dense RRH

deployment scenario, the EE deteriorates with increase in the RRH density. Sim-

ilarly, the ASE and EE show contrasting results with respect to Stienen cell size.

Setting the Stienen cell size to its maximum possible limit allows a larger number

of users to be connected to mmWave RRHs, thereby increasing the sum through-

put of the network. However, the EE decreases if the Stienen cell size is increased

beyond a certain optimal value due to higher network power consumption caused
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by additional mmWave RRH activations.

To fully optimize a network efficiency metric, we advocate a SON enabled en-

tity that is capable of dynamic adaptation of the modeling parameters to offer

higher throughput or optimal energy utilization, whichever is desired by the net-

work operator in a given spatio-temporal region. The following chapter carries this

framework ahead and includes formulation for concurrent optimization of through-

put and power consumption cost in the proposed network, as well as analysis of

the Pareto optimal tradeoff between the two network efficiency measures.
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CHAPTER 6

DNN-Based Learning Approach for Pareto Optimal

ASE-EE Tradeoff

6.1 Introduction

In the preceding chapter, we analyzed a user-centric Stienen cell architecture for

both single-tier and multi-tier cellular networks. We analyzed the network per-

formance for area spectral efficiency and energy efficiency while optimizing with

three network-level parameters: UE selection probability, S-cell size factor and

RRH deployment density. It was demonstrated that while RRH density has com-

pletely contrasting trends for ASE and EE, the same is not true for the other

parameters. In this chapter, we investigate methods to design utility optimization

for a multi-tier Stienen cell architecture for the same three parameters. We first

design a stochastic optimization problem and then investigate the real-time com-

putational efficiency and complexity of the exhaustive search space optimization.

We then propose an approach based on modular deep neural networks (DNN) to

perform near-optimal network parameter selection with real-time computational

ability.

6.1.1 Background

A multitude of aspects in wireless communications, such as fading, shadowing and

user mobility, cause the optimization of one or more network-wide KPIs to be

uncertain. In addition to this, varying user data demands add another layer of
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non-deterministic elements to the optimization of wireless networks’ performance.

One possible solution is to design the network for peak data demands. However,

this solution is unfeasible when we consider the associated costs to the network

operator, as a result of additional network deployment or the utilization of a

higher bandwidth spectrum for its service. Furthermore, due to the constant

mobility of user terminals and the dynamic propagation environments, wireless

channel gains are stochastic and dynamic. A significant amount of high data rate

communication in future networks is expected to take place in the high bandwidth

mmWave spectrum. The deterministic optimization of resource planning for peak

data demands is thus infeasible.

Stochastic optimization is a tool used to minimize (or maximize) an objective

function in the presence of randomness in the optimization process. The random-

ness from the perspective of wireless networks is caused by random users, small

BS locations and the mobility factor. The uncertain parameter may be modeled

as a random variable with a known distribution, and the expected value of the

random variable may be minimized (or maximized) in the objective function. For

worst-case optimization, the mean value of the random variable is replaced by the

supremum and infimum for minimization and maximization problems respectively.

Several mathematical techniques to solve problems associated with uncertainty

have been discussed in the existing literature. In this section, we discuss some

examples of those techniques. The first technique is the networked-Markov deci-

sion process, which optimizes model-based problems. The randomness is modeled

via Markov chains, whereby the future state of the system is independent of the

past state if the present state is given [95]. Mathematically, given the state space

S, action space A and reward / cost function R(.), at the end of each time slot,

the system jumps from the current state to the next state s′ ∈ S with the prob-
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ability Pr(s|s, a) and the associated reward/cost, i.e. R(a, s, s). Over time, the

Markov decision process will either minimize the cost or maximize the reward.

The other mathematical tool is called discrete stochastic optimization, which is

used when the input to the optimization function is a sequence of random vari-

ables. One way to solve these problems is by exhaustive search procedure, which

is also known as simulation optimization [96]. In the exhaustive search method,

the empirical average for the objective function is taken for a large number of pos-

sible network scenarios. By law of large numbers [97], the optimal solution is the

one that maximizes the mean of the objective function. However, the exhaustive

search procedure has some disadvantages. Firstly, it requires an extremely large

amount of computation, which is time- and resource-intensive. Secondly, due to

the time-varying nature of wireless channels and the dynamic nature of future

wireless networks, where small cell RRHs can be deployed on an impromptu basis,

a set of optimal parameters will perform sub-optimally almost immediately after

being ascertained. Some techniques to reduce the complexity have been proposed

in the existing literature, such as ranking and selection [98], multiple comparison

procedures [99] and random search [100]. Our focus in this chapter is on a rel-

atively new paradigm of online learning to solve such optimization problems in

real-time with a close-to-optimal performance.

Due to limitations in capacity, wireless resource management has always been a

significant challenge for network operators around the world. The main problem

with numerical optimization is its high computational complexity, which prevents

its real-time implementation. To overcome this barrier, online learning may be

employed whereby the input and output of a resource allocation algorithm are fed

into a DNN [101]. The DNN then learns the non-linear mapping between the two

and approximates it for any new condition. If this mapping can be learned with
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Fig. 6.1: Modular DNN approach for real-time Optimization [5]

high accuracy, real-time resource allocation could be made possible. Thus instead

of following the iterative process in which the algorithm takes network parameters,

such as user density, channel gains and SINR as inputs and runs through multi-

ple iterations to yield the optimal resource allocation strategy, a trained DNN

will output the optimal strategy in a few simple steps when a highly accurately

trained model is used. DNN-enabled resource optimization in wireless networks

provides two advantages: (i) real-time optimization is possible due to significantly

lower computational requirements for retrieving the optimal parameters from a

trained model; and (ii) model training can be performed offline by running the op-

timization algorithm on a simulated data set, hence the training process does not

interfere with the network’s operation. Recently, significant interest in the research

community has been devoted to the application of DNNs to approximate iterative

optimization problems in the wireless domain [102, 103, 104, 105, 106, 107].

As illustrated in Fig. 6.1 [5], this online training is a two-step process. In the

first step, which is the training stage, the DNN model is trained for instances of

network parameters and the optimized solution is generated through an already

established algorithm. These algorithms vary with the type of application; for

instance, the well-known iterative water-filling algorithms [108, 109] are used for
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power control. Other examples include the WMMSE algorithm [110] and the

semi-definite relaxation scheme [111] for transmitting and receiving beamforming

optimization. Similarly, sparse optimization schemes [112] may be employed for

BS clustering in the case of the user-centric architectures described in chapters 3 to

5 of this dissertation. In the second stage of this process, which is the testing stage,

an unknown network instance is provided as input to the trained DNN to yield

the desired optimal configuration. Several studies have applied DNNs for various

problems in communications [113, 114, 115, 116, 117]. However, with regard to the

optimization problem at hand, there are multiple related questions that must be

answered. Some examples of these questions are as follows: (i) Is the optimization

problem “learnable”? In other words, can it be approximated arbitrarily well by

a DNN?, ii) How many layers and neurons per layer are needed to approximate

an algorithm? At what level does the DNN start to overfit and yield poor test

stage results?, and iii) What is the sensitivity of the trained model to real data?

