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ABSTRACT 
 

Continuity joints have often been employed in bridges with precast, prestressed girders to 

increase the overall ability of bridges to distribute live loads by making two simple spans 

continuous. However, if the continuity connection cracks due to time-dependent effects in the 

girders, continuity can be lost, resulting in simply supported conditions for the girders and 

subjecting the joint reinforcement to potential corrosion damage. A potential solution to prevent 

cracking in the continuity joint is using Ultra-High Performance Concrete (UHPC).  UHPC has 

been studied to determine how effective the material is in a number of bridge applications, but 

not for continuity joints. Six specimens consisting of two precast girders made continuous with a 

UHPC joint were constructed and tested. Three of the six specimens focused on continuity joint 

detailing for new bridge construction and followed the AASHTO LRFD 2014 Specifications for 

design. The three remaining specimens focused on retrofit continuity joint detailing for existing 

bridges. Both designs consisted of the same reinforcement ratio determined for newly 

constructed continuity joints. Each specimen was tested using a static point load at mid-span of 

each girder in order to produce the maximum negative moment in the continuity joint. In 

addition, a positive moment test was conducted on the joint for the third specimen of each joint 

type. The results from the tests to failure showed an increase in girder capacity compared to the 

design values, similar crack development for both joint types, and limited flexural cracking in the 

joint compared to the girders. Though the joints did not fail, this indicates that the failure would 

likely be pushed out of the joint and into the girders for both types of connections. Overall, the 

retrofit specimens exhibited better performance than the newly constructed specimens, with 

higher ultimate capacity, less deflection under the load points, and the reinforcing bars yielding 



xiv 
 

within the joint. The retrofit connection is a potential option for strengthening existing simple 

span bridges in service by making the girders continuous for live load.  



1 
 

1.0 Introduction 

Poor performance of continuous concrete bridges formed from simply supported precast concrete 

girders constructed as continuous for live load can often be at least partially traced back to the 

integrity of the continuity connection between the precast prestressed girders. Integrity issues can 

arise from multiple types of loads occurring on the bridge. One loading concern is the time 

dependent effects due to creep and shrinkage in the prestressed girders. These effects can lead to 

cracking in the continuity joint and cause the joint to be susceptible to corrosion. In addition, the 

corrosion effects can extend to the ends of prestressed girders. Ultra-high performance concrete 

(UHPC) is a possible solution to prevent cracking and improve durability of the connection.  

UHPC is defined by FHWA as “a cementitious composite material composed of an optimized 

gradation of granular constituents, a water-to-cementitious materials ratio less than 0.25, and a 

high percentage of discontinuous internal fiber reinforcement” (FHWA, 2013). This combination 

of material allows UHPC to exhibit superior mechanical properties compared to typical concrete. 

Some of the mechanical properties are compressive strength exceeding 20 ksi, tensile strength 

exceeding 0.9 ksi, low permeability and a high resistance to freeze thaw. UHPC also has high 

flowability in the fresh state allowing it to fill complicated formwork. These advantages would 

significantly increase resistance to stresses caused by time dependent effects in the positive 

moment regions in the joint to help prevent cracking, and UHPC has the added benefit that it can 

be easily used to repair existing continuity connections. This not only would fix one major 

concern in bridges made continuous for live load but can also be implemented on in-service 

bridges containing simply supported beams with no continuity. These bridges can be retrofit by 

adding continuity joints into the configuration, which have the potential to increase live load 

capacity and replace the expansion joint in the deck in the process. UHPC has been used in 
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bridges, from connecting precast deck panels together for accelerated bridge construction, to 

completely making prestressed girders out of UHPC. However, there is limited to no test data for 

the application of UHPC to continuity joints and exploring UHPC for this application in 

continuity joints could potentially lead to more effective methods of bridge construction and 

rehabilitation of current bridges. 

Three key goals were tested in this research.  

 UHPC is an effective method for connecting precast, prestressed girders for live load 

continuity in both new construction and bridge retrofits.  

 UHPC is more effective for continuity joint compared to values calculated for 

conventional concrete.  

 Bond behavior is more efficient in UHPC resulting in shorter required splice lengths.  

 

To explore these hypotheses, research was conducted to investigate UHPC type connections 

between pairs of prestressed concrete girders. Two types of connections were examined: newly 

constructed and retrofit of existing bridges. The specimens tested consisted of two approximately 

half scale AASHTO Type II girders with UHPC continuity connections. They were tested as 

two-span specimens with one point load at each beam mid-span to develop the maximum 

negative or positive moment in the joint. This testing was done to examine the feasibility of 

using UHPC for continuity connections of precast concrete girders, to characterize deflection and 

cracking behavior of the joint, and to observe the failure type that may occur in the joint, the 

interface between the girder and the joint, or the beam.  
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There are two objectives that were addressed by this research. 

 Create a plan for retrofit/new construction of continuity joints with UHPC  

 Characterize cracking and strength level performance of UHPC continuity joints for 

retrofit and new construction 
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2.0 Literature Review  
 

2.1 Continuity Joints 
 

A continuity joint is the connection of two simply supported beams that allows the transfer of 

subsequent superimposed dead loads and live loads. This type of connection has been used 

occasionally in pretensioned prestressed concrete girder bridges since the 1960’s. Continuity 

joints for prestressed concrete girders are established with composite concrete decks and the use 

of diaphragms at pier caps and abutments. Establishing the continuity joint allows for any future 

loads, beyond the self-weight of the members, to be transferred through the structure as a 

continuous beam, improving the durability and strength of the whole bridge. In addition, 

continuity between the girders helps reduce maintenance costs, improve the appearance, and the 

riding qualities of the bridge (Freyermuth 1969). Figure 1 shows a typical continuity connection 

between two girders.  

 

Figure 1. Typical continuity joint between girders (Eamon Et. al., 2016). 
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As a vehicle drives over a bridge, it acts as a set of point loads moving across the girders. In 

response the girders bend and create moments within the girders. Within the continuity joint, two 

types of moments occur. The first type is the negative moment that occurs in the composite deck 

portion over the pier and abutments when the girders are loaded. The second type is the positive 

moment, which occurs in the diaphragm between girders due to time dependent effects within 

the girders. These time dependent effects are concrete shrinkage of the girders and creep effects 

related to the amount of prestress in the girders. Figure 2 shows the effects from creep and 

shrinkage causing upward deflection to each induvial span. Once the girders are connected to 

each other with a continuity joint the ends become restrained, and additional creep effects can 

cause a restraint moment within the connection preventing the girder ends from rotating.  

 

Figure 2. Formation of positive restraint moment under time dependent effects (Saadeghvaziri et. 

al. 2004). 
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Early studies done by the Portland Cement Association (PCA) state that the reinforcement in the 

composite deck properly accounts for the negative moment, but these studies also showed that 

the positive moment can lead to cracking of the diaphragm if not properly detailed (Miller 2004). 

If the connection at the diaphragm cracks, the positive moment is released, the joint acts as a 

hinge, and continuity is lost. However, if the positive moment connection is properly detailed 

using reinforcement within the joint, the connection maintains continuity despite cracking and 

the joint still performs as designed with the reinforcement transferring the moment through the 

joint (Miller 2004). There are two types of reinforcement typically used for the positive moment 

connection. The first type of reinforcement is prestressing strands extending out of the girder for 

the specified length and bent upwards to form a 90-degree angle creating a hook. The second 

type of reinforcement is mild steel embedded into the girder and extending into the joint for a set 

distance and bent at a 90-degree angle to form a hook.   

The study described in “Connection of Simple-span Precast Concrete Girders for Continuity” 

was conducted on six types of joint detailing for the positive moment connection (Miller 2004). 

Figures 2, 3, and 4 show the joint detailing tested. The study was to further explore the findings 

in an analytical study on the positive moment connection presented in the NCHRP 322 report 

(Oesterle et al. 1989), since the analytical study in NCHRP 322 found that the positive moment 

connection for continuity had no structural benefit in bridges. The NCHRP 322 authors’ 

reasoning for this conclusion was if the positive moment due to time dependent effects becomes 

restrained at the continuity connection, the effects then also occur along the girder creating a 

second positive moment in the girder. As a result, the same secondary moment was observed in 

the typical simple span case without a continuity joint, thus no structural benefit was gained. The 

authors of NCHRP 519 stated that any type of analytical study performed has a set of 
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parameters, and the results observed do not necessarily reflect other types of situations. Thus, 

Miller (2004) concluded that continuity joints still can be useful as they can still provide 

structural benefits by providing a connection point between girders, in case of supports being 

damaged, and protecting girder ends from erosion. 

 

Figure 3. Details of the specimen #1 and # 2 connection (Miller 2004). 

 

 

Figure 4. Details of the specimen #3 and # 4 connection (Miller 2004). 
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Figure 5. Details of the specimen #3 and # 4 connection (Miller 2004). 

 

Another study was carried out by Saadeghvaziri, Spillers, and Yin (2004) “Improvement of 

Continuity Connection over Fixed Piers”. The initial part of this study was to monitor three 

bridges in New Jersey to determine the degree of continuity for different configurations of 

anchor bolts fixing the superstructure to the piers. The study found the continuity in these bridges 

ranged from 0 to 90 percent for service load transfer between multiple continuity connections in 

one span for each bridge. With only three bridges being examined for the level of continuity, and 

since the range of continuity for those bridges was not consistent, this study shows that the level 

of continuity in all continuity connections within any given bridge could be inconsistent. The 

researchers concluded that the difference in the level of continuity in bridges is dominated by 

time dependent effects. The age of the girder when continuity was established had the largest 

impact on continuity for the three bridges investigated. This further supported the authors theory 

that, if the girders were embedded into the continuity joint using elastomeric pads with little 

lateral deformation and have anchor bolts in each continuity joint connecting the girders to the 

pier, the supports act like a fixed end preventing rotation and sliding to occur. This fixed end 

behavior leads to the time dependent deformation effects being completely restrained and 
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causing cracking in the continuity joint. The authors recommended to not use anchor bolts, not 

embed girder ends into the diaphragm or joint, and to design only one support in the continuous 

span as a pin with the rest designed as “rollers” to prevent the girders acting as a fixed 

connection (Saadeghvaziri et. al. 2004). 

A finite element study was also conducted as part of the same research to determine the range of 

girder age when continuity should be established between prestressed girders. The finite element 

model results further supported that establishing continuity between girders at an early age 

significantly increased the positive moment created by time dependent effects. The modeling 

also showed the time dependent effects of creep dominated when continuity is established at an 

early age with shrinkage not contributing substantially at the early age. However, when 

continuity is established at a later age shrinkage dominated the time dependent effects, and creep 

did not contribute as much at the later age. The age of the girders at the time of establishing 

continuity found to have the largest impact on reducing these effects was at an age between 45 

and 90 days (Saadeghvaziri et al 2004). 

 

2.2 Ultra High-Performance Concrete  
 

Ultra-High Performance Concrete (UHPC) is defined by the FWHA as “a cementitious 

composite material composed of an optimized gradation of granular constituents, a water-to-

cementitious materials ratio less than 0.25, and a high percentage of discontinuous internal fiber 

reinforcement” (FHWA, 2013). This combination of material allows UHPC to have improved 

material properties compared to normal concrete, which could be useful in the highway bridge 

industry for many types of applications, specifically for connections of discrete elements. In 

order for UHPC to be a more valid material for everyday practice in the bridge community, the 
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Federal Highway Administration (FHWA) did a full material property characterization of a 

proprietary UHPC called Ductal® (Graybeal 2006). The authors followed the American Society 

for Testing and Materials (ASTM) and the American Association of State Highway and 

Transportation Officials (AASHTO) recommended procedures for the material characterization 

tests that would typically be done on normal concrete. In some cases the author had to modify or 

develop new tests to adequately test specimens to get useful information due to the vast 

differences in material properties.  

In addition, Graybeal (2006) examined four different curing regimens on specimens for each of 

the material characterization tests. The first regimen was the control specimen that followed the 

manufactures recommendation for steam curing the UHPC at 194 ºF (90 ºC) and 95 percent 

relative humidity for 48 hours. The second regimen was not steam cured, but cured at the 

standard laboratory environment from demolding until testing. The third regimen was tempered 

steam curing, which was similar to the steam curing recommended by the manufacturer, but the 

temperature was limited to 140 ºF (60 ºC). The fourth regimen was a delayed steam curing that 

did not begin until the 15th day after initial casting, and used the same recommended 

specifications for steam curing by the manufacture. Table 1 shows the average UHPC material 

properties found after testing was concluded. Based on all the results the author concluded that 

UHPC had enhanced material properties when compared to normal concrete (Graybeal 2006).  
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Table 1. Average UHPC material properties (Graybeal 2006). 

 

2.3 UHPC Bond Behavior   
 

2.3.1 Bond Behavior of Mild Steel in UHPC 
 

A critical consideration for connections of concrete elements is bond of reinforcement with the 

concrete material used for the connection. FHWA conducted pull out testing on a tension-tension 

lap splice configuration to characterize the bond behavior of mild steel reinforcing bar in UHPC 

(Yuan and Graybeal 2014). To recreate the tension-tension lap splice configurations, the 

specimens consisted of a precast concrete slab with multiple rows of No. 8 reinforcing bar 

extending 8 inches from the face of the slab. Reinforcing bars to be tested were placed between 

the No. 8 reinforcing bars in each row, and rectangular strips of UHPC were cast around the 

reinforcing bar configurations, with the line of reinforcing bars being on the center line of the 

strips, as shown in Figure 6. To recreate tension that would occur in an actual structural 

configuration with lap splices, a steel frame with two hydraulic rams was used to put the testing 
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reinforcing bar into direct tension with the frame pushing against the precast concrete deck, as 

shown in Figure 7 (Yuan and Graybeal 2014).  

 

Figure 6. Overall configuration of FHWA reinforcing bar bond test specimens (Yuan and 
Graybeal 2014). 

 

 

Figure 7. FHWA reinforcing bar bond test loading setup (Yuan and Graybeal 2014). 

 



13 
 

The parameters that were examined for the bond behavior of reinforcing bars in UHPC were the 

embedment length, concrete side cover, bar spacing, concrete compressive strength, reinforcing 

bar size, reinforcing bar yield strength, and casting orientation. After conducting over 200 tests 

with the various parameters, the results showed a difference in bond behavior for reinforcing 

bars embedded in UHPC compared to normal concrete. The author concluded that increases in 

embedment length, side cover, and compressive strength increased the bond strength. 

Characteristics that decreased bond strength were epoxy-coated reinforcing bars and reinforcing 

bar with a larger diameter. It was also noted that a non-contact lap splice had an increased bond 

strength over a contact lap splice. The author stated that this was most likely due to the non-

contact splice allowing fibers to fully engage around the reinforcing bar, thereby increasing bond 

strength, as the contact lap splice would not allow fibers to fully engage around the portion of the 

bars that were in contact with one another, thus decreasing the bond strength (Graybeal 2014). 

Based on the results from the bond behavior tests in UHPC, the authors presented design 

recommendations to obtain deformed bar yield strength before bond failure. The 

recommendations are for bar sizes ranging from No. 4 to No.8, either uncoated or epoxy-coated, 

and clear spacing of greater than 2db and lap splice length (ls). Minimum requirements were an 

embedment length of 8db, side cover of 3db, and UHPC compressive strength of 13.5 ksi (93.1 

MPa). Additionally, a lap splice length of 75 percent of embedment length was recommended, as 

this was the percentage used for the majority of tests conducted in this study. There was also 

guidance for when the side cover was between 2db and 3db to use 10db for the embedment length. 

