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ABSTRACT 

 
1.    Mechanisms driving breeding dispersal are complex and potentially interactive. These 

mechanisms are of general interest because dispersal strongly links individual fitness to 

population dynamics. We examine the relative importance of personal information, 

neighborhood effects, and structural habitat characteristics in determining an individual’s 

propensity for breeding dispersal.  

2.    To document dispersal events in 2017 and 2018, we individually marked and radio tagged 

male black-capped vireos in Southwestern Oklahoma. We used a classification tree analysis to 

explore ten potential factors that individuals used as information to evaluate for emigration. We 

used the correlation between arrival date and habitat structure to determine habitat preference.  

3.    Older and younger age classes that reproduced successfully did not disperse, but younger age 

class individuals that failed to reproduce were more likely to disperse than older individuals. 

Dispersal events among young males were significantly related to the proportion of their neighbors 

that successfully reproduced. More individuals dispersed from neighborhoods of fewer, less 

successful neighbors. Male black-capped vireos did not disperse due to the vegetation structure of 

their habitat, though there was a trend for young males to be located in habitats with structure less 

preferred by older males.  

4.    Breeding dispersal propensity among black-capped vireos, like many other avian species, 

depended mostly on their personal breeding experience, but also on reproductive information 

gleaned from their neighbors. In this Oklahoma population, black-capped vireos of different ages 

were spatially segregated into habitats of differing structure, which may further influence 

neighborhood quality and the degree to which age group participates in breeding dispersal.  



 viii 

5.     Our results indicate localized, neighborhood effects are important to breeding dispersal, which 

has implications for the genesis of new populations or a population to become stabilized within a 

metapopulation. The creation of preferred habitat will be needed to produce rates of nest success 

that support healthy metapopulation dynamics. These preferred habitats are needed to balance 

potential high rates of breeding dispersal out of habitats with low neighborhood quality for this 

species. Future studies focused on the spatio-temporal aspects of breeding dispersal would be 

valuable. Especially useful would be studies of search behaviors of dispersing individuals and 

processes involved in selecting new habitat after leaving their initial territory. In general, further 

study is needed on interactions of multiple dispersal cues and how spatial structuring influences 

the evaluation of these cues by potential dispersers.
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Chapter 1. 

INTRODUCTION 

 
 Dispersal is a fundamental process in ecology and evolution that affects abundance, 

spatiotemporal distributions, and gene flow (Clobert, Danchin, Dhondt, & Nichols, 2001). Many 

complex aspects of population biology, such as metapopulation dynamics, emerge from dispersal 

made by actively or passively mobile individuals. Mechanisms governing the temporal frequency 

and spatial domain of dispersal are often complex and potentially interactive. However, studying 

individual dispersal behaviors remains among the most logistically feasible approaches to 

understanding the role of dispersal in population dynamics.  

With respect to reproduction, individual movements of vertebrates can be broadly thought 

of as two processes: dispersal from the natal site to the first site of reproduction (hereafter natal 

dispersal) and dispersal between reproductive attempts (hereafter breeding dispersal). Magnitude 

of natal and breeding dispersal often differ strongly among individuals of specific age and sex 

classes (Greenwood & Harvey, 1982). In general, natal dispersal occurs over larger spatial 

domains than breeding dispersal and strongly impacts gene flow among populations. Breeding 

dispersal is often predominant within a breeding population and plays a strong role in maximizing 

the fitness of individuals that move to better habitats  (Blancher & Robertson, 1985; Robertson et 

al., 2018). However, the propensity for breeding dispersal varies widely among species. In some 

species, breeding dispersal is uncommon, with most individuals instead maintaining high site 

fidelity between breeding attempts. Breeding dispersal (vs. site fidelity) is tightly linked to 

population dynamics and potential for species to track rapid environmental change, but the degree 

to which population dynamics and environmental tracking constrains these relationships is not 
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known. Understanding dispersal cues, subsequent habitat selection, and the consequences of those 

selections is an integral first step to understanding these relationships.  

Dispersal is described as having three phases: initial departure, followed by a transient or 

prospecting stage involving searching and information gathering, and finally settlement (Clobert 

et al., 2001). During each of these phases, the main factors that have the most influence on dispersal 

are related to (1) phenotypic individual conditions, such as competitive ability and (2) 

environmental conditions, such as conspecific density, resource availability, and landscape 

patterns (Danchin, Boulinier, & Massot, 1998; Clobert et al., 2001). An individual’s experience 

and knowledge are a culmination of these two factors. Most studies of breeding dispersal of birds 

have evaluated factors independently (Bowler & Benton, 2005). However, integration of several 

cues may best explain the behavior of departure (Dobson & Jones, 1985; Boulinier & Danchin, 

1997; Clobert et al., 2001). In this study, we focus on identifying factors birds may integrate and 

use to inform departure from their breeding territory.  