Hyperparameter tuning that includes adjustment in the depth and width of the

employed DNN must also be performed to analyze under the dimensions under

which a DNN minimize the approximation error rate.

6.1.2 Architectural Overview

In this chapter, we apply the learning based approach to a stochastic optimization

problem that aims to find the Pareto optimal balance between ASE and EE in a

multi-tier user-centric S-cell network. The modular learning approach starts by

generating a utility for a given representation of input parameters. The utility

value is a function of both the first and second moments of the optimization

function. We simulate multiple network snapshots to find the optimal parameters

for each network scenario. Once sufficient data has been generated, it is used to
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train a DNN that aims to produce utility value for unknown (test) scenarios. If a

set containing all possible combinations of network parameters passes through the

trained DNN model, we will receive utility for each combination. Simply applying

the maximum function will yield the output parameters from the DNN approach.

This is the benchmark deep learning process that we employ in our study.

To improve upon this benchmark DNN output, we apply further refinements to

the basic DNN model. The first refinement is hyperparameter tuning. In simple

terms, hyperparameters are the variables that determine and shape of the DNN

structure. Some of these hyperparameters include the number of hidden layers, the

learning rate and the number of neurons in a given hidden layer. Another design

question concerns how the hyperparameter tuning should be performed. In this

study, we implement hyperparameter tuning using the genetic algorithm, (GA).

The GA is a meta-heuristic technique to solve NP-hard optimization problems

[118]. Other meta-heuristic techniques include simulated annealing [119, 120, 121],

particle swarm optimization [122], Taguchi’s method [123], and ant colony opti-

mization [124], which yield near optimal solutions for selected sets of parameters.

Another refinement involves analyzing the marginal contribution of each attribute

to the output, i.e. the final utility value of the optimization function. In the

context of this study, if each feature is considered as a player with the prediction

being the payout, then according to coalition game theory, the Shapley value de-

termines the fairness in payout distribution among the features [125, 126]. From

the feature value contributions, we not only obtain the features that have a higher

relative influence on the utility function in comparison to others, but also obtain

regions within the important feature that have a greater influence on the predicted

value. Synthetic data generation using generative adversarial networks (GANs) is

performed in those high sensitivity regions. GANs consist of two neural networks,
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called the generator and discriminator, which have adversarial goals in the itera-

tive learning process. GANs have recently been used to augment available dataset

to improve the model performance in both regression and classification use cases

[127, 128]. The cumulative data including the original data and the synthetic data

from GANs, is passed through the same process, i.e., first through a simple DNN

and then through the hyperparameter tuned DNN model. Synthetic data creation

enables us to avoid the laborious process of data generation using network-wide

simulations for a large number of Monte Carlo distribution scenarios to yield the

optimal parameter set for a single set of network features.

6.1.3 Research Objectives

Our prime objective in this part of the dissertation is to evaluate the performance

of DNN-based techniques in order to optimize user-centric Stienen cell networks

at a reduced computational complexity. We first present a stochastic optimization

framework and then formulate a modular approach to the sequential improvement

of the trained DNN model. The research questions that this chapter aims to

answer as follows:

• What is a plausible utility optimization framework that yields parameter

values for Pareto optimal balance between ASE and EE in a user-centric

S-cell network?

• Can an online learning-based approach be employed to enable real-time op-

timization of the designed problem?

• What techniques can be used to improve the performance of the baseline

DNN model?
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• Which design parameters have a greater influence on the output utility?

• How close is the performance of the DNN model-based approach to the global

optima?

To answer these questions, detailed analysis is presented in the following chapters,

starting with a stochastic optimization framework. We then perform convexity

and computational complexity analyses. A modular DNN approach is presented

that starts with a DNN and is further refined with hyperparameter tuning and

data augmentation using GANs.

6.2 Network Model

6.2.1 Spatial Model

We consider the downlink of a two-tier ultra-dense network consisting of sub-6

GHz MBSs, mmWave RRHs and UEs spatially distributed across its foot-prints.

The spatial distributions for MBSs, RRHs and UEs are modeled using independent

homogeneous Poisson point processes (HPPPs) ΦMBS, ΦRRH and ΦUE with inten-

sities λMBS, λRRH and λUE respectively. The UE locations act as generating points

for the UE-centric Voronoi tessellation. Each RRH is associated with a UE based

on its physical location on the Voronoi plane. This implies that each RRH can, at

most, serve a single UE that is spatially closest to the RRH during a transmission

time interval (TTI). Furthermore, to model realistic MBS deployment, we induce

repulsion between MBS locations in the considered network. This is done by mod-

eling it as a type II Matern hardcore process [67], whereby we choose a subset of

the original PPP with a distance constraint. Mathematically, the thinned PPP

representation of MBS is given by
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Fig. 6.2: The two-tier UE-centric S-cell architecture. A UE is served by a mmWave
RRH in the case of non-empty S-cells, and is otherwise served by the closest MBS.

λEF
MBS =

1− exp(−4πλMBSR
2
MBS)

4πR2
MBS

. (6.1)

6.2.2 Pathloss Model

Based on the system model explained in the previous section, UEs may either be

connected to sub-6 GHz MBSs or mmWave RRHs. However, the UEs connected to

mmWave RRHs will have severe blockage effects in comparison to those connected

to the MBSs. To model the mmWave blockage, we utilize a LOS ball model that

assumes all UEs within a ball of a specified radius around a mmWave RRH to be

in the LOS region; and the UEs outside the ball region to be in the NLOS region.

The pathloss model for the overall system is given by:
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PL(r) = ALOSr
αLOS ; if UE connected to mmWave RRH and r ≤ Ro, and

= ANLOSr
αNLOS ; if UE connected to mmWave RRH, and r > Ro,

= AMBSr
αMBS ; if UE connected to MBS

(6.2)

where αLOS, αNLOS and αMBS are the terrain and operating frequency-dependent

pathloss exponents, LOS mmWave links, NLOS mmWave links and MBS connec-

tion links respectively. The intercepts ALOS, ANLOS and AMBS are all assumed to

be unity. Note that high αNLOS values result in sufficiently large PL(r), effectively

causing the UE-RRH links to be in outage as r increases.

