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Abstract

Quantization of a classical mechanical system is an old problem in physics. In

classical mechanics, the evolution of the system is given by a Hamiltonian vector

field on a symplectic manifold (“phase space”). Geometric quantization is a

procedure to construct a quantum system using the geometry of the classical

phase space.

A completely integrable system is a symplectic manifold with a moment map.

If the moment map has singularities, the geometric quantization of such system

becomes difficult to construct. In such case one needs to use tools from algebraic

geometry (sheaves, cohomologies, etc.) to quantize such a system.

The non-degenerate singularities of moment maps have been completely clas-

sified. In this dissertation we study a 4-dimensional symplectic manifold with a

moment map that has a non-degenerate singularity of the so-called focus-focus

type. A simple mechanical system with such a singularity is the spherical pen-

dulum (a point mass moving without resistance on the surface of a sphere under

the influence of the Earth’s gravity field).

We compute the geometric quantization of a focus-focus singularity by con-

structing a fine resolution and computing the corresponding sheaf cohomology

groups.

x



Chapter 1

Introduction

1.1 Motivation

The motion of a particle at a macroscopic level is governed by the laws of classical

physics. In general a classical mechanical system can be modeled by a symplectic

manifold and the space of functions on the manifold. The dynamics of such a

system is described by deterministic equations of motion.

By means of the famous double split experiment, it has been observed that

the laws of classical physics break down at a microscopic level. In particular,

the experiment indicated that under certain circumstances particles can show

interference patterns and that under certain conditions light showed behavior

characteristic of a particle.

Heisenberg and Schrödinger provided two equivalent mathematical models

which were able to reproduce the results from the experiments and make many

other successfully tested predictions. These mathematical models, collectively

known as quantum mechanics, describe the quantum behaviour of (point) parti-

cles under the influence of external forces. A quantum mechanical system can be
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modeled by a Hilbert space and the space of self-adjoint operators on it.

In an attempt to gain some insight into the features that were to be regarded

as fundamental to any quantum version of a classical theory, Dirac emphasized the

formal similarities between classical and quantum mechanics. According to him,

one should expect that important concepts in classical mechanics correspond to

important concepts in quantum mechanics. With an understanding of the general

nature of the analogy between classical and quantum mechanics, one may hope

to get laws and theorems in quantum mechanics appearing as generalizations of

well-known results in classical mechanics.

Abstracting from the analogy found between classical mechanics and quantum

mechanics, Dirac [8] formulated a general quantum condition, a guideline for

passing from a given classical system to the corresponding quantum theory. This

process in general is known as quantization. The original concept of quantization

(which nowadays is referred to as canonical quantization), going back to Weyl

[46], von Neumann [43], and Dirac [8], consists of assigning to each classical

observable (i.e., a function f(q, p), (q, p) = (q1, . . . , qn, p1, . . . , pn) ∈ T ∗Rn), a self-

adjoint operator Q(f) on a Hilbert space h. Summarizing, we have the following

definition.

Definition 1.1.1. A full quantization of

(
T ∗Rn, ω =

n∑
i=1

dpi ∧ dqi

)
is a map

taking each function f ∈ C∞(T ∗Rn,R) to a self-adjoint operator Q(f) on a

Hilbert space h such that:

(Q1) Q(f + g) = Q(f) +Q(g) for each f, g ∈ C∞(T ∗Rn,R);

(Q2) Q(λf) = λQ(f) for each f ∈ C∞(T ∗Rn,R) and λ ∈ R;

(Q3) Q(1T ∗Rn) = Idh, where 1T ∗Rn is the constant function 1 on T ∗Rn;
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(Q4) [Q(f),Q(g)] = −i~Q({f, g}) for each f, g ∈ C∞(T ∗Rn,R);

(Q5) the operators Q(qi) and Q(pi) are represented irreducibly in h.

In 1946, Groenewold [14] proved that a full quantization of (T ∗Rn, ω) in the

sense of Definition 1.1.1 is not possible (see also [6, 12, 19, 44]). Van Hove [42]

suggested in 1951 that conditions (Q1)–(Q5) are too restrictive and gave the

following definition.

Definition 1.1.2. A prequantization of (T ∗Rn, ω) is a map taking smooth func-

tions f ∈ C∞(T ∗Rn,R) to self-adjoint operators on a Hilbert space h satisfying

conditions (Q1)–(Q4). The existence of such a prequantization is usually called

the Dirac problem.

In [42], Van Hove showed that there exists a prequantization of (T ∗Rn, ω) and

that the Hilbert space L2(Rn,C) and the operators

Q(f) = −iXf − 〈θ,Xf〉+ f .

satisfy Definition 1.1.2, where θ =
n∑
i=1

pi dqi, Xf is the Hamiltonian vector field

of f (see Definition 2.1.3), and f ∈ C∞(T ∗Rn,R). Throughout this dissertation,

we assume that the Planck’s constant ~ is equal to 1.

Several attempts have been made to formalize the quantization procedure so

as to apply it to general symplectic manifolds. In this dissertation we study a

variant of quantization called geometric quantization. Proposed by Segal [33],

Souriau [39] and Kostant [22, 23], geometric quantization sets as its goal the

construction of quantum objects (Hilbert space and self-joint operators on them)

by using the geometry of the corresponding classical system (symplectic manifold

and functions on them).
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The origins of geometric quantization lie not only in attempts by physicists

to extend the known quantization procedures for simple mechanical systems to

more general configurations and phase spaces, but also in the development of the

theory of unitary representations by mathematicians.

In this dissertation, we study geometric quantization of manifolds foliated

by certain integrable systems. In particular, we content ourselves to construct-

ing a vector space Q(M) for geometric quantization of 4-dimensional symplectic

manifold M , foliated by integrable systems which have a so-called focus-focus

singularity. Even though the vector space Q(M) we construct does not have a

Hilbert space structure, we call this geometric quantization, with an abuse of

terminology. Despite the problems that may arise in order to define a Hilbert

space structure on Q(M) and in defining operators, the first step is to compute

the vector space Q(M).

1.2 Main result and literature review

In geometric quantization we start with the classical phase space: mathematically,

a 2n-dimensional manifold M endowed with a symplectic structure ω. We then

choose a Hermitian line bundle L over M , equipped with a connection ∇, whose

curvature is curv∇ = ω.

Start by considering the set of all square integrable sections of L. The Hilbert

space thus obtained, called a prequantum Hilbert space, is too big from a physical

point of view – recall that the phase space is 2n-dimensional (n coordinates and

n momenta) while the wave function depends only on n variables. To obtain

a quantum Hilbert space, one considers a subspace (“half”) of the prequantum

Hilbert space, i.e., one might consider the subspace of sections that depend only
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on the coordinates and are independent of the momenta. More generally, one

can consider spaces of sections with covariant derivatives that are zero in some

set of n directions. We refer to the set of directions in which the elements in the

quantum space are covariantly constant as a polarization

(see Definition 2.2.18 for a precise definition of P ). Then, in the simplest case,

the geometric quantization is the vector space of sections which are covariantly

flat in the P -directions.

Closely related to polarizations are integrable systems. An integrable sys-

tem on a 2n-dimensional symplectic manifold (M,ω) consists of n independent

Poisson-commuting functions on M (“Hamiltonians”). Due to Arnold-Liouville

theorem [1, Section 49A], an integrable system gives a Lagrangian fibration

M → Rn defined by the n- Hamiltonians. The leaves of such a fibration are

the level sets of the map M → Rn.

In general, there are two main difficulties with these type of fibrations. The

first is that there are usually no flat sections on the leaves – in fact, Rawnsley

[31] showed that the existence of an S1 action may be an obstruction for the

existence of sections that are covariantly constant. Hence the simple approach

to geometric quantization just gives the trivial vector space. In [23], Kostant

proposed defining the geometric quantization to be the vector space of the total

cohomology H∗(M,F) of the sheaf F of sections flat in the P -direction (see

Definition 3.1.10),

Q(M,F) := H∗(M,F) =
⊕
k≥0

Hk(M,F), (1.1)

where Hk(M,F) are the kth cohomology groups with values in the sheaf F . This is

an appealing and natural generalization: instead of using just the 0th cohomology
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(global sections), the total cohomology is used.

The second difficulty with this approach is that the foliation determined by

the fibration M → Rn usually has singular fibers. To deal with this problem,

we restrict to integrable systems with certain types of singularities, namely non-

degenerate singularities. Non-degenerate singularities occur as combinations of

three basic building blocks: elliptic, hyperbolic and focus-focus singularities. In

Section 2.1.3 we will provide a detailed explanation of the singularity types.

In this dissertation, we are primarily interested in the case that the manifold

M is 4-dimensional and the map M → R2 is proper (i.e., the inverse image of a

compact set is compact, which implies that the fibers are compact and generically

are two-dimensional tori). The bulk of this dissertation deals with fibers that have

a focus-focus singularity. In general, a fiber can have more than one singularity,

but we further restrict to the case of a single singularity.

Theorem 1.2.1 (Main Theorem). Let µ = (H, J) : M → R2 be a proper

integrable system with non-degenerate singularities, let L be a trivial line bundle

over M endowed with a Hermitian connection ∇ determined by the connection

1-form given by Lemma 4.3.2, and let F be the sheaf of P -flat sections. Assume

that the fiber over (0, 0) ∈ R2, µ−1(0, 0) is a focus-focus fiber. Then there exists

an ε0 > 0 such that, when ε < ε0, Mε := µ−1({ (H, J) : |(H, J)| < ε }) satisfies

H0(Mε,F) = 0 ,

H1(Mε,F) = 0 ,

H2(Mε,F) = { germs of functions at 0 ∈ R },

that is,

Q(Mε,F) = { germs of functions at 0 ∈ R }.
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Moreover, for ε′ ≤ ε < ε0, the inclusion i : Mε′ → Mε induces an isomorphism

i∗ : H∗(Mε′ ,F)→ H∗(Mε,F) on sheaf cohomology.

In Lemma 4.3.3 we prove that in a small enough neighborhood of the focus-

focus fiber, the focus-focus fiber itself is the only Bohr-Sommerfeld leaf (see Def-

inition 2.2.20). Thus our Theorem 1.2.1 can be interpreted as saying that the

only contribution to the cohomology comes from the Bohr-Sommerfeld leaf (the

focus-focus fiber). The known results about the smooth and elliptic cases follow a

similar pattern – only the Bohr-Sommerfeld leaves contribute to the cohomology.

In [36] Śniatycki studied the case when the polarization is given by a regular

fibration π : M → B. He proved that the cohomology groups appearing in (1.1)

are all zero except in dimension n. Furthermore, he showed that Hn(M,F) can

be computed by counting the Bohr-Sommerfeld leaves. More precisely, he proved

the following result:

Hn(M,F) =
⊕
b∈BS

C , Hk(M,F) = 0 for k 6= n ,

where BS stands for the set of Bohr-Sommerfeld leaves. In [16] Hamilton studied

the case where there exist elliptic singularities. He proves that if M is a compact

locally toric 2n-dimensional manifold then

Hn(M,F) =
⊕
b∈BS0

C, Hk(M,F) = 0 for k 6= n. (1.2)

Here BS0 stands for the set of regular Bohr-Sommerfeld leaves (in particular, the

singular leaves do not contribute). A locally toric manifold locally carries the

structure of an integrable system with elliptic singularities only.

Hamilton and Miranda consider integrable systems with hyperbolic and el-
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liptic singularities in [17]. They prove that for an integrable system on com-

pact 2-dimensional symplectic manifold M with with non-degenerate singularities

(which must be of hyperbolic or elliptic type)

Q(M,F) = H1(M,F) =
⊕
p∈H

(CN ⊕ CN)⊕
⊕
b∈BS0

C , (1.3)

where H stands for the set of hyperbolic singularities. A hyperbolic fiber can

be thought of as a union of immersed circles and may or may not be a Bohr-

Sommerfeld immersion. Hence hyperbolic singularities do not fit into the same

framework as the previous theorems: they contribute to cohomology regardless

of whether or not they are Bohr-Sommerfeld.

Following arguments in [27], the Čech cohomology spectral sequence can be

effectively combined with our Theorem 1.2.1 and Hamilton’s formula (1.2) to

calculate the geometric quantization of more general 4-dimensional symplectic

manifolds. As a simple example, we calculate the cohomology of the spherical

pendulum:

Theorem 1.2.2. Let M = T ∗S2 with the canonical symplectic form. Let (q, p) =

(q1, q2, q3, p1, p2, p3) be canonical coordinates (viewing M as a subspace of R6).

Let H = 1
2
p2 + εq3 and J = q × p. Then µ = (H, J) : M → R2 defines an

integrable system and hence a polarization P and a sheaf F of P -flat sections.

This system has elliptic singularities and a single focus-focus singularity. The

cohomology groups associated to (1.1) are

H2(M,F) = { germs of functions at 0 ∈ R } ×
∏
b∈BS0

C ,

Hk(M,F) = 0 , k 6= 2 .

8



Hence, the geometric quantization of the spherical pendulum is

Q(M,F) = { germs of functions at 0 ∈ R } ×
∏
b∈BS0

C.

Proof. The image of the the map µ is diffeomorphic to a closed quadrant in R2.

Call a point in the image an interior Bohr-Sommerfeld value if the fiber over

that point is a Bohr-Sommerfeld leaf and has dimension 2. BS0 is the set of

interior Bohr-Sommerfeld values aside from the focus-focus value. We can cover

the image of µ with a countable collection {Ui } of open disks such that each disk

contains at most one interior Bohr-Sommerfeld value, and the intersection of two

or more disks contains no interior Bohr-Sommerfeld values. Let Vi = µ−1(Ui)

and let U = {Vi }; U is an open cover of M . Then H2(Vi,F) is isomorphic to

C if Ui contains a point in BS0, isomorphic to { germs of functions at 0 ∈ R }

if Ui contains the focus-focus value, and 0 otherwise. The cohomology groups

Hk(Vi,F) for k 6= 2 vanish for all Vi. The cohomology groups Hk(Vi0∩· · ·∩Vil ,F)

all vanish for l ≥ 1 because there are no interior Bohr-Sommerfeld values in

Ui1 ∩ · · · ∩ Uil .

There exist a spectral sequence called Leray spectral sequence [13, page 463],

whose E2 term is given by

Ep,q
2 = Hp

(
µ(M),Rq

µF
)
,

which converges to Hp+q(M,F). Therefore, this fact can be used to compute the

cohomology groups:

Hm(M,F) =
⊕
p+q=m

Ep,q
2 .

Here, Rq
µF is the qth direct image sheaf on µ(M) associated to the presheaf
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defined by

Rq
µF(U) := Hq

(
µ−1(U),F|µ−1(U)

)
, U ⊂ µ(M).

The above discussion about Hk(Vi,F) implies that Rq
µF = 0, when q 6= 2.

When q = 2, the sheaf is R2
µF is supported on the interior Bohr-Sommerfeld

values; such a sheaf supported on a discrete set is called a skyscraper sheaf. A

standard result about cohomology groups of a skyscraper sheaf is that the 0th

cohomology is the direct product of the towers over the discrete set where the

sheaf is supported, and all other cohomology groups are zero. Using this, we

obtain

Ep,q
2 =


{ germs of functions at 0 ∈ R } ×

∏
b∈BS0

C if p = 0, q = 2 ,

0 otherwise .

Since Hm(M,F) =
⊕
p+q=m

Ep,q
2 , this proves the result.

In [38], Solha studied the Kostant complex (see Section 3.3 of F in manifolds

with focus-focus singularities. However, we believe there are unfixable errors in

[38] that invalidate the proofs. In Chapter 7 we give an example that shows

that the Kostant complex is not a resolution. In [28], Miranda, Presas and Solha

use the results of [38] to calculate the geometric quantization of manifolds with

focus-focus singularities. However, we believe that some results in [28] are wrong.

In fact, we get a different answer than [28] – compare our Theorem 1.2.1 to their

Theorem 5.1. Despite what we believe to be errors, we learned a great deal from

the above papers and our work is indebted to them.
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1.3 Overview of the dissertation

The plan of our exposition is the following.

In Chapter 2 we define some concepts of symplectic geometry and integrable

systems, including the classification of non-degenerate singularities. We give def-

initions related to geometric quantization: Hermitian line bundles, connections,

curvature, holonomy, polarization, (pre)quantization.

Chapter 3 is devoted to tools from sheaf cohomology that are needed in our

subsequent computations, in particular, the sheaf F of sections that are covari-

antly constant along the chosen polarization. We construct fine resolutions for

some singularities in low dimensions.

In Chapter 4 we develop a semi-global model for the focus-focus singularity,

and in Chapter 5 we give some definitions and technical lemmas that we use later

in our computations.

Chapter 6 contains the main results of the dissertation. There we compute

the 0th, 1st, and 2nd cohomologies of the sheaf F .

In the final Chapter 7, we construct a concrete example that contradicts some

previously published results.

11



Chapter 2

Preliminaries

In this chapter we introduce some definitions, notations, and mathematical results

symplectic geometry and geometric quantization that we will need.

2.1 Geometric formulation of classical mechan-

ics

Symplectic geometry is an adequate mathematical framework for describing the

Hamiltonian formalism of classical mechanics. It helps us to clearly and concisely

formulate problems in classical physics and to understand their quantum counter-

parts. Moreover, symplectic geometry is a suitable starting point for geometric

quantization.

2.1.1 Symplectic geometry

In this section we review some definitions and important theorems from symplec-

tic geometry in the context of this dissertation; detailed exposition can be found,

12



e.g., in [2, 4, 5, 24, 32].

Definition 2.1.1. A symplectic manifold is a pair (M,ω), where M is a finite

dimensional manifold and ω ∈ Ω2(M) is a closed and non-degenerate 2-form. .

In addition, if ω is exact, i.e., ω = dθ for some θ ∈ Ω1(M), then we say that

(M,ω) is an exact symplectic manifold.

Remark 2.1.2. As a consequence of the non-degeneracy condition on the 2-form

ω in Definition 2.1.1, the following statements hold.

� A symplectic manifold M is even dimensional and orientable.

� If the symplectic manifold M has dimension 2n, then ω∧n is a volume form

called the Liouville volume form, and the associated measure is called the

Liouville measure.

� Associated to any f ∈ C∞(M), there is a unique vector field Xf ∈ X(M)

defined by

ω(Xf , ·) = −df. (2.1)

N

Definition 2.1.3. Given any f ∈ C∞(M), the vector field Xf in equation (2.1)

is called the Hamiltonian vector field associated to f . The flow of the vector field

Xf is called the Hamiltonian flow of f .

Definition 2.1.4. A diffeomorphism φ : M → N between the symplectic mani-

folds (M,ω) and (N, η) is a symplectomorphism if φ∗(η) = ω.

Theorem 2.1.5 (Darboux). Let (M,ω) be a 2n-dimensional symplectic mani-

fold. Then at each point m ∈ M there exists a symplectomorphism φ between a
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neighborhood Um of m and a neighborhood V of 0 ∈ R2n such that

φ∗(ω) =
n∑
i=1

dqi ∧ dpi,

where (q1, . . . , qn, p1, . . . , pn) is a chart on R2n.

The coordinates in which ω takes the form dq ∧ dp :=
n∑
i=1

dqi ∧ dpi are called

canonical coordinates.