The possibility to reduce the minimum embedment length of 8db was noted for cases having an 

increase in side cover or an increase of compressive strength, and the possibility of increasing 
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embedment if decreasing side cover and compressive strength. This allows designers to have 

potential flexibility in connection design with UHPC (Yuan and Graybeal 2014).  

2.3.2 Bond Behavior of Untensioned Prestressing Strands 
 

FHWA conducted pull out testing on a tension-tension non-contact lap splice configuration to 

determine the development length of untensioned prestressing strands cast in UHPC (Graybeal 

2014). The test specimen was created using the standard prestressing strand grid pattern of 2 

inches center to center spacing, with adding a splice strand in-between. This was done to recreate 

a splice connection that would be used for splicing prestressed members together using 0.5 and 

0.6 inch prestressing strands. Figure 8 shows the geometry of the UHPC test specimen, and the 

strand location within the UHPC for a 0.5 inch strand (Graybeal 2014).  
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Figure 8. Geometry of FHWA prestressing strand-UHPC bond test specimen with 0.5 in. 
diameter strands (Graybeal 2014). 

 

The non-contact lap splice lengths tested for the 0.5 and 0.6 inch prestressing strands ranged 

from 8 to 24 inches. The specimens were tested using a servo-hydraulic testing machine to allow 

for displacement control. Tension was applied to the end with two prestressing strands (live end). 

Slippage and load resistance were measured at the single prestressing strand located at the dead 

end of the testing machine. The test was stopped for each specimen upon reaching the peak 

resistance, or until the strand ruptured. Figure 9 shows one of the specimens in the testing frame. 

The authors concluded from the test results that the 0.5 inch diameter strand can be fully 

developed within a splice length 20 inches, and the 0.6 inch diameter strands can be 

approximately developed within 24 inches (Graybeal 2014).  
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Figure 9. FHWA prestressing strand-UHPC bond test specimen in load frame (Graybeal 2014). 

 

2.4 UHPC Applications 
 

2.4.1 UHPC Slab Joint Connections 
 

The use of modular bridges has become more and more popular due to the advances in UHPC. In 

the past, modular bridge construction was much more difficult because regular concrete was not 

ideal for connecting segmental bridges together, as the development length for reinforcing bar 

would require large joints and the high amount of reinforcement would lead to poor 

consolidation of normal concrete in the joints. UHPC has a much higher strength which allows a 
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reduced development length, a more feasible joint length, and has high flowability to prevent 

consolidation issues. 

To understand the behavior of using UHPC in joints for modular bridges, FHWA conducted tests 

on slabs with UHPC joints having several different types of reinforcement detailing (Graybeal 

2010). Cyclic and static loading conditions were applied to the joint specimens. Cyclic loading 

was used to model actual roadway conditions for a vehicle driving over the connections and to 

achieve fatigue failure, and a single point load was used to test the ultimate capacity. The results 

from the dynamic loading tests on the joints indicated far better performance than expected, and 

the overall ultimate failure capacity of the joints also exceeded expectations. As a result, using 

UHPC as a type of connection proved to be favorable, since in most cases the load path going 

through a connection is the weak link in the overall structure. Having a robust connection allows 

concrete around the connection to fail, which is much more desirable from a design standpoint. 

Figure 10 depicts the test layout of the slabs used in the 2010 FHWA study (Graybeal 2010).  

 

Figure 10. FHWA UHPC slab connection test (Graybeal 2010). 
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2.4.2 UHPC Splice Connection Between two Precast Girders 
  
Splicing precast concrete members at mid-span with post-tensioning has been a common practice 

but the need for post-tensioning could potentially be avoided through the use of a spliced 

connection between precast prestressed concrete members. To make this possible the spliced 

connection would use UHPC, combined with the un-tensioned prestressing strands extending 

from the precast members. To better understand how this type of connection would behave under 

loading, FHWA conducted two flexural tests with two precast prestressed AASHTO Type BII-

36 box beams in tandem connected with a splice at mid-span using UHPC (Maya and Graybeal 

2017). The connection detail for the first test used a splice length of 24 inches (40db) for the un-

tensioned strands. In addition, six No. 4 reinforcing bars were included in the bottom half of the 

connection with 6 inches extending into the joint, and 6 inches extending into the beam. Figure 

11 shows the cross-sectional view of the box beams.  

 

Figure 11. Cross-sectional view of box girders used for FHWA beam splice test (Maya and 
Graybeal 2017). 
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The first test conducted on this connection detail reached 77 percent of the anticipated ultimate 

flexural capacity of the tandem beams when a load drop-off occurred. A truncated pyramid 

failure type had occurred in the UHPC joint, indicating bond failure of the strands, but the 

authors stated that cracking in the joint led to no flexural capacity loss. The specimen was then 

reloaded up to 85 percent of the ultimate flexural capacity of the tandem beams, when failure 

occurred due to concrete crushing. The loading configuration for the box beam test is shown in 

Figure 12 (Maya and Graybeal 2017).  

 

Figure 12. FHWA box beam splice test loading configuration (Maya and Graybeal 2017), Note: 
1 ft = 0.3048 m. 

 

The authors conducted a second test intended to further improve the flexural capacity of the 

spliced connection. The second connection detail used a splice length of 30 inches (50db), and 

debonded alternating stands by 1 inch going into the joint. With the new detail changes from the 

first connection tested, the test specimen reached 90 percent of the anticipated ultimate flexural 

capacity of the tandem beams when failure occurred due to flexural cracking and concrete 

crushing. In addition, the authors noted in the second detail had no bond failures in the un-
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tensioned prestressing strands, which led them to suggest debonding alternating strands by 1 inch 

in the joint reduced the outcome of bond failure. The flexural stiffness reported was similar for 

both connection details, and both had an initial reduction in stiffness at the beginning of each 

test. The authors recommend spliced connections for mid-span to use a splice length of 50db for 

prestressing strands in order to achieve higher flexural capacities than that resulting from using 

the recommended splice length of 40db. The flexural capacity could potentially be improved 

even greater with proper detailing strategies and debonding strands in the joint (Maya and 

Graybeal 2017).  

2.4.3 UHPC pi-girder 
 

UHPC has been examined for complete replacement of normal concrete in structural members 

instead of only connecting normal concrete structural members in a bridge. A prototype pi-

shaped girder was developed to best use the advanced material properties of UHPC while also 

taking advantage of prestressing forces. The idea behind using UHPC in this application would 

allow long spans with an efficient cross section and including the deck portion of the bridge 

within a single element. This would allow for modular bridge construction using the enhanced 

prototype pi-girders. The prototype was developed through an analytical study completed at the 

Massachusetts Institute of Technology (Park 2003 and Soh 2003). The prototype was analyzed in 

one, two and three dimensions respectively, to show the predicated response of the girder from 

the loadings specified by the AASHTO LRFD Bridge Design Specifications (AASHTO 2014).  

Figure 13 shows the cross-sectional view of the prototype pi-girder after the analytical study had 

been completed (Graybeal 2009).  
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Figure 13. Cross sectional view of the prototype UHPC pi-girder (Graybeal 2009). 

 

The next phase was to do physical full scale testing on the prototype pi-girder with a span of 70 

feet. The pi-girder was fabricated at a precast plant and then transported to the testing facility. 

The tests conducted examined flexural, shear, transverse flexural, and load distribution 

behaviors. Shown in Figure 14 is the prototype pi-girder set up in the load frame for shear testing 

(Graybeal 2009).  

 

Figure 14. Prototype pi-girder in load frame for shear testing (Graybeal 2009). 
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The results of the physical tests showed that this type of decked UHPC girder is possible, as the 

prototype met all design requirements in the primary flexural and shear tests. However, the load 

distribution was limited, and the transverse flexural capacity was not able to elastically resist 

service-level wheel loads. In response to the prototype not meeting all of the design 

requirements, the prototype was modified to not only increase the structural capacity, but to 

allow for ease of fabrication and simplify modular construction. Shown in Figure 15 is the cross-

sectional view of the 2nd generation pi-girder (Graybeal 2009).  

 

Figure 15. Cross-sectional view of the 2nd generation pi-girder (Graybeal 2009). 

 

The new pi-girder was not retested for primary flexural and shear capacities, as the researches 

expected similar portion to the prototype in these areas and wanted to focus on the transverse 

flexural response when subjected to increasing simulated wheel loads. This allowed a reduction 

of specimen’s span length to 25 ft for testing. Shown in Figure 16 is the 2nd generation pi-girder 

in a load frame for the transverse flexural test (Graybeal 2009).  
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Figure 16. 2nd generation pi-girder setup in the load frame for a transverse flexural test 
(Graybeal 2009). 

 

The results of the transverse flexural tests showed an overall improvement of the transverse 

flexural capacity from the prototype pi-girder and met the AASHTO LRFD bridge standards 

(AASHTO 2014). With the improvements done to the prototype pi-girder in the 2nd generation 

girder would allow the pi-girder to be used in service with a maximum span length of 87 ft. This 

generation of pi-girder was initially deployed in Buchanan County, IA and went into service in 

late 2008 with three adjacent pi-girders being used (Graybeal 2009).  

 2.5 Literature Review Summary  

Recently UHPC has increased in popularity in the bridge community due to the advanced 

mechanical properties it has to offer for new construction and rehabilitation projects. These 

properties have been demonstrated in UHPC’s testing in slab connections, mid-span beam 

splices, and in complete girders, but has not been considered in continuity joints for live load 

distribution. Continuity joints would greatly benefit from the advanced mechanical properties 

UHPC has to offer in place of normal concrete. The joint would be able to utilize the short 

development length and high tension strength to make the connection less susceptible to cracking 

when subjected to the moments caused by time dependent effects such as creep and shrinkage 



24 
 

and improve the overall capacity of the joint for the negative moment from live loading. The 

research described in this thesis was intended to begin filling the gap in knowledge related to use 

of UHPC for connections of precast prestressed concrete girders made continuous for live load. 
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3.0 Methods and Approach   

To recreate continuity connections between prestressed girders in a controlled lab environment, 

the specimens were scaled down to approximately half scale. A total of six specimens were 

constructed through three key building phases. Phase 1 consisted of the design and casting of the 

prestressed girders. Phase 2 consisted of the design and construction of a composite concrete 

deck on top of the girders. Phase 3 consisted of the design and construction of the two types of 

continuity connections. Phase 4 included the setup and testing of each specimen. 

3.1 Phase 1. Prestressed Girders 
 

3.1.1 Prestressed Girder Design  

The design of the prestressed girder specimens involved selecting a desired geometry, location 

and number of prestressing strands, designing shear reinforcement, and designing the concrete 

mix. All three design aspects had to be feasible with current prestressing beam capabilities at 

Donald G. Fears Structural Engineering Laboratory. The chosen geometry was an approximately 

half-scale AASHTO Type II girder with a length of 18 ft used in previous research projects at 

Fears Lab (Mayhorn 2016, Murray 2018). This design met the needs of a representative bridge-

like girder and the formwork was readily available at Fears Lab. Prestressing strand location, 

initial prestress, and the number and size of the strands were considered to obtain the maximum 

flexural capacity with the chosen geometry. The strand location was chosen to be 2 in. on center 

from bottom the beam, which provided the largest moment capacity. The strand type selected 

was based on readily available 0.5 in. special grade 270 low relaxation strands. The design also 

required mild steel to be placed in the top portion of the girder to resist tension stress caused by 

the prestressing force applied to the beam. Shear reinforcement design was based on previous 
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students’ work with the same type of geometry (Mayhorn 2016, Murray 2018). The final design 

used for all the prestressed girder specimens is shown in Figure 17 and 18. 

 

Figure 17. Cross-section of half-scale prestressed girder. 

 

Figure 18. Shear reinforcement spacing 
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Several trial batches were done to develop a mix design to meet the fresh property, and 

compressive strength requirements. A minimum compressive strength at 1 day of 4 ksi, and a 

minimum 28 day strength of 6 ksi were required for the concrete mix design. The minimum 

compressive strength of 4 ksi at 24 hours was required for release of the prestressing strands. The 

fresh property tests conducted were the slump, air content, and temperature with a target slump 

of 6 in., and target air content of 2 percent. Table 2 lists the mix proportions for the final mix 

design based on a cubic yard.  

Table 2. Mix design at saturated surface dry used in prestressed girders 

Mix Proportions Weight (lb.) Volume (ft3) Ratio 

Cement 750 3.82 0.141 
Sand 1250 7.62 0.282 
Rock 1850 11.06 0.410 
Water 248 3.97 0.147 

Air 0 0.54 0.020 
Total 4098 27.00 1.000 

Unit Weight (lb./ft3) 151.8 
  

 

3.1.1 Prestressed Girder Construction   

The construction process for the prestressed girders involved two main building activities. The 

first activity was the setup of the prestressed girders. The first step was preparing the prestressing 

bed for prestressing strands and the two sided steel formwork. Figure 19a shows the prestressing 

bed, which is made from five 8 ft. wooden tables, and two steel prestressing abutments. This 

configuration allows the construction of two prestressed girders at a time. The next step involved 

running the prestressing strands through both abutments and using strand chucks to hold the 

prestressing strands against the abutments. The strands were then tensioned to 2 kips each to pull 

the strands to the correct elevation. After the strands were tensioned half of the formwork was 

put into place to allow for the top longitudinal mild steel to be placed. Following this the shear 
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stirrups were placed and tied in place. The remaining formwork was then put into place, and the 

prestressing strands were tensioned slightly past 75% of the ultimate capacity, to account for 

seating losses from the nuts holding the strands in place after tensioning. When the hydraulic 

rams were released the target load was75% of the ultimate capacity, or 202.5 ksi (33.4 kips) per 

strand. The load was monitored on one prestressing strand using a through hole load cell that the 

strand chuck would react against. The formwork during construction and after completion is 

shown in Figure 20. The second building activity consisted of mixing and placing the concrete. 

All concrete was mixed at Fears Lab in order to properly maintain quality control of the concrete 

mix design. The largest capacity mixer available at the lab was a Praschak spiral blade mixer 

with a 21 ft3 capacity. Each girder required 16 ft3 of concrete, and two back to back batches were 

done for each set of two specimens, one for each girder. As a result of having a separate batch 

for each girder, the time difference between girder placements was up to 30-60 minutes affected 

the actual age of each girder when prestress was released. After the concrete was placed in both 

sets of formwork, the concrete was left to cure for 24 hours. Upon reaching the 24 hour mark 

after casting the second girder cylinders were tested from each batch to verify the 4000 psi 

compressive strength required for prestressing strand release had been reached. Once the strength 

was verified, the prestressing strands were de-tensioned gradually using the hydraulics included 

in the prestressing abutment shown in Figure 19b, allowing the prestressing force from the 

strands to transfer into the concrete creating two prestressed girders. A completed set of girder 

specimens is shown in Figure 21. 
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Figure 19. Prestressing bed (a) and active abutment (b). 

 

 

 

Figure 20. Prestressing bed with formwork showing reinforcement (a) and exterior formwork in 
place (b). 

 

(a) (b) 

(a) (b) 
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Figure 21. Finished prestressed girder before Detensioning. 