6.2.3 Antenna Gain Model

Due to free space attenuation and sensitivity to blockages, directional transmis-

sion is essential for mmWave communication. Given M ∈ {UE,RRH}, let GM, gM

and θM denote the main lobe gains, side lobe gains and half power beamwidths

(HPBWs), respectively, of the UEs and RRHs. Thus, the directivity gain for a

desired UE-RRH link is GUEGRRH. Assuming sectorized antenna beam patterns

at both UEs and RRHs, the probability of exact alignment for the uniform distri-

bution of antenna beams is θUEθRRH

4π2 . The other extreme is when both of the UE

or RRH beams are misdirected, the probability of which is (1−θUE)(1−θRRH)
4π2 . The

directivity gain GI for an arbitrary RRH connected UE and an interfering RRH

is a discrete random variable with the probability distribution given in [89] and

expressed as:
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E(GI) =
θUEθRRH

4π2
GUEGRRH +

θUE

2π

1− θRRH

2π
GUEgRRH +

1− θUE

2π

θRRH

2π
gUEGRRH +

(1− θUE)(1− θRRH)

4π2
gUEgRRH.

(6.3)

The sub-6 GHz MBSs have omni-directional antennas with consistent antenna

gain in all directions. Beamforming is not required for communication on sub-6

GHz spectrum.

6.2.4 Small Scale Fading

For MBS connected links, we assume Rayleigh fading with unit mean exponential

channel gain. For mmWave links, we assume independent Nakagami fading for

each UE-RRH link, with NL and NN representing the LOS and NLOS parameters

respectively. The small-scale fading in signal power given by |h| under the Nak-

agami assumption is a normalized Gamma random variable. Shadowing is ignored

for the sake of analytical tractability.

6.2.5 User Association Mechanism

Each UE has an associated S-cell with a diameter equal to the distance of the

neighboring UE. If the S-cell contains at least one mmWave RRH, the UE is

connected to the RRH based on the smallest pathloss criterion. In case there is

no RRH within the S-cell, the UE is connected to an MBS, also on the basis of

the smallest pathloss. The smallest PL(r) criterion ensures the maximum average

SINR in each of the scheduled UEs. Note that the MBS distribution considered

for UE connections is ΦEF
MBS, which is the Matern hardcore PPP that represents

the finally deployed MBSs with a minimum distance constraint from the closest

MBS.
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6.3 Optimization Framework

6.3.1 SINR

From the user-association mechanism elaborated in chapter 6.2.5, we can divide

the UE population into those that are connected to mmWave RRHs and the ones

that are connected to sub-6 GHz MBSs. We represent these two disjoint user

populations as PPPs given by ΦUE,MBS and ΦUE,RRH for MBS and RRH connected

UEs respectively. The downlink SINR equation for an arbitrary UE will thus be

given by:

SINR =
hoRRHGUEGRRH(r−αo)

kTBRRH +
∑

i∈ΦIRRH
hiRRHE(GI)(r−αi)

; if x ∈ ΦUE,RRH,

=
hoMBS(r−αMBS)

kTBMBS +
∑

i∈ΦEF
MBS

hiMBS(r−αMBS)
; if x ∈ ΦUE,MBS.

(6.4)

αo and αi take the value of αLOS and αNLOS in case of r ≤ Ro and r > Ro

respectively. T is the Kelvin temperature and Bi where i ∈ MBS,RRH is the

bandwidth for MBS and mmWave spectrum respectively.

6.3.2 ASE

The area spectral efficiency is a function of the downlink SINR at the UEs and

the SINR threshold criteria set by the operator. Mathematically, the ASE in this

adaptive rate transmission situation may be expressed as

ASE =
1

A
∑
u∈ΦUE

log2(1 + SINRu); if SINRu > γth, (6.5)

where A is the total network area under consideration. We assume a consistent

SINR threshold γth for both the RRH and MBS connected UEs.
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6.3.3 EE

We recap the mathematical expressions for the power consumption and energy

efficiency of a multi-tier Stienen cell network given in chapter 5.7. We leverage

work from project EARTH [73] to express the total power consumption of the

two-tier network as

P =
∑

ΦEF
MBS

PMBS +
∑

ΦRRH,act

PRRH,act +
∑

ΦRRH,deact

PRRH,deact. (6.6)

ΦRRH,act and ΦRRH,deact are the RRHs in activated and de-activated state respec-

tively depending upon their presence inside a UE’s S-cell and subsequent selection

for service via the smallest PL criterion. PMBS, PRRH,act and PRRH,deact are the

consumed power by an MBS, activated RRH and de-activated RRH respectively.

Note that we are considering an always ON MBS deployment to avoid coverage

holes and provide uninterrupted control/signaling to the UEs. The power saving in

the proposed architecture will thus come from intelligently turning OFF mmWave

RRHs that are not providing DL data services to UEs.

Now the individual power consumption in each state is given by the following

equations:

PMBS = AMBSPMBS,Tx +BMBS. (6.7)

PRRH,act = ARRHPRRH,Tx +BRRH. (6.8)
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PRRH,deact = BRRH. (6.9)

BMBS (and BRRH) denotes the fixed power consumption of an MBS (and RRH).

This is the energy cost which is bore by the network regardless of the number

of UEs requesting DL service. The coefficients AMBS (and ARRH) lump together

frequency dependent response of a power amplifier and several other factors within

MBS (and RRH). The coefficients Ai and Bi, where i ∈ {MBS,RRH} are expressed

as

Ai =
1

ηPA
i (1− σfeed

i )(1− σMS
i )(1− σDC

i )(1− σcool
i )

, and (6.10)

Bi =
Pi,RF + Pi,BB

(1− σMS
i )(1− σDC

i )(1− σcool
i )

. (6.11)

For detailed explanation of the power consumption parameters, readers are referred

to [73]. The network wide EE is analyzed for adaptive rate transmission scenario

in our work and expressed mathematically as

EE =
A[ASE]

P
. (6.12)

6.3.4 Problem Formulation

From our analysis in chapter 5, we noticed that ASE and EE in a multi-tier user-

centric S-cell network have contrasted trends with at least the RRH deployment

density. Considering that ASE and EE are game players in a cooperative game, we

model their tradeoff as a Nash product (NP), which is mathematically expressed
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as

NP = [ASE]β[EE]1−β. (6.13)

So we converted a multi-objective optimization problem which consisted of max-

imizing both ASE and EE into a single objective optimization problem with

β ∈ [0, 1] assigning weight to each objective. β = 0 reduces the optimization

problem into EE-maximization while β = 1 corresponds to ASE-maximization.

Now, the Nash product given in Eq. (6.13) if optimized on the three design pa-

rameters, i.e. pUE, 2ζ and pRRH,act; will only be useful for a particular snapshot

of the UE, RRH and MBS placements within the network. pUE denotes the per-

centage of UEs which participate in the DL scheduling process, hence determining

the average geometry of the S-cell network. 2ζ is the S-cell size factor with a max

value of 2ζ = 1 that occurs when the S-cell is inscribed within the user-centric

Voronoi cell. Finally, pRRH,act is the percentage of RRHs that are not sleeping, i.e.

they are discoverable by the UEs. In other words, this is a percentage determining

how many of the total mmWave RRHs contribute towards the RRH-tier density

within the network. Note that we have a consistent range of the optimization

parameters, i.e. 0 < pUE, 2ζ, pRRH,act ≤ 1.