Definition 2.1.6. Let N be a submanifold of a 2n-dimensional symplectic man-

ifold (M,ω) with the inclusion map ι : N ↪→M . The submanifold N is called

an isotropic submanifold if ι∗ω = 0. In addition, if the dimN = n, then the

submanifold N is called a Lagrangian submanifold.

2.1.2 Integrable systems

Definition 2.1.7. Let (M,ω) be a 2n-dimensional symplectic manifold. The

Poisson bracket induced by the 2-form ω on C∞(M) is the R-bilinear, skew-

symmetric map

{·, ·} : C∞(M)× C∞(M)→ C∞(M)

defined by

{f, g} := ω(Xf , Xg), (2.2)

for any f, g ∈ C∞(M).

The following lemma lists some fundamental properties of the Poisson bracket.

For detailed proofs see, e.g., [25, Section 3].

Lemma 2.1.8. The Poisson bracket (2.2) satisfies the following properties:
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� it is antisymmetric and satisfies the Leibniz identity, i.e., for all f, g, h ∈

C∞(M),

{fg, h} = f{g, h}+ {f, h}g ; (2.3)

� if [·, ·] stands for the Lie bracket on vector fields and Xf is the Hamiltonian

vector field of f ∈ C∞(M), then the map

(
C∞(M), {·, ·}

)
→

(
X(M), [·, ·]

)
f 7→ Xf

is a Lie algebra homomorphism.

Definition 2.1.9. An integral of a Hamiltonian function H ∈ C∞(M) is a

function that is invariant under the flow of the Hamiltonian vector field XH , i.e.,

a function f ∈ C∞(M) such that {f,H} = 0.

Definition 2.1.10. A completely integrable Hamiltonian system (M,ω, F ) on a

2n-dimensional symplectic manifold (M,ω) is given by a set of n smooth functions

H1, . . . , Hn ∈ C∞(M), that are functionally independent and Poisson-commuting,

i.e.,

{Hi, Hj} = ω(XHi , XHj) = 0, i, j ∈ {1, . . . , n}.

The map F = (H1, . . . , Hn) : M → Rn is called the moment map.

The level sets of the moment map in a completely integrable system form a

Lagrangian fibration F : M → Rn.
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2.1.3 Classification of singularities

From a topological, dynamical and analytical viewpoint, the most interesting fea-

tures of a completely integrable system on a symplectic manifold can be found in

the singular fibers of the moment map F = (H1, . . . , Hn) and in their surrounding

neighborhoods. Singularities of a Hamiltonian system can be approached either

through the dynamical systems viewpoint by studying the flow of vector fields or

through the foliations of the phase space by the Hamiltonian functions.

In the case of completely integrable systems, both aspects are equivalent be-

cause the vector fields of the n functions H1, . . . , Hn form a basis of the tangent

spaces of the leaves of the foliation Hi = consti, at least for the regular points. In

the following we will briefly describe the singularities in the dynamical systems

viewpoint.

Definition 2.1.11. Let F = (H1, . . . , Hn) be the moment map of a completely

integrable system on a R2n. A point m ∈ R2n is said to be a regular point if

rank{XH1(m), . . . , XHn(m)} = n .

If

rank{XH1(m), . . . , XHn(m)} = k, 0 ≤ k < n ,

then a point m ∈ R2n is said to be a singular point of rank k. The value F (m) ∈

Rn is called a regular value if m is a regular point and a singular value if m is a

singular point.

Suppose that m ∈ R2n is a singular point of rank k for a completely integrable

system F = (H1, . . . , Hn) on R2n. After replacing the Hi’s with invertible linear
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combinations of Hj’s if necessary, we may assume that

XH1(m) = · · · = XHn−k(m) = 0,

and the XHi ’s are linearly independent for n − k < i ≤ n. The quadratic parts

of H1, . . . , Hn−k form an abelian subalgebra sm of the Lie algebra of quadratic

forms, with the Poisson bracket as Lie bracket.

Definition 2.1.12. A singular point m or rank k is said to be a non-degenerate

singular point of rank k if the sub-algebra sm is a Cartan sub-algebra of the Lie

algebra sp(2n− 2k,R) of the symplectic group Sp(2n− 2k,R).

Remark 2.1.13. In an obvious way, Definitions 2.1.11 and 2.1.12 can be carried

over to a completely integrable system (M,ω, F ) on a general 2n-dimensional

symplectic manifold.

N

In 1936, Williamson [47] classified the Cartan subalgebras of the Lie algebra

of the symplectic group.

Theorem 2.1.14 (Williamson). Let s ⊂ sp(2l;R) be a Cartan subalgebra.

Then there exist canonical coordinates (q1, . . . , ql, p1, . . . , pl) for R2l, a triple (ke, kh, kff ) ∈

Z3
≥0 satisfying the condition ke + kh + 2kff = l, and a basis h1, . . . , hm of s such

that

hi =



q2
i + p2

i

2
, i = 1, . . . , ke,

qipi, i = ke + 1, . . . , ke + kh, qipi + qi+1pi+1,

qipi+1 − qi+1pi

 , i = ke + kh + 1, ke + kh + 3, . . . , ke + kh + 2kff − 1.
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Additionally, if two Cartan subalgebras s, s
′ ⊂ sp(2l;R) are conjugate if and only

if their corresponding triples are equal.

The elements of the basis of s are called elliptic blocks, hyperbolic blocks or

focus-focus blocks according to whether they are of the form
(q2i+p2i )

2
, qipi or a pair

qipi + qi+1pi+1, qipi+1 − qi+1pi respectively.

Zung [49] gave the following definition:

Definition 2.1.15. Let (M,ω, F ) be a 2n-dimensional completely integrable sys-

tem. The Williamson type of a non-degenerate singular point m of rank k is a

quadruple (k, ke, kh, kff ) ∈ Z4
≥0 satisfying the condition k + ke + kh + 2kff = n,

where (ke, kh, kff ) is the triple associated to the Cartan subalgebra sm ⊂ sp(2n−

2k,R).

Given a completely integrable system
(
M,ω, F = (H1, . . . , Hn)

)
, suppose

m ∈ M is a non-degenerate singularity of Williamson type (k, ke, kh, kff ), then

the following definition associates to such a quadruple a local model for the

integrable system.

Definition 2.1.16. Given a quadruple (k, ke, kh, kff ) ∈ Z4
≥0 satisfying the con-

dition k + ke + kh + 2kff = n, the local model of a singular point of Williamson

type (k, ke, kh, kff ) is a completely integrable system
(
R2n, ω0, Fk = (h1, . . . , hn)

)
,

where ω0 =
n∑
i=1

dqi ∧ dpi, with

hi =



pi if i = 1, . . . k ,

(q2
i + p2

i )

2
if i = k + 1, . . . , k + ke ,

qipi if i = k + ke + 1, . . . , k + ke + kh ,
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Figure 2.1: Some possible singularities of a 4-dimensional completely integrable
system. Left to right: m regular point (Williamson type (2, 0, 0, 0)); m transver-
sally elliptic singularity (Williamson type (1, 1, 0, 0)); m elliptic-elliptic singu-
larity (Williamson type (0, 2, 0, 0)); m focus-focus singularity (Williamson type
(0, 0, 0, 2)).

and the remaining hi’s (for i = k+ke+kh+1, k+ke+kh+3, . . . , k+ke+kh+2kff−1)

are focus-focus pairs qipi + qi+1pi+1, qipi+1 − qi+1pi.

Eliasson established in [10, 11] (see also [26, 7]) that a small neighborhood of

a non-degenerate singular point of Williamson type (k, ke, kh, kff ) is equivalent

to local model of Williamson type (k, ke, kh, kff ).

Theorem 2.1.17. Let
(
M,ω, F = (H1, . . . , Hn)

)
be a 2n-dimensional integrable

system, and let m ∈ M be a non-degenerate singular point of Williamson type

(k, ke, kh, kff ). Then there exists open neighborhoods U ⊂ M of m, V ⊂ R2n of

the origin, and a map φ : U → V such that φ is a symplectomorphism and that

F = Fk ◦ φ, where Fk is given in Definition 2.1.16.

From Theorem 2.1.17, one can observe that the number of elliptic compo-

nents ke, hyperbolic components kh, and focus-focus components kff completely

determine the Cartan sub algebra formed by the completely integrable system

(M,ω, F ) with non degenerate singularities.
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2.2 Geometric quantization

In this chapter we will briefly describe the geometric quantization scheme. De-

tailed exposition of different aspects of geometric quantization can be found, e.g.,

in [34, 35, 48, 3, 20, 9, 15].

2.2.1 Hermitian line bundles and connections

In this section we develop some necessary machinery for the geometric quanti-

zation procedure. In particular, we discuss the notion of a line bundle over a

manifold, sections of the line bundle, covariant derivatives, curvature.

Definition 2.2.1. A (complex) line bundle over a smooth manifold M is a

smooth manifold L together with the following properties:

� the projection π : L→M is a smooth surjective map;

� for all m ∈M , the fiber, Lm := π−1(m), over m is a 1-dimensional complex

vector space.

Definition 2.2.2. A smooth map ψ : M → L satisfying the condition that

π
(
ψ(m)

)
= m for all m ∈ M is called a section of the line bundle. We de-

note the space of all sections by Γ(L).

Definition 2.2.3. A connection on a line bundle L over M is a map

∇ : X(M)× Γ(M)→ Γ(M)

that satisfies the following properties:

(a) ∇X(φ+ ψ) = ∇Xφ+∇Xψ for all X ∈ X(M), φ, ψ ∈ Γ(L),
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(b) ∇X(fψ) = X(f)ψ + f∇Xψ for all X ∈ X(M), f ∈ C∞(M), ψ ∈ Γ(L).

Definition 2.2.4. A Hermitian structure on a line bundle L over M is a choice

of inner product (·, ·) on each fiber of L such that for each smooth section ψ of L,

(ψ, ψ) is a smooth function on M . A line bundle L together with a choice of

Hermitian structure is called a Hermitian line bundle.

If a connection ∇ on a Hermitian line bundle L is compatible with the Her-

mitian structure on L, i.e.,

(
∇Xψ1, ψ2

)
+
(
ψ1,∇Xψ2

)
= X(ψ1, ψ2), ∀ψ1, ψ2 ∈ Γ(M) , (2.4)

then ∇ is called a Hermitian connection.

If L is a Hermitian line bundle over M endowed with a Hermitian connection

∇, then it is always possible to choose a locally defined smooth section ψ0 near

any point in M such that (ψ0, ψ0) ≡ 1; such a section ψ0 is called a unitary

section. Any section ψ of L can be written locally as ψ = fψ0, for a unique

function f ∈ C∞(M,C).

Remark 2.2.5. With respect to a unitary section ψ0 the connection ∇ on L can

be represented by a 1-form Θ ∈ Ω1(M) in the following way:

∇Xψ0 = −i〈Θ, X〉ψ0 , (2.5)

and

∇X(fψ0) = X(f)ψ0 − if〈Θ, X〉ψ0 . (2.6)

The 1-form Θ satisfying (2.5) is called a connection 1-form. N
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Definition 2.2.6. For any Hermitian line bundle with Hermitian connection ∇,

the curvature 2-form curv∇ of the connection ∇ is defined by

curv∇(X, Y )ψ = i
(
∇X∇Y −∇Y∇X −∇[X,Y ]

)
ψ (2.7)

for any vector fields X, Y ∈ X(M) and section ψ ∈ Γ(L).

Proposition 2.2.7. The curvature form is independent of the choice of the uni-

tary section ψ0, and curv∇ = dΘ.

Proof. Propositions 1 and 2 in [16].

2.2.2 Holonomy

Consider a Hermitian line bundle L over M with a Hermitian connection ∇.

Definition 2.2.8. Let γ be a curve on M , with tangent vector γ̇, and let γ̃ be

the lifting of γ to L via a unitary section ψ0, i.e., let γ̃(t) = ψ0(γ(t)). Then γ̃ is

said to be horizontal if

∇γ̇ψ0 = 0 (2.8)

for all points along the curve γ.

Definition 2.2.9. Given a curve γ : [a, b] → M and a point p in the fiber over

γ(a), the lift γ̃ is uniquely determined by the condition that it is a horizontal lift

of γ with γ̃(a) = p. The linear operator

Πγ̇
s : Lγ(a) → Lγ(s) : p = γ̃(a) 7→ γ̃(s) (2.9)

is called the parallel transport from γ(a) to γ(s) along the curve γ.
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Definition 2.2.10. If γ in Definition 2.2.9 is a loop, the map (2.9) is an auto-

morphism of Lγ(a), called the holonomy around γ.

With the help of (2.8) one can view holonomy as a map from and the map is

given by

Hol : {loops on M} → S1 : γ 7→ exp

(
i

∮
γ

Θ

)
. (2.10)

2.2.3 Geometric prequantization

Prequantization is the first step in the geometric quantization scheme (Defini-

tion 1.1.2), it is a simplification of the full quantization by ignoring the irre-

ducibility condition (Q5) from Definition 1.1.2. For the case of symplectic man-

ifold M = T ∗N,ω = dθ, a prequantization was constructed in 1960 by Segal

[33]

who generalized the results of Koopman [21] and Van Hove [42]. This was

done by considering the quantum operator

Q(f) = f − iXf − 〈θ,Xf〉 , (2.11)

and the (pre-)quantum Hilbert space is considered to be the space of smooth

functions of compact support on M with the scalar product

〈φ1, φ2〉 =

∫
M

φ̄1φ2 dv , (2.12)

where v = ωn is the Liouville measure on M .

In an attempt to generalize the construction in (2.11) to a general symplectic

manifold (M,ω), one needs to consider Hermitian line bundles over M , equipped

with a Hermitian connection. However, to be able to define the prequantum
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operators as in (2.11), (M,ω) needs to be an exact symplectic manifold, i.e.,

there must exist θ ∈ Ω1(M) such that ω = dθ. While this is not possible for

every symplectic manifold, one can cover the manifold M by open sets Uα such

that in each Uα the equality ω = dθα holds for suitable 1-form θα on Uα. The

problem with this approach is that the operators defined in (2.11) depend on θα

which exists only locally. To be able to glue the operators together to one global

operator, there needs to be an additional condition that the de Rham class [ω] is

integral, i.e.,

1

2π

∫
S

ω ∈ Z (2.13)

for every closed surface S in M.

Definition 2.2.11. A symplectic manifold (M,ω) such that the de Rham class

[ω] is integral is called prequantizable. A prequantum line bundle on (M,ω) is

a Hermitian line bundle L over M endowed with a Hermitian connection ∇ that

satisfies curv∇ = ω. We will denote the prequantum line bundle by (M,ω,L,∇).

Theorem 2.2.12. A symplectic manifold (M,ω) is prequantizable if and only if

there exists a prequantum line bundle (M,ω,L,∇).

Proof. See Proposition 8.3.1 from [48].

Remark 2.2.13. In this dissertation we will consider a globally trivial line bun-

dle L = M × C, endowed with Hermitian metric and a compatible Hermitian

connection ∇, with curvature curv∇ = ω. If ψ0 is the unit section and ψ = fψ0

(as in Remark 2.2.5), then we can identify ψ with f , and write

X(ψ) := X(f)ψ0 , ψ = fψ0 ,
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With this identification we can rewrite (2.6) as

∇Xψ = X(ψ)− i〈θ,X〉ψ, ψ ∈ Γ(L), X ∈ X(M) , (2.14)

where the 1-form θ is such that dθ = ω. N

Given a prequantizable symplectic manifold (M,ω)

along with a prequantum line bundle (M,ω,L,∇), the prequantum Hilbert

space is defined to be a space of equivalence classes of square-integrable sections

of L (two sections are equivalent if they are equal almost everywhere with respect

to the Liouville measure). Suppose f is a smooth complex-valued function on M ,

the prequantum operator Qpre(f) is the unbounded operator on the prequantum

Hilbert space is given by

Qpre(f) := f − i∇Xf . (2.15)

Note that (2.15) is same as (2.11).

2.2.4 Polarizations

As described in Section 2.2.3, the prequantization procedure only satisfies (Q1)–

(Q4). To obtain a space from the prequantum Hilbert space such that the ir-

reducibility condition (Q5) is satisfied, one needs to consider a subspace of the

prequantum Hilbert space. To attain this, we introduce a new geometric struc-

ture called polarization. More details about polarizations can be found, e.g., in

[48, 37, 40].

Definition 2.2.14. Let (M,ω) be a 2n−dimensional symplectic manifold. A

polarization P of (M,ω) is a distribution in the complexified tangent bundle TMC

of M such that:
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1. It is Lagrangian, i.e., ω(X, Y ) = 0 for all X, Y ∈ P,, dimPm = n for all

m ∈M .

2. It is involutive, that is [X, Y ] ∈ P , for all X, Y ∈ P,

3. dim(Pm ∩ P̄m ∩ TmM) is constant.

Definition 2.2.15. Let (M,ω) be a symplectic manifold. A polarization P on

M is said to be a real polarization if P = P̄ .

Remark 2.2.16. Suppose P is a real polarization, then D := P ∩ TM is a

Lagrangian distribution in TM . Conversely, if D is a Lagrangian distribution of

TM , then its complexification DC is a real polarization. Hence, considering a

real polarization in M is equivalent to taking a Lagrangian distribution in TM ,

hence M is foliated by Lagrangian submanifolds; the leaves of such a foliation

are called leaves of the polarization. N

Theorem 2.2.17. If P is a real polarization, then there exist a local basis of

D = P ∩ TM made up of Hamiltonian vector fields.

Proof. See [9, page 193].

Using Remark 2.2.16 and Theorem 2.2.17, we give the following definition for

real polarization, which we use throughout this dissertation.

Definition 2.2.18. A non-degenerate integrable real polarization P of a 2n-di-

mensional symplectic manifold M is a (possibly singular) distribution

P =
∐
m∈M

Pm , Pm ⊂ TmM , (2.16)
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such that for every m ∈M there exist n Poisson-commuting functions H1, . . . , Hn

on M with non-degenerate singularities (in the sense of 2.1.12) defined on a

neighborhood U of m such that

span{XH1(m
′), . . . , XHn(m′) } = Pm′

for every m′ ∈ U .

Definition 2.2.19. Let (M,ω,L,∇) be a prequantizable symplectic manifold

along with a prequantum line bundle, and P be a non-degenerate integrable real

polarization on it. A smooth section ψ ∈ Γ(L) is said to be P -flat if it is covari-

antly constant along P , i.e.,

∇Xψ = 0, ∀X ∈ P. (2.17)

If P be a non-degenerate integrable real polarization, then there exists an

integrable system
(
M,ω, µ = (H1, . . . , Hn)

)
that gives this polarization. If c ∈

Rn, then the leaves of the polarization are µ−1(c).

Definition 2.2.20. A leaf µ−1(c) of the polarization P is called Bohr-Sommerfeld

leaf if there exists a non-zero section ψ : µ−1(c)→ L such that ∇Xψ = 0, for all

vector fields X tangent to the polarization P .

2.2.5 Kostant’s definition of geometric quantization

In general, the existence of P -flat sections along a polarization is not trivial. For

example, consider the following

Example 2.2.21. Consider the manifold R × S1 with coordinates (x, y) and
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symplectic form ω = dx ∧ dy. Let L be the trivial line bundle with connection 1-

form θ = x dy with respect to the unitary section eix, and P =

〈
∂

∂y

〉
. A section

s(x, y) = f(x, y)eix is flat section if it satisfies the following:

(
∇ ∂

∂y
s
)

(x, y) =

(
∂

∂y
− i

〈
θ,

∂

∂y

〉)
f(x, y)eix =

(
∂f

∂y
(x, y)− ixf(x, y)

)
eix = 0.

