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Abstract 

In this current work, a phenomenological mathematical model that utilizes the population 

balance equation was developed to understand the destabilization process of acid in crude oil 

emulsions in laboratory conditions. The model considers changes due to advection, diffusion and 

binary coalescence of the dispersed acid phase. The model studies specifically the evolution of 

the droplet size distribution as a function of time for the top, next to bottom and bottom layers of 

a vertical cylinder. The resulting model was a nonlinear hyperbolic intergo-partial differential 

equation.  

As with many complex mathematical models, this model required a numerical solution. 

The source term modeling birth and death of droplets was numerically solved using Kumar’s 

fixed-pivot technique and converted to a system of partial differential equations. As for the 

advection-diffusion transport properties, five numerical solutions were examined each suitable 

under certain model properties. Four of the techniques were standard upwind schemes that are 

second, third and fourth order accurate, and the fifth was a non-standard method. All these 

schemes were also optimized to reduce the numerical errors to almost negligible. The non-

standard method proved to be superior to the traditionally used upwind schemes for fine and 

course grids and low and high Reynolds numbers. 

Based on this algorithm, the numerical model was solved using initial literature 

experimental data for acid/oil emulsions and was able to provide a suitable prediction of droplet 

size distribution profiles for each of the three layers of interest in addition to both dispersed and 

continuous phase volumes. The model was also found to be a good predictive tool for the initial 

mean droplet size for early acid/oil emulsion days using an exponential regression model for 

each time step. The volume fraction of acid was found to be highly sensitive to changes in mean 
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droplet size but was inconclusive in accessing the effect of standard deviation on the model 

evolution. The proposed algorithm has also presented evidence of the presence of a cohesive 

process dominating the system alongside the destabilization process of advection, diffusion and 

binary coalescence.
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CHAPTER 1: INTRODUCTION 

1.1 Emulsions  

The geochemical interactions between crude oil and injected fluids cause a large number 

of consequences. In some cases, these interactions could enhance the hydrocarbon recovery 

(Mehana and El-Monier, 2015; Mehana and Fahes, 2016), but in others, they can sabotage a 

hydrocarbon production well (James et al. 2018). But one of the most fascinating by product of 

these interactions and the focus of this work are emulsions. An emulsion is a dispersion of a 

liquid within another immiscible liquid. In the context of oil and gas, emulsions exist in many 

forms. The two common types are water-in-oil emulsions and crude oil in water emulsions. 

Figure 1 shows the two types of emulsions showing also surfactant molecules.  

Emulsions are formed when three criteria are met. The first criterion involves the contact 

of two immiscible liquids, such as oil and water. The presence of water in a reservoir can be 

either due to existing water, or due to EOR efforts to pressurize the reservoir (Mehana et al. 

2018). The second criterion involves the presence of a surface-active agent such as Asphaltene 

and Resins that provide a stabilizing effect on emulsions (Michell and Speight 1973). They form 

films that act as barriers to coalescence, flocculation and settling of the droplets. These films also 

lower the interfacial tension and are therefore able to minimize the energy required to create 

emulsions. In addition, they allow the creation of smaller droplets. The third and final criterion is 

the availability of sufficient turbulence or mixing energy to disperse one liquid into another.  

Such turbulence is mostly due to shear forces from motion through porous media, valves, pumps, 

and other production equipment (Wong 2015). 
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Figure 1 – Water in oil Emulsion and oil in water emulsion (Khan et al. 2011) 

 The produced emulsion is often separated using gravity settlers. Which are among the 

least expensive and simplest methods of separation (Barnea 1975). This type of separation is 

generally known as Liquid-Liquid separation.  

Whether emulsions are good or bad depends on the context. Emulsions formed at the 

wellhead are undesired. But emulsions such as drilling mud are intentionally formed to aid in 

vital drilling activities such as providing hydrostatic support, cleaning cuttings and cooling drill 

bits. In addition, heavy oils are sometimes turned into emulsions to reduce its viscosity for 

economic transportation (Kilpatrick 2012). 

1.2 liquid-liquid separation modeling 

1.2.1 Early experimental modeling 

Barnea and Mizrahi (1975 a, b, c, d) laid the ground work for liquid-liquid separation in 

four seminal papers. They identified experimentally three layers, the top, next to bottom, and 

bottom layers of an emulsion is a separation apparatus. The top layer comprised of the 

continuous phase and bottom layer of the dispersed phase in its homo-phase form, whereas the 

next to bottom represented the region of dispersion.  

The bottom layer is formed when enough droplets undergo binary coalescence forming a 

separate phase – Binary coalescence is the process in which two droplets merge to form a larger 
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droplet. After this layer is formed, coalescence with this layer is then referred to as interfacial 

coalescence.  

The region of dispersion is often made up of two layers: a dense packed layer and a 

sedimentation layer. The sedimentation layer is characterized with high mobility and a 

probability of binary coalescence. This process proceeds until the coalescence front (i.e. the 

interface between the bottom layer & the dense packed zone) merges with the sedimentation 

front (i.e. the interface between the top layer & the sedimentation zone). The resulting state is 

referred to as the settled state where the two phases separate completely. Figure 2 shows the 

three layers observed in an emulsion in its transient state and its settled state after both 

immiscible liquids have separated completely. Despite the dispersed layer is subdivided into two 

type of dispersions, it is regarded as a single layer representing the emulsified region. 

 

Figure 2 – Liquid-liquid separation in a batch settler and the evolution of front within it. a) 

transient. b) Final settled state (Barnea and Mizrahi 1975) 

1.2.2 Theoretical modeling of emulsions 

Barnea and Mizrahi did ground breaking work to understand experimentally the layers 

that make up an emulsion. On the other hand, Jeelani and Hartland (1986 and 1998) presented 



4 

 

theoretical models to study the kinematics of these fonts in addition to the evolution of the height 

of the dense-packed layer. Their models depended on various experimental parameters such as 

settling time, initial droplet size distribution, and single drop coalescing time. Other authors such 

as Nadiv and Semiat (1995) presented similar models using different parameters such as the 

coalescence and sedimentation velocity.  

The models up to this point study the evolution of the fronts without considering the 

droplet changes in the sedimentation zone or the dense-packed zone. Henschke et al. (2002) 

established models that predict the evolution of these fronts by taking into account the droplet 

changes and deformation in both the sedimentation and dense-packed zones. 

All the previously mentioned models are phenomenological models since they depend on 

either experimental and/or theoretical estimates to model the sedimentation and coalescence. 

They are also front kinematic models. They study the evolution of all the fonts present in the 

liquid-liquid separation process.  

1.2.3 Conservation laws and liquid-liquid separation modeling 

There is another type of phenomenological models that are based instead on the 

conversation of mass of the dispersed phase, where the dispersed phase is polydisperse (i.e. of 

diverse droplet sizes). The model considers all possible changes that the dispersed population can 

undergo. Changes due to settling, diffusion, coalescence, breakage and nucleation. All this while 

conserving the mass of the dispersed phase. Each of these phenomena are defined in accordance 

to the properties of the dispersed and continuous phases. This model is commonly referred to as 

the population balance equation. 

A shortcoming of this type of models is that they don’t consider the flow of the 

continuous phase. The continuous phase is considered static. Drumm (2010) establish a model to 
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couple computational Fluid Dynamics with the population balance equation. In other words, in 

addition to the PBE solving the conservation of mass of the dispersed phase, this model also 

attempts to solve the conservation of momentum between the dispersed phase and continuous 

phase. The output of both of these models is the droplet size distribution of the dispersed phase at 

each material point. 

1.3 The importance of studying emulsion evolution 

The emulsion’s Droplet Size Distribution (DSD) has a significant impact on both the 

emulsion stability and viscosity. Emulsions with small droplet sizes for instance promote a more 

stable emulsion and reduce viscosity (Raikar. et al 2009).  Therefore, information in regard to the 

evolution of the droplet size distribution gives us insight into the evolution of the stability and 

viscosity of the emulsion. 

There are two contexts in which the change is droplet size distribution can be studied.  

The change can either be studied during the mixing process (i.e. in turbulent conditions) or after 

the mixing has stopped (i.e. Static or settling conditions). Studying the change during the mixing 

process is critical to reduce time and resources invested in finding the right emulsion procedure 

to produce the desired emulsion otherwise done through trial and error (Raikar. Et al 2009). As 

for studying the change after mixing, as mentioned before, this is important to understand the 

evolution of the emulsion’s stability and viscosity. 

1.4 Emulsion destabilization mechanisms 

Emulsions are mostly known to be kinetically stable and thermodynamically unstable 

(Solsvik Et al 2015). Due to this fact, emulsions destabilize through six different mechanisms as 

seen in Figure 3. Sedimentation and creaming are types of gravity segregation mechanisms 
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driven mostly by gravity forces and differences in density. If the dispersed phase has a density 

greater than the surrounding fluid, the process of sedimentation sets in. As for when the 

dispersed phase is lighter, creaming dominates this kind of system (Pena, 2004). 

 

Figure 3 - Emulsion Destabilization Mechanisms (Tadros. 2013) 

Other types of destabilization are flocculation and coalescence. Coalescence can be either 

binary or interfacial. Binary coalescence is when two droplets merge to form a new droplet, and 

interfacial coalescence is when a droplet(s) merge with an interface. The phenomenon of 

coalescence and breakage is driven by a balance between the elastic and interfacial energies of 

droplets as seen in Figure 4 (Dahiya, 2016). 
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Figure 4 – Interfacial Energy and elastic energy in the binary coalescence phenomena 

(Dahiya, 2016) 

The two remaining mechanisms are phase inversion and Ostwald ripening. In the case of 

phase inversion, the continuous phase becomes the dispersed phase and dispersed phase becomes 

the continuous phase. As for Oswald ripening, this phenomenon occurs when droplets grow due 

to the presence of a non-particulate matter in solution (Tadros. 2013). 