To cater for uncertainties that arise from different UE, RRH and MBS positioning

as well as constant change in channel dynamics and user mobility, we employ a

stochastic optimization framework. In this framework, we take several snapshots

of a single network parameter set and optimize a combination of the mean utility

with a penalty to the fluctuations in the utility. This mean-variance model also de-

scribes the magnitude of risk aversion, i.e. how much impact does a high variation

in utility have to the overall optimization framework. The utility maximization
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problem is given as:

[poptUE, 2ζ
opt, poptRRH,act] = max

pUE,2ζ,pRRH,act

[E(NP)]− η[E(NP2)− E(NP)]︸ ︷︷ ︸
Utility

. (6.14)

The optimized parameter set would not only maximize the function in Eq. (6.14),

but also ensure that the function value does not have rapid fluctuations with

different snapshots of the network with same mean UE, RRH and MBS densities.

η is the degree of penalty that a particular parameter configuration would have on

fluctuations in the objective function. In the subsequent chapters, we will discuss

the properties of this optimization problem and a learning approach for efficient

solution to this problem.

6.4 Convexity and Computational Complexity Analysis

Determining whether an optimization function is convex is a critical aspect of

determining the optimal parameters in a multi-objective non-linear optimization

problem, such as Eq. ((6.14)). This is because the result of convexity analysis

will determine if the problem will be solved in a feasible time frame or not. A

convex optimization problem is characterized by convexity of both the objective

and constraint functions in the optimization variables [129, 130]. Every stationary

point in the objective function of a convex optimization problem will be a global

minima. This property ensures polynomial time complexity in the number of

variable.

Due to diversity in constraints and optimization parameters, most of the capacity

and resource optimization problems in wireless networks are inherently non-convex

in nature. Multiple heuristic techniques can be applied to solve non-convex opti-
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Fig. 6.3: Objective function utility with optimization parameters at β = 0.2.
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Fig. 6.4: Objective function utility with optimization parameters at β = 0.8.

mization problems. Some of these include genetic algorithms [131], particle swarm

optimization [132], sequential quadratic programming and pattern search [133].

Genetic algorithms are known to be immune to initialization points and also have

transient properties from non-feasible to feasible zones. However, this algorithm

takes longer to converge with increase in search space, making real-time optimiza-

tion impossible in large systems.

From the plot of objective function value of Eq. ((6.14)) in Figs. 6.3 and 6.4

for a search space sampling of 10 intervals for each optimization parameter, it is

clearly seen that the solution space is a combination of multiple hills and valleys,

thereby implying non-convexity. The non-convex behaviour can be traced back to
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Fig. 6.5: Time complexity for a single parameter and network simulation scenario.

two major reasons: i) the piece-wise SINR function in Eq. (6.4) for the mmWave

connected UEs results in abrupt shift in the user SINR, and consequentially, the

objective function value, as a UE moves from the LoS region to a NLoS region, and

vice vera; ii) the randomness is UE, RRH and MBS placements, in particular the

MBS placements, over-shadows the overall trend of the utility with an optimization

parameter. Although we see a clear increasing trend in the utility with increase in

pUE, the fluctuations that arise with step changes in pUE give rise to local maximas.

These fluctuations are independent of the number of Monte Carlo scenarios of

different UE, RRH and MBS placements. The non-convexity is seen to be more

severe during the interaction of ζ and pRRH,act at constant pUE for both β = 0.2

and β = 0.8 values.

To assess the time complexity for finding the utility value for one of search space

configurations in Eq. ((6.14)), we analyze the execution time for three different

scenarios: i) number of UEs in the system are increasing with a constant pace

keeping number of RRHs fixed (at 800 in the given figure), ii) number of RRHs
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is increasing while keeping number of UEs constant (at 800), and iii) both UEs

and RRHs are increasing simultaneously (from 400 to 800 in our case). All the

scenarios exhibit polynomial time complexity. The execution time for the two

scenarios when only UEs or RRHs fits well with a high R-squared value in case of

quadratic regression. This implies that the time complexity when only UEs and

RRHs in the system are changing is O([|A|λUE]2) and O([|A|λRRH]2) respectively.

In case when both UEs and RRHs are increasing at the same rate simultaneously,

it is seen that the increase in execution time is higher than the earlier scenarios.

Polynomial curve fitting of degree 4 shows very high regression reliability. This

makes sense because the time complexity in this case will be O(|A|2[λUE]2[λRRH]2).

Although polynomial time complexity is manageable for processing, one has to

keep in mind that this is just once configuration of search space. For brute force

optimization which calculates utility for all the configurations in search space,

which in our case is 10x10x10 = 1000, this process is repeated for the entire

search space. Therefore, brute force method will not yield real-time optimization.

The DNN based approach that aims to overcome this issue is discussed in the

succeeding chapters.

6.5 Modular DNN-Based Approach for Real-Time Optimization

In this section, we elaborate on the modular DNN approach that we follow to

generate a reliable model for real-time optimization of the Pareto optimal ASE-

EE tradeoff problem in Eq. (6.14). The steps are presented in sequential order in

the following paragraphs:

• In the data preparation phase, we perform Monte Carlo simulations for a

given network environment and generate utility function values for all of
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Fig. 6.6: Proposed Modular DNN methodology.

the possible network parameter configuration possibilities. As previously

discussed, we have divided the intervals of the three optimization parameters

pUE, 2ζ and pRRH,act into 10 discrete levels, making the search space size

1000. The brute force (BF) analysis is conducted for a large number of

network scenarios. The variables that define the network scenario are |A|λUE,

|A|λRRH, |A|λMBS and β. The aim is to have sufficient data for the DNN to

learn which parameter configuration yields the best utility, for instance at

low RRH densities versus high deployment density.

• Once we have the simulated the data set in order, we feed the input and

output utility in a DNN to allow it to learn the non-linear mapping be-

tween the network parameters and the optimization parameters for the util-

ity value. The motivation behind this is to enable real-time optimization in

a few matrix manipulation steps, instead of the time consuming stochastic

optimization, which requires hundreds of Monte Carlo simulations for each

scenario in entire search space. In this initial DNN design, we propose an

artificial neural network with six hidden layers of 32 neurons each. We use
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a rectified linear unit (ReLU) activation function for the hidden layers and

a linear activation for the output layer.

• The performance of an ANN not only depends on the type of application

and quality of training data, but also on the hyperparameters chosen to

train the ANN. These hyperparameters may include design variables such

as the number of hidden layers, the activation functions, the training batch

size and the number of neurons in each layer. Selecting suitable structure

and hyperparameters improves the learning rate and accuracy of an ANN.

