
 

UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

 

 

 

IMPACT OF SAMPLE COLLECTION PREPARATION ON METABOLOMIC AND 

MICROBIOME PROFILES 

 

 

A THESIS 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the 

Degree of 

MASTER OF ARTS  

 

 

By 

JACOB JAMES HAFFNER 

Norman, Oklahoma 

2019 

 



 

 

 

IMPACT OF SAMPLE COLLECTION PREPARATION ON METABOLOMIC AND 

MICROBIOME PROFILES 

 

 

A THESIS APPROVED FOR  

THE DEPARTMENT OF ANTHROPOLOGY 

 

 

 

 

BY 

 

 

Dr. Cecil M. Lewis, Jr., Chair 

 

Dr. Courtney Hofman 

 

Dr. Laura-Isobel McCall 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by JACOB JAMES HAFFNER 2019 

All Rights Reserved. 



iv 

 

 

Dedicated to Waldo 

 



 

v 

 

Acknowledgements 

 I am immensely grateful for the support from my committee members throughout 

this project. I thank Dr. Courtney Hofman for her advice, guidance, and reminders to 

always focus on the impact and implications of research. I thank Dr. Laura-Isobel McCall 

for allowing me to use her lab and its resources (especially for risking her mass 

spectrometer), her teachings in mass spectrometry-based metabolomics, and for her 

counsel. Most of all, I thank Dr. Cecil Lewis for his endless support, patience, and for 

granting me the opportunity to study at OU and LMAMR. His role in shaping me as a 

graduate student and researcher cannot be understated.  

 Additionally, I thank everyone at LMAMR. I thank Dr. Tanvi Honap, Dr. 

Krithivasan “Krithi” Sankaranarayanan, and Nihan Dagtas for their help with the 

labwork, aid with bioinformatics processing, and patience throughout this project 

(especially during its many technical problems). I am in debt to everyone at LMAMR 

who help make it an incredible lab and work experience. I also thank all the LMAMR 

graduate students who provided moral support and put up with my many questions: Rita 

Austin, Robin Singleton, Kristen Rayfield, Sterling Wright, Justin Lund, Dave Jacobson, 

Abigail Gamble, Christine Woelfel-Monsivais, Samuel Miller, Dr. Allison Mann, and Dr. 

Nisha Patel. 

 Lastly, I thank my parents, my sister, and my group of friends in Tulsa for their 

encouragement throughout this project.  

   



 

vi 

 

Table of Contents 

 
Dedication………………………………………………………………………………..iv 

Acknowledgements………………………………………………………………………v 

Abstract…………………………………………………………………………………..ix 

Chapter One: Introduction...............................................................................................1 

 RNAlater and Sample Preservation.........................................................................2 

 Metabolomics and Anthropology............................................................................4 

 Mass Spectrometry-Based Metabolomics...............................................................7 

The Microbiome and Anthropology......................................................................12 

The 16S rRNA Gene..............................................................................................14 

Chapter Two: Materials and Methods...........................................................................17 

 Sampling................................................................................................................17 

 Experimental Design.............................................................................................18 

 Solid-Phase Extraction: RNAlater Cleanup..........................................................22 

 Liquid Chromatography-Tandem Mass Spectrometry..........................................26 

 16S rRNA Gene Amplicon Sequencing................................................................27 

 Data Analysis.........................................................................................................29 

Chapter Three: Results...................................................................................................33 

 Metabolome Preservation......................................................................................33 

 Gut Microbiome Profile.........................................................................................36 

Chapter Four: Discussion...............................................................................................50 

 Metabolome Preservation......................................................................................50 

Gut Microbiome Profile Preservation....................................................................54 

References.........................................................................................................................62 

Appendix I: Supplementary Tables...............................................................................75 

  



 

vii 

 

LIST OF TABLES 

Table 1: RNAlater Removal Protocol.............................................................................25 

Table 2: Seven Weighted UniFrac Outliers...................................................................46 

Supplementary Table 1: Qubit Quantification Values.................................................75 

Supplementary Table 2: qPCR Reaction Sheet............................................................77 

Supplementary Table 3: Sample to Barcode Matches..................................................78 

Supplementary Table 4: PCR Reaction Sheets.............................................................83 

Supplementary Table 5: MZMine Data Processing Parameters.................................84 

Supplementary Table 6: Statistical Results...................................................................85 

Supplementary Table 7: Identified Phyla and Genera.................................................89 

Supplementary Table 8: Sample Information for Metabolomic Analysis…………..92 

Supplementary Table 9: Sample Information for Microbiome Analysis and 

Results…...........................................................................................................................93 

Supplementary Table 10: MiSeq Run Summary and Metrics………………………95 

 

 

  



 

viii 

 

List of Figures 

Figure 1: Construction Details from the Q Exactive Plus……………………………..9 

Figure 2: Experimental Design.......................................................................................21 

Figure 3: Mirror Plot of Urobilinogen from GNPS......................................................34 

Figure 4: Three-dimensional PCoA Plot of Metabolomics Samples...........................35 

Figure 5: Phylum-level Taxonomic Summaries............................................................37 

Figure 6: Genus-level Taxonomic Summaries..............................................................39 

Figure 7: Boxplots of Alpha Diversity Analyses............................................................40 

Figure 8: Boxplots of Alpha Diversity Analyses by Sample Treatment Method.......43 

Figure 9: Two-dimensional PCoA Plots Using Unweighted UniFrac Distances........44 

Figure 10: Two-dimensional PCoA Plots using Weighted UniFrac Distances...........45 

Figure 11: Two-dimensional PCoA plot from Weighted UniFrac with Storage 

Temperature and RNAlater............................................................................................46 

Figure 12: Three-dimensional PCoA Biplot from Weighted UniFrac with Genera..47 

Figure 13: Genus-level Taxonomic Summaries limited to 

Pediococcus…………...................................................................................................…48 

Figure 14: Sample Photograph Prior to MS Injection.................................................49 



 

ix 

 

Abstract 

Anthropological studies of human biology are predominately field-based, and burdened, 

by the need for well-preserved biological samples. In the emerging application of multi-

omics, definitions of “well-preserved” and preservation strategies have had limited study, 

particularly those data that inform the biology of the human ecology. These human 

ecological data are a frequent objective of metabolomics and microbiome research. 

Metabolomics, through exploration of the totality of small molecules known as 

metabolites, offers a way to directly observe the molecular phenotype. These small 

molecules offer just as much valuable information to molecular anthropology as DNA 

and RNA, but there is a surprising lack of inquiry into how these molecules are preserved 

in samples and how molecular preservation impacts results and interpretations. For most 

metabolomic studies, the standard sample collection procedure involves snap-freezing the 

sample within 15 minutes of collection and storing at -80ºC. However, this is often 

unfeasible for field-based sample collection. Metabolome taphonomy, the study of how 

metabolome profiles are impacted by environmental processes as well as sample 

collection and preservation/preparation strategies, is still poorly understood. This thesis 

considers sample storage, with attention to human gut microbial samples. Consequently, 

this thesis presents two complementary studies, one with a focus on the metabolome and 

one focused on the microbiome taxonomic inventory, to determine if the application of 

the common DNA and RNA preservative RNAlater provides a valuable method for 

conserving ecological data from both approaches. Ten human fecal samples previously 

collected and frozen at -80ºC were homogenized, aliquoted, and subjected to treatment 



 

x 

 

that simulates different levels of cold storage in the field: 22-25ºC, 4ºC, and -80ºC. To 

assess the impact of preservation methods on metabolite and bacterial taxonomic profiles, 

subsets of these aliquots were further treated with different preservation techniques, such 

as RNAlater. Metabolomic and bacterial taxonomic profiles were characterized using 

liquid chromatography-tandem mass spectrometry and 16S rRNA amplicon sequencing, 

respectively. These results will inform field sample collection and best storage practices 

for human biological approaches that apply multi-omic studies.



 

1 

CHAPTER 1 

INTRODUCTION 

  The molecular understanding of human biology has entered a golden era driven 

by technological and protocol innovations that have allowed for a deeper characterization 

of the genome, and the molecules driving the phenotype above the genome, identified by 

the fields of transcriptomics (RNA), proteomics (proteins), and metabolomics 

(metabolites). However, the quality of these “-omic” big data remains contingent on the 

biological samples themselves. Common to biological anthropology are samples 

collected from challenging field sites, whose remote conditions can impact sample 

preservation. Field-based studies of the human microbiome and metabolome are arguably 

more sensitive to sample preservation issues than human genome studies because they 

not only require proper DNA and molecular preservation, but also, unbiased frequency 

and abundance profiles of the organisms, genes, metabolic pathways, and/or particles the 

DNA and metabolites represent. 

 Despite these concerns, there is a surprising lack of inquiry into how small 

molecules are preserved in samples and how this preservation impacts results. This thesis 

project addresses preservation concerns with regards to time, storage temperature, and a 

storage solution called RNAlater. To address these preservation issues, a two-pronged 

approach was adopted, one that uses mass spectrometry-based metabolomics and a 

complementary approach that uses bacterial taxonomic 16S rRNA gene sequencing. 

Through these approaches, we explore how RNAlater and storage conditions affect our 

data generation, whether these sample treatment steps introduce taxonomic and 
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compositional biases, and how sample preservation techniques might be improved. By 

addressing such preservation issues, we hope to improve the current methods used to 

explore molecular anthropology. 

 

RNAlater and Sample Preservation 

 The common standard for ensuring sample integrity involves freezing a 

sampleimmediately after collection (Fiehn 2002; Gorokhova 2005; Reck et al. 2015; van 

Eijsden et al. 2013)⁠. This can include snap freezing, freezing with liquid nitrogen, or 

placing the samples in a freezer. However, this is not always feasible in certain 

environments. Remote field sites rarely have access to cold storage technologies, making 

sample preservation complicated. This issue is especially problematic for RNA-based 

projects due to the rapid degradation of RNA (Reck et al. 2015)⁠. Several sample storage 

solutions were developed to overcome these in-field sample preservation concerns. One 

such common reagent, called RNAlater, is the focus of inquiry for this project.  

 Ambion Invitrogen RNAlater Stabilization Storage Solution, referred to hereafter 

as RNAlater, is an aqueous storage reagent designed to preserve RNA in tissue samples 

(Lader 2001)⁠. Since its creation in the late 1990s, studies have demonstrated its efficacy 

at preserving not just RNA, but all nucleic acids (Gorokhova 2005; van Eijsden et al. 

2013)⁠. Furthermore, RNAlater has been proven practical at preserving nucleic acids 

within varying sample material. This includes bone (Cottrell et al. 2015)⁠, urine (Cheng et 

al. 2016)⁠, and feces (Reck et al. 2015)⁠. While in-house ingredients can vary, RNAlater is 

typically comprised of sodium citrate, ethylenediaminetetraacetic acid, ammonium 
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sulfate, and a buffer (sodium acetate is recommended by the developer) (L. Technologies 

2013; Lader 2001)⁠. RNAlater works by penetrating sample cells with the ammonium 

sulfate salts and forcing a precipitation of nucleic acids and proteins (Lader 2001)⁠. This 

process is commonly known as ‘salting out’. The salting out process by RNAlater 

deactivates any nucleases found within the cells that would otherwise degrade any 

present nucleic acids (Gorokhova 2005; Lader 2001; Voigt et al. 2015)⁠.  

 RNAlater eliminates many in-field sample storage concerns due to its ease of use 

in the field. According to the manufacturer, collected samples can be placed in certain 

volumes of RNAlater (the amount varies depending on sample material) and frozen once 

cold storage is accessible (Ambion 2014)⁠. For example, utilizing RNAlater for feces 

requires adding 1 mL of RNAlater per gram of feces, mixing, and freezing (Reck et al. 

2015; Zoetendal et al. 2006)⁠. Once placed in RNAlater, samples can be left at room 

temperature for 1 week without jeopardizing sample integrity (Ambion 2014; Reck et al. 

2015)⁠, although standard storage at 4°C, -20°C, or -80°C is eventually necessary to avoid 

molecular degradation. Samples should be submerged in RNAlater overnight at 4°C 

before being transferred to -20°C or -80°C (Ambion 2014). After storage, samples should 

be blotted using a paper towel and gently rinsed to remove RNAlater (fecal samples do 

not receive this step). As stated in the developer manual, samples stored in -20°C or -

80°C preserves samples indefinitely (Ambion 2014)⁠. However, this thesis questions the 

adequacy of these storage lengths.  

 Despite RNAlater’s frequent usage, there are few studies that have examined the 

consequences of RNAlater treatment on data quality (for exceptions see: Choo et al. 
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2015; Loftfield et al. 2016; Sinha et al. 2016; Wang et al. 2018). Addressed in this thesis 

are three critical questions: How does RNAlater impact metabolomic and 16S RNA gene 

data for functional and microbiome taxonomic characterization, respectively? Does 

RNAlater impact the data diversity measures or bias metabolic and microbial data? And 

lastly, can RNAlater treatment generate both untargeted metabolomic and 16S rRNA 

gene data? 

 

Metabolomics and Anthropology  

 Metabolomics is the study of the total metabolites present and their functional 

roles within a biological system (Bino et al. 2004; Greaves and Roboz 2014; Patti et al. 

2013; Wolfender et al. 2015)⁠. The particular definition of metabolite varies, but in this 

project, metabolites are any small molecule involved in life-sustaining chemical reactions 

(metabolic reactions, or metabolism) whose molecular weight is under 1500 Daltons (Da) 

(Viant et al. 2017)⁠. Due to the vast numbers of atomic arrangements, metabolites have 

high levels of structural variability, especially compared to genes and proteins (Fiehn 

2002)⁠. This extensive assortment of metabolites is generally divided into two categories: 

endogenous and exogenous. Endogenous metabolites are found naturally in organisms 

whereas exogenous metabolites are environmentally acquired (Dawes and Ribbons 2003; 

Wishart 2016)⁠. The total sum of all metabolites is known as the metabolome (Fiehn 2002; 

Patti et al. 2012)⁠. Through studying the metabolome, researchers can explore the 

functional role of metabolites within biological systems (Wolfender et al. 2015)⁠. 

Investigation of these metabolites, and their associated pathways, offers a direct snapshot 
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of the biological phenotype as formed by interactions between the genotype and 

environment (Dettmer et al. 2006; Patti et al. 2012)⁠. This connection to the phenotype 

exists because metabolic reactions are fundamental biological processes (DeBerardinis 

and Thompson 2012)⁠. Thus, metabolites and the metabolome represent the ultimate 

response to genetic and environmental forces (Bino et al. 2004; Nicholson et al. 2011)⁠. 

For example, some human diseases (such as heart disease, diabetes, stroke, and cancer) 

are caused by genetic, lifestyle, and environmental influences (Rattray et al. 2018; Willett 

2002). Studying the metabolome offers a way to thoroughly examine these disease states 

and their associated molecules from all sources of origin, rather than a single cause 

(Rappaport and Smith 2010; Rattray et al. 2018; Willett 2002). 

 Unfortunately, there is no single approach that can completely capture the 

metabolome (Bino et al. 2004; Dettmer et al. 2006; Wishart et al. 2018)⁠. The molecules 

of interest, experimental conditions, instruments, and data analysis approaches are 

variably selected by researchers to best answer their research questions. Depending on 

the project, these conditions can change. One common metabolomics approach involves 

targeted analysis, which focuses on a group of metabolites related to a specific pathway 

or metabolite class (Patti et al. 2012)⁠. A targeted analysis quantifies a known metabolite 

or a small number of metabolites (Wolfender et al. 2015)⁠. On the other hand, untargeted 

screenings categorize analytes depending on a change in response to stimuli and focus on 

measuring as many metabolites as possible (Dunn et al. 2013)⁠. Either approach is equally 

valid at generating metabolomic data and should be selected based on the specific project 

goals. For this project, an untargeted approach was adopted to investigate sample 
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treatment effects on all metabolites found in samples. Such untargeted approaches are 

popular for microbiology and have begun to emerge in molecular anthropology studies 

(Sankaranarayanan et al. 2015; Velsko 2017)⁠. 