Breeding dispersal studies have only relatively recently started to disentangle information 

sources used by dispersers (Clobert et al., 2001). Individual reproductive success (i.e. breeding 

experience) is a key positively correlated covariate of site fidelity where individuals that 

successfully raise young tend to return to the same breeding location in subsequent breeding 

attempts and individuals that fail to reproduce tend to disperse (Switzer, 1997). Relocation after a 

failed nesting attempt is more common among younger birds and is also often sex-biased  

(Middleton, 1979; Beletsky & Orians, 1987). However, unsuccessful individuals may rely on more 

than a simple win-stay lose-switch hypothesis for breeding dispersal. External information such as 

predation and perceived risk of predation (Koleček et al., 2015) and general measures of habitat 

quality like appropriate habitat structure and food resources also may influence dispersal 
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(Bollinger & Gavin, 1989; Orians & Wittenberger, 1991; Joos, 2013). Interestingly, there is 

growing evidence that breeding individuals observe their neighbor’s reproductive activities to 

inform their dispersal departure (Danchin et al., 1998; B. Doligez, 2002; Lagrange et al., 2017; 

Ponchon et al., 2013). Prospectors using a neighborhood’s current reproductive success as an 

indicator of future reproductive success during transience and settlement phases of dispersal has 

much support  (Blandine Doligez, Pärt, Danchin, Clobert, & Gustafsson, 2004; Arlt & Pärt, 2008; 

Pärt, Arlt, Doligez, Low, & Qvarnström, 2011), but there are fewer examples of it being used as 

to initiate emigration (but see Blancher & Robertson, 1985).  

We examine the relative roles of phenotypic and environmental conditions on the departure 

phase of breeding dispersal. Specifically, we test the hypothesis that the primary function of 

breeding dispersal is to move to a territory of better quality (the habitat quality hypothesis of 

breeding dispersal). We predict that: (1) personal information about breeding experience should 

be the primary source of information influencing breeding dispersal; (2) neighborhood quality 

(reproductive success of adjacent neighbors) should influence dispersal behavior, with males 

dispersing from lower quality neighborhoods to higher quality neighborhoods (this prediction is 

also consistent with the performance based conspecific attraction hypothesis (Danchin et al., 

1998)); and (3) habitat characteristics provide supplemental cues for breeding dispersal with males 

dispersing from habitat dissimilar to preferred habitat. To test these predictions, we examine 

patterns in age and body size, neighborhood effects, and habitat characteristics as measures of 

habitat quality.  

We studied the North American songbird, the black-capped vireo (Vireo atricapilla). 

Black-capped vireos are small (8 to 9 gram) migratory passerines in the family Vireonidae that 

defend breeding territories in patchy, mixed deciduous shrubland habitat in Oklahoma, Texas and 
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Northern Mexico (Grzybowski, 1995). Black-capped vireos were included on the endangered 

species list from 1987 to 2018, with brood parasitism by brown-headed cowbirds (Molothrus ater) 

and habitat loss as primary contributors to decreased population sizes.  Males arrive first on the 

breeding grounds to establish territories followed by females, who after pairing with a male, will 

act aggressively towards both intruder males and females (PMC pers. obs.). This species will 

attempt multiple nests within a breeding season if a nest fails. Females regularly exhibit breeding 

dispersal when a nesting attempt fails, they also are more difficult to detect than males because of 

their secretive behavior and infrequent vocalization (PMC pers. obs.). Both sexes build the nest, 

incubate, provision nestlings, and care for fledglings.  

Natal dispersal of black-capped vireos has been documented through genetic (Athrey, 

Lance, & Leberg, 2012) and incidental band and recapture methods, while long-term breeding 

season monitoring studies show that site fidelity is relatively high for territorial male vireos 

(Graber, 1961; Grzybowski, 1995; Walker, Marzluff, & Cimprich, 2016). To our knowledge, only 

the Puerto Rican Vireo (Vireo latimeri) has been the subject of a non-genetic breeding dispersal 

study in the family Vireonidae (Woodworth, Faaborg, & Arendt, 1998), finding a 7.1 to 29% 

breeding dispersal rate among male vireos. However, this study used recapture and re-sighting 

techniques between years and could not completely distinguish between dispersal and mortality 

events. Furthermore, they did not examine factors influencing breeding dispersal. Our study of 

detailed breeding dispersal factors combined with known fate dispersal events provides new 

empirical evidence.  Anecdotal observations suggest breeding dispersal of adult male black-capped 

vireos can occur during the post-breeding period (Dittmar et al. 2014, pers. obs.), but no study yet 

has quantified breeding dispersal of marked individuals.  
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The post-breeding period may provide an appropriate time frame for individuals to collect 

information for breeding dispersal for many reasons. Breeding season phenology constrains the 

opportunities for prospecting by fledglings and second-year age class vireos (yearling first-time 

breeders, hereafter SY vireos). To maximize survival in their hatching year, vireo fledglings tended 

to use habitats for survival that differ from breeding habitats (Dittmar, Cimprich, Sperry, & 

Weatherhead, 2014), which could limit their knowledge of available and quality breeding habitat. 