1.4.1 Emulsion destabilization mechanisms in laboratory conditions  

Despite the heterogeneity of the oil composition (Mehana et al. 2019), there are three 

primary mechanisms that occur in crude oil emulsions. Since water and acid commonly have 

densities larger than oil, sedimentation is usually present in unstable emulsions. And since 

droplets are always in constant motion and colliding, either with themselves or an interface, 

binary coalescence and interfacial coalescence are usually present as well. However, it has been 

observed in laboratory experiments on acid in crude oil emulsions that interfacial coalescence 

does not occur (Scarborough, 2016). Instead, a very viscous and almost solid like layer occurs at 
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the bottom instead of a layer of acid. It is worth noting that despite the dependence of asphaltene 

stability on the crude oil composition (Mehana et al. 2019), the asphaltene/acid interactions were 

neglected. Figure 5 shows the evolution of such layer as it starts as a fluid layer and evolves into 

a solid highly viscous layer with no presence of a pure acid layer. 

 

Figure 5– Separation vs. Time of a 40% acid in crude oil emulsion (Scarborough, 2016) 

1.5 Purpose of this work 

The purpose of this work was to identify the main processes that govern the 

destabilization mechanisms in acid in crude oil emulsions. The best way to accomplish this task 

was to track directly the changes in the acid fraction as a function of time. Models devoleped by 

Jeelani and Hartland (1986 and 1998) and Henschke et al. (2002) are excellent at tracking the 

front kinematics properties of an emulsion (i.e. the displacement and velocity of the fronts) but 

do not track the acid fraction changes directly therefore do not identify specifically what 

destabilization mechanisms are involved in the emulsion. And secondly, acid/oil emulsions in 

their early days do not have a visible separated layer of oil or a visible separated layer of acid 

therefore two of the fronts studied by these models do not exist. A model that would best fit the 

purpose of this work would be the population balance equation. This model not only studies the 
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dispersed phase directly, but also gives the flexibility in studying any number of possible 

changes that a dispersed population can undergo, in addition to understanding the impact of each 

on the destabilization process. The population balance equation was used successfully to study 

the processes that govern water in crude oil emulsions (Cunha 2008). In this paper, similar 

methodology was used to understand the effect of mixing acid with crude oil instead of water. 

The choice to independently code this model gave the flexibility to apply a large range of 

numerical solutions on the PBE equation. 

To accomplish the task of identifying the processes that control acid in oil emulsion 

evolution, Scarborough’s (2016) density measurements were used as a guide since density can be 

easily converted to acid volume fraction through equation 1.  

𝛷𝐴𝑐𝑖𝑑 =
𝜌−𝜌𝑂𝑖𝑙 

𝜌𝑨𝒄𝒊𝒅−𝜌𝑂𝑖𝑙 
                                                                                    (1) 

Scarborough (2016) conducted a series of experiments on five three-inch-long acid in oil 

emulsion columns examining both the change in viscosity & density in the bottom and next to 

bottom layers for concentrations of 20%, 30% and 40% acid fractions. Figure 6 shows a 

schematic of the experimental methodology of the sampling procedure. 
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Figure 6 – Emulsion destabilization and sampling in a test tube (Cunha, 2008) 

His main objective was to relate the obtained viscosity and density data for the three 

concentration experiments for the bottom and next to bottom layers to create a cross plot of 

viscosity and density as shown in Figure 7. Viscosities ranged from 29.77 cp to 3187 cp. Since 

density was measured with time in these experiments, for our purposes, it was used as a proxy of 

the change in acid fraction as a function of time. 
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Figure 7 – Cross Plot between viscosity and density for 20%, 30% and 40% acid/oil 

Emulsions. Scarborough (2016)   

1.6 Destabilization modeling 

The main output of the PBE is the droplet size distribution (DSD). Figure 8a shows an 

example of a density distribution function. This function gives the fraction that each droplet size 

makes up from the present population. As a result, the area under the curve of such graph is 

equal to 1. As for Figure 8b, the function provides the exact number of droplets that each 

diameter contributes. This distribution is called a number distribution. This type of distribution is 

generated with knowledge of each droplet’s volume with the assumption that the droplets are 

spherical. Therefore, the area under the curve of such graph reflects the volume of the dispersed 

fluid droplets. Calculating the area under the curve of the droplet size distribution at each time 

step for a given space would therefore provide the volume fraction at that time and space. With 

this idea, the volume fraction can be tracked through time. 
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Figure 8 – a) Example of density distribution function and cumulative curve. b) Number 

distribution of a dispersed droplet size Population (Solsvik and Jakobsen 2015) 

Figure 9 provides a bird’s eye view of the model process. The model aims at tracking the 

droplet size distribution changes within 3 layers of a 3in test tube. The test tube will be 

discretized evenly into three 1in sections, top, next to bottom and bottom layers. Within each of 

the layers the change in DSD will be tracked using the population balance equation. The model 

tracks the change in concentration of each droplet as a function of changes due to advection, 

diffusion and binary coalescence of the dispersed acid phase. The choice of the number of 

droplets to track will depend on the number of droplets present in the emulsion in addition to 

their concentrations. This information is usually provided experimentally. Since an experimental 

DSD was not available at the time of this work, only the change in concentration of 20 common 

size droplets was considered that fall along a log-normal distribution. Acid in oil emulsions 

follow commonly a lognormal type distribution with a very small mean droplet size (Opedal 

2009). Figure 10 below shows an example of literature results of DSD of a crude oil emulsion 

using NMR and microscope.  It is important to note that the model can track any number of 

droplets with any number of concentrations.  



13 

 

 

Figure 9 – Bird’s Eye View of the Destabilization Modeling 

 

Figure 10 – DSD for a crude oil emulsion from NMR and Microscope (Opedal 2009)  
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CHAPTER 2: POPULATION BALANCE EQUATION 

2.1 Overview 

This chapter provides the mathematical model that will be utilized to track the changes in 

the droplet size distribution for each of the three layers in the test tube. In addition, it will go 

through a detailed discussion of the numerical techniques used to solve this type of model.   

The model used in this work is referred to as the population balance equation. This model 

is a nonlinear hyperbolic intergo-partial differential equation and is defined in equation 2.  

𝜕𝑛𝑘

𝜕𝑡
=  

𝜕

𝜕𝑧
(𝐷𝑧

𝜕𝑛𝑘

𝜕𝑧
) −

𝜕(𝑤𝑘𝑛𝑘)

𝜕𝑧
+ 𝛳𝑘                     (2) 

Where 𝑛𝑘 is the concentration of droplet k at a given time and space volume, 𝐷𝑧 is the diffusivity 

factor, 𝑤𝑘  is the settling velocity of a given droplet k, and finally 𝛳𝑘  represents the binary 

coalescence and breakage of droplet k.  

This model is made up of two primary parts, the Advection-Diffusion equation (ADE) 

and the source term. The Advection-diffusion equation is one of the most challenging and 

important equations in engineering since it comprises of a superposition of two transport 

processes. This equation is used in a wide variety of engineering disciplines from computational 

fluid dynamic to acoustics to heat & mass transfer (Cunha, 2008). 

The ADE equation is a second order parabolic partial differential equation made up of a 

time derivative and of first and second order spatial derivatives. The first order spatial derivative 

models the change is concentration due to droplet settling mainly driven by the force of gravity. 

In other words, a change in concentration of any droplet in a layer can be either due to a droplet 

settling into or out of a layer. As for the second order spatial derivative, it tracks the change in 

concentration due to droplet diffusion. This is a phenomenon where droplets move from a higher 
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energy state to a lower energy state. As with settling, a change in concentration in this case can 

be either due to droplets diffusing into or out of a layer.  

In addition to droplets settling and diffusing, the distribution of the population of the 

dispersed phase can change due to interactions between droplets. There are four different 

mechanisms the droplets can interact. Droplets can either aggregate, break apart, grow or 

nucleate. The process of aggregation is when two or more droplets combine to form a larger 

droplet. As for breakage, a droplet can fragment into two or more smaller droplets.  

 

Figure 11 – Different particle formation mechanisms (Kumar 2006) 

In some emulsion systems there exists a non-particulate matter when deposited on a 

droplet will cause it to grow. If this happens, the droplets are said to have undergone the process 

of growth. Furthermore, non-particulate matter has the ability to combine with itself to form new 

droplets. This process is referred to as nucleation. A detailed desciption of the exact process of 

birth and death of pariticles will be discussed later in this work. Figure 11 summarizes the four 

mechanisms.  

In this work, only the process of aggregation will be studied. Aggregation can result in 

both the death and birth of droplets. For example, if a droplet k aggregates with another droplet, 
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droplet k as a result dies to form a new larger droplet. However, two droplets with a combined 

volume equal to k can merge to form a new k droplet. These two phenomena are defined by theta 

as seen in equation 3. 

𝛳 =
1

2
∫ 𝛽(𝑣 − 𝑣′, 𝑣′)𝑛(𝑣 − 𝑣′, 𝑧, 𝑡)𝑛(𝑣′, 𝑧, 𝑡)𝑑𝑣′ − ∫ 𝛽(𝑣, 𝑣′)𝑛(𝑣′, 𝑧, 𝑡)𝑛(𝑣′, 𝑧, 𝑡)𝑑𝑣′ 

∞

0

𝑣

0
  

                                                                                                                                                     (3) 

Where 𝑣 𝑎𝑛𝑑 𝑣′are droplet volumes and 𝛽 is the collision frequency.  

