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Abstract

Automorphic representations of the adelic group GSp(4, Ag) are of importance
in their relation to Siegel modular forms of degree 2. Given an automorphic
representation m of GSp(4,Aq), it decomposes into a product of admissible
representations at each place. In the non-archimedean case, many useful results
have been produced by Roberts and Schmidt. Here we find some invariants for
the case of GSp(4, R), including the K-type structure, the L- and e-factors, and

the Gelfand-Kirillov dimension for all irreducible admissible representations.
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Chapter 1

Preliminaries

1.1 Introduction

Automorphic representations of the adelic group GSp(4, Ag) are of importance in
their relation to Siegel modular forms of degree 2. Here we have Ag the adele ring
of Q which is the restricted direct product of completions of Q at all places. Then
for a field ', GSp(4, F) is defined as g € GL(4, F') such that ‘gJg = A(g).J where

J = L_lll} (1.1)

and A(g) is called the multiplier of g. There are then representations of GSp(4, Ag)
with certain conditions which are automorphic representations.
Given an automorphic representation = on GSp(4,Ag), it decomposes into a

product of representations on the groups GSp(4,Q,), as

T = ®7r,,. (1.2)

By studying these representations we can obtain information about automorphic



representations. In particular, we are interested in irreducible admissible represen-
tations of GSp(4,@Q,), so that for a maximal compact subgroup K, of GSp(4,Q,),
7|k, is unitary and when restricted in such a way, each irreducible representation
appears with finite multiplicity. In the non-archimedean case, many useful results
are presented in tables in [5]. Some similar results will be produced here for the
archimedean case, so that we are dealing with GSp(4, R).

First, some helpful results about composition series of admissible representa-
tions of Sp(4, R) are collected from the work by Mui¢. Every irreducible admissible
representation of Sp(4,R) is a contained in one of these composition series as a
constituent of a representation produced by parabolic induction.

Then we move on to results about the L-factors and e-factors of irreducible
admissible GSp(4, R) representations. To do this, first the Langlands parameters
are found. In this case, the Langlands parameters are admissible homomorphisms
from the real Weil group, Wg = C* LU jC* to GSp(4,C). Given such a homomor-
phism, we may then decompose it into irreducible 1-dimensional and 2-dimensional
representations of Wx with known L-factors and e-factors. We find these factors
both in the degree 4 spin case and the degree 5 standard case.

Next, as we are in the archimedean case, we have a maximal compact sub-
group K of Sp(4,R) which we may use to examine the structure of Sp(4,R)
representations by decomposing them as a sum of irreducible representations of
K. Isomorphism classes of these representations of K are called K-types. By
using the composition series produced earlier, the multiplicities of the K-types
are determined for all irreducible representations of Sp(4,R) in this chapter.

Then in order to relate these results on Sp(4,R) to the case of GSp(4,R),
there is an examination of the behavior of Langlands quotients of GSp(4,R) when

restricted to Sp(4,R), so that the K-type structure and other properties may be



determined for irreducible GSp(4, R) representations as well.

Finally, we consider the Gelfand-Kirillov dimension of these representations.
For a Lie algebra representation of g, we view the representation as a finitely
generated U(g) module V| where U(g) is the universal enveloping algebra of
g. Then we take a generating subspace Vj and make V' a graded module with
V,, = Un(9)Vo, where U, (g is generated by monomials in the enveloping algebra
with exactly n elements. Then there exists a polynomial d(n) with degree at most
dimg with d(n) = dimV,, for large enough n. The degree of this polynomial is the
Gelfand-Kirillov dimension. As the K-type structure of Sp(4,R) and GSp(4,R)
representations is known, the Gelfand-Kirillov dimension of these representations

can be calculated directly.

1.2 Basic definitions

Let us begin with some basic definitions. The general symplectic group GSp(4, R)
is the set of g € GL(4,R) such that ‘gJg = A(g).J where

J = Llll} (1.3)

and A(g) is the multiplier of g.
We will also make use of the subgroups Sp*(4, R) consisting of all elements of
GSp(4, R) with multiplier +1 and Sp(4,R) consisting of all elements of GSp(4, R)

with multiplier 1.

Also of importance is the Lie algebra of Sp(4,R), sp(4,R) consisting of the



set of 4 x 4 matrices with entries in R with the condition that for A € sp(4,R),
JA+YAJ =0

Additionally for the matrix A = [2 4], we define

1
A= ——r (2] (1.4)

1.3 Root structure

By [4] section 2.1 we there is a maximal compact subgroup K of Sp(4, R) consisting
of all matrices of the form AB — BA. We may then take £ as the Lie algebra of

K. Also from [4] we may use the following basis for the complexification sp(4, C).

0 000 00 0 1
. ;.
Z=—=i|21000 Z'=—ilp0 0 0
0 000 00-10
rTo0 10 —i '01(1)08
_1|l-10-i0 1| - i
N+ 21040 1 foz 0 —i 01
L i 0-10 L -0 —10
1 10 3 0 1_10710
_ 00 0 0 _ 0000
X+—§ i0-10 X,_i 0 -10 (1~5)
00 0 0 Lo0 0O
01 0 i o0 1 0 —i
11104 0 _ 1|1 0 =0
P1+_§ 0i0—1:| Pl——§ 0—z'0—1:|
i0—1 0 L-10 -1 0
1090 3 1[990
1 7 _ —1
P0+—§ 000 0 Pof—i 0000
040 -1 0—i0—1

The root system of sp(4,C) is {(£2,0),(0,£2),(£1,+1), (£1,F1)} with
(—=1,1) and (1, —1) the compact roots.



1.4 Parabolic induction

We will work extensively with parabolic induction from three subgroups of

GSp(4,R). First is the standard Borel subgroup, consisting of elements of the

“% 1. We shall also need the Klingen subgroup, consisting of elements of

form [

the form [

*
*
*
*
*

* XK X X X

of the form

J
|

} . Finally, we consider the Siegel subgroup, consisting of elements

1.4.1 Parabolic induction on the Borel subgroup

* ¥ ¥ ¥

To use parabolic induction the Borel subgroup, we take characters x1, x2, and o

on R, and use them to define a representation

-a * % * ]
b * *
= x1(a)xa(b)o(c) (1.6)
e %
ca™t

on the Borel subgroup. We can then induce to the full group by taking the space

of functions f : GSp(4,R) — C with the condition that

F(hg) = |a®b] ]2 xa(a)xa(b)o(c) £ (g) (1.7)



* * *

a
for any h € { bt 1 . Then we take the group action of right translation on

ca~ 1

this space, resulting in the induced representation we denote as y; X x2 X 0.

1.4.2 Parabolic induction on the Klingen

To use parabolic induction on the Klingen subgroup, we take a character y on R
and an irreducible representation of GL(2,R) which we call (r, V'), and use them

to define a representation

t x x *
a b *
= x(t)m(A) (1.8)
c d *
detAt—!

on the Klingen subgroup, where A = [ %]. We can then induce to the full group

by taking the space of functions f : GSp(4,R) — V with the condition that

f(hg) = |£*(det )~ x(t)m(A) f(g) (1.9)

*

to*x %
for any h € [ ab o« } . Then we take the group action of right translation on
detAt—!

this space, resulting in the induced representation we denote as y x 7.

1.4.3 Parabolic induction on the Siegel subgroup

To use parabolic induction on the Siegel subgroup, we take a character ¢ on R

and an irreducible representation of GL(2,R) which we call (7, V'), and use them



to define a representation

— o(c)m(A) (1.10)

on the Siegel subgroup. We can then induce to the full group by taking the space

of functions f : GSp(4,R) — V with the condition that

3

f(hg) = |detAc™!|? o(c)m(A) f(g) (1.11)

for any h € [4 %/]. Then we take the group action of right translation on this

space, resulting in the induced representation we denote as m % o.

1.5 Discrete series representations

Frequently we will run across discrete series representations and limits of discrete
series representations. Our notation shall be that for p € Z-, X(p,+) is the
discrete series representation of GL(2,R) with minimal weight p + 1 and X (p, —)
is the discrete series representation of GL(2,R) with maximal weight —p — 1.
Similarly, X (0,+) is the limit of discrete series representation of GL(2,R) with
minimal weight 1 and X (0, —) is the limit of discrete series representation of
GL(2,R) with maximal weight —1.

In the case of Sp(4,R), when (p,q) € Z~o X Z~o, p # q, X(p, ¢) shall denote
the discrete series representation of Sp(4,R) with Harish-Chandra parameter
(p,q). X(p,—p) will denote the limit of discrete series with infinitesimal pa-
rameter (p, —p). Further, X'(p,0) and X?(0, —p) will be the holomorphic and

anti-holomorphic limits of discrete series with corresponding infinitesimal param-



eters and X?(p,0) and X'(0, —p) will be the large limits of discrete series with
corresponding infinitesimal parameters.
For GSp(4,R), we will distinguish between holomorphic and large discrete

series and limits of discrete series with the notation X" (p, q) and X'9¢(p, q).



Chapter 2

Composition series

We will gather together composition series for the principal series representations
of Sp(4,R) for convenience. We use the results of [3] here. In the most general
situation we have the induced representation ||*'sgn® x ||%2sgn® x 1 with sy, s3 € C,
€1, € € {0,1}. By way of Weyl transformations, we only need consider the case
where Re(s;) > Re(sz) > 0. As described in Lemma 5.1 from [3] we see that the
principal series is reducible in four different cases and irreducible otherwise. These

four cases are
e s, is an integer such that e; = s5 + 1 (mod 2)
e s; is an integer such that ¢ = s; + 1 (mod 2)
® 51+ 5y € Zyy, €1+ € =5+ 52+ 1 (mod 2)

® 81—8262750,614-62551—824-1 (mod2)

2.1 Non-integral infinitesimal character

Let us first consider the cases where one or both of sy, s5 is non-integral.

9



The first reducibility criterion is that sy is an integer such that e; = s + 1

(mod 2). In this case, we have by Theorem 2.4 from [3] for sy > 0 that

|*sgn 3 (X (s2,4+) B X(s2,—)) = ||*'sgn* x [|*?sgn® x 1 —  (2.1)

|[*'sgn x Vi,
and for sy = 0 that

[|*tsgn® x sgn x 1 ~ ||**sgn® x (X (0,4) & X (0, —)). (2.2)

In the event that s; ¢ Z, all constituents are irreducible by Theorem 12.1

in [3].

The second case of reducibility is when ¢ = s; + 1 (mod 2), and we may
use the intertwining operator defined as B;(¢) in Lemma 7.3 from [3]. In

this case, as long as sy ¢ Z, it gives an isomorphism

[|”'sgn X [|*2sgn x 1 =~ [|*2sgn x ||*'sgn™ x 1, (2.3)

and we may proceed as in the first case.

The third case of reducibility is when s; — sy € Zp,€1 + €2 = 51 — 52 + 1

(mod 2). Then we have by Theorem 2.5 of [3] that

5(“31;32 sgn?,s1 — $2) X 1 = ||**sgnt x [|*2sgn® x 1 — (2.4)

10



Again by Theorem 12.1 in [3], all constituents are irreducible if sy ¢ Z.

The final case of reducibility is when s; + 59 € Z4p, €1 + €2 = 51 + 52+ 1
(mod 2), and we need to use the intertwining operator described in Lemma

7.2 from [3] as A;(t), which is an isomorphism

[|°tsgn® x ||*2sgn® x 1 o~ ||"sgn® x ||~ *2sgn® x 1 (2.5)

in this case as long as sy ¢ Z.

2.2 Integral infinitesimal character

Now we need to consider the cases where both s, sy € Z, where we first consider

cases of the form [|Psgn® x [['sgn® x 1 with p >t > 0, p,t € Z. We will use

Theorems 2.4 and 2.5 from [3] frequently as they give the initial decomposition of

these principal series representations.

e First, note that |[Psgn? X |[*sgn® x 1 is irreducible as it does not satisfy the

criteria for reducibility.

e Next |[Psgn? x ||'sgn*! x 1 has two composition series,
|[Psgn? 3 (X (t,+) @ X (t,—)) = ||Psgn® x ||'sgn’™! x 1 — ||Psgn® x V; (2.6)

5(||"2 sgn'™ p— ) x 1 < ||Psgn® x |['sgn’™" x 1 — (2.7)
ptt
C(II= sgn™ " p— 1) x L.

For the first composition series, Theorem 11.1 from [3] states that the

11



constituents decompose as follows:
Lang(6(]|"* sgn'™!,p — t) x 1) < [[Psgn” x V; — (2.8)

Lang(|[Psgn? x ||'sgn‘™! x 1)

Vi+ — ||Psgn” x X (t,+) — Lang(||Psgn?, X (¢,+)) (2.9)
Vi <= ||Psgn” x X (t,—) — Lang(||’sgn?, X (¢, —)) (2.10)
X(p,—t) = Viy — Wiy (2.11)
X(t,—p) = Vi — Wi _ (2.12)

where W, has constituents Lang(6(]|"z sgn’,p +t),1) and
Lang(||'sgn’ x X (p,+)) and W; _ has constituents
Lang(8(]|"2 sgn’, p + 1), 1) and Lang(||sgn’ @ X (p, -)).

For the second composition series we use that 6(||"z sgn™, p —t) x 1 ~
6(||p7+tsgnt,p —t) x 1, and by Theorem 10.3 from [3] the constituents decom-

pose as follows:
W < (]| sgn’,p—t) x 1 — Lang(5(|| "= sgn’,p—¢t) x 1) (2.13)
where
5(|" sgnt,p+t) x 1 W —» (2.14)
Lang(|['sgn’ % X (p, +)) @ Lang(|['sgn’ »x X (p, —))
X(p,—t) & X(t,—p) = 5(||"7 sgn’,p+1) x 1 (2.15)

Lang(6(])"= sgn’, p +t) x 1).

12



e In the third of these cases, ||Psgn?™! x |[!sgn®*! x 1, we have the composition

series
|[Psgn?* x (X (t,4) ® X (¢, —)) = [[Psgn” " x [['sgn™ x 1 - (2.16)

|[PsgnPtt x V.

We see by Lemma 9.4 of [3] that the constituents decompose as
'sgn™™ 1 X (p, +) < |IPsgn™ x X (t,+) — (2.17)
Lang(|[Psgn*" » X (¢, +)),
[Isgn™" > X (p, =) = |[Psgn™! > X (¢, —) - (2.18)
Lang(|["sgn”"" % X(t,—))

with [|'sgn’™ x X (p, +), [|'sgn’™ x X (p, —) and |[Psgn?*! x V; irreducible.

e In the final non-degenerate case, ||Psgn?™ x |[!sgn’ x 1, we have a composition

series

5(]|"% sgn’, p—t)x1 < [|Psgn? ! x|['sgn’ 1 — ((]|"F sgn’,p—t)x1. (2.19)

Again using Theorem 10.3 from [3], constituents further break down as
W < §(]|"2 sgn’,p—t) x 1 - Lang(5(]|"= sgn’,p— ) x 1) (2.20)

where

(5(Hp7_tsgnt,p+t) X1—W —» (2.21)

13



Lang(||'sgn’ x X (p, +)) @ Lang([|"sgn’ x X (p, —))
X(p,—t) ® X(t,—p) < 6(||"Z sgn’,p+1) x 1 — (2.22)
Lang(6(]|"= sgn’, p +t) x 1).

Also by Theorem 10.6 from [3],
X(p.t)® X(~t,—p) = ((IFsg’ p—t) n 1> (2.23)

Lang(|[Psgn?™* x [|'sgn’ x 1).