For fledglings that survive to return as SY vireos, reproductive success is influenced by how 

quickly they begin nesting; early nests fare better than late nests (Joos, Thompson, & Faaborg, 

2014). This temporal effect suggests a tradeoff between time invested in first-year nest success 

and time spent prospecting for habitats suitable for breeding dispersal. SY males face the additional 

challenge of arriving later than older (after second-year, hereafter ASY) vireos that outcompete 

them for good quality habitat (Johnson & Gaines, 1990; Joos et al., 2014). Consequently, SY males 

may initially settle into marginal breeding habitat (Johnson & Gaines, 1990; Reed et al., 1999; 

Joos et al., 2014). The post-breeding period allows unsuccessful vireos access to both resources 

and conspecific social information to evaluate breeding habitat quality and inform breeding 

dispersal (Reed et al., 1999). 

We used a multi-factorial approach to study breeding dispersal of male black-capped vireos 

at the first stage of breeding dispersal, departure from the original territory. We monitored the 

breeding dispersal of males (ASY and SY) in our study. Among these males, we focused 

preferentially on SY males and tracked them with radio telemetry for two reasons. First, SY 

individuals are first time breeders and should have low reproductive success and a relatively high 

(compared to ASY males) propensity towards breeding dispersal when nesting attempts fail. 

Second, radio telemetry allows us to precisely quantify dispersal events because the detectability 
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of the individual is high. Our objectives were to 1. Determine whether age classes of male vireos 

differed in their propensity to disperse from their breeding territory, 2. Examine correlates of 

departure from their breeding territory of factors related to personal, neighborhood, and habitat 

characteristic information.  

METHODS AND MATERIALS 

Study system and field observations 

We conducted our study on the Fort Sill Military Installation in Southwest Oklahoma, USA 

where black-capped vireos are present from April to September for two field seasons (2017 and 

2018). The Fort Sill Military Installation (roughly 38,000 ha), with adjacent Wichita Mountain 

National Wildlife Refuge (23,885 ha) form a contiguous track of the Wichita Mountain ecoregion 

in Oklahoma. In vireo habitat, common vegetation included patches of short stature (one to three 

meters in height)  black-jack and post oaks (Quercus marilandica, Qurecus stellata respectively), 

skunkbush (Rhus triolobata), flame-leaf sumac (Rhus lanceolata), and tall stature oak woodland 

(1 to 10 meters in height) commonly having hackberry (Celtis occidentalis) in the understory. 

Riparian and bottomland areas included a mixture of Eastern persimmon (Diospyros virginiana), 

black walnut (Juglans nigra), pecan (Carya illinoinesis), Eastern red cedar (Juniperus virginiana), 

and hackberry (Celtus occidentalis), American elm (Ulmus americana) as canopy. These same 

species are found in the understory accompanying greenbrier (Smilax spp.), buttonbush 

(Cephalanthus occidentalis), and roughleaf dogwood (Cornus drummondii). Surrounding 

grasslands were irregularly scattered with honey mesquite (Prosopis glandulosa), sand plum 

(Prunus angustifolia), and flame leaf sumac (Rhus lanceolata). 

To sample the gradient of vegetation structure used by black-capped vireos, we selected 

two main study sites with dominant vegetation structures that differed primarily in percent canopy 
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cover. On the main study sites, we monitored territories and nests during the breeding period from 

April to July. Quanah study site was located in the western parcel of Fort Sill (on Quanah Range) 

and represented 49 ha of predominantly oak woodland habitat. Sherman study site was located in 

the central parcel of Fort Sill (on West Range) and represented 42 ha of short stature oak habitat. 

In these study sites, we attempted to monitor all territorial males. From May to July, we sampled 

a limited number of additional males around the Sherman study area that amounted to an area of 

245 hectares in 2017 and 422 hectares in 2018. 

During April, we attempted to capture and mark all individuals within the Quanah and 

Sherman study areas with a USGS issued aluminum numerical band and unique combination of 

colored leg bands. We captured vireos using six-meter length, 30mm mesh mist-nets while 

broadcasting black-capped vireo songs, scolds, heterospecific scolds, and eastern screech owl 

calls. We determined sex, age, wing length, amount of black of the cap, and mass for each vireo. 

Age is most accurately determined by feather wear between the greater and primary coverts, and 

sex was determined by the presence or absence of a full brood patch (Pyle, 1997). Plumage 

characteristics are also diagnostic for sex as black-capped vireos are the only members in their 

family that are sexually dimorphic.  

In addition to colored leg bands and a USGS band, we deployed radio tags (JDJC corps, 

.26mg) on some individuals beginning May 15th using the backpack method with an elastic thread 

degradable within 30 to 60 days (Rappole & Tipton, 1991). SY males began to establish territories 

the last week of April, however, they did not begin to depart their territory for breeding dispersal 

until early June (PMC unpubs. data). Transmitters were necessary to track prospecting movements 

and increase detectability of males as singing rate decreases in late June (PMC pers. obs.). Once 

vireos were fitted with telemetry equipment, we attempted to collect at least one point per day, but 
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up to five while the male defended a territory. We located radio tagged males using a hand-held 

three-element Yagi antenna and receiver (Model R4000, Advanced Telemetry Systems, Inc., 

Isanti, MN) and employed the homing method. Transmitters weighed less than 4% of an 

individual’s body mass and had a battery life that ranged from 28 to 50 days, if it didn’t fall off.  