 Metabolomics provides critical information for biological anthropologists. 

Biological anthropology can be defined as “the study of human biology within the 

framework of evolution” (Jurmain et al. 2013)⁠. With the popularity of genomics, 

biological anthropologists began studying human biology and evolution through studying 

biochemical molecules like DNA to explore human genetic origins (Ayala 1995), 

compare human microbiomes with chimpanzees and gorillas to track changes during 

human evolution (Moeller et al. 2014), study the relatedness of humans and past 

hominins like Neanderthals (Ovchinnikov et al. 2000), and much more. These new 

molecular anthropologists applied biochemical techniques and technologies to answer 

anthropological questions (Marks 2002)⁠. Recently, molecular anthropological work has 

shifted to studying metabolites. Examples include incorporating targeted MS to study 

hunter-gatherer diets as a proxy for ancient humans (Turroni et al. 2016), medicinal plant 

use by Neandertals (Hardy et al. 2012), and detection of possible metabolites associated 

with longevity in various mammals (Ma et al. 2015). Because metabolomics explores the 

functional role of metabolites, it represents human biology on a molecular level 

(DeBerardinis and Thompson 2012)⁠. This is because metabolites are integral to all 

biological processes, including those of health and disease (DeBerardinis and Thompson 

2012)⁠. Thus, metabolomics has a lot to offer in the exploration of human biology. Despite 

its value to anthropology, metabolomics’s importance has yet to be fully acknowledged 
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within biological anthropology on the same level as genomics. Some molecular 

anthropological studies have conducted metabolomic projects (Radini et al. 2016; 

Sankaranarayanan et al. 2015; Velsko et al. 2017)⁠, but these fields remain young, 

especially with respect to studies that assess the preservation and profile integrity of the 

metabolome in field-based studies.  

 

 

Mass Spectrometry-Based Metabolomics 

 Mass spectrometry (MS) coupled to separation techniques or direct injection 

(Dettmer et al. 2006)⁠ is a common method for metabolomics. Nuclear magnetic 

resonance is also used in metabolomics (Wang and Bodovitz 2010)⁠, but MS is the focus 

here because it was employed for this project. MS can identify, quantify, and analyze 

metabolites found in a sample by generating ionized particles and releasing them into the 

instrument where they are quantified by the detector and subsequently analyzed (Dettmer 

et al. 2006; Greaves and Roboz 2014)⁠. There are varying forms of MS instruments and 

techniques available, but no current process can detect every metabolite in a sample 

(Bino et al. 2004; Zamboni, Saghatelian, and Patti 2015)⁠. Each technique and instrument 

present their own biases in metabolite detection (Greaves and Roboz 2014)⁠. As a result, 

MS-based metabolomics projects can be highly varied in their goals, methods, and 

acquired data (Zamboni, Saghatelian, and Patti 2015).  

 Sample introduction is a critical part of any MS approach, with chromatographic 

separation (CS) being a popular method. Generally, CS separates and transfers sample 
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compounds between two phases to purify the components for identification (Coskun 

2016)⁠. CS coupled to mass spectrometry is generally divided into gas chromatography-

mass spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-MS) 

(Dettmer et al. 2006; Patti et al. 2012; Coskun 2016)⁠. CS involves passing samples 

through a column lined with a special solution (called the stationary phase) via the mobile 

phase. This mobile phase can be a gas or a liquid, depending on whether gas 

chromatography or liquid chromatography was employed (Coskun 2016; Greaves and 

Roboz 2014)⁠. Gas chromatography features a gas mobile phase for sample transfer, elutes 

more nonpolar molecules, and is preferred for thermally stable samples (Greaves and 

Roboz 2014)⁠. On the other hand, liquid chromatography utilizes a liquid as the mobile 

phase, elutes more polar molecules, is commonly used for thermally volatile samples, and 

has higher sensitivity for metabolic detection (Coskun 2016; Greaves and Roboz 2014)⁠. 

This greater sensitivity by liquid chromatography is due to its ability to detect molecules 

greater than 600 Da; gas chromatography is less accurate for molecules above this 

threshold (Greaves and Roboz 2014)⁠. Therefore, liquid chromatography is generally 

preferred for untargeted metabolomics. Additionally, some MS instruments include a 

fragmentation step. Such MS instruments utilize tandem mass spectrometry (MS/MS). 

MS/MS fragments ions and detects molecules a second time, allowing for greater 

detection and identification of metabolites (Greaves and Roboz 2014)⁠. For this project, a 

MS/MS instrument called the ThermoScientific Q Exactive Plus Hybrid Quadrupole-

Orbitrap Mass Spectrometer was used to perform untargeted screenings of samples. This 

MS/MS instrument was coupled to a ThermoFisher Scientific Vanquish Flex Binary LC 
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Figure 1. Construction details from the Q Exactive Plus.  

This figure was originally published in Molecular & Cellular Proteomics. Michalski A., 

Damoc E., Hauschild J-P., Lange O., Wieghaus A., Makarov A., Nagaraj N., Cox J., Mann 

M., and Horning S. Mass Spectrometry-based Proteomics Using Q Exactive, a High-

performance benchtop Quadrupole Orbitrap Mass Spectrometer. Mol Cell Proteomics. 

2011; 10:1-11. © The American Society for Biochemistry and Molecular Biology.  

Charged particles travel from the NanoSpray source, through the flatapoles, into the 

quadrupoles for filtering, collect in the C-trap, fragment in the HCD Collision Cell (for 

MS/MS), and enter the Orbitrap Mass Analyzer for detection. 

 

 

System to perform liquid chromatography. These together allowed LC-MS/MS to be 

employed for this project. A brief description of the MS/MS instrument and how it works 

is necessary to understand its role for this project. 
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 For this MS model, ions are initially formed via electrospray ionization 

(Scheltema et al. 2014)⁠. Here, sample molecules move through the CS column from the 

Vanquish LC System as a liquid and are dissolved by an electrically charged solvent, 

creating charged ionic droplets (Greaves and Roboz 2014)⁠. These nebulized droplets 

enter the MS/MS instrument and are evaporated to become a gas (Greaves and Roboz 

2014; Michalski et al. 2011; Scheltema et al. 2014)⁠. Ions then pass through the S-lens. 

This is a series of rings serving as an ion transfer tube (Michalski et al. 2011)⁠. Next, the 

ions move through the injection flatapole (which selects out ions) into the bent flatapole. 

The bent flatapole is a series of rods with small gaps between them that allow for droplets 

to fly out of the flatapole (Scheltema et al. 2014)⁠. This design prevents unwanted agents 

from passing further into the instrument (Michalski et al. 2011)⁠. From the bent flatapole, 

ions are channeled into a chamber of four long cylindrical rods called quadrupoles. These 

quadrupoles generate an electric field to guide selected ions along while also filtering out 

unwanted ions (Michalski et al. 2011)⁠. This ion filtering will vary according to the 

experiment. Moving through the quadrupole, ions enter the C-trap and are kept here 

before moving along. This next step moves ions into the HCD collision cell, where they 

are fragmented through collision (Michalski et al. 2011; Scheltema et al. 2014)⁠. This 

fragmentation is what defines MS/MS. After the HCD collision cell, ions are sent back to 

the C-trap before passing through the Z lens. This Z lens leads into the final section of the 

instrument: the orbitrap mass analyzer (Michalski et al. 2011)⁠. The orbitrap is a spindle-

shaped metal rod generating an electrical charge. Ions are fired from the C-trap into the 

orbitrap at high speeds where the electrical force and momentum causes ions to spin and 



 

11 

move across the orbitrap (Greaves and Roboz 2014; Fisher Scientific Inc 2016; 

Scheltema et al. 2014)⁠. Due to the spinning and movement of the ions, a ring of 

constantly moving ions is formed around the orbitrap. The size of this ring and the ion 

speed will depend upon the mass-to-charge ratio (m/z) of the molecules. The MS 

instrument detects these rings and subsequently analyzes the fragmented ions (Michalski 

et al. 2011; Scheltema et al. 2014)⁠. Ultimately, the Q Exactive Plus offers highly accurate 

analyte detection and characterization for metabolomic studies (Michalski et al. 2011; 

Scheltema et al. 2014)⁠.  

 Despite its many strengths, MS-based metabolomics has problems ranging from 

database inconsistencies, instrument differences, accurately identifying metabolites, and 

sample treatment and preparation, to name a few (Johnson and Gonzalez 2012; Matsuda 

2016; Patti et al. 2012). These last major weaknesses are highlighted in this thesis: 

sample preparation and treatment. Prior to separation and injection on an MS instrument, 

samples must undergo preparation. This step is crucial in extracting analytes, but it 

results in metabolite losses (Hollywood et al. 2006; Dettmer et al. 2006)⁠. Ultimately, 

sample preparation tends to be where metabolomic experimental errors most frequently 

occur (Fiehn 2002)⁠. These errors commonly include metabolite loss and 

misidentification. Specific losses will vary depending on the preparation techniques 

employed, with solid-phase extraction (SPE) and liquid-liquid extraction as the most 

common sample preparation methods (Dettmer et al. 2006)⁠.  

 Another major problem in MS-based metabolomics is sample treatment. Any 

procedures following sample collection can create biases in the formation, degradation, 
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and detection of metabolites. As a result, sample preservation greatly affects 

metabolomic data. Standard storage methods involve simply snap freezing samples in 

liquid nitrogen or freeze clamping (Fiehn 2002)⁠. However, few studies have explored the 

effects of sample preparation and treatment on metabolomic experiments. Complications 

of sample preservation are further compounded by the inability to use RNAlater (Wang 

et al. 2018)⁠. RNAlater is known to inhibit metabolomic data due to the components of 

RNAlater interfering with the MS instrument and preventing metabolic detection 

(Loftfield et al. 2016; Sinha et al. 2016a; Sinha et al. 2016b; Wang et al. 2018)⁠. 

Particularly, the ammonium sulfate salts are known to be problematic for MS analysis 

(Loftfield et al. 2016; Sinha et al. 2016). Only a handful of studies have used RNAlater 

for metabolomic projects as a result (Loftfield et al. 2016; Sinha et al. 2016; Wang et al. 

2018). This project addresses these preservation concerns with RNAlater and MS-based 

metabolomics in efforts to allow usage of RNAlater for untargeted MS-based 

metabolomic studies through a SPE protocol. These metabolomics data are paired with an 

investigation of RNAlater’s effects on sample integrity through microbiome profile 

analysis.  

 

The Microbiome and Anthropology 

 The microbiome is the collective sum of microorganisms (plus their genetic 

material) living in an environment (Grice and Segre 2012)⁠. For humans, the human 

microbiome is a composite of several microbial communities found in the gut, mouth, 

reproductive tract, and skin (Grice and Segre 2012; Turnbaugh et al. 2007)⁠. Known to 
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number in the trillions, these microorganisms play a variety of biological roles including 

digestion, metabolism, and immunity (Blaser and Falkow 2009; Grice and Segre 2012; 

Turnbaugh et al. 2007)⁠.  

 Human microbiome research elucidates the intersect between genetics, health, 

environment, and lifestyles (Turnbaugh et al. 2007)⁠. Anthropologists have studied the 

human microbiome with growing interest because the microbiome can shed light on our 

species’ evolutionary history, varying diets, behavior, and diversity (Benezra et al. 2012; 

Blaser and Falkow 2009; Vuong et al. 2017)⁠. Such studies can include investigating 

differences between human and non-human primate microbiomes (Moeller et al. 2014; 

Yildirim et al. 2010)⁠, examining historical microbiomes (Tito et al. 2012)⁠, and 

comparisons between human hunter-gatherer and industrialized populations (Obregon-

Tito et al. 2015; Schnorr et al. 2014)⁠. Researchers can utilize microbiome analysis 

methods through DNA sequencing to explore why some bacterial species are no longer 

present, why microbial levels of diversity changed, when these changes occurred, and 

how our relationship with these microbes impacts our biology today. Most common to 

anthropological studies of the human microbiome are rare and extraordinary samples 

retrieved from unique environments and cultural practices (Moeller et al. 2014; Obregon-

Tito et al. 2015; Sankaranarayanan et al. 2015; Schnorr et al. 2014; Turroni et al. 2016; 

Yildirim et al. 2010)⁠. Anthropologists have a legacy of innovating protocols to facilitate 

their often complex and challenging sample conditions (Benezra et al. 2012; Kaestle and 

Horsburgh 2002; Outram 2008; Warinner et al. 2014)⁠. This thesis continues in that same 

spirit, with attention to the microbiome profile via 16S rRNA gene sequencing. 
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The 16S rRNA Gene 

 Species identification is a recurring pursuit within biological sciences (Clarridge 

2004; Pereira et al. 2010)⁠. Early methods for identifying species relied on analyzing 

physical features and comparing these characteristics to those identified by other 

researchers (Clarridge 2004; Woese 1987)⁠. However, these methods are often challenged 

by the subjective and varied nature of examining bacteria for physical characteristics and 

the difficulty in studying unculturable bacteria (Clarridge 2004)⁠. In the 1970s and 1980s, 

the 16S rRNA gene was demonstrated to be more effective at identifying bacterial 

species than these earlier methods (Fox et al. 1977; Woese 1987; Clarridge 2004)⁠. 

Moreover, 16S rRNA gene sequencing provided a way to taxonomically identify 

unculturable bacteria (Amann et al. 1995; Pace 1997)⁠. Advancements in gene sequencing 

have further reinforced 16S rRNA gene sequencing as an ideal technique for 

characterizing bacterial ecologies, such as the gut microbiome (Clarridge 2004; Jovel 

2016)⁠.  

 The 16S rRNA gene, also known as 16S rDNA, encodes for a component of 

prokaryote ribosomes. The 16S rRNA gene is frequently sequenced and studied for 

taxonomic and phylogenetic purposes within microbiol9ogy because it is ubiquitous 

amongst bacteria, has highly conserved regions for targeted PCR-based methods and 

species-specific hypervariable regions for phylogenetic resolution, and is inexpensive and 

easy to sequence (Clarridge 2004; Fox et al. 1977; Kim and Chun 2014)⁠. In particular, the 

conserved and hypervariable regions make 16S rRNA gene sequences superior to earlier 

phenotype-based phylogenetic methods (Pace 1997)⁠. By aligning different organisms’ 



 

15 

16S sequences, researchers can count nucleotide differences as a measure of evolutionary 

distance between the organisms (Amann et al. 1995; Pace 1997)⁠. Thus, researchers can 

employ 16S rRNA gene sequences to understand how prokaryotic evolution occurred, 

what species are related to each other, and when species might have diverged through 

established methods in phylogenetics. While the gene’s conserved and hypervariable 

regions make it an excellent molecular clock for measuring this evolutionary distance 

(Tsukuda et al. 2017)⁠, the 16S rRNA gene sequence is limited at identifying closely-

related species or within-species strains (Jovel 2016; Kolbert and Persing 1999)⁠, such 

phylogenetic studies often require more multi-loci or genome studies, which exceed the 

resource of this thesis. Nevertheless, 16S rRNA gene-based studies remain the most 

prolific of phylogenetic approaches to microbiology in general, and microbiome 

specifically, in the last 30 years. 