There is also a second composition series we may use:

[I'sgn’ > (X (p, )& X (p, —)) = [[Psgn”" x[['sgn’ x 1 — ||'sgn’ u V;.. (2.24)
By Theorem 10.1 and 10.6 (iv) in [3] the constituents decompose as
X(p.t)® X(p,—t) = [['sgn’ x X(p,+) — Lang(||'sgn’ x X(p, +)) (2.25)

X(t,—p)®X(—t,p) = ||'sgn’ x X (p, —) — Lang(||'sgn’ x X (p, —)) (2.26)

Lang(é(]|?sgnt,p+ t) x 1) @ Lang(|[Psgn?** x ||'sgn’ x 1) —  (2.27)

['sen’  V;, — Lang(8(]|“* sgn’,p — ) x 1).

14



2.3 Integral infinitesimal character, degenerate
cases

Now we consider degenerate cases, starting with those where p =1 > 0, giving us

four possible cases.
e First, note |[Psgn? X ||Psgn? x 1 is irreducible.

o Next [[Psgn? x [|Psgn”™! % 1 has composition series:
[IPsgn” % (X (p, +) & X(p,—)) = |Psgn” x [[Psgn”™ x 1 - (2.28)

[|Psgn? < V.

From Theorem 10.4 in [3], the constituents decompose as follows:
X'(p,—p) = |[Psgn® x X (p,+) — Lang(|[’sgn” x X (p,+)),  (2.29)

X*(p, —p) = [[Psgn” % X(p, —) — Lang(|["sgn” x X(p,—)),  (2.30)
and ||Psgn? x V,, is irreducible.

e Then |[PsgnP™ x |[Psgn? x 1 is isomorphic to |[Psgn? x ||Psgn?*! % 1 by the

intertwining operator Bj(t) as defined in Lemma 7.3 from [3].

e In the case [|Psgn?™! X ||Psgn?*! x 1 we have the composition series
[Psgn”™ x (X(p, +) ® X(p, =) = |[Psgn”™ x [[Psgn” x 1 - (2.31)
|[Psgn?t! x V,,

15



All constituents are irreducible by Lemma 9.5 from [3].

Now we consider the cases where p > t = 0, giving us another collection of

four cases.
e First, note that |[Psgn? x 1 x 1 is irreducible.

e Next for [|Psgn? x sgn x 1 we have that
5(||Zsgn, p) x 1 < ||Psgn® x sgn x 1 — C(]|2sgn, p) x 1. (2.32)
By Theorems 10.7 and 11.2 from [3], the constituents decompose as follows:
X?(p,0) ® X'(0,—p) <= 8(]| 2sgn, p) x 1 — Lang(8(||>,p) x 1), (2.33)

W’ < ¢(||2sgn, p) x 1 — Lang(||Psgn® x sgn x 1) (2.34)
Lang(8(]|2,p) 3 1) < W' — (2.35)

Lang(||Psgn® x X (0, +) @ Lang(|[’sgn? x X (0, —).

e In the third of these cases, ||Psgn?™ x sgn x 1, we have that
|[PsgnPtt x sgn x 1 = |[Psgn”™ x (X (0,4) @ X(0,-)). (2.36)
The constituents decompose by Lemma 9.6 from [3] as
sgn X X (p, +) < |[Psgn?t* x X (0, +) — Lang(||Psgn”™ x X (0, +)), (2.37)
sgn 3 X (p, —) < [[Psgn”™ x X (0, —) — Lang(][Psgn”™ x X (0, —)) (2.38)

16



and sgn x X (p,+) and sgn x X (p, —) are irreducible.

e In the fourth case, |[Psgn?* x 1 x 1, we have a composition series

518, p) %1 [Psgn™ x 11— C(llE,p) x 1. (2:39)

Constituents further break down by Theorem 10.7 of [3] as

X?(p,0) & X'(0,—p) = 5(]|%,p) x 1 — Lang(3(||2,p) x 1),  (2.40)

X' (p,0) @ X*(0, —p) = ((||%,p) @ 1 — Lang(|[Psgn”*" x 1 x1). (2.41)

Finally, the last few cases to consider are when p =t = 0. These are fairly simple.
Namely, sgn x 1 x12=1xsgnx1=1x (X(0,+)® X(0,—)), sgn X sgn x 1 =
sgn x (X(0,+4)® X(0,—)), and 1 x 1 x 1 is irreducible.

17



Chapter 3

Langlands parameters

Now we will determine the Langlands parameters for each irreducible representa-

tion of GSp(4,R).

3.1 Representations of GSp(4,R)

We consider how representations of GSp(4,R) relate to those of Sp(4,R). Given a
representation of Sp(4, R), we may induce to Sp(4, R)* = Sp(4, R) LU [1 vy } X
Sp(4,R). Then we may use the fact that GSp(4, R) & R.q x Sp(4, R)* to o_bltain
a representation of GSp(4,R) from a representation of Sp(4, R)* and a character
of Ryg.

Given a representation of GSp(4,R), we may restrict it to Sp(4,R) and see
how it decomposes. For this purpose, it is important that we observe that Sp(4, R)
is a subgroup of index 2 of Sp(4,R)*. This means that either an irreducible
representation of Sp(4, R)* is irreducible when restricted to Sp(4,R), and there
is exactly one other representation of Sp(4,R)* with the same restriction, or

the Sp(4,R)* representation is not irreducible when restricted to Sp(4,R) and

18



has submodules isomorphic to exactly two distinct irreducible representations of
Sp(4,R).

Let us first consider the case of a (g, K') module where g = gsp(4,R) and K is a
maximal compact subgroup of GSp(4,R). We will consider such a (7, Vi) induced
on the Borel parabolic, namely x; X x2 X 0 where x1, 2, and ¢ are characters of
R*. Such a representation has a standard model consisting of K-finite vectors in

the space of smooth functions f : GSp(4,R) — C satisfying the property

F(hg) = [a®b]|e| "2 x1(a)xa(b)o(c) f(g) (3.1)

* * *
b % *

a
for any h € { b=l x } We take this representation and restrict to actions

ca~ 1

by elements of Sp(4,R). Then we map from this space of functions to another

Sp(4, R)-module consisting of functions f : Sp(4,R) — C satisfying the property

f(hg) = |a®blx1(a)x2(b) f(9) (3.2)

*

for any h € r b b;l :1 ] . We shall show that the map given by restricting domain
is bijective. Consid(;r a function f : GSp(4,R) — C such that its restriction to
Sp(4,R) gives f(g) = 0 for g € Sp(4,R). Then for any ¢’ € GSp(4,R), we may
write ¢ = {1 L. ] g for some g € Sp(4,R). This gives f(¢') = || 20(c)f(g) =0
so the map is ilcljective. To conclude that it is also surjective, note that we
may extend a function f on Sp(4,R) with the above transformation property
to a function on GSp(4,R) with suitable transformation properties by defining
F(9) = |e|"20(c)f(h) where g € GSp(4,R) and h € Sp(4,R). This function
restricted to Sp(4,R) will then give us the original function f. Then notice that

by taking the K-finite functions obtained on Sp(4,R) by this bijection we have a

19



model for the representation y; X xo x 1 of Sp(4,R). That is, the restriction of
X1 X X2 X 0 to Sp(4,R) is isomorphic to x; X x2 X 1 as a Sp(4, R)-module.
Next consider the case of a representation induced on the Siegel parabolic,
namely 7 x o where o is a character of R* and (7, V;) is a representation on
GL(2,R). Such a representation has a standard model consisting of the K-finite

vectors in the space of smooth functions f : GSp(4,R) — V, satisfying the

property

f(hg) = |det(A)c 2o (c)m(A) f(9) (3.3)

for any h € [4 %] where A =[24] and we let A’ = L[ ]

We take this representation and restrict to actions by elements of Sp(4, R).
Then we map from this space of functions to another Sp(4, R)-module consisting

of functions f : Sp(4,R) — V, satisfying the property

f(hg) = |det(A)|2m(A)f(g) (3.4)

for any h € [* 5] where A = [¢}%]. We shall show that the map given by
restricting domain is bijective. Consider a function f : GSp(4,R) — V, such
that its restriction to Sp(4,R) gives f(h) = 0 for h € Sp(4,R). Then for any
g € GSp(4,R), we may write g = [1 L. } h for some h € Sp(4,R). This gives
Flg) = |e|"20(c)f(h) = 0 so the map isc injective. To conclude that it is also
surjective, note that we may extend a function f on Sp(4,R) with the above
transformation property to a function on GSp(4,R) with suitable transformation
properties by defining f(g) = |¢[~20(c) f(h) where g € GSp(4,R) and h € Sp(4,R).

Then notice that by taking the K-finite functions obtained on Sp(4,R) by this
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bijection we have a model for the representation m x 1 of Sp(4,R). That is, the
restriction of m x o to Sp(4,R) is isomorphic to = x 1.

Finally we consider the case of a representation induced on the Klingen
parabolic, namely x 7 where ¥ is a character of R* and (7, V) is a representation
on GL(2,R). Such a representation has a standard model consisting of the K-
finite vectors in the space of smooth functions f : GSp(4,R) — V, satisfying the
property

£(hg) = [t2(ad — be) () (2 41) £ (9) (3.5)

*

t *x %
for any h € { ZZ ! 1 We then take this representation and restrict to
(ad—bc)t=1

actions by elements of Sp(4,R). Then we map from this space of functions to
another Sp(4, R)-module consisting of functions f : Sp(4,R) — V. satisfying the
property

f(hg) = x)m ([ 5]) f(9) (3.6)

| % % %

to*x %
for any h € [ ab } with ad — bc = 1. We shall show that the map given by
1

restricting domairi is bijective. Consider a function f : GSp(4,R) — V, such
that its restriction to Sp(4,R) gives f(h) = 0 for h € Sp(4,R). Then for any
g € GSp(4,R), we may write g = [1 L, } h for some h € Sp(4,R). This gives
f(g)=le|™'=([*.]) f(h) =0 so the mapeis injective. To conclude that it is also
surjective, first observe that we may induce from a representation 7 on SL(2,R)
to one on GL(2,R). Then we may extend a function f on Sp(4, R) with the above
transformation property to a function on GSp(4,R) with suitable transformation
properties by defining f(g) = |e|™'n([!.])f(h) where g € GSp(4,R) and h €
Sp(4,R). Then notice that by taking the K-finite functions obtained on Sp(4, R)

by this bijection we have a model for the representation x x 7|sp2,r) of Sp(4,R).

We may then use information about restriction of GL(2,R) representations to
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SL(2,R) for a given 7 to determine the behavior of the restriction of y x 7.

3.2 Langlands classification

Let us consider the Langlands classification of GSp(4, R) representations. From
Knapp, Theorem 14.92 [2], we know that we may take S = M AN a standard
cuspidal parabolic subgroup, o a discrete series or nondegenerate limit of discrete
series on M, and p a character on the Lie algebra of A which we denote as a, with
Re p in the closed positive Weyl chamber. Inducing from the parabolic gives a
representation with a unique irreducible quotient, and every irreducible admissible
representation is obtained as a quotient of induction in this manner.

The first case is when we take the Borel parabolic. This gives induced
representations of the form x; X x2 X o with x4, x» representations of GL(1, R) and
o arepresentation of GSp(0, R). We shall consider such representations in the form
of ||%sgn®, ||*sgn?, ||*sgn’ where (a,b, c,d, e, f) € Cx{0,1} xCx{0,1} xCx {0, 1}
with Re(a) > Re(c¢) > 0 and Re(a) + Re(c¢) > 0. Then we have a Langlands
quotient L(x1, x2,0). The case where Re(a) = Re(c) = 0 will be examined later.

Next, we consider when we take the Siegel parabolic subgroup. In this situation,
we obtain the representation 6 X ¢ with ¢ a discrete series on GL(2,R) and o a
representation of GSp(0,R). Then we have a Langlands quotient L(d, o). Such
a representation will be of the form L(d(||*sgn€, ¢), ||%sgn®) with (s,¢,£,a,b) €
C x {0,1} X Zso x C x {0,1}, and 0(||°sgn®, ¢) = ||*sgn® ® D, where D, is a
discrete series on GL(2) with weights ¢ + 1 and above and —¢ — 1 and below and
central character sgn‘™!. We also restrict Re s > 0.

Third, we have the Langlands quotient of a Klingen induced representation

on GSp(4,R), Lang(y x 7). We have L(||*sgn® x ||°sgn?Dy) with (a,b,c,d, () €
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C x {0,1} x Cx {0,1} x Z>o. We also restrict to Re a > 0.

Next are the discrete series and limits of discrete series on GSp(4,R). We
denote these as X" (p, q) for a holomorphic discrete series or limit of discrete
series with Blattner parameter (p, q) and as X'79¢(p, q) for a large discrete series or
limit of discrete series with Blattner parameter (p,¢). Finally, we have the case of
irreducible tempered representations that are neither discrete series representations
nor limits of discrete series representations. We obtain them by inducing as above,

but with a unitary character, as in the following theorem.

Theorem 3.1. Let n, n1, 1n2, and o be unitary characters of R*, p € Z>q, and
k: E Z>0

® 11 X 19 X 0 18 irreducible.

e 1) X oD, is reducible if and only if n =1 and p > 0.
e Whenp>0,1xaD,= X" (p 0)a X9 (p,0).

e 0(n, k) x o is irreducible.

Proof. e First consider 7; X 12 X 0. When we restrict this representation
to Sp(4,R), the representation we obtain is isomorphic to 7y X 79 x 1
as a Sp(4,R)- module. Then by Corollary 5.2 from [3], we have that
M X 12 X 1 is reducible if and only if n; = sgn or 7, = sgn. In this case,
denoting the other character simply as 7, then sgn x n x 1 ~n x sgn x 1 ~

7])4X(0,+)@7]>4X<0,—)

In the event that n; x 1y x 1 is irreducible it follows that n; X 1y X o must

also be irreducible. Then we consider the remaining case.
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If either n X sgn x o or sgn X n X ¢ is reducible, then it must decompose
in the form M @ N where M restricts to a representation isomorphic to

n x X(0,4) on Sp(4,R) and N restricts to n x X (0, —).

However, by the weight structure of n x X(0,+) and n x X (0, —) given
in Muic [3], there can be no representation of GSp(4,R) that restricts to
n x X(0,4) on Sp(4,R), as the weights of any GSp(4,R) representation
must be closed under the map (x,y) — (—y, —x). Therefore n; X 179 x o is

irreducible.

Next, we consider 0(n, k) x 0. When restricted to Sp(4,R) we obtain a

representation isomorphic to §(n, k) x 1

Then by Lemma 8.1 from [3], we have that d(n, k) x 1 is reducible if and
only if k is even and n € {1,sgn} In this case, we have that §(1,2p) x 1 ~
0(sgn, 2p) x 1~ X'(p, —p) & X*(p, —p).

Again, in the event that §(n, k) x 1 is irreducible it follows that §(n, k) x o

must also be irreducible, so we consider the remaining case.

If either 6(1,2k) x o or §(sgn, 2k) x o is reducible, then it must decompose
in the form M @& N where M restricts to a representation isomorphic to

X'(p, —p) on Sp(4,R) and N restricts to X?(p, —p).

However, by the weight structure of X'(p, —p) and X?(p, —p) given in Muic,
there can be no representation of GSp(4,R) that restricts to X*(p, —p) on
Sp(4,R), as the weights of any GSp(4,R) representation must be closed

under the map (z,y) — (—y, —x). Therefore §(n, k) x o is irreducible.

Finally, we consider representations of the form 7 < o D,. When we restrict

nxoD, to Sp(4,R), we obtain that it decomposes as nx X (p, +)Bnx X (p, —).
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Similar to the above, by Lemma 8.1 from [3] we have that n x X(p, %)
is reducible in Sp(4,R) if and only if » = 1 and p > 0. In this case the

representation decomposes as follows.