(2.18)

We then have s(x, y) = g(x)eixyeix, for some function g. Hence, s(x, y) has a

period of 2π in y if and only if x ∈ Z. Thus, P -flat sections are only defined for

the set of points with x ∈ Z. N

As discussed earlier, the general idea of geometric quantization is to work

with sections that are flat along the chosen polarization. But the P -flat sections

in Example 2.2.21 are well-defined only on a subset of M , so one is forced to work

with delta functions supported over these points in order to use flat sections as

an analogue for quantum Hilbert space. Another methods is to deal with sheaves

and higher order cohomology groups.

In this dissertation we use sheaf theory approach as suggested by Kostant

in [23]. He suggested to associate quantum states to elements of higher coho-

mology groups, and to build the quantum phase space from these groups, by

considering cohomology with coefficients in the sheaf F of P -flat sections (see

Definition 3.1.10):

Q(M,F) :=
⊕
k≥0

Hk(M,F) , (2.19)

where Hk(M ;F) are the cohomology groups with values in sheaf F .
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Chapter 3

Sheaves appearing in geometric

quantization

Kostant’s definition of geometric quantization (2.19) requires us to compute the

cohomology groups Hk(M,F) with coefficients in the sheaf F of P -flat sections

(Definition 3.1.10). To this end, we will give definitions of the sheaves that are

used in this dissertation, and will construct fine resolutions of F that will be used

to compute Hk(M,F).

3.1 Sheaves

Definition 3.1.1. Let X be a topological space. A presheaf S of modules on

X assigns to every open set U of X a module S(U). It also assigns restriction

maps: to any V ⊂ U , the presheaf assigns a map S(U) → S(V ) such that if

W ⊂ V ⊂ U and s ∈ S(U), then

s|W = (s|V )|W , (3.1)
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and if U = V , then the restriction map is an identity.

Definition 3.1.2. A presheaf S is a sheaf if the following properties hold:

1. If (Ui) is an open covering of an open set U , suppose that the sections

si ∈ S(Ui) are such that si|Ui∩Uj = sj|Ui∩Uj , for each pair Ui, Uj of the open

covering (Ui) of U , then there exists a section s ∈ S(U) such that s|Ui = si,

for each Ui ⊂ U .

2. If (Ui) is an open covering of an open set U , suppose that s1, s2 ∈ S(U) are

such that s1|Ui = s2|Ui for all Ui ⊂ U , then s1 = s2 on U .

Definition 3.1.3. Let S be a sheaf over the Topological space X. The stalk of

S over x ∈ X is the direct limit of S(U) with respect to the restriction maps:

Sx := lim−−→
x∈U

S(U) .

Definition 3.1.4. Let C∞M denote the sheaf of smooth complex-valued functions

on M ; it is a sheaf of C-algebras.

Definition 3.1.5. Let P stand for the sheaf of smooth vector fields tangent to

the polarization P , i.e., for any open subset U of M ,

P(U) = {X ∈ Γ(TM |U) | X(m) ∈ Pm for all m ∈ U } . (3.2)

We view P as a sheaf of C∞M -modules.

In the proof of the result that follows, we will need a parameterized version

of Borel’s Theorem (for a proof see, e.g., [30, Theorem I.1.3]).
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Theorem 3.1.6 (Borel). Let (x, y) ∈ Rn × Rm = Rn+m, and

T : C∞(Rn+m)→ C∞(Rn)[[Y1, . . . , Ym]] : f 7→ (Tf)(x, y) =
∑
α∈Zm+

Dα
y f(x, 0)· 1

α!
Y α

(3.3)

be the Taylor expansion of a smooth function on Rn+m by its partial derivatives

with respect to y ∈ Rm. Let m∞Rn×{0} be the kernel of T , i.e., the ideal of functions

in C∞(Rn+m) which are Taylor-flat along Rm on Rn × {0} ⊂ Rn ×Rm (in other

words, whose partial derivatives with respect to y ∈ Rm vanish on Rn × {0}).

Then the Taylor series mapping (3.3) gives an isomorphism

C∞(Rn+m)/m∞Rn×{0}
∼=→ C∞(Rn)[[Y1, . . . , Ym]] . (3.4)

Proposition 3.1.7. Let U be an open subset of M , and H1, . . . , Hn be as in

Definition 2.2.18. Then X ∈ P(U) if and only if

X =
n∑
j=1

fj XHj for some functions f1, . . . , fn ∈ C∞M (U) . (3.5)

Furthermore, the functions f1, . . . , fn are uniquely determined by X,H1, . . . , Hn.

Proof. The proposition is clear if U contains no singular points. Therefore, with-

out loss of generality, we may assume that U is a small neighborhood of 0 ∈ R2n

and that the Hamiltonian functions are in the form of the hi, hj, hk from Defini-

tion 2.1.16. So we may assume Hi are elliptic blocks, Hj are hyperbolic blocks,

and Hk, Hk+1 are focus-focus blocks with i, j, k as in the theorem. Let I, J,K

denote the sets for i, j, k from the theorem.
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Let X ∈ P(U) and write

X =
∑
i∈I

(
Ai

∂

∂qi
+Bi

∂

∂pi

)
+
∑
j∈J

(
Aj

∂

∂qj
+Bj

∂

∂pj

)
+
∑
k∈K

(
Ak

∂

∂qk
+ Ak+1

∂

∂qk+1

+Bk
∂

∂pk
+Bk+1

∂

∂pk+1

)
.

Condition (3.5) then implies that, for every m ∈ U , for all i ∈ I, j ∈ J , k ∈ K,

(
Ai

∂

∂qi
+Bi

∂

∂pi

)
(m) ∈ Span{XHi(m) },(

Aj
∂

∂qj
+Bj

∂

∂pj

)
(m) ∈ Span{XHj(m) },(

Ak
∂

∂qk
+ Ak+1

∂

∂qk+1

+Bk
∂

∂pk
+Bk+1

∂

∂pk+1

)
(m) ∈ Span{XHk(m), XHk+1

(m) }.

We will show the following: for each i ∈ I, j ∈ J , k ∈ K, there exists smooth

functions fi, fj, fk, fk+1 such that

Ai
∂

∂qi
+Bi

∂

∂pi
= fiXHi ,

Aj
∂

∂qj
+Bj

∂

∂pj
= fjXHj ,

Ak
∂

∂qk
+ Ak+1

∂

∂qk+1

+Bk
∂

∂pk
+Bk+1

∂

∂pk+1

= fkXHk + fk+1XHk+1
.

Consider the elliptic block i first. For each m ∈ U we are given

Ai(m)
∂

∂qi
+Bi(m)

∂

∂pi
∈ Span{XHi(m) } = Span{

(
pi
∂

∂qi
− qi

∂

∂pi

)
(m) } .

The linear dependence of Ai
∂
∂qi

+Bi
∂
∂pi

and pi
∂
∂qi
−qi ∂∂pi implies that Aiqi+Bipi = 0
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as functions on U . Then Ai vanishes on the hypersurface {pi = 0}, hence Ai =

A′ipi for

A′i(qi, pi) =

∫ 1

0

∂Ai
∂pi

(qi, tpi) dt

(where all other coordinates are kept fixed). Similarly, Bi vanishes on the hy-

persurface {qi = 0}, so Bi = B′iqi for a smooth function B′i constructed similarly

to A′i. Plugging back, we obtain A′ipiqi+B
′
iqipi = 0 as functions on U , so dividing

by qipi we obtain B′i = −A′i. Let fi = A′i, then

Ai
∂

∂qi
+Bi

∂

∂pi
= fipi

∂

∂qi
− fiqi

∂

∂pi
= fiXHi .

For the hyperbolic block Hj the reasoning is analogous, so we omit it.

Now consider a focus-focus block Hk, Hk+1. To make notation easier, assume

k = 1 and let X1 denote the part of X under consideration. Then we have

X1(m) =

(
A1

∂

∂q1

+ A2
∂

∂q2

+B1
∂

∂p1

+B2
∂

∂p2

)
(m) ∈ Span{XH1(m), XH2(m) }

for each m ∈ U . The Hamiltonian vectors on the right-hand side are

XH1 = q1
∂

∂q1

+ q2
∂

∂q2

− p1
∂

∂p1

− p2
∂

∂p2

,

XH2 = −q2
∂

∂q1

+ q1
∂

∂q2

− p2
∂

∂p1

+ p1
∂

∂p2

.

The linear dependence of X1, XH1 , and XH2 implies that the rank of the 3 × 4

matrix of their components is smaller than 3, which implies that A1, A2, B1,
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and B2 satisfy the equations

vA1 = −tB1 − sB2,

vA2 = −sB1 + tB2

(3.6)

with

u = q2
1 + q2

2, v = p2
1 + p2

2, s = q1p2 + q2p1, t = q1p1 − q2p2. (3.7)

(Note that s2 + t2 = uv.) We want to find smooth functions f1 and f2 such that

X1 = f1XH1 + f2XH2 . As remarked before, f1 and f2 exist as smooth functions

at least away from the origin. Our goal is to show that they extend smoothly to

the origin. Comparing the coefficients of ∂
∂p1

and ∂
∂p2

, we obtain the equations

(holding at least away from the origin)

vf1 = −p1B1 − p2B2,

vf2 = −p2B1 + p1B2.

(3.8)

To express f1 and f2 from (3.8), we need to show that (−p1B1 − p2B2) and

(−p2B1 + p1B2) are divisible by v. Using (3.6), we derive the relations

u(−p1B1 − p2B2) = v(q1A1 + q2A2),

u(−p2B1 + p1B2) = v(−q2A1 + q1A2).

Thus it suffices to prove the following claim: if F and G are smooth functions on

R4 with coordinates (q1, q2, p1, p2), the variables u and v are defined as in (3.7),

and uF = vG, then G is divisible by u. (Clearly by symmetry we also have F is
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divisible by v.)

To this end, let F,G : R4 → C be smooth functions of q1, q2, p1, p2. Let

z = q1 + iq2 and z̄ = q1− iq2. Let R = C∞(R2)[[z, z̄]] be the ring of formal power

series with coefficients in the ring of (C-valued) smooth functions C∞(R2).

We think of C∞(R2) as functions of p1, p2. We write the natural map from

C∞(R4)→ R as

W 7→
∑

a≥0, b≥0

Wa,bz
az̄b, Wa,b ∈ C∞(R2) ;

by Borel’s Theorem, this map is bijective. Since zz̄ = u, we have (Fu)a+1,b+1 =

Fa,b and (Gv)a,b = Ga,bv for all a ≥ 0, b ≥ 0. The equality Fu = Gv then implies

that G0,0 = G0,1 = G1,0 = 0,

and Fa−1,b−1 = Ga,bv as elements of C∞(R2) for all a ≥ 1, b ≥ 1. Therefore

∑
a≥0, b≥0

Ga,bz
az̄b = zz̄

∑
a≥1, b≥1

Ga,bz
a−1z̄b−1 = u

∑
a≥1, b≥1

Ga,bz
a−1z̄b−1 ,

that is, the image of G is divisible by zz̄ = u inside R. By Borel’s Theorem, there

exists G1 ∈ C∞(R4) such that

G1 7→
∑

a≥1, b≥1

Ga,bz
a−1z̄b−1 ∈ R.

It follows that

G− uG1 7→ 0 ∈ R ,

i.e., G − uG1 is Taylor-flat in the (z, z̄)-direction or, equivalently, in (q1, q2)-

direction. It follows that there exists G2 ∈ C∞(R4) such that uG2 = G − uG1.

Thus G = u(G1 +G2), proving that G is divisible by u.
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Corollary 3.1.8. The sheaf P is locally free of rank n, i.e., for every m ∈ M ,

there exists an open neighborhood U of m and an isomorphism P|U ∼= ⊕nC∞M |U .

Proof. Let U and H1, . . . , Hn be as in Proposition 3.1.7. Then, for any open

subset V of U , define a map P(V ) → C∞M (V ) that sends each X =
∑

j fj XHj ∈

P(V ) to its coefficient functions: X 7→ f1 ⊕ · · · ⊕ fn. This is an isomorphism by

Proposition 3.1.7.

Example 3.1.9. Since the behavior of the vector fields at the singular points is

at the heart of our study, in this simple example we illustrate the importance of

nondegeneracy condition in Proposition 3.1.7. Let (M,ω) = (R2, dp ∧ dq) and

consider two different Hamiltonian functions: H = 1
2
(q2 + p2) and K = H2. The

origin of R2 is a non-degenerate singularity for H, and a degenerate singularity

for K. The Hamiltonian vector fields of H and K are proportional to each other:

XH = p ∂
∂q
− q ∂

∂p
and XK = 2HXH , so that they define the same polarization

Pm = span {XH(m)} = span {XK(m)} , m ∈ R2 .

Clearly, dimP(0,0) = 0, and dimPm = 1 if m 6= (0, 0).

Let U be an open subset of R2 that contains (0, 0). It is easy to see that

X ∈ P(U) if and only if there exists f ∈ C∞M (U) such that X = f XH . The “if”

part of this claim is obvious. To prove the “only if” part, let X = a ∂
∂q

+ b ∂
∂p

for some a, b ∈ C∞M (U), and assume that X ∈ P(U). Then det

 a b

p −q

 = 0

or, equivalently, −qa = pb. Reasoning as in the “elliptic” part of the proof of

Proposition 3.1.7, we conclude that X = f XH . The uniqueness of f is easy to

see: if X = f XH and X = f̃ XH , then (f − f̃)XH = 0. But since XH(m) 6= 0

when m 6= (0, 0) and since f(m) = f̃(m) for m 6= (0, 0) and, the smoothness of f
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and f̃ implies that f = f̃ on U .

On the other hand, not every X ∈ P(U) can be written as a multiple of XK .

Take, for example, X = XH and assume that X = g XK for some g ∈ C∞M (U).

But since XK = 2H XH , this assumption implies that 2gH = 1 on U which

contradicts H(0, 0) = 0. N

Definition 3.1.10. Let F be the sheaf of P -flat sections of L, i.e., sections of L

that are covariantly constant in the direction of the polarization P : for any open

set U ⊂M ,

F(U) = {ψ ∈ Γ(L|U) | ∇Xψ = 0 for all X ∈ P(U) } . (3.9)

If U and H1, . . . , Hn are as in Definition 2.2.18, then it is clear that ψ ∈ F(U)

if and only if ∇XHj
ψ = 0 for all j = 1, . . . , n.

Definition 3.1.11. If S is a sheaf of C∞M -modules, let ΛkS stand for its kth

exterior power (k = 0, 1, 2, . . .). In other words, ΛkS is a sheaf of C∞M -modules,

defined for any open set U ⊂M by

(ΛkS)(U) = Λk(S(U)) ,

where the right-hand side is the kth exterior power of the C∞M (U)-module S(U).

Remark 3.1.12. In the following two definitions, we remind the reader of the

following: In general, if F1 and F2 are sheaves, then the sheaf of homomorphisms

from F1 to F2 is defined by the rule U 7→ Hom(F1|U,F2|U). The more intuitive

rule U 7→ Hom(F1(U),F2(U)) does not work because it is not possible in general

to define restriction maps Hom(F1(U),F2(U))→ Hom(F1(V ),F2(V )) for V ⊂ U .

However, in the case that the sheaves are sheaves of modules and F1 is free, the
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restriction maps can be defined in an obvious way, and both rules give the same

sheaf. N

Definition 3.1.13. Let LkM denote the sheaf of L-valued k-forms, defined for any

open set U ⊂M by

LkM(U) = HomC∞M (U)

(
ΛkΓ(TM |U),Γ(L|U)

)
.

Using the isomorphism Γ(L|U) ∼= C∞M (U), α ∈ LkM(U) is a skew-symmetric,

C∞M (U)-multilinear map

α : Γ(TM |U)× · · · × Γ(TM |U)→ Γ(L|U) ∼= C∞M (U) . (3.10)

Thus, given k vector fields X1, . . . , Xk ∈ Γ(TM |U), α(X1, . . . , Xk) is a smooth

section of L|U or, equivalently, a smooth complex-valued function on U .

Definition 3.1.14. Let LkP be the sheaf of L-valued polarized k-forms, defined

for an open set U ⊂M by

LkP (U) = HomC∞M (U)

(
ΛkP(U),Γ(L|U)

)
;

“polarized” here means that the vector fields taken as arguments are tangent to

the polarization P . Similarly to (3.10), α ∈ LkP (U) can be thought of as a skew-

symmetric, C∞M (U)-multilinear map

α : P(U)× · · · × P(U)→ Γ(L|U) ∼= C∞M (U)

taking as arguments k vector fields from P(U).
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The proof of the following important lemma is similar to the proof of Corol-

lary 3.1.8, so we omit it.

Lemma 3.1.15. Let H1, . . . , Hn and U be as in Definition 2.2.18 and let α ∈

LkP (U). For integers 1 ≤ i1 < . . . < ik ≤ n, let αi1···ik := α(XHi1
, . . . , XHik

) ∈

C∞M (U). Then α is uniquely determined by the set of smooth functions αi1···ik .

Conversely, any set of smooth functions {αi1···ik}1≤i1<...<ik≤n defines an α ∈ LkP .

In other words,

LkP |U ∼=
N⊕
C∞M |U, (3.11)

where N is the number of k-tuples (i1, . . . , ik) satisfying 1 ≤ i1 < . . . < ik ≤ n.

Remark 3.1.16. From Definitions 3.1.13 and 3.1.14, it is obvious that

L0
M = L0

P
∼= C∞M ,

and Lemma 3.1.15 makes it clear that LkP = 0 (the 0 sheaf) for k > n. N

Remark 3.1.17. Throughout this dissertation, we will distinguish between the

value of a function or a section at a point m ∈ M and the germ of the func-

tion/section at a point. For example, if U is an open subset of M containing m,

and X ∈ P(U) (recall Definition 3.1.5), then X(m) ∈ Pm ⊂ TmM is the value

of X at m, while Xm ∈ Pm is the germ of X at m, and Pm is the stalk of P

at m. N

Lemma 3.1.18. There is a canonical morphism

Υk
P : LkM → LkP (3.12)

defined as follows: for U ⊂ M open, Υk
P maps the L-valued k-form α ∈ LkM(U)
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to the L-valued polarized k-form α|P ∈ LkP (U), where α|P is α considered as a

form that can only take as arguments vector fields tangent to P . In other words,

if υP : P → TM is the natural inclusion, then α|P is the pull-back υ∗Pα.

The stalk at m ∈M of the kernel of Υk
P is the set of all germs of k-forms αm

such that (α|P )m = 0. Moreover, for 1 ≤ k ≤ n, (LkM)m → (LkP )m is surjective if

and only if dimPm = n.

Proof. The description of the map Υk
P makes the statement about its kernel

obvious.

Now consider surjectivity. Let U , α ∈ LkP (U), H1, . . . , Hn and αi1···ik be as in

Lemma 3.1.15, and let m ∈ U . If dimPm = n, then XH1 , . . . , XHn are linearly

independent near m, hence there exists a neighborhood V ⊂ U of m and functions

q1, . . . , qn ∈ C∞M (V ) such that (q1, . . . , qn, H1, . . . , Hn) are canonical coordinates

on V and, therefore, XHi = ∂
∂qi

. Then the form

∑
1≤i1<···<ik≤n

αi1···ik dqi1 ∧ · · · ∧ dqik ∈ LkM(U)

obviously equals α when restricted to P .