 

3.2 Phase 2. Composite Deck Slab  

 

3.2.1 Deck Slab Design 
 

The design of the composite concrete deck involved scaling down the geometric dimensions 

from a full-scale bridge to half-scale. The same bridge system considered in previous research 

(Murray 2017) was used as the considered case. The geometric dimensions of the full scale 

tributary width over a typical beam line used was 96 in., which was scaled down to 46 in. for 

half-scale. The concrete deck depth at full scale was 8 in., which was scaled down to 4 in. for 
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half-scale. The tributary width at half-scale presented some problems for construction due to 

restrictions in a lab setting. The restrictions include limited space for staging specimens and the 

amount of construction time required to build the formwork. Considering these restrictions, the 

tributary width was reduced by optimizing the depth of the deck relative to the tributary width. 

This was done by using the calculated moment capacity of the half-scale prestressed concrete 

beam with the half-scale concrete composite deck attached to determine the required depth to get 

a matching moment capacity from the half-scale beam and reduced deck width. This allowed a 

large reduction in the tributary width, from 46 in. to 9 in., with only a small increase to the depth 

of the deck, from 4 in. to 4.625 in. No flexural, temperature, or shrinkage steel was designed for 

the composite deck to prevent congestion from the shear steel hooks and the negative moment 

reinforcement for the joints due to the smaller dimensions of the revised composite deck. The 

final dimensions of the composite deck are shown in Figure 22.  

 

Figure 22. Composite deck dimensions. 
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3.2.2 Deck Slab Construction  
 

The construction of the composite deck involved two activities; construction of formwork and 

casting the concrete. The slab construction consisted of making unshored wood formwork for 

each individual prestressed concrete beam. Unshored formwork was chosen to model actual 

composite deck construction that occurs on full scale bridges. To achieve this type of formwork, 

2 x 4 dimensional lumber was first attached to each side of the flange of each beam using 

concrete screws, to obtain the designed tributary width. The top of each 2 x 4 was made flush 

with the top of the beam flange. Plywood was then attached to the 2 x 4’s to obtain the required 

depth of the slab. The required negative moment reinforcing steel for the continuity joint was 

then tied at the desired elevation near the end of the beam to be connected. At the same end of 

the deck where the negative moment reinforcing steel goes into the joint, a portion of the deck 

was blocked off from normal concrete to allow UHPC to go into a portion of the deck slab as 

shown in Figure 11b. After the formwork was finished the next step was to place concrete into 

forms. To further model full scale bridge construction, ODOT Class AA concrete was delivered 

in a concrete ready mix truck. This type of concrete mix has a design 28 day compressive 

strength of 4000 psi and is used by ODOT in their full scale bridge deck construction. After the 

concrete was cast into the forms, covered, and cured for 24 hours, the slabs were surface water 

cured for 7 days using wet burlap before removing the formwork. The various stages of 

construction of the slabs are shown in Figures 23-25.  
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Figure 23. Initial composite deck formwork. 

 

 

Figure 24. Composite deck formwork prior to casting. 
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Figure 25. Concrete being placed (a) and finished composite deck (b). 

 

3.3 Phase 3 Continuity Joints 
 

Two types of continuity joints were designed and constructed. One type intended for new bridge 

construction, and the other type intended for retrofitting an in-service bridge with a continuity 

connection. Both joints used the same type of commercially available UHPC produced by 

LafargeHolcim called Ductal®. In addition, both joints were designed using normal concrete 

properties to recreate the same type of reinforcement that is currently in use, but with the added 

benefit of using UHPC in place of normal concrete.  

 

 

 

(a) (b) 
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3.3.1 Newly Constructed Continuity Joint Design 
 

This section will discuss each component of the joint design using AASHTO LRFD 2014, and 

includes the detailing of the joint. An overview of the newly constructed continuity joint is 

shown in Figures 26. 

 

Figure 26. Newly constructed continuity joint cross-section (a), elevation view, (b), and plan 
view (c). 

 

 

 

 

(a) (b) 

(c) 
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3.3.1.1 Positive moment Design  
 

The design of the positive moment region of the continuity joint was based on AASHTO LRFD 

2014 5.14.1.4.9a. This section allows the use of section 5.14.1.4.4 to determine the magnitude of 

positive moment for the steel reinforcement design. Section 5.14.1.4.4 specifies a minimum 

precast girder age of 90 days before establishing continuity to allow restraint moments caused by 

creep and shrinkage to be taken as zero. The section then allows the use of the cracking moment 

(Mcr) with a factor of 1.2 for the design positive moment value. The equation used to calculate 

the cracking moment is Eq. 5.7.3.6.2-2. Three variables are needed to calculate the cracking 

moment of the joint: distance from the neutral axis to the extreme tension fiber, moment of 

inertia, and the modulus of rupture of the concrete. The width of the joint cross-section was set at 

9 in. to match the width of the bottom flange of the girder and was kept constant throughout the 

girder depth up to the deck. The deck width was set at 24 in., and the depth of the deck set at 4 

in. The distance from the bottom of the joint to the neutral axis was then calculated to be 15.5 in. 

using a T-shaped cross section. The moment of inertia of the joint was then calculated to be 

20,105 in.4. The full half-scale dimensions of the beam were used to calculate the section 

properties for design as it was done before the deck width was reduced. The modulus of rupture 

was calculated in accordance with article 5.4.2.6 using a compressive strength of 5 ksi. The 

modified cracking moment (1.2Mcr) was 69.6 kip-ft. After obtaining the design cracking moment 

value, the moment capacity provided by the reinforcement to be used was compared to the 

cracking moment.  

AASHTO LRFD 2014 section 5.14.1.4.9 allows the use of prestressing strands extending from 

the beam to be used for joint reinforcement, but the strands to be used cannot be de-bonded at the 

end of the girder. The strands must also extend at least 8 in. from the end of the girder into the 
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joint, and then have a 90 degree bend pointing the strand straight up for adequate development. 

With only two strands provided in the girder specimens, this was the only reinforcement used to 

calculate the moment capacity for comparison with the design cracking moment. The strain 

compatibility method and Whitney stress block were used to calculate the moment capacity of 

the joint. The tension and compression resultant forces were calculated, along with the distance 

between the forces. The tension force was calculated using the stress in the strand at the strength 

limit state and the area of the strand. AASHTO LRFD Equation 5.14.1.4.9c-2 was used to 

calculate the stress developed in the strand at the strength limit state based on the length after the 

90 degree bend. The length of the strand after the bend was taken to be 16 in. giving a stress in 

the strands of 98 ksi. Figure 27 shows the dimensions of the prestressing strands in the newly 

constructed joint. The compressive force was calculated using the depth of the compression 

block, effective width, and the compressive strength of the concrete. 

 

Figure 27. Newly constructed continuity joint prestressing strands detail for positive moment. 
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The area of two 0.50 inch special strands is 0.334 in2. The resulting force calculated by 

multiplying the area by the stress is 32.8 kips. To calculate the compressive force, the depth of 

the compressive block was calculated using the assumption that the compression force must 

equal the tension force (C=T) to satisfy equilibrium. The known concrete compressive strength 

and section width were multiplied together and then divided into the tension force to solve for 

the unknown depth. After obtaining both forces, a moment was taken at the compression 

resultant force, with the moment arm taken as the effective depth of 25.125 in. minus half of the 

depth of the compression block. The moment arm was then multiplied by the tension force to 

obtain the moment capacity of 60.73 kip-feet. Figure 28 shows the distance between the resultant 

forces and their location on the joint.  

 

Figure 28. Positive moment resultant forces with prestressing strands at the joint. 
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This value did not exceed the cracking moment indicating inadequate steel reinforcement for the 

positive moment region of the joint. In order to increase the moment capacity, two No. 3 rebar 

were included in the calculation. The bars were placed 2 in. on center above the prestressing 

strands. The compression block depth was recalculated using the added steel, based on the 

assumption of C=T. By having an additional tension force, a second moment was added, which 

increased the available moment capacity to 82.60 kip-ft. This value exceeds the design cracking 

moment, indicating adequate reinforcement. Figure 29 shows the distance between the resultant 

forces and their locations in the joint.  

 

Figure 29. Positive moment result forces location for mild steel and prestressing strands. 

To have adequate development length for the added mild steel, a standard 90 degree hook was 

used inside the joint. The hook detail followed article 5.11.2.4 from AASHTO LRFD 2014. As 



40 
 

this detail is based on the compressive and tensile strengths of normal concrete, the 

reinforcement will have adequate development length into the UHPC joint. Figures 30 and 31 

show the details of the positive moment mild steel within the joint and the hook geometry. It 

should be noted that this reinforcement was included together with the strands shown in Figure 

15, with the mild steel hooks spaced 2.25 in. from the vertical portions of the prestressing strands 

in the direction of the beams. 

 

Figure 30. Newly constructed continuity joint mild steel detail for positive moment. 

 

Figure 31. Mild steel hook detail for positive moment. 

 

3.3.1.2 Negative moment Design  
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The design for the reinforcing steel required in the negative moment region of the continuity 

joint was determined based on the worst loading case applied on a two span continuous girder 

configuration that would lead to flexural failure of the beams. This was done according to 

AASHTO Section 5.14.1.4.8. The determined worst load case was a single point load at mid-span 

for each girder. The magnitude of each individual point load was back calculated from the 

maximum moment capacity of each girder with the composite concrete deck with the self-weight 

moment subtracted out to calculate the point load using strain compatibility. The point load 

calculated would then act as a live load that could be applied to the girder as a live load resulting 

in beam failure. This then gave a two point load configuration applied simultaneously to each 

girder to obtain a maximum negative moment at the continuity joint. The structural analysis 

software RISA® was used to model the two point loads applied to the continuous girder 

configuration giving a maximum negative moment of 132 kip-ft at the joint. It should be noted 

that only one support was used at the joint connection to simplify the model. The actual test had 

two supports at the joint located at the girder ends. Figure 32 shows the moment diagram from 

the structural analysis software model.  

Figure 32. Moment diagram for continuity joint. 

The negative moment given by the model was then used to calculate the required area of steel 

needed to resist the moment using the assumption that the compression force must equal the 
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tension force for equilibrium (C=T). The compressive strength of the joint material, yield 

strength of the rebar, effective section width, effective depth, and depth of the compression block 

were needed for this calculation. A compressive strength of 5 ksi for normal concrete and Grade 

60 steel were used. The effective width of the compressive side of the joint was 9 in. The 

effective depth was calculated based on a 2 in. rebar cover from the top of the joint to the center 

of rebar location, subtracted from the total height of the joint of 27.125 in., resulting in the 

effective depth of 25.125 in. The depth of the compression block was then calculated by taking a 

moment at the resultant tension force, where the rebar will be located, by multiplying the 

moment arm by the resultant compressive force. The depth of the compressive block was the 

only unknown value, and was determined by setting the moment taken at the resultant tension 

force equal to the negative moment from the model. The Excel function Goal Seek was used to 

solve for the depth of the compression block by trying multiple iterations for the compression 

block depth until the applied and internal moments equaled one another. After solving for the 

compression block depth, the assumption C=T was used to solve for the required area of steel 

reinforcement, which came out to be 1.11 in2. Four No. 5 rebar (As = 1.24 in2) were needed to 

obtain the area of steel required to resist negative moment in the joint. Figure 33 shows the 

distance between the resultant forces and their location on the joint. 
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Figure 33. Negative moment resultant force location for mild steel reinforcement calculation. 

 

The negative moment reinforcement development length in the concrete deck followed section 

5.11.1.2.3 of the AASHTO LRFD Bridge Design Specifications. The article states that the 

negative moment reinforcing steel must extend past the inflection point by more than the 

effective depth of the member, 12 times the nominal diameter of the bar, and 0.0625 times the 

clear span. The reinforcement only extends 24 in. beyond the inflection point, which is less than 

the effective depth of the member, 25.125 in. However, the article states that only 1/3 of the 

reinforcement needs to extend past the inflection point, where in this case all the negative 

reinforcement passes through the inflection point. Thus, the development length was considered 

to be adequate.   
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The negative moment reinforcement was designed using requirements for normal concrete. 

However, for the development and lap splice length of the reinforcement, requirements for both 

normal concrete and UHPC were taken into consideration. The development and lap splice 

lengths for normal concrete were calculated using sections 5.11.2.1.1 and 5.11.5.3.1 in the 

AASHTO LRFD Bridge Design Specifications. The calculated development length was 15 in., 

and the lap splice length of 19.5 in. The only issue arising from using these two values was that 

the end of the splice length would be ½ in. from the concrete deck on the opposite side, which 

would lead to problems during construction. The development and lap splice lengths for UHPC 

were calculated using the recommendations of Yuan and Graybeal (2014) of 8db for the 

development length and 0.75ld for the splice length. These resulted in values of 5 in. and 3.75 in., 

respectively. However, the cover recommendation of 3db for development length in UHPC 

(Yuan and Graybeal 2014) did not meet the reinforcement detail for the joint on the outside bars. 

Additionally, the use of contact lap splices limits the ability of the fiber reinforcement to increase 

the UHPC mechanical properties in the contacted portion of reinforcement (Yuan and Graybeal 

2014). A modification was made to account for the cover and contact lap splice by significantly 

increasing the development and lap splice lengths within the joint to 16 in. and 12 in. 

respectively. Figure 34 shows the negative moment reinforcing steel dimensions within the joint.  



45 
 

 

Figure 34. Newly constructed continuity joint mild steel detail for negative moment. 
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3.3.2 Retrofit Continuity Joint Design 
 

This section discusses each component of the retrofit joint design, and includes the detailing of 

the joint. An overview of the retrofit continuity joint is shown in Figure 35. 

 

Figure 35. Retrofit continuity joint cross-section (a), elevation view (b), and plan view (c) 

 

3.3.2.1 Positive moment Design  
 

The retrofit continuity joint was designed with the intention that it could be implemented on 

existing bridges in service with a simple span configuration. ODOT standard detailing sheets 

showed a 4 in. gap between girder ends in simple span configuration, which does not allow 

(a) (b) 

(c) 
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positive moment steel to be added in the end face of the girders. A solution had to be created for 

attaching reinforcing steel in another location on the girder at the required elevation. The 

solution decided on was to attach rebar shear studs on the outside surface of each side of the 

flange near the end of the girder. This would allow the steel required to resist the positive 

moment induced at the joint to be transferred into the girders as if the steel was fully developed 

into the girders as in the newly constructed joint design.  

The positive moment value used for determination of the required reinforcing steel was based on 

the same method as used for the newly constructed joint design since the age of the girders 

would far exceed 90 days for pre-existing girders to be retrofitted in the field. Because the newly 

constructed joints used preexisting prestressing strands and mild steel, the same tension force 

calculated for those joints could not be used for the retrofit design. The required tension force 

was instead back calculated from the required cracking moment similarly to what was done for 

the new construction design. The compression block depth was again the unknown in this case 

and had to be solved for to determine the tension force. This was done by taking a moment at the 

predicted resultant tension force using the resultant compression force equation, and dividing 

into the cracking moment to solve for the unknown compression block depth. Once the 

compression block depth and resulting moment arm were determined, the moment arm was 

divided into the cracking moment resulting in a required tension force of 33.74 kips. The force 

was then divided by the tensile yield strength of 60 ksi to get the required 0.56 in2 area of steel. 

Six No. 3 rebar were used to obtain the required area of steel with three on each side of the joint. 

Figure 36 shows the positive moment reinforcing steel location and dimensions within the joint. 
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Figure 36. Retrofit continuity joint mild steel detail for positive moment. 