1% X(p,+) ~ X (p,0) @ X*(p,0) (3.7)

1> X<pa_) 2X1(07 —p)@Xz(O,—p) (38)

In the case that n x X(p, +), n X X(p, —) are irreducible we then have that
if n x 0D, were to be reducible, it must have an irreducible component that
restricts to < X (p, +). But this is again not possible by the weight structure
of n x X(p,+). In the case that we are considering 1 x oD,, p > 0 it has a
restriction to Sp(4, R) that decomposes as X*(p, 0) & X?(p,0) ® X' (0, —p) &
X?2(0,—p). At this point, we use a fact from Bump [1], Proposition 2.5.5 that
each GSp(4, R) representation, when restricted to Sp(4, R), has irreducible
components isomorphic to either one or two irreducible representations of

Sp(4,R).

As the above restriction consists of four irreducible components, 1 x 0D,
cannot be irreducible and must have at least two irreducible components
where each one restricts to a direct sum of two of the Sp(4, R) representa-
tions. From the weights of the irreducible Sp(4, R) representations, it must
have at most two by similar arguments as before. A consideration of the
weight structure of the Sp(4, R) representations gives that one irreducible
component restricts to X' (p,0) & X?(0, —p) which are limits of holomorphic
and antiholomorphic discrete series on Sp(4,R). The other component then

restricts to X2(p,0) @ X1(0, —p) which is a sum of limits of large discrete
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series of both types.

3.3 Langlands parameters

The local Langlands correspondence gives us a bijection between L-packets of ir-
reducible admissible representations of GSp(4,R) and admissible homomorphisms
Wgr — GSp(4,C), where Wg is the real Weil group. Recall that the real Weil
group is the group Wr = C* U jJC* with the usual multiplication on C* and j is
an element with j2 = —1 and jzj~! =z for z € C. From [6] section 3.1 we know
that all representations of Wx are completely reducible and composed of one- and
two-dimensional irreducible representations. Further, all possible one-dimensional

representations are given by ¢, ; and ¢_; as follows, where t € C, and re? € C:

90+,t(7"€i9) = 7"2t> 90+¢(j) =

The two-dimensional representations are all as follows, where ¢ € Z+q, t € C,

and re? € C:

W,t(r eie) =

W,t(j ) =
1

We shall determine the Langlands parameters for each irreducible representa-
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tion of GSp(4,R).

Langlands quotients supported on the minimal parabolic

First, we shall consider the case when we induce from diagonal representations of
GL(1,R) and GSp(0,R) = R*. In this situation, we obtain the representation y; X
X2 X o with x1, x2 representations of GL(1, R) and o a representation of GSp(0, R).
We shall consider such representations in the form of L(||%sgn®, ||°sgn?, ||°sgn)
where (a,b,c,d,e, f) € Cx{0,1} xCx{0,1} x Cx{0,1} with Re(a) > Re(c) >0
and Re(a) + Re(c¢) > 0. Then we have a Langlands quotient L(y1, x2, 7).

By [5] equation (2.28) we have that the Langlands parameter of L(x1, x2,0) is

X1x20 (w)

olw
W 3 w o(w) € GSp(4, C)

where we use x1, X2, and o to mean their respective Langlands parameters.

In this case, we then have

TQ(a+c+e)

T2(a+e)
re” —r
7,.2(c—i-e)

2e
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j—

In summary, using —1 to stand for — and +1 to stand for +, we have that

this representation decomposes as

P(—1)p+d+f apetre D P14 atre D P(=1)dt+s cre D P—1)f e (3.9)

We may also consider the degree 5 L-parameters given by composing with a
homomorphism to SO(5,C) given by [5] equations (A.2), (A.3) and (A.4). In this

case of Langlands quotients supported on the minimal parabolic, this gives us

2a
2c
re’ — 1
—2c

—2a

Jj— 1
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We can see that the representation decomposes as

P-1)ta B Pyt D P10 D P1)d,—c B P(-1)b—a- (3.10)

Langlands quotients supported on the Siegel parabolic

Next, we consider the case when we induce from representations of GL(2,R) and
GSp(0,R) on the Siegel parabolic. In this situation, we obtain the representation
d x o with § an essentially square-integrable representation of GL(2,R) and ¢ a
representation of GSp(0,R). Then we have a Langlands quotient L(d, o). Such
a representation will be of the form L(5(||*sgne, £), ||*sgn®) with (s,€,¢,a,b) €
C x {0,1} x Zsy x C x {0,1}, and 6(||*sgn®, £) = ||*sgn® @ D, where D, is a
discrete series on GL(2).

By [5] (2.46), we have, using o to also denote the parameter of o and p the

parameter of d, the Langlands parameter of L(4, o) is

o(w) det(p(w))
Wr 3w~ o(w)p(w) € GSp(4,C)

In particular, we have

7,,2(a+25)

7,2(a+s) eié@
re’ —r
T2(a+s)67i€0

2a
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(_1)€+b+l

In summary, using —1 to stand for — and +1 to stand for +, we have that

this representation decomposes as

P(=1)t+b+1 q 425 D Prats D P(-1)b,a (311)

We may also consider the degree 5 L-parameters given by composing with a
homomorphism to SO(5,C). In this case of Langlands quotients supported on

the Siegel parabolic, this gives us

7,,25 6%0

7,256—2'49

re — 1

7,,—2361'69

7,—236—2249

N =

J— 1
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After suitable conjugation, we can see that the representation decomposes as

Pe2s D P10 D Pr,—2s (3.12)

Langlands quotients supported on the Klingen parabolic

Consider the Langlands quotient of a Klingen induced representation on GSp(4,R),
Lang(x x 7). Then by [5] equation (2.40), we have for x being used to mean the
parameter of y and p the parameter of 7 that

s ey | X0 detw)) )

p(w)

In the most general case, we have L(||%sgn® x ||°sgn?D,) with (a,b,c, () €

C x {0,1} x C x Z>( so that we get

2la+c) gitd

. T2(a+c)67i89
re' —
T2cez€0

(_1)b+1
(_1>b+€+1
(=1)*
1

We can then decompose this representation as ¢y a4 © @y e
We may also consider the degree 5 L-parameters given by composing with a

homomorphism to SO(5, C). In this case of Langlands quotients supported on the
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Klingen parabolic, this gives us

2a
62i£9
re’ — 1

—2i00

(_1)b+€

Jjr -1

(_1)b+€

After suitable conjugation, we can see that the representation decomposes as

P(-1)r+t,a BP0 D P1ypre—a D P200- (3.13)

Irreducible essentially tempered representations

It remains to consider the irreducible essentially tempered representations of
which there are several subtypes. First, we have the discrete series on GSp(4,R).
From [6], for Ay > Ay > 0 both integers, the holomorphic discrete series X}, »,
and the large discrete series X, _», form a 2-element L-packet. Both then have

Langlands parameter
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ci1—22)0

re'?

1

ei()q +X2)0

e

(_1))\1+)\2

i(A1+A2)0

e—i(A—22)0

(~1ph

We can then decompose this representation as ¢, 11,0 @ ©r—1s,0-

These representations have degree 5 L-parameters of the form:

e?i/\19

re

6721')\20

(_%)A1+)\2+1

622')\20

—2iM 0

e

(_2)>\1+>\2+1_

N

After suitable conjugation, we can see that the representation decomposes as

V22,0 D P+.0 D P2x;,0-
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Then there are the limits of discrete series. Of these, there are a holomorphic
and a large limit of discrete series with Blattner parameter A = (p,0), p € Z+.

From [6] these form a 2-element L-packet with Langlands parameter

ezp@

re’ —

7

We can then decompose this representation as ¢, 0 ® @p0

These representations have degree 5 L-parameters of the form:

62zp9

re’ — 1

—2iph
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After suitable conjugation, we can see that the representation decomposes as

P10 D P2po D P_ 0D Pypo- (3.15)

There is also another type of limit of discrete series, namely the large limit of
discrete series with Blattner parameter A = (p, —p), p € Z~o. From [6] this has

Langlands parameter

. 621p9
re' —

And this representation decomposes as

P—0D P20 D P10 (3.16)

These representations have degree 5 L-parameters of the form:
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622’p9

—2iph

re’ — 1

622’1)9

6—22;)0

N =

J— 1

1
2

After suitable conjugation, we can see that the representation decomposes as

V2,0 D P10 D Papo- (3.17)

Finally, we have the case of irreducible tempered representations that are
neither discrete series representations nor limits of discrete series representations.
From Theorem 3.1 we may determine all such representations.

First we have the irreducible unitary principal series ||%sgn® x ||°sgn? x ||*sgn/
where (a,b,c,d e, f) € Cx{0,1} x Cx {0,1} x C x {0, 1} with Re(a) = Re(c) =

Re(e) = 0. In this case, we obtain a similar Langlands parameter to the case of
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Langlands quotients supported on the minimal parabolic, so that

T2(a+c+e)

702(@—}—6)
re” —r
7,2(0—1—6)

2e

j—

In summary, using —1 to stand for — and +1 to stand for +, we have that

this representation decomposes as

P(—1)b+d+f atcte S P(=1)b+/ a+te D P(=1)d+f cte S P(=1)f e (318)

These representations have degree 5 L-parameters of the form:

2a
2c
re’ — 1
—2c

—2a
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J— 1

We can see that the representation decomposes as

O(=1yb,0 D P(=1)d,c D P10 D P1)d,—c D Y1), —c- (3.19)

Then there are the irreducible tempered representations of the form
5(][%sgn”, k) % ||%sgn® with (s, k, a,b) € Cx Zsox Cx{0,1}, with Re(s) = Re(a) =
0. Similar to the Langlands quotients supported on the Siegel parabolic, the

Langlands parameter will be

T2(a+23)

7,2(a+5) etko
re’ —r
7,.2((1—4—5) 6—zk0

2a

]

In summary, using —1 to stand for — and +1 to stand for +, we have that

this representation decomposes as
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P(=1)k+b+1 q42s S2) Pk,a+s S P(=1)ba (320>

These representations have degree 5 L-parameters of the form:

7,2sezk9

re” — 1

T,—2se—ik9

N =

Jr— 1

After suitable conjugation, we can see that the representation decomposes as

Pr,2s D P10 D Pr,—2s- (3.21)

Finally we have irreducible tempered representations of the form |[|sgn® x
||°sgn? Dy with (a,b,c,f) € C x {0,1} x C X Zsg and Re(a) = Re(c) = 0, with
either ||%sgn® # 1 or £ = 0. Then, similarly to the case of Langlands quotients

induced on the Klingen, we obtain
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,r2(a+c) eitd

) p2atc) o—ilh
re —
206%9

7,206—%9

(_1)b+1

(_1)b+€+1
J—

We can then decompose this representation as

Pe,a+c S Pr.a-

These representations have degree 5 L-parameters as follows:

2a
€2i€9
re’ 1

16—2%9

(_1)b+€

(_1)b+€
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After suitable conjugation, we can see that the representation decomposes as

P—1yptta D P—0 D Pyt —a D Paro- (3.23)

The L- and e factors associated to these L-parameters are collected in the
tables of appendix D. They are determined by using the L- and e-factors associated

to representations as given in Table 2 of [6] for example.
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Chapter 4

K-types

We consider representations of Sp(4,R) by examining the weight lattices of
representations of Sp(4,R), in particular their decomposition when restricted to

the maximal compact subgroup, K. For later use, define

(

2 ifa=b=c (mod 2)

Cla,b,c) =490 ifa=b#c (mod?2)

1 ifazb (mod 2)

\

4.1 Discrete series representations

First, consider discrete series representations. The multiplicities of K-types of

such representations may be determined by the Blattner formula.

M(p) =Y ew)Qw(n+pe) == pa) (4.1)

weWg
In this formula, Wy is the Weyl group of K, € is the sign of w, and X is the

Harish-Chandra Parameter which is obtained from the Blattner Parameter by
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subtracting p,, and adding p., where p,, is the sum of non-compact positive roots
and p. is the sum of compact positive roots. Finally, Q(r,s) is the number of

ways (7, s) may be written as a sum of positive noncompact roots.

4.1.1 Holomorphic discrete series

Let A = (m,n) be the Harish-Chandra parameter of a discrete series representation

7. Then in the holomorphic case, m > n > 0. We have p, = (2,2) and

pe = (3,—3), so that if the Harish-Chandra parameter is A = (k — 1, — 2) the

Blattner parameter will be (k, ¢) . Note that then k£ > ¢ > 2 so that all Blattner

parameters will be in the region shown.

In this case, for a K-type with lowest weight © = (z,y), the Blattner formula

gives a multiplicity of

1 1 1
S RO I A
vma)(raa)

1 1 1

) I )
wra)(eae))

=Qx—ky—0)—-Qy—k—1x—0+1)

min(28)+2J ifr,s>0,7r=s (mod 2)

In this case, Q(r,s) = {
0, otherwise
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We can see this as in this case the positive noncompact roots are (2,0), (1,1),

and (0,2). Then we may see that, assuming r < s,

S—T

(r,8) = (1,1) + (0,2) = (r — 2)(1,1) + (2,0) + #(0,2) _

giving the value given above. So then the multiplicity of the K-type with u = (z,y)
reduces to four cases, asx >yand k> /¢soy—k—1<x— ¢+ 1. In all cases,
we assume y — ¢ = x — k (mod 2) or else the multiplicity is 0. These cases are as

shown in the diagram:

11/ 1V
11 I
A
L (<y<ky<az+l—k M(zy) = |22
I o4l—k<y<k x>k M(zy) = |52
ML y>ka+l—k<y<az M(y)=|2b2| |kt

IVi E<y<az+/{l—-k M(m,y):[yféﬂj—vf—gﬂj
Note that for k = ¢ only case IV occurs, giving a maximum multiplicity one. The

antiholomorphic discrete series are symmetric to this case.

4.1.2 Large discrete series

We shall only consider one of the two cases of large discrete series - the other
is symmetric. In the case considered here, p, = (%,—%) and p. = (%,—%)
We shall call these large discrete series of the first type, and their symmetric

counterparts we shall call large discrete series of the second type. Then a discrete
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series with a Blattner parameter of (k,¢), will have a Harish-Chandra parameter
of A = (k—1,¢). The large discrete series we are considering are those with

Harish-Chandra parameters such that k — 2 > —¢ > 0, in the region below.

AN

The multiplicity of a K-type with g = (z,y) will be

M(x,y)ZQ(x—k7y—f)—Q((y—%,x+%) _ (k+%,£—%)>
=Q—ky—0)—-Qy—k—-1z—(+1)

/

=2 ifr>0,s<0,r=s5 (mod 2)
In this case, Q(r, s) = | =522 ifr>s,5>0,r=s (mod 2)

0 otherwise

\
Here we see this, as the positive noncompact roots are (1,1), (2,0), and (0, —2),

so that we have

7";8(0,—2) - (r—2)(1,1)+¥

(r,s) =r(1,1) + (0,—2) + (2,0) = ...

giving us the above values. Observe that x — ¢+ 1 > 0 always , and also that
y<zand k> —{>/{sothat t — ¢+ 1>y —k — 1 and the second term never

contributes. Then we have two cases as depicted below
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L y<(laz>k M(x,y) = | ==k£2]

I (<y<az+l—Fk My = LMJ

4.2 Induced representations

Now let us consider the multiplicities of K-types of induced representations of

Sp(4,R). These are given by Mui¢, and we restate them here for our convenience.

4.2.1 Borel induced

Let n; = ||” sgn® be characters of R*. Then from [3] Lemma 6.1,

(7 % 1m2 2 1)|yee)
~ @ #{i;0<i<z—y,i=x+e (mod2)}Vy,.
z+e1=y+ez (mod 2)
To rephrase this in a manner more suitable to our purposes, we note that one

only obtains K-types V(,,) with  +y = € + €2 (mod 2) and the multiplicity is

r—y+Cx,y,x+¢€
M(z,y) = L4 CERT ), (12)
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4.2.2 Siegel induced

In this case we have 0(n,k) the unique irreducible subrepresentation of
k k
n |2 sgn*! x 1|72 on GLy(R). Then the induced representation decomposes as

follows, by [3] Lemma 6.1:

r—y—k+1
(0(n, k) ¥ Dlv@) ~ & ——— Vi)

2
z—y—x>0,z4+y=k+1 (mod 2)
We can rephrase this as stating that the K-type with highest weight (z,y) has
multiplicity 0 when either y >z —k —1orz+y Z k+ 1 (mod 2) and otherwise

has multiplicity
r—y—k+1

M(z,y) = 5

(4.3)

All K-types will be in the region under the line indicated below.