The exhaustive grid search technique can be used to evaluate the ANN per-

formance at all combinations of the hyperparameters and select the best

combination [134]. However, the disadvantage of grid search is its long com-

putational time [135]. Other techniques such as random search [136] and

GAs [137] have been used to yield hyperparameters with similar accuracy at

a much lower time complexity. In this work, we utilize genetic algorithms,

that are based on the principle of natural selection, to determine the optimal

hyperparameters with lower computational overheads.

• The next step in our analysis involves understanding the feature importance

in the DNN learning and the interaction of important features within the

DNN. We use SHAP (SHapley Additive exPlanations), a model that is used

to provide an importance value for each feature of a utility prediction. SHAP

utilizes additive feature attribution methods to unify six models for feature

importance determination and outputs results that are similar to human

intuition [138, 139, 140]. The SHAP analysis not only provides insights

regarding feature importance in the DNN model but also identifies a range

of the important features that affect the output utility value to a significant

extent.
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• Data generation through extensive Monte Carlo simulations for a given UE,

RRH and MBS distribution, as well as the ASE-EE tradeoff factor for the

entire optimization search space is a computationally intensive process. This

makes it virtually impossible to train the DNN over an exhaustive range

of UE, MBS and RRH densities, and β combinations. To overcome this

issue, we employ different synthetic data generation techniques to augment

the simulated data. The first method is known as generative adversarial

networks, or GANs. A GAN consists of two neural networks, a generator

and a discriminator [141]. The main aim of the generator ANN is to produce

data instances that are similar to those in the real dataset. The closer

the generated data distribution is to the real data distribution, the more

likely it is to fool the discriminator as it attempts to identify the false data

instances in the dataset. The generator and discriminator are trained in

tandem, even though they have conflicting goals. The GAN is trained when

it achieves a saddle point in the optimization of the two ANNs. Generative

adversarial networks have been used in wireless networks, for instance to

learn the channel model when channel state information is unavailable [142,

143, 144]. Other studies have focused on improving the system performance

when synthetic data is augmented to an already available dataset and fed

to a DNN to yield higher prediction accuracy [128, 145]. Apart from GANs,

we also utilize the analysis from SHAP to simulate more data instances

in regions that correspond with greater effects on the utility value. More

specifically, if we know which features have the greatest effects on the utility

value, and if we can identify range of values for which the utility value

have the highest sensitivity, we can generate data specifically for that highly

sensitive parameter sub-space and augment it to the already simulated data.
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• The new data set that contains the originally simulated dataset and the

GAN-generated synthetic data is fed to a new DNN, which is first trained

and then optimized using GA based hyperparameter tuning. It is expected

that the new model will outperform the optimized DNN model from the

simulated data alone.

The performance of the modular DNN approach explained above is evaluated

at different stages of the process. The first output is taken after training the

basic DNN without any hyperparameter tuning. The utility values obtained are

referred to as “DNN” output. The second output is taken from the DNN with

hyperparameter tuning and is referred to as “DNN-HO”. The final utility output

is yielded from the DNN that is trained and optimized on the larger data set that

contains the simulated and synthetic datasets. This output termed “DNN-DE”

in our analysis. In the next section, we evaluate the performance of these three

utility outputs in comparison to the global optima from the brute force exhaustive

search, referred to as “BF”.

6.6 Performance Analysis

The training data set fed to the DNN at different stages in the modular process

explained in the previous section contains seven features and one output. From

the seven features, three are optimization variables in the optimization problem

expressed in Eq. (6.14). The parameters have ten distinct values given by pUE,

2ζ, pRRH,act ∈ 0.1, 0.2, ..., 1. These variables are represented as “pUE”, “2zeta” and

“RRHactperc” in the training dataset respectively. Next we have the mean UE,

RRH and MBS densities with values between 400 and 800 for UE and RRH den-

sities and between 5 and 20 for MBS densities, i.e. 400 ≤ |A|λUE, |A|λRRH ≤ 800;
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Fig. 6.7: Training dataset sample.

and 5 ≤ |A|λMBS ≤ 20. These quantities are labelled as “Num UE”, “Num RRH”

and “Num MBS” respectively. The ASE-EE tradeoff parameter 0 ≤ β ≤ 1 is

represented as “beta” in our dataset. Finally, the output measure which is the

objective function value for Eq. (6.14) with the input optimization parameters

and the network parameters is labelled as “UTILITY”. Other system parameters

for generating the simulation data are same as Table 5.1. A sample of the training

dataset is given as Fig. 6.7.

6.6.1 DNN Training Results

Fig. 6.8 presents the training and validation losses for the basic DNN model

trained on the training dataset. The DNN model has 6 hidden layers with 32 neu-

rons per hidden layer and 64 batch size for each training round. The results show
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that both the training and validation errors reduce with each epoch. The training

stops when the validation loss stops improving for a few pre-defined number of

epochs.
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Fig. 6.8: Training and Test Error Loss.

6.6.2 SHAP Analysis

Fig. 6.9 plots the feature importance in the trained model. The SHAP value

magnitudes are shown over all the training data samples. In addition to this,

the color representation also shows the relationship between the feature and the

output utility value. From the plot, we can see that the S-cell size and ASE-EE

tradeoff measure, represented by “2zeta” and “beta” respectively, have te highest

impact on the utility measure. Low values of ζ are shown to negatively impact

the utility. The next most importance feature is β, whose lower values yield high

utility values. This is because low values correspond to EE maximization and

since EE values bits/J are higher than the ASE values in bits/sec/Hz/m2, we get

high utility as β → 0. Lowe values of RRH activation percentage has an adverse

impact on the utility. This means that when we have lower number of available

mmWave RRHs, the utility will go down because the number the UEs connected

137



Fig. 6.9: Feature Importance in the trained model.

to the MBSs will increase.

The bar plot in Fig. 6.10 depicts the mean absolute value of the SHAP values for

each feature in the model. Also known as the SHAP Summary plot (or the feature

importance plot), it shows the mean importance of each feature in the variability

of the model output. This plot is particularly useful for a system level control

as it shows that what control knob (or optimization variable) needs to be played

the most for tuning network configuration to get optimal performance. As in Fig.

6.9, the Stienen cell size and ASE-EE tradeoff factor have the highest average

impact on the output utility. Since “2zeta” is an optimization parameter in the

stochastic optimization problem, we will analyze the utility variations with β in

the succeeding analysis.

SHAP Dependency plots, on the other hand, show the behavior of feature impor-

tance (or SHAP value) with respect to the value of its corresponding feature and

its interaction with the most dependent feature. This plot is useful for observing

the range of values for a pair of features which have the highest impact on the
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Fig. 6.10: Mean absolute SHAP values.

model output. For Example, Fig. 6.11 shows that the model β and 2ζ have he

highest impact on the model output when 0 < β < 0.1, 0.8 < 2ζ < 0.1 and

0.8 < β < 1, 0.1 < 2ζ < 0.3. This information can be exploited, as usually the

process of enriching training data is costly, so a selective enrichment of training

data can provide a lower cost/benefit ratio as compared to a uniform or random

enrichment of training data. It would therefore be interesting to see if data aug-

mentation at high and low β ranges would improve model performance in terms

of achieving global optimal utility values.