 

The required tension force was then used to determine the required number of rebar shear studs 

to be embedded into the girder bottom flange for adequate transfer of load. The number of rebar 

shear studs required was determined using the HILTI epoxy adhesive HILTI HIT-RE 500 

specification sheet that gave shear strength values for a No. 3 rebar embedded at multiple 

embedment lengths with various concrete compressive strength values. The highest compressive 

strength given (6 ksi) combined with the shortest embedment of 3-3/8 in. had a listed shear value 

of 12.2 kips. The embedment length of 3-3/8 in. was not possible, however, because a hole of 

this length would interfere with the location of the prestressing strands. Instead a 2-½ in. 

embedment length was chosen to avoid interference with the prestressing strands and still meet 

the 2-3/8 in. minimum embedment length listed for the epoxy. Linear interpolation was then used 

to estimate the shear strength for the new embedment length as 9.09 kips. This value was then 

divided into the tension force of 33.74 kips to determine a required total of four rebar shear studs 

for each girder end, with two on each side if using the epoxy HILTI HIT-RE 500. A 2 in. clear 

cover from the girder end and anchor spacing was used to satisfy the geometry of the joint and 

follow the minimum requirements from the epoxy specification sheet. The geometry of the joint 

limited the ability to include a straight rebar shear stud extending from the face of the bottom 
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flange. To account for this and ensure proper development of the rebar shear studs, a 90 degree 

hook with a tail based on the recommendation of 8db (3 in.) for a No. 3 rebar (Yuan and 

Graybeal 2014) was applied. Figure 37 shows the positive moment rebar shear stud placement 

within the joint, and Figure 38 shows the rebar shear stud hook dimensions. 

 

 

Figure 37. Retrofit continuity joint rebar shear studs detail for positive moment. 

 

Figure 38. Rebar shear stud detail. 

 

3.3.2.2 Negative moment design  
 

The negative moment design for the retrofit connection was done using the same method as for 

the newly constructed joint. The only difference that had to be checked was that the length of the 

joint in the model was decreased by 6 in. However, since this resulted in no significant change in 
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the negative moment calculated from the model, the same reinforcement was used to resist the 

moment as for the newly constructed joint:  four No. 5 rebar. The only difference in the detailing 

was using splice bars in the lap splice connection, as this method of splicing bars together would 

be used to connect pre-existing slabs. With the different type of splice detail used in this joint 

configuration, the development and splice lengths were adjusted to meet the geometric 

dimensions of the joint. As in the newly constructed joint, normal concrete was considered for 

the development and splice lengths, but for this configuration the available splice length was not 

adequate for the 19.5 in. required for normal concrete. It should be noted that the concrete deck 

could have been cut back more to meet the splice length connection, but the joint length was kept 

consistent to the newly constructed joint length of 20 inches. The available splice length in total 

was 8 in., but only 6 inches was used to meet the recommended 3.75 in. for UHPC (Yuan and 

Graybeal 2014), and to account for using a contact lap splice with the addition of the clear cover 

not meeting the recommended distance (Yuan and Graybeal 2014). This resulted in a splice bar 

length of 16 in. including the effect of gap between the beam ends. Although this splice length 

did not match the 12 in. from the newly constructed joint, it exceeded the recommendation by 

2.25 in. Figure 39 shows the negative moment reinforcing steel dimensions within the joint. 

 

Figure 39. Retrofit continuity joint mild steel detail for negative moment. 
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3.3.3 Continuity Joint Construction 
 

Continuity joint construction for both types of joints was very similar. The only difference was 

that the retrofit connections extended 6 in. beyond the end of the girder, and the joint was 3 in. 

wider, which resulted in different formwork requirements. The first step in the construction was 

aligning the pairs of prestressed concrete girders constructed together such that the ends with the 

negative moment and positive moment steel were placed together in the required joint 

configuration. A survey transit and level rod were used ensure the girders were in a straight line. 

Figures 40 and 41 show the transit and survey rod.  

 

Figure 40. Transit. 
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Figure 41. Survey rod. 

 

A reference point was taken at the far end of the first girder, then the opposite end was adjusted 

until it was in line with the reference point. The second girder was then set to an estimated 

position with the ends placed with correct gap space for the joint. Then, the joint end of the 

second girder was adjusted to line up with the reference point, and finally, the opposite end of 

the second girder was adjusted to line up with the reference point. This was done for all 6 pairs 

of girders.  

After the beams were lined up with the correct gap for the given joint, formwork was constructed 

for the joint. A plywood cut out matching the geometric perimeter required for each joint type 

was used to produce a joint with a uniform dimension from top to bottom. The plywood cut out 

was attached to a piece of dimension lumber that was connected to the top flange of the beam 

and attached to the formwork at the bottom of the beam. The formwork at the bottom of the joint 

was supported by the lab floor to mimic field conditions where the girders would already be 

sitting on the piers, which would be able to support the bottom formwork. For the retrofit 
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connections, the 16 in. long No. 5 rebar splice bars were tied in between the bars extending from 

each beam to make connection in the negative moment region. Holes were also drilled into the 

bottom flange of the girders to attach the rebar shear studs. After the rebar studs had been 

attached with the Hilti epoxy the positive moment rebar was tied into the positive moment region 

of the joint. For the newly constructed joints, the only adjustments to the steel reinforcement 

required were adjusting the prestressing strands to make sure they were vertical at the 90 degree 

bend. This was done by inserting the prestressing strand into a pipe, clamping the strand down 

near the face of the girder, and lifting in an upward motion with the pipe to make the bend. The 

method gave a near 90 degree bend, and bailing wire held the strands in the correct orientation 

for casting, as shown in Figure 42a. Square plywood sides were then attached to the formwork to 

enclose each of joints. Figure 42 shows the completed formwork construction, minus one of the 

formwork sides, for both types of connections.  

(a) 
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Figure 42. Newly constructed joint (a) and retrofit continuity joint (b). 

 

The next step was to mix and place the UHPC into the joints. Table 3 shows a typical mix design 

of the UHPC proprietary mix Ductal®. The mixing took place at Fears lab using a Praschak 

spiral blade mixer with the capacity of 21 cubic feet. The spiral blade configuration of this mixer 

provided the high shear mixing action necessary to mix UHPC similarly to the typical vertical 

axis high shear mixer available at Fears Lab but was large enough to meet the quantity demand 

for one pour. Two 10 ft3 batches were mixed for each set of three joints. The mixing procedure 

provided for the proprietary UHPC mixture used, Ductal®, was followed. The procedure 

consisted of mixing the dry ingredients in the mixer for 2 minutes followed by pouring the water 

into the mixer over the course of 2 minutes, and then finally adding the water reducing admixture 

(a) (b) 
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over the course of 1 minute. The UHPC was mixed until flowable with a consistency similar to 

cake batter. Upon reaching the correct consistency, the steel fibers were added into the mixer. 

After the steel fibers mixed thoroughly in the UHPC, a flow test was conducted using the 

methods of ASTM C1437 and C1856 to check for proper flowability before placing the UHPC 

into the joints. UHPC was transported from the mix and placed in the joint formwork using a 

transfer bucket. After UHPC placement pieces of plywood and plastic sheeting were placed on 

top of the joints to prevent moisture loss. Twelve 3 in. x 6 in. cylinders were made to test the 

UHPC compressive strength at 3 days, 7 days, 28 days and day of specimen testing. The UHPC 

was cured for 7 days before removing the formwork around the joint. Figures 43 and 44 show the 

UHPC being placed, and the formwork being removed after the 7 day curing time.  

 

Table 3. Typical mix design of the UHPC proprietary mix Ductal® 
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Figure 43. UHPC being poured into the joint formwork for one of the retrofit specimens. 

 

 

Figure 44. Removing formwork from a newly constructed joint specimen. 
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3.3.4 Specimen Nomenclature  
 

The labeling of the specimens for the newly constructed and retrofit continuity joints uses two 

letters followed by a number, and then a second letter. The first two letters represent which joint 

type is being referenced. The letters would either be NC for newly constructed continuity joint, 

or RC for retrofit continuity joint. The number following NC and RC would be 1, 2, or 3 to 

represent the order of testing was done. Lastly the letter N or S will follow the specimen number 

to describe which girder is being referenced, the girder north of the joint (N) or south of the joint 

(S). For example: NC1-N would reference newly constructed continuity joint, the first specimen 

tested, and the girder north of the joint. If the N and S is not present, the specimen as a whole is 

being represented, e.g. NC1 would represent the entire specimen. 

 

3.4 Phase 4  
 

3.4.1 Testing Procedure 
 

The final phase of the research was to test each continuous beam specimen with a point load 

applied at midspan of each girder to create a negative moment in the joint. Observations and data 

were collected at various loads to characterize behavior of the two joint configurations and gain a 

better understanding of UHPC as a continuity joint material. Two load frames available at Fears 

lab were used to create the individual point loads. The load frames were attached to the strong 

floor in the lab spaced at a distance equal to the distance between the mid-spans of each girder 

with the joint in the middle. Two identical hydraulic rams were attached to each load frame with 

hydraulic hoses running from the rams to the same pump to create a parallel system. This was 

done to ensure the same load would be applied to each of the girders at the same time to obtain a 
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symmetric loading. In the case of a girder failing prematurely, a series of hydraulic valves were 

installed between the hydraulic pump and rams. This would allow one set of valves to be shut off 

to maintain hydraulic pressure in the ram on the prematurely failed girder and allow the 

continuation of loading on the other girder. Figure 45 shows the hydraulic pump, and valves.   

 

Figure 45. Hydraulic pump and valves. 

Cylindrical washers were used at each load point to allow for rotation during loading. Load cells 

were placed directly under each hydraulic ram to record the applied load and to monitor both 

loads during the test to verify both were within the same loading range. Figure 46 shows the load 

cell and hydraulic ram set up on one of the specimens on the north and south ends. 

 

 

 

 

Hydraulic Valves 
Hydraulic Pump 



59 
 

 

Figure 46. 100 kip load cell and hydraulic ram on the North beam (a) and 200 kip load cell and 
hydraulic ram on South beam (b). 

 

One wire potentiometer (pot) was placed directly under the beam at each load point to measure 

the deflection of each beam at mid-span. Linear voltage differential transformers (LVDTs) were 

placed under the girder center line at each of the supports. These LVDTs were used to measure 

the deflection of the neoprene pads supporting the girders during loading to subtract from the 

wire pot readings to get a true deflection of the girder at mid-span. Figure 47 shows a wire pot 

set up at midspan of the girder, and the LVDT set up at one of the supports.  

Hydraulic Rams 

100 kip Load Cell 

200 kip Load Cell 

(a) (b) 
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Figure 47. Wire potentiometer (pot) attached to bottom of girder at midspan (a) and linear 
voltage differential transformer (LVDTs) placed under girder near the support (b). 

 

Four more LVDTs were attached around the negative moment region of the joint to measure 

joint separation at the interface of the connection if it occurred. One LVDT was attached directly 

to the concrete deck 2 in. below the top of the deck on each side of the joint on each side of the 

specimen using two conduit clamps and concrete screws. The LVDTs pushed against an 

aluminum angle attached to the UHPC joint. This allowed the LVDT to measure joint separation 

at the top portion of each interface on the side of the joint. Figure 48 shows two LVDT’s 

attached to one face of the continuity joint.  

(a) (b) 
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Figure 48.Figure 48. LVDTs used to measure joint separation attached to the girder. 

 

Location of all the external sensors for the newly constructed joint is shown in Figure 49. For the 

retrofit connection tests, the LVDTs 3 and 5 were adjusted to 11 inches from the end of girder 

due to the joint length being shorter. 

  

 

Figure 49. Sensor locations for each test. 
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Two internal strain gauges with a 6 mm gauge length were attached to the negative moment 

reinforcing steel in the joint were used to measure strain in the maximum moment region and 

determine if the steel began to yield during the test. The strain gages were attached in the same 

location for the newly constructed and retrofit connection. They were attached at the middle of 

the joint on the rebar, with one strain gauge being attached to and interior bar, and the second 

gauge to the outer bar not next to the interior bar with the strain gauge. The gauges were coated 

in silicon to prevent them from getting damaged from the concrete pour. Figure 50 shows a strain 

gauge attached to a reinforcing bar.  

 

Figure 50. Strain gauge attached to a rebar. 

 

The procedure to begin testing a new specimen started with moving the specimen into the load 

frames and aligning the specimen on the supports to ensure each girder was in line with the 
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hydraulic ram. After the specimen was correctly aligned, the load cells, wire pots, and LVDTs 

were attached/placed into the correct position based on the sensor diagram. Once the sensors 

were in place, each sensor was tested to verify a signal change was being read on the data 

acquisition system, and all sensors were zeroed. Load was applied to each specimen in 5 kip 

increments until initial cracking. The specimen was inspected for initial cracking between each 

load increment. Upon finding initial cracking, the cracks were traced with a black marker, and 

the corresponding load increment was written at the end of the crack. Loading increments were 

changed from 5 kips to 2 kips after initial cracking occurred to allow a more precise crack 

tracking on the specimen. When the specimen was deemed failed or unsafe to continue loading 

the specimen was unloaded to end the test.  
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4.0 Results  

 

Compressive Strengths  
 

The concrete compressive strength data for the prestressed girders associated with the new 

construction (NC) joint specimens is listed in Table 4. The compressive strength data for the 

concrete decks associated with each NC specimen is listed in Table 5. The compressive strength 

data associated with each NC specimen UHPC continuity joint is list in Table 6. All compressive 

strength data presented is the average between two to three specimens tested. It should be noted 

that the blanks in Table 4 are missing data that was not collected by mistake. All specimens 

described in Tables 5 and 6 share the same compressive strengths for 1, 7, and 28 days.  

Table 4. Concrete compressive strengths for the NC prestressed girders 

Girder NC1-N  NC1-S  NC2-N  NC2-S  NC1-N  NC1-S  
1 Day, psi  4670 4910 5010 5410 5360 5200 
7 Day, psi 7110 7070 

  
7310 7090 

28 Day, psi 
  

8730 9270 8220 8210 
Day of Test, psi 7840 8000 8650 8790 8130 8630 

 

Table 5. Compressive strengths for the NC concrete decks 

Deck NC1 NC2 NC3 
1 Day, psi 3970 
7 Day, psi 5090 

28 Day, psi 4930 
Day of Test, psi 4860 4740 5200 

 

Table 6. Compressive strengths for the NC UHPC joints 

Joint NC1 NC2 NC3 
3 Day, psi  12870 
7 Day, psi 18000 

28 Day, psi 23390 
Day of Test, psi 23790 25880 24620 
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The concrete compressive strength data for the prestressed girders associated with the retrofit 

construction (RC) joint specimens is listed in Table 7. The compressive strength data for the 

concrete decks associated with each RC specimen is listed in Table 8. The compressive strength 

data associated with each RC specimen UHPC continuity joint is listed in Table 9. All 

compressive strength data presented is the average between two to three specimens tested. It 

should be noted that the blanks in Table 7 are missing data that was not collected by mistake. All 

specimens described in Tables 8 and 9 share the same compressive strengths for 1, 7, and 28 

days. 