4.2.3 Klingen induced

We consider three different types of representation on the Klingen subgroup from
which we may induce. Recall that X (s,+) is a discrete series or limit of discrete
series with lowest weight s+ 1, and X (s, —) is a discrete series or limit of discrete
series with highest weight —s — 1, and Vj is finite of dimension s. Also, J(p) will
be defined as the set of j such that j = p+ 1 (mod 2), with j > p+ 1 in the
lowest weight (+) case and j < —p — 1 in the highest weight (—) case. We will

also be inducing from a character n = ||*sgn®. For all cases, the multiplicity will
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be nonzero only if z +y = p + € + 1. From Muié¢ [3] Lemma 6.1, we have the
following:
Lowest Weight

When inducing from the lowest weight representation, we have

n X X(p,+)lve = . #{1 € JW)iy <j < a}Viy.

p=z+y+e+l (mod 2)

This gives us that the multiplicity of the K-type (z,y) is nonzero in the following

regions.

L y<paz>p My) = |22

I y>pa>p My = |52 - [452]
Highest Weight

When inducing from the highest weight representation, we have

p=x+y+e+l (mod 2)

This gives us that the multiplicity of the K-type (z,y) is nonzero in the following

regions.
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L y<—-pax>-p My = L_p_f’“]

L y< pos-p Moy = |30 - |=2]

Finite
When inducing from the finite representation, we have

(n 3 V)lue =~

&b #{j;j=p+1 (mod2),je[-p+1p—1]N[y 2]} Viy.

p=ki+ka+et+1l (mod 2)
This gives us that the multiplicity of the K-type (z,y) is nonzero in the

following regions.

I 111
i v
L y>-—pa<p My =57 - [32

II. y<-pzxz<p M

(w,y) = |
(w.y) = |

ML y>-pa>p My = |24
(,y) =p

IV: y<—p,x>p M



4.3 Limits of discrete series

Recall our notation for limits of discrete series on sl(2,R). We denote by X*(p,0)
the limit of holomorphic discrete series with Harish-Chandra parameter (p,0) and
by X?(0, —p) the corresponding limit of anti-holomorphic discrete series. Also,
X?(p,0) and X*(p, —p) are limits of large discrete series of the first type, and

X0, —p) and X?(p, —p) are of the second type.

4.3.1 X'(p,0)

First, we consider X!(p,0) with Harish-Chandra parameter (p,0) and lowest
weight (p + 1,2). By Proposition 2.5 in [4] we have that the lowest weight
module N (k,¢) is irreducible for £ > 2, so the lowest weight module N(p + 1, 2)
is irreducible. Since X'(p,0) is a lowest weight module with the same lowest
weight, we may obtain the multiplicities of K-types from Lemma 2.7 of [5] which
are identical with those given by the Blattner formula for a holomorphic discrete
series with such a Harish-Chandra parameter. The multiplicities of X?2(0, —p) will
be symmetric to these and are therefore also given by the Blattner formula as if

it were an anti-holomorphic discrete series.

4.3.2  X2%(p,0)

Next, from Lemma 8.1 in Mui¢ [3],
13 X (p,+) =~ X' (p,0) & X*(p,0).

We may then restrict to K to use this to determine that the multiplicities of

K-types X!(p,0) and X?(p,0) sum together to give the multiplicities of K-types
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of 1 x X(p,+).
Then we may determine the multiplicities of K-types of X?(p,0). Recall that
the multiplicities of K-types of 1 x X(p,+) are as follows, nonzero only when
r+y=p+1 (mod 2):

la: y<px>p M(z,y) = f—TpHJ

Ma: y>pae>p My =|=52] - |52

Also recall that the multiplicities of K-types of X'(p,0) are as follows, from

above, nonzero only when x +y =p+ 1 (mod 2):

Ib: 2<y<p+l,y<z—p+1 M(z,y

<

( L
Ib: z—p+1<y<p+l,z>p+1 Mz, Lm HJ
z—p+1
( == - 1%
IVb: p+1<y<z—p+1 M (z, 14] — |52
Notice that IT and III, and I and IV agree in the case y = p so we may use them

IIb: y>p+l,z—p+1<y<z M

T,y

)
)
)
y) =

interchangeably in such a case.

Then by subtraction, we can see that the multiplicities of K-types of X?(p,0)

are:
Ia-Ib: 2<y<py<z—-p+1 M(xay):a:_p;—yﬂ
Ia-IIb: e-ptl<y<pa>p+1 M(z,y) = L‘HQMJ - Lx_gﬂj =0
Ta: y<2,e>p+1 M(z,y) = [ =5+
Ila-Illb: y>p+te—p+ri<y<a M(z,y)=0
MaIVb: p+i<y<a—pt M (x,y) = =25

Recall that if the Blattner formula applied here, it would give multiplicities of
L y<Oz>p+1, My =[5

II: 0<y<z—p-—1, M(z,y) = x*p;y+1

Then we conclude that the multiplicities of K-types of X?(p,0) are in fact given
by the Blattner formula. The multiplicities of X'(0, —p) are symmetric and are

therefore also given by the Blattner formula.
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4.3.3 X'(p,—p)

The remaining limits of discrete series to consider are X!(p, —p) and X?(p, —p),
both limits of large discrete series. We may use Lemma 8.1 in Muié [3], which

states

§(1,2p) x 1~ X' (p, —p) & X*(p, —p).

Because we know that X' (p, —p) only has K-types of type (x,y) for x > p+1
and X?(p, —p) only has K-types of type (z,y) for y < —p — 1 we can entirely
determine the multiplicities of K-types in X*(p, —p) with y > —p. They agree
with those given by the Blattner formula for a large discrete series with Blattner
parameter (p + 1, —p) as expected. That is, for —p <y < 2z —2p — 1, we have
M(z,y) = | =222 | . However, we must use another method to determine the

multiplicities in X*(p, —p) for y < —p

From Theorem 10.4 in Mui¢ [3],

[P sgn? x X (p, +) = X*(p, —p) + Lang (||" sgn” x X (p, +))

We may use this to determine the multiplicities of K-types (z,y) in

Lang (|| sgn? x X (p, +)) for y > —p. In particular we may note that both ||” sgn? x
X(p,+) and X(p, —p) have multiplicities of M(z,—p) = x_T”H for y = —p, so
that Lang (]|” sgn? x X (p,+)) has no K-types with weight y = —p.

Lang (||” sgn? x X (p, +)) does have a K-type at (p + 1,—p + 2). By examining
commutators, we can determine this K-type is then a lowest weight. Specifically,
we know that if we take a vector v in this K-type with weight (p + 1, —p + 2),

and apply elements from our basis for sp(4, C), the following occurs. We have
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Ny FPy_v=Fy_N,v =0, but we know that Fy_v is not a highest weight vector in
a K-type, as there is no K-type in Lang (||” sgn? x X (p,+)) with highest weight
(p+1,—p), so Py_v = 0. Once this is known, also note by commutation relations,
N.P,_v=P,_N,; =0. But we know that there are no K-types with maximal
weight (p,—p + 1) in ||"sgn? x X (p,+), so that P,_v = 0. Then also note
NN, X_v=X_N.N,v=0. But there are no K-types with maximal weight
(p,—p+1)or (p—1,—p+2)in ||”sgn” x X(p,+), so that X_v = 0. Then the
K-type at (p+1,—p+ 2) is a lowest weight K-type for Lang (|| sgn? x X (p, +)),
so that the Langlands quotient is a lowest weight representation with lowest weight
A=(p+1,—-p+2).

Using Proposition 2.5 from [4], we know that this lowest weight representation is
irreducible and can determine its multiplicities. In particular, it has no K-types
with y < —p, so that we can determine the remaining multiplicities of X*(p, —p)
are M(z,y) = L%ﬂj for y < —p,x > p+ 1, which are the same as those which
would be given by the Blattner formula for a large representation with Blattner
parameter of (p + 1, —p). Similarly, the multiplicities of X?(p, —p) are symmetric,

and thus those given by a large representation with Blattner parameter (p, —p—1).

4.4 Langlands quotients

We may use the preceding facts about composition series and K-types of induced
representations and discrete series representations to determine the K-types of all

Langlands quotients.

4.4.1 Quotients of the Klingen
First, consider those with p >t > 0, p,t € Z.
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Lang(||'sgn’ »x X (p, +))

We know from (2.25) that Lang(]|’sgn’ x X (p,+)) is a quotient of ||’sgn’ x X (p, +)

by X(p,t) & X(p,—t). By using previously determined multiplicities for these

representations, we find that the K-types for this representation are given by two

regions as follows, nonzero only for z + y =p+t+ 1 (mod 2).

L y>tx—t—p<y<z+i-p

I: x—t—p<y<ta>p
I1I:

IV: t<y<zx—t—p

Lang(|'sgn’ »x X(p, —))

y<zr—t—p,—-t<y<t

1
1}

M(z,y) = |=5=] - [ 5]

M(z,y) = |5+ ] (8.4

M(z,y) = [ 4]

M(z,y) =t

We know from (2.26) that Lang(||’sgn’ x X (p, —)) is a quotient of ||’'sgn’ x X (p, —)

by X (—t,—p) @ X (t, —p). By the same process as above, we find that the K-types

for this representation are given as follows, nonzero only for x +y =p+t+1

(mod 2).

IT
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L z<—tao—t-p<y<az+t—p May)= L] |2

I z—t—p<y<-pz<t M(z,y) = | L2t (45)
M y<z—t—p—t<a<t M(z,y) = | 5]

IV: y<aox—t—p,ax<—t M(z,y) =t

Lang(|['sgn*" x X(p,+))

We have that Lang(||*sgn’™ x X (p, +)) = ||'sgn’™ x X (p, +) as it is irreducible.
Therefore the multiplicity of the K-type (x,y) is nonzero in the following regions,

forx+y=p+t (mod 2).

L y<pz>p My)=|=2"

I y>pax>p M(zy) =|ZLt] — |42
Lang(||'sgn"' x X (p, —))

Similarly, Lang(||’sgn®™! x X (p, —)) = ||’sgn’*! x X (p, —), so then the multiplicity

of the K-type (z,y) is nonzero in the following regions, for z +y = p+t (mod 2).
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L y<-px>-p Mzy) =22

L y<-—pao<—p My =[5 - [~52]

Lang(||Psgn?™ x X (¢, +))

Next, note by (2.17) that Lang(|[Psgn?™* x X (¢,+)) is a quotient of |[Psgn?™! x
X(t,+) by [|'sgn™ x X(p, +).

Therefore by our results above on the multiplicity of K-types of the multiplicity
of [[!sgn’™! x X (p, +), it follows that the K-type (x,y) is nonzero in the following

regions, for z +y =p+t (mod 2).

—

IT

A
Y

L t<a<py<t M(zy)=|=t]

L z>py<t M(z,y) = [=55] - [=5=]

I z<pt<y<z Mzy) =[] - [5]
(z,y) = | =]

IV: x>pt<y<p M
Lang(||’sgn?*! x X(t, —))

Similarly, by (2.18), Lang(][Psgn?™ x X (¢, —)) is a quotient of ||Psgn?™ x X (¢, —)
by [[!sgn’™ x X (p, —). Then the multiplicity of the K-type (z,y) is nonzero in

the following regions, for z +y = p+t (mod 2).
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A
Y

Y
Il I
M II

L z>—t,—p<y<—t My =[5

I w=2—ty<-p Mey) = |25+ = [=5]

I z<pt<y<az M(z,y) = | =50 | — |2tz

IV: —p<a<—ty<-—p My = |ZF7] - [Z55] - |52

Now consider those cases with p >t =10

Lang(||’sgn? x X (p,+))

First, by (2.29) Lang(|[Psgn? x X(p,+)) is a quotient of ||Psgn? x X (p,+) by

X'(p,—p).

Then the multiplicity of the K-type (z,y) is nonzero in the following regions, for

r+y=1 (mod 2).

IT

. p<y<zy>x—2p
I: x>px—2p<y<zx
ML y<a—2p,-p<y<p
IV: p<y<z-2p
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II
M(z,y) = [=52] - [52]
M(z,y) = [ =5 (46)
M (z,y) = | 2]
M(z,y) =p



Lang(|[’sgn” 3 X (p, —))

Now by (2.30), Lang(|[Psgn? x X (p,—)) is a quotient of |[Psgn? x X (p, —) by

X2(p, —p).

Then the multiplicity of the K-type (x,y) is nonzero in the following regions, for

r+y=1 (mod 2).

Y

IV 1III

L z<-prz—-2p<y<z
I z2-2p<y<-pa<p
I y<z—-2p,—p<z<p

IV: y<ax—2p,x<—p

Lang(|[Psgn”*" x X(p, +))

M(z,y) = |“5=] - [~

M(w,y) = |5+ ] (4.7)
M(z,y) = |57

M(z,y)=p

We have Lang(||Psgn?™! x X (p, +)) = [|Psgn?™! x X (p, +) by Lemma 9.5 in [3].

Then the multiplicity of the K-type (x,y) is nonzero in the following regions, for

r+y=1 (mod 2).
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L y<pz>p My = |2

L y>par>p My =[5> - [5]
Lang(|[’sgn”"" x X(p, —))

Lang(|[Psgn?™ x X (p, —)) = ||Psgn?™! x X (p, —) as it is irreducible.
Then the multiplicity of the K-type (x,y) is nonzero in the following regions, for

r+y=1 (mod 2).

L y<-px>—-p Mzy) = |22

II: y<-pax<—-p M(zy) = L—p—2y+1J _ L—xz—pj _ x*erC(;,y,PJrl)

Lang(||Psgn”™ x X (0, +))

Note that Lang(||Psgn?™ x X (0,+)) is a quotient of [|Psgn?™ x X (0,+) by
sgn x X (p, +) from (2.37)
Then the multiplicity of the K-type (z,y) is nonzero in the following regions, for

r+y=p+1 (mod 2).

IV

IT
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(z,y) = [ =]

I 2>py<0 M(z,y) = [ =] — [ =5+
M 2<p0<y<az M(zy) ==

IV: 2>p0<y<p M(zy)=|=]
Lang(|[’sgn?™ x X (0, —))

We see by (2.38) that Lang(||Psgn?*! x X (0, —)) is a quotient of ||[Psgn?™ x X (0, —)
by sgn x X (p, —), so then the multiplicity of the K-type (z,y) is nonzero in the

following regions, for z +y =p+ 1 (mod 2).

I
11

L —p<y<0,2>0 Mzy) = |2

I y<-p,xz>0 M(z,y) = rygﬂj - WEPHJ

M z<p-p<y<z M(zy) = |22 - |5]

IV: y>—p,—p<ae<0 My =" -[5] - |7

4.4.2 Langlands quotients of the Siegel
Lang(s(]|"> sgn',p + ) x 1)

Observe that Lang(5(||p7_t sgn’,p+t) x 1) is a quotient of 5(||p7_t sgn’,p+1) x 1
by X(p, —t) & X(t, —p) by (2.22).
Then the multiplicity of the K-type (x,y) is nonzero in the following regions, for

r+y=p+t+1 (mod 2).
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L y<-—pt<e<p M

I y<-pax>p M
UL 2 <p,—p<y<z—t—p My

Vi —p<y<—ta>p M(x,y

+t

Lang(5(||'= sgn'™!,p—1) x 1)

Now note from (2.20) and (2.21) that Lang(é(H%t sgn’™ p —t) x 1) appears
in a composition series such that we may determine its K-types by taking the
multiplicities of those in § (||p7+t sgn®™ p —t) x 1 and subtracting multiplicities
given in 5(]]% sgn’, p+t) x 1, Lang(||*sgn’ x X (p, +)), and Lang(||"'sgn’ x X (p, —)).