Conversely, suppose dimPm < n, then (by changing to a new set of Hamilto-

nians if necessary) we may assume that XH1(m) = 0. Let α ∈ LkP (U) be the sec-

tion defined by α(XH1 , . . . , XHk) = 1 and all other α(XHi1
, . . . , XHik

) = 0. Since

XH1(m) = 0, any form β ∈ LkM(U) satisfies β(m) (XH1(m), . . . , XHk(m)) = 0.

But since α(XH1 , . . . , XHk) = 1, αm is not in the image of (LkM)m → (LkP )m.

Definition 3.1.19. For k ≥ 0, we let LkM |P denote the image of LkM inside LkP

under the map Υk
P (3.12):

LkM |P := Υk
P (LkM) ⊂ LkP . (3.13)
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Note that L0
M |P = L0

P .

3.2 Sheaf cohomology

In this section we collect several standard definitions and facts related to coho-

mology of sheaves, following [45, Chapter II]. We assume that the manifold M is

a paracompact, Hausdorff topological space and S is a sheaf of abelian groups.

We let Sm denote the stalk at m and, for a morphism φ : S → S, φm : Sm → Sm

denotes the morphism of stalks.

Let Γ stand for the contravariant functor of taking global sections of a sheaf,

i.e., Γ(S) = S(X) are the global sections of the sheaf S.

Definition 3.2.1. A sheaf S is fine if for any locally finite open cover {Uν} of

M there exists a family {ην} of sheaf morphisms ην : S → S such that

(i)
∑

ν ην = IdS ,

(ii) ην(Sm) = 0 for all m in some neighborhood of the complement of Uν.

In the intended applications, our fine sheaves will be sheaves of modules. More

precisely, we will make use of the following lemma:

Lemma 3.2.2. Let M be a smooth manifold and let S be a sheaf of C∞M -modules.

Then S is fine.

Proof. Example 3.4 in [45].

Definition 3.2.3. A fine resolution of a sheaf S of abelian groups is an exact

sequence of sheaves

0→ S → S0 → S1 → S2 → · · · (3.14)

such that S i is fine for each i. We denote this as 0→ S → S∗.
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Remark 3.2.4. The exactness of (3.14) means that for each m ∈ M the corre-

sponding sequence of stalks is exact

0→ Sm → S0
m → S1

m → S2
m → · · · . (3.15)

Explicitly, this means that given any open set U containing m and any section

si ∈ S i(U) such that si 7→ 0 ∈ S i+1(U) (where 0 is the zero section of S i+1(U)),

there exists an open set V ⊂ U containing m and a section ti−1 ∈ S i−1(V ) such

that ti−1 7→ si|V ; if i = 0 then ti−1 ∈ S(V ). In other words, the exactness of

(3.14) means that closed implies locally exact. N

Definition 3.2.5. Let 0→ S → S∗ be a fine resolution. For i ≥ 0 let Ψi : S i →

S i+1 denote the morphism S i → S i+1 (the 0 → S → S0 term is ignored), and

Γ(Ψi) : Γ(S i) → Γ(S i+1) be the induced morphism on global sections. Then the

ith cohomology of the resolution 0→ S → S∗ is defined as

Hi(X,S; {S∗}) = Ker Γ(Ψi)/ Im Γ(Ψi−1) , i ≥ 1 ,

and H0(X,S; {S∗}) = Ker Γ(Ψ0).

If S is a fine sheaf, the cohomology groups defined in Definition 3.2.5 do not

depend on the particular choice of a fine resolution of S, which is the claim of

the following

Lemma 3.2.6. Let 0→ S → S∗1 and 0→ S → S∗2 be two fine resolutions. Then

for each i ≥ 0 there is a canonical isomorphism

Hi(X,S; {S∗1})→ Hi(X,S; {S∗2}).
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Proof. This is Corollary 3.14 in [45] along with the fact that fine resolutions are

acyclic (which follows from Theorem 3.11 (a),(2) and Proposition 3.5 in [45]).

Lemma 3.2.6 justifies the following

Definition 3.2.7. The sheaf cohomology of the fine sheaf S is defined as

Hi(X,S) = Hi(X,S; {S∗}).

where 0→ S → S∗ is any fine resolution of S.

3.3 de Rham resolution of F

The goal of this section is to define a de Rham-like fine resolution of the sheaf F .

This presents no problems at the nonsingular points of the polarization P but

special care needs to be taken at the singular points of P .

Definition 3.3.1. For 0 ≤ k ≤ n− 1, we define the morphism d∇ : LkP → Lk+1
P

as follows: Let U be an open set, α ∈ LkP (U), and X0, X1, . . . , Xk ∈ P(U). Then

d∇α ∈ Lk+1
P (U) is defined by the formula

(d∇α)(X) = ∇Xα for k = 0 ,

and

(d∇α)(X0, . . . , Xk) =
k∑
i=0

(−1)i∇Xi

(
α(X0, . . . , X̂i, . . . , Xk)

)
+
∑
i<j

(−1)i+j α([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk) .

(3.16)

for 1 ≤ k ≤ n− 1, where the hat means that the corresponding term is missing.
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Lemma 3.3.2. The morphism d∇ : LkP → Lk+1
P satisfies (d∇)2 = 0.

Proof. The proof that (d∇)2 = 0 is similar to the proof that d2 = 0, so we omit

it.

Lemma 3.3.3. The inclusion 0→ F → L0
P is the kernel of d∇ : L0

P → L1
P .

Proof. For ψ ∈ L0
P , (d∇ψ)(X) = ∇Xψ. Thus d∇ψ = 0 if and only if ψ is flat in

the P direction, i.e., ψ is a section of F (3.9).

Lemma 3.3.4. Let m ∈M and suppose dimPm = n. Then the sequence of stalks

0→ Fm → (L0
P )m

d∇→ (L1
P )m

d∇→ · · · d∇→ (LnP )m → 0 (3.17)

is exact.

Proof. If dimPm = n, the polarization is non-singular in a neighborhood of m. In

other words, there exists Hamiltonians H1, . . . , Hn such that XH1 , . . . , XHn are

linearly independent vectors at each point in a neighborhood of m. Then the

exactness of the sequence (3.17) is proved in [31, Theorem 3].

Remark 3.3.5. Lemma 3.3.4 can be stated briefly by saying that the Poincaré

lemma (“closed implies locally exact”) holds at the nonsingular points of P . N

By Lemma 3.2.2, the sheaves LkP of L-valued polarized k-forms are fine. Thus

0 → F → L∗P will be a fine resolution if P has no singular points. To obtain a

fine resolution of F when P is singular, we will need to change L∗P appropriately

depending on the types of singularities that P has. This will be the goal in the

next few subsections.
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3.4 Examples of fine resolutions for n = 1

3.4.1 A fine resolution for an elliptic singularity, n = 1

We specialize to the case that the manifold M is a small open disk centered

at the origin of R2 with canonical coordinates (q, p) and Liouville 1-form θ =

1
2
(p dq − q dp). Let H = 1

2
(p2 + q2) and let P be the polarization generated by

XH = p ∂
∂q
−q ∂

∂p
. Assume that the only integral value H obtains in M is 0 (which

occurs at the origin only). We start by considering the global L-valued polarized

0- and 1-forms (note that in this case LkP = 0 for k ≥ 2 automatically).

Lemma 3.4.1. Let α ∈ L1
P (M). Then there exists ψ ∈ L0

P (M) satisfying d∇ψ =

α if and only if 〈α,XH〉 vanishes at the origin.

Proof. Let φ := 〈α,XH〉 ∈ L0
P (M). Then d∇ψ = α holds if and only if ∇XHψ =

φ. Thus we need to find ψ ∈ L0
P (M) satisfying XH(ψ)− iHψ = φ (recall (2.14)).

Let t ∈ S1 be the angle coordinate such that (t,H) are canonical coordinates,

so that ω = dH ∧ dt and XH = ∂
∂t

. Writing ψ = ψ(t,H), the equation for ψ

becomes

∂ψ

∂t
− iHψ = eiHt ∂

∂t
(e−iHtψ) = φ . (3.18)

Introduce complex coordinates in M by setting z = q − ip, then z =
√

2He−it

and z̄ = q + ip =
√

2Heit. Let ψa,b and φa,b be the coefficients of zaz̄b in the

Taylor expansion about the origin of ψ and φ, respectively. Since H = 1
2
zz̄ and

∂
∂t

(zaz̄b) = i(b− a)zaz̄b, a direct calculation shows that the Taylor coefficients of

ψ must satisfy 0 = φ0,0, −iψ1,0 = φ1,0, iψ0,1 = φ0,1, and

i(b− a)ψa,b −
i

2
ψa−1,b−1 = φa,b , a, b ≥ 1 . (3.19)
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This system has a solution ψa,b if and only if φ0,0 = 0. Thus the vanishing of φ at

the origin of R2 is a necessary condition for equation (3.18) to have a solution.

Now we assume that the value of φ at the origin of R2 is zero and show that

this is also a sufficient condition. We may assume that φ has vanishing Taylor

coefficients at the origin because we can replace φ with (φ−∇XH ψ̃), where ψ̃ is

a smooth section with Taylor coefficients ψ̃a,b satisfying (3.19) (as guaranteed by

Borel’s Theorem, see, e.g., [18, Theorem 1.2.6]).

Integration of (3.18) yields

ψ(t,H) = eiHt

[
ψ(0, H) +

∫ t

0

e−iHsφ(s,H) ds

]
.

The section ψ will be 2π-periodic in t if and only if ψ(0, H) = ψ(2π,H), which

is equivalent to

ψ(0, H) =
1

e−2πiH − 1

∫ 2π

0

e−iHsφ(s,H) ds .

Thus we get a unique solution away from the origin, i.e., for H 6= 0. A straight-

forward computation shows that we can rewrite ψ as

ψ(t,H) =
1

e−2πiH − 1

∫ 2π

0

e−iHsφ(t+ s,H) ds

=
eiHt

e−2πiH − 1

∫ t+2π

t

e−iHsφ(s,H) ds .

(3.20)

Let ΦH
t denote the time-t flow of XH . We can rewrite (3.20) again more invari-

antly as

ψ(m) =
1

e−2πiH(m) − 1

∫ 2π

0

e−iH(m)sφ(ΦH
s (m)) ds , m ∈M . (3.21)

46



It is clear from this expression that ψ is smooth away from the origin of R2. It

remains to check that ψ extends smoothly to the origin. Since φ has vanishing

Taylor series at the origin, φ = Hφ̃ for some smooth section φ̃, and we obtain

ψ(m) =
1

e−2πiH(m) − 1

∫ 2π

0

e−iH(m)sφ(ΦH
s (m)) ds

=
H(m)

e−2πiH(m) − 1

∫ 2π

0

e−iH(m)sφ̃(ΦH
s (m)) ds .

With the H factor out front, it is clear that this expression extends smoothly to

the origin.

Lemma 3.4.2. The image of d∇ : L0
P → L1

P is the sheaf L1
M |P (3.13).

Proof. Let (0, 0) stand for the origin in R2 (written in (q, p) coordinates).

First consider the casem ∈M\{(0, 0)}. In this case we can apply Lemma 3.1.18

with k = n = 1, according to which the map (Υ1
P )m : (L1

M)m → (L1
P )m (recall

(3.12)) between the stalks is surjective, so that (L1
M |P )m = (Υ1

P )m
(
(L1

M)m
)

=

(L1
P )m. On the other hand, Lemma 3.3.4 guarantees the exactness of the se-

quence 0 → Fm → (L0
P )m

d∇→ (L1
P )m → 0, so that d∇

(
(L0

P )m
)

= (L1
P )m. Putting

these facts together, we obtain d∇
(
(L0

P )m
)

= (L1
M |P )m.

To prove that d∇
(
(L0

P )(0,0)

)
= (L1

M |P )(0,0), we first show that d∇
(
(L0

P )(0,0)

)
⊂

(L1
M |P )(0,0). Let U be an open neighborhood of (0, 0) and ψ(0,0) ∈ (L0

P )(0,0) be

the germ of a section ψ ∈ L0
P (U) at (0, 0). Then d∇ψ ∈ L1

P (U) is the L-valued

polarized 1-form defined by XH 7→ φ := ∇XHψ = XH(ψ)− iHψ, so that

(d∇ψ)(0,0) =
{

(XH)(0,0) 7→ φ(0,0)

}
∈ (L1

P )(0,0) .

But the values of XH and H at the origin are XH(0, 0) = 0 and H(0, 0) = 0, so

the value of φ(0, 0) is also 0. Hence there exist sections φ1, φ2 ∈ L0
P (U) such that
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φ = pφ1 + qφ2. Let α(0,0) ∈ (L1
M)(0,0) be the germ at (0, 0) of the L-valued 1-form

α = φ1 dq − φ2 dp ∈ L1
M(U). Then 〈α,XH〉 = φ, hence d∇ψ = α|P = Υ1

P (α) ∈

L1
M |P (U) (the notation α|P was introduced in Lemma 3.1.18).

It remains to show that d∇ maps (L0
P )(0,0) onto (L1

M |P )(0,0). Let α = φ1 dq −

φ2 dp ∈ L1
M(U) and φ = 〈α,XH〉 = pφ1 + qφ2 ∈ L0

P (U), as above. Then the

image Υ1
P (α) ∈ L1

M |P of α in L1
P (U) has the form XH 7→ φ. Since φ(0, 0) = 0,

Lemma 3.4.1 guarantees the existence of ψ ∈ L0
P (U) with ∇XHψ = φ. Thus, d∇

maps (L0
P )(0,0) onto (L1

M |P )(0,0).

Since L0
P is trivially equal to L0

M |P , we can restate our results as follows:

Proposition 3.4.3. If M is a two dimensional symplectic manifold and P is a

polarization with only elliptic singularities, then the sequence

0→ F → L0
M |P

d∇→ L1
M |P → 0

is a fine resolution of F .

3.4.2 A fine resolution for a hyperbolic singularity, n = 1

Again, we consider the case that M is a small open disk centered at the origin of

R2 with canonical coordinates (q, p) and Liouville 1-form θ = 1
2
(p dq− q dp). Let

H = pq and let P be the polarization generated by the Hamiltonian vector field

XH = q ∂
∂q
− p ∂

∂p
. We assume that the only integral value H obtains in M is 0,

which occurs on the union of the coordinate axes.

The following two lemmas are taken from [29, Section 6], where one can find

detailed proofs, so we only indicate the ideas.
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Lemma 3.4.4. Suppose that ρ ∈ L0
P (M) is Taylor flat at the origin. Then there

exists a solution ψ ∈ L0
P (M) to the equation

∇XHψ = ρ .

Proof. This is [29, Lemma 6.2]. For p, q > 0 the solution is given by the integral

ψ(q, p) =

∫ 0

−t
e−iHsρ(esq, e−sp) ds , t =

1

2
ln
q

p
.

Similar expressions hold in other quadrants. It is shown in [29] that ψ extends

smoothly to M .

Lemma 3.4.5. There exists a solution ψ ∈ L0
P (M) to the equation

∇XHψ = φ , φ ∈ L0
P (M)

if and only if φ(0, 0) = 0.

Proof. Let ψa,b and φa,b be the qapb Taylor coefficient at the origin of ψ and φ,

respectively.

They must satisfy the relations

0 = φ0,0 ,

ψa,a = iφa+1,a+1 , a ≥ 1 ,

ψ0,b =
φ0,b + iψ0,b−1

b
, b ≥ 1 ,

ψa,0 =
−φa,0 − iψa−1,0

a
, a ≥ 1 ,

ψa,b =
φa,b + iψa−1,b−1

b− a
, a ≥ 1 , b ≥ 1 , a 6= b .
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The first relation imposes the condition φ0,0 = 0, while the rest of the relations

can be solved recursively to yield a unique solution for ψa,b (for details see the

proof of [29, Lemma 6.1]). Thus, a necessary condition for existence of a solution

is φ(0, 0) = 0.

On the other hand, if φ(0, 0) = 0, then we have shown that there exists ψ

such that (∇XHψ − φ) is Taylor flat at the origin. Hence by Lemma 3.4.4 there

exists ψ such that ∇XHψ = φ.

Lemma 3.4.6. The image of d∇ : L0
P → L1

P is the sheaf L1
M |P .

Proof. If m ∈ M \ {(0, 0)}, then dimPm = 1, so the morphism Υ1
P from (3.12)

is surjective, therefore
(
L1
M |P
)
m

= (L1
P )m by Lemma 3.1.18. On the other hand,

Lemma 3.3.4 guarantees that d∇
(
(L0

P )m
)

= (L1
P )m.

Now let m = (0, 0). First we show that d∇
(
(L0

P )(0,0)

)
⊂ (L1

M |P )(0,0). Let

ψ(0,0) ∈ (L0
P )(0,0), U be an open neighborhood of (0, 0), and ψ ∈ L0

P (U) be a

section with germ ψ(0,0) at (0, 0). Then d∇ψ ∈ L1
P (U) is the L-valued polarized

1-form defined by XH 7→ φ := ∇XH (ψ) = XH(ψ)− iHψ, so that

(d∇ψ)(0,0) =
{

(XH)(0,0) 7→ φ(0,0)

}
∈ (L1

P )(0,0) .

Since XH(0, 0) = 0 and H(0, 0) = 0, we have φ(0, 0) = 0, so there exist sections

φ1, φ2 ∈ L0
P (U) such that φ = pφ1 + qφ2. Let α(0,0) ∈ (L1

M)(0,0) be the germ of

the 1-from α = φ2 dq − φ1 dp ∈ L1
M(U). Then 〈α,XH〉 = φ, hence d∇ψ = α|P =

Υ1
P (α) ∈ L1

M |P (U).

Finally, we show that d∇ maps (L0
P )(0,0) onto (L1

M |P )(0,0). Let α = φ2 dq −

φ1 dp ∈ L1
M(U) and let φ = 〈α,XH〉 = pφ1 + qφ2. Then the image Υ1

P (α) ∈ L1
M |P

of α in L1
P (U) has the form XH 7→ φ. Since φ(0, 0) = 0, there exists ψ with

∇XHψ = φ by Lemma 3.4.5, therefore d∇ maps (L0
P )(0,0) onto (L1

M |P )(0,0).
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Thus, we have proved the following:

Proposition 3.4.7. If M is a two dimensional symplectic manifold and P is a

polarization with only hyperbolic singularities, then the sequence

0→ F → L0
M |P

d∇→ L1
M |P → 0

is a fine resolution of F .

3.4.3 Summary for n = 1

Combining Propositions 3.4.3 and 3.4.7, we get the following theorem:

Theorem 3.4.8. Let M be a two dimensional symplectic manifold and P a po-

larization with non-degenerate singularities. Then the sequence

0→ F → L0
M |P

d∇→ L1
M |P → 0

is a fine resolution of F .

Definition 3.4.9. For M a two dimensional symplectic manifold and P a polar-

ization with non-degenerate singularities, we call the sequence 0 → F → L∗M |P
the de Rham resolution of F . It is a fine resolution.

3.5 A fine resolution for a focus-focus singular-

ity, n = 2

The purpose of this subsection is twofold – we discuss the resolution for a focus-

focus singularity in a 4-dimensional symplectic manifold, and introduce some
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notations that will be used in the rest of the dissertation.