Table 7. Concrete compressive strengths for the RC prestressed girders 

Girder RC1-N  RC1-S  RC2-N  RC2-S RC3-N RC3-S 
1 Day, psi  4990 4910 4660 4790 4320 4630 
7 Day, psi 6870 7230 6980 7440 

  

28 Day, psi 8640 8500 7890 8320 7640 8200 

Day of Test, psi 8750 8140 7350 7500 7530 8510 
 

Table 8. Compressive strengths for the RC concrete decks 

Deck RC1 RC2 RC3 
1 Day, psi  3970 
7 Day, psi 5090 

28 Day, psi 4930 
Day of Test, psi 5460 5510 5160 

 

Table 9. Compressive strengths for the RC UHPC joints 

Joint RC1 RC2 RC3 
3 Day, psi 16430 
7 Day, psi 22100 

28 Day, psi 25020 
Day of Test, psi 24850 23980 24790 
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4.2 Newly Constructed (NC) Specimens 
 

The primary focus of testing the NC specimens was to get a better understanding of how a newly 

constructed UHPC joint configuration would perform under loading causing negative moment at 

the joint. To characterize the performance and behavior of this joint configuration, initial 

cracking for each region of each specimen, cracking occurring at ultimate load, load-deflection 

curves for each girder in the specimen, and load versus joint separation curves for each joint 

interface are presented for each NC specimen. The order results are presented is the order in 

which testing occurred. 

4.2.1 Test NC1 
 

During the loading of the NC1 specimen, the data acquisition system crashed approximately two 

thirds through the loading. The system crashed from over collecting data from the sensors, which 

resulted in the data file being too large to open with any program and deeming it unusable. The 

data accusation system was adjusted to reduce the incoming data before reloading the NC1 

specimen. On the second loading the file size was significantly smaller and could be opened with 

no difficulty. Cracks that formed during the reload test were labeled with an R with the load 

amount.  

Initial flexural cracking was observed during the first loading near the joint interface on the 

NC1-S girder at a load of 35 kips, shown in Figure 52b. The next flexural crack was observed 

directly under the load point on the NC1-N girder at a load of 43 kips, shown in Figure 51a. In 

addition, two more cracks had developed at a load of 43 kips, a flexural crack near the joint 

interface on the NC1-N girder, shown in Figure 52a, and a flexure-shear crack near the joint 

interface on NC1-S, shown in Figure 52b. On the next load increment a flexural crack was 
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observed on the NC1-S girder directly under the load point at a load of 45 kips, shown in Figure 

51b. A flexure-shear crack had also developed near the joint interface on the NC1-N girder at the 

same load, shown in Figure 52a. Asymmetrical hairline flexural cracks were observed in the 

continuity joint at a load of 52 kips during the first loading, as indicated with dark lines in Figure 

53. During the reload test a flexural crack was observed on the east face of continuity joint at a 

load of 44 kips, as indicated in Figure 53b with a dark oval. Additional flexural cracks developed 

during the reload test in the continuity joint at a load of 46 kips, as indicated in Figure 54 with 

dark ovals. These flexural cracks in the continuity joint developed at a lower load increment 

during the reload test than the initial cracks observed during the first loading. This would likely 

be due to the cracks already existing prior to the reload, but which did not fully separate to be 

visually distinguishable as a crack until the reloading occurred.  

 

Figure 51. Initial flexural cracking under the load point on the NC1-N girder at 43 kips of load 
(a) and initial flexural cracking under the load point on the NC1-S girder at 45 kips of load (b). 

Arrows point to the dark lines that indicate the initial flexural cracks. 

 

(a) (b) 
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Figure 52. Initial flexural cracking on the NC1-N girder at 43 kips of load and initial flexure-
shear cracking on the NC1-N girder at 45 kips of load (a) and initial flexural cracking on the 

NC1-S girder at 35 kips of load and initial flexure-shear cracking on the NC1-S girder at 43 kips 
of load (b). Dark ovals indicate the initial flexural cracking near the continuity joint, and arrows 

point to the dark lines that indicate the initial flexure-shear cracking. 

 

 

(a) (b) 
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Figure 53. Initial continuity joint flexural cracking on the west face (a) and east face (b) at 52 
kips of load. Arrows point to the dark lines that indicate the initial flexural cracks, and the dark 

oval shows the initial flexural cracks from the reload test. Other reloading cracks are indicated by 
an R before the load value. 

 

 

Figure 54. Continuity joint flexural cracking during the reload test on the west face (a) and east 
face (b) at 46 kips of load. Dark ovals show the initial flexural cracks from the reload test. Other 

reloading cracks are indicated by an R before the load value. 

(a) (b) 

(a) (b) 
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Cracks that developed between initial cracking and final failure included additional flexural 

cracks under the point loads, flexure-shear cracks near the joint interface, web shear cracks near 

the point load, and flexural cracks in the UHPC joint. Most cracks occurring on the NC1 

specimen when reaching final failure were flexure-shear and web shear cracks. These cracks 

developed as the load increased and the flexure-shear cracks began to move away from the joint 

interface towards the load point. Upon reaching approximately halfway to the load point from 

the joint, web shear cracks developed in place of the flexure-shear cracks. Figure 55 shows the 

flexural cracks and web shear cracks between the joint interface and load point for the NC1-N 

and NC1-S girder.  

 

Figure 55. NC1-N girder with flexure-shear and web shear cracks (top). NC1-S girder with 
flexure-shear and web shear cracks (bottom). 

Web Shear Cracks Flexure-shear Cracks 

Flexure-shear Cracks Web Shear Cracks 
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Loading of the specimen was stopped when the prestressing strands in the NC1-S girder ruptured 

directly under the load point at a load of 73.8 kips. The flexural crack directly under the load 

point where the prestressing strands ruptured is indicated in Figure 56 with a dark oval. The 

concrete deck began to crush at the load point in both girders under the loading conditions 

immediately before the prestressing strands ruptured, as shown by the dark circles in Figure 57. 

In addition, there was significant widening of the flexural cracks under both load points with 

additional load application, as shown by dark lines in Figure 57. These conditions were taken to 

indicate flexural failure of the beam specimens. Allowing the prestressing strands to rupture on 

the first test specimen helped indicate the capacity of the prestressed concrete girders connected 

to the continuity joint had been reached, and to prevent the need to take future prestressing 

strands all the way to rupture. 

 

Figure 56. Flexural crack where the prestressing strands ruptured under the load point on the 
NC1-S girder, indicated by a dark oval 
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Figure 57. Crushed concrete deck in the NC1-N (a) and NC1-S (b) girder are indicated by a 
black oval and the final flexural cracks under the load point in the NC2-N (a) and NC2-S (b) 

girders are indicated by dark lines 

 

The interface between the NC1-N girder and the UHPC joint exhibited flexural cracking along 

the interface, which resulted in separation of the girder from the joint material, as shown by the 

dark lines in Figure 58a. Additional separation was observed at the interface between the UHPC 

joint and the NC1-S girder, but also flexural cracking parallel to the interface, as shown in Figure 

58b. The term ”joint separation” will be used throughout the remainder of the document and is 

defined as the debonding between the concrete deck and UHPC joint interface due to flexural 

cracking.  

 

(a) (b) 
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Figure 58. Joint separation at the interface between the NC1-N girder and the UHPC joint (a) and 
flexural cracking parallel to the interface between the UHPC joint and the NC1-S girder (b) are 

indicated by dark lines. 

 

Figure 59 shows the load-deflection curve for the NC1-N girder from the reload test. The reload 

curve does not clearly indicate the girder having a ductile behavior due to initial cracking 

occurring in the first test. No sudden loss of stiffness indicating cracking is visible in the reload 

curve. The reload curve beginning to plateau out to 2 inches of deflection after exceeding the 

maximum load that was reached in the first test indicates that the prestressing strands began to 

yield. This supports a ductile behavior of the NC1-N prestressed girder during loading up to the 

ultimate load of 72.5 kips, as the graph was unable to show clear indication of the behavior. 

Figure 60 shows the reload-deflection curve for the NC1-S girder. The NC1-N and NC1-S 

girders had the same ductile behavior, but the NC1-S girder’s prestressing strands ruptured after 

the ultimate load of 73.8 kips was achieved. The NC1-S girder deflected an inch more than the 

(a) (b)
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NC1-N girder due to the strands rupturing. The noise in the data visible in both figures comes 

from the wire pots measuring deflection, and for the future tests they were switched to different 

data acquisition channels with better signal conditioning to reduce the noise in the signals.  

 

Figure 59. Load-deflection curve for the NC1-N girder, reload test. 
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Figure 60. Load-deflection curve for the NC1-S girder, reload test. 

 

Figure 61 shows the load-joint separation curve between the NC1-N girder’s concrete deck and 

the UHPC joint from the reload test. The readings from the LVDTs on the east and west faces of 

the concrete deck were averaged to get a better representation of the joint separation. Figure 48 

shows the location of the LVDTs on the joint interface and are located 2 inches below the top of 

the deck. The reload curve showed a linear trend from zero back to where the final load of the 

initial test had stopped. Beyond the 60 kip load joint separation increased significantly with each 

load increment. At this point the NC1-N girder began to exhibit an increase in deflection, 

resulting in a less stiff member and creating a hinge at the weak point, that is the joint interface. 

Figure 62 shows the reload joint separation curve between the NC1-S girder’s concrete deck and 

the UHPC joint. This figure only represents LVDT11 on the west face of the deck. LVDT 7 was 

not included for any of the six tests, as the data was unreliable. This load joint separation curve 
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shows the same trends as for the average of LVDT 4 and 9 between the NC-1N girder deck and 

UHPC joint, but with a smaller magnitude. 

 

Figure 61. Load-joint separation curve at the NC1-N girder deck to joint interface. 

 

 

Figure 62. Load-joint separation curve at the NC1-S girder deck to joint interface west face. 
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4.2.2 Test NC2 
 

Initial flexural cracking was observed directly under the load point on the NC2-N girder at a load 

of 40 kips, shown in Figure 63a. During the next 5 kip load increment a flexural crack was 

observed on the NC2-S girder directly under the load point, shown in Figure 63b. In addition, 

flexure-shear cracks, shown in Figure 64b, had also developed on the NC2-S girder near the 

continuity joint. Asymmetrical hairline flexural cracks occurred in the continuity joint at the 

same load increment of 45 kips as shown in Figure 65. The cracking observed on the east face of 

the joint did not match the west face, as the east face had irregular flexural cracking as indicated 

in Figure 65b with a dark circle. The second flexural crack did not go to the top of the joint, but 

instead started below and shifted from the first crack. The NC2-N girder exhibited similar 

flexure-shear cracks as the NC2-S girder at 47 kips near the joint as shown in Figure 64b.  

 

Figure 63. Initial flexural cracking under the load point on the NC2-N girder at 40 kips of load 
(a) and initial flexural cracking under the load point on the NC2-S girder at 45 kips of load (b). 

Arrows point to the dark lines that indicate the initial flexural crack. 

 

(a) (b)
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Figure 64. Flexure-shear cracking on the NC2-N girder at 47 kips of load (a) and flexure-shear 
cracking on the NC2-S girder at 45 kips of load (b). Arrows point to the dark lines that indicate 

the initial flexure-shear cracking. 

 

 

Figure 65. Initial continuity joint flexural cracking on the west face (a) and east face (b) at 45 
kips of load. Arrows point to the dark lines that indicate the initial flexural cracks, and the dark 

circle on the east face (b) shows the irregular flexural cracking. 

 

(b) (a) 

(b)(a) 
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Cracks that developed between initial cracking and final failure included additional flexural 

cracks under the point load, flexure-shear cracks near the joint interface, web shear cracks near 

the point load, and flexural cracks in the UHPC joint. The majority of cracks observed for the 

NC2 specimen were at final failure were flexure-shear and web shear cracks. These cracks 

developed as the load increased and the flexure-shear cracks propagated away from the joint 

interface towards the load point. Beginning approximately halfway to the load point web shear 

cracks developed in place of the flexure-shear cracks. Figure 66 shows the flexural cracks and 

web shear cracks between the joint interface and load point for the NC2-N and NC2-S girder.  

 

Figure 66. NC2-N girder with flexure-shear and web shear cracks (top) and NC2-S girder with 
flexure-shear and web shear cracks (bottom). 

 

Loading of the specimen was stopped upon reaching an applied load of 71.5 kips on the NC2-N 

girder and 72 kips on the NC2-S girder. Under these loading conditions the concrete deck had 

begun to crush at the load point in both girders, as shown by the dark circles and arrows in 

Web Shear Cracks Flexure-shear Cracks 

Web Shear Cracks Flexure-shear Cracks 
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Figure 67. In addition, the flexural cracks under both loads points had significantly widened, as 

shown by dark lines and arrows in Figure 67. These conditions were taken to indicate flexural 

failure of the beam specimens and testing was concluded to prevent the prestressing strands from 

rupturing and causing damage to the testing apparatus.  

 

Figure 67. Crushed concrete deck in the NC2-N (a) and NC2-S (b) girders is indicated by a black 
oval, and the final flexural cracking under the load point in the girders are indicated by dark 

lines. 

 

Flexural cracking was observed along the interface between the NC2-N girder and the UHPC 

joint, which resulted in separation of the girder from the joint, as shown by the dark lines in 

Figure 68a. Less separation was observed at the interface between the UHPC joint and the NC2-

S girder, but more flexural cracking parallel to the interface was observed, as shown in Figure 

68b.  

(a) (b)
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Figure 68. Joint separation at the interface between the NC2-N girder and the UHPC joint (a) and 
flexural cracking parallel to the interface between the UHPC joint and the NC2-S girder (b) are 

indicated by dark lines. 

 

The NC2-S girder deck near the joint interface exhibited severe cracking along the side of the 

deck in the longitudinal direction at the level of the negative moment reinforcement. After 

testing was complete, the top portion of the deck was removed to determine the cause of this 

behavior. After the concrete had been removed above the negative reinforcement, it was 

determined that the rebar had plastically deformed during loading. There was no sign of cracking 

around the reinforcement entering the UHPC joint, which indicated that the UHPC joint acted as 

a fixed end for the reinforcement. As the load increased during the test, the girder deflected more 

(a) (b)
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than the relatively rigid joint causing the rebar to follow the same curvature as the girder but 

remain fixed in the UHPC joint. This caused the rebar to bend sharply upward, and it separated 

the concrete along the longitudinal negative moment reinforcement in the deck. Figure 69 shows 

the NC2-S girder deck before and after the excavation of the concrete separation in the deck.  

 

Figure 69. NC2-S girder before excavation of the concrete in the deck (top) and the deck after 
excavation exposing the reinforcement (bottom) 

 

Figure 70 shows the load-deflection curve for the NC2-N girder. The curve shows a reduction in 

stiffness that corresponds with the initial flexural cracking observed at 40 kips. Other types of 

initial cracking did not reduce the stiffness of the girder. This indicates a ductile behavior of the 

NC2-N prestressed girder during loading up to the ultimate load of 71.5 kips. In addition, the 

plateau of the load-deflection curve out to 2 inches of deflection indicated the prestressing 

strands were yielding. Figure 71 shows the load-deflection curve for the NC2-S girder. The NC2-

N and NC2-S girders had the same ductile behavior, but with the NC2-S girder having less 
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deflection at mid-span. The varying deflection of the girders can be related to a difference in the 

concrete mix, compressive strength, modulus of elasticity, and a difference in prestress loss 

between the girders. These variables could have caused the NC2-N girder to crack 5 kips earlier 

in flexure than the NC2-S girder and could have resulted in the NC2-N girder having a reduced 

stiffness compared to the NC2-S girder. This led to a larger downward curvature, which created 

more strain in the prestressing strands, and led to even larger deflection in the NC2-N girder.  

 

Figure 70. Load-deflection curve for the NC2-N girder. 
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Figure 71. Load-deflection curve for the NC2-S girder. 