The general population balance equation therefore takes the expanded form in equation 4 

descrbing the change in droplet size distribuation as a function of diffusion, advenction and 

binary coalescence 

𝜕𝑛𝑘

𝜕𝑡
=  

𝜕

𝜕𝑧
(𝐷𝑧

𝜕𝑛𝑘

𝜕𝑧
) −

𝜕(𝑤𝑘𝑛𝑘)

𝜕𝑧

+
1

2
∫ 𝛽(𝑣 − 𝑣′, 𝑣′)𝑛(𝑣 − 𝑣′, 𝑧, 𝑡)𝑛(𝑣′, 𝑧, 𝑡)𝑑𝑣′ − ∫ 𝛽(𝑣, 𝑣′)𝑛(𝑣′, 𝑧, 𝑡)𝑛(𝑣′, 𝑧, 𝑡)𝑑𝑣′

∞

0

𝑣

0

 

 

(4) 

 

 

2.2 Advection diffusion equation 

The first part of the population balance equation that will require numerical modeling is 

the advection-diffusion equation. The one-dimensional PDE is given by equation 5. 

𝜕𝑛

𝜕𝑡
=  

𝜕

𝜕𝑧
(𝐷𝑧

𝜕𝑛

𝜕𝑧
) −

𝜕(𝑤𝑛)

𝜕𝑧
                              (5) 

Many techniques have been developed to solve this PDE equation. These techniques are 

generally categorized as either standard or non-standard finite difference schemes. The most 

𝐵𝑖𝑟𝑡ℎ 𝑇𝑒𝑟𝑚  

 

𝐷𝑒𝑎𝑡ℎ 𝑇𝑒𝑟𝑚  
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common standard finite difference schemes include the lax-wendroff, Crank-Nicolson and third 

and fourth order upwind schemes. As for the non-standard finite difference scheme, this method 

was developed with the objective to remove the numerical instability commonly present in 

standard schemes (wand and Roeger 2015). In return, NSFD scheme has a very wide stability 

range and can handle a wide range of applications. 

In this section the stability of five numerical solutions are presented to choose the best 

model to fit our problem. Four of the techniques will be standard methods that are second, third 

and fourth order accurate, and the fifth will be a non-standard method. This will be followed by a 

numerical optimization of the parameters of the chosen method.  

The main reason for presenting such a large number of solutions for the ADE equation is 

because of the large number of properties that can be studied. For some cases under specific 

properties, one solution might be unstable, but another might produce a perfectly accurate result. 

This work attempts to provide the best solutions available for the ADE equation and then selects 

the one best for the set of properties of acid, crude oil, and apparatus used. 

2.2.1 General explicit and implicit finite difference methods 

The general standard finite difference schemes are derived using Taylor series 

approximations of the first and second derivatives. The first derivative of advection is 

approximated using a weighted average between the backward finite difference (BFD) and 

forward finite difference (FDD) schemes and is given by equation 6. 

𝜕𝑛

𝜕𝑧
=

(1−𝛾)(𝑛𝑘−𝑛𝑘−1)+𝛾(𝑛𝑘+1−𝑛𝑘)

ℎ
                            (6) 
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The spatial weight factor is defined as γ. When γ is equal to 1, the first derivative is 

approximated fully using the FFD and when γ is equal to 0, the first derivative is approximated 

fully using the BFD.  

Furthermore, the temporal dimension in incorporated in this problem using a weighted 

average between the current time step and future time step. Factoring in the time dimension, the 

advection term now takes the following form as seen in equation 7. 

𝜕𝑛

𝜕𝑧
= (1 − 𝛷) [

(1−𝛾)(𝑛𝑘
𝑛−𝑛𝑘−1

𝑛 )+𝛾(𝑛𝑘+1
𝑛 −𝑛𝑘

𝑛)

ℎ
] + 𝛷 [

(1−𝛾)(𝑛𝑘
𝑛+1−𝑛𝑘−1

𝑛+1)+𝛾(𝑛𝑘+1
𝑛+1−𝑛𝑘

𝑛+1)

ℎ
]          (7)                                                

Φ is defined as the temporal weight factor. When Φ is equal to 0, the first derivative is 

defined fully in terms of the current time step. Such approach is defined as explicit. As for the 

remaining values of Φ, the first derivative in defined implicitly.  

Unlike the first derivative, the second derivative of diffusion is approximated fully using the 

centered finite difference as seen in equation 8.   

𝜕2𝑛

𝜕𝑧2
=

𝑛𝑘+1−2𝑛𝑘+𝑛𝑘−1

ℎ2
                                               (8) 

Factoring in the time dimension, the final form of the diffusion term is given by equation 9. 

𝜕2𝑛

𝜕𝑧2
= (1 − 𝛷)

𝑛𝑘+1
𝑛  −2𝑛𝑘

𝑛+𝑛𝑘−1
𝑛

ℎ2
+ 𝛷

𝑛𝑘+1
𝑛+1 −2𝑛𝑘

𝑛+1+𝑛𝑘−1
𝑛+1

ℎ2
                               (9) 

By substituting the final approximation of the first and second derivative in the original 

ADE equation and approximating the time derivative using the forward divided finite difference 

we obtain a general explicit and implicit finite difference method where k is the time step and h 

is the spatial step size as seen in equation 10. 

𝑛𝑘
𝑛+1−𝑛𝑘

𝑛

𝑘
= 𝐷𝑧 [(1 − 𝛷)

𝑛𝑘+1
𝑛  −2𝑛𝑘

𝑛+𝑛𝑘−1
𝑛

ℎ2
+ 𝛷

𝑛𝑘+1
𝑛+1  −2𝑛𝑘

𝑛+1+𝑛𝑘−1
𝑛+1

ℎ2
] − 𝑤𝑧 [(1 −

𝛷) (
(1−𝛾)(𝑛𝑘

𝑛−𝑛𝑘−1
𝑛 )+𝛾(𝑛𝑘+1

𝑛 −𝑛𝑘
𝑛)

ℎ
) + 𝛷 (

(1−𝛾)(𝑛𝑘
𝑛+1−𝑛𝑘−1

𝑛+1)+𝛾(𝑛𝑘+1
𝑛+1−𝑛𝑘

𝑛+1)

ℎ
)]                 (10)  
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By taking ℎ2and h as a common factor we obtain equation 11. 

𝑛𝑘
𝑛+1 − 𝑛𝑘

𝑛 =
𝐷𝑧∗𝑘

ℎ2
 [(1 − 𝛷)𝑛𝑘+1

𝑛  − 2𝑛𝑘
𝑛 + 𝑛𝑘−1

𝑛 + 𝛷𝑛𝑘+1
𝑛+1  − 2𝑛𝑘

𝑛+1 + 𝑛𝑘−1
𝑛+1] −

𝑤𝑧∗𝑘

ℎ
[(1 − 𝛷)(1 − 𝛾)(𝑛𝑘

𝑛 − 𝑛𝑘−1
𝑛 ) + 𝛾(𝑛𝑘+1

𝑛 − 𝑛𝑘
𝑛) + 𝛷(1 − 𝛾)(𝑛𝑘

𝑛+1 − 𝑛𝑘−1
𝑛+1) + 𝛾(𝑛𝑘+1

𝑛+1 −

𝑛𝑘
𝑛+1)]                                                                                            (11) 

For the purpose of simplification   
𝐷𝑧∗𝑘

ℎ2
 and 

𝑤𝑧∗𝑘

ℎ
 and defined as s and c, respectively as seen in 

equation 12 

𝑛𝑘
𝑛+1 − 𝑛𝑘

𝑛 = 𝑠 [(1 − 𝛷)𝑛𝑘+1
𝑛  − 2𝑛𝑘

𝑛 + 𝑛𝑘−1
𝑛 + 𝛷𝑛𝑘+1

𝑛+1  − 2𝑛𝑘
𝑛+1 + 𝑛𝑘−1

𝑛+1] − 𝑐 [(1 −

𝛷)(1 − 𝛾)(𝑛𝑘
𝑛 − 𝑛𝑘−1

𝑛 ) + 𝛾(𝑛𝑘+1
𝑛 − 𝑛𝑘

𝑛) + 𝛷(1 − 𝛾)(𝑛𝑘
𝑛+1 − 𝑛𝑘−1

𝑛+1) + 𝛾(𝑛𝑘+1
𝑛+1 − 𝑛𝑘

𝑛+1)]                                                     

(12)     

Through simple algebraic manipulations, the concentration n of a droplet k at a future time 

step n+1 is given by equation 13. 

𝑛𝑘
𝑛+1 =

1

1−𝛷[𝑐(2𝛾−1)−2𝑠]
((𝛷 − 1)[𝑐(𝛾 − 1) − 𝑠]𝑛𝑘−1

𝑛 + 1 + (𝛷 − 1)[𝑐(1 − 2𝛾) + 2𝑠]𝑛𝑘
𝑛 + (1 −

𝛷)[𝑠 − 𝑐𝛾]𝑛𝑘+1
𝑛 + 𝛷[𝑠 + 𝑐(1 − 𝛾)]𝑛𝑘−1

𝑛+1 + 𝛷[𝑠 − 𝛾𝑐]𝑛𝑘+1
𝑛+1)           (13) 

The approximated ADE equation can be further simplified as seen in equation 14. 

𝑛𝑘
𝑛+1 =

1

𝐴𝑜

(𝐴1𝑛𝑘−1
𝑛 + 𝐴2𝑛𝑘

𝑛 + 𝐴3𝑛𝑘+1
𝑛 + 𝐴4𝑛𝑘−1

𝑛+1 + 𝐴5𝑛𝑘+1
𝑛+1)                                    (14) 

𝐴𝑜 = 1 − 𝛷[𝑐(2𝛾 − 1) − 2𝑠]                                           𝐴1 = (𝛷 − 1)[𝑐(𝛾 − 1) − 𝑠] 

  𝐴2 = 1 + (𝛷 − 1)[𝑐(1 − 2𝛾) + 2𝑠]                                𝐴3 = (1 − 𝛷)[𝑠 − 𝑐𝛾] 

              𝐴4 = 𝛷[𝑠 + 𝑐(1 − 𝛾)]                                                𝐴5 = 𝛷[𝑠 − 𝛾𝑐]  

Where, c = 𝑤 𝑘/ℎ and s = 𝐷𝑧 𝑘/ℎ2 
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2.2.2 Lax-wenhoff and crank-nelson 

Manipulations of the spatial and temporal weight factors is what gives rise to the large 

number of standard explicit and implicit finite difference schemes available.  