Let M be a small open disk centered at the origin of R4 with canonical coor-

dinates (q, p) = (q1, q2, p1, p2) and canonical 1-form

θ0 =
1

2
(p dq − q dp) :=

1

2

2∑
i=1

(pi dqi − qi dpi) . (3.22)

Let

µ = (H, J) : M → R2

be the moment map given by

µ(q, p) =
(
H(q, p), J(q, p)

)
= (q1p1 + q2p2, q1p2 − q2p1) . (3.23)

The Hamiltonian vector fields generated by the functions H and J are

XH = q1
∂

∂q1

+ q2
∂

∂q2

− p1
∂

∂p1

− p2
∂

∂p2

,

XJ = −q2
∂

∂q1

+ q1
∂

∂q2

− p2
∂

∂p1

+ p1
∂

∂p2

.

(3.24)

Since XH(q, p) and XJ(q, p) are linearly independent when (q, p) 6= (0, 0), the

polarization P generated by XH and XJ is nonsingular when (q, p) 6= (0, 0).

At (0, 0), however, both XH and XJ vanish, and the system has a singularity

of focus-focus type. We will assume that the disk M is so small that the only

integral value that the functions H and J obtain in M is 0, and this happens at

the focus-focus point (0, 0).

The covariant derivatives of a section ψ are (recall (2.14))

∇XHψ = XH(ψ)− iHψ , ∇XJψ = XJ(ψ)− iJψ .
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For convenience, we introduce complex coordinates

z1 := q1 + iq2, z2 := p1 + ip2 . (3.25)

In these coordinates, the functions H and J can be written as

H(z1, z2) = <(z̄1z2) , J = =(z̄1z2) , (3.26)

so that the moment map µ = H+iJ can be considered as a function from a small

disk in C2 centered at 0 to C. In these coordinates, the Hamiltonian vector fields

XH and XJ have the form

XH(z1, z2) = z1
∂

∂z1

+ z̄1
∂

∂z̄1

− z2
∂

∂z2

− z̄2
∂

∂z̄2

,

XJ(z1, z2) = iz1
∂

∂z1

− iz̄1
∂

∂z̄1

+ iz2
∂

∂z2

− iz̄2
∂

∂z̄2

.

(3.27)

A flow for time t in the XH direction and time s in the XJ direction is given by

the formula

ΦH
t ◦ ΦJ

s (z1, z2) = (et+isz1, e
−t+isz2) ; (3.28)

since XH and XJ commute, their flows commute as well. The flow of XJ is

2π-periodic. If t and s parameterize the XH and XJ flows, respectively, we can

view (t, s,H, J) as symplectic coordinates; they are related to (q, p) by (3.23) and

(3.26) and

t =
1

2
ln
|z1|
|z2|

, s = arg z1 ∈ S1 .

When z1 6= 0 and z2 6= 0, this gives well-defined, smooth coordinates (modulo

53



the 2π jump in the φ coordinate) such that

XH =
∂

∂t
, XJ =

∂

∂s
.

Lemma 3.5.1. Let

U = {(z1, z2) ∈ C2 : |z1| < ε, |z2| < ε} ,

with ε > 0 small enough so that U ⊂ M . Then F(U) = {0}. As a consequence,

the stalk of F at the focus-focus point (0, 0) ∈M is trivial: F(0,0) = {0}.

Proof. Let ψ ∈ F(U). Then ∇XJψ = 0 is equivalent to ∂
∂s
ψ − iJψ = 0, which

implies that

ψ(t, s,H, J) = eiJs ψ(t, 0, H, J) ,

where ψ(t, 0, H, J) represents the “initial condition” of ψ. The function ψ must

be 2π-periodic on the S1-orbits of XJ , which forces e2πiJ = 1 or ψ(t, 0, H, J) = 0.

Since e2πiJ = 1 only when J = 0, which is a hypersurface inside U , we must have

ψ(t, 0, H, J) = 0 for all (t, 0, H, J) in U . This implies that ψ = 0, i.e., F(U) = {0}

and, hence, F(0,0) = {0}.

Definition 3.5.2. Let Lk0,P stand for the sheaf of C∞M -modules of L-valued polar-

ized k-forms satisfying

Lk0,P (U) = {α ∈ LkP (U) : α|V = 0 on some neighborhood V of (0, 0) ∈M}

(3.29)

on any open set U ⊂M .

The next lemma is obvious but important.
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Lemma 3.5.3. The stalk of Lk0,P at any point m 6= (0, 0) is (Lk0,P )m = (LkP )m,

and at m = (0, 0) it is (Lk0,P )(0,0) = {0}.

As an easy corollary we obtain the main result of this section:

Proposition 3.5.4. The inclusion map 0 → F → L0
P maps F into L0

0,P . The

morphism d∇ maps Lk0,P into Lk+1
0,P . The sequence 0 → F → L∗0,P is a fine

resolution of F .

Proof. For the first statement, let U ⊂ M be an open set and ψ ∈ F(U). If

(0, 0) ∈ U , then ψ vanishes on some neighborhood of (0, 0) by Lemma 3.5.1,

hence ψ ∈ L0
0,P (U).

The second statement follows from the simple fact that each term in the right

hand side of (3.16) vanishes on some neighborhood of the (0, 0) (by the definition

of Lk0,P ).

For the last statement we need to show that 0→ F → L∗0,P is exact. In other

words, for each m ∈M , the following sequence of stalks is exact:

0→ Fm → (L0
0,P )m → (L1

0,P )m → (L2
0,P )m → 0.

If m = (0, 0), then this sequence is exact because all stalks are {0} by Lemmas

3.5.1 and 3.5.3. If m 6= (0, 0), then the polarization P is nonsingular at m, and

the sequence is exact by Lemmas 3.5.1 and 3.3.4.
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Chapter 4

Focus-focus singularity and the

semi-global model

In this section we will describe the model manifold on which we calculate the

cohomology groups associated with geometric quantization (see (2.19)). Vũ Ngo.c

in [41] introduced a topological invariant called Taylor series invariant which

completely characterizes the neighborhood of a focus-focus fiber. In Section 4.1

we will briefly describe the Taylor series invariant, in Section 4.2 we will follow

Section 6 of [41] to construct a neighborhood of the focus-focus fiber with a given

Taylor series invariant. In Section 4.3 we will construct a Liouville 1-form used

to define a connection ∇ and then show that the focus-focus fiber is the only

Bohr-Sommerfeld fiber in a neighborhood of the focus-focus fiber.

4.1 The Taylor series invariant

Let (N,ωN) be a 4-dimensional symplectic manifold and let µ = (H, J) : N → R2

be a proper moment map, i.e., the pre-image of a compact set is compact and
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Figure 4.1: On the definition of the times τ1(c) and τ2(c) on the regular fiber Λc.

in particular each fiber µ−1(c1, c2) is compact for all c = (c1, c2) ∈ R2. Assume

that this integrable system has a unique singular point at n0 ∈ N such that

µ(n0) = (0, 0) and the singularity at n0 is of focus-focus type. In addition let us

consider the following identification that we use throughout the dissertation,

R2 → C,

c = (c1, c2) 7→ c1 + ic2.

Let us now consider a point n on a regular fiber Λc := µ−1(c), c 6= 0. Let

S1 · n be the XJ -orbit of the point n. Denote by τ1(c) the first time n returns to

S1 · n under the flow of XH :

τ1(c) := min
{
t > 0 : ΦH

t (n) ∈ S1 · n
}
. (4.1)
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Denote by τ2(c) the time needed for the point ΦH
τ1(c)(n) to reach n under the flow

of XJ :

τ2(c) := min
{
s ≥ 0 : ΦJ

s ◦ ΦH
τ1(c)(n) = n

}
. (4.2)

The quantities τ1(c) and τ2(c) are represented pictorially in Figure 4.1. In [41]

Vũ Ngo.c proved that τ1 and τ2 are independent of the choice of n ∈ Λc. Clearly,

c approaches 0 ∈ C, τ1(c) tends to ∞. For some determination of the complex

logarithm, define

σ1(c) := τ1(c) + ln |c| , σ2(c) := τ2(c)− arg c. (4.3)

In [41] Vũ Ngo.c showed that σ1(c) and σ2(c) extend to smooth single-valued

functions around the origin and that,

σ := σ1dc1 + σ2dc2 (4.4)

is a closed 1-form.

Definition 4.1.1. Let S ∈ C∞(R2) be the unique function such that

dS = σ, S(0, 0) = 0,

where σ is the one form given by (4.4). The Taylor series of S at (0, 0) denoted by

(S)∞ is the Taylor series invariant of the completely integrable system (N,ωN , µ)

defined above.

Let S be the unique smooth function as in Definition 4.1.1, denote by S1, S2

the partial derivatives of S ∈ C∞(R2) with respect to the first and second vari-
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ables respectively,

S1(c) :=
∂S(c)

∂c1

; S2(c) :=
∂S(c)

∂c2

, c = (c1, c2).

Then, since dS = σ, we have σ1(c) = S1(c) and σ2(c) = S2(c). Hence, the times

τ1(c) and τ2(c) can be expressed as

τ1(c) = S1(c)− ln |c| , τ2(c) = S2(c) + arg c. (4.5)

4.2 Semi-global model

Vũ Ngo.c in his seminal paper [41] proved the following classification result.

Theorem 4.2.1. The set of equivalence classes of the germs of singular La-

grangian fibrations of focus-focus type at the focus-focus leaf is in natural bijection

with R[[X, Y ]]0. Here R[[X, Y ]] is the algebra of real formal power series in two

variables, and R[[X, Y ]]0 is the subspace of such series with vanishing constant

term.

The Taylor series invariant (S)∞ from Definition 4.1.1 is considered to be an

element of R[[X, Y ]]0, and it classifies the foliations in a neighborhood of the

focus-focus fiber. In more detail, this means that another system has the same

Taylor series invariant near a focus-focus singularity if and only if there is a

symplectomorphism which takes a foliated neighborhood of the singular fiber to

a foliated neighborhood of the singular fiber preserving the leaves of the foliation

and sending the singular fiber to the singular fiber. Moreover, given a Taylor

series expansion of some function, Vũ Ngo.c constructed a neighborhood of focus-

focus fiber with the given Taylor series expansion as its Taylor series invariant.
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Figure 4.2: On the construction of Vũ Ngo.c’s semi-global model.

In the following we will give a brief of this construction. In particular we will

construct a symplectic manifold (Mε, ω) along with a moment map µ : Mε →

Dε = { c ∈ C : |c| < ε } such that:

� the fibers of the moment map, Λc = µ−1(c) are compact Lagrangian tori,

when c ∈ C \ {0},

� the fiber Λ0 = µ−1(0) of the moment map, is a focus-focus fiber (a pinched

torus) which has a single singular point of focus-focus type,

� the Taylor series invariant (S)∞ (recall Definition 4.1.1) is the Taylor series

expansion at 0 ∈ Dε of a given smooth function S : Dε → R with S(0) = 0.

To begin the construction let us start with the local model described in Section

3.5. Choose a number ε > 0, small enough such that the pre-image of the moment
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map (3.23), µ−1(Dε) lies inside the open disk M , i.e, µ−1(Dε) ⊂M . Clearly, the

leaves µ−1(c) of the foliation of M are not compact Lagrangian tori and so our

first goal will be to make the leaves µ−1(c) into tori Λc.

Let S : Dε → R be a smooth function with S(0) = 0, S1(c), S2(c) be the partial

derivatives of S with respect the first and second variables, and let τ1(c), τ2(c) be

defined by the formula (4.5). With these notations, let us define the following:

Φ := ΦJ
τ2(c) ◦ ΦH

τ1(c) : µ−1(Dε)→ µ−1(Dε)

(z1, z2) 7→ ΦJ
τ2(c) ◦ ΦH

τ1(c)(z1, z2), (z1, z2) ∈ µ−1(c).

(4.6)

The map Φ is the combined XH and XJ flow by the times τ1(c) and τ2(c)

acting on the points (z1, z2) ∈ µ−1(c) ⊂ µ−1(Dε). Equations (3.28), (4.1), (4.2),

(3.26), and (4.5) yield

Φ(z1, z2) = ΦJ
τ2(c) ◦ ΦH

τ1(c)(z1, z2)

=
(
eτ1(c)+iτ2(c) z1, e

−τ1(c)+iτ2(c) z2

)
=
(
eS1(c)+iS2(c) c̄−1z1, e

−S1(c)+iS2(c) cz2

)
=
(
eS1(c)+iS2(c) z̄−1

2 , e−S1(c)+iS2(c) z̄1z
2
2

)
.

(4.7)

Let δ > 0 be a very small positive number, and define

U1 := {(z1, z2) ∈ C2 : 1− δ < |z2| < 1 + δ} ∩ µ−1(Dε) ;

U2 := Φ(U1).

The sets U1, U2 are represented pictorially in the Figure 4.2. In this figure

µ−1(Dε) is represented by the domain between the dashed line with equation
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|z̄1z2| = ε and the |z1|, |z2| axes.

Remark 4.2.2. Figure 4.2 should be interpreted with care because two dimen-

sions are missing from it. If, say, we think of the figure as representing the

3-dimensional manifold {J = 0} (which will play an important role later), then

each point in the solid curve represents a circle (obtained by the flow of XJ), and

each segment of this curve represents a cylinder, the direction along the curve

being the direction of the flow of XH . The origin of the coordinate system rep-

resents the focus-focus point, and the focus-focus torus will be constructed from

the coordinate axes in the figure. N

If we choose δ small enough such that U1 ∩U2 = ∅, then Φ maps U1 symplec-

tomorphically onto its image, U2 [41, Lemma 6.1].

With the help of the symplectomorphism Φ, we finish the construction of the

manifold Mε (4.9). By identifying a point m1 ∈ U1 with a point m2 ∈ U2 as

follows:

m1 ∼ m2 ⇐⇒ m2 = Φ(m1) . (4.8)

Let Mε be the set consisting of U1, U2, and all the points “between them”, with

U1 and U2 identified by (4.8);

Mε :=
{

ΦJ
s ◦ ΦH

t (m) : s ∈ [0, 2π), t ∈ [0, τ1

(
µ(m)

)
],m ∈ U1

}/
∼ . (4.9)

The purpose of taking the closure is to include the points from the focus-focus

torus in Mε. Here we reintroduce the notation Λc := µ−1(c) for the (pinched) tori

foliating Mε.

The map Φ defined in (4.7)) is a symplectomorphism and hence, the new

manifold Mε obtained by the identification of U1 and U2 inherits the symplectic
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form from µ−1(Dε).

4.3 Bohr-Sommerfeld fibers for the semi-global

model

In this section, we will show that the focus-focus fiber is the only Bohr-Sommerfeld

fiber in a neighborhood of the focus-focus fiber. To this end, we first construct

a 1-form on the semi-global model. In section 4.2 we constructed a semi-global

model for the focus-focus torus with the help of the symplectomorphism Φ. How-

ever, we want the map Φ to be an exact symplectomorphism, i.e., Φ also preserves

the 1-form θ, so that the manifold Mε obtained after identifying U1 and U2 would

have a globally defined 1-form θ such that ω0 = dθ. To this end, we choose

(arbitrarily) that on U2 we require that θ|U2 = θ0|U2, and in the Lemma below

compute the pull-back Φ∗(θ|U2) ∈ Ω1(U1), which will be used to construct a

globally defined 1-form θ.

Lemma 4.3.1. The pull-back of the diffeomorphism Φ : U1 → U2 is given by

Φ∗(θ0|U2) =
{
θ0 + d [−H +H · (S1 ◦ µ) + J · (S2 ◦ µ)− S ◦ µ]

}∣∣∣U1 .

Proof. For brevity, in the calculations below we temporarily write S(c) instead of

S(µ(z1, z2)), and similarly for S1(c) and S2(c). From (4.7), we have z1◦Φ(z1, z2) =
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eS1(c)+iS2(c) z̄−1
2 , z2 ◦ Φ(z1, z2) = e−S1(c)+iS2(c) z̄1z

2
2 , so

Φ∗(z2 dz̄1) = (z2 ◦ Φ) d(z̄1 ◦ Φ)

= e−S1(c)+iS2(c) z̄1z
2
2 d
[
eS1(c)−iS2(c) z−1

2

]
= z̄1z2 d

[
S1(c)− iS2(c)

]
− z̄1 dz2

and, similarly,

Φ∗(z1 dz̄2) = (z1 ◦ Φ) d(z̄2 ◦ Φ)

= eS1(c)+iS2(c) z̄−1
2 d

[
e−S1(c)−iS2(c) z1z̄

2
2

]
= −z1z̄2 d

[
S1(c) + iS2(c)

]
+ z̄2 dz1 + 2z1 dz̄2 .

Using the expressions(3.22), 3.25, θ0 = 1
2
< (z2 dz̄1 − z1 dz̄2). We obtain

Φ∗ (θ0|U2) =
1

2
< [Φ∗(z2 dz̄1 − z1 dz̄2)]

=
1

2
< (z̄2 dz1 − z̄1 dz2)−< (z̄2 dz1 + z1 dz̄2)

+
1

2
<
{
c d
[
S1(c)− iS2(c)

]
+ c̄ d

[
S1(c) + iS2(c)

]}
= θ0 − 2< d(H + iJ) + <

{
(H + iJ) d

[
S1(c)− iS2(c)

]}
= θ0 − dH +H dS1 + J dS2

= θ0 + d (−H +H · S1 + J · S2 − S) .

Let χ0 : µ−1(Dε)→ R be a function satisfying the conditions

(a) χ0 does not depend on J , i.e., it is constant on the flow lines of XJ ;

(b) χ0|U1 ≡ 1, χ0|U2 ≡ 0.
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Define the function

χ := χ0 · [−H +H · (S1 ◦ µ) + J · (S2 ◦ µ)− S ◦ µ] : µ−1(Dε)→ R , (4.10)

and let θ be the 1-form on µ−1(Dε) defined by

θ := θ0 + dχ ∈ Ω1
(
µ−1(Dε)

)
. (4.11)

Lemma 4.3.1 implies that θ satisfies Φ∗(θ|U2) = θ|U1, so that, if we endow µ−1(Dε)

with the 1-form θ given by (4.11), then the map Φ : U1 → U2 (4.7) preserves θ

(and, hence, is an exact symplectomorphism).

Lemma 4.3.2. The 1-form θ defined on µ−1(Dε) in equation (4.11) induces a

well-defined 1-form on Mε. Abusing notation, we will denote θ to be the induced

1-form.

Proof. This follows from the fact the Φ∗(θ|U2) = θ|U1.

From now on we consider the manifold Mε constructed in (4.9) endowed with

the 1-form θ ∈ Ω1(Mε) (4.11) and symplectic form ω = dθ = ω0 ∈ Ω2(Mε).

We call this semi-global model [41] for an open neighborhood of the focus-focus

torus Λ(0,0) (note that we slightly modified Vũ Ngo.c’s model to make Mε an exact

symplectic manifold).

Since the functions H, J , S1 ◦µ, and S2 ◦µ are all constants of motion, and χ0

is independent of J , we have XJ(χ) = 0 (recall (4.10)), so 〈θ,XJ〉 = 〈θ0, XJ〉 = J ,

which implies that

〈θ,XJ〉 = J. (4.12)

In the following, we will show that the focus-focus fiber Λ(0,0) is the only
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Bohr-Sommerfeld fiber (recall Definition 2.2.20) for the semi-global model for the

focus-focus singularity. This property plays an important role in the calculation

of the cohomologies in Chapter 6.