Sampling effort 
Beginning early April, we recorded arrival dates for territorial males. Study sites were 

surveyed on at least four days in each seven-day period to detect new individuals. Observers spent 

20 minutes in each prospective territory to detect individuals. We either visited both study sites in 

a single day or regularly alternated visiting sites to reduce effort bias. Since male black-capped 

vireos sing frequently to attract a mate and to defend their territory, we were confident that new 

individuals were located effectively.  

We gathered location data from April to July for territorial males in the main study sites 

and individuals fitted with radio transmitters by visiting territories at least once a week. To 

determine territory size and productivity on the main study sites, we followed territorial males and 

recorded their locations using GPS (Garmin Rhino 650). A male was considered territorial if we 

found the same individual within 25 meters of a previous point where it had been singing or 

displaying other acts of area defense for three consecutive visits. The observer followed 

individuals only as closely needed to sight leg bands, but not closer than 10 meters. We marked 

the GPS location of the vireo only after the vireo had moved voluntarily to avoid biasing 

movements based on the observer. Locations were taken no less than five minutes apart with no 

more than five locations per day to capture the full size of the breeding territory while the vireos 

were actively nesting. Preliminarily analyses suggest that for the period April to June, estimates of 
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territory size did not change after 10 locations. Territory size was computed through minimum 

convex polygons from these points using QGIS (QGIS Development Team, 2019).  

Territories were monitored until nesting activity ceased in that territory. Nests were mainly 

located using behavioral cues. We chose Julian date 181 (June 30) as a cut off for the primary 

breeding season because by this point, preliminary data indicate 98% (n = 172) of nests were 

completed either as successful or failed, and territories were not initiating new nests (PMC unpubs. 

data).   

We monitored 130 territories in 2017 and 2018 within the study sites. Across years we 

estimate that we banded ~90% of territorial males. Reproductive success differed between the 

sites, with 13.8 % more territories producing offspring on the Sherman site than on the Quanah 

site in both years. Both Sherman and Quanah territories experienced more success in 2017 than 

2018. Compared to 2017, 27% fewer territories were successful at Sherman and 17% fewer 

territories were successful at Quanah in 2018. An early April frost in 2018 likely explains the 

difference in success between years.  Budding oak leaves were killed and did not fully redevelop 

until late April of 2018, which, delayed nesting and also likely reduced time for subsequent nesting 

following failed attempts (PMC unpubs. data).  

Within the study sites, 11.5% (n = 15) of the territories were defended by SY males. 

Therefore, territories of 18 additional SY males were located and monitored outside of the main 

study sites. We found these individuals by randomly capturing males in territories and by 

identifying late arriving males with less black in their cap (subadult male plumage). In 2018 at 

Quanah, three individuals suspected of being SY males (due to subadult plumage) disappeared 

before we attempted to capture them.  
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We had sufficient data to calculate the territory size for 66 ASY males, and therefore used 

these as a subset of all monitored ASY males; two of these ASY territories were outside the main 

study sites. All 33 SY territories and 66 ASY territories were used for general comparison analyses 

and classification tree analysis to detect any age-based difference between age groups. However, 

we omitted two SY males and two ASY males for the classification tree analysis that investigated 

dispersal propensity. We omitted these males because we could not determine whether they were 

alive at the end of the sampling period.  Of all males that dispersed from their breeding territories 

for at least three successive days (n = 20), none returned to their original territory within that 

breeding season or the following year. 

Vegetation Sampling 
We sampled vegetation structure in breeding territories for which we had at least 10 

locations (n = 57). We chose ³ three random location points that were ³ 30 meters apart to 

systematically sample vegetation. We followed the vegetation sampling protocol of two recent 

black-capped vireo studies (Dittmar et al., 2014; Walker, 2015) using three measures of vegetation 

structure: foliage density, shrub cover, and canopy cover. Using a 30 meter transect with the central 

point as the initial location of the bird and two opposite points 15 meters from the center, we 

sampled and averaged foliage density at three locations using a Robel pole. The direction to the 

opposite points were determined by randomly choosing a cardinal direction from the center for the 

first point. The Robel pole was divided into 10, 10cm sections.  If foliage covered at least 50% of 

a 10 cm section, it was counted. Canopy cover was calculated as a percent by averaging the percent 

of 10 points at which canopy was detected. Points were three meters apart along the 30 meter 

transect and we used an ocular tube to narrow the field of vision when looking up. Shrub cover 

was also calculated as a % by averaging the detection of shrubs at 10 points three meters apart 
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along the transect using the detection of vegetation within 60 cm of the 2-meter-tall Robel pole. 

We also collected vegetation samples at locations of telemetered vireos that were followed 

throughout the summer added more vegetation samples (n = 720). We added random points using 

a 100 by 100-meter grid to sample different habitat types as well (n = 614). Random points were 

stratified by habitat classes indicated by Oklahoma ArcGIS polygon layers (Diamond & Elliot, 

2015). We condensed similar vegetation classes to six common types found on Fort Sill: Low 

Stature, Woodland oak, Riparian, Grassland, Ruderal, and Forest. We omitted bare rock and 

agriculture classes because vireos do not use these habitats.  