 A 16S rRNA gene approach does not replace or diminish the importance of 

culture-based methods. While phenotypic species identification methods were limited in 

their ability to characterize unculturable bacteria, it has its advantages for culturable 

bacteria (Clarridge 2004)⁠. Chemotaxonomy, a combination of phylogenetics and culture-

based approaches to functional characterization of bacteria, remains a common practice 

for identifying novel species, and thus, culturing methods remain critical to the study of 

microbial variation (Clarridge 2004; Prakash et al. 2007)⁠. This combination of 

phenotypic and genotypic information for taxonomic purposes is called polyphasic 

taxonomy (Prakash et al. 2007; Vandamme et al. 1996)⁠. Such polyphasic approaches are 
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common in microbiology studies and frequently generate taxonomic inventories of 

bacterial species found in molecular anthropology and microbiome research. 
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CHAPTER 2 

MATERIALS AND METHODS 

 This research was conducted at the University of Oklahoma Norman Research 

Campus in the Laboratories of Molecular Anthropology and Microbiome Research 

(LMAMR).  

 

Sampling 

 All samples for this project were human fecal samples gathered from villages in 

Burkina Faso, Africa. A total of 120 individuals from 30 families (four from each family) 

contributed samples. Informed consent was provided with oversight from the Ministry of 

Health Ethics Committee located within Centre Muraz, a Burkina Faso national research 

institute. Participants were equipped with a labeled disposable collection container and a 

pair of gloves. The collection container and fecal sample were returned to researcher on 

site. Multiple scoops of sample were placed in collection tubes and these tubes were 

sealed then placed in a labeled bag. Bags were sealed and placed in ice located on-site. 

Next, samples were transferred to a -20°C freezer for overnight storage. All processing 

took place within 15 minutes. Each evening, samples were thawed prior to DNA 

extraction. DNA was extracted then samples were frozen again. Sampling occurred in 

this manner over the course of several days. After sample collection, all frozen samples 

were shipped to LMAMR at Norman, Oklahoma, and stored in a -80°C freezer. Samples 

were briefly thawed again to extract 2g from each sample for anaerobic culturing. After 



 

18 

the 2g collection, samples were kept frozen in -80°C until treatment for this project. Ten 

of these 120 total samples were used for this project. 

 

Experimental Design  

 The design and sample treatment of this project can be grouped into two distinct 

stages for metabolomics. Stage two was a modification of stage one, but the same 

samples were used for the entirety of the project.  

 Ten samples with the largest mass were chosen and set aside for this project. Four 

grams (g) of each sample was aliquoted, which were the working samples for this project. 

Of each 4g sample, 1g was removed sequentially as subsamples and stored in -80°C. 

These 1g subsamples were frozen backups in case more samples were needed. The 

remaining 3g of each sample was then divided into two separate groups of 1.5g each. One 

1.5g group was designated as raw, untreated samples. The second 1.5g group was 

allocated for treatment with RNAlater. Each 1.5g group (totaled at 20 separate 1.5g 

groups, 10 without RNAlater and 10 with RNAlater) were then further aliquoted into 

three distinct 0.5g portions. This created a total of 60 working sample, with six 

subsamples per sample. Of these six subsamples per sample, a total of three were 

untreated and the other three were treated with RNAlater. Thus, 30 total untreated and 30 

RNAlater samples were used for this project.  

 Following this treatment, the six subsamples from each sample were sorted into 

temperature groups: -80°C, 4°C, and room temperature (22-25°C). These temperatures 

were chosen because they are common storage temperatures for metabolomic samples 
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(Dettmer et al. 2006)⁠. Two of the six subsamples were placed in each temperature group, 

creating two in -80°C, two in 4°C, and the last two in room temperature. These samples 

were stored in their respective temperature groups for two weeks. Within these 

temperature groups, one subsample was untreated, and the other was RNAlater-treated. 

These steps were repeated for each sample. In the end, the 60 total samples (six each 

from the ten original samples) had 20 0.5g aliquots in each of the three temperature 

groups. Half of these 20 were untreated while the other half were RNAlater-treated. 

Figure 1 depicts this experimental design.  

After two-week storage, RNAlater samples underwent a RNAlater cleanup 

protocol designed to remove RNAlater components which impact MS analysis. Stage one 

samples were subjected to the RNAlater cleanup protocol twice to maximize RNAlater 

removal and avoid contaminating the MS instrument. Non-RNAlater samples did not 

undergo this protocol and, instead, were prepared for MS immediately after the two-week 

storage. Following RNAlater cleanup, samples were prepared for MS analysis then 

stored in -80°C prior to MS analysis. Remaining sample material was kept at -80°C. This 

concludes stage one of the project.  

 Stage two tested the efficacy of undergoing RNAlater cleanup two times. Of the 

30 available RNAlater-treated 0.5g samples, seven random samples were chosen and set 

aside for further RNAlater cleanup. Samples in stage two were treated identically to 

those from stage one except the stage two samples only underwent one RNAlater cleanup 

protocol. Following the single RNAlater removal, samples underwent the same 

metabolomic workflow as stage one. Stage one and two were run as separate batches on 
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the MS instrument. A minimal number of RNAlater samples (12 total, including blank) 

were run on the MS instrument to ensure traces of RNAlater would not negatively affect 

the MS instrument. Due to time limitations, only RNAlater samples were run on the MS 

instrument. 
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Figure 1: Experimental Design.  

Simplified visualization of metabolomics experimental design described previously. For 

stage one, samples went through SPE again following elution. For stage two, samples 

went through SPE once. Samples were loaded onto a Vanquisher LC system which 

injected samples into MS instrument. 
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Solid-Phase Extraction: RNAlater Cleanup 

 In this study, the RNAlater cleanup protocol was optimized from a SPE protocol 

presented by Cottrell et al. 2015. An Oasis Waters extraction manifold (20 pos, 13x75mm 

tubes, cat.: WAT200606) connected to a Rocker 400 650mmHg vacuum pump (cat.: 

167400–11) were used for SPE. Oasis Waters SPE HLB 1cc Vac Cartridges (10 mg 

sorbent per cartridge, 30μM particle size, cat.: 186000383) were placed in the extraction 

manifold. Flow rate was adjusted to approximately 1 drop per second, as per Oasis 

Waters SPE protocol. Vacuum pressure and flow rate varied depending on the sample 

buffer, necessitating frequent manual adjustment of the flow rate to match the 1 drop per 

second ideal. LC-MS grade water and LC-MS grade methanol were always used for 

RNAlater cleanup protocol unless otherwise specified. 5mL culture tubes were used to 

collect flowthrough and were replaced after each cartridge loading.  

 To prepare RNAlater-treated samples, RNAlater was added to create in a 1:1 

ratio of RNAlater to sample. In this sample type, 0.5g of feces were combined with 500μl 

of RNAlater was added to each of these samples. Following RNAlater addition, all 

samples were mixed with volumes of water spiked with 2μM sulfachloropyridazine as 

internal standard (IS) to reach a total volume of 5mL. This resulted in 4.5mL of water. 

For the untreated samples, 5mL of water was used. All samples were then homogenized 

by sonication to create fecal slurries.  

 Samples were placed in a FisherScientific Ultrasonic Cleaning Bath (20.8L, cat.: 

15-337-435) at maximum power for 10 minutes. Following sonication, samples had 

organic and supernatant layers. 1000μL of supernatant from each RNAlater-treated 
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sample were collected and placed in separate, appropriately labeled 1.5mL collection 

tubes prior to SPE. 1000μL of supernatant from each of untreated samples were collected, 

placed in new 1.5mL collection tubes, and set aside. The original samples were then 

placed in -80°C for storage. From here, only the supernatants of the RNAlater-treated 

samples underwent the following steps. 

 Next, samples were centrifuged at 14,000rpm at 4°C for 10 minutes using an 

Eppendorf 5242 mini-centrifuge (cat.: 0008643) in a freezer room. Oasis Waters SPE 

HLB cartridges were rinsed with 3mL methanol and 3mL water to condition and 

equilibrate the cartridges under vacuum. After all liquid flowed through, 1000μL of 

samples were each loaded into cartridges under vacuum. Next, 3mL from each of the 

following were added to every cartridge under vacuum in this order: water, 5% methanol, 

50% methanol with 0.1% acetic acid, and 50% methanol. All liquid flowed through the 

cartridges before adding the subsequent solution. Cartridges were then vacuum-dried to 

remove any remaining liquid. Next, 1mL methanol was added for elution with new 1mL 

collection tubes placed to collect eluates, yielding 1000ul of eluate for each sample. For 

stage one, this RNAlater cleanup was repeated using the new eluates. New SPE 

cartridges were put in place and the steps were identical to previous RNAlater cleanup 

with the eluates used for sample loading. Stage two moved on to next step of MS 

treatment.  

 Following final elution from RNAlater cleanup, elutes and 1000μL of supernatant 

from untreated samples were placed in an Eppendorf Vacufuge Vacuum Concentrator 
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(cat.: 005535). Dessicator function was utilized to dry down samples for MS analysis. 

After dessication, dried samples were stored in -80°C prior to MS analysis. 
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1) Add 500μl of RNAlater to 0.5g aliquots of raw fecal samples. Do not add to non-

RNAlater samples. Add 4L of LC-MS grade water (spiked with IS) to RNAlater 

samples. For non-RNAlater samples, add 4.5L instead. Total volumes should be 5L. 

a) All following reagents and solutions should be LC-MS grade.  

2) Homogenize to create slurries. Place in sonicator at maximum power for 10 minutes. 

3) Take 1000μl of aqueous supernatant and place in separate tubes. Remaining samples 

should be stored in -80°C as backup. Set aside supernatants from non-RNAlater 

samples. Only RNAlater supernatants should undergo the following steps. 

4) Centrifuge at 14,000rpm at 4°C for 10 minutes.  

5) During or after centrifugation, place SPE cartridges into SPE extraction manifold. 

One cartridge per sample. Place collection tubes (we used culture tubes) in the 

interior manifold tube rack to collect waste.  

6) Rinse each SPE cartridge with 3mL methanol, followed by 3mL water. Cartridges are 

now conditioned and equilibrated. 

a) Replace waste tubes following each added reagent to cartridge. 

7) After centrifugation, load all 1000μL of sample supernatant into cartridges.  

8) Add 3mL of methanol to each cartridge. 

9) Add 3mL 5% methanol to each cartridge. 

10) Add 3mL 50% methanol with 0.1% acetic acid to each cartridge. 

11) Add 3mL 50% methanol to each cartridge. 

12) Vacuum-dry cartridges for 5 minutes. 

13) Place empty 1mL collection tube in interior tube rack. Add 1mL methanol to each 

cartridge for elution.  

14) For second RNAlater removal, elutes from Step 11 were treated as new samples and 

protocol was restarted from Step 4. 

15) After final elution, place RNAlater-removed elutes and 1000μL from untreated 

samples inside Vacufuge. Activate dessicator function to dry down samples for MS 

analysis. 

16) Once liquid is dried, place samples in -80°C until ready for MS analysis. 

 

Table 1.  RNAlater Removal Protocol.  

Our optimized RNAlater cleanup protocol is listed here. The protocol is a normal-phase SPE procedure 

developed from a similar protocol used by Cottrell et al. 2015. Goal is to isolate and remove the RNAlater 

salts from samples without removing metabolites. SPE works by having target molecules bind to a silica 

sorbent within the cartridge, wash the sorbent, and then elute the target analytes. Chemicals and reagents 

used for SPE should be selected based off their chemical properties and the properties of the target 

analytes. For this RNAlater removal SPE protocol, all solutions and reagents should be LC-MS grade. 

Only samples treated with RNAlater should undergo steps 4-14. 
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Liquid chromatography-tandem mass spectrometry 

 All LC-MS/MS processing was done using the ThermoFisher Scientific Vanquish 

Flex Binary LC System (cat.: IQLAAAGABHFAPUMBJC) linked to the ThermoFisher 

Scientific Q Exactive Plus Hybrid Quadrupole-Orbitrap Mass Spectrometer (cat.: 

IQLAAEGAAPFALGMBDK). These instrument performed LC and MS/MS, 

respectively. Samples were removed from -80°C and resuspended using 200μL of 50% 

LC-MS grade methanol spiked with 0.5μg/mL sulfadimethoxine as an IS. After 

resuspension, samples were added to a 96-well plate for MS injection. Resuspended 

samples were injected with an injection volume of 20μL. A Kinetix C18 core-shell 

column (50x2.1mm, 1.7μM particle size, 100 Å pore size, cat.: 00B-4475-AN) was used 

for LC. The mobile phase consisted of two solvents: Solvent A as LC-MS grade water 

with 0.1% formic acid and Solvent B as LC-MS grade acetonitrile with 0.1% formic acid. 

To avoid RNAlater components from entering MS instrument, flow was initially directed 

to waste for 30 seconds and 15 seconds for samples from stages one and two, 

respectively. This common step prevents contaminating the MS source with unwanted 

molecules from the mobile phase. After this initial waste redirection, gradient parameters 

were 5% Solvent B for 1 minute, increase from 5%-100% Solvent B over 8 minutes, 

remain at 100% Solvent B for 2 minutes, decrease to 5% Solvent B for 30 seconds, and a 

1 minute re-equilibration phase at 5% Solvent B. Column temperature and compartment 

were kept at 40°C and 10°C, respectively, during analysis. For samples from stage one, 

samples were randomly selected for injection in order to test effects of RNAlater removal 

on MS. All stage two samples were injected in order of location on 96-well plate. 
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 Electrospray ionization parameters were: sheath gas flow rate at 35 L/min, 

auxiliary gas flow rate at 10 L/min, auxiliary gas temperature at 350°C, and sweep gas 

flow rate at 0 L/min. S-lens RF was at 50V, spray voltage was at 3.8 kV, and the capillary 

temperature was at 320°C. MS data were acquired in positive mode, with data-dependent 

acquisition for MS2 data. MS scan ranges were set to 100-1500 m/z. 5 MS/MS scans of 

the most abundant ion per cycle were recorded. MS1 resolution was set to 35,000 and 

MS2 resolution was set to 17,500. MS1 and MS2 maximum injection time were both set 

at 100 ms. MS AGC target was at 1e6 and MS/MS AGC target was at 5e5. 2m/z was 

used as an isolation window. MS/MS occurred at 2-8 seconds with an exclusion of 10 

seconds. Collision energy was increased from 20% to 30% and to 40%.   

 

16S rRNA Gene Amplicon Sequencing 

 To illustrate bacterial taxonomic profiles, the bacterial 16S rRNA gene V4 

hypervariable region was targeted and amplified. 16S amplification and sequencing was 

performed on all samples following sonication after addition of RNAlater. As mentioned 

earlier, a total of 60 samples were utilized in this project. These 60 samples underwent 

the same 16S procedures, regardless of temperature or RNAlater treatment. None of the 

samples used for 16S rRNA gene sequencing underwent the RNAlater removal protocol.   

 DNA was extracted using the Qiagen AllPrep PowerViral DNA/RNA Kit 

(cat:28000-50) with extraction blanks. Extraction protocol followed manufacturer 

instructions. Final DNA concentration was quantified using the Invitrogen Qubit 2.0 

Fluorometer (cat.: Q32866) with the ThermoFisher Scientific Qubit dsDNA Broad Range 
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assay kit (cat.: Q32850). See supplementary table 1 for these Qubit results. Samples 

underwent this DNA extraction procedure in batches of ten with one negative blank in 

each batch, causing the final sample count for 16S rRNA gene sequencing to be 66 total 

samples (60 samples with 6 negative blanks). These 66 samples all underwent the 

following steps.  

   16S copy number quantification was collected via quantitative polymerase chain 

reaction (qPCR). The Roche FastStart Essential DNA Green MM with SYBR Green I 

was used (cat.: 06402712001) on a Roche Lightcycler 96 (cat.: 05815916001). 10μM V4 

non-Illumina primer stocks of 515f (GTGCCAGCMGCCGCGGTAA) and 806r 

(GGACTACHVGGGTWTCTAAT) were used as forward and reverse primers, 

respectively. qPCR negative blanks were included. In-house Escherichia coli (E. coli) 

standards (1000x, 100x, 10x 16S copies per μL) were used as positive controls and 

standards. Initial denaturation was set to 95°C for 10 minutes, with 35 cycles at 95°C for 

10 seconds, 52°C for 20 seconds, and 72°C for 30 seconds. Samples were diluted and 

categorized into two PCR groups according to qPCR results.  