This gives us nonzero multiplicities as follows, for x +y =p+¢+ 1 (mod 2):

[ 11

vV
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I: y>-par<pr-p—t+i<y<az—p+t+1 M(x,y) mfyfgﬂﬂ
. —t<y<tx>p M(z,y) = Lt_gHJ
II: y<—p,—t<zx<t M(z,y) = L”;HJ
IV: y<—-tx>py<z—p—t+1 M(z,y) =t

Lang(5(||* sgn?, p) x 1)

Next, by (2.40), Lang(5(||gsgnp,p) x 1) is a quotient of (5(||gsgnp,p) x 1 by

X0, —p) ® X2(p,0).

Then the multiplicity of the K-type (z,y) is nonzero in the following regions, for

r+y=p+1 (mod 2).

Y
I | 1V
I |II
L y<-p0<z>p M(z,y) = |2t
II. y<-pax>p M(z,y) = p—1+(;(p,17:v)
: z<p,—p<y<z—p My = Ifygpﬂ
Vi —p<y<0,z>p M(z,y) = |74 ]

4.4.3 Remaining cases

The following representations induced from the Klingen require knowledge of

K-types of Langlands quotients of the Siegel, so they appear here.
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Lang(|[’sgn” > X (0, +))

Now we see from Theorem 11.2 in [3] that Lang(|["sgn? x X (0,+)) has K-types

that can be determined by taking those of ||Psgn? x X (0, +) and removing those

from X?(p,0) and Larlg(5(||g sgn”, p) x 1)

Then the multiplicity of the K-type (z,y) is nonzero in the following regions, for

r+y=p+1 (mod 2).

I —p<y<0,y<z-—p

Ir. >0

IV: 0<y<z-—p

Lang(|[’sgn” % X (0, —))

M(z,y) = |

M(z,y) = | 5] (48)
M(z,y) = =] - [4]

M(z,y) = | 3]

Next we see from Theorem 11.2 in [3] that Lang(|[Psgn? x X (0, —)) has K-types

that can be determined by taking those of ||Psgn? x X (0, —) and removing those

from X*'(0, —p) and Lamg(é(”g sgn? p) x 1)

Then the multiplicity of the K-type (z,y) is nonzero in the following regions, for

r+y=p+1 (mod 2).
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L 0<z<y+py<0
I 0<z<py=>x+p
III: z<0,y<z<y+p
IV: y+p<x<0

Lang(|["sgn? x X(t,4))

M(z,y) = | 5]

M(z,y) = | =52 (49)
M(z,y) = [57] - [F]

M(z,y) = [%]

We can see from (2.9) that Lang(||Psgn? x X (¢, +)) is a quotient of ||[Psgn? x X (¢, +)

by what was called V; ; with constituents X (p, —t), Lang(5(||"= sgn,p — t), 1),

and Lang(|[’sgn’ x X (p, +)).

Therefore by our results on the multiplicity of K-types, we can calculate the

following multiplicities for K-types (x,y), nonzero only when z +y = p + ¢

(mod 2).
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I: y>—tr—t—p<y<zxr—2t

I: z—t—p<y<—t,x>t
I y<z—t—p,—p<y<-—t

IV: —t<y<zx—t—p

Lang(|["sgn” x X (t, —))

M(z,y) = [=55] = [%57]

M(a,y) = [ =5 (4.10)
M(z,y) = | “22]

M(z,y) = | 25*]

We can see from (2.10) that Lang(||Psgn? x X (¢, —)) is a quotient of |[Psgn? x X (¢, —)

by what was called V; _ with constituents X (

and Lang(||*sgn’ x X (p, —)).

t,—p), Lang(3(||"= sgn’, p — t), 1),

Therefore by our results on the multiplicity of K-types, we can calculate the

following multiplicities for K-types (x,y), nonzero only when = +y = p + t

(mod 2).

I. r<t,—y—-2t<x<—-y—t—p M(z,

. —t<es<—-—y—t—paxr>t
mr: —z<-y—t—pt<z<p

IV: —y—t—-p<ax<t

(z,y) = |25 ] = [747]
M(z,y) = |75+ ] (411)
M(z,y) = | =52
M (z,y) = | 25*]

4.4.4 Langlands induced from the Borel

First, consider those with p >t > 0



Lang(||’sgn? X ||'sgn’ x 1)

First, Lang(|[Psgn? x ||'sgn’ x 1) 2 ||Psgn? X ||'sgn’ x 1, so we obtain multiplicities

of M(z,y) :w, forx+y=p+t (mod 2).

Lang(||Psgn? x |['sgn‘t! x 1)

Next, from (2.8), Lang(|[Psgn? x ||'sgn’*?

x 1) is a quotient of |[Psgn? x V; by
Lang(8(]|" sgn**',p — )  1).
Then the multiplicity of the K-type (z,y) is nonzero in the following regions, for

r+y=p+t+1 (mod 2).

I
v IV VI

11 V V]
L yzatt-py>—taoct M(z,y) = | =2 | — |5t
II: y>ao+t—py<tt<z<p M(z,y) = LtngrlJ
II: y>e+t-—p-p<y<—tz>—t M(z,y) = LWF;“J
IV:  y<azdt—py>—ta<t M(z,y) = P—(t+1)+2(1(a:,y,t+1)
Vi y<ett-p-psy<-—t-t<e<t M(z,y)=|[S2|
VI y<oti-p-t<y<ti<a<p  M(z,y) = |25
VI y>a—t—py<—taz>t M(z,y) t*wﬂ;ryfl

Lang(|[Psgn?*! x ||'sgn’ x 1)

Now note by (2.27) that Lang(|[Psgn?*! x ||'sgn® x 1) has K-types that can
be determined by taking those from ||’sgn’ x V,, and subtracting those from

Lang(5(||p7_t sgn'™ p+1t) x 1) and Lang(5(||p7+t sgn'™p — 1) x 1).
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IT

IV
IT

L y>ae+t—py>-par<p My = |5 - |52
I t<y<paxzzp M(z,y) = |4

I y<-pt<az<p M(z,y) = |22+ |

IV: y<ty<z+t—pz>-t My =]

Lang(||psgnp+1 X ||tsgnt+l % 1)

Next we have Lang(||Psgn?™ x [|'fsgn’™ x 1) = |[Psgn?™! x V
Then the multiplicity of the K-type (x,y) is nonzero in the following regions, for

r+y=p+t (mod 2).

I T
1T v
L y>-tao<t My = |- [%]
I y<—-te<t M(xzy) = {H;HJ
L y>—tz>t Mzy) ==L
IV: y<—tox>t M(zy) =t

Then consider those with p =t > 0
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Lang(||Psgn? x |[Psgn?*! x 1)

We see that Lang(|[Psgn? x |[PsgnP** x 1) 2 ||Psgn? x Vj,. Then the multiplicity of

the K-type (z,y) is nonzero for z +y = p (mod 2).

I 111
II v
I: y>—p,x<p M(l',y) = L$—227+1J - L%J
I y<-par<p My = LH;)HJ
L y>-pa>p M(zy) = |
IV: y<—-px>p M(z,y=p

Lang(|[Psgn?'! x |[Psgn?*! x 1)

Similarly, Lang(|[PsgnP*! x |[PsgnP*! x 1) 22 |[PsgnP*t 1 V,

Then the multiplicity of the K-type (x,y) is nonzero for x +y =p+ 1 (mod 2).

I I1I

L y>-—pa<p May) = |2 - |52
I y<-pa<p My = |21

ML y>—pa>p My = |24

IV: y<—-pax>p M(z,y =p



4.5 Non-integer coefficients

Now we consider |[*sgn® x |[%2sgn® x 1 where at least one of s, s, is not an
integer. These representations are reducible if one of four conditions are met,
and are otherwise irreducible with K-types as given above. The first reducibility

criterion is that €3 = so + 1 (mod 2). In this case, we have for s, > 0 that
||t sgn X (X (s2,+) ® X(s2,—)) < [["'sgn X |[*2sgn? x 1 — [|**sgn x V,
and for sy = 0 that
||*'sgnt X sgn x 1 ~ ||**sgn x (X(0,4) ® X (0, —))

Here we only consider the case that s; ¢ Z, so all constituents are irreducible.
For the case of ¢ = s; + 1 (mod 2), we note that as long as sy ¢ Z, it gives

an isomorphism
[|°tsgn X [|*2sgn® x 1 ~ ||*2sgn x ||**sgn x 1,

at which point the representation reduces as above.
Now for the case where 51 — 53 € Z4g, €1 + €2 = 51+ 52 + 1 (mod 2), we have

that

(115 s, 51 — 52) % 1 =[5t x ||sgn 1 1 — ¢(|| ™% sgn?, 51 — 5) 1

We consider the case where at least one and therefore both of s, sy ¢ Z, in which

case the constituents are irreducible.
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For the case s1+s3 € Z4g, €1+€2 = 5145241 (mod 2), we have an isomorphism

[|"tsgn® x [["2sgn® x 1 ~ [|*'sgn x ||”*2sgn® x 1

in this case as long as sy ¢ Z. Then the representation reduces as above.
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Chapter 5

Restriction of Langlands

quotients

5.1 Relation between Langlands quotients of
GSp(4,R) and Sp(4,R)

Earlier we considered restriction of induced representations from GSp(4,R) to
Sp(4,R), now we will consider the restriction of Langlands quotients of GSp(4, R)

to Sp(4,R). There are several cases to be examined. First, we will need a lemma.

Lemma 5.1. Let (m,V) be a unitary representation of GSp(4,R). Then the

following are equivalent:
e 7 is a discrete series representation.

° ’/T‘Sp(47R) =7 &d ... DT, where 1; are discrete series representations on

Sp(4,R).
Proof. First, suppose (m, V') is a unitary discrete series representation of GSp(4, R).
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Then fsp(4,R)i [(m(g)v1, v2)|* dg < o0, so that fSp(4,R) [(m(g)v1, v2)|* dg < co. But
then 7T|Sp(47R) =71 ®...PD T, for some collection of irreducible representations
of Sp(4,R), and it follows that for each such representation 7; we will have
fSp(4,1R) |(73(g)v1, v2)|? dg < co. Then each 7; is a discrete series representation on
Sp(4,R).

Next, let us consider the other direction. Let (7, V) be a unitary represen-
tation of GSp(4,R) with m|spur) = 71 @ ... ® 7, where 7, are discrete series

representations on Sp(4,R). Then each fSp(4 ®) [(7:(g)v1, v2) > dg < o0, so that

fsp(47R) |<7T(9>U17U2>|2 dg < oco. But
| el dg - 5.)
Sp(4,R)*
1 2
/ (7 (g)vy, va)|* dg +/ <7r(g)7r ({ 1 }) vl,vg> dg < oo,
Sp(4,R) Sp(4,R) —1
so that (7, V) is a discrete series representation. ]

5.2 Representations induced from the
Siegel parabolic subgroup
Unless stated otherwise, we assume that p >t > 0, p,t € Z for the following.

Case of 5(||@sgnt,p+t) X o

We have from (2.15) that as representations on Sp(4, R),

p—

(p—1) (p—1)
X(p,—t) ® X(t,—p) = o(|| "= sgn’,p+1) x 1 — Lang(d(|| "= sgn’,p +1),1).
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(p—

Now, we may extend J(|| Tt)sgnt, p+t)x1 to arepresentation on GSp(4, R), namely
5(||L§t>sgnt,p+ t) x 0. Then this gives us an action of [1 1., 1] on X(p,—t)®
X(t,—p). Under this action, X (p, —t) must be mapped to a;other irreducible
subrepresentation of 5(||L§t)sgnt, p—+t)x1. However, as Lang(é(H@sgnt, p+t), 1)
is a Langlands quotient, we know that the only irreducible subrepresentations
are X (p, —t) and X (¢, —p). By examining the weight structure, we can determine
that it must be mapped to X (¢, —p), and therefore X (¢, —p) must be mapped to
X(p, —t). Then we may extend X (p, —t) ® X (¢, —p) to a GSp(4, R) representation.

As we may extend the induced representation and the kernel, therefore we may
extend the quotient, Lang(d(H@sgnt,p +1),1), to a GSp(4, R) representation.

We then note that extension of 4(|| @sgnt, p—+t)x1 in this manner gives us a repre-

sentation (|| et sgn’, p+t) o, and that extension of the irreducible representation

Lang(é(]]@sgnt,p—i—t), 1) gives us an irreducible quotient of 5(\\L§wsgnt, p+t)xo.
This must be the Langlands quotient, as it is a unique irreducible quotient. From

this we can see that the restriction of Lang(é(H@sgnt,p +1t),0) to Sp(4,R) is

Lang(5(]| = sgnt, p + 1), 1).

Case of §(||2,p) x o, p>0

From (2.29), we know that X?2(p,0) @ X'(0,—p) < 4(]|2,p) x 1 —
Lang(d(]|2,p),1). Now we can extend §(]|2, p) x 1 to GSp(4, R) and we may extend
X?2(p,0) ® X1(0, —p) also, as similar to previous cases we may examine weights
to determine [1 1, } X2%(p,0) = X'(0,p). Then Lang(d(||2,p), 1) extends to
an irreducible quotier;cl. We can see this quotient must be Lang(5(]|2, p), o) as it

is the unique irreducible quotient. Therefore the restriction of Lang(d(||2,p), o)

to Sp(4,R) is Lang(8(||2,p), 1).
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5.3 Representations induced from the Klingen
parabolic subgroup

We continue to assume that p >t > 0, p,t € Z for the following.

Case of [|'sgn’ x [|°sgn’D,

From composition series, we see that, as Sp(4, R) representations,
X(p.t) ® X(p,—t) = [|'sgn’ x X(p, +) — Lang(||'sgn’, X (p, +))
and
X(t,—p) ® X(~t,—p) = ||'sgn’ x X (p, —) — Lang(|['sgn’, X (p, —)).

Then we know that X (p,t) ® X (p, —t) ® X (¢, —p) ® X (—t,—p) — ||'sgn’ x
(X(p,+) ® X(p, ~)) —» Lang(|['sen’, X (p, +)) ® Lang(|sn’, X(p, -).

Now we can extend X (p,+) @ X(p,—) from a representation of SL(2,R) to
one of GL(2,R). Then we may extend ||’sgn’ x (X (p,+) ® X (p, —)) to GSp(4,R),
giving ||'sgn’ X oD,. As a result, we may also extend X(p,t) & X(p,—t) ®
X(t,—p)® X (—t,—p). To do so, consider {1 vy } X(p,t). We know this must
be mapped to another irreducible subrepresentati;l, and by considering weights,
we know that it must be X (—¢, —p). Similarly we may determine that X (p, —t)
is mapped to X (¢, —p).

Then we may extend the quotient, Lang(||'sgn’, X(p,+))®
Lang(||’sgn’, X (p, —)). Suppose the extension is not irreducible. Then it

must have a subrepresentation restricting to Lang(||'sgn’, X (p, +)). However,
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from the weight structure of Lang(||’sgn’, X (p,+)), there can be no GSp(4,R)
representation that restricts to only Lang(||’sgn’, X (p, +)). Then the extension of
the direct sum must be an irreducible quotient.

Since this is an irreducible quotient of ||’'sgn’ x D,, we can see this quo-
1§

tient must be Lang(||*’sgn’, ||°sgn?D,). Then we can see that the restriction of

Lang(|['sgn’, [|sgn?D,) to Sp(4, R) is

Lang(|['sgn’, X (p, +))@® Lang(||'sgn’, X (p, -)).