To determine if there was a relationship between arrival date (ordinal date) and habitat 

structure as a measure of habitat structure preference, we fitted a multiple linear regression in 

program R (R Core Team, 2018). Territories used in this analysis were those of males with known 

arrival dates that had at least three GPS locations taken in their territory (n = 84). We included 

separate averages for measures of foliage density, canopy cover, and shrub cover from those 

territory locations as covariates in this model. There was a significant relationship between arrival 

date and canopy cover (p < 0.01), and shrub cover (p = 0.03). The adjusted R2 was 0.06, and the 

data met assumptions of homogeneity of variance and linearity and the residuals were normally 

distributed. We then assumed that lower percent canopy cover was more preferred by black-capped 

vireos as this habitat structure was occupied earlier than higher percent canopy cover.  

Analyses 
Because we wanted to test the relative importance of several factors that may influence 

dispersal, we used a classification tree base (binary recursive partitioning) to test dispersal 

propensity as a binary response of Yes, dispersed, or No, remained on territory ,from our 

subsample of territories in which we excluded unknown dispersal fates (Table 1). We also used a 
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classification tree to test factors that were significantly different among the two age groups, SY 

and ASY males, in which we included all males for which we had calculated territory size (n = 

99). The classification tree used a P ≤  0.05 to make splitting decisions. We first tested all factors, 

then tested only foliage density, canopy cover, shrub cover, and territory size to uncover any 

habitat differences that may have been masked by the other variables. Classification trees are 

nonparametric tests that allow for powerful comparisons of categorical and continuous data 

simultaneously (see De’ath & Fabricus, 2000 for detailed explanation). Classification trees have 

the advantage of avoiding overfitting data and producing easily interpretable graphs. We used the 

ctree function in package party (Hothorn, Hornik, & Zeileis, 2006) and partykit (Hothorn & 

Zeileis, 2015) in program R (R Core Team, 2018). 

We included personal reproductive success, total number of neighbors, number of 

successful neighbors, percent successful neighbors, territory size, age, the product of wing length 

and mass, and mate pairing success as factors in our classification tree analysis to represent 

personal information and neighborhood information. We considered a territory successful if it 

produced at least one fledgling. Our focus on territory success and not overall productivity was 

motivated by two factors. First, we assumed vireos would not count number of offspring, a measure 

that is more normally used to determine productivity of an area, but instead would access success 

simply as presence of fledglings or not. We also assumed the perceived range of breeding success 

as only including adjacent neighbors because we found little evidence that territorial male black-

capped vireos wandered out of their territories during April and May (PMC unpubs data). We 

defined the total number of neighbors as a count of adjacent neighbors. Males often had singing 

matches with neighbors, making them easy to identify. The number of successful neighbors was 

determined by summing the successful neighbors. We calculated percent successful neighbors by 
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dividing the number of neighbors producing at least one fledgling during the time the individual 

of focus was present and actively defending its territory by the total number of neighbors. Mate 

pairing success was considered at three levels. Successful mate pairing was any pairing with a 

female that led to a nest with at least one egg, a transient mate was any female observed in a 

territory for at least two days that disappeared before completing a nest, and no pairing was when 

we observed no female in the territory for more than one day. 

In addition to personal and neighborhood information factors, we also included three 

measurements of habitat characteristics in the classification tree analysis: percent cover of foliage 

density, canopy cover, and shrub cover. These three measures of habitat structure were treated 

separately in our classification tree analysis. We characterized average habitat for territories by 

interpolating values from the points at which we conducted vegetation samples. Interpolations 

were done separately for each measure of vegetation structure using QGIS (QGIS Development 

Team, 2019). We grouped points based on our previously defined habitat classes: Low Stature, 

Woodland oak, Riparian, Ruderal, and Grassland following a modified vegetation map produced 

by the Oklahoma Department of Wildlife Conservation (Diamond & Elliot, 2015). Forest was a 

sixth class in which we randomly sampled points, however, we recorded no vireo points within a 

forest boundary and we excluded this class from our analyses. We grouped points from specific 

habitats to ensure that the closest relevant points from that particular habitat were influencing 

interpolation. We sampled the raster layers at each territory location point and averaged the 

measures of vegetation structure to obtain one averaged sample per territory for foliage density, 

canopy cover, and shrub cover.  
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We conducted this study in accordance with the University of Oklahoma Institutional 

Animal Care and Use Committee permit number R17-010, and Federal Permit number TE35163A-

0, Federal Bird Banding Permit Number 20930.  

RESULTS 

 
Of the 10 explanatory variables measured, the classification tree analysis identified two 

that best explained whether males dispersed from their original territory (Figure 1): age and percent 

neighbor success. Age was the first best explanatory variable, while percent neighbor success 

branched only from the SY age class group. Of all 130 males monitored within the main two study 

areas, 20 (15%) had confirmed dispersal events, while 16 additional individuals (12%) disappeared 

before June 30th with an unknown status of deceased or dispersed. 