 16S triplicate PCR was performed with negative and positive controls using the 

ThermoFisher Scientific Phusion HotStart II High Fidelity DNA Polymerase Enzyme 

System (cat.: F-549L) on an Analytik Jena Biometra T Professional Trio Thermocycler 

(cat.: 3408114).  10μM stocks of the universal 515f V4 primers with Illumina adapters 

were used in all samples. 2.5 μM stocks of 806r V4 barcoded primers with Illumina 

adapters were similarly employed. These universal reverse primers had unique 12bp 

GOLAY error-correcting barcodes for multiplexing (Caporaso et al. 2012). Each sample 
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was given a unique reverse primer and barcode. Supplementary table 3 depicts these 

sample-to-barcode matches. UV nanopure water used for PCR blanks instead of DNA 

template. Supplementary table 4 depicts the PCR reaction sheet used, including amount 

of each reagent. PCR conditions were initial denaturation at 98°C for 30 seconds, 18 (for 

PCR group 1) or 20 (for PCR group 2) cycles of 98°C for 15 seconds, 52°C for 20 

seconds, 72°C for 30 seconds, and final extension at 72°C for 5 minutes.  

 Sample triplicates were pooled, and the pools were purified using the Qiagen 

MinElute PCR Purification kit (cat.: 28004) according to the Qiagen protocol. Sample 

pools were run on a 1% agarose gel and desired fragments (~380 bp) were cut from gel. 

Excised gel fragments underwent the Qiagen QIAquick Gel Extraction kit (cat.: 28706) 

following kit instructions. Pools were normalized to 4nM, denatured using 0.5N NaOH, 

and diluted to a final concentration of 10pM. 15% PhiX control was added to sequencing 

pool. Final pool was loaded onto an Illumina MiSeq Next Generation Sequencer (cat.: 

SY-410-1003) using the Illumina MiSeq Reagent 2x250bp v2 Kit (cat.: MS-102-2003) 

protocol. All 60 working samples, six extraction blanks, two PCR blanks, and two E. coli 

10X positive controls (totaling 70 samples) were loaded onto the MiSeq as the loading 

pool. These were the only samples on this MiSeq run. 

 

Data Analysis 

 Raw MS and MS/MS files were converted to mzXML format using MSConvert 

(Chambers et al. 2012). MZMine v2.37 was used to identify MS features (Pluskal et al. 

2010). MZMine parameters are depicted in supplementary table 5. PCoA plots were 
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created using a Canberra distance matrix with the ClusterApp online program 

(http://dorresteinappshub.ucsd.edu:3838/clusterMetaboApp0.9.1/). Molecular networking 

and library spectral database searches were completed using the Global Natural Products 

Social Molecular Networking (Wang et al. 2017), also known as GNPS, on the mgf file 

exported from MZMine. As GNPS only works with MS/MS data, only the MS/MS files 

were uploaded. GNPS parameters were: precursor and fragment ion mass tolerance: 0.02 

Da, minimum cosine score for networking and library matches: 0.7, minimum number of 

matched MS2 fragment ions for networking and library matches: 4, network topK: 50, 

maximum connected component size: 100, maximum shift between precursors: 500 Da, 

analog search: enabled, maximum analog mass difference: 100 Da, precursor window 

filtering: enabled, 50 Da peak window filtering: enabled, normalization per file: row sum 

normalization. Results were analyzed by evaluating mirror plot similarity, cosine score, 

and plausibility of matches. 

16S rRNA gene sequences were downloaded from Illumina BaseSpace sequence 

hub (http://basespace.illumina.com). Raw file outputs gave a unique Sample ID with 

three numbers (e.g.: Samp254). These were matched to the RCBC number corresponding 

to the unique reverse barcode for each sample and utilized for demultiplexing. 

AdapterRemoval v2 (Schubert et al. 2016) was used to trim and merge Read1 and Read2 

files with a quality score equal to or greater than 30 phred. Next, these files were 

collapsed into a single file containing all the merged reads. Quantitative Insights Into 

Microbial Ecology 1 (QIIME 1) was employed for operational taxonomic unit (OTU) 

picking (Caporaso et al. 2010). Closed-reference OTU picking was performed using the 

http://dorresteinappshub.ucsd.edu:3838/clusterMetaboApp0.9.1/
http://basespace.illumina.com/
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EzTaxon Database (Chun et al. 2007) to identify taxonomy and generate a biom file. This 

OTU picking method was selected because it uses reference sequences for alignment, 

which allows faster speed, high-quality taxonomic selections and phylogenetic trees, and 

nonoverlapping amplicons can be compared (Rideout et al. 2014).  

Summarizing the biom file revealed all working samples and E. coli standards 

contained at least 12,000 reads. None of our negative controls contained 12,000 reads, so 

12,000 was selected as the rarefaction depth. Following rarefaction, phyla and genera 

level taxonomy of the remaining 60 samples and two E. coli standards were processed 

using Microsoft Excel to calculate the relative frequencies and abundances of bacterial 

taxa. The top five most abundant phyla and top fifteen genera were identified and plotted 

using Microsoft Excel. 

For alpha diversity analysis, a phylogenetic tree was generated using the EzTaxon 

Database (Chun et al. 2007). MAFFT (Katoh and Standley 2013) was used to align 

sequences within a mapping file containing a single representative sequence for each 

OTU. Next, FastTree (Price, Dehal, and Arkin 2009) was used within QIIME to generate 

phylogenetic trees based off the aligned OTU sequences. QIIME then generated alpha 

diversity results from the rarefied biom file and phylogenetic tree. Average abundance of 

specific taxa was calculated by summing up the total taxa within each sample and 

dividing the count for each taxon by the total amount. Alpha diversity analyses focused 

on the top five abundant phyla and top 15 abundant genera across all samples. For beta 

diversity, QIIME was employed to create unweighted and weighted UniFrac distance 

matrices. These correspond to presence/absence and abundance of bacterial taxa, 



 

32 

respectively. Next, Principal Coordinate Analysis (PCoA) using these UniFrac distance 

matrices, as implemented in QIIME, was performed, followed by utilizing Emperor 

within QIIME to generate three-dimensional PCoA plots. Additional analysis was 

performed in R version 3.5.3 (R Core Team 2018) using the R package ggplot2 to create 

boxplots, scatter plots, and two-dimensional PCoA plots (Wickham 2016). Statistical 

significance of results was determined using the FSA package in R to perform the 

Kruskal-Wallis test by ranks and Dunn’s test on alpha diversity files (Ogle 2017). Dunn’s 

test was employed to validate the findings from significant Kruskal-Wallis tests. Analysis 

of covariance (ANCOVA) was done in R to test the effects of treatments while 

controlling for covariates on alpha diversity files. Permutational multivariate analysis of 

variance (PERMANOVA) was used in QIIME to evaluate statistical significance of beta 

diversity data. Results from these statistical tests can be found in supplementary table 6. 

The data from these taxonomic summaries, alpha diversity, and beta diversity analyses 

were used to inform conclusions about microbiome profiles of our samples. 
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CHAPTER 3 

RESULTS 

Metabolome Preservation 

 While we were able to successfully employ a RNAlater cleanup protocol to 

generate untargeted LC-MS/MS data, our RNAlater cleanup protocol did not appear to 

preserve metabolomic profiles. The internal standards (sulfachloropyridazine and 

sulfadimethoxine) were detected, but GNPS spectral library searches identified six total 

metabolites (not including internal standards) across all samples and stages. Generally, 

MS-based metabolomics projects have several hundred total identified metabolites, with 

ranges including 180-860 metabolites depending on the project and its goals (Loftfield et 

al. 2016; Sankaranarayanan et al. 2015; Turroni et al. 2016; Wang et al. 2018)⁠. Since only 

six metabolites were detected for this project, this indicates metabolomic profiles within 

samples were not preserved properly. This was true for all samples ran on the MS, 

irrespective of the number of RNAlater removals performed.     

 While the GNPS spectral library search detected six total metabolites, only one 

compound was a proper match based on mirror plot similarity (Figure 3) and cosine 

score: urobilinogen. According to the Human Metabolome Database, urobilinogen is a 

parent compound of the pigment stercobilin, which is known to give feces its color 

(Wishart et al. 2018). Since urobilinogen is a fecal metabolite, its presence within our 

samples is expected. However, urobilinogen was only detected in seven samples. Of 

these seven total samples, five samples had a single RNAlater removal.  
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Figure 3. Mirror plot of Urobilinogen from GNPS. 

This screenshot was taken from the GNPS website. In GNPS, mirror plots are used to evaluate whether 

a match from the spectral library database is valid. The bottom bars in green are the raw peaks 

associated with the matched molecular from the GNPS library. The top black bars are the peaks from 

the users’ submitted data that GNPS believes are a mach. Both sets of peaks are placed on top of each 

other to easily identify if they match. The size and placement of peaks must be similar for the match to 

be considered valid. In this case, the peaks from our data and the library data are nearly identical. 

Therefore, this molecular is a valid match to our data.  

 PCoA plots generated using Canberra distance matrices demonstrate that while 

we were unable to preserve metabolomic profiles, sample treatment still influenced our 

metabolomic content (Figure 4A). Samples that underwent two RNAlater cleanups 

clustered very tightly together, whereas one-time RNAlater removal samples did not 

cluster together as strongly. Also, these plots do not show clustering according to storage 

temperature (Figure 4B). Furthermore, these PCoA plots did not position our negative 

blank near any of our samples (Figures 4A and 4B). This indicates samples were not 

completely devoid of metabolites, even though the entire metabolomic profile was not 

preserved. 
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Figure 4. Three-dimensional PCoA plots of metabolomics samples. Generated from 

Canberra distance matrices. 

(A) Color-coded number of RNAlater cleanups by: dark blue samples (2 RNAlater cleanups), 

green samples (1 RNAlater cleanup), and tan (blank, 0 RNAlater cleanup). Samples that had 

two RNAlater cleanups clustered together very tightly. On the other hand, samples that 

underwent a single RNAlater removal did not group together as strongly. These samples 

clustered in the same general area of the PCoA plot, but did not occupy the same space, unlike 

the samples that underwent two RNAlater cleanup protocols. Negative blank located at bottom 

indicates RNAlater removal did not deplete all metabolites from samples. 

(B) Color-coded storage temperature by: green (NA, blank), tan (room temperature, 22-25°C), 

silver (-80°C), and red (4°C). Samples did not readily cluster due to temperature. The group of 

clustered -80°C samples were all samples that went through two RNAlater cleanups, which 

likely caused the clustering.  
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Gut Microbiome Profile 

 DNA from all 60 samples was successfully extracted, amplified, and sequenced. 

Of the total 12,588,428 reads from the Illumina MiSeq, 11,704,428 reads passed filtering 

criteria. Approximately 25% of these passing filter reads mapped to our PhiX control 

according to the MiSeq, resulting in a total 7,765,530 16S reads identified as the samples 

in this study.     

 Microbiome taxonomic inventories were first investigated by identifying the most 

abundant phyla within samples. Samples exhibited high levels of the phyla Firmicutes 

(76.6% average abundance), Actinobacteria (14.6% average), Bacteroidetes (3.3% 

average), Proteobacteria (2.5% average), and Euryarchaeota (1.3% average). These 

specific phyla are the most abundant across all samples (Figure 5). Other identified phyla 

include Tenericutes, Cyanobacteria, Verrumicrobia, and more (Supplementary table 7A). 

These remaining phyla are varyingly distributed across samples, as shown by Figure 5. 
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Figure 5. Phylum-

level taxonomic 

summaries.  

Colored by top five 

most abundant 

phyla. Remaining 

detected phyla were 

grouped as “Other”. 

Each column 

represents a sample, 

sorted by individual. 

Firmicutes 

dominates all 

samples, followed 

by Actinobacteria, 

Bacteroidetes, 

Proteobacteria, and 

Euryarchaeota. 

Distribution of phyla 

varies between 

samples.  

Sample names can 

be broken down into 

host, storage 

temperature, and 

RNAlater. The first 

four numbers refer 

to the family number 

and individual 

within that family 

(e.g.: 0702= family 

07, family member 

02).  These are 

always individuals. 

RT/4/80 refer to 

storage at room 

temperature (RT), 

4°C (4), and -80°C 

(80), respectively. 

The final letter, N/R, 

refers to use of 

RNAlater. N means 

No and R means 

RNAlater (Yes). For 

example, sample 

0901RTN is from 

family 09, family 

member 02, stored 

at room temperature, 

and no RNAlater 

treatment. 
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Next, the top 15 most abundant genera were identified (Figure 6). These top 

genera include Blautia (10.3% average abundance), Clostridium (8.3% average), 

Collinsella (6.4% average), Subdoligranulum (4.1% average), and Pediococcus (3.6% 

average), to name a few (Supplementary table 7B). Overall, the distribution of genera 

was highly varied within these samples. For phyla, all samples generally had the same top 

five abundant phyla with only a small percentage of other phyla (such as Tenericutes or 

Cyanobacteria). At the genus level, samples usually contained many more genera outside 

the top 15, showing a greater range of taxa within samples. Of the top 15 most abundant 

genera, 12 belonged to the phylum Firmicutes. After characterizing the bacterial 

taxonomic inventories of our samples, the bacterial diversity within samples was then 

explored. 

Alpha diversity analysis of samples indicates the use of RNAlater affected 

phylogenetic diversity and microbial richness within samples. RNAlater-treated samples 

generally had higher counts of observed bacterial species (Figure 7A) and increased 

phylogenetic diversity (Figure 7B). When examining samples based on the individual 

sample donor, the RNAlater samples exhibited higher microbial richness and 

phylogenetic diversity compared to non-RNAlater samples from the same host. The 

Kruskal-Wallis test by ranks followed by Dunn’s test confirmed this observation was 

statistically significant (both p-values=0.01). Furthermore, alpha diversity analyses also 

demonstrated that sample taxonomic inventories were largely impacted by the host 

sample donor. For both microbial richness and phylogenetic diversity, host-based 

differences were statistically significant (both p-values=0).  
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Figure 6. Genus-

level taxonomic 

summaries.  

Colored by top 

15 abundant 

genera. 

Remaining 

genera were 

grouped under 

the category 

“Other”. Each 

column 

represents a 

sample, sorted by 

individual. 

Blautia is the 

most abundant 

genus followed 

by Clostridium, 

and Collinsella. 

While Blautia 

was the most 

abundant genus 

across all 

samples, five 

samples 

exhibited high 

levels of 

Pediococcus 

(light blue). This 

genus was far-

and-away the 

most abundant in 

each of these 

samples. 

However, no 

other samples 

contained more 

than 1% 

abundance of 

Pediococcus. Its 

high abundance 

in these five 

samples is 

noteworthy. 

Other genera are 

distributed 

varyingly in 

samples. 
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A  

 B 

 

  

Figure 7. Boxplots of alpha diversity analyses. 

Color-coded RNAlater use by: green (No) and red (Yes). Non-RNAlater samples tended to show wider 

ranges of diversity. 

(A) Microbial richness of samples from all hosts increased in RNAlater samples. Number of observed 

species varied dramatically between hosts. 