6.6.3 GAN Training and Performance

We evaluate the performance of GAN training by plotting the generator and dis-

criminator training loss after few iterations. The GAN consists of a discriminator

and a generator with the following settings:

• Generator has 40 input neurons (noise dimension), 4 hidden layers, and 8

output neurons (data dimensions). Batch normalization is also done between
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Fig. 6.11: SHAP Dependence plot for β.

each layer to make the model faster, more stable and regularized during

training.

• Discriminator on the other hand has 8 input neurons (Data dimension), 4

hidden layers and only 1 output neuron with a sigmoid activation function,

as it’s purpose is to classify the input measurement as real or fake.

• Binary Cross Entropy loss function is used as a loss function in both of these

networks, as the output variable is either 0 (fake) or 1 (real).

Additionally, data standardization is performed before training and a manually

tuned optimizer (learning rate) to avoid oscillations during the training. We ob-

serve in Fig. 6.12 that the training loss for both the neural networks decreases

gradually and attains an equilibrium state towards the end of training.

The plot in Fig. 6.12 shows that the GAN has trained well on the input data,
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Fig. 6.12: Generator and Discriminator Training Loss.

which is the same training dataset to the baseline DNN model. Now to visualize

the distribution of the original dataset and the GAN generated synthetic dataset,

we plot the box plots of the output utility in the two datasets in Fig. 6.13. The

box plots show that the synthetic data has a higher mean utility. As we will see

in upcoming results, this will skew the performance of DNN when trained on the

augmented dataset and increase the error measures.

Another variation of synthetic data generation that we use in our work is through

creating more simulated data scenarios, but on targeted feature sub-space. More

specifically, we generate data samples for the β sensitive ranges discussed in pre-

vious section. This is because we are only interested in augmenting data which

has a larger significance to the overall model.
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Fig. 6.13: Original vs Synthetic dataset Utility Boxplot.

Table 6.1: RMSE Test Data set Results

Methodology DNN DNN-HO DNN-GAN DNN-DE
Utility RMSE 0.173 0.031 0.164 0.039

6.6.4 Performance Comparison

In this section, we will analyze the performance of the DNN models in differ-

ent stages of its sequential improvement process overlain if Fig. 6.6. We start

by presenting the performance of the models when they are fed with new data

samples, which is the test dataset. The root mean square error (RMSE) in the

utility value prediction from the input features is performed for: i) baseline DNN

model (DNN), ii) GA based hyperparameter optimized DNN (DNN-HO), iii) DNN

trained and optimized on original data set augmented with synthetic data samples

from GAN (DNN-GAN), and iv) DNN trained and optimized on original dataset

augmented with new simulated data in the high importance β regions (DNN-DE).

The hyperparameters that are tuned using Genetic Algorithm are:
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• Number of neurons in each layer, from a pre-defined set (64, 128, 256, 512,

1024)

• Number of hidden layers on the model, varied from 1 to 9

• Training batch size, selected from 32,64,128,256

• Activation functions used in each layer, selected from ReLU, ELU, tanh and

sigmoid.

• Optimizer from a predeifned set (’rmsprop’, ’adam’, ’sgd’, ’adagrad’, ’adadelta’,

’adamax’, ’nadam’)

Genetic Algorithm is run for 4 generations and the optimal hyperparameter com-

bination with the lowest RMSE is the following: ’nb neurons’: 64, ’nb layers’: 9,

’batch size’: 64, ’activation’: ’relu’, and ’optimizer’: ’adam’.

The errors for DNN-HO and DNN-DE are considerably lower than baseline DNN

and DNN trained on GAN augmented dataset. The reason for poor DNN-GAN

performance is the mismatch in the utility distribution in the original training

dataset and synthetic data generated via GAN. We will therefore not discuss the

DNN-GAN performance in the succeeding sections.

We analyze the accuracy of output utility of the DNN approaches in comparison

with the exhaustive search (‘BF’) method in Fig. 6.14. The BF represents the

global optimal solution, therefore has the highest utility at any point in the cumu-

lative distribution function (cdf) graph. The baseline DNN performance yields the

worst output utility from its predicted optimal pUE, 2ζ, and pRRH,act. The utility

performance gap between BF and DNN is substantially reduced by the DNN-HO

and DNN-DE models. The results not only show the effectiveness of learning

models for optimal network parameter configuration, but also emphasizes on how
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Fig. 6.14: Performance comparison of modular DNN in terms of Utility maximization.

efficient DNN model tuning can yield very close to global optimal performance.

The negligible performance cost is overshadowed by the immense computational

efficiency from the DNN approaches. The optimization is performed in real-time

from the trained DNN model, and is thus suitable for implementation in real

wireless networks.

We also compare the achieved utility with the DNN approaches with variations

in β when the test dataset is given to the trained models. Each dataset point has

the results from the three DNN model variations and the global optimal utility

from exhaustive search space optimization. The utility comparison in Fig. 6.15

shows that utility achieved from ASE maximization is lower as compared to EE

maximization. Secondly, the utility from ‘BF’ is always the highest for all test

dataset samples. Another interesting observation is that the performance gradient

between baseline ‘DNN’ and ‘BF’ is larger for high β regime. This implies that

for ASE maximization, the optimization parameters from the DNN model would
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Fig. 6.15: Output Utility from the DNN approaches v/s global optima.

be more contrasting to the true optimization parameters.

6.7 Conclusion

In this chapter, we discussed a learning0based approach to optimize the tradeoff

utility between the area spectral and energy efficiencies in a two-tier user-centric

Stienen cell architecture with real-time computational efficiency. By integrating

the dynamic placement of UEs, mmWave RRHs and sub-6 GHz MBSs, we devel-

oped a stochastic optimization problem to determine the Pareto optimal operating

point between the conflicting ASE and EE efficiency measures. We demonstrated

that the formulated optimization objective function is highly non-convex due to

the random positioning of MBSs and the piece-wise nature of SINR at the UEs.

The discontinuity for SINR occurs at two levels: one for the abrupt change as

a UE connects to a sub-6 GHz MBS from a mmWave RRH and vice versa, and

145



secondly, due to change in pathloss exponent as a UE transitions from a LOS

region to a NLOS region and vice versa. To find the global optimal solution to the

problem, we performed hundreds of Monte Carlo simulations for a single network

configuration to determine the utility value of the objective function. This process

was repeated for the entire search space, causing the problem to have NP-hard

time complexity.