When𝛷 = 0 𝐴𝑛𝑑 𝛾 =
1−𝑐

2
 , the resulting formula is referred to as the lax-wenhoff scheme and it 

is given by equation 15. 

𝑛𝑘
𝑛+1 =

1

2
(2𝑠 + 𝑐 + 𝑐2) 𝑛𝑘−1

𝑛 + (1 − 2𝑠 − 𝑐2) 𝑛𝑘
𝑛 +

1

2
(2𝑠 − 𝑐 + 𝑐2)  𝑛𝑘+1

𝑛              (15) 

This is an explicit scheme where the concentration of a droplet k at a future time step is 

defined in terms of the concentration of k-1, k and k+1 droplet at the current time step. This 

makes this technique second order accurate. Figure 12 a visual computation of this method. 

 

Figure 12 – Computation schematic for explicit scheme  

When𝛷 =
1

2
 𝐴𝑛𝑑 𝛾 =

1

2
 , the resulting formula is referred to as the crank-Nelson and it is given 

by equation 16. 

𝑛𝑘
𝑛+1 =

1

4(1+𝑠)
[(𝑐 + 2𝑠)𝑛𝑘−1

𝑛+1 − (𝑐 − 2𝑠)𝑛𝑘+1
𝑛+1 + (𝑐 + 2𝑠)𝑛𝑘−1

𝑛 − (𝑐 − 2𝑠)𝑛𝑘+1
𝑛 + (4 − 4𝑠)𝑛𝑘

𝑛]                                                                                                                         

(16) 

This is an implicit scheme where the concentration of a droplet k at a future time step is 

defined in terms of the concentrations at both the current and future time steps. If this formula is 
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rearranged so that the future terms are on the left side and current time step terms are on the 

right, we obtain equation 17. 

𝐴4𝑛𝑘−1
𝑛+1 + 𝐴𝑜𝑛𝑘

𝑛+1 − 𝐴5𝑛𝑘+1
𝑛+1 = (𝐴1𝑛𝑘−1

𝑛 + 𝐴2𝑛𝑘
𝑛 + 𝐴3𝑛𝑘+1

𝑛 )                                   (17) 

If this formula is expanded for a k number of droplets, this generates a special type of 

matrix, a tridiagonal matrix which takes this general form 

 

𝑊ℎ𝑒𝑟𝑒 𝑟𝑘 = (𝐴1𝑛𝑘−1
𝑛 + 𝐴2𝑛𝑘

𝑛 + 𝐴3𝑛𝑘+1
𝑛 ) 

The coefficients 𝐴𝑜 𝑡𝑜 𝐴5  and 𝑟𝑘are all known. Therefore, solving this matrix will result 

in the concentration of droplets at next time step. 

It is important to note that since 𝐴𝑜 𝑡𝑜 𝐴5 are dependent on c, and c is dependent on the 

droplet velocity, and the droplet velocity is dependent on diameter, 𝐴𝑜 𝑡𝑜 𝐴5 are different for 

each droplet size. Therefore, each row in the tridiagonal matrix is generated using a different set 

of coefficients. 

Due to the large number of zeros in this matrix, a very efficient technique that is used to 

solve this type of matrix is the Thomas algorithm. 

2.2.3 Error of the general finite difference scheme 

When using numerical models, the concept of stability always needs to be addressed. 

Every numerical model has certain parameters which make it stable and others that generate 
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numbers that do not make reasonable sense within the context of the problem being solved. 

Therefore, a stability criterion needs to be defined and for this general finite difference formula 

it’s given as equation 18. 

0 < 𝑠 ≤
1−𝑐2

2
                        (18) 

Furthermore, within the stability region there exists optimum parameters that reduce the 

error to almost zero. Finding the optimum parameter within the stability region will be discuss 

later in this section.  

2.2.4 High accuracy formulas 

In the previous section the first and second derivative of the advection-diffusion equation 

were approximated using what are called the conversional finite difference approximations. 

Where the first derivative is approximated using a first order Taylor series and the second 

derivative is approximated using a second order Taylor series.  

In this section I will introduce a class of derivative approximations called the high 

accuracy finite difference formulas that would create a more accurate approximation for the 

ADE equations. These formulas unlike the conventional use a higher order Taylor series to 

approximate the derivatives. For example, the first derivative instead of being approximated 

using a first order Taylor series, it is approximated using a higher order Taylor series and the 

same applies for the second derivative of diffusion. 

Third order upwind scheme 

The first technique that is developed as a result of the application of the high accuracy 

formulas is the third order upwind explicit technique. The first and second spatial derivative for 

this method are approximated as equation 19 and 20, respectively. 
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𝜕𝑛

𝜕𝑧
= (

2𝑐2+3𝑐+12𝑠−2

12
)(

𝑛𝑘
𝑛−𝑛𝑘−2

𝑛

2ℎ
) + (

2𝑐2−3𝑐+12𝑠−2

12
) (

𝑛𝑘+2
𝑛 −𝑛𝑘

𝑛

2ℎ
)  

+ (
4−𝑐2−6𝑠

3
)(

𝑛𝑘+1
𝑛 −𝑛𝑘−1

𝑛

2ℎ
)                                                                                        (19) 

 

𝜕2𝑛

𝜕𝑧2
= (

6𝑠−12𝑠𝑐+2𝑐−2𝑐3+3𝑐2

6𝑠
)(

𝑛𝑘+1−2𝑛𝑘+𝑛𝑘−1

ℎ2
)  

+(
12𝑠𝑐−2𝑐+2𝑐3−3𝑐2

12
) (

𝑛𝑘+2−2𝑛𝑘+𝑛𝑘−2

4ℎ2
)                                                                    (20) 

The time derivative is approximated using a forward divided finite difference given by 

equation 21. 

𝜕𝑛

𝜕𝑡
=

𝑛𝑘
𝑛+1−𝑛𝑘

𝑛

𝑘
                     (21) 

Putting the above approximation into the ADE equation with further simplifications, we 

obtain the equation 22: 

𝑛𝑘
𝑛+1 = 𝐴1𝑛𝑘−2

𝑛 + 𝐴2𝑛𝑘−1
𝑛 + 𝐴3𝑛𝑘

𝑛 + 𝐴4𝑛𝑘+1
𝑛                                         (22) 

                𝐴1 =
1

6
𝑐(𝑐2 + 6𝑠𝑐 − 1)               𝐴2 =

1

2
(2𝑐 − 𝑐3 − 6𝑠𝑐 + 2𝑐 + 𝑐2) 

                𝐴3 =
1

2
(2 − 2𝑐2 − 4𝑠 + 6𝑠𝑐 − 𝑐 + 𝑐3)     𝐴4 =

1

6
(1 − 𝑐)(6𝑠 + 𝑐2 − 2𝑐) 

Where, c = 𝑤 𝑘/ℎ and s = 𝐷𝑧 𝑘/ℎ2 

Compared to the lax-wenhoff, this technique approximates the concentration of a droplet 

k in terms of four points, k-2, k-1, k and k+1 instead of only three points k-1, k and k+1. This in 

consequence makes this technique much more accurate. This method is third order accurate. 

Figure 13 is visual representation of the computation of this technique. 
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Figure 13 – Computation schematic for third order upwind technique  

As with the previous techniques, the stability criteria for this method is given equation 23. 

0 < 𝑠 ≤
1

6

𝑐(2+3𝑐−2𝑐2)

(2𝑐−1)
                     (23) 

Fourth order upwind scheme 

The high accuracy formulas can be further used to generate a more accurate 

approximation of the ADE equation by generating a fourth order accurate finite difference 

scheme that is given by equation 24. 

𝜕𝑛

𝜕𝑧
= (

12𝑠 + 2𝑐2 − 3𝑐 − 2

12
) (

𝑛𝑘+2
𝑛 − 𝑛𝑘

𝑛

2ℎ
) + (

12𝑠 − 2𝑐2 + 3𝑐 − 2

12
)(

𝑛𝑘
𝑛 − 𝑛𝑘−2

𝑛

2ℎ
) 

− (
𝑐2 + 6𝑠 − 4

3
) (

𝑛𝑘+1
𝑛 − 𝑛𝑘−1

𝑛

2ℎ
) 

𝜕2𝑛

𝜕𝑧2
= (

−𝑐4 + 4𝑐2 − 12𝑠2 − 12𝑠𝑐2 + 8𝑠

6𝑠
) (

𝑛𝑘+1
𝑛  − 2𝑛𝑘

𝑛 + 𝑛𝑘−1
𝑛

ℎ2
) 

+ (
𝑐4 − 4𝑐2 + 12𝑠2 + 12𝑠𝑐2 − 2𝑠

6𝑠
) (

𝑛𝑘+2
𝑛  − 2𝑛𝑘

𝑛 + 𝑛𝑘−2
𝑛

4ℎ2
) 

                             (24) 

The time derivative is approximated using a forward divided finite difference given by equation 

25.  

𝜕𝑛

𝜕𝑡
=

𝑛𝑘
𝑛+1−𝑛𝑘

𝑛

𝑘
                   (25) 
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Putting the above approximation into the ADE equation with further simplifications, we 

obtain the equation 26. 