(B) Phylogenetic diversity of samples from all hosts generally increased in RNAlater samples. Number of 

observed species for each host were very different. Trends exhibited here are like those from Figure 7A. 
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Despite these observations from RNAlater and individual sample donors, there 

were no significant differences in microbial richness or phylogenetic diversity due to 

storage temperature (p-values=0.62 and 0.53, respectively). RNAlater samples exhibited 

increased microbial richness (Figure 8A). When examining the effects of storage 

temperature in alpha diversity analyses without considering RNAlater use, all 

temperatures had relatively equal values for microbial richness and phylogenetic diversity 

(Figure 8B). However, inspecting both temperature and RNAlater use together reveals 

that non-RNAlater samples stored at room temperature had decreased microbial richness 

and phylogenetic diversity (Figure 8C).  

Beta diversity analyses report that differences between samples were primarily 

due to host. PCoA plots using both weighted and unweighted UniFrac distances 

demonstrate strong clustering based on host donor (Figures 9 and 10, respectively). After 

utilizing PERMANOVA on both weighted and unweighted UniFrac distance matrices 

(weighted p-value=0.001, unweighted p-value=0.001), these differences were found to be 

statistically significant.  However, seven samples did not cluster due to individual donor 

based on weighted UniFrac distances (Figure 9B). Instead, these seven samples all did 

not receive RNAlater treatment and were kept at room temperature. Interestingly, five of 

the seven outliers contained the genus Pediococcus in high abundance (Figures 6, 10, 11, 

12, 13, and Table 2). These five samples had the highest levels of Pediococcus 

abundance from any sample, and it was the most abundant genus in these five samples. 

PCoA plots using unweighted UniFrac distances do not show these seven outliers 

(Figures 10A and 10B).  
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 Figures 9 and 10 illustrate samples did not cluster according to RNAlater use or 

storage temperature (except for the seven outliers). Nevertheless, PERMANOVA 

analysis indicates RNAlater use (weighted p-value=0.001, unweighted p-value=0.002) 

and storage temperature (weighted p-value=0.001, unweighted p-value=0.001) caused 

statistically significant differences between samples. Therefore, individual sample donor 

was the primary force affecting differences between samples, but RNAlater and storage 

temperature slightly affected microbiome profiles. These effects were outweighed by the 

influence of the host. 
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B 
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Figure 8. Boxplots of alpha 

diversity analyses by sample 

treatment method. 

Alpha diversity analyses of storage 

temperature and RNAlater use. 

(A) Color-coded RNAlater use by: 

green (No) and red (Yes).  

RNAlater-treated samples had 

increased microbial richness, 

although non-RNAlater samples 

had a wider range.  

(B) Color-coded storage 

temperatures by: green (4°C), red (-

80°C), and blue (room temperature, 

22-25°C). All storage temperatures 

exhibited similar microbial 

richness.  

(C) Color-coded RNAlater use by: 

light blue (No) and dark blue (Yes). 

Storage temperature on x-axis. 

Microbial richness was relatively 

similar for samples regardless of 

treatment method. However, 

RNAlater samples displayed 

increased microbial richness 

regardless of storage temperature. 

The exceptions are non-RNAlater 

samples kept at room temperature, 

where these samples exhibited 

reduced microbial richness.  
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Figure 9. Two-dimensional PCoA plots using unweighted UniFrac distances.  

Color-coded individual by: red (702), orange (901), brown (1001), dark green (1002), light green 

(1102) teal (1301), sky blue (2001), dark blue (2302), purple (2401), and pink (3002). These PCoA 

plots were generated from beta diversity analyses used to create unweighted UniFrac distance 

matrices. Differences in presence and absence of taxa were primarily due to host. Samples generally 

clustered with other samples from their host. Moreover, host clusters were occasionally distinct from 

each other rather than packing together closely. 

(A) Shape-coded RNAlater use by: circle (No) and triangle (Yes). Differences in presence and absence 

of taxa were primarily due to host rather than RNAlater use. Samples did not appear to cluster due to 

the usage of RNAlater.  

(B) Shape-coded storage temperature by: circle (4°C), triangle (-80°C), and square (room temperature, 

22-25°C). Unweighted UniFrac plots show samples generally clustered according to host instead of 

storage temperature. Samples did not cluster based on storage temperature. 
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Figure 10. Two-dimensional PCoA plots using weighted UniFrac distances. 

Similar to Figure 6 except these plots were created using weighted UniFrac distance matrices. Color-

coded individual by: red (702), orange (901), brown (1001), dark green (1002), light green (1102) teal 

(1301), sky blue (2001), dark blue (2302), purple (2401), and pink (3002). While samples generally 

clustered based on host differences, almost all the samples were packed tightly together in a large 

group. There is much more overlap between hosts than in the unweighted PCoA plots.  

(A) Shape-coded RNAlater use by: circle (No) and triangle (Yes).This PCoA plot shows how samples 

primarily clustered according to host when examining differences between abundance of taxa. 

RNAlater use had little effect on clustering. However, within host groups, there appeared to be slight 

clustering due to RNAlater.  

(B) Shape-coded storage temperature by: circle (4°C), triangle (-80°C), and square (room temperature, 

22-25°C). Host differences affecting the abundance of bacterial taxa drove sample clustering more 

than storage temperature. Some clustering due to storage temperature appears to occur within host 

groups.  
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Figure 11. Two-dimensional PCoA plot from 

weighted UniFrac distances with storage 

temperature and RNAlater.  

Shape-coded storage temperature: circle (4°C), 

triangle (-80°C), and square (room temperature, 

22-25°C). Color-coded RNAlater use by: red 

(No) and blue (Yes). This PCoA plot using 

weighted UniFrac distance matrices shows 

samples largely do not cluster according to 

storage temperature or RNAlater use. However, 

this plot highlights the seven outliers located in 

the lower right half of the plot. These outliers 

are the only points between 0.0 & 0.2 PC1 and 

0.0 & -0.2 PC2. The seven outliers clustered 

closer to each other than to other samples from 

their hosts. Five of these outliers had high levels 

of Pediococcus. Clearly the sample treatment 

methods affected these samples differently than 

the others. 

  

Sample Pediococcus 

Relative 

Abundance 

(%) 

0702RTN 37.65 

1001RTN 49.14 

1002RTN 48.78 

2001RTN 25.03 

2302RTN 0.025 

2401RTN 8.33e-5 

3002RTN 34.66 

Table 2.  Seven weighted UniFrac outliers.  

Five of these seven outliers showed Pediococcus 

at high abundance, especially compared to other 

samples. For these each of these five samples, 

Pediococcus was the most abundant genus.   
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Figure 12. Three-dimensional PCoA biplot from weighted UniFrac with genera added.  

Color-coded individual by: red (blank), dark blue (0702), orange (0901), green (1001), purple 

(1002), yellow (1102), light blue (1301), pink (2001), teal (2302), brown (2401), and grey (3002). 

Semi-transparent gray clouds correspond to the top ten abundant genera. The locations of these 

clouds on the PCoA plot correspond to the abundance of each genera within samples. This 

indicates which genera are driving the clustering of samples. Size of the cloud correlates with the 

abundance of the specific genus within samples. A small number of genera were labeled for 

simplicity. Blautia and Clostridium were the most abundant genera, shown by the size of their 

clouds. Most of the genera are found close together in the large cluster of samples. Meanwhile, 

Pediococcus was the fifth most abundant genera, but was only found near the seven outliers. 

These seven outliers are in center of PC axes. These are the pink, green, light blue, dark blue, 

purple, and grey single samples. Other samples that appear close are due to the captured angle 

(Figure 11 indicates these seven are dissimilar from other samples). These outliers are closest to 

the Pediococcus cloud, indicating this genus primarily affects their clustering.  
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Figure 13. Genus-level 

taxonomic summaries 

limited to Pediococcus. 

Similar to Figure 5 except 

all non-Pediococcus genera 

are grouped as “Other” 

(green). This highlights the 

high abundance of 

Pediococcus in the five 

room temperature, non-

RNAlater outliers and how 

it is rarely found in other 

samples. Interestingly, 

individual 1001 had <5% 

Pediococcus abundance in 

five of their six total 

samples, but these were not 

to the same degree as the 

room temperature, non-

RNAlater sample. The five 

outliers each had 25-50% 

Pediococcus abundance. 

The remaining two outliers, 

2302RTN and 2401RTN, 

each had less than .03% 

abundance of Pediococcus. 

Nonetheless, they clustered 

with high Pediococcus 

samples. 
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Figure 14. Sample photograph prior to MS injection.  

This photograph depicts all 60 samples used for MS analysis. Tubes 

with color are all samples that were not treated with RNAlater and 

therefore did not undergo an RNAlater removal protocol. The tubes 

without any color are samples that underwent the RNAlater removal 

protocol twice. This image highlights the distinct lack of color 

samples had following two RNAlater removals. However, only 12 of 

the RNAlater samples were ultimately analyzed in the MS. 
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CHAPTER 4 

DISCUSSION 

Metabolome Preservation  

 The goal of this study was to examine how the effects of storage temperature and 

RNAlater treatment impact fecal sample integrity through taxonomic classification with 

16S rRNA gene sequencing and mass spectrometry-based metabolomics. In the 

metabolomics approach, we were unable to generate data from 12 samples that were 

treated with RNAlater and subsequently underwent a RNAlater removal process. Only 

six total metabolites were detected in database searches with only urobilinogen as a 

confirmed match. RNAlater removal is the likely culprit influencing MS analysis and 

sample preservation due to its components commonly interfering with MS analysis. 

Based on the work done for this project, there are two possible explanations for this lack 

of metabolomic data.  

 The first viable answer is that the components of RNAlater mixing with fecal 

samples prevented MS analysis. Other researchers have identified this as the primary 

cause behind metabolomic problems with RNAlater (Sinha et al. 2016; Wang et al. 

2018)⁠. However, this explanation is unlikely when considering the detection of 

urobilinogen and our use of internal standards. While not every tested sample contained 

urobilinogen, its detection in some samples indicates MS analysis performed properly.  

Additionally, all samples had been spiked with internal standards (sulfachloropyridazine 

and sulfadimethoxine) with known masses. Their detection by the MS instrument further 

demonstrates MS analysis performed normally. With both expected molecules and 
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internal standards detected within samples, this suggests MS detection performed as 

expected. This was likely due to the RNAlater removal having succeeded in removing 

the negative contents of RNAlater, which ties into the other potential reason for our 

results.   

 The second possible, and more likely, cause for our results is the design of the 

modified RNAlater removal protocol. It was intended to isolate RNAlater components 

without compromising other analytes, but the protocol was likely too thorough when 

removing molecules. The components of the removal protocol appear to bias polar 

molecules due to usage of methanol for elution. Methanol, a polar solvent, would release 

more polar molecules from the sorbent during elution, potentially causing a low recovery 

of nonpolar molecules. Moreover, methanol was used previously in the RNAlater 

cleanup protocol as part of the washing step. Using methanol as both a washing solvent 

and an elution solvent likely caused target molecules to wash away rather than bind to the 

cartridge for subsequent elution. However, urobilinogen is a nonpolar molecule and it 

was detected within our samples. Therefore, the RNAlater removal protocol’s inclination 

towards polar compounds does not adequately explain why few metabolites were 

detected, but it cannot be ruled out as a potential factor.  

The SPE protocol changed the physical color of samples, which can represent the 

loss of metabolites. Samples generally retained their original color after elution in the 

first RNAlater removal. For stage one samples, the second SPE treatment caused color 

loss for all eluates. Some stage two samples kept their color following their single 

RNAlater removal (Figure 14). According to the Human Metabolome Database (Wishart 
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et al. 2018), some metabolites, such as stercobilin and urobilinogen, are associated with 

feces coloring. The lack of color after RNAlater removal suggests these molecules, as 

well as other color-causing compounds, were lost in RNAlater removal. This observation 

illustrates the thoroughness of the RNAlater removal protocol, which likely caused 

analyte loss. Urobilinogen was found more commonly in samples that underwent a single 

RNAlater removal. The second RNAlater removal largely eliminated urobilinogen from 

samples, reinforcing the idea that the RNAlater removal was too effective. Additionally, 

PCoA plots showed samples clustered strongly based on the number of RNAlater 

removals performed (Figures 4A and 4B). Samples that went through the protocol once 

were grouped together, but samples that underwent the protocol twice occupied the same 

space as each other. Therefore, undergoing the RNAlater cleanup protocol resulted in 

similar metabolomic profiles due to molecule loss, which increased with additional 

RNAlater cleanup. Lastly, the fact our MS analysis performed normally demonstrates 

that our RNAlater removal process was too effective. Since RNAlater ordinarily prevents 

MS analysis from occurring (Loftfield et al. 2016; Sinha et al. 2016)⁠, we would have 

expected our MS analysis to completely fail when using RNAlater samples. Even 

through our protocol did not effectively preserve metabolomic profiles, it appeared to 

remove enough RNAlater products for proper MS analysis. All in all, there is strong 

evidence advocating the design of our RNAlater removal process caused near-total 

analyte loss within our samples, impacting metabolomic profile preservation. With this 

conclusion, it is apparent this RNAlater removal protocol is impractical for MS-based 

metabolomics.  
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The overall lack of data is consistent with the results of published literature 

(Loftfield et al. 2016; Sinha et al. 2016; Wang et al. 2018). These specific projects 

evaluated different sample storage and treatment methods, including RNAlater, to 

determine their impact on fecal microbiome and metabolomic profiles. All these groups 

were unable to generate untargeted metabolomic data from samples treated with 

RNAlater using a MS instrument. However, none of the other projects attempted to 

remedy the problems RNAlater causes for untargeted metabolomics. To our knowledge, 

this thesis is the first project to explore ways of modifying RNAlater treatment to allow 

for fecal untargeted MS-based metabolomics. While the RNAlater cleanup protocol used 

here was developed from Cottrell et al. 2015, they employed targeted MS analysis on 

mouse bone fracture callus samples, whereas this project focused on untargeted 

screenings of the global fecal metabolomic profile. The work by Cottrell et al. 2015 

signals RNAlater treatment can be tweaked to allow for MS analysis, but the RNAlater 

cleanup protocol used for this thesis was unable to achieve similar success for fecal 

untargeted MS-based metabolomics.  

 While the RNAlater removal protocol did not preserve metabolomic profiles, this 

result shows the limits of storage methods for metabolomics. To improve these limits, 

more research into the effects of RNAlater treatment on sample integrity and whether 

this storage method can be improved is necessary. Future research can start by evaluating 

the modified RNAlater removal protocol provided in this thesis. While we could not 

definitively pinpoint the exact cause or causes of why our RNAlater removal protocol 

failed, future work can address these questions. This project focused on analyzing 
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RNAlater-treated samples but employing MS analysis on non-RNAlater samples is 

crucial for understanding how RNAlater impacts sample preservation. Future work for 

this project should include MS analyses for samples treated with and without RNAlater. 

These non-RNAlater controls are crucial for future work on this thesis. Next, selected 

non-RNAlater samples should also undergo the removal protocol. This would 

demonstrate how the protocol impacts samples and we could compare how RNAlater and 

non-RNAlater samples differ after undergoing the treatment. By understanding how the 

RNAlater removal protocol affects samples on a molecular level, the protocol can be 

improved. Modifications to the protocol could improve untargeted metabolite yield from 

samples treated with RNAlater, possibly enabling RNAlater usage with metabolomic 

samples. Utilizing RNAlater with metabolomic samples would allow researchers to 

perform more types of molecular analyses on a single sample, providing deeper insights 

for molecular anthropology, including microbiome studies.  

 

Microbiome Profile Preservation 

 In this thesis, 16S rRNA gene sequencing was performed to investigate the effects 

of RNAlater and different storage temperatures on the bacterial taxonomic inventories of 

fecal samples. Our most abundant phyla were Firmicutes, Actinobacteria, Bacteroidetes, 

Proteobacteria, and Euryarcheota, and our most abundant genera included Blautia, 

Clostridium, Collinsella, Subdoligranulum, and Pediococcus (Figures 5 and 6). These 

phyla and genera are expected within microbiome profiles of fecal samples (Choo et al. 