In our proposed approach, we simulated a large number of network configurations,

and UE, MBS and RRH distribution scenarios, and used the simulated data to

train a DNN. The DNN was further optimized by adjusting its depth and de-

sign features to accurately learn the non-linear relationship between the set of

design parameters and network population statistics with the optimization func-

tion utility. Shapley analysis was performed to identify the features that are most

important in determining the output utility, and the regions that are the most

critical regions for those influential parameters. We also discussed two synthetic

data augmentation techniques to improve the DNN’s learning efficiency. The first

of these approaches trains a generative adversarial network with simulated dataset

in order to generate more data samples with near-identical distribution. The sec-

ond approach is based on leveraging insights from the SHAP analysis to generate

simulation data only within intervals that have a high SHAP value for most influ-

ential input features. Our results demonstrate that the DNN tuned with a genetic

algorithm estimates utility values for a given set of parameter configuration and

network statistics with a very low RMSE. As a result, the performance loss that

results from the learning-based approach is substantially reduced and near-optimal

ASE-EE tradeoff is performed with real-time computational complexity.
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CHAPTER 7

Conclusions and Future Work

7.1 Conclusions

With the exponentially increasing data demands and ever more complex mobile

and IoT requirements, ultra-dense deployment of small cells becomes inevitable.

However, while ultra-dense deployment manages to somewhat alleviate the data

demands, it still does not ensure ubiquitous service level to all users and devices. In

this dissertation, we investigate a relatively recent concept in radio access network

design. Known as user-centric or cell less architecture, it deviates from current

cell-centric design in the sense that the devices dictate UE-BS associations, cell

activations and handover preferences. In other words, the network follows the

devices, and no device faces the cell edge issues which are a major concern for cur-

rent deployments. Our work has focused on novel user-centric RAN architectures,

user association mechanisms therein, and leveraging tools from game theory and

deep learning to optimize the intertwined network wide efficiency metrics while

ensuring adequate user QoE.

The first contribution of this dissertation focuses on a game theoretic based user-

centric architecture in a cloud radio access network (C-RAN) deployment. The

key idea here is to deploy ultra-dense network consisting of radio remote heads. A

network orchestration algorithm is then designed to dynamically orchestrate the

network and select the best RRH within a pre-defined radius (virtual user-centric

instead of base station-centric cell) around the high priority user equipments (UEs)

selected for downlink transmission during each TTI. This user-centric architecture

147



allows switching on/off of RRHs that guarantees a higher energy efficiency along

with location-independent uniform Quality of Experience (QoE). The intelligent

deactivation of BSs not serving any UE in the user-centric network results in

two-fold benefits: first, the radius of the circular exclusion zones around every

scheduled UE serves as a proxy for the minimum spatial separation for the closest

interfering BS. This combined with the thinning of the BSs due to user-centric

scheduling results in reduced interference at an arbitrary UE. Secondly, a key

goal of 5G, i.e. energy efficiency is enhanced as a result of reduction in power

consumption through deactivation of BSs. Our goal in this work is to develop

analytical characterization of the area spectral and energy efficiency for such a

user-centric network architecture supported via Cloud RAN. We observe that the

cell density that yields optimal EE is different than that which yields maximum

area spectral efficiency (ASE). The size of the exclusion zone is then used as a

control parameter to realize the desired compromise between EE and ASE. The

tradeoff analysis is performed using a two-player bargaining game with the ASE

and EE negotiating for the Pareto optimal tradeoff (Nash equilibrium) dictated

by a network operator weightage parameter specifying the business model within

a spatio-temporal region.

In consideration of the future IoT paradigm with billions of connected devices

with large disparity in data demands, the next contribution of the dissertation

introduces a second tier of elasticity within user-centric systems that integrates

non-uniform exclusion zones centered on UEs. These non-uniform service zones

cater for data demand disparity between spatio-temporal zones as well as the diver-

sity of data requirements from user applications (for instance HD video streaming

v/s whatsapp messaging) within a single spatio-temporal zone. The allocation of

these virtually elastic service zones around selected UEs is conducted via a central

148



control base station (CBS) and modeled through two game techniques, namely

evolutionary and auction games. Both the games are based on a utility minimiza-

tion problem which is a function of weighted mean UE throughput and individual

UE service demands. To illustrate the tradeoffs between the game models, network

level performance is compared in terms of aggregate throughput, energy efficiency,

algorithm convergence speed and mean UE scheduling probabilities.

To further improve upon the performance of user-centric designs., we propose and

analyze a novel Stienen cell user-centric architecture operating in the mmWave

spectrum, which is expected to be a major frequency usage region in future wire-

less networks. Taking into account the idiosyncrasies of mmWave blocking and

propagation characteristics, a statistical framework is developed for deriving the

coverage probability of an arbitrary user equipment (UE) scheduled within the pro-

posed architecture. Numerical results show that, by virtue of selective mmWave

RRH activation and consequently thinning of the interfering RRHs, the proposed

architecture offers higher user Quality of Experience (QoE) compared to legacy

base station centric architectures. Furthermore, as compared to the user-centric

model designed in first dissertation contribution, we observe an increase in area

spectral efficiency (ASE) and reduction in scheduling wait times at negligible cost

in energy efficiency (EE). Yet another key insight from this work is the existence of

an exploitable tradeoff between ASE and EE that can be exactly dictated by three

key design parameters namely: 1) the active UE population, 2) Stienen cell size

factor and 3) mmWave RRH deployment density. The tradeoff can be leveraged

in practice through a self-organizing network (SON) engine that can orchestrate

these parameters dynamically to achieve a Pareto optimal performance.

The final contribution of this dissertation is a continuation of the Stienen cell

model, where first the optimization of the utility in terms of the three design
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parameters is shown to be highly non-convex. Then, a stochastic optimization

problem is defined to tradeoff between the ASE and EE in the proposed sys-

tem model. Thereafter, a deep neural network (DNN) based approach is utilized

as a substitute for brute force and conventional meta heuristic techniques. The

key idea is that if the non-linear mapping between system utility and a combi-

nation of network parameters and design parameters can be learned accurately

by a DNN of moderate size, then identification of the optimal design parameters

can be done in near real-time. It is shown that at a negligible cost in system

utility, the DNN based approach can indeed be applied on this stochastic opti-

mization problem to find optimal system design parameters. The baseline DNN

performance is improved by hyperparameter tuning and data enrichment using

generative adversarial networks (GANs).

To summarize, this dissertation introduces many novel user-centric designs, the

corresponding user-centric user scheduling schemes and also lays down the sta-

tistical framework necessary to quantify the network-wide efficiency parameters.

The work will hopefully pave the way for deploying efficient networks, that follow

the user, in 5G and beyond cellular networks.

7.2 Future Works

The work undertaken in this dissertation could be enhanced on multiple fronts.