 

Figure 72 shows the load-joint separation curve between the NC2-N girder’s concrete deck and 

the UHPC joint. The average of the readings from the LVDTs on the east and west faces of the 

concrete deck was taken to get a better representation of the joint separation. Figure 48 shows the 

location of the LVDT’s on the joint interface and are located two inches below the top of the 

deck. The deck joint had minor separation until reaching the initial flexural cracking of 40 kips. 

After that load, indicated by a diamond shape in Figure 72, the joint separation began to increase 

significantly with each load increment. It is reasonable that major joint separation could only 

occur after the girder cracked due to flexure, resulting in a less stiff member and creating a hinge 

at the weak point; the joint interface. Figure 73 shows the load-joint separation curve between 

the NC2-S girder’s concrete deck and the UHPC joint. This figure only includes results from 

LVDT11 on the wast face of the deck. This load-joint seperation curve shows the opposite of 

what was expected. As the girder cracked in flexure, the reduction of girder stiffness appeared to 
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have no effect on the rate of the joint seperation as the load increased. No major joint seperation 

occurred until reaching over 60 kips of load, after which the separation rapidly increased until 

the LVDT gave a faulty reading. The results shown only include data from before the faulty 

reading occurred.  

 

 

Figure 72. Load-joint separation curve at the NC2-N girder deck to joint interface. 
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Figure 73. Load-joint separation curve at the NC2-S girder deck to joint interface west face. 

 

4.2.3 NC3 Positive Moment Test 
 

A positive moment test was conducted on the NC3 specimen, in order to test the positive 

moment region of the UHPC continuity joint. This approach was intended to recreate the time 

dependent effects that are applied to the continuity joint and create the positive moment that 

often results in cracking. The supports were removed at the NC3-N and NC3-S joint interface to 

create a simply supported span with the UHPC joint at the middle of that span. The two loads 

were then applied in the exact location as the negative moment tests to the girders to create 

positive moment in the continuity joint region. Initial flexural cracking was observed along the 

joint interface at a load of 4.5 kips, as indicated with dark lines in Figure 74. As the load 

progressed, the flexural crack progressed upward along the joint causing joint separation. A 

flexural crack was observed at 7.2 kips near the joint interface on the NC3-S girder, as indicated 

in Figure 74b with a dark oval. Upon reaching the 7 kip mark the positive moment test was 
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stopped to prevent any additional damage to the joint, as this test was conducted only to see the 

initial cracking behavior of the joint under this loading condition. No flexural cracks were 

observed in the UHPC joint.   

 

Figure 74. Joint separation at the interface between the NC3-N girder and the UHPC joint during 
the positive moment test (a) and joint separation at the interface between the NC3-S girder and 

the UHPC joint (b) are indicated by dark lines. Flexural crack near the joint interface in the NC3-
S girder (b) is indicated by a dark oval. 

 

4.2.4 Test NC3  
 

Initial flexural cracking was observed near the joint interface on the NC3-S girder at a load of 19 

kips, shown in Figure 76b. After the next load increment asymmetrical flexural cracks were 

observed in the continuity joint at a load of 25 kips, shown in Figure 77. In addition, a flexural 

crack had developed in the NC3-N girder near the joint interface , shown in Figure 76a. Initial 

flexure-shear cracking was observed near the joint interface on the NC3-S glider at a load of 35 

kips, shown in Figure 76b. Two cracks were observed at a load of 41 kips, a flexural crack 

directly under the load point on the NC3-N girder, shown in Figure 75a, and a flexure-shear 

(a) (b) 
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crack near the joint interface on the NC3-N girder, shown in Figure 76a. After the next load 

increment a flexural crack had developed directly under the load point on the NC3-S girder at a 

load of 46 kips, shown in Figure 75b.  

 

Figure 75. Initial flexural cracking under the load point on the NC3-N girder at 41 kips of load 
(a) and initial flexural cracking under the load point on the NC3-S girder at 46 kips of load (b). 

Arrows point to the dark lines that indicate the initial flexural cracks. 

 

 

(a) (b) 



89 
 

 

Figure 76. Initial flexural cracking on the NC3-N girder at 25 kips of load and initial flexure-
shear cracking on the NC3-N girder at 41 kips of load (a) and initial flexural cracking on the 
NC3-S girder at 19 kips of load and flexure-shear cracking on the NC3-S girder at 35 kips of 

load (b). Dark circles show the initial flexural cracking near the continuity joint and arrows point 
to the dark lines that indicate the initial flexural shear cracking. 

 

 

Figure 77. Initial continuity joint flexural cracking on the west face (a) and east face (b) at 25 
kips of load. Arrows point to the dark lines that indicate the initial flexural cracks. 

 

(a) (b) 

(a) (b) 
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Cracks that developed between initial cracking and final failure included additional flexural 

cracks under the point load, flexure-shear cracks near the joint interface, web shear cracks near 

the point load, and flexural cracks in the UHPC joint. Most of the cracks observed on the NC3 

specimen at final failure were flexure-shear and web shear cracks. These cracks developed as the 

load increased and the flexure-shear cracks propagated away from the joint interface toward the 

load point. At approximately halfway to the load point from the joint, web shear cracks 

developed in place of the flexure-shear cracks. Figure 78 shows the flexural cracks and shear 

cracks between the joint interface and load point for the NC3-N and NC3-S girders at failure.  

 

 

Figure 78. NC3-N girder with flexure-shear and shear cracks top and NC3-S girder with flexure-
shear and shear cracks (bottom). 

 

Web Shear Cracks Flexure-shear Cracks 

Web Shear Cracks Flexure-shear Cracks 
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Loading of the specimen was stopped upon reaching an applied load of 69.8 kips on the NC3-N 

girder and 70.2 kips on the NC3-S girder. Under these loading conditions the concrete deck 

began to crush at the load point on the NC3-N girder, as shown by the dark circle in Figure 79. 

There was no visual concrete crushing in the NC3-S girder. In addition, there was significant 

widening of the flexural cracks under both load points, as shown by dark lines in Figure 79. 

These conditions were taken to indicate flexural failure of the beam specimens and testing was 

concluded to prevent the prestressing strands from rupturing and causing damage to the testing 

apparatus. 

 

Figure 79. Crushed concrete deck in the NC3-N girder is indicated by a black oval (a) and the 
final flexural cracking under the load point in the NC3-N (a) and NC3-S (b) girders are indicated 

by dark lines. 

 

The interface between the NC3-N girder and the UHPC joint had preexisting flexural cracking 

from the positive moment test, shown in Figure 74a. Flexural cracking occurred along the top 

portion of the joint interface that extended into the preexisting crack during the final load test. 

This resulted in separation of the girder from the joint, as shown by the dark lines in Figure 80a. 

(a) (b) 
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The same type of flexural cracking occurred at the NC3-S girder and UHPC joint interface, as 

shown by the dark lines in Figure 80b. 

 

 

Figure 80. Joint separation at the interface between the NC3-N girder and the UHPC joint (a) and 
separation at the interface between the NC3-S girder and the UHPC joint (b) are indicated by 

dark lines. 

 

Figure 81 shows the load-deflection curve for the NC3-N girder. The curve shows a reduction in 

stiffness that corresponds with the initial flexural and flexure-shear cracking observed at 41 kips. 

Initial cracking of the UHPC joint did not reduce the stiffness of the girder. This indicates ductile 

behavior of the NC2-N prestressed girder during loading up to the ultimate load of 69.8 kips. In 

(a) (b) 
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addition, the plateau of the load-deflection curve out to 2 inches of deflection also indicated the 

prestressing strands were yielding. Figure 82 shows the load-deflection curve for the NC3-S 

girder. The NC3-N and NC3-S girders exhibited the same ductile behavior, but with the NC3-N 

girder having more than one inch more deflection at mid-span than NC3-S. The varying 

deflection of the girders can be related to differences in the concrete mix, compressive strength, 

modulus of elasticity, and a difference in prestress loss between the girders. These variables 

could have caused the NC3-N girder to crack in flexure 5 kips earlier in load than the NC3-S 

girder and could have resulted in the NC3-N girder having a reduced stiffness compared to the 

NC3-S girder. This led to a larger downward curvature, which created more strain in the 

prestressing strands, and led to larger deflection in the NC3-N girder.  

 

Figure 81. Load-deflection curve for the NC3-N girder. 
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Figure 82. Load-deflection curve for the NC3-S girder. 

 

Figure 83 shows the load-joint separation curve between the NC3-N girder’s concrete deck and 

the UHPC joint. The results from the LVDTs on the east and west face of the concrete deck were 

averaged to provide a better representation of the joint separation. Figure 48 shows the location 

of the LVDTs on the joint interface, which were located 2 inches below the top of the deck. The 

deck joint had minor separation until reaching the 60 kip load mark. As the girder cracked in 

flexure, the reduction of girder stiffness appeared to have no effect on the rate of joint seperation. 

The joint began to separate after the 60 kip mark more significnly because the girder began to 

have more downward curvature, creating a hinge at the weak point; that is the joint interface. 

Figure 84 shows the load-joint separation curve between the NC3-S girder’s concrete deck and 

the UHPC joint. This figure only presents data from LVDT11 on the west face of the deck. The 

NC3-N and NC3-S curves closely match one another in behavior expect the NC3-S speration 

curve shows less seperation occuring. This is most likely due to the NC3-S girder having less 
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deflection at the mid span of the girder, and the NC3-N girder having more resulting in more 

joint separation at the NC3-N girder to deck joint interface.  

 

Figure 83. Load-joint separation curve at the NC3-N girder deck to UHPC joint interface. 
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Figure 84. Load-joint separation curve at the NC3-S girder deck to UHPC joint interface. 

 

Overall, the NC3 specimen performed quite well considering the additional positive moment test 

done to the specimen before the negative moment test was performed. The load-deflection 

graphs, and the load-joint separation graphs of the NC3 compared quite well to the NC1 and 

NC2 graphs.  

4.3 Retrofit Constructed Specimens 
 

The primary focus of testing the RC specimens was to get a better understanding of how a joint 

cast to retrofit an existing simply support bridge for live load continuity would perform under 

loading causing negative moment at the joint. To characterize the performance and behavior of 

this joint configuration, initial cracking for each region on the specimen, cracking occurring at 

ultimate load, the load-deflection curves for each girder in the specimen, and the load-joint 
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separation curves for each joint interface are presented for each RC specimen. The order in 

which the specimens are presented is the order testing occurred. 

 4.3.1 Test RC1  
 

Initial flexural cracking was observed near the joint interface on the RC1-N and RC1-S girders at 

a load of 20 kips, indicated in Figure 86 with dark ovals. An initial flexure-shear crack was 

observed after the next loading increment near the joint interface on the RC1-S specimen at a 

load of 25 kips, shown in Figure 86b. A similar flexure-shear crack to that which had developed 

on the RC-S girder was observed on the RC1-N girder at a load of 30 kips, shown in Figure 86a. 

A flexural crack was observed directly under the load point on RC1-S girder at a load of 45 kips, 

shown in Figure 85b. During the following load increment a flexural crack developed directly 

under the load point on the RC1-N girder, shown in Figure 85a. The first flexural crack observed 

in the continuity joint occurred on the east face at a load of 60 kips, shown in Figure 87a. On the 

next load increment a flexural crack developed on the west face of the joint at a load of 62 kips, 

shown in Figure 87b.  
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Figure 85. Initial flexural cracking under the load point on the NC2-N girder at 47 kips of load 
(a) and initial flexural cracking under the load point on the NC2-S girder at 45 kips of load (b). 

Arrows point to the dark lines that indicate the initial flexural cracks. 

 

Figure 86. Initial flexural cracking on the NC1-N girder at 25 kips of load and initial flexure-
shear cracking on the NC1-N girder at 41 kips of load (a) and initial flexural cracking on the 
NC1-S girder at 19 kips of load and flexure-shear cracking on the NC1-S girder at 35 kips of 

load (b). Dark ovals show the initial flexural cracking near the continuity joint, and arrows point 
to the dark lines that indicate the initial flexure-shear cracking. 

(a) (b) 

(a) (b) 
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Figure 87. Initial continuity joint flexural cracking on the east face at a load of 62 kips (a) and 
initial continuity joint flexural cracking on the west face at a load of 60 kips (b). Arrows point to 

the dark lines that indicate the initial flexure cracks 

Cracks that developed between initial cracking and final failure included additional flexural 

cracks under the point load, flexure-shear cracks near the joint interface, web shear cracks near 

the point load, and flexural cracks in the UHPC joint. The majority of cracks that occurred 

between initial cracking and failure were flexure-shear and web shear cracks for the RC1 

specimen. These cracks developed as the load increased and the flexure-shear cracks began to 

move away from the joint interface towards the load point. Upon reaching approximately 

halfway to the load point from the joint, web shear cracks developed in place of the flexure-shear 

cracks. Figure 88 shows the flexural cracks and web shear cracks between the joint interface and 

load point for the RC1-N and RC1-S girders.  

 

(a) (b) 
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Figure 88. RC1-N girder with flexure-shear cracks and web shear cracks at failure (top) and 
RC1-S girder with flexure-shear cracks and web shear cracks at failure (bottom). 

 

Loading of the specimen was stopped upon reaching an applied load of 76 kips on the RC1-N 

girder and 75.9 kips on the RC1-S girder. Under these loading conditions the concrete deck 

began to crush at the load point in both girders, as shown by the dark circles and arrows in Figure 

89. In addition, there was significant widening of the flexural cracks under both loads points, as 

shown by dark lines and arrows in Figure 89. These conditions were taken to indicate flexural 

failure of the beam specimens and testing was concluded to prevent the prestressing strands from 

rupturing and causing damage to the testing apparatus.  

 

Web Shear Cracks Flexure-shear Cracks 

Web Shear Cracks Flexure-shear Cracks 
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Figure 89. Crushed deck concrete in the RC1-N (a) and RC1-S (b) girders is indicated by a black 
oval, and the final flexural cracking under the load point in the RC1-N (a) and RC1-S (b) girders 

is indicated by dark lines. 

 

Flexural cracking occurred at the interface between the RC1-N girder deck and the UHPC joint, 

which resulted in separation of the deck from the joint. However, the flexural crack from the 

concrete deck joint interface continued vertically down into the RC1-N girder’s flange and then 

into the web before diverting back towards the joint interface, as shown in Figure 90a. The 

interface between the RC1-S girder and the UHPC joint exhibited similar flexural cracking to the 

RC1-N girder and joint interface, as shown in Figure 90b.  

 

(a) (b) 
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Figure 90. Joint separation at the interface between the RC1-N concrete deck and the UHPC joint 
with the flexural crack going vertically down in the girder (a) and joint separation at the interface 

between the RC1-S concrete deck and the UHPC joint with the flexural crack going vertically 
down in the girder (b) are indicated by dark lines. 

 

Figure 91 shows the load-deflection curve for the RC1-N girder. The curve shows a reduction in 

stiffness that corresponds with the initial flexural cracking observed at 47 kips. Other types of 

initial cracking did not reduce the stiffness of the girder. The load-deflection curve indicates a 

ductile behavior of the RC1-N prestressed girder during loading up to the ultimate load of 76 

kips. The plateau of the load-deflection curve out to 1.5 inches of deflection also indicated the 

prestressing strands were yielding. Figure 92 shows the load-deflection curve for the RC1-S 

girder. The RC1-N and RC1-S girders had the same ductile behavior, but with the RC1-S girder 

having less deflection at mid-span. The varying deflection of the girders can be related to 

potential differences in the concrete mix, compressive strength, modulus of elasticity, and in 

prestress loss between the girders. These variables could have resulted in the RC1-N girder 

(a) (b) 
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having a reduced stiffness compared to the RC1-S girder. This reduced stiffness led to a larger 

downward curvature, which created more strain in the prestressing strands, and led to larger 

deflection in the RC1-N girder.  