Case of [|'sgn’™ x ||°sgn?D,

From known composition series, we see that [|’'sgn’™ x X (p, +) and ||'sgn’™ x
X(p,—) are irreducible. We may then extend X (p,+) @ X(p,—) to GL(2,R)
so that ||*sgn’™ x (X (p,+) & X(p,—)) extends to ||’sgn’™ x oD,. Then as
above, this representation must be irreducible as a GSp(4,R) representation.
Therefore the restriction of Lang(||*'sgn®™ x ||°sgn?D,,) from GSp(4,R) to Sp(4, R)

is Lang(||'sgn™, X (p, +)) @ Lang(||’sgn’™!, X (p, —)).

Case of |[Psgn? x ||°sgn?D;, p >t > 0

From (2.9) and (2.10) we see that as Sp(4,R) representations,

Viy = |[Psgn? x X (t,4) — Lang(||"sgn”, X (¢, +))

Vi = [[Psgn”" x X (¢, —) — Lang(|[Psgn”, X (t, -)).

As we can extend the constituents of Vi, & Vj _ to a GSp(4, R) representation
we can then extend Vi, @ Vi _ itself. Also, |[Psgn? x (X (t,+) @ X (¢, —)) extends
to ||Psgn? x ||°sgn?D;.

We may then extend the quotient of Lang(|[Psgn?, X (t,+))®
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Lang(|[Psgn?, X (¢, —)), which must then be irreducible in GSp(4,R) by its
weight structure, similar to the previous cases.

Since the extension of the quotient is an irreducible quotient of ||Psgn? x
||°sgn?D; it must be Lang(|[Psgn? x ||°sgn®D;). From this we conclude that the
restriction of Lang(||Psgn? x ||*sgn?D;) from GSp(4,R) to Sp(4,R) is
Lang(|[Psgn?, X (1, +)) & Lang(|Psgn?, X(t, )

Case of |[Psgn?™! x ||sgn?Dy, p >t > 0

From (2.17) and (2.18) we know that, as Sp(4, R) representations,

[Isgn"™ 3 X (p, +) — |[Psgn”*" x X(t,+) — Lang(|[’sgn”", X (¢, +))

|[!sgn™ x X (p, —) < [|Psgn?™ x X (¢, —) — Lang(||Psgn?*!, X (¢, —)).

We may then extend |[Psgn?™ x (X (t,+) & X (t,—)) as above to |[Psgn?™ x
||°sgn?D;. Similarly, ||'sgn* x X (p, +) and ||!sgn’™ x X (p, —) are irreducible,
and we have determined that they extend to ||’sgn’*™! x ||°sgn?(X (¢, +) ® X (¢, —))
which must be itself irreducible.

We may then extend the quotient of Lang(|[Psgn?™, X(¢t,+)) &
Lang(|[Psgn?™, X (¢,—)), which must then be irreducible in GSp(4,R) by its
weight structure, similar to before.

Since the extension of the quotient is an irreducible quotient of [|Psgn?™! x
||°sgn? Dy it must be Lang(||Psgn?*! x ||°sgn?D;). From this we conclude that the
restriction of Lang(|[Psgn?™! x ||°sgn?D;) from GSp(4,R) to Sp(4,R) is

Lang(|[Psgn”™!, X (£, +)) & Lang(|[Psgn*", X (t, -)).
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Case of [|Psgn? x ||°sgn’D,, p >0, p€Z

From (2.25) and (2.26) , we see that, as Sp(4, R) representations,

X'(p,—p) = ||Psgn” x X (p,+) — Lang(|[’sgn”, X (p, +))

X?(p,—p) = ||Psgn® x X (p, —) — Lang(|["sgn”, X (p, —)).

But then we have that

X'(p,—p) ® X*(p, —p) = ||Psgn” x (X (p, +) ® X (p, —)) —

Lang(|[?sgn?, X (p,+)) & Lang(||Psgn?, X (¢, —)).

Similar to above, we may extend ||Psgn? x (X(p,+) ® X (p,—)) to a GSp(4,R)
representation. We may then also extend X'(p, —p) & X?(p,—p) to an irre-
ducible GSp(4,R) representation in a consistent manner. This allows us to
extend the quotient, which must also be irreducible by the weights of the
Sp(4,R) summands, so it is the Langlands quotient Lang(||’sgn?, 0 D,). Then
we see that the restriction of Lang(||Psgn®,||°sgn?D,) to Sp(4,R) is precisely

Lang(| |Psgnp7 X(p7 +)) D Lang(| |psgnp’ X<p7 _))

Case of [|Psgn?™ x ||°sgn?D,, p > 0

From (2.27), we see that [|Psgn?™ x X (p, +) and ||Psgn?*! x X (p, —) are irreducible,
so that as above and considering their weights, their extension to GSp(4,R)
is the irreducible representation |[Psgn?™! x ||°sgn?D,. Then the restriction of
Lang(|[Psgn?™!, ||°sgn?D,) from GSp(4,R) to Sp(4,R) is

Lang(|[’sgn”*!, X (p, +)) @ Lang(|[’sgn”*", X (p, —)).
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Case of sgn x ||°sgn’D,

From (2.33), we see that sgn x X (p, +) and sgn x X (p, —) are irreducible, so that
as above sgn x D), is the irreducible extension of their direct sum. Then the restric-
tion of Lang(sgn, ||°sgn?D,) from GSp(4,R) to Sp(4,R) is Lang(sgn, X (p, +)) &

Lang(sgn, X (p, —))-

Case of |[Psgn? x ||°sgn?D

We may use (2.35), stating that

X%(p,0) @ X'(0, —p) = 6(]|2sgn, p) x 1 — Lang(5(||2,p) x 1)

to conclude that the restriction of Lang(||Psgn?, ||°sgn?Dy) from GSp(4,R) to

Sp(4,R) is Lang([["sgn”, X (0, +)) & Lang([["sgn”, X (0, —)).

Case of |[Psgn?*! x ||°sgn?D,

From (2.32) and (2.33), we see that sgn x X (p, &) < |[Psgn?™! x X (0,4+) —»
Lang(|[Psgn?™, X (0,4)). Similar to previous cases we may extend the direct
sum of the middle terms in the composition series to GSp(4,R), and then ex-
tend the direct sum of the first terms in a consistent manner. This then al-
lows us to extend the quotient which must be irreducible by considering the
weights of its summands as Sp(4,R) representations. It then follows that the
restriction of Lang(|[Psgn?*!, [|°sgn?Dy) to Sp(4, R) is Lang(|[Psgn?™, X (0,+)) @
Lang(|[Psgn?**, X (0, —)).
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Case of 1 x ||°sgn?Dy, n unitary

By [3] Lemma 6.1, representations of the form n x X (0, £) are irreducible when
7 is unitary. We may extend the direct sum of both of these representations
to GSp(4,R), giving n % ||*sgn?Dy. By the weights of its summands, it must
be an irreducible GSp(4,R) representation. Therefore is is its own Langlands
quotient, so the restriction of Lang(n, ||*sgn?Dy) to Sp(4,R) is Lang(n, X (0, +)) ®
Lang(n, X (0,—)).

5.4 Representations induced from the Borel
parabolic subgroup

First let us consider representations on GSp(4,R) of the form ||Psgn® x ||'sgn? x
||®sgn’ with a,b,¢,d € Z and both a > ¢ > 0 and a + ¢ > 0. This then breaks

down further into cases which will be addressed.

Case of ||Psgn? x ||'sgn’ x ||°sgn’ with ¢ > 0

We may use Lemma 7.1 from [3] which states that ||[Psgn? x ||'sgn’ x 1 is irreducible
with these conditions in combination with the fact that [|Psgn? x |[*sgn’ x ||°sgnf
restricts to |[Psgn? x ||’sgn’ x 1 when we restrict action to Sp(4,R) to conclude
|[Psgn? x ||'sgn® x [|°sgn’ is irreducible. Then Lang(||Psgn?, ||’sgn’, ||°sgn’) must

restrict to Lang(|[Psgn?, ||'sgn’, 1).
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Case of |[Psgn?*! x ||'sgn’ x ||*sgn’/ with p >t >0

We may use (2.23), stating that
X(pt) ® X(~t,—p) = ((||"* sen’,p — ) @ 1 — Lang(|["sgn”*" x [|'sgn’ » 1)

to see that Lang(||Psgn?*?, ||'sgn, ||°sgn/) must restrict to
Lang(|["*!sgn”, |['sgn, 1).

From (2.8), we see that
Lang(3(|"%*sgu"*" p — 1) 5 1 [[Psgn? » Vi — Lang(| P |san', 1)

. Similar to previous cases we may extend the direct sum of the middle term in
the composition series to GSp(4,R), and then extend the first term in a consistent
manner. This then allows us to extend the quotient which must be irreducible
by considering the weights of its summands as Sp(4, R) representations. It then
follows that the restriction of Lang(||Psgn? x ||'sgn‘*! x ||°sgn/ to Sp(4,R) is

Lang(||Psgn? x |['sgn’™! x 1.

Case of |[Psgn?*! x ||'sgn’*! x ||°sgn/ with p >t >0

From (2.16), we have that |[Psgn”™ x V; = Lang(|[Psgn?™ x ||'sgn** % 1).
We can also see from (2.16) that |[[Psgn” x X (t,+) @ |[Psgn” x X(t,—) <
|[PsgnPtt x [|'sgn’tt x 1 — ||PsgnP*™ x V;. Then we may see that the restriction of

Lang(|[Psgn?™ x ||'sgn®™ x ||°sgn”) to Sp(4, R) is Lang(||Psgn?™ x ||'sgn®™ x 1).
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Case of |[Psgn? x ||’sgn? x ||°sgn’

We may use Lemma 7.1 from [3] which states that |[Psgn? x |[Psgn? x 1 is irreducible
with these conditions in combination with the fact that |[Psgn? x ||[Psgn? x ||°sgn”
restricts to ||Psgn? X ||Psgn? x 1 when we restrict action to Sp(4,R) to conclude
|[Psgn? x |[Psgn? x ||®sgn’ is irreducible. Then Lang(||[Psgn?, ||Psgn®, ||®sgn’) must

restrict to Lang(||Psgn?, ||Psgn?, 1).

Case of ||Psgn? x ||Psgn?*! x ||°sgn/, p > 0

From (2.24), we have that |[Psgn? x V,, = Lang(|[Psgn? x [|Psgn?™! x 1). Then we
can also see from (2.24) that |[Psgn? x X (p,+) + ||Psgn? x X (p, —) < ||Psgn? X
|[PsgnP™ x1 — ||Psgn? x V,,. Then we may see that the restriction of Lang(||Psgn? x

|[PsgnPT x [|°sgn’) to Sp(4,R) is Lang(||Psgn? x |[PsgnP™! x 1).

Case of |[Psgn?*! x ||Psgn?*! x ||°sgn/, p > 0

From [3] Lemma 7.5, we have that |[Psgn?™ x V,, = Lang(|[Psgn?™ x ||Psgn?*! x 1).
Then by (2.27), we can see that |[Psgn?™ x X(p, +) @ [[Psgn?™ x X(p, —) —
|[PsgnPT™ x |[PsgnP™ x 1 — |[Psgn?™ x V,,. Then we may see that the restriction of

Lang(|[PsgnP*! x |[Psgn?*! x |[®sgn’) to Sp(4, R) is Lang(||Psgn?*! x [|PsgnP*! x 1).

Case of |[Psgn? x 1 x ||°sgn’, p > 0

We may use Lemma 7.1 from [3] which states that |[Psgn? x 11 is irreducible with
these conditions in combination with the fact that |[Psgn? x 1 x ||sgn/ restricts to
|[Psgn® x 1 x 1 when we restrict action to Sp(4,R) to conclude |[Psgn? x 1 x ||®sgn’
is irreducible. Then Lang(|[Psgn?, 1, ||*sgn/) must restrict to Lang(||Psgn?, 1,1).

Finally, there is a remaining case that is resolved here.
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Case of 5(||p7+tsgnt,p —t)Xxo,p>t>0

From (2.13) and (2.14), we have two exact sequences:
W < §(]|" sgn’, p — t) x 1 — Lang(5(||"= sgn’,p — ¢), 1)
and
5(]|"2 sgn’, p+1) x 1 — W —» Lang(||'sgn’ x X (p, +)) & Lang(|[’sgn’ x X (p, —).
Now that we know both &(||"2 sgn’,p +t) x 1 and
Lang(||'sgn’ x X (p,+)) @ Lang(||'sgn’ x X (p, —)

are restrictions of GSp(4,R) representations, W is as well. Then we may con-
clude Lang(8(]|"2 sgn’, p — t),1) is the restriction to Sp(4,R) of a quotient of
(5(Hp7+tsgnt,p —t) x o on GSp(4,R). Such a quotient must then be irreducible as
a GSp(4,R), and so it must be that Lang(6(||"z sgn’,p — t), o), when restricted

to Sp(4,R), restricts to Lang(d(]|"z sgnt,p — t),1).
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Chapter 6

Gelfand-Kirillov dimension

We now consider the Gelfand-Kirillov dimension of irreducible admissible repre-

sentations of Sp(4, R). These results will be collected in the tables in Appendix A.

6.1 Definitions

Here we deal with representations as (g, K') modules, with g = sp(4,C), as we
wish to work with the complexification of the Lie algebra sp(4,R). For a Lie
algebra representation of g, we view the representation as a finitely generated
U(g) module V| where U(g) is the universal enveloping algebra of g. We then use

the basis for g of
{Z7Z/aP0+7P0—7P1+7P1—7X+7X—7N+7N—} (61>

as defined in (1.5). By the Poincaré-Birkhoff-Witt theorem, we may then take a

basis for U(g) consisting of elements of the form

701 Z/% P P PRs PRe X 97 X8 N9 N (6.2)
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where each «o; € Z>(. Define U,(g) as the subspace generated by those basis
elements with degree at most n. Then we take a generating subspace Vj of V' and
make V' a graded module with V,, = U, (g)Vy. Then there exists a polynomial d(n)
with degree at most dimg with d(n) = dim V,, for large enough n by [7] Lemma
2.1. The degree d of this polynomial is the Gelfand-Kirillov dimension of the

representation V. For the representation (7, V), we shall define Dim(7) = d.

Lemma 6.1. Let (w,V') be an irreducible admissible representation of Sp(4,R).
IfveVisin a K-type Vige, then Ui(g)v contains only elements from K-types
Viwey where k +0 =2 <K' + 0 <k+l+2andk -0 —-2<FK -0 <k—-{+2.
Further, for n € Zo, U,(g)v contains only elements of K-types of the form Vi ¢

where k +0—2n < k' + 0V <k+/0+2nandk —0—-2n<k' -0 <k —/{+2n.

Proof. First we assume that v is a highest weight vector in its K-type, with weight
(k,?). Note that Zv, Z'v,N,v,N_v are all either 0 or in the same K-type.

We then consider that X, v has weight (k + 2,¢), and Ny X, v = X, N,v =0,
so that X v has highest weight and must belong to V(442¢. Then note P, v has
weight (k+ 1,0+ 1), and N, Pi,v =P, N,v+2X,v=2X,v, so that P,,v is a
sum of highest weight vectors from V{311 ¢.1) and vectors from Vi 2,). Now we
examine Py v, which has weight (k, ¢+2), and N Py, v = Py, Nyv+Pyv = 2P, v,
so that Pyyv is a sum of highest weight vectors from V(; s19) and vectors from
Viks1,e41) and Vigyop).

Continuing, note that Py_v has weight (k, ¢ —2), and Ny Py_v = Py,_N,v =0,
so that Py_v has highest weight and must belong to Vi —2). Then note P,_v has
weight (k—1,—1), and Ny P,_v=P,_Nyv—2P_v=—2P_v, so that P,_v is
a sum of highest weight vectors from Vi_; ,_1) and vectors from V{; ,_2). Now we

examine X_ v, which has weight (k—2,¢),and Ny X v =X _Nyv—P, v=—P, v,
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so that X_v is a sum of highest weight vectors from V{;_2, and vectors from
Vik—1,0—1) and Vig o—2).