The most obvious margin of improvement is integration of the latency factor in

the optimization framework. Since 5G networks target for latency of the order of

milliseconds, the latency induced due to non-overlap user-centric service regions

would be detrimental in achieving this goal. It would be interesting to analyze

if user-clustering strategies and flexible frame structure introduced in 5G New

150



Radio standards can provide the 1ms end-to-end latency. Additionally, instead of

the proposed time division multiplex (TDM) scheduling scheme, we can also study

how frequency division multiplexing (FDM) will impact the latency as well as the

capacity and energy efficiency measures.

Another feature that can add value to this dissertation is inclusion of the mobility

factor to allow proactivity in service zone assignment to high priority users. It is

well known that typical human mobility features 93% average predictability [146].

This can be leveraged to ascertain a particular user’s future location co-ordinates

and activate the RRH that is anticipated to reside within its future user-centric

region for DL scheduling if required.

With respect to C-RAN design, it is pertinent that the backhaul latency i slow

to allow LTE-A features such as carrier aggregation and coordinated multipoint

transmission. Since ultra-dense deployment means a high number of RRHs will

be simultaneously transmitting to BBU pools, the data volume along with the

real-time optimization of user-centric regions will put a toll on the backhaul links

connected the RAN to the core network. To meet the high demands on back-

haul, mobile network operators usually consider dark fiber as the viable solution.

However, this significantly increases the CAPEX as large-scale dedicated fiber de-

ployment is an expensive and time consuming process. Future extensions of our

optimization framework can include CAPEX and OPEX in the objective func-

tion with the end goal being maximization of the revenue per user, also known as

ARPU.

Finally, we have not studied the performance enhancement possible from leverag-

ing databases at RRH and MBSs. The databases may include standard measure-

ments such as reference signal received power (RSRP), reference signal received

quality (RSRQ), signal-to-noise ratio (SNR), signal-to-interference-plus-noise-ratio
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(SINR), channel quality indicator (CQI), physical resource block (PRB) usage, mo-

bility traces and radio link failure (RLF) reports. An artificial intelligence engine

trained on the database can be used to predict location of de-activated RRHs and

also proactively define user-centric regions and consequently activate/deactivate

RRHs and optimally allocate spectrum and energy resources to jointly optimize

ASE and EE.
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Appendix A

The SINR coverage probability for an arbitrary UE can be expressed as

Pcov(γth) = P(SINR > γth) = P(ho >
γth(σ

2 + I)
GUEGRRHPL(ro)

), (7.1)

where σ2 + I is the summation of noise and interference given as denominator in

(5.13). Since ho is considered to be a normalized Gamma random variable, we

employ Alzer’s Lemma [147] to modify (7.1) as

Pcov(γth) =
N∑
n=1

(−1)n+1

(
N

n

)
E
(

exp(
−nηγth(σ2 + I)
GUEGRRHPL(ro)

)

)
, (7.2)

where η = N(N !)−
1
N and N is the parameter for ho and takes the value of NL

(or NN) depending upon whether the serving RRH is within the LOS (or NLOS)

region. The noise and interference components can be treated distinctly as

Pcov(γth) =
N∑
n=1

(−1)n+1

(
N

n

)
E
(

exp(
−nηγth(σ2)

GUEGRRHPL(ro)
)

)
E
(

exp(
−nηγth(I)

GUEGRRHPL(ro)
)

)
,

(a)
=

N∑
n=1

(−1)n+1

(
N

n

)
E
(

exp(
−nη(σ2)

GUEGRRHPL(ro)
)

)
LI

(
−nηγth

GUEGRRHPL(ro)

)
,

(7.3)

where (a) follows from the Laplace functional of the interference, i.e. LI(s) =

E (exp(−sI)). To evaluate LI(s), we can split the interfering RRHs into LOS

and NLOS considering the distribution of distance from an arbitrary UE to LOS
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interferers and NLOS interferers is only weakly dependent [91]. Hence, if we

assume ΦILOS and ΦINLOS to be the PPPs of the interfering RRHs within LOS

and NLOS regions respectively, then by applying the independence property, (7.3)

becomes

Pcov(γth) =
N∑
n=1

(−1)n+1

(
N

n

)
E
(

exp(
−nηγth(σ2)

GUEGRRHPL(ro)
)

)
LIL(

−nηLγth
GUEGRRHPL(ro)

)LIN(
−nηNγth

GUEGRRHPL(ro)
).

(7.4)

Let us consider that the arbitrary UE under consideration is being served by an

RRH within its LOS region (i.e. r ≤ Ro). Now, the interfering RRHs could be in

either the LOS or the NLOS region. For interferers in the LOS region, the Laplace

functional of the interference in (7.4) is calculated as

LIL(
−nηLγth

GUEGRRHPL(ro)
) = E

(
exp(
−nηLγthr

αLOS
∑

i∈ΦILOS
|hi|2Gir

−αLOS
i

GUEGRRH

)

)
(b)
= exp

(
−2πλIRRH

4∑
k=1

bk

∫ Ro

r

[1− Ehi(exp{−nηLγthhiāk(r/t)
αLOS})tdt]

)
,

(7.5)

where the directivity gain of the interfering RRH Gi is evaluated by considering

it as a discrete random variable [90]. Note that we have assumed the pathloss

intercepts for both LOS and NLOS scenarios as unity. Further, (b) follows from

computing the Laplace functional of ΦILOS. Finally, by computing the moment

generating function of the normalized gamma random variable hi, we obtain

LIL(
−nηLγth

GUEGRRHPL(ro)
) = exp

[
−2πλIRRH

4∑
k=1

bk

∫ Ro

r

F

(
NL,

nηLākγthr
αLOS

NLtαLOS

)
tdt

]
= exp [−ILL(γth, r)] .

(7.6)

In a similar manner, the Laplace functional of the NLOS interfering RRHs for this
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UE is given by

LIN(
−nηNγth

GUEGRRHPL(ro)
) = exp

[
−2πλIRRH

4∑
k=1

bk

∫ Ro

r

F

(
NN,

nηLākγthr
αLOS

NNtαNLOS

)
tdt

]
= exp [−ILN(γth, r)] .

(7.7)

Now for a UE served by an RRH in the NLOS region, it is intuitive to observe

that ΦILOS = ∅, therefore, the Laplace functional

LIL(
−nηLγth

GUEGRRHPL(ro)
) = exp[−ILN(γth, r)] = 1. (7.8)

Similar to (7.7), we derive the Laplace functional of the NLOS interferes as

LIN(
−nηNγth

GUEGRRHPL(ro)
) = exp

[
−2πλIRRH

4∑
k=1

bk

∫ ∞
r

F

(
NN,

nηNākγthr
αNLOS

NNtαNLOS

)
tdt

]
= exp [−ILN(γth, r)] .

(7.9)

Finally, integrating over fro(r) for LOS and NLOS regions and by summation of

coverage probabilities for each region, we obtain (5.14).
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