 

Figure 91. Load-deflection curve for the RC1-N girder. 
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Figure 92. Load-deflection curve for the RC1-S girder. 

 

Figure 93 shows the load-joint separation curve between the RC2-N girder’s concrete deck and 

the UHPC joint. The average of the readings from the LVDTs on the east and west face of the 

concrete deck was taken to get a better representation of the joint separation. Figure 48 shows the 

location of the LVDTs on the joint interface which were located 2 inches below the top of the 

deck. The deck joint had minor separation until reaching the initial flexural cracking of 47 kips. 

After the 47 kip load, indicated by a diamond shape on Figure 93, the joint separation began to 

increase significantly with each load increment. This makes sense because major joint separation 

could only occur after the girder cracked due to flexure, resulting in a less stiff member and 

creating a hinge at the weak point being the joint interface. The LVDTs on the RC2-S girder’s 

concrete deck did not collect reliable data and the measurements from these instruments were 

excluded from this section.  
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Figure 93. Load joint separation curve at the RC1-N girder deck to UHPC joint interface. 

 

4.3.2 Test RC2 
  

Initial flexural cracking was observed near the joint interface on the RC1-S girder at a load of 

19.5 kips, indicated in Figure 95b by a dark oval. Asymmetrical flexural cracks were observed 

on the continuity joint after the next load increment, at a load of 25 kips, as shown in Figure 96. 

In addition, two more cracks had developed at 25 kips of load, a flexural crack near the joint 

interface on the RC2-N girder, indicated in Figure 95a by a dark oval, and a flexure-shear crack 

near the joint interface on the RC2-S girder, shown in Figure 95b. At the next load increment a 

flexure-shear crack developed on the RC2-N girder, shown in Figure 94a. Flexural cracking 

directly under the load point was observed on the RC2-N and RC2-S girders at a load of 44 kips, 

shown in Figure 94.  
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Figure 94. Initial flexural cracking under the load point on the RC2-N girder at 44 kips of load 
(a) and initial flexural cracking under the load point on the RC2-S girder at 44 kips of load (b). 

Arrows point to the dark lines that indicate the initial flexural cracks. 

 

 

 

(a) (b) 
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Figure 95. Initial flexural cracking on the RC2-N girder at 25 kips of load and initial flexure-
shear cracking on the RC2-N girder at 30 kips of load (a) and initial flexural cracking on the 

RC2-S girder at 19.5 kips of load and flexure-shear cracking on the RC2-S girder at 25 kips of 
load (b). Dark ovals show the initial flexural cracking near the continuity joint and arrows point 

to the dark lines that indicate the initial flexure-shear cracking. 

 

(a) (b) 
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Figure 96. Initial continuity joint flexural cracking on the east face (a) and west face (b) at 25 
kips of load. Arrows point to the dark lines that indicate the initial flexural cracks. 

Cracking that developed between initial cracking and final failure included additional flexural 

cracks under the point load, flexure-shear cracks near the joint interface, web shear cracks near 

the point load, and flexural cracks in the UHPC joint. Most of the cracks that occurred in the 

RC2 specimen between initial cracking and failure were flexure-shear and shear cracks. These 

cracks developed as the load increased and the flexure-shear cracks began to move away from 

the joint interface toward the load point. Approximately halfway to the load point from the joint 

web shear cracks developed in place of flexure-shear cracks. Figure 97 shows the flexural cracks 

and shear cracks between the joint interface and load point for the RC2-N and RC2-S girders. 

(a) (a) 
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Loading of the specimen was stopped upon reaching an applied load of 74.1 kips on the NC2-N 

girder and 74.2 kips on the NC2-S girder. Under these loading conditions the concrete deck 

began to crush at the load point in both girders. This is not clear in Figure 98 due to the crushing 

not being significant on the east face. In addition, there was significant widening of the flexural 

cracks under both load points, as shown by dark lines in Figure 98. These conditions were taken 

to indicate flexural failure of the beam specimens and testing was concluded to prevent the 

prestressing strands from rupturing and causing damage to the testing apparatus.  

 

 

Web Shear Cracks 

Web Shear Cracks 

Flexure-shear Cracks 

Flexure-shear Cracks 

Figure 97. RC2-N girder with flexure-shear cracks and shear cracks (top) and RC2-S girder with 
flexure-shear cracks and shear cracks (bottom). 
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Figure 98. Final flexural cracking under the load point in the RC2-N (a) and RC2-S (b) girders 
are indicated by dark lines. 

 

Flexural cracking occurred between the RC2-N girder deck and the UHPC joint, which resulted 

in separation of the deck from the joint. However, the flexural crack from the concrete deck joint 

interface continued vertically down into the RC2-N girder’s flange and then into the web before 

diverting back towards the joint interface, as shown in Figure 99a. The interface between the 

RC2-S girder and the UHPC joint had similar flexural cracking to the RC1-N girder and UHPC 

joint interface, as shown in Figure 99b.  

(a) (b) 
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Figure 99. Joint separation at the interface between the RC2-N concrete deck and the UHPC joint 
with the flexural crack going vertically down in the girder (a) and joint separation at the interface 

between the RC2-S concrete deck and the UHPC joint with the flexural crack going vertically 
down in the girder (b) are indicated by dark lines. 

 

Figure 100 shows the load-deflection curve for the RC2-N girder. The curve shows a reduction 

in stiffness that corresponds with the initial flexural cracking observed at 44 kips. Other types of 

initial cracking did not reduce the stiffness of the girder. This curve indicates a ductile behavior 

of the RC2-N prestressed girder during loading up to the ultimate load of 76 kips. In addition, the 

plateau of the load-deflection curve out to 1.4 inches of deflection also indicated the prestressing 

strands were yielding. Figure 101 shows the load-deflection curve for the RC2-S girder. The 

RC1-N and RC1-S girders had similar ductile behavior, but with the RC1-S girder having less 

(a) (b) 
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deflection at mid-span. The varying deflection of the girders could be related to differences in the 

concrete mix, compressive strength, modulus of elasticity, and in prestress loss between the 

girders. These variables could have resulted in the RC2-N girder having a reduced stiffness 

compared to the RC2-S girder. The reduced stiffness led to a larger downward curvature, which 

created more strain in the prestressing strands, and led to larger deflection in the RC2-N girder. 

 

Figure 100. Load-deflection curve for the RC2-N girder. 
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Figure 101. Load-deflection curve for the RC2-S girder. 

 

Figure 102 shows the load-joint separation curve between the RC2-N girder’s concrete deck and 

the UHPC joint. This figure only represents LVDT4 on the wast face of the deck. LVDT9 on the 

east face did not give accurate data for this test, and was excluded from the results. Figure 48 

shows the location of the LVDTs on the joint interface which were located 2 inches below the 

top of the deck. The deck joint had minor separation until reaching initial flexural cracking at 44 

kips of load. After that load, indicated by a diamond shape on Figure 102, the joint separation 

began to increase significantly with each load increment. This makes sense because major joint 

separation could only occur after the girder cracked to flexure, resulting in a less stiff member 

creating a hinge at the weak point being the joint interface. Figure 103 shows the load-joint 

separation curve between the RC2-S girder’s concrete deck and the UHPC joint. This figure only 

represents LVDT11 on the west face of the deck. This load-joint separation curve shows a 

similar trend to the RC2-N side of the joint, but with more deflection. 
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Figure 102. Load-joint separation curve at the RC2-N girder deck to joint interface west face. 

 

 

 

Figure 103. Load-joint separation curve at the RC2-S girder deck to joint interface west face. 
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4.3.3 RC Positive Moment Test 
 

A positive moment test was conducted on the RC3 specimen, as conducted on the NC3 

specimen. Initial flexural cracking was observed along the joint interface at a load of 4 kips, as 

indicated in Figure 104 with a dark oval. No additional cracks were observed up until this point, 

however it is possible cracks formed on the girder where the UHPC joint overlaps the girder 

ends, and the cracks were not visually exposed. In addition, no flexural cracks were observed in 

the UHPC joint. The positive moment test was concluded after the initial crack was observed to 

prevent additional damage around the joint interface for the negative moment test.  

 

 

Figure 104. Positive moment joint separation at the interface between the NC3-N girder and the 
UHPC joint (a) indicated by a dark oval and interface between the NC3-S girder and the UHPC 

joint showing no visible positive moment cracking (b) 

(a) (b) 
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4.3.4 Test RC3 
 

Initial flexural cracking was observed near the joint interface on the RC3-N girder at a load of 17 

kips, indicated in Figure 106a with a dark oval. A flexure-shear crack developed in the same 

girder at a load of 20 kips, shown in Figure 106a. Flexural cracks were observed on the east face 

of the continuity joint after the next load increment, at a load of 30 kips, shown in Figure 107a. 

In addition, two more cracks had developed at a load of 30 kips, a flexural crack near the joint 

interface in the RC3-S girder, indicated in Figure 106b with a dark oval, and a flexure-shear 

crack near the joint interface in the RC3-S girder, shown in Figure 106b. Flexural cracking 

directly under the load point was observed in the RC2-N at a load of 45 kips, and in the RC3-S 

girder at a load of 46 kips, shown in Figure 105. A flexural crack was observed on the west face 

of the continuity joint at a load of 51 kips, shown in Figure 107b.  

 



117 
 

 

Figure 105. Initial flexural cracking under the load point on the RC3-N girder at 45 kips of load 
(a) and initial flexural cracking under the load point on the RC3-S girder at 46 kips of load (b). 

Arrows point to the dark lines that indicate the initial flexural cracks. 

(a) (b) 
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Figure 106. Initial flexural cracking on the RC3-N girder at 17 kips of load and initial flexure-
shear cracking on the RC3-N girder at 20 kips of load (a) and initial flexural cracking on the 

RC3-S girder at 30 kips of load and flexure-shear cracking on the RC3-S girder at 30 kips of load 
(b). Dark ovals show the initial flexural cracking near the continuity joint and arrows point to the 

dark lines that indicate the initial flexure-shear cracking. 

(a) (b) 
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Figure 107. Initial continuity joint flexural cracking on the east face at a load of 30 kips (a) and 
initial continuity joint flexural cracking on the west face at a load of 51 kips (b). Arrows point to 

the dark lines that indicate the initial flexural cracking. 

 

Cracking that developed between initial cracking and final failure included additional flexural 

cracks under the point load, flexure-shear cracks near the joint interface, web shear cracks near 

the point load, and flexural cracks in the UHPC joint. Most of the cracks that occurred in the 

RC3 specimen between initial cracking and failure were flexure-shear and web shear cracks. 

These cracks developed as the load increased and the flexure-shear cracks began to move away 

from the joint interface toward the load point. Upon reaching approximately halfway to the load 

point from the joint, web shear cracks developed in place of the flexure-shear cracks. Figure 108 

shows the flexural cracks and web shear cracks between the joint interface and load point for the 

RC3-N and RC3-S girders.  

(a) (b) 
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Figure 108. RC3-N girder with flexure-shear cracks and web shear cracks (top) and RC3-S 
girder with flexure-shear cracks and web shear cracks (bottom). 

  

Loading of the specimen was stopped upon reaching an applied load of 76.1 kips on the RC3-N 

girder and 73.3 kips on the RC3-S girder. Under these loading conditions the concrete deck 

began to crush at the load point in both girders, as shown by the dark circles and arrows in Figure 

109. In addition, there was significant widening of the flexural cracks under both load points, as 

shown by dark lines and arrows in Figure 109. These conditions were taken to indicate flexural 

failure of the beams and testing was concluded to prevent the prestressing strands from rupturing 

and causing damage to the testing apparatus.  

Web Shear 
Cracks 

Flexure-shear Cracks 

Web Shear 
Cracks 

Flexure-shear Cracks 
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Figure 109. Final flexural cracking under the load point in the RC3-N (a) and RC3-S (b) girders 
are indicated by dark lines and concrete deck crushing is indicated by dark ovals. 

 

The interface between the RC3-N girder and the UHPC joint had preexisting flexural cracking on 

the interface from the positive moment test, as shown in Figure 104. Flexural cracking occurred 

along the concrete deck to UHPC joint interface, which resulted in separation of the deck from 

the joint, and the flexural crack continued vertically down into the RC3-N girder’s top flange and 

then into the web before going back toward the joint interface, as shown in Figure 110a. There 

was no clear indication that the flexural cracks from the negative moment test continued into the 

flexural cracks that had developed from the positive moment test, as had happened in the NC3 

specimen. The interface between the RC3-S girder and UHPC joint had similar joint separation 

at the concrete deck to the RC3-N girder deck joint interface, as shown in Figure 110b. There 

was no clear indication of joint separation from the positive moment test, and the flexural cracks 

shown in Figure 110b did not indicate continuation into the joint interface.  

 

(a) (b) 
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Figure 110. Joint separation at the interface between the RC3-N concrete deck and the UHPC 
joint with the flexural crack going vertically down in the girder (a) and joint separation at the 
joint interface between the RC3-S concrete deck and the UHPC joint with the flexural crack 

going vertically down into the girder (b) are indicated by dark lines. 

 

Figure 111 shows the load-deflection curve for the RC3-N girder. The curve shows a reduction 

in stiffness that corresponds with the initial flexural cracking observed at 45 kips. Other types of 

initial cracking did not reduce the stiffness of the girder. This curve indicates a ductile behavior 

of the RC2-N prestressed girder during loading up to the ultimate load of 76.1 kips. In addition, 

the plateau of the load-deflection curve out to 1.4 inches of deflection also indicated the 

prestressing strands were yielding. Figure 112 shows the load-deflection curve for the RC3-S 

girder. The RC3-N and RC3-S girders had similar ductile behavior, and similar deflection at 

mid-span.  

(a) (b) 
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Figure 111. Load-deflection curve for the RC3-N girder. 

 

 

Figure 112. Load-deflection curve for the RC3-S girder. 
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Figure 113 shows the load-joint separation curve between the RC3-N girder’s concrete deck and 

the UHPC joint. This figure only represents LVDT4 on the west face of the deck. LVDT9 did 

not give accurate data for this test, and measurements from this sensor were excluded. Figure 48 

shows the location of the LVDTs on the joint interface which were located 2 inches below the 

top of the deck. The deck joint had minor separation until reaching the 60 kip load mark. This 

load-joint separation curve shows the opposite of what was expected. As the girder cracked in 

flexure, the reduction of girder stiffness appeared to have no effect on the rate of the joint 

seperation. The joint began to separate more significantly after the 60 kip mark because the 

girder began to have more downward curvature, creating a hinge at the weak point, being the 

joint interface. Figure 114 shows the load-joint separation curve between the RC3-S girder’s 

concrete deck and the UHPC joint. This figure only represents LVDT11 on the west face of the 

deck. The NC3-N and NC3-S curves closely match one another in behavior except the NC3-S 

separation curve shows less separation occuring.  
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Figure 113. Load-joint separation curve at the RC3-N girder deck to UHPC joint interface west 
face. 