Now we shall consider the case where v is not a highest weight vector in its
K-type, using induction. We have completed the base case, so suppose that
for v such that v = N™' for v' a highest weight vector, we have that U(g)v
contains elements from K-types Vi ) where k + /¢ —2 < k' + /' < k+{(+2 and
k—0—2<FKk —0 <Kk —0+2. Ifwvissuch that v = N""/ for v/ a highest
weight vector, then v = N_N"v'. For any X € Uy(g),[X,N_] =Y € U;(g). But
then Xv = XN_N™ = N_XN"v' + Y N™. Then by hypothesis, X N"v" and
Y N"v' have K-types in the desired region, and so too will N_ X N"v', so that it
follows Xv will also.

This proves that Uy (g)v contains elements from K-types V(i ¢y where k4-0—2 <
4+l <k+l(+2andk—{0—-2<kK —-V<k—-(+2

By induction, as U,11(g)v = Ui(g)U,(g)v, we conclude that U,(g)v is in a
K-type Vi oy where k +0 —2n <K' +0' < k+{l+2nand bk —(—2n <k - ' <

k— 1+ 2n. n

Proposition 6.2. Let (w, V) be an irreducible admissible representation of
Sp(4,R). If the multiplicity of K-types contained in w is bounded, then Dim(m) <

3.

Proof. Choose some v € V. Then Cv =V} is a generating subspace for V. By
hypothesis, the multiplicity of any K-type is bounded by some integer N. Also, v
is contained in a K-type Vi), and we shall let M be the maximum of |k| and
|¢|. Then using Lemma 6.1, we conclude that U, (g)v can only contain elements
of K-types Vi ¢y where =M —2n < k' < M +2n and —M —2n < ' < M + 2n.

Each such K-type has a multiplicity of at most N, and contains elements with at
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most 2M + 4n 4+ 1 distinct weights. Using these facts to obtain an upper bound,
we find dim U, (g)v < N(2M + 4n + 1)(2M + 4n + 1)?, which is of degree three

in n, so that Dim(7) < 3.

6.2 Gelfand-Kirillov dimensions for lowest
weight modules

Now let us consider the irreducible representations that are realizable as lowest
weight modules. These cases include the holomorphic discrete series, limits of
holomorphic discrete series. Also, by examining results on K-types from Chapter
4, Lang(||'sgn® x X(p,£)) for p > t > 0 is lowest weight by (4.4) and (4.5),
Lang(|["sgn?x X (p, £)) for p > 0 is lowest weight by (4.6) and (4.7), Lang(||Psgn? x
X (0,4)) for p > 0 is lowest weight by (4.8) and (4.9), and Lang(||Psgn? x X (¢, 1))
for p > ¢t > 0 is lowest weight by (4.10) and (4.11). In all of these cases we can
determine the Gelfand-Kirillov dimension by using Lemma 2.3 from [7]. Each of
these representations is can be realized in the form X = U(gc) ®p V with V' the

lowest weight K-type, and b in our case is the subspace with basis
{2,Z'.Py_,P_,X N, N_}. (6.3)

Then DimX = DimV + dim g/b = 0+ 3. Each of these representations therefore

has Gelfand-Kirillov dimension d = 3.
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6.3 Gelfand-Kirillov dimensions for large repre-
sentations

Next, we will consider the large representations, as by Vogan [7] Theorem 6.2, the
large irreducible representations are precisely those irreducible representations with
Gelfand-Kirillov dimension 4 and they are, up to infinitesimal equivalence, those
representations that are a subrepresentation of the Borel induced representation
[|*tsgnt x [|*2sgn® x 1 with Re(s;) > Re(sg) > 0.

Breaking down into subcases, we first consider the case when at least one of
$1, So is non-integer. Then either ||*'sgn® x |[*2sgn® x 1 is irreducible, in which
case it is a large irreducible representation, or it reduces. If it reduces, there are

four cases to address.

e In the case sy € Z and €3 = s + 1 (mod 2), then we see by (2.1) that
||*1sgn x X (s2,+) and ||**sgn® x X (s2, —) are irreducible subrepresenta-

tions.

o If s9¢7Z, s €Z and ¢ = 57 +1 (mod 2), then we see by (2.1) and (2.3)
that |[**sgn® x X (s2,+) and ||**sgn®* x X (sy, —) are irreducible subrepre-

sentations.

o If sy —so=ke&Zy and € —e; = k+1 (mod 2), then we see by (2.4) that
J

s1ts2 . . . .
2 sgn®, s; — s9) ¥ 1 is a irreducible subrepresentation of |[*'sgn x

||*2sgn®? x 1.

o If s +5y=Fk€Zy and ¢ + e =k +1 (mod 2), then we see by (2.4) and

(2.5) that 5(|]le;2 sgn®, s; — $3) X 1 is a irreducible subrepresentation.

In the situation where p,t € Z, there are several subcases to examine, for which
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the composition series will be helpful. We will handle the case of p =t = 0 later.

Until then, we assume p >t > 0 and p+t > 0.
e First, note that |[Psgn? X ||’sgn’ % 1 is irreducible by section 2.2.

e Next, consider ||Psgn?! x [|'sgn’™! x 1. This then has subrepresentations
||Psgn?* x X (t,+) and |[Psgn?™! x X (¢, —) by (2.16). Then, if p > ¢ > 0,
we see that that |[Psgn?™ x X (¢,+) has an irreducible subrepresenta-
tion ||'sgn™t x X(p,+) = Lang(||'sgn’t* x X(p,+)) by (2.17). Simi-
larly, |[Psgn?™! x X (¢, —) has an irreducible subrepresentation [|'sgn‘*! x
X(p,—) = Lang(]|’sgn’™ x X(p,—)) by (2.18). Now consider the de-
generate cases, beginning with p = ¢t > 0. In this case, we have that
Psgn?*! x X (p, +) = Lang([[Psgn™ » X (p, +)) and |Psgu?* = X (p, —) =
Lang(|[Psgn?*™ x X (p, —)) are irreducible subrepresentations from (2.31). Fi-
nally, when p > t = 0, we have by (2.36), (2.37) and (2.38) that sgnx X (p, +)
and sgn x X (p, —) are irreducible subrepresentations of |[Psgn?™! x sgn® x 1

and are therefore large.

e Then, consider ||Psgn?* x ||’sgn’ x 1. When p > t this has the subrepresenta-
tion (5(Hp7+tsgnt,p—t) X1 by (2.19). Then for the case p > t > 0, we have that
5(||"= sgnt, p+1t) x 1 is a subrepresentation of §(||"> sgn’, p—t) x 1 by (2.20)
and (2.21). Further, the large discrete series X (p, —t) and X (t,—p) are
subrepresentations of 8(||"Z sgn’, p +¢) x 1 by (2.22). Next, we consider the
degenerate case p >t = 0. Then the limits of large discrete series X?(p,0)
and X'(0, —p) are subrepresentations of §(||%,p) x 1 by (2.39) and (2.40).
Then there is the degenerate case p = ¢t > 0, which by (2.29) and (2.30)

gives us that X (p, —p) and X?(p, —p) are large irreducible representations.
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e Finally, consider [|Psgn? x |[[!sgn‘t! x 1. This then has subrepresenta-
tions [[Psgn? x X (¢, +), ||Psgn? x X (t,—) and §(||"= sgn'™, p — ) x 1. As
5(||"= sgnt*l,p — ¢) x 1 ~ §(||"= sgnt, p — ) x 1, we need not examine it
further. For the case p >t > 0 we have by (2.9),(2.10),(2.11), and (2.12)
that ||Psgn? x X (¢, £) contain the large discrete series X (p, —t) and X (¢, —p)
as subrepresentations. The first degenerate case is where p > t = 0 in which
case by (2.32) and (2.33), §(||2sgn, p) x 1 contains X?(p,0) and X'(0, —p)
as subrepresentations, so they are large. In the second degenerate case,
with p =t > 0, we see that X!(p, —p) is an irreducible subrepresentation
of ||Psgn? x X (p,+), and X?(p, —p) is an irreducible subrepresentation of
||Psgn? x X (p, —) by (2.28), (2.29), and (2.30) so they are large representa-

tions.

6.4 Gelfand-Kirillov dimensions in the remain-
ing cases

Now we move on to the remaining non-large representations. First, we have the
finite representation, Lang(|[Psgn? x ||’sgn’*! x 1). As this representation has
finite dimension, U,(g)v will have constant dimension for sufficiently large n, so
that it has a Gelfand-Kirillov dimension of 0.

Finally, there are those representations that contain a wedge of K-types in the
sense that they contain an element v and a subspace consisting of all elements
of the form NE‘XJBFP&U with «, 8,7 € Z~o. Then we may find a lower bound
for the Gelfand-Kirillov dimension by taking a subspace of U,(g)v generated

as a vector space by elements of the form NfoPJ_U with a 4+ 6 + v < n.
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For the purposes of a lower bound, we may assume v be an element of the
K-type V(p0). Then each X EP&U is a highest weight vector of V(a5 o), and

then each NE‘XJBFPOV_U is a distinct nonzero vector as long as a < 25 + 27.

n

Then when o + 8+ v = n, letting m = |%| we have at least > (i+1) =
i=m-+1

(n+1)2(n+2) _ (m+2)2(m+3) > (n+1)2(n+2) _ GG 3"2%”*16 elements. This gives a

2

lower bound on the dimension of U, (g)v of Z_il 3i2+§i_16 = 3”("+1)(2"+11)£3”(n+1)_96"
so that the Gelfand-Kirillov dimension is_at least 3. This holds true for any
representation with a similar wedge of K-types. For such representations that
are not large representations, we also know that the Gelfand-Kirillov dimension
must be strictly less than 4 by Vogan [7] Theorem 6.2 as that is an equivalent

condition to being a large representation. Then all such representations must

have Gelfand-Kirillov dimension d = 3.
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Appendix A

Constituents of induced

representations

The following tables give all irreducible constituents of each induced representation
and their Gelfand-Kirillov dimension. This is derived from the composition series

presented in chapter 2 and the work in chapter 6 on Gelfand-Kirillov dimension.
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Table A.1: Klingen induced from finite

Representation ‘ Irreducible constituents ‘ Dim
s¢l
|"sgn® x V, [ Irreducible E
p,teZ,p>t>0
Psgw? Vi | Lang(8(] sn™! p— ) x 1) |3
Lang(|[” sgn? x || sgn*** x 1) 0
[P sgn?t! x V; | Lang(]|” sgn?*" x ||"sgn’t! x 1) | 3
||"sgn? x V, Lang(||” sgn?*! x [|"sgn’ x 1) 3
p—t
Lang(d(|| = sgn’,p+1t) x 1) 3
Lang(é(HpT“ sgn’ p—1t) x 1) 3
[["sgn®™t x V, | Lang(||” sgn?*' x X (t,+)) 3
Lang(]|” sgn?* x X (¢, —)) 3
Lang(||” sgn?*! x ||"sgn™' x 1) | 3
pteZ,p=t>0
[|” sgn? x V, Lang(||" sgn? x ||"sgn?™ x 1) |3
[|” sgnP™ %V, | Lang(||" sgn?™ x |["sgn?** x 1) | 3
pteZ,p>t=0
sgn XV, Lang(||” sgn?*™ »x X(0,+)) 3
Lang(]|” sgn?* x X (0, —)) 3
1%V, Lang(8(]| sgn?, p) x 1) 3
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Table A.2: Klingen induced from discrete series and limits of discrete series

Representation \ Irreducible constituents \ Dim
s¢Z

I sgn® x X(p,£) | Irreducible [ 4
pteZ,p>t>0

["sgn’ @ X(p,+) | X(p,—1)

X(p.t)

Lang(|| sgn’ x X (p, +))

||tsgnt X X(p7_) X(t7 _p)

X(t.p)

Lang(|| sgn’ » X (p, —))

" sgn’ ™ % X(p,+) | Lang(|"sgn’"" » X(p, +))

IPsgn? x X(t,+) | X(p,—1)

Lang(é(“p%t sgn’,p+1t) x 1)

Lang(||" sgn’ % X (p, +)

Lang(||* sgn® x X (¢, +)

o = X ) [ X 1)

Lang(5(]|"7 sgn’,p +¢) » 1)

Lang(||" sgn’ x X (p, —)

Lang(||" sgn® x X (t, —)

I[P sgnP*t x X (¢, %) | Lang(|| sgnt! x X (p, £))

Lang(||” sgn?* »x X (¢, +))

pteZ,p>t=0

P sgn” x X(p,+) | X'(p, —p)

Lang(|[" sgn® x X (p, +))

[Psgn? x X(p,—) | X*(p,—p)

Lang(||” sgn” x X (p, —))

[[” sgn?™ x X(p,£) | Lang(]|” sgn”™* x X(p, £))

W HRIW W W AW W W A&k W W WWk

=W W
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Table A.3: Klingen induced from discrete series and limits of discrete series,
continued

Representation \ Irreducible constituents \ Dim
pteZ,p=1t>0

[Psgn? x X(0,+) | X*(p,0) 4
Lang(8(]|% ,p) » 1) 3
Lang(|[” sgn? x X (0,+)) 3
||” sgn? x X (0,—) X0, —p) 4
Lang(d(||* ,p) x 1) 3
Lang(][" sgn? x X(0,—)) |3
I[P sgnP™ x X (0,4) | sgn x X(p,+) 4
Lang(||” sgn”™ % X (0,4)) | 3
sgn x X (p, £) Irreducible 4
1% X(p,+) X?(p,0) 4
X'(p,0) 3
1% X(p,—) X'(0,-p) 4
X2(0, —p) 3
1% X(0,+£) Irreducible 4
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Table A.4: Siegel induced

Representation \ Irreducible constituents \ Dim
s¢ 7
O, k) x 1 | Irreducible | 4

pte€Z,p>t>0

517 ,p+1t) x 1| X(p,—t) 4
Lang(5(]|'T ,p+1t)x 1) | 3
PEE
51" ,p—t)x 1| X(p,—t) 4
Lang(5(]|'T ,p+1t) % 1) |3
Lang(||"sgn’ x X (p,+)) | 3
Lang(||"sgn’ 3 X (p, —)) | 3
Lang(5(]|"Z .p—1)x 1) | 3

pteZ,p=1t>0

0(1,2p) x 1 X(p, —p) 4
X?(p,—p) 4

pteZ,p>t=0
5(I% ,p) % 1 X?(p,0) 4
X0, —p) 4
Lang(d(||* ,p) x 1) 3
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Table A.5: Borel induced

Representation

\ Irreducible constituents

=
=

pte€Z,p>t>0

P sgn? x ||"sgn’ x 1

Irreducible

I[P sgnit! x ||Psgn? x 1

X(p7 _t) .

Lang(5(||" sgnf,p+1) x 1)
Lang(||' sgn’ x X (p, +)
Lang(||" sgn® x X (t,+)

X(tv _p) .