𝑛𝑘
𝑛+1 = 𝐴 𝑛𝑘−2

𝑛 + 𝐵 𝑛𝑘−1
𝑛 + 𝐶 𝑛𝑘

𝑛 + 𝐷 𝑛𝑘+1
𝑛 + 𝐸 𝑛𝑘+2

𝑛                                       (26) 

               𝐴 =
1

24
(
12𝑠(𝑠 + 𝑐2) + 2𝑠(6𝑐 − 1)

+𝑐(𝑐 − 1)(𝑐 + 1)(𝑐 + 2)
)    𝐵 = −

1

6
(
12𝑠(𝑠 + 𝑐2) + 2𝑠(3𝑐 − 4)

+𝑐(𝑐 − 2)(𝑐 + 1)(𝑐 + 2)
) 

               𝐶 =
1

4
(

12𝑠(𝑠 + 𝑐2) − 10𝑠
+(𝑐 − 1)(𝑐 − 2)(𝑐 + 1)(𝑐 + 2)

)𝐷 = −
1

6
(
12𝑠(𝑠 + 𝑐2) − 2𝑠(3𝑐 + 4)
+𝑐(𝑐 − 2)(𝑐 − 1)(𝑐 + 2)

) 

               𝐸 =
1

24
(
12𝑠(𝑠 + 𝑐2) − 2𝑠(6𝑐 + 1)

+𝑐(𝑐 − 1)(𝑐 + 1)(𝑐 − 2)
)                                       

Where, c = 𝑤 𝑘/ℎ and s = 𝐷𝑧 𝑘/ℎ2 

As seen in the above equation, the fourth order Upwind scheme is approximated using 5 

grid points k-2, k-1, k, k+1 and k+2 as seen in Figure 14.  

 

Figure 14 – Computation schematic for fourth order upwind scheme  

The stability criteria for the following approximation is given by equation 27. 

0 ≤ 𝑠 ≤
1

3
−

1

6
𝑐2 +

1

6
√4 + 6𝑐4                           (27) 

Mehdi Dehghan (2004) had undergone a study comparing the effectiveness of upwind 

schemes in approximating the convection-diffusion transport problems. The study included the 
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second, third, and fourth order upwind schemes. The study concluded that the fourth upwind 

scheme is by far the most accurate. This should not come as a surprise since not only is the 

fourth upwind scheme approximated using high accuracy finite difference formulas, but it uses a 

higher order high accuracy formula than the third order. The second order upwind scheme used 

in the study is similar to the explicit lax-wenhoff technique. 

Another study was made by Appadu (2015) in which the third and fourth order upwind 

schemes were compared against the non-standard finite difference scheme (NSFD). The study 

observed that the NSFD was superior to both the third and fourth upwind schemes. This was for 

both course and fine grids and also low and high Reynolds numbers.  

The ability for the NSFD formula to handle high Reynolds numbers is very important to 

this work. Diffusion in liquids in general are at 10^-6 order of magnitude (i.e. Re = 1,000,000) 

due to the small velocities of the dispersed droplets. Diffusion can even be lower if the dispersed 

droplets are in a highly viscous continuous phase similar to crude oil.  

High Reynolds numbers can cause difficulties in explicit standard schemes. Furthermore, 

settling velocities in liquids are at a 10^-4 order of magnitude which can cause additional 

problems when using explicit standard formulas. Therefore, NSFD and the implicit crank-nelson 

present two of the most effective methods to be applied to emulsion droplet size distribution 

analysis. 

It is important to note that using a higher order approximation is not always preferable 

since techniques that are sometimes more accurate also require more calculations and as a result 

more CPU time. And if a model will track millions of droplets, a few additional calculations per 

step can compound to very large additional calculations for the entire model. Due to this 

limitation it is important to define the error tolerance and accepted CPU time for a given model.  
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2.2.5 Nonstandard finite difference scheme 

As mentioned before, the one-dimensional Advection-Diffusion equation is generally 

given by equation 28. 

𝜕𝑛𝑘

𝜕𝑡
=  

𝜕

𝜕𝑧
(𝐷𝑧

𝜕𝑛𝑘

𝜕𝑧
) −

𝜕(𝑤𝑘𝑛𝑘)

𝜕𝑧
                   (28) 

This equation has three possible outcomes or sub-equations depending upon the presence 

or absence of the transport phenomena being studied. The first outcome is achieved when there is 

negligible diffusion in a fluid. In this case the ADE equation reduces to equation 29. 

𝜕𝑛𝑘

𝜕𝑡
+ 𝑤𝑘

𝜕𝑛𝑘

𝜕𝑧
=  0                                  (29)                       

The second outcome occurs when viscous forces in a fluid cancel out gravitational forces 

resulting in negligible settling of the dispersed population. The ADE equation is this case 

reduces to equation 30. 

𝜕𝑛𝑘

𝜕𝑡
= 𝐷𝑧  

𝜕2𝑛𝑘

𝜕𝑧2
                                        (30)                        

The third and final outcome is when there is no change in the concentration of a 

population as a function of time is a given volume of space. However, within that volume of 

space, the dispersed population is free to move – free to settle and free to diffuse. In this case the 

ADE equation reduces to equation 31. 

𝑤𝑘
𝜕𝑛𝑘

𝜕𝑧
= 𝐷𝑧  

𝜕2𝑛𝑘

𝜕𝑧2
                                           (31)          

Equations 31 and 32 have exact known finite difference formulas as seen in equations 32 and 

33, respectively. 

𝑛𝑘
𝑛+1−𝑛𝑘

𝑛

𝑘
+ 𝑤𝑘  

𝑛𝑘
𝑛−𝑛𝑘−1

𝑛

ℎ
= 0                              (32) 

And   
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𝑛𝑘
𝑛−𝑛𝑘−1

𝑛

ℎ
= 𝐷𝑧 (

𝑛𝑘+1
𝑛 −𝑛𝑘

𝑛+𝑛𝑘−1
𝑛

𝐷𝑧ℎ(𝑒
(
𝑤𝑘ℎ

𝐷𝑧
)
−1)

)                          (33) 

By combining the above two equations and preforming minor simplification to the 

resulting equation, the non-standard finite difference formula is defined and is generally given as 

equation 34. 

𝑛𝑘
𝑛+1 = 𝑤𝑘𝑛𝑘+1

𝑛 + (1 − 𝛼1 − 2𝛽1)𝑛𝑘
𝑛 + (𝛼1 + 𝛽1)𝑛𝑘−1

𝑛                         (34) 

Where, 𝛼1 = 𝑤𝑘  𝑘/ℎ and 𝛽1 = 𝛼1/𝑒
(
𝑤𝑘ℎ

𝐷𝑧
)
− 1 

The stability criteria for the following approximation is given by equation 35. 

𝛼1
2 ≤ 𝛼1 + 2𝛽1 ≤ 1                                 (35) 

2.2.6 Optimization of numerical parameters of k and h 

Now that the best numerical models have been chosen and developed for the advection 

diffusion equation, the next step is to find the most optimum numerical parameters k and h that 

would minimize the error. The aim of this section is to find the optimum k value for a given 

spatial discretization h. h will be taken as 0.00254cm for this problem. This in turn will lead to a 

3000-layer discretized test tube. This gives the ability to sample the smallest of changes within a 

cylindrical test tube both in space and as we will see later we are able to sample the volume 

fraction in small time increments as well. But lower discretization are possible if such a high 

resolution is not required.  

Non-standard finite difference formula 

The numerical error for the NSFD technique is quantified using two approaches. The 

purpose of the two approaches is to minimize the dissipation and dispersion errors normally 

encountered in numerical modeling. Each technique approaches the problem differently but both 

methods yield the same exact graphical result as we’ll see later in this chapter. The first approach 
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is by Tam and shen [22] where they go about optimizing the coefficients 𝛼1 & 𝛽1 of the NSFD 

formula. As for the second approach, Bogey and Bailly [20] minimize the relative difference 

between the exact wavenumber and the numerical wavenumber. These approaches are defined as 

equations 36 and 37, respectively.  

IETAM = ∫ (𝑅𝑃𝐸𝑁𝑆𝐹𝐷 − 1)2𝑑𝜔
1.1

0
                                (36) 

IEBOGEY = ∫ |𝑅𝑃𝐸𝑁𝑆𝐹𝐷 − 1|
1.1

0
𝑑𝜔                               (37) 

RPE stands for the relative phase error which is defined in terms of𝛼1, the phase angle, ω 

and the coefficients of the amplification factor, ℜ(𝜉𝑁𝑆𝐹𝐷) and  ℑ(𝜉𝑁𝑆𝐹𝐷) that will be defined 

later in this section. RPE is defined generally as equation 38. 

𝑅𝑃𝐸𝑁𝑆𝐹𝐷 =
1

𝛼1𝜔
𝑡𝑎𝑛−1(

ℑ(𝜉𝑁𝑆𝐹𝐷)

ℜ(𝜉𝑁𝑆𝐹𝐷)
                                      (38) 

Since the RPE is defined in terms of the coeffiecnets of the amplification factor, it’s 

important to furthur explain what the amplification factor signifies. The amplification factor is a 

quanity that reflects the stability of a numerical scheme. It’s a measure of the whether the 

numerical disturbance grows or dampends. If the amplification factor is equal to 1, no change in 

disturbance is to be expected and the scheme is said to be stable. However, if the amplification 

factor is greater than or less than 1, this indicates an unstable state. The amplification factor is 

defined as equation 39. 

𝜉𝑁𝑆𝐹𝐷 = ℜ(𝜉𝑁𝑆𝐹𝐷) −  ℑ(𝜉𝑁𝑆𝐹𝐷) ∗ 𝐼                                   (39) 

Where ℜ(𝜉𝑁𝑆𝐹𝐷) and ℑ(𝜉𝑁𝑆𝐹𝐷) are the coefficients and  𝐼 = √−1 . The coefficients are defined 

as equations 40 and 41, respectively. 