 

Figure 114. Load-joint separation curve at the RC3-S girder deck to UHPC joint interface west 
face. 
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4.4 Strain in the NC joints  
 

Strain gauges were placed on two of the reinforcing bars resisting negative moment within the 

UHPC joint. The loads applied on the north and south girders were averaged together to get an 

average load to plot with the strain gauge data. This was done to reduce the amount of load vs. 

strain graphs, but was still considered reasonable as the north and south load data tracked closely 

to one another. Figure 115 shows the load-strain curve for the NC1 specimen. This curve shows 

the strain increasing in the joint as load was applied. This is to be expected, as the girders begin 

to deflect in downward curvature as more load is applied, which puts the continuity joint in an 

upward curvature causing a tension stress at the top of the joint, and in return causing strain in 

the rebar as load increases. Initial cracking observed on the joint did not appear to have any 

effect on the load-strain curve. Figure 116 shows the load strain curve for the NC2 specimen. 

This curve is very similar to the NC1 load strain curve, and observed initial joint cracking did not 

appear to have any effect on the strain in the rebar. Figure 117 shows the load-strain curve for 

the NC3 specimen. This curve shows similar behavior to the NC1 and NC2 load-strain curves, 

and initial joint cracking observed on the continuity joint had no apparent effect on the strain in 

the steel. On all three NC joints the strain did not reach a value of 0.002 strain, which means the 

rebar in the joint did not yield (assuming Grade 60 steel) and combined with no crushing of the 

concrete indicates that the joint did not fail. Overall the strain measurements only give a small 

detail of what the actual strain would be across the joint, as the strain can vary location to 

location depending on the cracking in the continuity joint.   
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Figure 115. Load-strain curve for the NC1 joint. 

 

Figure 116. Load-strain curve for the NC2 joint. 
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Figure 117. Load-strain curve for the NC3 joint. 

 

4.5 Strain in the RC joints  
 

The load-strain curves for the RC specimens were plotted like the NC load strain curves. The RC 

joints also tracked similarly the NC joints, as the load increased the strain increased in the joint, 

which is to be expected. Figure 118 shows the load-strain curve for the RC1 specimen. Initial 

observed joint cracking did not appear to have any effect on the increase in strain during loading, 

and both strain gauges tracked together. Figure 119 shows the load-strain curve for the RC2 

specimen. Like the RC1 specimen, initial joint cracking did not appear to influence the load 

strain curve. The strain gauges did not track with one another, as SG1 did not plateau like SG2 

had done. Figure 120 shows the load-strain curve for the RC3 specimen. Initial joint cracking 

had no apparent effects on the strain, as for the RC1 and RC2 load-strain curves. Overall, the RC 

load-strain curves had similar trends to the NC curves, however, the RC joints had higher strain 

in the rebar. The max strain in all but one strain gauge read higher than 0.002, meaning the rebar 
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had yielded at the location of the strain gauges. This could be a result of the fact that the RC 

joints encase the girders’ end region, creating a stiffer joint compared to the NC joints, allowing 

the girders to take on more load before complete failure. This would allow the RC joints to get 

closer to complete failure resulting in increased strain relative to the NC joints.  

  

 

Figure 118. Load-strain curve for the RC1 joint. 
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Figure 119. Load-strain curve for the RC2 joint. 

 

 

Figure 120. Load-strain curve for the RC3 joint. 
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4.6 Results Summary  
 

There was not a large variation of the maximum loads between the NC specimens or between the 

RC specimens. However, the RC specimens had higher maximum loads than the NC specimens. 

The maximum deflections under the load points showed a consistent trend for the most part 

between specimens, but not necessarily similar magnitudes between the north and south girders. 

The deflection behavior was very similar for the RC specimens relative to variations and 

similarities between specimens. Larger maximum deflections under the load point were 

measured for the NC specimens compared to the RC specimens. The maximum joint separation 

was not consistent for the NC specimens or for the RC specimens. Both NC and RC specimens 

had similar maximum joint separation values overall. There was not a large variation between 

the two strain gauges in each NC specimen, and the maximum values were very similar when 

comparing the specimens. This was not the case for the RC specimens, as the strains for one 

gauge were higher compared to the other for all specimens. The RC specimens exhibited higher 

maximum strains than the NC specimens in general.  

Presented in Tables 10-11 is a summary of the maximum values for the load applied to each 

girder, deflection at mid-span for each girder, joint separation at each joint interface, and the 

strain from the rebar in the joint for the NC and RC specimens.  

Table 10. Maximum values obtained from testing NC specimens. 

Specimen  NC1 NC2 NC3 Average 
Girder  NC1-N NC1-S NC2-N NC2-S NC3-N NC3-S  

Max Load, kips 72.5 73.8 71.5 72 69.8 70.2 71.6 
Max deflection, inches 1.9 2.88 2 1.64 2.04 0.9135 1.90 

Max Joint Separation, inches 0.17 0.098 0.096  - 0.012 0.086 0.092 

Max strain-SG1 0.00124 0.00147 0.00148 0.00140 
Max strain-SG2 0.00125 0.00146 0.00151 0.00141 
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Table 11. Maximum values obtained from testing NC specimens. 

Specimen  R1 RC2 RC3 Average 
Girder  RC1-N RC1-S RC2-N RC2-S RC3-N RC3-S  

Max Load, kips 76.0 75.9 74.1 74.2 76.1 73.3 74.9 
Max deflection, inches 1.58 1.26 1.37 1.07 1.40 1.40 1.35 

Max Joint Separation, inches 0.077 -  0.053 0.066 0.08 0.061 0.067 

Max strain-SG1 0.00203 0.00177 0.00236 .00210 
Max strain-SG2 0.00210 0.00282 0.00286 .00260 

 

Presented in Tables 12-13 are summaries of initial cracking loads for each type of cracking 

observed in each region of the specimens. These include flexural and flexure-shear cracks under 

the load points, flexural cracks near the joint interface, and flexural cracks in the joint.   

 

Table 12. Initial cracking for each region of the NC specimens. 

Specimen NC1 NC2 NC3 
Girder NC1-N NC1-S NC2-N NC2-S NC3-N NC3-S 

Flexural Crack Under Load Point, kips 43 45 40 45 41 46 
Flexural Crack Near Joint Interface, kips  43  35  - -  25  19.5 

Flexure-shear Crack Near Joint 
Interface, kips 45 43 47 45 41 35 

Flexural Crack in Joint, kips  44 45 25 
 

Table 13. Initial cracking for each region of the RC specimens. 

Specimen RC1 RC2 RC3 
Girder RC1-N RC1-S RC2-N RC2-S RC3-N RC3-S 

Flexural Crack Under Load Point, kips 45 47 44 44 45 46 
Flexural Crack Near Joint Interface, kips  20  20 25  19.5   17 30  

Flexure-shear Crack Near Joint 
Interface, kips 25 30 30 25 20 30 

Flexural Crack in Joint, kips 60 25 30 
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4.6.1 Moment Capacity Comparison  
 

The structural analysis program RISA was used to make a model of the NC and RC joint 

specimens to calculate the moment from the maximum experimental load applied to each 

individual girder per specimen during testing similarly to what is described for the design values 

in Chapter 3. This maximum moment from each girder in a specimen was then compared to the 

nominal moment capacity of an individual prestressed girder with the concrete deck included in 

the strain compatibility method for prestressed girders. The comparison shows an increase in 

moment capacity with the spans being continuous in both joint types. Presented in Tables 14-15 

are the maximum moment capacity for each girder in a specimen from testing for both joint 

types, the nominal moment capacity for an individual girder, and the percentage increase for the 

overall moment capacity. 

Table 14. Comparison of maximum experimental moment to the nominal moment of a single 
span girder for NC specimens. 

Specimen  NC1 NC2 NC3 
Girder  NC1-N NC1-S NC2-N NC2-S NC3-N NC3-S 

Max Experimental Load w/ Continuity 
Joint, kips 72.5 73.8 71.5 72 69.8 70.2 

RISA Max Moment from Max. 
Experimental load w/ Continuity Joint, 

kip-ft 
211.9 215.6 208.9 210.4 204 205.1 

Mn single span girder, kip-ft 145.7 145.7 145.7 
Moment percentage increase 

w/Continuity Joint 31.2 32.4 30.3 30.8 28.6 29.0 
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Table 15. Comparison of maximum experimental moment to the nominal moment of a single 
span girder for RC specimens. 

Specimen  RC1 RC2 RC3 
Girder  RC1-N RC1-S RC2-N RC2-S RC3-N RC3-S 

Max Experimental Load w/ Continuity Joint, 
kips 76 75.9 74.1 74.2 76.1 73.3 

RISA Max Moment from Max. Experimental 
load w/ Continuity Joint, kip-ft 217.2 216.9 211.8 212 217.5 209.6 

Mn single span girder, kip-ft 145.7 145.7 145.7 
Moment percentage increase w/Continuity 

Joint 32.9 32.8 31.2 31.3 33.0 30.5 

 

Another comparison was done by finding an applied load on both girders in the continuous span 

model in RISA for both joint types that would result in the nominal moment capacity for an 

individual girder for both girders in the continuous span. The applied loads that were applied to 

the model to obtain a moment equal to the nominal moment capacity were 49.8 kips for the NC 

joint, and 51 kips for the RC joint. Figure 122 and Figure 122 show the results of the RISA 

model for both joint types with the applied loads. The point loads were then applied to a simply 

supported girder in RISA to come up with the max moment for that case. The max moment for 

the applied load of 49.8 kips from the NC joint was 224.1 kip-ft, and the max moment for the 

applied load of 51 kips from the RC joint was 229.5 kip-ft. These two values far exceed the 

nominal moment capacity of a single girder, which means if the continuous span was designed 

with the intent to increase the overall capacity of the bridge and continuity of the joint is lost, the 

capacity would be significantly reduced, at which point failure could occur.  
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Figure 121.RISA model showing the applied loads to the NC joint configuration to determine the 
nominal moment capacity of a single span prestressed girder. 

 

 

Figure 122. RISA model showing the applied loads to the RC joint configuration to determine 
the nominal moment capacity of a single span prestressed girder. 

 

The configuration of the positive moment test conducted on the NC3 and RC3 specimens was 

put into a RISA model to calculate the maximum moment from the two point loads applied 

during the test. The moment calculated from the NC3 specimen test was 67.5 kip-ft. This 

moment was 2.1 kip-ft from the calculated joint cracking moment of 69.6 kip-ft. As this was 

within 3% of the cracking moment, the moment capacity for the negative moment test was very 

comparable to NC1 and NC2 specimens that did not have a positive moment test conducted.  The 

moment calculated from the RC3 specimen was 37.8 kip-ft. Although the moment at cracking 

was only slightly above half of the calculated joint cracking moment value, the RC3 specimen 

still performed similarly to the RC1 and RC2 specimens. Figure 123– Figure 124 show the RISA 

model with the max load applied in the positive moment tests.  
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Figure 123. RISA model showing the applied loads to the NC continuity joint configuration from 
the positive moment test. 

  

Figure 124. RISA model showing the applied loads to the RC joint configuration from the 
positive moment test. 
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5.0 Research Summary  
 

This chapter summarizes the findings, conclusions, and recommendations based on the testing 

completed from NC and RC specimens presented in Chapter 4. The conclusions are limited to 

similar conditions within the two types of continuity joints. These conditions are the joint details, 

UHPC used in the joints, similar reinforcement ratios within the joint, and loading configuration 

on the girders. 

5.1 Findings: 
 

 Both continuity joint configurations resulted in increased flexural capacity for the 
prestressed girders.  

 RC joint specimens had a higher ultimate capacity than NC continuity joint specimens by 
a percent difference of 4.5% 

 RC joint specimens had less deflection at a higher load, than NC joints with less load and 
had higher deflections under the load point. 

 RC joint reinforcing bars had a higher strain than NC continuity joint reinforcing bars by 
a percent difference of 48.6%. 

 RC joint reinforcement yielded within the UHPC with short lap splices. 
 NC joint reinforcement reached 70% of the yield capacity within the UHPC with short 

lap splices.  
 NC and retrofit continuity joints had similar joint separation behavior between the 

concrete deck and UHPC joint. 
 Initial flexural cracking under the load point occurred at a load between 40 and 47 kips 

for all specimens. 
 Initial flexural cracking in the UHPC joint material was observed at a wide range of loads 

in both newly and retrofit connections. 
 Both NC and RC specimens exhibited similar crack development over the course of the 

tests for flexural cracking under the load point, flexure-shear cracking near the continuity 
joint, and web shear cracking near the quarter-span point between the joint and the load 
point. 

 No visible cracking occurred at the girder ends opposite the continuity joint. 
 Significant flexural cracking, flexure-shear cracking, and joint separation was observed at 

the girder ends connected by the continuity joint 
 Both NC3 and RC3 specimens exhibited no flexural cracking in the joint from the 

positive moment test. 
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 Both NC3 and RC3 specimens had flexural cracking along and near the joint interface 
from the positive moment test. 

 Capacity of the NC3 and RC3 specimens for negative moment test was not affected by 
the positive moment test. 

 

5.2 Conclusions:  
 

 The increase of flexural capacity within the girders resulting from the NC and RC 
connection shows that precast prestressed girders made continuous for live load using a 
UHPC connection is a structurally superior system for total load capacity compared to 
two simple spans for the configuration tested.  

 RC connections had a smaller joint distance between each girder, with the addition of 6 
inches of the girders being embedded in UHPC. This detail provided an increased 
stiffness at the joint compared to the NC continuity joint allowing for an increased girder 
capacity, less girder deflection, and an increase in reinforcing bar strain at the joint. 

 The loads resulting in the girders’ initial flexural cracking under the load point were all 
within a 7 kip range which leads to a good probability of when flexural cracking should 
occur when this configuration is loaded regardless of the joint detailing. 

 Failure of the system was pushed out of the joint and into the girder for both newly and 
retrofitted connections as shown by the lack of cracking occurring within the UHPC 
continuity joint. 

 The RC joint configuration appears to be a good option for potentially strengthening 
existing bridges, if the girders can withstand the additional stresses applied from making 
them continuous for live load. In addition, the time dependent effects would be non-
existent for these bridges and would decrease the amount of stress applied to the joint and 
girders.  

 UHPC is better than conventional concrete for this application by allowing smaller 
connections with less congested reinforcement due to shortened required splice lengths, 
This was demonstrated in the RC connection with the reinforcement yielding at ultimate 
capacity, and by the NC connection reaching 70 percent of the yielding strain. 

 Time dependent effects could still cause cracking for a system with UHPC joints, but 
cracking would more likely occur along the joint interface, or in the girder as 
demonstrated in the positive moment testing.  

 

5.3 Recommendations:  
 

 While the detail used in this research performed well, other potentially better, methods 
for attaching rebar shear studs into the girder ends should be investigated for the retrofit 
connections.  
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 Shear reinforcement at the girder ends connecting into continuity joints should be 
increased for new construction joints to withstand the redistribution of stresses caused by 
the joint compared to a simply supported beam. 

 Preexisting girder ends that were not intended for continuity connections should be 
retrofit with fiber reinforced polymer wrap to increase shear capacity. 

 The effects of time dependent deformation induced forces acting on the joint when 
prestressed girders are connected shortly after prestress release should be investigated 
further.  

 Reinforcing bar splices over the continuity connection should be avoided for NC 
specimens to eliminate potential variables caused by the splice and highest flexural stress 
occurring at the same location. 

 Results of this project should be compared to tests of similar specimens cast using normal 
concrete in place of UHPC for the joints. 

 The rebar used within the joint should be tested to get the accurate yield stress for more 
accurate calculations. 

 A test should be conducted on a simply supported prestressed girder with the same 
properties and cross section to get a better comparison of the flexural capacity increase 
with the use of continuity connections.  
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