Lemma 4.3.3. If ε > 0 is small enough, then the only Bohr-Sommerfeld fiber in

Mε is the focus-focus fiber Λ(0,0).

Proof. First, we will show that when c = c1 + ic2 ∈ Dε \ {0}, the fibers Λc are

not Bohr-Sommerfeld fiber.

Suppose that ψ is a P -flat section on Λc, then ∇XHψ = 0 = ∇XJψ. Let

m ∈ Λc, then the condition for P -flat implies that ΠH
−tΠ

J
−sψ

(
ΦH
t ◦ΦJ

s (m)
)

= ψ(m)

for all t ∈ R, s ∈ [0, 2π]. Recalling the defnitions τ1(c), τ2(c) from (4.1) and (4.2),

we require ΠH
−τ1(c)Π

J
−τ2(c) and ΠJ

2π to be trivial. In order to compute these, we

calculate the action integrals along the paths γH and γJ defined below.

Let γH be the path starting at m, going along the flow of XH until it hits

S1 ·m at time τ1(c), and then going along the XJ -flow until it returns to m and

let γJ be the path starting at m and going along the flow of XJ until it returns

to m at time 2π. The curves γH , γJ are illustrated in Figure 4.3

Using (4.10), (4.11), the fact that the change of χ0 along the path γH is

∆χ0 = −1, and that c = c1 + ic2 = µ(m) = H(m) + iJ(m), we obtain the action

66



Figure 4.3: Curves γH , γJ starting at m ∈ Λc.

integral around the loop γH :

A(γH) =

∫ τ1(c)

0

〈θ,XH〉 ◦ ΦH
t (m) dt+

∫ τ2(c)

0

〈θ,XJ〉 ◦ ΦJ
s ◦ ΦH

τ1(c)(m) ds

=

∫ τ1(c)

0

{
H +

[
−H +H · (S1 ◦ µ) + J · (S2 ◦ µ)

−S ◦ µ
]
XH(χ0)

}
◦ ΦH

t (m) dt+ c2τ2(c)

= c1τ1(c) +
[
−c1 + c1S1(c) + c2S2(c)− S(c)

]
·∆χ0 + c2τ2(c)

= c1τ1(c) + c1 − c1S1(c)− c2S2(c) + S(c) + c2τ2(c)

= c1[S1(c)− ln |c|] + c1 − c1S1(c)− c2S2(c) + S(c) + c2[S2(c) + arg c]

= −c1 ln |c|+ c1 + S(c) + c2 arg c .
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Using (4.12), we obtain the action integral along the loop γJ :

A(γJ) =

∫ 2π

0

〈θ,XJ〉 ◦ ΦJ
s (m) ds =

∫ 2π

0

J ◦ ΦJ
s (m) ds = 2πc2 .

If ε > 0 is small, then |c2| ≤ ε is also small, and it is clear that A(γ2) is an

integer multiple of 2π exactly when c2 = 0. Hence, the holomomy ΠJ
2π along γJ is

trivial only when c2 = 0. Thus, the only fibers which could be Bohr-Sommerfeld

are the fibers Λc such that c = c1.

Since S(0, 0) = 0, by approximating S(c1) by its first order Taylor series

expansion c1S1(c1), we obtain A(γH) = −c1 ln |c1|+ c1 + c1S1(c), using (4.5), we

get that A(γH) = c1[1 + τ1(c1)]. Since τ1(c) > 0, this expression is not zero when

c1 6= 0.

Now, let c = (0, 0), then note that equation (4.10), (4.11) implies that

〈θ,XH〉 = 0, and 〈θ,XJ〉 = J = 0 on Λ(0,0). Together this implies that the

action integral around any loop in Λ(0,0) = 0 and hence, the focus-focus fiber

Λ(0,0) is a Bohr-Sommerfeld fiber.
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Chapter 5

Geometric tools

In this section we breifly describe some geometric tools for cirlce actions. Most

of the definitions and some proofs were given by Rawnsley and Solha [31, 38].

Definition 5.0.1. Let X ∈ Γ(P), and ΦX
t : M → M be the flow of X. Denote

by ΠX
t the operator of parallel transport in L along the integral curves of X, i.e.,

for ψ ∈ Γ(L0
P ),

(∇Xψ)(m) = lim
t→0

ΠX
−t ψ(ΦX

t (m))− ψ(m)

t
=

d

dt
ΠX
−t ψ(ΦX

t (m))

∣∣∣∣
t=0

. (5.1)

When X = XH , we will denote its flow by ΦH
t and the parallel transport along it

by ΠH
t ; similarly for X = XJ .

Definition 5.0.2. Define the action Φ̃X∗
t of the flow ΦX

t on the L-valued polarized

k-forms by

[(
Φ̃X∗
t α

)
(X1, . . . , Xk)

]
(m) = ΠX

−t
[
α
(
ΦX
t∗X1, . . . ,Φ

X
t∗X1

)
◦ ΦX

t (m)
]

= ΠX
−t
[
α(ΦX

t (m))
(
TmΦX

t ·X1(m), . . . , TmΦX
t ·Xk(m)

)]
,

(5.2)
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where α ∈ Γ(LkP ), X,X1, . . . , Xk ∈ Γ(P), and TmΦX
t is the derivative of ΦX

t at

m ∈M . When X = XJ or X = XH , we write Φ̃H∗
t and Φ̃J∗

t instead of Φ̃XH∗
t and

Φ̃XJ∗
t .

Definition 5.0.3. The covariant Lie derivative along the vector field X ∈ Γ(P)

acting on for L-valued polarized k-forms is defined by

£∇Xα := lim
t→0

Φ̃X∗
t α− α
t

=
d

dt
Φ̃X∗
t α

∣∣∣∣
t=0

, α ∈ Γ(LkP ) . (5.3)

In the following lemma we collect several facts about the concepts introduced

above.

Lemma 5.0.4. The statements in the first several parts of this lemma are general,

while the last parts are about the particular case of the vector fields XH and XJ .

(a) If ΦX∗
t := (ΦX

−t)∗ stands for the pull-back of vector fields, then for α ∈ Γ(LkP )

and X,X1, . . . , Xk ∈ Γ(P),

(
Φ̃X∗
t α

) (
ΦX∗
t X1, . . . ,Φ

X∗
t Xk

)
= Φ̃X∗

t

(
α (X1, . . . , Xk)

)
. (5.4)

(b) The operator £∇X acting on L-valued 0-forms is the covariant derivative:

£∇Xψ = ∇Xψ , ψ ∈ Γ(L0
P ) . (5.5)
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(c) For any vector fields X, Y ∈ Γ(P), the following relations hold on Γ(LkP ):

ιΦX∗t Y ◦ Φ̃X∗
t = Φ̃X∗

t ◦ ιY , (5.6)

ιΦX∗t Y ◦£∇X = £∇X ◦ ιY , (5.7)

£∇ΦX∗t Y ◦ Φ̃X∗
t = Φ̃X∗

t ◦£∇Y . (5.8)

In particular, for any vector field X, the contraction ιX , the action Φ̃X∗
t on

Γ(LkP ), and the covariant Lie derivative £∇X commute with one another.

(d) The evolution of Φ̃X∗
t is governed by

d

dt
Φ̃X∗
t = Φ̃X∗

t ◦£∇X = £∇X ◦ Φ̃X∗
t . (5.9)

(e) For any vector field X ∈ Γ(P), the covariant exterior derivative commutes

with the action Φ̃X∗
t on Γ(LkP ) and with the covariant Lie derivative £∇X :

d∇ ◦ Φ̃X∗
t = Φ̃X∗

t ◦ d∇ , (5.10)

d∇ ◦£∇X = £∇X ◦ d∇ . (5.11)

(f) The covariant Lie derivative satisfies the Leibniz rule: for X,X1, . . . , Xk ∈

Γ(P) and α ∈ Γ(LkP ),

£∇X
[
α
(
X1, . . . , Xk

)]
=
(
£∇Xα

)(
X1, . . . , Xk

)
+

k∑
i=1

α
(
X1, . . . ,£

∇
XXi, . . . Xk

)
.

(5.12)

(g) The covariant Lie derivative satisfies a relation analogous to the Cartan
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magic formula: for any vector field X ∈ Γ(P) and α ∈ Γ(LkP ) with k ≥ 1,

£∇X = d∇ ◦ ιX + ιX ◦ d∇ . (5.13)

(h) The parallel transport operators along the flows of XH and XJ commute:

ΠH
t ◦ ΠJ

s = ΠJ
s ◦ ΠH

t . (5.14)

(i) The actions of the flows of XH and XJ on L-valued polarized k-forms com-

mute:

Φ̃H∗
t ◦ Φ̃J∗

s = Φ̃J∗
s ◦ Φ̃H∗

t . (5.15)

(ii) The operator £∇XH commutes with ΦJ∗
t ; £∇XJ commutes with ΦH∗

t :

£∇XH ◦ Φ̃J∗
t = Φ̃J∗

t ◦£∇XH , £∇XJ ◦ Φ̃H∗
t = Φ̃H∗

t ◦£∇XJ ; (5.16)

the operators £∇XH and £∇XJ commute:

£∇XH ◦£∇XJ = £∇XJ ◦£∇XH . (5.17)

Proof. To simplify the notations while still revealing the ideas, in the proofs below

we will use L-valued polarized 0-forms and 1-forms instead of L-valued polarized

k-forms.

Properties (5.4) and (5.5) can be observed directly from the definitions (5.2)

and (5.3).
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The identity (5.6) follows directly from (5.4): for α ∈ Γ(L1
P ),

ιΦ̃X∗t Y ◦ Φ̃X∗
t α = 〈Φ̃X∗

t α, Φ̃X∗
t Y 〉 = Φ̃X∗

t 〈α, Y 〉 = Φ̃X∗
t ◦ ιY α .

Differentiating both sides of (5.6) with respect to t and setting t = 0, we ob-

tain (5.7).

To derive (5.8), use that the flow of the pull-back ΦX∗
t Y of the vector field Y

is

s 7→ ΦΦX∗t Y
s = ΦX

−t ◦ ΦY
s ◦ ΦX

t ,

which implies that

ΠΦX∗t Y
s = ΠX

−t ◦ ΠY
s ◦ ΠX

t .

Using these facts, we have for ψ ∈ Γ(L0
P )

(
£∇ΦX∗t Y ◦ Φ̃X∗

t ψ
)
(m) =

d

ds

∣∣∣∣
s=0

[
Φ̃(ΦX∗t Y )∗
s

(
Φ̃X∗
t ψ

)]
(m)

=
d

ds

∣∣∣∣
s=0

Π
ΦX∗t Y
−s ◦ ΠX

−t

[
ψ ◦ ΦX

t ◦ ΦΦX∗t Y
s (m)

]
=

d

ds

∣∣∣∣
s=0

ΠX
−t ◦ ΠY

−s
[
ψ ◦ ΦY

s ◦ ΦX
t (m)

]
= ΠX

−t

[
d

ds

∣∣∣∣
s=0

(
ΠY
−s ◦ ψ ◦ ΦY

s

)
(ΦX

t (m))

]
= ΠX

−t
[
(£∇Y ψ)(ΦX

t (m))
]

=
(
Φ̃X∗
t ◦£∇Y ψ

)
(m) .

The mutual commutativity of ιX , Φ̃X∗
t , and £∇X follows from the fact that a

vector field is invariant with respect to its flow, i.e., ΦX
t∗X = X.
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The proof of (5.9) for a L-valued polarized 0-form ψ goes as follows:

[
Φ̃X∗
t ◦£∇Xψ

]
(m) = ΠX

−t
[(

£∇Xψ
)(

ΦX
t (m)

)]
= ΠX

−t

[
d

ds

∣∣∣∣
s=0

ΠX
−s
(
ψ ◦ ΦX

s

)
◦ ΦX

t (m)

]
=

d

ds

∣∣∣∣
s=0

ΠX
−(t+s)

[
ψ ◦ ΦX

t+s(m)
]

=
d

dt
ΠX
−t
[
ψ ◦ ΦX

t (m)
]

=
d

dt
Φ̃X∗
t ψ(m) ;

the rest of the statement comes from (5.8) with Y = X, and ΦX
t∗X = X.

Property (5.10) follows from Definition 3.3.1 and the identities (5.5), (5.8),

and (5.4): for α ∈ Γ(L1
P ),

(
d∇ ◦ Φ̃X∗

t α
)(

ΦX∗
t X0,Φ

X∗
t X1

)
= ∇ΦX∗t X0

〈
Φ̃X∗
t α,ΦX∗

t X1

〉
−∇ΦX∗t X1

〈
Φ̃X∗
t α,ΦX∗

t X0

〉
−
〈
Φ̃X∗
t α,£∇ΦX∗t X0

◦ ΦX∗
t X1

〉
= L∇ΦX∗t X0

〈
Φ̃X∗
t α,ΦX∗

t X1

〉
− L∇ΦX∗t X1

〈
Φ̃X∗
t α,ΦX∗

t X0

〉
−
〈
Φ̃X∗
t α,ΦX∗

t ◦£∇X0
X1

〉
= L∇ΦX∗t X0

◦ Φ̃X∗
t

〈
α,X1

〉
− L∇ΦX∗t X1

◦ Φ̃X∗
t

〈
α,X0

〉
− Φ̃X∗

t

〈
α,£∇X0

X1

〉
= Φ̃X∗

t ◦ L∇X0

〈
α,X1

〉
− Φ̃X∗

t ◦ L∇X1

〈
α,X0

〉
− Φ̃X∗

t

〈
α,£∇X0

X1

〉
= Φ̃X∗

t

[
∇X0

〈
α,X1

〉
−∇X1

〈
α,X0

〉
−
〈
α,£∇X0

X1

〉]
= Φ̃X∗

t

[(
d∇α

)
(X0, X1)

]
=
(
Φ̃X∗
t ◦ d∇α

)(
ΦX∗
t X0,Φ

X∗
t X1

)
.
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To obtain (5.11), differentiate (5.10) with respect to t and set t = 0.

The Leibniz rule (5.12) is proved as usual, and, together with Definition 3.3.1

and (5.5), it implies the Cartan magic formula (5.13).

The commutativity (5.14) of the parallel transport along the integral lines of

XH and XJ follows from the vanishing of the curvature (recall Definition 2.2.6)

along the leaves of the foliation P (or, equivalently, from the fact that the P is

Lagrangian), and the commutativity of XH and XJ .

The commutativity of XH and XJ implies the commutativity of their flows

ΦH
t and ΦJ

s which, together with (5.14), yields (5.15). Finally, (5.16) and (5.17)

are infinitesimal versions of (5.15).

The operator introduced in the definition below was introduced by Rawnsley

[31] and plays an important role in the rest of the dissertation.

Definition 5.0.5. Let J : Γ(LkP )→ Γ(Lk−1
P ) be the operator

Jα = ιXJ

∫ 2π

0

Φ̃J∗
s α ds . (5.18)

Since we will be using this formula extensively, below we write it in detail in

the particular case of an L-valued polarized 1-form α ∈ Γ(L1
P ): using (5.2), (5.4),

and the fact that each vector field X is invariant with respect to its own flow

(ΦX∗
t X = X), we obtain

Jα =

∫ 2π

0

〈
Φ̃J∗
s α,XJ

〉
ds =

∫ 2π

0

〈
Φ̃J∗
s α,Φ

J∗
s XJ

〉
ds

=

∫ 2π

0

Φ̃J∗
s

〈
α,XJ

〉
ds =

∫ 2π

0

Π̃J
−s ◦

〈
α,XJ

〉
◦ ΦJ

s ds .

(5.19)

The flow of XJ is 2π-periodic for each m ∈ M (except at the focus-focus
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point). The parallel transport over a closed loop starting at m ∈M is ΠJ
2π(m) ∈

Hom(Lm,Lm) ∼= C since L is a line bundle. Moreover, since the fiber metric is

compatible with the connection, ΠJ
2π has modulus 1. This motivates the following

Definition 5.0.6. Let Hol(m) be the holonomy around a closed loop of the flow

of XJ , starting at m ∈M :

Hol := ΠJ
2π : M → S1 ⊂ C : m 7→ Hol(m) := ΠJ

2π(m) . (5.20)

Proposition 5.0.7. The following identities hold:

J ◦ ∇ψ =
(
Hol−1 − 1

)
ψ , ψ ∈ Γ(L0

P ) ,(
d∇ ◦ J + J ◦ d∇

)
α =

(
Hol−1 − 1

)
α , α ∈ Γ(LkP ) , k ≥ 1 .

Proof. Using consecutively (5.19), (5.5), (5.8), (5.9), and (5.20), we obtain

J ◦ ∇ψ =

∫ 2π

0

Φ̃J∗
s

〈
∇ψ,XJ

〉
ds =

∫ 2π

0

Φ̃J∗
s ◦ ∇XJψ ds

=

∫ 2π

0

Φ̃J∗
s ◦£∇XJψ ds =

∫ 2π

0

L∇XJ ◦ Φ̃J∗
s ψ ds

=

∫ 2π

0

d

ds
Φ̃J∗
s ψ ds =

(
Φ̃J∗
s ψ
)∣∣∣2π
s=0

=
(
Hol−1 − 1

)
ψ .
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Similarly, (5.18), (5.13), and (5.10) give us

(
d∇ ◦ J + J ◦ d∇

)
α = d∇ ◦ ιXJ

∫ 2π

0

Φ̃J∗
s α ds+ ιXJ

∫ 2π

0

Φ̃J∗
s (d∇α) ds

=

∫ 2π

0

d∇ ◦ ιXJ ◦ Φ̃J∗
s α ds+

∫ 2π

0

ιXJ ◦ d∇ ◦ Φ̃J∗
s α ds

=

∫ 2π

0

(
£∇XJ − ιXJ ◦ d∇

)
◦ Φ̃J∗

s α ds+

∫ 2π

0

ιXJ ◦ d∇ ◦ Φ̃J∗
s α ds

=

∫ 2π

0

£∇XJ ◦ Φ̃J∗
s α ds =

∫ 2π

0

d

ds
Φ̃J∗
s α ds

=
(
Φ̃J∗
s α
)∣∣∣2π
s=0

=
(
Hol−1 − 1

)
α .

Proposition 5.0.8. For α ∈ Γ(L1
P ),

∇XJ (Jα) = 0 .

Proof. Using (5.18) and (5.6) with Y = X, we obtain

∇XJ (Jα) = ∇XJ ◦ ιXJ
∫ 2π

0

Φ̃J∗
s α ds =

d

dt

∣∣∣∣
t=0

Φ̃J∗
t ◦ ιXJ

∫ 2π

0

Φ̃J∗
s α ds

= ιXJ ◦
d

dt

∣∣∣∣
t=0

∫ 2π

0

Φ̃J∗
s+t α ds = ιXJ ◦

d

dt

∣∣∣∣
t=0

∫ 2π

0

Φ̃J∗
s1
α ds1 = 0 ,

where we have set s1 = s+ t and used the 2π-periodicity of the integrand.

Proposition 5.0.9. For α ∈ Γ(L1
P ) that satisfies d∇α = 0, we have

∇XH (Jα) =
(
Hol−1 − 1

)
〈α,XH〉 .