ℜ(𝜉𝑁𝑆𝐹𝐷) =  1 + (𝛼1 + 2𝛽1) ∗ (𝑐𝑜𝑠(𝜔) − 1)                (40) 

ℑ(𝜉𝑁𝑆𝐹𝐷) = 𝛼1 ∗ 𝑠𝑖𝑛(𝜔)                                                   (41) 
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By substituting back ℜ(𝜉𝑁𝑆𝐹𝐷) & ℑ(𝜉𝑁𝑆𝐹𝐷)into the RPE equation, we obtain a more expanded 

form of the RPE equation as seen in equation 42. 

𝑅𝑃𝐸𝑁𝑆𝐹𝐷 =
1

𝛼1∗𝜔
𝑡𝑎𝑛−1 [

𝛼1∗𝑠𝑖𝑛(𝜔)

1+(𝛼1+2𝛽1)∗(𝑐𝑜𝑠(𝜔)−1)
]                  (42) 

 

Furthermore, by substituting 𝛼1 & 𝛽1previosuly defined in the NSFD formulation, we 

obtain the final fully expanded form of the RPE defined in terms of known parameters k, h, 𝐷𝑧 

and w as seen in equation 43. 

𝑅𝑃𝐸𝑁𝑆𝐹𝐷 =
ℎ

𝑤𝑘𝑘∗𝜔
𝑡𝑎𝑛−1

[
 
 
 
 

(
𝑤

ℎ

̅
𝑘 𝑠𝑖𝑛(𝜔))

1+[
𝑤

ℎ
+2

𝑤

ℎ 𝑒
(
𝑤𝑘ℎ

𝐷𝑧
)
−1

]𝑘(𝑐𝑜𝑠(𝜔)−1)

]
 
 
 
 

                             (43) 

Given that RPE is now fully developed, it can now be substituted back into the two Error 

integration formulas defined earlier in this section. The modified equation is given by equations 

44 and 45, respectively.  

IETAM = ∫

[
 
 
 
 

ℎ

𝑤𝑘𝑘∗𝜔
𝑡𝑎𝑛−1

(

 
 (

𝑤

ℎ

̅
𝑘 𝑠𝑖𝑛(𝜔))

1+[
𝑤

ℎ
+2

𝑤

ℎ 𝑒
(
𝑤𝑘ℎ

𝐷𝑧
)
−1

]𝑘(𝑐𝑜𝑠(𝜔)−1)

)

 
 

− 1

]
 
 
 
 
2

𝑑𝜔
1.1 

0
                              (44) 

IEBOGEY = ∫ |
| ℎ

𝑤𝑘𝑘∗𝜔
𝑡𝑎𝑛−1

(

 
 (

𝑤

ℎ

̅𝑘 𝑠𝑖𝑛(𝜔))

1+[
𝑤

ℎ
+2

𝑤

ℎ 𝑒
(
𝑤𝑘ℎ

𝐷𝑧
)
−1

]𝑘(𝑐𝑜𝑠(𝜔)−1)

)

 
 

− 1|
|1.1

0
𝑑𝜔                            (45) 

From the following equations it can be clearly shown that for a given combination of 

numerical parameters k and h, a corresponding error can be quantified. It is important to note that 

the spatial step size is kept constant and only the time step with be changed. Therefore, the above 
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integrals will be evaluated at a range of k values for a constant spatial discretization. The 

integrals are calculated for k values ranging from 0 to 250 seconds.  

The IETAM and IEBOGEY are complex integration formula without an analytical solution. To 

evaluate these integrals a numerical integration technique was used. The numerical technique 

chosen was Simpson’s 
1

3
  rule due to its effectiveness to find a very accurate integral in a very 

efficient manner. Figures 15 and 16 show the IETAM and IEBOGEY error equations for k 

values ranging from 0 to 250 seconds 

 

Figure 15 – Plot for IETAM versus k for NSFD when h = 0.00254 cm  
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Figure 16 – Plot for IEBODEY versus k for NSFD when h = 0.00254 cm 

By performing regression analysis for both the IETAM and IEBOGEY models followed 

by the use of a root finding technique capable of handling multiple roots, the k values that would 

minimize the error to close to zero for both IETAM and IEBOGEY were found to be   

𝑘 = 90  

𝑘 = 190 

Since both values of 90 and 190s are capable of minimizing the error to the same degree, the 

lager time discretization (i.e. k = 190) was chosen for the purpose of minimizing the 

computational time. 

Crank Nelson  

Finding the optimum numerical parameters of the crank-Nelson is almost identical to that 

of the NSFD scheme. The difference is in the development of the RPE as seen in equations 46 

and 47. The RPE equation can be generated using the same steps outlined above.  

IETAM = ∫ (𝑅𝑃𝐸𝐶𝑁 − 1)2𝑑𝜔
1.1

0
                        (46) 

IEBOGEY = ∫ |𝑅𝑃𝐸𝐶𝑁 − 1|
1.1

0
𝑑𝜔                      (47) 
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After the development of the RPE term specific to the crank-nelson in addition to the 

application of numerical integration techniques, the error vs. time step curves can be generated 

for both the IETAM and IEBOGEY error analysis. Figure 17 and 18 show the results of the 

IETAM and IEBOGEY integrals evaluated for a spatial step size of 0.254 cm and a k range of 0 

to 1800. As mentioned before, the NSFD has a large stability criterion which allowed the ability 

to discretize to up to 3000 layers. But with the crank- nelson, to maintain numerical stability, 

discretization of the space was limited to 300 layers of the 3 in test tube.  

 

Figure 17 – Plot for IETAM versus k for Crank-Nelson when h = 0.254 cm  
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Figure 18 – Plot for IEBODEY versus k for Crank-Nelson when h = 0.254 cm 

By performing regression analysis for both the IETAM and IEBOGEY models followed 

by the use of a root finding, the k value that would minimize the error to close to zero for both 

IETAM and IEBOGEY were found to be   

𝑘 = 1100𝑠  

It can be observed that the volume fraction can be sampled accurately every 1100 

seconds as oppose to every 90 or 190 seconds as with the NSFW. This is conformation of the 

differences in stability criterion between the techniques used to solve the ADE equation. If high 

resolution is highly desired in both space and time then the perfect choice would be the NSFW 

but if moderate resolution is desired then the crank-nelson would be a good choice. 

2.3 Source Term 

Droplets within a fluid do not only settle and diffuse but are always in constant motion 

and as a result are in constant collisions with other droplets. Furthermore, some droplets do not 

only collide but rather merge and coalesce to form larger droplets.  
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If we track a droplet k within a fluid where coalescence takes place, two phenomena can 

be observed. The first phenomenon is the death of droplet k. This occurs when droplet k collides 

and merges with another droplet. The second phenomenon is the birth of a droplet k. This occurs 

when two droplets that have a combined volume equal to k collide and merge together.  

The net increase or decrease of droplet k is represented by theta which is given as 

equation 48. 

ϴ𝑘 =
1

2
∫ 𝛽(𝑣 − 𝑣′, 𝑣′)𝑛(𝑣 − 𝑣′, 𝑧, 𝑡)𝑛(𝑣′, 𝑧, 𝑡)𝑑𝑣′ − ∫ 𝛽(𝑣, 𝑣′)𝑛(𝑣′, 𝑧, 𝑡)𝑛(𝑣′, 𝑧, 𝑡)𝑑𝑣′∞

0

𝑣

0
                                                                                       

(48) 

Where 𝑣 𝑎𝑛𝑑 𝑣′are droplet volumes of droplets colliding and 𝛽 is the collision 

frequency. 

The first term represents the number of droplet k that were created and the second term 

represents the number that died.  

2.3.1 Fixed Pivot Technique 

As with many differentiation and integration formulas, an exact solution is not always 

readily available. An exact solution can be either difficult or impossible to obtain. Kumar and 

Ramkrishana (2008) developed a technique called the fixed Pivot Technique to solve for 

coalescence, breakage, growth and nucleation numerically. However, in this work only the 

process of coalescence will be studied. The change in concentration of a droplet k due to 

coalescence using the fixed pivot technique is defined as seen in equation 49. 

𝛳𝑘 =
1

2
∑ 𝜂𝑘𝛽𝑖,𝑗𝑛𝑖𝑛𝑗 − ∑𝛽𝑖,𝑘𝑛𝑘𝑛𝑖

𝑁𝑝

𝑖=1

𝑖≥𝑗

𝑖,𝑗

 

 

                                                                                                                                   (49) 

𝐵𝑖𝑟𝑡ℎ 𝑇𝑒𝑟𝑚  

 

𝐷𝑒𝑎𝑡ℎ 𝑇𝑒𝑟𝑚  
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Where 𝛽𝑖,𝑗𝑎𝑛𝑑 𝛽𝑖,𝑘are collision frequencies, 𝑛𝑖𝑛𝑗𝑎𝑛𝑑 𝑛𝑘  are the concentraton of droplets i, j and 

k respectivily. And 𝜂𝑘is the contribution factor.  

The birth term models the collisons between all the droplets excluding droplet k and how 

many of these collisons will results in the birth of a k droplet. As for the death term, this term 

models the collsions of k droplets with all other droplets and how many of these collsions will 

merge and result in the death of droplet k.  

There are two types of collisions that can occur within a fluid, collisions due to Brownian 

motion and collisions due to differential sedimentation. The collision frequency term 

incorporates both phenomena for collisions between i and k, and i and j and are both defined as 

equations 50 and 51. 