Consistent with the 1st  prediction of the habitat quality hypothesis – No vireo dispersed 

that had reproduced successfully, regardless of age. Only four (12%) of all 33 SY males monitored 

were successful in producing offspring, whereas 35% of ASY males produced offspring (compared 

to 45% successful of all ASY territories monitored (n = 102)). Of the 20 males that did disperse, 

16 (80%) were SY males, representing 52% of all the SY males monitored.  

Consistent with our 2nd prediction from the habitat quality hypothesis, we detected an effect 

of neighborhood on dispersal propensity. More SY males dispersed from their territories if 25% 

or less of their neighbors successfully fledged offspring. We did not detect enough ASY male 

breeding dispersal to determine any relevant factors within the time period that we monitored for 

dispersal. For individuals of both age classes that were failed breeders (n = 68), we still find age 

is the best predictor of dispersal, and SY males dispersal corresponded again with percent neighbor 

success (Figure 2). SY males were less likely to secure a mate, had fewer total neighbors, and they 

were also more likely to disperse than ASY males (Figure 3). Percent territory nest success was 
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also positively correlated with total number of neighbors (t = 6.1613, df = 92, p-value = 1.88e-08, 

cor = 0.54). 

In contrast to prediction 3 from the habitat quality hypothesis, no vegetation characteristic 

alone explained differences in dispersal and no covariates predicted an individual’s reproductive 

success. When using the classification tree method to explore differences in vegetation, we find 

that SY males and ASY males differed in the amount of canopy cover in their territory, with SY 

males having more canopy cover (Figure 4). Canopy cover mean (0.2912) was used to split 

territories into two groups regardless of age, low canopy cover (n = 69) and high canopy cover (n 

= 30). We find that low canopy territories were more successful than high canopy cover territories 

by 10%.  

We additionally found areas occupied by SY males in 2017 tended to remain occupied by 

SY males in 2018. Of the 16 total SY territories monitored in 2017, six individuals returned to 

their territories in 2018. Of the 11 remaining areas that SY males defended in 2017, 45% (n = 5) 

were also defended by SY males in 2018. Only one of these 11 areas were actively occupied by a 

new ASY male, while four were annexed into territories held by ASY males that were neighbors 

to the SY territory in 2017. We failed to capture and reliably determine age of the remaining 

territorial male.  

DISCUSSION 

 
Our results align with our main hypothesis and the results of several studies that support 

multiple factors determining breeding dispersal as individuals move to increase fitness. In general, 

we found a hierarchical effect of covariates correlated with departure for dispersal, where an 

individual’s reproductive outcome and age contributed the main effects. Successful males did not 

disperse within the breeding season, likely because successfully breeding males remain territorial 
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while helping care for fledglings that remain dependent on parents until around 40 days old 

(Grzybowski, 1995). The majority of ASY males did not abandon their territory early to disperse. 

Site fidelity of older males could be linked to past successful breeding experience, females 

continuing to choose ASY male territories to initiate late season nests, or potentially that ASY 

males have a different temporal prospecting window than SY males. Of individuals that 

reproduced unsuccessfully, SY males had a higher dispersal propensity than ASY males. This 

result supports the hypothesis proposed by Holmes et al. (1996) that the return rate of yearling 

males could be explained by dispersal and not mortality in lower quality habitats. Additionally, 

like Doligez et al. (2004), we found that emigration was less simple for SY age class males than 

older males. Most SY males reproduced unsuccessfully, however, not all dispersed like expected 

if only personal information determined habitat quality. Instead, our study indicates localized 

neighborhood reproductive success best explained dispersal propensity. When we directly 

compared covariates of SY males to ASY males, we found that SY males were less likely to attract 

and maintain a mate and also have fewer total neighbors.  

To address our first prediction that personal information is used primarily to inform 

breeding dispersal, we must first account for the demographic spatial structuring we found in our 

study system, where age and vegetation characteristics were correlated. We hypothesize this 

pattern results as a consequence of habitat saturation. Evidence for habitat saturation for this 

population of black-capped vireos is supported only by indirect evidence. Gryzbowski et al. (1994) 

found that ASY and SY age class males used similar types of habitat at the Wichita Mountains. 