Proof. We use (5.19), (5.5), (5.8), (5.20), and the fact that d∇α = 0 is equivalent
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to ∇XH

〈
α,XJ

〉
= ∇XJ

〈
α,XH

〉
to obtain

∇XH (Jα) = ∇XH

∫ 2π

0

Φ̃J∗
s 〈α,XJ〉 ds = £∇XH

∫ 2π

0

Φ̃J∗
s 〈α,XJ〉 ds

=

∫ 2π

0

Φ̃J∗
s ◦£∇XH 〈α,XJ〉 ds =

∫ 2π

0

Φ̃J∗
s ◦ ∇XH 〈α,XJ〉 ds

=

∫ 2π

0

Φ̃J∗
s ◦ ∇XJ 〈α,XH〉 ds =

∫ 2π

0

∇XJ ◦ Φ̃J∗
s 〈α,XH〉 ds

=

∫ 2π

0

£∇XJ ◦ Φ̃J∗
s 〈α,XH〉 ds =

∫ 2π

0

d

ds
Φ̃J∗
s 〈α,XH〉 ds

=
[
Φ̃J∗
s 〈α,XH〉

]∣∣∣2π
s=0

=
(
Hol−1 − 1

)
〈α,XH〉 .
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Chapter 6

Computations of the cohomology

groups

With the help of the lemmas in Chapter 5, we will compute the sheaf cohomology

of the sheaf F of P -flat sections of L. Recall that in Section 3.5 we obtained the

fine resolution

0→ F → L0
0,P

∇→ L1
0,P

d∇→ L2
0,P → 0 . (6.1)

In Section 6.1 we will find H0(Mε,F) and H1(Mε,F), and in Section 6.2 we

will perform the complicated calculation of H2(Mε,F).

6.1 Calculation of H0(Mε,F) and H1(Mε,F)

The 0th cohomology of F is easily computed in the following

Lemma 6.1.1. The 0th cohomology group of F is trivial: H0(Mε,F) = { 0 }.

Proof. By definition, H0(Mε,F) is the set F(Mε) = Γ(F) of global P -flat sections

of L. Let ψ ∈ F(Mε). By Lemma 4.3.3, the restriction of ψ to the non-singular
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torus fibers is 0. Since the non-singular fibers form are dense in Mε, by continuity

we obtain that ψ ≡ 0 on Mε.

We now calculate H1(Mε,F), recall that

H1(Mε,F) = Ker
{

Γ(L1
0,P )

d∇→ Γ(L2
0,P )
}
/ Im

{
Γ(L0

0,P )
∇→ Γ(L1

0,P )
}
. (6.2)

In the lemma below we will find conditions on α ∈ Γ(L1
0,P ) that guarantee that,

when α is exact, i.e, we will find conditions for the existence of a ψ ∈ Γ(L0
0,P )

such that α = d∇ψ.

Lemma 6.1.2. The first cohomology group of F is trivial: H1(Mε,F) = { 0 }.

Proof. The proof consists of two steps. In the first step we will show that, if

α ∈ Γ(L1
0,P ) is closed, that is, if d∇α = 0 then Jα ≡ 0 when J = 0, and in the

second step we will use this fact to find H1(M,F).

Let α ∈ Γ(L1
0,P ) satisfy d∇α = 0.

According to Propositions 5.0.8 and 5.0.9, when J = 0, both ∇XJ (Jα) and

∇XH (Jα) are identically 0, so that Jα ∈ Γ(L0
0,P ) is a P -flat section on the tori

with J = 0. But, according to Lemma 4.3.3, the focus-focus fiber is the only

Bohr-Sommerfeld torus in Mε, i.e., the only torus which admits a non-zero P -flat

section. By the same reasoning as in the proof of Lemma 6.1.1, we conclude that

Jα ≡ 0 when J = 0.

Now we will show that the vanishing of d∇α implies the existence of ψ ∈

Γ(L0
0,P ) such that α = d∇ψ. Proposition 5.0.7 and the closedness of α imply that

(
Hol−1−1

)
α = d∇ ◦ Jα + J ◦ d∇α = d∇ ◦ Jα .

Define ψ := 1
Hol−1−1

Jα on Mε \ {J = 0}, then d∇ψ = α in this domain. The
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only thing that remains to be proven is that ψ can be extended smoothly to all

of Mε.

From the first step of the proof we know that Jα vanishes when J = 0.

Also, Jα vanishes identically in a neighborhood of the singular point because

α ∈ Γ(L1
0,P ). Thus, since the hypersurface J = 0 is smooth away from the singular

point, and the gradient of J is nonzero away from the singular point, Jα is

divisible by J . Furthermore, by the construction of Mε in Section 4.2, J = 0 is

the only place where Hol = 1. Thus ψ extends smoothly to all of Mε.

6.2 Calculation of H2(Mε,F)

To compute

H2(Mε,F) = Γ(L2
0,P )/ Im

{
Γ(L1

0,P )
d∇→ Γ(L2

0,P )
}
,

we need to find conditions on a β ∈ Γ(L2
0,P ) that guarantee its exactness. We

start by proving a lemma that restates the exactness of β as a condition that

holds on {J = 0} ⊂Mε.

Lemma 6.2.1. The form β ∈ Γ(L2
0,P ) is exact if and only if there exists ψ ∈

Γ(L0
0,P ) such that ∇ψ = J β when J = 0.

Proof. First let us assume that β ∈ Γ(L2
0,P ) is exact, i.e., that there exists α ∈

Γ(L1
0,P ) such that d∇α = β. Proposition 5.0.7 then implies that for J = 0 (i.e.,

Hol = 1),

J β = J ◦ d∇α =
(
Hol−1 − 1

)
α− d∇ ◦ Jα = d∇(−Jα) = ∇(−Jα) .
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If we define ψ = −Jα ∈ Γ(L0
0,P ), then on the set {J = 0} we have ∇ψ = J β.

Conversely, assume that there exists a ψ ∈ Γ(L0
0,P ) such that ∇ψ = J β when

{J = 0}. Define α1 := J β − ∇ψ, then by hypothesis α1 vanishes when J = 0.

Define α :=
1

Hol−1−1
α1 on Mε \ {J = 0}.

Then the commutativity of d∇ and the parallel transport (which implies that

d∇(Hol−1−1) = (Hol−1−1)d∇), Lemma 3.3.2 (d∇ ◦ ∇ψ ≡ 0), Proposition 5.0.7,

and the trivial fact that d∇β ≡ 0 imply that, for J 6= 0,

d∇α = d∇
J β −∇ψ
Hol−1−1

= (Hol−1−1)−1 d∇ ◦ J β

= (Hol−1−1)−1
[
(Hol−1−1)β − J ◦ d∇β

]
= β .

The only thing that remains to be proven is that α can be extended smoothly to

all of Mε.

We have shown that α1 = J β−∇ψ vanishes when J = 0; it also vanishes iden-

tically in a neighborhood of the focus-focus point because α1 ∈ Γ(L1
0,P ). Thus,

since the hypersurface {J = 0} is smooth away from the focus-focus point, and

the gradient of J is nonzero away from the focus-focus point, α1 is divisible by

J . Furthermore, by the construction of Mε in Section 4.2, {J = 0} is the only

place in Mε where Hol = 1. Thus, α extends smoothly to all of Mε.

6.2.1 Solving ∇ψ = J β on {J = 0}

Lemma 6.2.1 reduces the problem of proving the exactness of β ∈ Γ(L2
0,P ) to

finding ψ ∈ Γ(L0
0,P ) that satisfies ∇ψ = J β on {J = 0}, which we analyze in

this section. The set {J = 0} is foliated by the tori Λ(ξ,0) with ξ in some open

interval of R containing 0.

First we derive two solutions, ψ1 and ψ2, of ∇ψ = J β on {J = 0} that hold
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in two different subsets of {J = 0}.

The equation ∇ψ = J β is equivalent to the simultaneous validity of the

equations ∇XHψ = 〈J β,XH〉 and ∇XJψ = 〈J β,XJ〉 = 0. To solve ∇XHψ =

〈J β,XH〉, apply Φ̃H∗
t to both sides and use that d

dt
Φ̃H∗
t = Φ̃H∗

t ◦ ∇XH (cf. (5.5)

and (5.9)):

d

dt
Φ̃H∗
t ψ = Φ̃H∗

t 〈J β,XH〉 ,

which integrates to

Φ̃H∗
t ψ(m)− ψ(m) =

∫ t

0

Φ̃H∗
t1
〈J β,XH〉(m) dt1 . (6.3)

On the other hand, ∇XJψ = 0 is equivalent to Φ̃J∗
s ψ = ψ for any s, which implies

Φ̃H∗
t ◦ Φ̃J∗

s ψ(m)− ψ(m) =

∫ t

0

Φ̃H∗
t1
〈J β,XH〉(m) dt1 ,

or, equivalently,

ψ(ΦH
t ◦ ΦJ

s (m)) = ΠH
t ◦ ΠJ

s

[
ψ(m) +

∫ t

0

Φ̃H∗
t1
〈J β,XH〉(m) dt1

]
. (6.4)

From (6.4) we first derive a solution ψ1 on {J = 0} \Λ(0,0). Recall from (4.1)

and (4.2) that, if m ∈ Λ(ξ,0) with ξ 6= 0, then ΦH
τ1(ξ) ◦ ΦJ

τ2(ξ)(m) = m. Using this

in (6.4), we obtain the solution ψ1 of ∇ψ = J β on {J = 0} \ Λ(0,0):

ψ1(m) =
[
ΠH
−τ1(ξ) ◦ ΠJ

−τ2(ξ) − 1
]−1
∫ τ1(ξ)

0

Φ̃H∗
t1
〈J β,XH〉(m) dt1 ,

m ∈ {J = 0} \ Λ(0,0) .

(6.5)

Since we seek a solution ψ ∈ Γ(L0
0,P ) of ∇ψ = J β on {J = 0}, there must
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exist an open neighborhood V of the focus-focus point in which ψ is identically 0.

If ψ1 from (6.5) is a solution, then the integral in the right-hand side of (6.5) must

vanish when m ∈ V .

On the other hand, if m is in the same neighborhood V , then, imposing the

initial condition ψ(m) = 0 in (6.4), we obtain another solution ψ2 ∈ Γ(L0
0,P ) on

the fiber Λµ(m):

ψ2(ΦH
t ◦ ΦJ

s (m)) = ΠH
t ◦ ΠJ

s

∫ t

0

Φ̃H∗
t1
〈J β,XH〉(m) dt1 ,

m ∈ Λµ(m) , m ∈ V ∩ {J = 0} .

(6.6)

The expression (6.6) defines a solution on a neighborhood of the focus-focus fiber

Λ(0,0) inside {J = 0} provided that the integral in the right-hand side of (6.6)

vanishes for values of t such that ΦH
t ◦ ΦJ

s (m) ∈ V .

To formulate simple conditions for existence of ψ1 (6.5) and ψ2 (6.6), we

introduce some notations. Let Vβ be an open neighborhood of the focus-focus

point such that β|Vβ ≡ 0; without loss of generality, we assume that it is a ball

of radius R < 1 centered at the focus-focus point. Choose a number ξ1 ∈ R such

that

0 < ξ1 <
R2

2
. (6.7)

Choose a number η ∈ R such that

√
ξ1 < η <

R√
2
. (6.8)

Then it is easy to show that for any ξ ∈ (−ξ1, ξ1), the conditions (6.7) and (6.8)

imply that the points
(
η, ξ

η

)
and

(
ξ
η
, η
)

belong to Vβ ∩ Λ(ξ,0). Using (3.28), if

ξ 6= 0, that the shortest time that the XH flow needs to take the point
(
ξ
η
, η
)

to
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the XJ -orbit of
(
η, ξ

η

)
is 2 ln η− ln |ξ| > 0. The quantities Vβ, R, η are illustrated

in Figure 6.1.

Figure 6.1: On the definition of η,R, Vβ.

Using (4.1) and (4.5), we can write the shortest time for the XH flow to take

the point
(
η, ξ

η

)
to the XJ -orbit of

(
ξ
η
, η
)

as

τ1(ξ)−
(
2 ln η − ln |ξ|

)
= S1(ξ)− 2 ln η > 0 . (6.9)

Using that S1(ξ) is a smooth function of ξ in a neighborhood of ξ = 0 in R (recall

Sec. 4.1), we use the rightmost expression in (6.9) as a definition for the shortest
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Figure 6.2: On the definition of the times T1(ξ, η), T2(ξ, η).

time for the XH flow to take
(
η, ξ

η

)
to the XJ -orbit of

(
ξ
η
, η
)
, for any ξ ∈ (−ξ1, ξ1):

T1(ξ, η) = S1(ξ)− 2 ln η > 0 . (6.10)

We also define

T2(ξ, η) =


0 if ξ ≥ 0 ,

π if ξ < 0 ,

(6.11)

then

ΦH
T1(ξ,η) ◦ ΦJ

T2(ξ,η)

(
η,
ξ

η

)
=

(
ξ

η
, η

)
.

The meaning of T1(ξ, η) is represented pictorially in Figure 6.2.

We are ready to give the following

Definition 6.2.2. Given β ∈ Γ(L2
0,P ), let Vβ, R, ξ1, η, and T1(ξ, η) be chosen as
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above. Define the function

Aβ : (−ξ1, ξ1)→ L : ξ 7→ Aβ(ξ) ∈ L(η, ξη )

be the mapping defined by one of the following equivalent expressions:

Aβ(ξ) :=

∫ T1(ξ,η)

0

(
Φ̃H∗
t 〈J β,XH〉

)(
η, ξ

η

)
dt

=

∫ T1(ξ,η)

0

∫ 2π

0

[
Φ̃H∗
t ◦ Φ̃J∗

s

(
β(XJ , XH)

)](
η, ξ

η

)
ds dt .

(6.12)

Remark 6.2.3. Since the function T1(ξ, η) (6.10) is smooth in ξ for any fixed

η > 0, Aβ(ξ) depends smoothly on ξ. N

Remark 6.2.4. Although the definition (6.14) of Aβ depends on the choice of the

number η (satisfying (6.8)), the dependence is immaterial in our consideration.

Despite that, below we will give an alternative expression Ãβ that does not depend

on the choice of η (see Definition 6.2.6 and Lemma 6.2.7 below). This expression

for Ãβ can be considered as a complex-valued function of ξ ∈ (−ξ1, ξ1) if a local

trivialization of L is chosen in a small neighborhood of the focus-focus point,

which without loss of generality can be identified with Vβ defined above. N

Lemma 6.2.5. Let β ∈ Γ(L2
0,P ), and Vβ, R, ξ1, η, and T1(ξ, η) be chosen as

above. The following relation connects the expressions for ψ1 (defined by (6.5) on

{J = 0} \Λ(0,0)), ψ2 (defined by (6.6) on a small neighborhood of the focus-focus

torus inside {J = 0}), and Aβ (6.12) where the domains of ψ1 and ψ2 overlap:

ψ1(ΦH
t ◦ ΦJ

s (η, ξ
η
))− ψ2(ΦH

t ◦ ΦJ
s (η, ξ

η
))

=
[
ΠH
−τ1(ξ) ◦ ΠJ

−τ2(ξ) − 1
]−1

ΠH
t ΠJ

sAβ(ξ) ,

(6.13)
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for any values of t and s.

Proof. We have

ψ1(ΦH
t ◦ ΦJ

s (η, ξ
η
))

=
[
ΠH
−τ1(ξ) ◦ ΠJ

−τ2(ξ) − 1
]−1
∫ τ1(ξ)

0

Φ̃H∗
t1
〈J β,XH〉(ΦH

t ◦ ΦJ
s (η, ξ

η
)) dt1

=
[
ΠH
−τ1(ξ) ◦ ΠJ

−τ2(ξ) − 1
]−1

ΠH
t ◦ ΠJ

s

∫ τ1(ξ)+t

t

Φ̃H∗
u 〈J β,XH〉(η, ξη ) du .

We write the integral as

∫ τ1(ξ)

t

=

∫ τ1(ξ)

0

+

∫ τ1(ξ)+t

τ1(ξ)

−
∫ t

0

, and notice that

∫ τ1(ξ)+t

τ1(ξ)

Φ̃H∗
u 〈J β,XH〉(η, ξη ) du = ΠH

−τ1(ξ) ◦ ΠJ
−τ2(ξ)

∫ t

0

Φ̃H∗
u 〈J β,XH〉(η, ξη ) du .

Plug back to obtain

ψ1(ΦH
t ◦ ΦJ

s (η, ξ
η
))

=
[
ΠH
−τ1(ξ) ◦ ΠJ

−τ2(ξ) − 1
]−1

ΠH
t ◦ ΠJ

s

∫ τ1(ξ)

0

Φ̃H∗
u 〈J β,XH〉(η, ξη ) du

+ ΠH
t ◦ ΠJ

s

∫ t

0

Φ̃H∗
u 〈J β,XH〉(η, ξη ) du .

Using (6.6) and (6.12), we can rewrite this relation as (6.13).

As mentioned in Remark 6.13, we now define a smooth complex-valued func-

tion Ãβ that we will show is independent on the choice of η.

Definition 6.2.6. In the notations of Definition 6.2.2, choose a local trivializa-

tion of L in an open set that contains Vβ, and define the function

Ãβ : (−ξ1, ξ1)→ C :
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Ãβ(ξ) = e−i[ξ ln η+χ(η, ξ
η

)]Aβ(ξ) . (6.14)

Here, the function ξ is defined as in (4.10)

Clearly, Remark 6.2.3 and (4.10) implies that Ãβ is a smooth function.

Lemma 6.2.7. The function Ãβ defined by (6.14) is independent of the choice

of η satisfying (6.7) and (6.8).

Proof. Let η and η′ satisfy (6.7) and (6.8), and ξ ∈ (−ξ1, ξ1); without loss of

generality, assume that η < η′. Using (3.28), we obtain that in time interval of

length

T ′ = ln η′ − ln η , (6.15)

the XH flow takes the point ( ξ
η′
, η′) to ( ξ

η
, η), and the point (η, ξ

η
) to (η′, ξ

η′
):

ΦH
T ′(

ξ
η′
, η′) = ( ξ

η
, η) , ΦH

T ′(η,
ξ
η
) = (η′, ξ

η′
) . (6.16)

Figure 6.3 illustrates the meaning of the quantities in (6.15) and (6.16).

We will now compute Ãβ(ξ) (6.14) for the choices η = η and η = η′; we

will denote the corresponding functions by Ã(η)
β (ξ) and Ã(η′)

β (ξ). We will need an

expression for the parallel transport operator ΠH
−T ′ which can be derived from

(4.10) and (4.11) similarly to the calculations in the proof of Lemma 4.3.3:

ΠH
T ′ = exp

{
i

∫ T ′

0

〈θ,XH〉 ◦ ΦH
t

(
η, ξ

η

)
dt

}∣∣∣∣∣
(H,J)=(ξ,0), T ′=ln η′−ln η

= exp
{

i
[
ξT ′ + χ

(
ΦH
T ′

(
η, ξ

η

))
− χ

(
η, ξ

η

)]}
= e

i[ξ ln η′+χ(η′, ξ
η′ )] e−i[ξ ln η+χ(η, ξ

η
)] ,

(6.17)

where we have also used (6.15).
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Figure 6.3: On the definition of the times T ′ and T1(ξ, η′).