𝛽𝑖,𝑘 = 𝐾2(𝛽𝐵𝑟(𝑖,𝑘) + 𝛽𝐷𝑆(𝑖,𝑘))                                        (50) 

𝛽𝑖,𝑗 = 𝐾2(𝛽𝐵𝑟(𝑖,𝑗) + 𝛽𝐷𝑆(𝑖,𝑗))                                          (51) 

𝐾2is the coalescence coefficient. It is a fraction that quantifies how many of the collisions 

undergo coalescence. This term is commonly obtained experimentally. 

Brownian type collisions occur simply due to the random motion of droplets within a 

fluid. These collisions are a function of Boltzmann constant, temperature, viscosity of continuous 

phase and diameter of colliding droplets. Collison frequency due to Brownian motion for 

collisions between i and k, and i and j are defined as equations 52 and 53.   

𝛽𝐵𝑟(𝑖,𝑘) =
2𝐾𝑇

µ𝑐
(

1

𝑑𝑖
+

1

𝑑𝑘
)(𝑑𝑖 + 𝑑𝑘)                                   (52) 

𝛽𝐵𝑟(𝑖,𝑗) =
2𝐾𝑇

µ𝑐
(

1

𝑑𝑖
+

1

𝑑𝑗
)(𝑑𝑖 + 𝑑𝑗)                                     (53) 

As for differential sedimentation, collisions of this type are a result of differences in 

settling velocities and are given by equations 54 and 55. 
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𝛽𝐷𝑆(𝑖,𝑘) =
𝜋

4
(𝑑𝑖 + 𝑑𝑘)2|𝑤𝑖 − 𝑤𝑘|                                 (54) 

𝛽𝐷𝑆(𝑖,𝑗) =
𝜋

4
(𝑑𝑖 + 𝑑𝑗)

2
|𝑤𝑖 − 𝑤𝑗|                                  (55) 

Where 

𝑤𝑘 =
𝐾1(𝜌𝑐−𝜌𝑑)∗𝑑𝑘

2∗𝑔

18µ𝑐
    (Same for i & j) 

In the birth term, after the number of collisions have been quantified and the fraction of 

these collisions that will coalesce, the fraction that contributes to the k droplet needs to be 

quantified. This is done through the contribution term 𝜂𝑘which is defined as equation 56. 

𝜂𝑘 = {

𝑣𝑘+1+𝑣

𝑣𝑘+1−𝑣𝑘
        𝑖𝑓: 𝑣𝑘 ≤ 𝑣 ≤ 𝑣𝑘+1

𝑣−𝑣𝑘−1

𝑣𝑘−𝑣𝑘−1
,       𝑖𝑓: 𝑣𝑘−1 ≤ 𝑣 ≤ 𝑣𝑘

                              (56) 

Where 𝑣 is the combined voulme of the droplets colliding. 𝑣𝑘 is the volume of droplet k 

and 𝑣𝑘+1 is a volume a step size away from 𝑣𝑘 defined as 𝑣𝑘+1 =  𝑞𝑣𝑘  where q is geometric 

descritization parameter. The descritiztion factor contols the courseness and fineness of the grid 

being used in the numerical solution. The geometric facotor that best optimizes this technique 

was taken to be q = 1.5. 
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CHAPTER 3: CODE DEVELOPMENT AND MODEL SIMULATION 

3.1 Programming & Simulation of the PBE Equation 

Numerical modeling is a very powerful branch of mathematics. It is capable to solve very 

complex problems using very simple techniques. It is a branch that can differentiate and integrate 

without the need to use any of the sometimes-complex differentiation and integration rules. It 

can create best fit models with just knowing a data set. It can create functions where the only 

thing we know is its derivative and a condition. And best of all, it can generate approximations 

that have such a low percentage error that they are as good as the true value.   

But, there is a limitation to numerical methods. They depend on iterative calculations 

which can sometimes be impossible to do by hand not to mention tedious. This is where 

programming comes in and will be the focus of this section. In this section, a step by step outline 

will be made for creating the population balance equation simulator using the numerical 

solutions outlined above. 

The series of programs described in this section were developed using VBA 

programming language and are available in the appendix. 

3.1.1 Declaration and dimensionalization of vectors and arrays 

The first step of the code involves the definition of all the vectors and matrices used. The 

vectors in this code were defined for diameter, sum and volume of droplets, and NSFD 

coefficients.  

As for the matrices, fourteen matrices were defined and they include and not limited to, 

droplet concentrations in each of the discretized thickness, droplet concentration is the final 3 
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layers, collision frequency for ij and ik and source term calculation for each layer. A complete 

list can be found with the accompanied code. 

3.1.2 Data importation, definition of coefficients and boundary conditions 

The second step involves importing the diameter data and fluid properties. Table 1 provides 

a summary of the fluid properties used. These properties involve the settling constant, fluid 

viscosities and diffusivity, in addition to the numerical and collision parameters such as h and k. 

These properties can be changed and as a result a variety of emulsion scenarios can be modeled. 

The imported diameter data in this model is synthesized. They should ideally be provided from 

DSD experimental measurement with their accompanying concentrations. 

 

Table 1 – Fluid Properties 

After all properties have been imported, NSFD and source term coefficients can be 

calculated. Coefficients 𝛼1 𝑎𝑛𝑑 𝛽1depend on 𝑤𝑘  droplet velocity which means they need to be 

calculating for each droplet size. Therefore, the coefficients are not constant for both the NSFD 

and source term. 

Since the distribution used starts at the minimum possible droplet diameter and ends at 

the maximum possible droplet diameter, the boundary condition for this model are set to zero. 

K1 0.081

Rhoc (g/cc) 0.88

Rhod (g/cc) 1.072

Muoc (g/cm*s) 0.25

g (cm/s2) 980.667

Dz (cm2/s) 1E-05

k (sec) 200

h (cm) 2.54

Days Simulated 0.01875

K Boltzman Constant 1.381E-16

T (K) 293

K2 (Binary 0.025

q 1.5

Inputs
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3.1.3 Generate lognormal DSD and calculate initial distribution 

The third step involved generating the lognormal distribution of the initial concentration 

of the dispersed droplets. Ideally the concentration should be provided experimentally but in this 

model they will be calculated using a log normal distribution. Depending on how emulsions were 

prepared and mixed, acid in oil emulsions seem to follow a lognormal droplet size distribution 

which would simply mean that the average droplet size is very small. This observation might 

explain the high stability of acid in crude oil emulsions and the sold like layer formed in 

laboratory conditions.  

Given that a density distribution function is calculated, the next step is to convert it into a 

number distribution function using knowledge of the test tube height and diameter, acid 

concentration and number and diameter of droplets. The height and diameter of the tube were 

taken at 3 inch and 1 inch respectively and acid concentration at 30%.  Table 2 shows an 

example list of droplet sizes that will be tracked within an emulsion sample.  

 

Table 2 – Example list of droplet sizes tracked within an emulsion sample 
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Since the test tube was assumed to be equally mixed, only the number distribution of the 

initial layer needs to be calculated and the remaining layers were initialized at the same 

concentration. It is important to note that the initial discretization was 3000 layers following the 

optimization results but this model is still a 3 layer model to replicate Scarborough’s work. 

Figure 19 shows the input distribution function at a mean of 1.5 microns and how it compares to 

literature distributions.  

  

 

Figure 19 – Input distribution function and how it compares to literature distributions. 

(Opedal 2009) 

3.1.4 Material balance and error calculation 

The next step is to calculate the total volume in each layer and entire test tube given the 

input distribution. This step gives the opportunity to track not only the change in distribution per 
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layer but also to ensure that total volume of acid before simulation is the same as total volume 

after simulation and to maintain volume balance throughout the simulation process. 

3.1.5 Source term coefficient calculation 

The final step before the application of the population balance equation is the calculation 

of the source term coefficients 𝛽𝑖,𝑗, 𝛽𝑖,𝑘 and 𝜂𝑘 . The contribuation term 𝜂𝑘  was calculted using 

Kumar & Rankrishna’s fixed piviot technique discribed earlier. 

3.1.6 Application of the population balance equation 

Given that the initial droplet size distribution and coefficients of both the NSFD 

technique (or any chosen technique that best fits the problem at hand) and source term are now 

calculated, the population balance equation can now be applied to track the changes due to 

advection, diffusion and aggregation.  

The advection- diffusion equation models mainly the loss of droplets since the driving 

transport phenomena is advection. However, this loss is another layer’s gain. From layer 2 to the 

second to last layer, these layers both lose and gain. For this reason, an adjustment needs to be 

made to each layer to account for the amount of gain the layer experienced from the layer above. 

Figure 20 shows a visual representation of this phenomena. Therefore, no application of the PBE 

will be made to the top and bottom layers. 

 

Figure 20 – An illustration showing that the loss of one layer is the gain of another 
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In addition to the adjustment due to advection, an adjustment due to aggregation has to be 

made for each time step. The source term will be either a negative number or a positive number. 

Positive indicates birth of droplet k and negative will indicate the number of droplet k that have 

died.  

The application of the PBE equation will be applied for the 20 droplets in each of the 

3000 layers for each of the 190 sec time steps. For experimental comparisons, the final time of 

the simulation was taken to be 5 days. This therefore will lead to approximately 136.5 Million 

calculations to generate the final droplet size distribution for each of the 3000 layers.  

The 3000 layers are then combined to only three layers by combining the DSD of the top 

1000 layers, middle 1000 layers and bottom 1000 Layers. Furthermore, calculating the area 

under the curve of each of the three DSD gives the volume fraction in the top, next to bottom and 

bottom layers. The code has been setup in such a way that the volume fraction is outputted for 

each of the 190 second intervals so that the change of volume fraction for the top, next to bottom 

and bottom layer can be tracked with time. 