This pattern contrasts with the age-based habitat differences documented in central Texas by the 

same study, where SY males occupied areas less similar to ASY males and more similar to non-

vireo species (Grzybowski, Tazik, & Schnell, 1994). At this time of that research, the population 
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size at the Wichita Mountains was smaller than in Central Texas, compared to the current and 

substantially larger population now found at Fort Sill and Wichita Mountain National Wildlife 

Refuge. Second, nearly half the of areas defended by a SY male in 2017 were defended by an SY 

male in 2018 while the other half were annexed into neighboring 2017 ASY male territories in 

2018. This pattern suggests that these are areas of lower quality and are not preferred by males 

with more breeding experience. Finally, we found fewer SY males in our main study sites than 

was expected. For example, a monitored population in central Texas recorded 22% of territories 

monitored were held by SY males (Cimprich & Cimprich, 2015).  In conclusion, the  current Fort 

Sill population structure suggests habitat saturation coupled with high site fidelity by ASY males 

likely forces SY males to occupy areas in periphery marginal habitat with lower densities of 

conspecifics if SY males are poor competitors (see Matthysen, 1990). This pattern is also 

consistent with the ideal dominance distribution model, where better competitors occupy the 

highest quality habitat (Fretwell & Lucas, 1969). There are likely multiple interacting causes for 

the lower reproductive success coupled with higher propensity for breeding dispersal propensity 

among SY males. That is, SY males may be subject to indirect effects of external factors 

(conspecific density and site fidelity of older males), which may also interact with an individual’s 

phenotype. 

 SY males also had less success attracting a mate than ASY males. Females may not pair 

with SY males because they are intrinsically lower quality mates than older males (the good genes 

hypothesis), though this may be compounded by their occupation of lower quality habitat (Holmes, 

Marra, & Sherry, 1996). SY males settled in territories later than ASY males and may have little 

to no familiarity with the habitat quality, leading to several possible repercussions for their 

personal reproductive success. For example, SY males are outcompeted by ASY males because 
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ASY males were in better body condition and ASY male familiarity with their breeding site likely 

increases their aggression against intruders (Stoddard, Beecher, Horning, & Willis, 1990; Hughes, 

Searcy, Hyman, & Nowicki, 2004; Piper, 2011; Joos et al., 2014). While we could not support this 

argument with our results, it may be that body size and mass were not good predictors of internal 

condition for this species.  

We found support for our second prediction that more males would disperse from 

neighborhoods with low local reproductive success, but for SY males only. This prediction follows 

from both the habitat quality hypothesis and the conspecific attraction hypothesis. While the total 

number of neighbors was not a factor contributing directly to breeding dispersal, neighbor success 

was positively correlated with total number of neighbors. Why SY males had fewer neighbors can 

be attributed to the landscape pattern of suitable patches, as this age class was more likely to 

occupy areas that were on the periphery of patches (PMC unpubs. data). A higher density of 

conspecific neighbors in this species likely confers multiple benefits to individuals. For example, 

access to females may increase when there are more neighboring males as females frequently 

exhibit breeding dispersal. Males may also increase their chances of extra-pair fertilization in areas 

of higher concentrations of females. Furthermore, females searching for a mate may be more 

attracted to higher quality males (the good genes hypothesis) that also tend to be in high-quality 

neighborhoods and thus infrequently search low quality neighborhoods. If time is a main limiting 

factor for a successful nesting season, spending the shortest amount of time searching for a new 

mate would be ideal. If males are clustered in high density neighborhoods, then females can 

increase their mate choice along with decreasing their mate search time (Dale, Rinden, & 

Slagsvold, 1992).  
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For a species with high site fidelity after successful reproduction, it may not be surprising 

that individuals who are new to a neighborhood gather information from their neighbors. 

Gleaning relatively low risk, reliable information from neighbors provides a logical first step in 

evaluating habitat quality (Chabrzyk & Coulson, 1976; Boulinier & Danchin, 1997; Danchin et 

al., 1998; Lagrange et al., 2017). The costs of searching for a new territory could be high. If 

dispersal isn’t necessary to eventually achieve reproductive success at its current location, 

searching for a new territory may have a negative effect on fitness (Stamps, Krishnan, & Reid, 

2005). A male may be unsuccessful in finding a better territory or a territory at all. Unfamiliarity 

with the neighbors may also make integration into or successful mate competition at a new 

neighborhood more difficult when a place is selected (Stamps, 1987; Stoddard et al., 1990; 

Hughes et al., 2004; Joos, 2013).  

We found no direct support for our third prediction that habitat structure directly 

influences breeding dispersal behavior. This was indicated by no significant habitat differences 

between successful and unsuccessful males and also by successful SY males remaining on their 

territories regardless of the habitat structure. However, habitat structure may have underlying 

effects in building good neighborhoods, though we did not test these (but see Holmes et al., 

1996; Cline et al., 2013). Territories of SY males had significantly more canopy cover than ASY 

males and ASY males tend to arrive earlier in lower canopy cover habitat. Territories in lower 

canopy cover (partitioned using mean canopy cover) habitat had increased nesting success by 

10% and neighbor success was 8% higher than in high canopy cover. However, it was beyond 

the scope of our study to determine if nesting success was due to decreased predation or if more 

re-nesting attempts were successful. We also could not determine if preference for low canopy 

cover over high canopy cover was due to increased food resources. Alternative explanations for 
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why we did not find a connection between dispersal and habitat structure is that our 

measurements were 1. Interactive in a way we did not account for, or 2. Irrelevant to the 

structure measures black-capped vireos use to assess habitat. For example, SY male territories 

were often located close to edges of habitat that bordered large expanses of grasslands. Other 

studies that have found similar age-based spatial patterns have suggested that low habitat quality 

areas act as a reservoir for the younger age class while waiting to fill in better habitat as those 

territory holders do not return or are outcompeted (Holmes et al., 1996).  