Lang(d (H%sgn ,p+1t) x1)
Lang H sgn x X(p,—)
Lang(]" Sgn X X(t -)

Lang (H > sgn'™ p —t) x 1)
Lang Hp sgn? x ||"sgn’*! x 1)

I[P sgn? 1t x ||"sgnt*! x 1

+)
Lang(|| sgn" » X (p, -))
Lang(||” sgn?*™ x X (¢, +))
Lang(][” sgn?*! x X(t -))
Lang(|[” sgn”*! x || sgn*** x 1)

(
(
(6
(
LangEH Sgn'”rl x X(p,+))
(
(

I[P sgn? 1 x ||"sgnt » 1

X(p7 _t)

X(p,1)

Lang(|| sgn’ x X (p, +))

X(t7 _p)

X(t,p)

Lang(|| sgn’ »x X (p, —))

Lang(|[” sgn?*! x || sgn’ x 1)

Lang(6(]|“7 sgnt,p+ ) x 1)
pt

Lang(d(]| > sgn’,p—t) x 1)

W W W W W WWHRhRWWWEAE EAROW WWW AW WWw k-
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Table A.6:

Borel induced, continued

Representation

\ Irreducible constituents

=
=

D,

teZ,p=t>0

||V sgnP™ x ||" sgn? x 1

X'(p,—p)
Lang(||” sgn” x X (p, +))
X2(p, —p)
Lang(||” sgn? x X (p, —))

[P sgnPtt x [P sgnPT! x 1

Lang([[” sgn”*! % X (p, +))
Lang(||” sgn”™! x X (p, —))
Lang(||” sgn?*! x ||V sgn?™! x 1)

(

Lang(]|” sgn? x || sgn?™ x 1)
(
(

QL = W W R W

D,

teZ,p>t=0

[|P sgnPt x sgn x 1

sgn X X (p,+)
sgn X X(p, —)
Lang(||” sgn”™ »x X (0, +))
Lang(||” sgn?* »x X (0, —))

[P sgnP™ x 1 x 1

X2(p,0)

X(p,0)

X1<07 _p)

X2<07 _p)

Lang((]|% sgn?, p) x 1)
Lang(||" sgn”™ x 1 x 1)

sgn X [|[Psgn? x 1

X¥(p,0)
Lang(d(|[?,p) x 1)
Lang(||” sgn? x X (0,+))
X1<Oa _p)p
Lang(d(|[?,p) x 1)
Lang(||” sgn? x X (0,—))

W W k= WW R WW Wbk WA WWks &
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Appendix B

Restriction of representations

These tables contain the results of restricting Langlands quotients of GSp(4, R)

to Sp(4,R), as determined by chapter 5.

Table B.1: Langlands quotients supported on the Klingen parabolic

pteEZp>t>0
Lang(||"sgn’, [|°sgn?Dy) Lang(||" sgn’, X (p, +)) ® Lang(||" sgn’, X (p, —))
Tang(|["sgn® 1, |1° sgn Dp) | Tang(I["sen™1, X (p, +)) & Lang(]|' sen™* |, X (5, =)
Lang(|[? sgn?, || sgn?Dy) Lang(||” sgn?, X (¢, +)) @ Lang(||” sgn?, X (¢, —))
Tang([Psgn” || sen”Dr) | Lang([Psgn” T, X (5, +)) @ Lang(|[” sgn"* 1, X (5, =)
pEZ,p>0
Lang(|[” sgn?, ||°sgn?Dp) Lang(||” sgn®, X (p, +)) ® Lang({|” sgn?, X (p, —))
Lang(|[” sgn?*", [|sgn?Dyp) | Lang(||” sgn?*!, X (p, +)) & Lang([|” sgn® ™", X (p, -))
Lang(|[” sgn”, [|“sgnDo) | Lang(||” sgn?, X(0, +)) & Lang(][” sgn?, X (0, -))
Lang(|[” sgn?*", [|sgn?Do) | Lang(||” sgn?*?, X(0, +)) & Lang(||” sgn? ™", X (0, -))
S¢Z,Z5p>0
Tang(l" sen, T 52n°D,) | Lang(IT sgn, X (p, 1)) & Lang (Il 5gn, X5 =)
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Table B.2: Langlands quotients supported on the Siegel parabolic

ptEZp>t>0

Lang(3(|| "= sgn,p+t),0) | Lang(8(]|"2 sgn®,p+1),1)
T t
Lang(3(|| "> sgn,p—t),0) | Lang(d(||"> sgn,p—t),1)
pEZ,p>0
D D
Lang(8(|| 2 sgn‘, ), o) | Lang(6(||% sgn®,p), 1)
s — % ¢ 7
Lang(O(||" sen*, k), o) | Lang(5(][" sgn*, k), 1)

Table B.3: Langlands quotients supported on the minimal parabolic

pteEZ,p>t>0

Lang(||” sgn?, ||" sgn’, 0) Lang(||” sgn?, ||" sgn’, 1)

Lang(|[” sgnP 1, ||" sgn’, o) Lang(|[” sgnP 1, |[" sgn’, 1)
pEZ,p>0

Lang(||” sgn?, ||P sgn?, o) Lang(||” sgn?, ||P sgn?, 1)

Lang(|[? sgn?, [[P sgnPT1, o) Lang([[? sgn?, [[P sgnPT1 1)

Lang(|[? sgnPT1 [P sgn?T1 o) | Lang([|? sgnPT1,[[P sgnPT1 1)

a,b € C\Z, Re(a) > Re(b) >0
Lang(||* sgnt, [["sgn‘2,0) [ Lang(||” sgn?, ||" sgn°2, 1)
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Appendix C

Decomposition tables

Here we collect tables with multiple decompositions of the Borel induced repre-
sentations of GSp(4,R). The full induced is in the upper left with two different
decompositions in its row and column. The remaining boxes contain the irre-
ducible constituents of each larger constituent. This information derives from the

composition series in chapter 2. Note that for these tables, sgn is abbreviated as

simply s due to space constraints.

Table C.1: Irreducible decomposition, p,t € Zq

T —
[EsH X PP o | CUPF s p—t)xo | 6" sHpttixa | W
[["s" Dy X(p,t) X(p,—1) L(|["s' x Dyp)
t t (=L
L(['s' x Dy) LG s, p+1) o)
S
|[PsP x Vi L(|["s**! x ||PsP x o) L(3(|"2 s+, p—t) % 0)
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Table C.2: Irreducible decomposition, p € Z~g

PpFT x [[PsP xo | (([[PsPTL,0) x o o(sPT1,0) x o
PsP x Dy, L(||P sP x Dp) X(p, —p)
PSP x V), L([PsPTT x [|PsP x o)

Table C.3: Irreducible decomposition, p € Z~g

sx|[Ps? xo | C(IZs,p) %o 5([5s,p) no
[Ps? > Do | L(Ps? Do) | X% (p,0)
y
L(3(]|% 5,p) % 0)

Table C.4: Irreducible decomposition, p,t € Z~q

_ _
P57+ x |'stxo | ¢(I"F stp—t) %o | 8(1"Z stp+tyxna | W
[["s* x Dy X (p,t) X(p,—t) L(Htstf D)
—t t
II' s % Vj L([PsP+ x |['st x o) | LS(|"7 st,p+1) x0) | LE(I"Z st,p—1t) x o)

Table C.5: Irreducible decomposition, p € Z~q

PPFL % [PsP xo | ([|PsP,0) x o o(sP,0) X o
PsP x Dy, L(]|P sP x Dp) X (p, —p)
PP x V, L(J[PsPTT x [[PsP x o)

Table C.6: Irreducible decomposition, p € Z~q

PPt x 100 | (1% .p) no 5(12,p) xo
1x Dp XhOZ(p,O) Xlarge(p,o)
1xV, L(PsP+t x 1xo) | LG(||2 s,p) x o)

Table C.7: Irreducible decomposition, p,t € Z~q

[IPsPHT x [|Fstt I s o | [[PsPHl % Dy [|P sPT1 % V4
HtsH'l x Vp L(||PsPtt x Dy) | L(||PsPT! x Htst‘H X o)
[T D, L[5 D)

Table C.8: Irreducible decomposition, p € Z~

[P X [PsF  xo [ PP x D, | P97 %V |

Table C.9: Irreducible decomposition, p € Z~q

[[PsPTl xsxa | [[PsPTL x Do
sx Vp L(J|P sPTT % Do)
sx Dp, L(s x Dp)
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Appendix D

L- and e-factors

The following tables give the L- and e-factors of all irreducible GSp(4, R) repre-

sentations. These are calculated in chapter 3.
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Table D.1: Degree 4 L-factors

Representation Irreducibles L(s, ) e(s, o, )
L[5, 175, 758n) | $—arere ® pruate & | Ta(s taterer DiaGtate | -1
Otete DP—e Tr(s+c+elr(s+e+1)
L(|[*sgn, |[°sgn, |[¢) Oratete D P—ate D | Tr(s+a+c+e)r(s+a+e+1) —1
P—cte D P+e Fr(s+cte+Dlr(s+e)
L([|sgn, [1°, [|°sgn) O+,atctre D Prate @ | R(s+a+cte)lr(s+a+te) -1
P—,cte DP—e Fr(s+ct+e+DIg(st+e+1)
L(I[%, ][°sgn, |[*sgn) Pt,atcte D P—ate © | TR(sta+c+e)lr(s+a+e+1) -1
P+.cte Do e Fr(st+ct+e)lr(st+e+1)
L([[*sgn, 1%, ) Y—atcte ® P—ate ® | I'R(s+a+c+e+1)Ir(s+e) -1
Piete ®Pte Pr(s+at+e+DI'r(s+c+e)
L(]|%, [|°sgn, [°) Y—atcte ® Prate @ | Ir(s+atcte+Ir(s+a+e) -1
P—cte D P+e Fr(s+ct+e+ Dlr(s+e)
L([l*, 1%, [|°sgn) Y—atcte ® p—are ® | R(s+atcte+1) 1
Saf,cw‘»e@ﬂpf,e FR(5+G+6+1)
Tr(s+c+e+1)Tr(s+e+1)
L[l 11%, 1) P+,atete ® Ptrate @ | TR(s+a+c+e)lr(s+a+te) 1
Pt,cte D Pte Tr(s+c+e)'r(s+e)
Table D.2: Degree 4 L-factors
Representation Irreducibles L(s, ) (s, o, )
L(O(I7, 2k +1),[1%sgn) | ¢—at2r @p2rt1,0+-® | Tr(s+a+2r+lr(s+a+1) | (=1F
Y—.a F@(s—l—a—&—r—&—k—l-%)
L(s(lI", 2k), [|*sgn) Y+,at2r © P2katr @ | TR(s+a+2rTr(s+a+1) (—D)FFT
Y—.a I'c(s+a+7r+k)
L™, 2k + 1), 1) Pt.at2r DP2kt1.atr® | Tr(s+a+2r)Ta(s +a) (=DF
Pta Te(s+a+r+k+3)
L(a([", 2k), 1) ¢—ator © P2katr @ | Tr(s+a+2r+ Ir(s+a) (=DFF
P+.,a Pe(sta+r+k)
L(||*sgn® x [|°sgn?Dy) | ¢ra+e ® pra Te(s+ate+ Hlc(s+a+l) | (=1
Table D.3: Degree 4 L-factors
Representation Irreducibles L(s, ) (s, o, )
Xa1 0521 > X2 >0 PA1422,0 D PAL—X0,0 Pe(s + 222 0 (s + 2522) | (—p M+l
Xa1,-22: A1 > A2 >0 | 903, 420,0 P ©r;—20,0 To(s + 222\ (s + 2522) | (=DMl
1
Xpo'5p>0 ©p,0 D ¥p,0 Te(s+ 5)le(s + 5) (—1rH!
X,%.p>0 #p,0 @ ©p,0 Ie(s+ 5)lc(s + 5) (=Pt
X, _,,p>0 ©—,0 D P2p,0 D P+,0 Tc(s +p)Tr(s)Tr(s +1) (=Pt
Xy _pp>0 =0 D P2p,0 D p+.0 Fe(s+p)lr(s)r(s +1) (=DPHt
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Table D.4: Degree 5 L-factors

Representation Irreducibles L(s, p) (s, o, 1)
L([[*sgn, [[°sgn, [[°sgn) | ¢—a@¢p—,c®p+,0® | Tr(s — £+ 1)Tr(s) 1
YD P —a I'r(s—5+I'r(sta+1)Ir(s+c+1)
L([|*sgn, [[°sgn, [|°) Va®p—c®pt0® | Tr(s+a+ TR(s +c+ 1)Tg(s) 1
W*,*CEBﬁpf,fa 1—‘]R(S_ % +1)FR<S_ % +1)
L(||a5gn7‘|cvl‘85gn) Y—aDP+,cDpP+,0D F]R(S"Fa"rl)FR(S-FC)FR(S) —1
Ot —cBP—.—a Pr(s— 5+ DIr(s — 5)
L([|%,[I°sgn, ||°sgn) Cra®p_c®or0® | Tr(s+a)Tr(s+c+ 1)Ir(s) —1
O —c DY+t —a Tr(s — $)Tr(s—§+1)
L([|*sgn, [[,]]°) V—a® oy c®pr0® | Tr(s+a+ 1)Tr(s + c)Tr(s) a1
Prc® P a Ti(s — % + )la(s — £)
L(I[%, [|°sgn, |°) Cra®oc®pt,00 | I'r(s+a)l'r(s+c+ 1)I'r(s) -1
P——cDPt,—a Ir(s — 9Ir(s—5+1)
L([1%,11°, [°sgn) P+,aDP+,cDp4+,0D | Tr(s +a)lr(s + c)'r(s) 1
Pt —c®Pt,—a r(s —a)l'r(s —¢)
L(Ha:l'che) P+,0a D P+,c DP+,0D FR(S+G)FR(S+C)FR(S)FR(S—a) 1
Pt —c®@Pt,—a Pr(s —¢)
Table D.5: Degree 5 L-factors
Representation Irreducibles L(s, ) e(s, 0, )
L(s(lI", 2k + 1), ||*sgn) Vont1,2r D P40 ® | To(s+2r+k+3)Tr(s)De(s—2r+k+1) 1
P2k41,—2r
L(o(l]", 2k), [|*sgn) Pok2r D p+0 D | Lels+2r + k)Tr(s)c(s — 2r + k) —1
P2k, —2r
L(o(ll™, 2k + 1), 1[%) Pokt1,2r D P40 D | Dels+2r + k)Tr(s)Ic(s — 2r + k) 1
P2k+1,—2r
L(s(I", 2k), 11%) Von2r ® w40 ® | Do(s+2r+k+5)Tr(s)De(s—2r+k+1) -1
P2k, —2r
L(]|*sgn x [|°sgn?Doy,) Y—a & w—o0 & | I'p(s+a+1DI'r(s—a+1)Ir(s+1) —1
P, —a D Pak,0 Tc(s + 2k)
L(]|*sgn x [[°sgn?Dags1) | ¢+.a ® w—0 @ | [r(s+a)Tr(s—a)Tr(s+1)Cc(s+2k+1) —i
P+,—a D Pak+2,0
L([[* x [[°sgn? D) Y+ra D v—0 @ | Tr(s+a)Tr(s—a)Tr(s+ 1)Tc(s+2k) i
P+,—a D Pak,0
L([[* x [[°sgn?Dapq1) P—a D 9—0 D | Tr(s+a+1)Ir(s—a+1)Ir(s+1) i
V- —a D Pakt2,0 (s +2k+1)
Table D.6: Degree 5 L-factors
Representation Irreducibles L(s, ) €(s, 0, 1)
Xap a2 A > A2 >0 | 92x,,0 D 94,0 D Paxg 0 Te(s + A2)Tr(s)Tc(s + A1) (DM
X1, =205A1 > A2 >0 | 022,,0 B @+,0D 02,0 Tc(s+ A2)Tr(s)Ce(s + A1) (—1) A+t
Xy dSp >0 910D P00 00940 | (Tr(5)?Tr(s+ 1)Tc(s +p) (-1ptt
Xy o0 > 0 .0 ® p2p1.0 ® -0 & | (Tr(s))*Tr(s+Dlc(s+p—3) | (~1)7
4,0
Xpop>0 P40 ®P2p0D9—0® 04,0 | (Cr(s))’Tr(s + DI'c(s + p) (=Pt
X3ty 000 >0 ¢+,0 ® p2p-1,0 ® -0 ® | (Tr()’Tr(s+Dlc(s+p—35) | (=1)P
©+,0
X} 0 >0 $2p,0 D P+,0 D P2p,0 Te(s+p)Tr(s)'c(s +p) -1
X5 _,p>0 ©2p,0 D 4,0 D P2p,0 Ie(s +p)Tr(s)T'c(s + p) -1
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