 

 

 

 

 

 

 

 

 



44 

 

CHAPTER 4: RESULTS & DISCUSSIONS 

4.1 Effect of Initial Statistical Parameters on Model Evolution 

The first objective of the simulated model was to test the sensitivity to changes in mean 

and standard deviation. The sensitivity to the mean was studied using 1.5, 5, 10 and 15 microns 

at a constant standard deviation of 5 microns. The sensitivity to standard deviation was tested 

using 5, 10 and 15 microns at each mean. 

4.1.1 Effect of Distribution Mean 

Figure 21 shows DSD evolution for mean of 1.5 microns after 5 days, 3 months, 6 

months and 1 year. In the initial 5 days, slight change occurred. As seen in Figure 22, the top 

layer’s acid fraction reduced to 24.2% from 30%, next to bottom layer increased slightly at 

30.4% and the bottom layer increase to 35.4%.  

After 3 months, the top, next to bottom and bottom layers had acid fractions of 8.2%, 

17.5% and 64.3% respectively. After 6 months, the top, next to bottom and bottom layers had 

acid fractions of 4.3%, 11.7% and 73.98% respectively.  

The change in the first 3 months is considerable compared to the second 3 months since 

in the initial months the larger droplets are settling and diffusing at a much faster rate. As from 

month 3 to month 6, the top layer and next to bottom layer had majority smaller droplets and 

thus the settling and diffusing speed is much slower. This effect can also be seen between the 

acid fractions of month 6 and 1 year. 
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                                                   a)5 Days                                 b)3 month 

 

c)6 month                                 d)1 Year 

Figure 21 – Change is DSD with mean of 1.5 and standard deviation of 5 for 5 days, 

 3 months, 6 months and 1 year. 

 

                                                   a)5 Days                                 b)3 month 

 

Figure 22 – Change is Acid Fraction for DSD with mean of 1.5 and standard deviation of 5 for 5 days, 3 

months, 6 months and 1 year. 
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 By increasing the mean from 1.5 to 5 µm a much different result is obtained. The top, 

next to bottom and bottom layers after only 5 days had acid fractions of 2.2%, 4.26% and 83.5% 

respectively as oppose to 24.2%, 30.4% and 35.4% for a mean of 1.5 µm. This is a significant 

change and implies the high sensitivity of the acid fraction to the mean of the initial droplet size 

distribution. Table 3 and Figure 23 show a summary of acid fractions for mean of 5, 10 and 15 

µm for top, next to bottom and bottom layers. 

 

 

 

Figure 23 – Change is Acid Fraction for DSD with means of 5, 10 and 15 and standard 

deviation of 5 at 5 days 
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Table 3 – Acid fraction as a function of initial DSD mean 

4.1.2 Effect of Standard deviation on model evolution 

By keeping the mean constant at 5 µm and changing the standard deviation, an interesting 

observation is made. The acid fraction of the top, next to bottom and bottom layers do not vary 

very much. The change is not statistically significant. It seems the acid fraction is not sensitive to 

changes to standard deviation as with droplet mean size. Or perhaps, changes in standard 

deviation cannot be detected through this type of model. The top layer for example only changes 

by 0.07% from an increase in standard deviation from 10 to 15 µm as seen in Table 4. This 

insensitivity might also be attributed to the input distribution being a logarithmic distribution. The 

standard deviation might start to have an effect with other distribution types or with experimental 

input. 

 

Table 4 – Acid fraction as a function of initial DSD standard deviation 

 

 

 

Mean, µm 1.5 5 10 15

Top 24.2 2.2 1.36 0.82

Next to Bottom 30.4 4.26 2.83 1.87

Bottom 35.4 83.5 85.82 87.31

Acid Fraction, %

Std, µm 5 10 15

Top 2.24 2.5 2.57

Next to Bottom 4.26 4.6 4.67

Bottom 83.5 82.89 82.77

Acid Fraction, %
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4.2 DSD Statistical Prediction compared to Experimental Measurements   

The main purpose of this work was to identify the processes that govern acid in crude oil 

emulsions. Figure 24 shows the evolution of acid fraction in the bottom layer as a function of 

time for a 30% acid/oil sample. The first 24 hours yielded an average experimental measurement 

of 29%. On day 2 the acid fraction in the bottom layer increase to 54% and ended up to a final 

concentration of 75% on day 3.  

 

Figure 24 – Change is Acid Fraction for bottom layer for a 30% acid/crude oil emulsion 

If the model truly captures the processes in the acid in crude oil emulsion through 

modeling advection, diffusion and coalsacance, we would be able to predict the initial mean 

droplet distribution of the emulsion at any given time. And it should be constant for all times. 

This can be investigated from the previously simulated data for means to generate a mean droplet 

size vs. acid fraction. And since standard deviation yielded no effect on the volume fraction, this 

analysis was performed using a constant standard deviation of 5 µm. 

Figure 25 shows a regression model of mean versus acid fraction at day 1 for means of 

1.5, 5, 10 and 15 µm. The regression model that yeilded the best fit was an expenential model with 

a constant of 0.2545 and a population growth rate of 5.2418. According to the regression model, 
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to achieve an acid fraction of 29% at day 1 as in the experimental data, it would require a intial 

mean droplet size of 1.24 microns. In other words, to achieve no significant change in acid fraction 

the mean droplet size is required to be very small that neglectable settling and diffusing are 

occuring. Furthmore, to achieve an acid fraction of 54% at day 2, this requires an intial mean 

droplet size of 4.86 microns as seen in Figure 26 using a exponential regression model with a 

constant of 0.2303 and a population growth rate of 5.6071. And to Achieve a 75% acid fraction at 

day 3, this would require an initial mean droplet size close to 10 micros. It is important to note that 

predictions all assume the predomainate processes in the emulsion are settling, diffusion and 

coalsacance. 

 

Figure 25 – Change in mean as a function of acid fraction for a 30% acid in crude oil 

emulsion 
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Figure 26 – Change in mean as a function of acid fraction for a 30% acid in crude oil 

emulsion 

Figure 27 shows clearly the comparison between the model data versus experimental 

data. It can be observed that at day 1 the acid/oil emulsion behaves as an emulsion with an initial 

mean droplet size distribution of 1.24 microns. But at day 2, the emulsion starts behaving as an 

emulsion with an initial mean droplet size distribution close to 5 microns. And at day 3, its 

behavior shifts to a distribution with an initial mean of close to 10 microns. 
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Figure 27 – Acid Fraction as of function of time for a 30% Acid oil emulsion for 

means of 1.5, 5, 10 and 15 microns generated by PBE model compared with experimental 

results 

A hypothesis that might explain this behavior is that acid droplets might be sticking along 

the interface and not merging and as a result end up behaving as a larger distribution without the 

initial distribution changing at all. From the observed experimental data, this process of fusing 

might be continuing to later days in the emulsion life. This is evidence that there exists strong 

inter-droplet interactions and furthermore, this might also be evidence of strong interfacial 

forces. This model started by assuming that acid in crude oil emulsions can be described by 

modeling the processes of advection, diffusion and aggregation. But when comparing model data 

to experimental data it is quickly observed that there are additional processes that are occurring 

in acid/oil emulsions and we hypothesis that predominate mechanisms that are controlling this 

system are mainly settling and the fusing along the interface. 
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CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

The following conclusion are drawn from the population balance equation model 

development, performance and analysis:  

• A phenomenological Mathematical model that utilizes the population balance equation 

was developed in this paper to identify the processes in acid in crude oil emulsions 

through modeling advection, diffusion and coalsacance. 

• The mean droplet size was found to have an exponential relationship with acid fraction in 

the early days of an emulsion. The relationship is expected to level off and plateau as the 

system reaches equilibrium. 

• Traditionally, upwind schemes are used to solve the advection-diffusion equation in the 

PBE models. In the proposed model, the Non Standard Finite difference approximate is 

used instead. It was superior for both course and fine grids and also low and high 

Reynolds numbers which makes it unconditionally stable. The ability for the NSFD 

formula to handle high Reynolds numbers was vital to this work since liquid diffusivity 

are at 10^-6 order of magnitude (i.e. Re = 1,000,000) due to the small velocities of the 

dispersed droplets. 

• The acid fraction within each of the three layer was found to be highly sensitive to the 

mean droplet size distribution. For mean of 1.5 microns the acid fraction of the bottom 

layer increased from 30% to 74% in 1 year time. But with a mean of 5 microns, the acid 

fraction increased from 30% to 84% in just 5 days. 
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• The acid fraction was also found to not be effected significantly by changes in the 

standard deviation. This might be attributed to the input distribution being a logarithmic 

distribution. 

• There is more to the acid oil emulsion evolution than just settling, diffusing and 

coalsacance. We hypothesis that there are strong inter-droplet interaction within the 

emulsion. 

5.2 Recommendations 

Future areas of investigation and study on the topic are listed below: 

• Perform measurements on the properties of the acid-oil interface that can inform the 

droplet-droplet interactions in the model. 

• Investigate the effect of coupling momentum conservation with the population balance 

equation on the droplet size distribution of the dispersed phase. 

• Investigate the effect of factoring in interfacial coalescence as part of the crude oil 

destabilization process. 

• Explore population balance equation output accuracy using input experimental DSD data 

coupled with experimentally derived DSD at five chosen future times. 

• Explore the application of the PBE on large systems where momentum and binary 

coalescence have a much larger effect of the evolution of the droplet size distribution.  

• Explore the expansion of the model to account for the remaining destabilization types 

such as flocculation, Phase inversion, Ostwald ripening and creaming. 

• Explore converting the VBA code into a Fortran 90 code. This can be beneficial for much 

larger systems with a large simulation duration in terms of computation time. 
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• Study the effect of using different types of experimental input data such as data derived 

from NMR versus data derived from a 3D optical laser scanning microscope. 
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Appendix A: Mathematical Models 

NSFD_SourceTerm Code 
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Crank Nelson Code 
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Lax Wenhoff Code 
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