To compare Ã(η)
β (ξ) and Ã(η′)

β (ξ), we first note that β is zero on the XH-

trajectory from (η, ξ
η
) to (η′, ξ

η′
), and also from ( ξ

η′
, η′) to ( ξ

η
, η). Using this obser-

vation, performing an elementary change of variables, and using (6.10), (6.15),

(6.17), we obtain

Ã(η)
β (ξ) = e−i[ξ ln η+χ(η, ξ

η
)]

∫ T1(ξ,η)

0

(
Φ̃H∗
t 〈J β,XH〉

)(
η, ξ

η

)
dt

= e−i[ξ ln η+χ(η, ξ
η

)]

∫ T1(ξ,η)−T ′

T ′

(
Φ̃H∗
t 〈J β,XH〉

)(
η, ξ

η

)
dt

= e−i[ξ ln η+χ(η, ξ
η

)]

∫ T1(ξ,η)−2T ′

0

(
Φ̃H∗
T ′+t1〈J β,XH〉

)(
η, ξ

η

)
dt1

= e−i[ξ ln η+χ(η, ξ
η

)] ΠH
−T ′

∫ T1(ξ,η)−2T ′

0

(
Φ̃H∗
t1
〈J β,XH〉

)(
ΦH
T ′

(
η, ξ

η

))
dt1

= e
−i[ξ ln η′+χ(η′, ξ

η′ )]

∫ T1(ξ,η′)

0

(
Φ̃H∗
t1
〈J β,XH〉

)(
η′, ξ

η′

)
dt1

= Ã(η′)
β (ξ) .
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Lemma 6.2.8. Let β ∈ Γ(L2
0,P ). There exists a ψ ∈ Γ(L0

0,P ) such that ∇ψ =

〈J β,XH〉 on the subset { J = 0 } if and only if the germ at 0 of the smooth

function Ãβ vanishes.

Proof. First assume that the germ of Ãβ (or equivalently, of Aβ) vanishes at 0.

Define ψ ∈ L0
0,P ({J = 0}) by

ψ(m) :=


ψ1(m) for m ∈ {J = 0} \ Λ(0,0) ,

ψ2(m) for m ∈ a small neighborhood of Λ(0,0) inside {J = 0} ,

where ψ1 and ψ2 are defined by (6.5) and (6.6), respectively. Since the germ of

Aβ vanishes at 0, Lemma 6.2.5 guarantees that ψ is well-defined on {J = 0} and

that it vanishes on an open neighborhood of the focus-focus point. The section

ψ on {J = 0} can be extended in a smooth fashion to Mε, which gives us a

ψ ∈ Γ(L0
0,P ).

Conversely, assume that there exists ψ ∈ Γ(L0
0,P ) such that ∇ψ = J β. As-

sume that ψ vanishes in the open neighborhood Vβ defined above (such that

β|Vβ ≡ 0). Choose ξ1 and η satisfying (6.7) and (6.8). Then ψ(η, ξ
η
) = 0 and

∇XHψ = 〈J β,XH〉 on {J = 0} imply that

ψ
(
ΦH
t (η, ξ

η
)
)

= ΠH
t

∫ t

0

(
Φ̃H∗
t 〈J β,XH〉

)
(η, ξ

η
) dt , t ∈ R

(recall (6.3)). The definition (6.10) of T1(ξ, η) implies that ψ
(
ΦH
T1(ξ,η)(η,

ξ
η
)
)

= 0,
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so for every ξ ∈ (−ξ1, ξ1), we have

0 = ψ
(
ΦH
T1(ξ,η)(η,

ξ
η
)
)

= ΠH
T1(ξ,η)

∫ T1(ξ,η)

0

(
Φ̃H∗
t 〈J β,XH〉

)
(η, ξ

η
) dt

= ΠH
T1(ξ,η)Aβ(ξ) .

Therefore Aβ vanishes identically on (−ξ1, ξ1), hence the germ at 0 of the function

Ãβ vanishes.

We summarize the above results in the following

Theorem 6.2.9. The polarized L-valued 2-form β ∈ Γ(L2
0,P ) is exact if and only

if the germ of the smooth function Ãβ(ξ) defined in (6.14) vanishes at ξ = 0.

6.2.2 Completion of the calculation of H2(M,F)

Here we apply Theorem 6.2.9 to finish the calculation of H2(M,F).

Definition 6.2.10. Let the map

κ : Γ(L2
0,P )→ { germs of smooth C-valued functions at 0 ∈ R }

be defined by

κ(β) = (the germ of the function Ãβ at 0 ∈ R) , (6.18)

where Ãβ is defined in (6.14).

Clearly, κ is a C-linear map.
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Lemma 6.2.11. Let

V = {the smooth functions from R to C whose germs vanish at 0} ,

V0 = {the germs at 0 of functions from V } .
(6.19)

The map κ defined in (6.18) is surjective; moreover, it maps d∇(Γ(L1
0,P )) onto

the set V0.

Proof. To prove the surjectivity of κ, for any f0 be the germ at 0 of a smooth C-

valued function we will construct a β ∈ Γ(L2
0,P ) such that κ(β) = f0. Recall that

Ãβ is defined by (6.14); we use the notations introduced in Section 6.2.1. For ξ1

and η satisfying (6.7) and (6.8), and ξ ∈ (−ξ1, ξ1), the continuous function T1(ξ, η)

defined in (6.10) takes values in some interval [T1,min, T1,max]; let g : R→ R be a

function whose support is in the interval (0, T1,min) which satisfies

∫
R
g(t) dt =

1

2π
.

Let f : R→ C be a smooth function whose germ at 0 is f0, and e be a unit vector

in L
(η,

ξ
η
)
. Define β ∈ Γ(L2

0,P ) on {J = 0} by

β(XJ , XH)(ΦH
t ΦJ

s (η, ξ
η
)) = ei[ξ ln η+χ(η, ξ

η
)] g(t)f(ξ) ΠH

t ΠJ
s e ∈ LΦHt ΦJs (η, ξ

η
) . (6.20)

From (6.14) and (6.20), we obtain

Ãβ(ξ) = e−i[ξ ln η+χ(η, ξ
η

)]

∫ T1(ξ,η)

0

(
Φ̃H∗
t 〈J β,XH〉

)(
η, ξ

η

)
dt

= e−i[ξ ln η+χ(η, ξ
η

)]

∫ T1(ξ,η)

0

∫ 2π

0

ΠH
−tΠ

J
−sβ(XJ , XH)

(
ΦH
t ΦJ

s

(
η, ξ

η

))
ds dt

= f(ξ)

∫ T1(ξ,η)

0

∫ 2π

0

g(t) e ds dt = f(ξ) .

Now we will prove that κ(d∇(Γ(L1
0,P ))) = V0. First we show that if f ∈

C∞(R) such that its germ at 0, f0, is in κ
(
d∇(Γ(L1

0,P ))
)
, then f0 ∈ V0. Since
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f0 ∈ κ(d∇(Γ(L1
0,P ))), there exists α ∈ Γ(L1

0,P ) such that f0 equals the germ of

Ãd∇α at 0. Since d∇α is exact, Theorem 6.2.9 guarantees that the germ of Ãd∇α

vanishes at 0, hence f0 ∈ V0.

On the other hand, suppose f ∈ C∞(R) is such that f0 ∈ V0. By the sur-

jectivity of κ, there exists β ∈ Γ(L2
0,P ) such that f0 equals the germ of Ãβ at 0.

Since f0 ∈ V0, the germ of Ãβ vanishes at 0, and Theorem 6.2.9 implies that

β is exact, i.e., there exists α ∈ Γ(L1
0,P ) such that β = d∇α. This means that

f0 = κ(d∇α), i.e., V0 ⊆ κ(d∇(Γ(L1
0,P ))).

Lemma 6.2.11 implies immediately that

H2(M,F) = Γ(L2
0,P )/d∇(Γ(L1

0,P ))

= {Germs of smooth functions R→ C at 0 }/V0

= {Germs of smooth functions R→ C at 0 } ,

where V0 is defined in (6.19). Hence, we prove the following:

Theorem 6.2.12. Let µ : M → R2 be an integrable system with non-degenerate

singularities. Equip M with a trivial line bundle with connection determined by

the 1-form of Lemma 4.3.2, and F is the the sheaf of P -flat sections of L (3.9).

Assume that the µ−1(0, 0) is a focus-focus torus. Then there exists an ε0 > 0 such

that Mε := µ−1({ (H, J) : |(H, J)| < ε }) satisfies

H0(Mε,F) = 0, H1(Mε,F) = 0, H2(Mε,F) = { germs of functions at 0 ∈ R }

whenever ε < ε0.
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Chapter 7

Example

Consider the local modelM = R4 for a focus-focus singularity given in Section 3.5.

In the following we will construct a polarized L-valued 1-form α which is closed

but not exact.

Let ζ = ζ(z1, z2) : M → C be the function defined as follows:

ζ(z1, z2) =


0 if H(z1, z2) = 0 ,

1

2
H(z1, z2) Log

z1

z2

if H(z1, z2) 6= 0 ,
(7.1)

with H(z1, z2) defined in (3.26); note that H(z1, z2) 6= 0 implies that z1 6= 0 and

z2 6= 0. Choose the branch cut of Log z in (7.1) to be the negative imaginary axis

(i.e., at z = −ia with a ∈ R, a > 0). Using that H(z1, z2) = |z1||z2| cos Arg z1
z2

, one

can easily see that ζ(z1, z2) vanishes when z1
z2

belongs to the branch cut of Log,

and that ζ is bounded on any compact subset of M .

Lemma 7.0.1. Let λ : R → R be a smooth function which is Taylor flat at 0.

Then eiζλ(H) is a smooth function on M . Moreover, ∇XH

(
eiζλ(H)

)
= 0.

Proof. From the definitions, it is easy to show that eiζλ(H) is a smooth function
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on M . From (3.27) and XH(H) = 0 we obtain

XH

(
eiζλ(H)

)
= ieiζλ(H)XH(ζ) + eiζλ′(H)XH(H)

= ieiζλ(H)XH(ζ)

=
i

2
Heiζλ(H)

(
z1

∂

∂z1

+ z̄1
∂

∂z̄1

− z2
∂

∂z2

− z̄2
∂

∂z̄2

)
Log

z1

z2

= iHeiζλ(H) ,

therefore ∇XH

(
eiζλ(H)

)
= XH

(
eiζλ(H)

)
− iHeiζλ(H) = 0.

Lemma 7.0.2. Let α ∈ L1
P (M) be the 1-form with 〈α,XH〉 = 0, 〈α,XJ〉 =

eiζλ(H). Then α is closed. Moreover, as long as the germ of λ at 0 is not 0, the

equation ∇ψ = α does not have a solution ψ ∈ L0
P (M) in any open ball centered

at the origin, i.e., α is not locally exact.

Proof. The closedness of α follows from (3.16), the hypothesis, and Lemma 7.0.1:

(d∇α)(XH , XJ) = ∇XH 〈α,XJ〉 − ∇XJ 〈α,XH〉 = ∇XH

(
eiζλ(H)

)
= 0 .

To prove that α is not locally exact, assume for contradiction that there exists

an open neighborhood of the origin of M (which without loss of generality can be

assumed to be an open ball centered at the origin) in which the equation ∇ψ = α

has a solution ψ. This is equivalent to the system of equations

∇XHψ = 0, ∇XJψ = eiζλ(H).

Solving ∇XJψ = eiζλ(H), obtain

ψ(ΦJ
s (z1, z2)) = ΠJ

s

[
ψ(z1, z2) +

∫ s

0

ΠJ
−s1

[(
eiζλ(H)

)
◦ ΦJ

s1
(z1, z2)

]
ds1

]
.
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Using that ψ is 2π-periodic in s, we obtain that on {J = 0} we must have

∫ 2π

0

(
eiζλ(H)

)
◦ ΦJ

s1
(z1, z2) ds1 = 0.

Using (3.27), it is easy to show that the function eiζλ(H) is constant on XJ -orbits

in {J = 0}, hence the above integral is equal to 2πeiζ(z1,z2)λ(H(z1, z2)). The eiζ

term is never 0, so the integral vanishes if and only if λ(H(z1, z2)) = 0. Therefore,

it does not vanish for all (z1, z2) with J(z1, z2) = 0 unless λ is identically 0, hence

the solution ψ does not exist unless the germ of λ at 0 is 0.

Lemma 7.0.3. The polarized L-valued 1-form α defined in Lemma 7.0.2 is

in L1
M |P (M). In other words, there exists a (non-polarized) L-valued 1-form α1 ∈

L1
M(M) such that α1|P = α, i.e., 〈α1, XH〉 = 〈α,XH〉 and 〈α1, XJ〉 = 〈α,XJ〉.

Proof. On M ∩ {z1 6= 0, z2 6= 0}, define the non-polarized 1-form

α1 =
eiζλ(H)

2i

(
dz1

z1

+
dz2

z2

)
.

Using (3.27), it is easy to show that

〈α1, XH〉 = 0 = 〈α,XH〉 , 〈α1, XJ〉 = eiζλ(H) = 〈α,XJ〉 .

However, λ(H)/z1 is defined only when z1 6= 0, and similarly for λ(H)/z2. In the

following we will complete the proof by showing that eiζλ(H)/z1 and eiζλ(H)/z2

extend to smooth functions on M . We first note that

|H(z1, z2)| =
∣∣∣∣ z̄1z2 + z1z̄2

2

∣∣∣∣ ≤ |z1||z2| for z1 6= 0 .

Since λ is Taylor flat at 0, for each non-negative integer n there exists a
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constant cn such that |λ(H)| ≤ cn|H|n whenever |H| is small. Thus for any

bounded set and any non-negative integer n there exists a constant c′n such that

|eiζλ(H)| ≤ c′n|z1z2|n for all (z1, z2) in this set. It follows that eiζλ(H)/z1 extends

smoothly to z1 = 0 by defining it to be 0 when z1 = 0. Similarly, eiζλ(H)/z2

extends smoothly to z2 = 0.

The preceding lemmas provide a counterexample to Theorem 6.1 in [38]: in

the notation of [38], the above results show that H1(S•P (L)) 6= 0 with n = 2 and

kf = 1 (kf is our kff from Theorem 2.1.14). The proofs of the lemmas above also

show that neither 0 → F → L∗P nor 0 → F → L∗M |P is a resolution of F (the

exactness of the sequence of stalks fails at the focus-focus point). The mistake in

the proof of Theorem 6.4 in [38] seems to be that the estimate in equation (34)

in that paper is not correct.

Theorem 6.4 in [38] also appears as Theorem 4.2 in [28]. Theorem 5.1 in [28]

is not correct because its proof relies upon Theorem 4.2 in that paper.

In [38], the de Rham resolution for the sheaf F is used as a resolution. Ac-

cording to Definition 3.1 in [38], the sheaves in the de Rham resolution are the

ones defined in our Definition 3.1.14. However, in Section 6.6 of [38], the sheaves

in the de Rham resolution are taken to be those in our Definition 3.1.19. The

same discrepancy appears in [29]: see the definitions in Section 4 versus the

proof of Proposition 6.2 in that paper, for example. At nonsingular points, the

two definitions agree, but they do not agree at singular points.
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C. Victoria-Monge. Mathematical foundations of geometric quantization.
Extracta Math., 13(2):135–238, 1998.

[10] L. H. Eliasson. Hamiltonian systems with Poisson commuting integrals. PhD
thesis, Stockholm University, 1984.

99



[11] L. H. Eliasson. Normal forms for Hamiltonian systems with Poisson com-
muting integrals—elliptic case. Comment. Math. Helv., 65(1):4–35, 1990.

[12] M. J. Gotay. Functorial geometric quantization and Van Hove’s theorem.
Internat. J. Theoret. Phys., 19(2):139–161, 1980.

[13] P. Griffiths and J. Harris. Principles of Algebraic Geometry. Wiley-
Interscience, New York, 1978.

[14] H. J. Groenewold. On the principles of elementary quantum mechanics.
Physica, 12:405–460, 1946.

[15] B. C. Hall. Quantum Theory for Mathematicians, volume 267 of Graduate
Texts in Mathematics. Springer, New York, 2013.

[16] M. Hamilton. Singular Bohr-Sommerfeld leaves and geometric quantization.
ProQuest LLC, Ann Arbor, MI, 2005. Thesis (Ph.D.)–University of Toronto
(Canada).

[17] M. D. Hamilton and E. Miranda. Geometric quantization of integrable sys-
tems with hyperbolic singularities. Ann. Inst. Fourier (Grenoble), 60(1):51–
85, 2010.
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[41] San Vũ Ngo.c. On semi-global invariants for focus-focus singularities. Topol-
ogy, 42(2):365–380, 2003.

[42] L. Van Hove. Sur certaines représentations unitaires d’un groupe infini de
transformations. Acad. Roy. Belgique. Cl. Sci. Mém. Coll. in 8◦, 26(6):102,
1951. English translation: L. Van Hove. On Certain Unitary Representations
of an Infinite Group of Transformations. World Scientific, River Edge, NJ,
2001.

[43] J. von Neumann. Mathematical Foundations of Quantum Mechanics. Prince-
ton University Press, Princeton, 1955.

[44] A. Weinstein. Lectures on Symplectic Manifolds. American Mathematical
Society, Providence, R.I., 1977. Expository lectures from the CBMS Regional
Conference held at the University of North Carolina, March 8–12, 1976,
Regional Conference Series in Mathematics, No. 29.

[45] R. O. Wells, Jr. Differential Analysis on Complex Manifolds, volume 65 of
Graduate Texts in Mathematics. Springer, New York, third edition, 2008.

[46] H. Weyl. The Theory of Groups and Quantum Mechanics. Dover Publica-
tions, Inc., New York, 1950. Reprint of the 1931 English translation of the
second (revised) German edition.

102



[47] J. Williamson. On the algebraic problem concerning the normal forms of
linear dynamical systems. Amer. J. Math., 58(1):141–163, 1936.

[48] N. M. J. Woodhouse. Geometric Quantization. Oxford Mathematical Mono-
graphs. The Clarendon Press, Oxford University Press, New York, second
edition, 1992.

[49] Nguyen Tien Zung. Symplectic topology of integrable Hamiltonian systems.
I. Arnold-Liouville with singularities. Compositio Math., 101(2):179–215,
1996.

103


	Introduction
	Motivation 
	Main result and literature review
	Overview of the dissertation

	Preliminaries
	Geometric formulation of classical mechanics 
	Symplectic geometry 
	Integrable systems
	Classification of singularities

	Geometric quantization
	Hermitian line bundles and connections
	Holonomy
	Geometric prequantization
	Polarizations
	Kostant's definition of geometric quantization


	Sheaves appearing in geometric quantization
	Sheaves
	Sheaf cohomology
	de Rham resolution of F
	Examples of fine resolutions for n=1 
	A fine resolution for an elliptic singularity, n=1
	A fine resolution for a hyperbolic singularity, n=1
	Summary for n=1

	A fine resolution for a focus-focus singularity, n=2

	Focus-focus singularity and the semi-global model
	The Taylor series invariant 
	Semi-global model 
	Bohr-Sommerfeld fibers for the semi-global model 

	Geometric tools
	Computations of the cohomology groups
	Calculation of H0(M,F) and H1(M,F)
	Calculation of H2(M,F)
	Solving = J on {J=0}
	Completion of the calculation of H2(M, F)


	Example