2015), indicating our results are consistent with published research. While immediate 
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freezing without storage solutions is accepted as the gold standard for sample 

preservation (Choo et al. 2015; Loftfield et al. 2016), our results suggest that the host was 

the primary factor influencing beta diversity of samples  (Figures 9 and 10), with these 

PCoA plots demonstrating strong clustering when color-coded by host. Samples did not 

cluster according to RNAlater use or storage temperature (Figures 9 and 10), but 

RNAlater treatment and storage temperature caused samples to be different from each 

other (these effects were simply outweighed by the host) when examining beta diversity 

in PCoA plots. Each host had six total samples, but these samples were not identical to 

each other in the PCoA plots (Figures 9 and 10). Furthermore, samples generally 

clustered closer to other samples from the same host rather than a different host. 

Therefore, host differences greatly influenced inter-sample differences in 

presence/absence of taxa as well as the overall abundance of taxa.  

Alpha diversity analyses also indicated that microbial diversity of samples was 

largely influenced by the host who contributed the sample. Kruskal-Wallis and Dunn’s 

test determined the host had a significant influence on both microbial richness and 

phylogenetic diversity of samples when considered alone (Supplementary tables 6A and 

6B, respectively). ANCOVA tests incorporating both RNAlater use and storage 

temperature as covariates reveal that differences in microbial content and abundance 

between samples were primarily determined by the host (Supplementary Table 6C). 

RNAlater use and storage temperature still provided some influence but with less 

pronounced effects (Supplementary table 6C). PERMANOVA tests further confirmed the 

host differences to be statistically significant (Supplementary table 6D). Moreover, this 
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conclusion matches findings from other research where sample treatment influences were 

overshadowed by the host (Choo et al. 2015; Fouhy et al. 2015; Ribeiro et al. 2018; Sinha 

et al. 2016; Wang et al. 2018). Ultimately, it seems that the host was the primary force 

affecting the presence/absence and abundance of bacterial taxa. This holds true when 

evaluated by itself and when RNAlater and storage temperature were considered.  

Alpha diversity analyses reported usage of RNAlater by itself had statistically 

significant effects on both microbial richness and phylogenetic diversity of samples, with 

Kruskal-Wallis and Dunn’s tests determining statistical significance (Supplementary 

tables 6A and 6B, respectively). Furthermore, ANCOVA tests validate that RNAlater had 

significant effects on microbial richness and phylogenetic diversity, even when using 

storage temperature as a covariate (Supplementary table 6C). For eight of the ten host 

sample donors, RNAlater-treated subsamples had higher levels of microbial richness and 

phylogenetic diversity compared to their non-RNAlater counterparts (Figures 7A, 7B, 

and 8A). This conclusion differs from results of another project, where RNAlater was 

noted to have less microbial diversity than frozen samples (Dominianni et al. 2014). Our 

differing results might be caused by the seven Pediococcus outliers skewing the data or 

this thesis’s samples having their microbiome profiles altered after being frozen prior to 

16S analysis (Bahl et al. 2012). Future work is needed to examine how freeze-thaw 

cycles impact microbiome profiles, but our data suggests RNAlater affected the 

microbiome profile of samples, even when considered with storage temperature, although 

this effect was less pronounced than that of the host.  
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 Additionally, alpha diversity analyses demonstrated that storage temperature did 

not have statistically significant effects on microbial richness or phylogenetic diversity 

when considered as a sole factor. Conversely, Figure 8C indicates that room temperature 

samples had less microbial richness and phylogenetic diversity compared to the 4°C and -

80°C samples. However, only the non-RNAlater samples kept at room temperature 

exhibited this decrease (Figure 8C). A Kruskal-Wallis test and Dunn’s test both reported 

the storage temperature differences were not statistically significant (Supplementary 

tables 6A and 6B, respectively), but both tests only examined storage temperature by 

itself. Figure 8B supports this statistical finding, as all storage temperatures displayed 

similar levels of microbial richness when RNAlater was ignored. It seems that 4°C and -

80°C can be effective storage temperatures without RNAlater, but samples will exhibit 

decreased microbial richness and phylogenetic diversity (Figure 8C). Thus, samples 

stored at 4°C and -80°C will be better preserved when treated with RNAlater. Samples 

kept at room temperature without RNAlater show even greater decrease in microbial 

richness and phylogenetic diversity (Figure 8C). This loss could be due to certain 

bacterial taxa blooming when stored at room temperature, known as microbial blooming, 

but it is still unclear (Amir et al. 2017). Despite this, our findings demonstrate storage at 

4°C or -80°C have similar preservation effects, but RNAlater will better preserve 

microbial richness and phylogenetic diversity at 4°C and -80°C and is critical when 

storing samples at room temperature.  

One noteworthy feature of the weighted PCoA plots (Figures 10, 11, and 12) 

show seven outliers separating from the main group of samples clustering by host. These 
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figures had samples clustering by host, but samples usually grouped together in the same 

region of the plot rather than more varied distribution. In the unweighted PCoA plots, 

there was no single large group of sample clustering (Figure 9). Samples organized by 

host, but these host groups were more indiscriminately spread across the plot. These 

seven outliers from the weighted PCoA plots were all from different hosts, were not 

treated with RNAlater, and were stored at room temperature. Examining the taxonomic 

inventories of these samples reveals that five had high levels of the genus Pediococcus, 

making it the fifth most abundant genus across all samples (Figures 6 and 13). The 

remaining two outliers both had less than 0.025% relative abundance of Pediococcus 

(Table 2).  

Pediococcus is a genus of Gram-positive member of the Lactobacillaceae family, 

commonly associated with sauerkraut fermentation (Courage 2019; Woese 1987). As a 

lactic-acid bacterium, Pediococcus is frequently found in the human gut microbiome and 

plays varying roles, such as gluten metabolism (Caminero et al. 2014), probiotics in 

animal-based diets (David et al. 2013), and reductions of the genus have been linked to 

cirrhosis (Schnabl and Brenner 2014). However, its prominence in our data is unusual as 

is not normally a highly abundant genus and is not a focus of fecal microbiome studies. 

Weighted PCoA biplots using the abundance of taxonomic genera further indicate 

that Pediococcus drove the clustering of these outliers (Figure 12). While not all seven 

outliers contained high levels of Pediococcus, its remarkable abundance in these room-

temperature, non-RNAlater samples is noteworthy (Figure 13 and Table 2). Moreover, 

the fact that Pediococcus was not detected in the RNAlater-treated, room temperature 
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samples from these same hosts hints at a relationship between Pediococcus and 

RNAlater. Since Pediococcus was only found in non-RNAlater samples, something in 

RNAlater inhibited Pediococcus growth. To our knowledge, this thesis project is the first 

to notice the potential connections between Pediococcus, high abundance in samples kept 

at room temperature, and RNAlater. 

Microbial blooming is one possible explanation for the high abundance of 

Pediococcus (Amir et al. 2017). In the Amir et al. 2017 study, Lactobacillaceae were 

identified as candidate bloomers at room temperature. However, Pediococcus was not 

described in the article. Two-week storage at room temperature for this thesis possibly 

caused Pediococcus to bloom for non-RNAlater samples, but RNAlater prevented 

Pediococcus blooming. Species-level identification of bacterial taxa corresponding to 

Pediococcus could possibly explain why this genus was found in such high abundance 

under these conditions. Regardless, our treatment methods clearly affected these seven 

sample differently than the rest, with the abundance of Pediococcus being a likely cause. 

Future research can further explore these relationships with the Pediococcus genus.  

 Previous research has indicated that some bacteria, particularly Gram-positive 

bacteria like Firmicutes (such as Pediococcus) and Actinobacteria, will be more abundant 

in frozen samples than fresh samples (Bahl et al. 2012). This change is caused by 

alterations to the cellular structure of Gram-positive bacteria. With the samples used in 

this thesis having undergone multiple freeze-thaw cycles earlier, it is possible this process 

altered the microbiome profiles of these samples before work for this thesis began, such 

as causing Gram-positive bacteria to be found in higher abundance than in fresh samples. 
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This could explain how storage temperature had such minimal negative effects on 

microbiome profiles. If samples were already impacted by multiple freeze-thaws, their 

response to treatment methods would be different to samples that were only frozen once. 

This could also clarify our results contrast with published research. Future work can 

utilize fresh samples as well as samples that underwent varying levels of freeze-thaws to 

track how microbiome profiles change due to storage and treatment methods. Tracking 

the effects of freeze-thaws in this way can shed further light on how current methods, 

including the gold standard of immediate freezing, might be improved. Moreover, 

researchers can examine how certain bacterial taxa are better preserved in samples that 

are fresh, frozen, or treated with storage solutions such as RNAlater. By understanding 

exactly how these preservation methods impact sample integrities, researchers can better 

understand the biological meaning of their results, examine how samples are affected on 

a molecular level, and ensure high-quality data. 

 In conclusion, this thesis demonstrates the crucial nature of evaluating how results 

are affected by sample treatment and molecular preservation. While we were unable to 

preserve the metabolome profiles of our samples, the preservation of microbiome profiles 

in our samples indicates that samples treated with RNAlater will be better preserved than 

samples without RNAlater, regardless of sample storage. For samples not treated with 

RNAlater, 94°C and -80°C will have similar effects on preservation, but room 

temperature storage requires RNAlater to avoid compromising the microbiome profile. 

Our results suggest researchers sampling at field sites can utilize RNAlater as an 

alternative to immediate freezing without dramatically compromising the microbiome 
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integrities of these samples, but more work is needed as our samples had been frozen and 

thawed previously. Moreover, our results validate the essential role that sample treatment 

plays in multi-omics and molecular anthropology projects. Simply by modifying how 

samples were stored and treated, we were unable to generate data for metabolomics, an 

entire field of research. Our efforts to counter this issue failed, but they highlight a core 

problem of sample preservation: choosing how one treats and preserves their samples can 

cut off access to lines of inquiry. Furthermore, whatever method is chosen will still affect 

sample integrity. Ideally, a single sample should allow for multiple lines of analysis, but 

sample storage and treatment processes affect different types of molecules in different 

ways. Current sample preservation methods require researchers to balance the pros and 

cons of these methods in order to generate the data they are interested in. By identifying 

how these methods affect samples molecularly and how these methods can be improved, 

different molecular analysis can be done on a single sample. This idea of molecular 

taphonomy, referring to the study of how molecules are preserved in samples, must be 

explored in greater detail in order to get as much biological information from a sample as 

possible. By expanding our knowledge of molecular taphonomy, sample preservation 

methods, and their recurring issues, these improvements can advance sample collection 

and storage methods for multi-omics and molecular anthropology studies.  
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Appendix I: Supplementary Tables 

Qubit Quantification Values 

Sample 

Name 

DNA Concentration 

(ng/μL) 

RNA Concentration 

(ng/μL) 

0702RTN 1.93 3.26 

0901RTN 3.19 11.6 

1001RTN 1.93 6.63 

1002RTN 2.94 12.8 

1102RTN 7.39 13.6 

1301RTN 1.71 2.99 

2001RTN 9.67 42.3 

2302RTN 12.2 24.2 

2401RTN 5.18 19.9 

3002RTN 5.26 7.81 

0702RTR 3.3 14.5 

0901RTR 4.09 11.4 

1001RTR 4.14 8.42 

1002RTR 5.88 14 

1102RTR 13.8 13.8 

1301RTR 5.25 3.35 

2001RTR 10.9 19.9 

2302RTR 5.31 6.61 

2401RTR 6.2 5.79 

3002RTR 18.1 TOO_LOW 

07024N 1.38 TOO_LOW 

09014N 5.19 14 

10014N 2.25 7.89 

10024N 2.3 6.47 

11024N 11.6 14.6 

13014N 1.67 6.38 

20014N 9.78 41.9 

23024N 10.8 21.8 

24014N 5.33 18.9 

30024N 8.23 16.1 

07024R 3.2 7.21 

09014R 5.58 21.9 

10014R 7.49 23.2 

10024R 4.58 11.4 

11024R 13.1 15.4 

13014R 3.41 6.5 
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20014R 12.3 47.3 

23024R 20.9 2.93 

24014R 12 25.9 

30024R 18.5 27 

070280N 2.57 5.49 

090180N 8.75 32.1 

100180N 6.83 22.8 

100280N 4.67 17.2 

110280N 14.4 21.2 

130180N 2.54 16.2 

200180N 12.6 63 

230280N 13.9 36.6 

240180N 4.27 26.8 

300280N 6.9 16.3 

070280R 2.97 11.5 

090180R 8.73 36.4 

100180R 5.55 27.2 

100280R 4.62 10.6 

110280R 13.5 18.2 

130180R 4.31 14.3 

200180R 16.4 TOO_HIGH 

230280R 9.3 28.2 

240180R 7.43 30.3 

300280R 8.96 30.3 

Table S1. Qubit Values. 

This table lists values from the Qubit Quantification of all 60 samples. Quantification was done 

immediately after DNA extraction. Qubit kits had limited detection ranges, so any values that were outside 

those ranges were designated “TOO_LOW” or “TOO_HIGH”. Samples kept at -80°C tended to have 

higher concentrations. Moreover, samples treated with RNAlater generally had higher concentration values 

than their non-RNAlater counterparts. 
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qPCR Reaction Sheet 

 35 cycles    

  initial Denature Anneal Elongation 

Temp 95 C 95 C 52 C 72 C 

Time 600 sec 10 sec 20 sec 30 sec 
     

MasterMix ul per reaction # rxn ul need  

H20 5.8 

77 

446.6  

FastStart 

Essential 

Green MM 

10 770  

V4 F (non-

barcoded) 
0.6 46.2  

V4 R (non-

barcoded) 
0.6 46.2  

         

Total 17   1309  
     

Reaction 17 ul MM    

 3 ul sample    

 20 ul total    

     
     
 

 
 
 

Table S2. Reaction Sheet used for qPCR reactions. 