The findings of our study may have implications for how black-capped vireos expand 

their range if current suitable and protected habitat is occupied. Natal dispersal can help to 

colonize new areas, however, if breeding dispersal tends to counteract colonization because of 

low success, then natal dispersal is unrealized and gene flow events are limited. Based on our 

findings of low pairing success of SY males in places with low conspecific densities, the 

potential for Allee effects, where low densities of populations experience slow or declining 

growth, ought to be considered. However, it is interesting to note that breeding dispersal from 

these areas could counteract realized Allee effects since those same individuals could be filling 

spaces in good neighborhoods the following breeding cycle. Another consideration for black-

capped vireos is the ability of this species to appropriately track environmental change. While 

black-capped vireos inhabit early successional shrubland, the relatively high degree of site 

fidelity suggests long patch quality consistency. Since our study identifies neighbor reproductive 

success and not simply conspecific density as a strong breeding dispersal factor, unsuccessful 

individuals have the opportunity to shift to presumably better-quality habitat. This should be 

achieved best by younger individuals and perhaps also by those that have yet to successfully 

reproduce.  



 21 

Parasitism by brown-headed cowbirds (Molothrus ater) and habitat loss remain two of 

the greatest threats to black-capped vireos. While continued cowbird control at large populations 

on federal lands likely help make these populations sources of dispersing individuals, fringe 

habitats and smaller isolated populations tend not to have these same protections because private 

land owners and other stake holders do not have the same obligations to protect vireos (Walker et 

al., 2016). Appropriate land management techniques, including implementing cowbird control, 

can help establish successful neighborhoods can further boost population numbers and create a 

more secure subpopulation within in a metapopulation. This would also mean creating or 

maintaining the suitable short stature habitat preferred by vireos.  

Future studies of this system would benefit from using an experimental approach to 

manipulate neighborhood success to more clearly define the mechanisms driving breeding 

dispersal decisions. Special attention to the timing and spatial extent of cues used to inform 

breeding dispersal remain important topics of study. While our results indicate individuals pay 

attention to their neighbors, how exactly information is gathered is not well studied. Telemetered 

black-capped vireos were rarely observed outside their territory until about a week before they 

made final long-distance movements from which they did not return (PMC unpubs, data). One 

possibility is that prospectors observe fledglings, which tend to be loud as they beg for food from 

adults, who in turn tend to vocalize when they provision (PMC pers. obs.). Late season 

vocalization of adults was in fact a correlated factor of habitat selection during the settlement 

phase in a study of black-throated blue warbler breeding dispersal (Betts, Hadley, Rodenhouse, 

& Nocera, 2008). The temporal component of information gathering is a key aspect for 

continued study, as individuals must be able to detect and evaluate cues in addition to navigating 

space appropriately to be reproductively successful (Blandine Doligez et al., 2004; Thomson, 



 22 

Sirkiä, Villers, & Laaksonen, 2013). We focused on the movements and decisions of first-time 

breeding males; however, we did detect breeding dispersal of older males. Return rates to our 

study sites averaged ~50 %, meaning that most of the open territories were filled by males at 

least three years old. Knowing when and how these males prospect is would provide further 

insight into breeding dispersal mechanisms. As we concentrated on the factors used to inform the 

departure phase of dispersal, studies of the transience and settlement stages of dispersal would 

complement our research and be invaluable to understanding the whole cycle of dispersal of this 

species and its role in population level regulation.  
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FIGURES AND TABLES 

 

Table 1. Subset of territories used in the classification tree analysis for dispersal propensity with 

known dispersal fates and grouped according to age classes and study sites. 

 

 

 

 

 

 

 

 

 

 

 

Study Site ASY age class SY age class Total 
Quanah 28 8 36
Sherman 34 5 39
Miscellaneous 2 18 20

Total 64 31 95
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Figure 1. Classification tree analysis of 10 covariates for successful and unsuccessful males (n = 

95), with a Node 2 classification error of 6.2%, Node 4 classification error of 22.2%, and 

Node 5 classification error of 15.4%.  
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Figure 2. Classification tree analysis of 10 covariates for only unsuccessful males (n = 68). Node 

2 had a classification error of 9.8%, Node 4 a classification error of 12%, and Node 5 a 

classification error of 18.2%.  
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Figure 3. A classification tree analysis determining differences between ASY males and SY 

males using 10 covariates. Node 2 has 0% error grouping no female attained (N) and 

transient female (T) territories together. Node 3 divided males by the number of 

territories adjacent to their own. Node 4, after splitting on the dispersal behavior, has 

37.5% error, Node 6 grouped No dispersal (N) and Unknown fate (U) territories with a 

10.6% error, and finally node 7 had a 44.4% error rate.  
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Figure 4. A classification tree determining age using canopy cover, shrub cover, foliage density, 

and territory size as covariates. Canopy cover was the only significant grouping factor, 

with Node 2 having an error rate of 20% and Node 3 error at 34.5%.  

 

 

 