Reaction sheet contains reagents used for master mix, how much of each reagent was used, cycling and 

amplification parameters, and total number of cycles. Number of reactions (rxns) refers to number of 

samples (n) at this step (n + 10%). 77 rxns were chosen to ensure there was enough MasterMix. 
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Sample to Barcode Matches 

A 

Sample 

Name 

Plat

e 

Plate 

Position Golay Barcode Reverse Complement Primer# 

23_02_RT_N  4 A3 

AGACATACCGT

A TACGGTATGTCT 

806rcbc29

0 

24_01_RT_N  4 B3 TGTATCTTCACC 

GGTGAAGATAC

A 

806rcbc30

2 

23_02_-80_N 4 C3 

AGGCACAGTAG

G CCTACTGTGCCT 

806rcbc31

4 

23_02_4_R   4 D3 

TGTTAAGCAGC

A TGCTGCTTAACA 

806rcbc32

6 

09_01_-80_R 4 E3 

AAGGGCGCTGA

A TTCAGCGCCCTT 

806rcbc33

8 

09_01_-80_N 4 F3 CTCTGCCTAATT 

AATTAGGCAGA

G 

806rcbc35

0 

20_01_-80_N 4 G3 GCATTACTGGAC 

GTCCAGTAATG

C 

806rcbc36

2 

23_02_4_N   4 H3 

GAGTACAGTCT

A TAGACTGTACTC 

806rcbc37

4 

      

20_01_-80_R 4 A4 GATCCTCATGCG 

CGCATGAGGAT

C 

806rcbc29

1 

20_01_RT_N  4 B4 GACTGACTCGTC 

GACGAGTCAGT

C 

806rcbc30

3 

30_02_4_R   4 C4 CTACTTACATCC 

GGATGTAAGTA

G 

806rcbc31

5 

23_02_-80_R 4 D4 ACGGCGTTATGT 

ACATAACGCCG

T 

806rcbc32

7 

10_02_RT_N  4 E4 GTTTCCGTGGTG 

CACCACGGAAA

C 

806rcbc33

9 

24_01_4_R   4 F4 

ATATGACCCAG

C GCTGGGTCATAT 

806rcbc35

1 

30_02_4_N   4 G4 TTGGGCCACATA 

TATGTGGCCCA

A 

806rcbc36

3 

20_01_4_N   4 H4 

CCTACATGAGA

C GTCTCATGTAGG 

806rcbc37

5 

      

11_02_RT_N  4 A5 ATTATCGTCCCT 

AGGGACGATAA

T 

806rcbc29

2 
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20_01_4_R   4 B5 TCGTGGATAGCT 

AGCTATCCACG

A 

806rcbc30

4 

09_01_4_R   4 C5 CTCTTCTGATCA 

TGATCAGAAGA

G 

806rcbc31

6 

30_02_-80_N 4 D5 ACTTTGCTTTGC 

GCAAAGCAAAG

T 

806rcbc32

8 

24_01_-80_R 4 E5 

AGGAACCAGAC

G CGTCTGGTTCCT 

806rcbc34

0 

09_01_RT_N  4 F5 CTCTATTCCACC 

GGTGGAATAGA

G 

806rcbc35

2 

30_02_-80_R 4 G5 

CACACAAAGTC

A TGACTTTGTGTG 

806rcbc36

4 

11_02_-80_N 4 H5 TCCGTGGTATAG 

CTATACCACGG

A 

806rcbc37

6 

      

09_02_4_N   4 A6 CCAGACCGCTAT 

ATAGCGGTCTG

G 

806rcbc29

3 

30_02_RT_N  4 B6 

GACGCACTAAC

T AGTTAGTGCGTC 

806rcbc30

5 

11_02_-80_R 4 C6 

ATGCTAACCAC

G CGTGGTTAGCAT 

806rcbc31

7 

10_01_-80_N 4 D6 

CAAAGCGGTAT

T AATACCGCTTTG 

806rcbc32

9 

10_02_-80_N 4 E6 TAATGCCCAGGT 

ACCTGGGCATT

A 

806rcbc34

1 

11_02_4_R   4 F6 ATTGAGTGAGTC GACTCACTCAAT 

806rcbc35

3 

24_01_4_N   4 G6 

GCCAAGGATAG

G CCTATCCTTGGC 

806rcbc36

5 

30_02_RT_R  4 H6 TCTACGGCACGT 

ACGTGCCGTAG

A 

806rcbc37

7 

      

11_02_4_N   4 A7 

AGCTCTAGAAA

C GTTTCTAGAGCT 

806rcbc29

4 

11_02_RT_R  4 B7 GGCGATTTACGT 

ACGTAAATCGC

C 

806rcbc30

6 

10_02_4_R   4 C7 ACCAATCTCGGC 

GCCGAGATTGG

T 

806rcbc31

8 

10_01_-80_R 4 D7 

CGAAACTACGT

A TACGTAGTTTCG 

806rcbc33

0 

07_02_RT_N  4 E7 TATGAACGTCCG 

CGGACGTTCAT

A 

806rcbc34

2 
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24_01_-80_N 4 F7 TTATGGTACGGA TCCGTACCATAA 

806rcbc35

4 

10_02_-80_R 4 G7 CGCCACGTGTAT 

ATACACGTGGC

G 

806rcbc36

6 

10_01_4_R   4 H7 

ATGCTGCAACA

C GTGTTGCAGCAT 

806rcbc37

8 

      

09_01_RT_R  4 A8 TCCATCGACGTG 

CACGTCGATGG

A 

806rcbc29

5 

10_02_RT_R  4 B8 TAAGGCATCGCT 

AGCGATGCCTT

A 

806rcbc30

7 

20_01_RT_R  4 C8 

TATCCAAGCGC

A TGCGCTTGGATA 

806rcbc31

9 

10_02_4_N   4 D8 

GAGGACCAGCA

A TTGCTGGTCCTC 

806rcbc33

1 

23_02_RT_R  4 E8 CCACATTGGGTC 

GACCCAATGTG

G 

806rcbc34

3 

13_01_-80_R 4 F8 GCTAGTTATGGA TCCATAACTAGC 

806rcbc35

5 

07_02_-80_R 4 G8 GCAACCGATTGT 

ACAATCGGTTG

C 

806rcbc36

7 

24_01_RT_R  4 H8 TTCTCATGGAGG 

CCTCCATGAGA

A 

806rcbc37

9 

      

07_02_-80_N 4 A9 CGATGTGTGGTT 

AACCACACATC

G 

806rcbc29

6 

10_01_RT_N  4 B9 

ACCCATACAGC

C 

GGCTGTATGGG

T 

806rcbc30

8 

13_01_-80_N 4 C9 

GTACTGAAGAT

C GATCTTCAGTAC 

806rcbc32

0 

10_01_4_N   4 D9 

AATAGCATGTC

G CGACATGCTATT 

806rcbc33

2 

07_02_4_R   4 E9 

TCAGTCAGATG

A TCATCTGACTGA 

806rcbc34

4 

13_01_4_R   4 F9 

CAGATTAACCA

G CTGGTTAATCTG 

806rcbc35

6 

PCRBLK1 4 A1 TCTGAGGTTGCC 

GGCAACCTCAG

A 

806rcbc28

8 

ECOLI10X 4 B1 

TCCAACTGCAG

A TCTGCAGTTGGA 

806rcbc30

0 

ECOLI10X_2 4 B2 

TAAAGACCCGT

A TACGGGTCTTTA 

806rcbc30

1 
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B 

 

 

 

Sample 

Name Plate 

Plate 

Position Golay Barcode Reverse Complement Primer# 

10_01_RT_

R  4 A10 

GCGAAGTTGGG

A 

TCCCAACTTCG

C 

806rcbc29

7 

07_02_RT_

R  4 B10 

CGCACTACGCA

T 

ATGCGTAGTGC

G 

806rcbc30

9 

13_01_RT_

R  4 C10 

TCGCCGTGTAC

A 

TGTACACGGCG

A 

806rcbc32

1 

07_02_4_N   4 D10 

CGGAGTAATCC

T 

AGGATTACTCC

G 

806rcbc33

3 

13_01_4_N   4 E10 

AAGTCACACAC

A 

TGTGTGTGACT

T 

806rcbc34

5 

13_01_RT_

N  4 F10 

GGCTGCATACT

C 

GAGTATGCAGC

C 

806rcbc35

7 

EB2         4 G10 GTTCCTCCATTA 

TAATGGAGGAA

C 

806rcbc36

9 

EB1         4 H10 

GCTATCAAGAC

A 

TGTCTTGATAG

C 

806rcbc38

1 

      

EB6         4 A11 

GCATTCGGCGT

T 

AACGCCGAATG

C 

806rcbc29

8 

EB4         4 B11 

CAGTCGTTAAG

A 

TCTTAACGACT

G 

806rcbc31

0 

EB3         4 C11 

AACTGCGATAT

G 

CATATCGCAGT

T 

806rcbc32

2 

EB5 4 D11 

CTGTGTCCATG

G 

CCATGGACACA

G 

806rcbc33

4 

PCRBLK2 4 A2 GATCATTCTCTC 

GAGAGAATGAT

C 

806rcbc28

9 

ECOLI10X 4 B1 

TCCAACTGCAG

A 

TCTGCAGTTGG

A 

806rcbc30

0 

ECOLI10X_

2 4 B2 

TAAAGACCCGT

A 

TACGGGTCTTT

A 

806rcbc30

1 
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Table S3. Sample to Barcode Pairings. 

These tables contain the samples used and their corresponding reverse barcodes. PCR replicates were done 

using these unique sample-to-barcode matches. The E. coli standards appear twice because the B1 barcode 

ran low for the last replicates. B2 was used as a result. Following qPCR data analysis, samples were split 

into two groups based on their CQ values. Groups were amplified by a different number of cycles. 

(A) PCR Group 1. All were amplified to 18 cycles.   

(B) PCR Group 2. All were amplified to 20 cycles. 
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PCR Reaction Sheets 

A         B 
Amplify for 18 cycles

initial Denature Anneal Elongation Final

Temp 98 C 98 C 52 C 72 C 72 C

Time 30 s 15 sec 20 sec 30 sec 300 sec

MasterMix ul per reaction # rxn ul need

H20 6.6 402.6

Phusion HF 

Buffer
4 244

Illumina V4 F 

primer 10uM
1 61

10mM dNTPs 0.4 24.4

Phusion HS II 

enzyme
0.2 12.2

BSA 2.5 mg/ml 0.8 48.8

Total 13 793

Reaction  13 ul MM

3 ul sample

4 ul V4 reverse 

2.5 uM

20 ul total

61

Amplify for 20 cycles

initial Denature Anneal Elongation Final

Temp 98 C 98 C 52 C 72 C 72 C

Time 30 s 15 sec 20 sec 30 sec 300 sec

MasterMix ul per reaction # rxn ul need

H20 6.6 132

Phusion HF 

Buffer
4 80

Illumina V4 F 

primer 10uM
1 20

10mM dNTPs 0.4 8

Phusion HS II 

enzyme
0.2 4

BSA 2.5 mg/ml 0.8 16

Total 13 260

Reaction  13 ul MM

3 ul sample

4 ul V4 reverse 

2.5 uM

20 ul total

20

 
         

Table S4. Reaction Sheets used for PCR. 

These sheets detail the reagents compromising the master mix, how much of each reagent was used, PCR 

conditions, and number of amplification cycles. Number of rxns still refers to number of samples plus 10%.   

(A) PCR Group 1.  

(B) PCR Group 2.  
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MZMine Data Processing Parameters 

 

Table S5. Parameters for MZMine Data Analysis. 

Column 1 refers to the different steps of data processing in MZMine. Each step had different parameters 

and values, as shown here. Columns 2 and 3 correspond to the parameter and the input value, respectively. 

Retention time is referred to as RT. 

MS1 Noise Level 8.00E+04

MS2 Noise Level 5.00E+03

Mass Detector Centroid

Minimum Time Span (min) 0.05

Minimum Height 2.40E+05

m/z tolerance (ppm) 10

Min peak height 2.40E+05

Peak duration range (min) 0-2.00

Baseline level 8.00E+04

m/z Range (Da) 0.01

RT range (min) 0.1

RT tolerance (min) 0.1

m/z tolerance (ppm) 10

Monotonic shape Yes

Max charge 3

Representative isotope Lowest m/z

m/z tolerance (ppm) 10

m/z to RT weight 5 to 1

RT tolerance (min) 0.1

Require same charge state Yes

RT range (min) 0.2-12

Keep only peaks with MS2 scan Yes

Minimum peaks per row 2

Minimum peaks per isotope 2

Intensity tolerance (%) 10

m/z tolerance (ppm) 10

RT tolerance (min) 0.2

Gap Filling

Mass Detection

Chromatogram Builder

Chromatogram Deconvolution

Isotope Peaks Grouper

Alignment

Row Filtering
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Statistical Results 

A 

 

B 

Analysis Evaluated Categories 
Test 

Name 
Test statistic 

p-

value 

Statistically 

Significant 

Alpha 

Diversity 

Phylogenetic Diversity & 

RNAlater Use 

Dunn's 

test 

chi-squared = 

6.9255 
0.01 Yes 

Observed OTUs & RNAlater 

Use 

Dunn's 

test 

chi-squared = 

6.5077 
0.01 Yes 

Phylogenetic Diversity & 

Individual 

Dunn's 

test 

chi-squared = 

42.638 
0 Yes 

Observed OTUs & RNAlater 

Use 

Dunn's 

test 

chi-squared = 

43.9485 
0 Yes 

Phylogenetic Diversity & 

Storage Temperature 

Dunn's 

test 

chi-squared = 

1.2751 
0.53 No 

Observed OTUs & Storage 

Temperature 

Dunn's 

test 

chi-squared = 

0.9596 
0.62 No 

 

  

Analysis Evaluated Categories 
Test 

Name 

Test 

statistic 
p-value 

Statistically 

Significant 

Alpha 

Diversit

y 

Phylogenetic Diversity & 

RNAlater Use 

Kruskal

-Wallis 

chi-squared 

= 6.9255 

0.00849

8 
Yes 

Observed OTUs & RNAlater 

Use 

Kruskal

-Wallis 

chi-squared 

= 6.5077 
0.01074 Yes 

Phylogenetic Diversity & 

Individual 

Kruskal

-Wallis 

chi-squared 

= 42.638 
2.51E-06 Yes 

Observed OTUs & Individual 
Kruskal

-Wallis 

chi-squared 

= 43.948 
1.44E-06 Yes 

Phylogenetic Diversity & 

Storage Temperature 

Kruskal

-Wallis 

chi-squared 

= 1.2751 
0.5286 No 

Observed OTUs & Storage 

Temperature 

Kruskal

-Wallis 

chi-squared 

= 0.95963 
0.6189 No 
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C 

Analysis 
Evaluated 

Categories 
Test Name Test statistic p-value 

Statistically 

Significant 

Alpha 

Diversity 

Phylogenetic 

Diversity: 

Individual & 

RNAlater Use 

ANCOVA 

Indiv F-value 

= 37.746 

Indiv = 2e-

16 
Yes 

RNAlater F-

value = 46.140 

RNAlater = 

3.63e-8 
Yes 

Indiv & 

RNAlater F-

value = 1.554 

Indiv & 

RNAlater = 

0.163 

No 

Phylogenetic 

Diversity: 

Individual & 

Storage 

Temperature 

ANCOVA 

Indiv F-value 

= 15.657 

Indiv = 4.5e-

09 
Yes 

StorageTemp 

F-value = 

2.123 

StorageTemp 

= 0.137 
No 

Indiv & 

StorageTemp 

F-value = 

0.405 

Indiv & 

StorageTemp 

= 0.976 

No 

Phylogenetic 

Diversity: 

RNAlater Use & 

Storage 

Temperature 

ANCOVA 

RNAlater F-

value = 6.576 

RNAlater = 

0.0132 
Yes 

StorageTemp 

F-value = 

0.729 

StorageTemp 

= 0.4869 
No 

RNAlater & 

StorageTemp 

F-value = 

0.314 

RNAlater & 

StorageTemp 

= 0.7317 

No 

Observed OTUs: 

Individual & 

RNAlater Use 

ANCOVA 

Indiv F-value 

= 37.858 

Indiv = 2e-

16 
Yes 

RNAlater F-

value = 43.308 

RNAlater = 

7.22e-8 
Yes 

Indiv & 

RNAlater F-

value = 1.082 

Individual & 

RNAlater = 

0.397 

No 

Observed OTUs: 

Individual & 

Storage 

Temperature 

ANCOVA 

Indiv F-value 

= 16.209 

Indiv = 

2.98e-9 
Yes 

StorageTemp 

F-value = 

2.206 

StorageTemp 

= 0.128 
No 

Indiv & 

StorageTemp 

F-value = 

0.301 

Indiv & 

StorageTemp 

= 0.995 

No 

Observed OTUs: 

RNAlater Use & 
ANCOVA 

RNAlater F-

value = 6.295 

RNAlater  = 

0.0151 
Yes 
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Storage 

Temperature 

StorageTemp 

F-value = 

0.749 

StorageTemp 

= 0.4777 
No 

RNAlater & 

StorageTemp 

F-value = 

0.627 

RNAlater & 

Storage 

Temp = 

0.5379 

No 

 

 

D 

Analysis 
Evaluated 

Categories 
Test Name Test statistic 

p-

value 

Statistically 

Significant 

Beta 

Diversity 

Unweighted 

UniFrac Distances 

of Individual 

PERMANOVA 
t-value = 

12.492386530836116 
0.001 Yes 

Unweighted 

UniFrac Distances 

of RNAlater Use 

PERMANOVA 
t-value = 

3.609480950510251 
0.002 Yes 

Unweighted 

UniFrac Distances 

of Storage 

Temperature 

PERMANOVA 
t-value = 

2.36318457297859 
0.001 Yes 

Weighted UniFrac 

Distances of 

Individual 

PERMANOVA 
t-value = 

21.446488362798743 
0.001 Yes 

Weighted UniFrac 

Distances of 

RNAlater Use  

PERMANOVA 
t-value = 

8.656130892382821 
0.001 Yes 

Weighted UniFrac 

Distances of 

Storage 

Temperature 

PERMANOVA 
t-value = 

5.97720542549215 
0.001 Yes 

 

Table S6. Values from various statistical tests. These tables are separated by the test performed. First 

column refers to the type of analysis the test acted on. Second column is the category/variable considered in 

these tests. Each statistical test has different considerations so these varied, but primarily focused on the 

effects of Individual (host), RNAlater use, and Storage Temperature. Third column is the name of the test. 

The fourth column contains the test statistic values from these tests. These statistics will be different 

between tests. The fifth column contains the p-value from each test. The sixth and last column says whether 

the results were statistically significant. For this project, statistical significance was defined as p-value 

<0.05.  

(A) Results from the Kruskal-Wallis test by ranks, also known as a one-way ANOVA. This nonparametric 

test evaluates whether significant differences exist in independent samples. This test was run on results 
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from alpha diversity and found that host and RNAlater use caused significant differences for both 

phylogenetic diversity and microbial richness. Storage temperature did not have significant effects.   

(B) Results from Dunn’s test of multiple comparisons. Typically done on a significant result from Kruskal-

Wallis to correct for errors in the Kruskal-Wallis test. These results validated the findings of our Kruskal-

Wallis tests: host and RNAlater use had significant effects and storage temperature did not. 

(C) Results from ANCOVA tests, also known as analysis of covariance. ANCOVA evaluates whether an 

independent variable has significant effects on a dependent variable while considering the effects of a 

different independent variable (called the covariate). The test provides results for all variables, so the values 

for each specific variable are listed. These ANCOVA results indicate if each independent variable had 

significant effects on the dependent variable, and if these independent variables affected each other. Our 

results indicate individual and RNAlater caused significant effects, validating the results from Kruskal-

Wallis and Dunn’s tests. However, these variables did not have significant effects on each other. Storage 

temperature did not have significant effects on samples or on other variables. Our conclusions from 

ANCOVA match those from earlier tests, but further confirm that host and RNAlater caused significant 

effects and did not affect each other. 

(D) PERMANOVA results. Known as Permutational Analysis of Variance, this non-parametric test 

evaluates significant differences between groups while considering multiple variables. PERMANOVA also 

considers permutations to ensure accurate results. Our PERMANOVA results indicate that host, RNAlater 

use, and storage temperature all had significant effects between samples. The significance of storage 

temperature contrasts with results from alpha diversity and with PCoA plots, but storage temperature still 

caused differences between samples. These temperature effects were largely outweighed by the influence 

of the host. We can conclude that storage temperature and RNAlater use will still affect the microbiome 

profile of samples, but these effects are minimal compared to the host. 
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Identified Phyla and Genera 

A 

Phylum 
Average 
Abundance 

Number of Samples 
with >0% Abundance 

Number of Samples 
with >2% Abundance 

Firmicutes 0.766368056 60 60 

Actinobacteria 0.146322222 60 60 

Bacteroidetes 0.032993056 60 24 

Proteobacteria 0.0249375 60 14 

Euryarchaeota 0.012948611 38 14 

Tenericutes 0.009440278 60 10 

Cyanobacteria 0.004248611 58 0 

Verrucomicrobia 0.002077778 15 4 

Spirochaetes 0.000518056 22 0 

Streptophyta 8.19444E-05 14 0 

Elusimicrobia 3.61111E-05 7 0 

Fusobacteria 1.66667E-05 7 0 

Lentisphaerae 5.55556E-06 2 0 

Synergistetes 2.77778E-06 2 0 

Chloroflexi 1.38889E-06 1 0 

Planctomycetes 1.38889E-06 1 0 

 

B 

Genus 
Average 
Frequency 

Number of 
Samples 
with >0% 
Abundance 

Number of 
Samples 
with >2% 
Abundance 

Blautia 0.10365 60 54 

Clostridium 0.083161111 60 47 

Collinsella 0.063786111 60 47 

Subdoligranulum 0.0414125 60 40 

Pediococcus 0.035995833 47 10 

Romboutsia 0.035770833 60 37 

Holdemanella 0.032661111 57 27 

Catenibacterium 0.031088889 52 19 

Prevotella 0.030095833 59 21 

Bifidobacterium 0.028334722 45 12 

Streptococcus 0.026070833 60 20 
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Lachnospiraceae 
Eubacterium_g5 
(Unknown genus) 0.025148611 60 31 

Lactobacillus 0.024423611 60 17 

Ruminococcaceae 
Ruminococcus_g2 
(Unknown genus) 0.023888889 60 22 

Enterococcus 0.020926389 57 13 

Turicibacter 0.01985 60 17 

Terrisporobacter 0.0192125 60 17 

Mogibacterium 0.014624294 49 11 

Escherichia 0.015484722 60 9 

Olsenella 0.015338889 54 16 

Ruminococcaceae 
JN713389_g 
(Unknown genus) 0.015231944 60 11 

Intestinibacter 0.015101389 60 17 

Faecalibacterium 0.014279167 60 16 

Dorea 0.014272222 60 18 

Agathobacter 0.012163889 58 9 

Bulleidia 0.011606944 56 11 

Weissella 0.011316667 52 4 

Coriobacteriaceae 
JN162689_g 
(Unknown genus) 0.011129167 52 7 

Sporobacter 0.010763889 60 5 

Lachnospiraceae 
Ruminococcus_g4 
(Unknown genus) 0.010102778 59 11 

Table S7. Most Abundant Phyla and Genera. 

These data come from the rarefied output files, resulting in 12,000 reads per sample. There were 60 total 

samples at this point. Positive controls were excluded here. Table is sorted in order of descending 

abundance. Each row corresponds with a different phyla or genera, as indicated by column one. The second 

column refers to the average frequency of the specific phyla/genera across all samples. This indicates the 

percentage of the 12,000 reads per sample that matched to the specific phylum/genus. Columns three and 

four represent the total number of samples containing the specific phylum/genus with at least 0% and 2% 

relative abundance, respectively. 

(A) These are the detected phyla across all samples. A total of 16 phyla were identified. Firmicutes 

dominates the phyla here, as expected in fecal microbiome profiles. Actinobacteria, Bacteroidetes, 

Proteobacteria, and Euryarcheota follow Firmicutes, but with significantly less abundance. Eight of these 

16 phyla do not contain more than 2% abundance in a single sample, suggesting the distribution of phyla 

was primarily limited to a handful of phyla.  
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(B) The top 30 abundant genera across all samples. A total of 336 genera were identified, but 30 are 

presented here. Blautia was the most abundant genus, as expected in fecal microbiome profiles. 

Clostridium, Collinsella, Subdoligranulum, and Pediococcus were the next most abundant genera. Column 

four indicates that the number of samples with at least 2% abundance of the specific genus varied more so 

than phyla. This suggests the overall distribution of genera within samples was highly diverse.  
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SampleID Individual RNAlater StorageTemp Cleanups# Urobilinogen 

10_02_RT_1removal 10_02 Y RT (22-

25°C) 

1 Yes 

13_01_4_1removal 13_01 Y 4°C 1 Yes 

13_01_80_1removal 13_01 Y -80°C 1 No 

10_02_80_1removal 10_02 Y -80°C 1 No 

11_02_80_2removal 11_02 Y -80°C 2 No 

10_01_80_2removal 10_01 Y -80°C 2 Yes 

23_02_4_1removal 23_02 Y 4°C 1 Yes 

07_02_80_2removal 07_02 Y -80°C 2 No 

20_01_80_2removal 20_01 Y -80°C 2 Yes 

20_01_RT_1removal 20_01 Y RT (22-

25°C) 

1 Yes 

23_02_80_1removal 23_02 Y -80°C 1 Yes 

blank_1 blank N NA 0 No 

Table S8. Sample information for metabolomic analysis. 

These are the twelve samples that were analyzed on the MS with their corresponding metadata information. 

First two numbers refer to family and individual (##_##). After the name, storage temperature is RT (room 

temperature), 4 (4°C), and 80 (-80°C). The final part of the name refers to the number of RNAlater cleanup 

protocols the samples went through: 1removal (1 cleanup) and 2removal (2 cleanups). Metabolomic 

analyses were limited to the individual/host, RNAlater use, storage temperature, and number of RNAlater 

removal protocols performed. The final column lists the samples where GNPS detected urobilinogen. 
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Sample Individual StorageTemp RNAlater Reads 
Phylogenetic 
diversity chao1 

Observed 
OTUs 

07024N 702 4 N 68,196.00 30.91952 479.0285714 317 

07024R 702 4 Y 86,829.00 30.58945 390.6842105 314 

070280N 702 80 N 86,566.00 29.19883 378.0227273 293 

070280R 702 80 Y 58,686.00 27.51803 373.7368421 282 

0702RTN 702 RT N 71,189.00 24.80942 363.6756757 243 

0702RTR 702 RT Y 59,957.00 28.73366 422.2777778 306 

09014R 901 4 Y 146,735.00 27.86527 339.42 273 

090180N 901 80 N 216,028.00 27.04321 368.5294118 266 

090180R 901 80 Y 212,199.00 27.5375 371.1395349 278 

0901RTN 901 RT N 137,762.00 24.86659 352.9166667 249 

0901RTR 901 RT Y 107,769.00 26.98019 389.375 267 

09014N 901 4 N 148,265.00 27.65255 357.2272727 278 

10014N 1001 4 N 78,073.00 22.21157 329.4545455 210 

10014R 1001 4 Y 86,884.00 24.51685 336.3333333 231 

100180N 1001 80 N 137,098.00 23.40074 281.9655172 208 

100180R 1001 80 Y 76,928.00 26.76917 366.3636364 253 

1001RTN 1001 RT N 12,758.00 21.48344 256.0967742 189 

1001RTR 1001 RT Y 59,866.00 25.52583 303.5172414 234 

10024N 1002 4 N 80,380.00 21.80402 317.037037 225 

10024R 1002 4 Y 71,311.00 24.57321 345.7241379 234 

100280N 1002 80 N 99,103.00 20.80152 300.0384615 215 

100280R 1002 80 Y 78,486.00 23.94963 309.8780488 244 

1002RTN 1002 RT N 177,581.00 17.96618 280.6363636 174 

1002RTR 1002 RT Y 106,493.00 21.71453 295.0294118 224 

11024N 1102 4 N 102,164.00 26.66412 331.8484848 250 

11024R 1102 4 Y 133,329.00 28.02333 404.5333333 274 

110280N 1102 80 N 158,068.00 27.23012 375.25 274 

110280R 1102 80 Y 150,935.00 30.65894 391.0666667 296 

1102RTN 1102 RT N 129,626.00 24.60702 328.8857143 234 

1102RTR 1102 RT Y 101,531.00 28.63765 358.3488372 283 

13014N 1301 4 N 45,231.00 31.599 381.3333333 302 

13014R 1301 4 Y 148,170.00 31.85311 465.097561 308 

130180N 1301 80 N 71,614.00 31.65805 452 296 

130180R 1301 80 Y 57,857.00 32.18994 531 327 

1301RTN 1301 RT N 37,263.00 33.5229 420.1666667 321 

1301RTR 1301 RT Y 54,825.00 33.21517 447 327 

20014N 2001 4 N 150,426.00 26.08141 366 234 

20014R 2001 4 Y 114,140.00 28.1145 439.15625 275 

200180N 2001 80 N 178,278.00 23.34557 278.1538462 218 

200180R 2001 80 Y 274,649.00 28.79424 388.6756757 278 

2001RTN 2001 RT N 140,656.00 23.89523 299.125 217 

2001RTR 2001 RT Y 83,659.00 28.0913 392.1764706 277 

23024N 2302 4 N 182,171.00 33.95504 538.4545455 373 

23024R 2302 4 Y 197,924.00 37.44313 558.5 428 

230280N 2302 80 N 173,645.00 34.60156 597.4285714 390 

230280R 2302 80 Y 112,996.00 36.65942 520.8 413 
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2302RTN 2302 RT N 173,188.00 29.73521 410 311 

2302RTR 2302 RT Y 97,993.00 36.2905 516.2 407 

24014N 2401 4 N 114,796.00 25.08086 365.1538462 267 

24014R 2401 4 Y 135,648.00 30.33615 450.4642857 291 

240180N 2401 80 N 80,990.00 27.3397 438.0285714 285 

240180R 2401 80 Y 145,291.00 29.22783 429.0277778 305 

2401RTN 2401 RT N 168,097.00 23.10736 353.6666667 222 

2401RTR 2401 RT Y 76,867.00 29.06668 450.5 305 

30024N 3002 4 N 159,652.00 25.79397 406.6 279 

30024R 3002 4 Y 177,542.00 28.8064 418.125 318 

300280N 3002 80 N 138,921.00 26.83494 380.2439024 289 

300280R 3002 80 Y 150,606.00 28.27993 398.9354839 297 

3002RTN 3002 RT N 217,085.00 26.18505 331.4285714 250 

3002RTR 3002 RT Y 111,187.00 29.15452 396.1621622 315 

Table S9. Sample information for microbiome analysis and results. 

All 60 samples that underwent 16S rRNA gene sequencing are listed. Blanks and positive controls were not 

included in this chart. Sample naming system continues as family and individual, storage temperature, and 

RNAlater. Column 5 contains the number of 16S reads mapped to each sample. Columns 6,7, and 8 

correspond to phylogenetic diversity, chao1, and number of observed OTUs, respectively. QIIME1 was 

used to generate these values.  
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Lane  Read Cycles Yield 

Projec
ted 
Yield 

Aligne
d (%) 

Error 
rate 
(%) 

%>=Q
30 

Cluste
r 
PF(%) 

Reads 
PF 

 
 
Total 
Reads 

Lane 1 
Read 
1 251 

2.93G
bp 

2.93G
bp 25.32 1.31 95.12 92.99  

11,70
4,428 

 
 

12,58
8,365 

  
Read 
2 12 

128.7
5Mbp 

128.7
5Mbp 0 0 69.71     

 

  
Read 
3 251 

2.93G
bp 

2.93G
bp 25.69 1.27 92.16     

 

  

Non-
Index 
Reads 
Total 502 

5.85G
bp 

5.85G
bp 25.5 1.29 93.64     

 

  Totals 514 
5.98G
bp 

5.98G
bp 25.5 1.29 93.13     

 

Table S10. MiSeq Run Summary and Metrics. 

Results table was acquired from Illumina BaseSpace SequenceHub for the MiSeq run performed for this 

thesis. 1 lane of the MiSeq flowcell was used for 3 reads. Reads 1 and 3 ran for 251 cycles each, while read 

2 ran for 12 cycles. This was because a 2x250 paired-end run was performed. 5.98 giga base pairs (Gbp, 

equivalent to 1,000,000 base pairs) were acquired in the run. Of all the total reads, 25.5% aligned to the 

PhiX positive control to ensure the MiSeq run performs as it should. 12,588,365 total reads were detected 

by the MiSeq and 11,704,428 of these reads passed the filtering criteria. This equals 92.99% of the total 

reads passing filter and mapping as 16S reads. 93.13% of the total reads were Q30, meaning there was a 

1:1,000 chance that a base was incorrectly identified.     

 


