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Abstract

We calculate a one-loop level electric dipole moment (EDM) of the tau lepton that

arises from scalar/pseudoscalar Higgs mixing in a type II two Higgs doublet model.

Numerical results at m0 = 125 GeV give an EDM of 3.66 × 10−24 e cm for tan β = 1

and 2.33×10−21 e cm for tan β = 30. The predicted EDM is still far below the current

best experimental limit of |dτ | < 3.9×10−17 e cm; however, it can be much larger than

the tau EDM of the Standard Model.
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Chapter 1

Introduction

At present, one of the unanswered foundational questions in physics is the origin

of the observed baryon asymmetry of the universe, i.e. why there is more matter than

antimatter. The problem* traces its roots to 1928, when P. A. M. Dirac [2] derived

the quantum mechanical equation for a relativistic electron—the Dirac equation. The

Dirac equation predicted something like an electron but with a positive charge, which

would turn out to be the positron. This idea of antimatter and the mathematical struc-

tures behind it began the modern importance of symmetries in theoretical physics. Yet,

outside of the physics laboratory, antimatter is exceedingly rare. How does the math-

ematical symmetry become broken to give the observed matter-dominated universe?

In 1967, A. D. Sakharov [3] proposed three conditions that would explain the origin

of baryon asymmetry as a result of the evolution of the universe. These conditions are

violation of baryon number, violation of C and CP symmetries, and non-equilibrium

thermal interactions of particles in the form of a first-order phase transition. There-

fore, if we can find signatures of CP violation, we could possibly explain the baryon

asymmetry.

One such candidate for signatures of CP violation is an elementary particle with

an electric dipole moment (EDM). As we will show in Chapter 2, the Hamiltonian

that describes the EDM of an elementary particle is proportional to the particle’s spin

and the electric field. Since spin and the electric field behave oppositely under both

time-reversal T and spatial inversion P symmetries, an elementary particle with an

EDM would violate these symmetries. Furthermore, the CPT theorem states that T

violation is equivalent to CP violation, thus making EDM’s a possible signature of

*For a more complete history of the baryon asymmetry problem (up to 2003), see the article by
H. R. Quinn [1].
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CP violation.

Although no particle EDM’s have been observed to date [4], several experiments

have established upper limits for various particles. The most stringent limit has been

established for the electron. The second generation of the Advanced Cold Molecule

Electron EDM (ACME II) experiment used electron spin precession in an electric field

to establish an upper limit on the EDM of the electron of |de | < 1.1 × 10−29 e cm [5].

Violation of CP symmetry was discovered in K 0 decays in 1964 by J. H. Christen-

son et al. [6] and in B meson decays in 2001 by the BaBar [7] and Belle [8] collabora-

tions. The LHCb collaboration announced discovery of CP violation in D0 decays in

March 2019 [9].

Although the Standard Model of particle physics produces CP violation via the

complex phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, it is too weak to

explain the observed baryon asymmetry [10]. (The Standard Model currently allows

for an electron EDM of order 10−41 e cm [11].) Therefore, any measured EDM sig-

nificantly larger than this value would provide evidence for new physics beyond the

Standard Model.

In this thesis, we calculate a one-loop level electric dipole moment of the tau lepton

that arises from scalar/pseudoscalar Higgs mixing in a type II two Higgs doublet

model. As the tau is the most massive of the charged leptons, the one-loop diagrams

will have the dominant contribution to its EDM, whereas the electron and muon

require two-loop level diagrams. Similar calculations have been carried out for the

electron and muon by Barger, Das, and Kao [12].
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Chapter 2

The Electric Dipole Moment of an Elementary

Particle

The idea that an elementary particle could have an electric dipole moment (EDM)

goes back to 1950, when E. M. Purcell and N. F. Ramsey [13] realized that violations of

parity and time-reversal symmetries could give rise to an EDM. To understand why, let

us look at EDM’s from two perspectives, first from the general definition of an EDM,

and then from the interaction Lagrangian that produces the EDM of an elementary

particle. In both cases, we will see that an elementary particle EDM requires violation

of time-reversal and parity symmetries.

At su�ciently large scales, any localized charge distribution will appear to be

entirely concentrated at a single point. If the charge distribution contains more of

one charge than the other, describing the distribution as a point charge will be a good

first approximation. But what if there are equal numbers of positive and negative

charges, canceling each other out so there is no overall charge? Or, perhaps a simple

point charge description is not good enough because we are not su�ciently far away.

How do we overcome these problems?

The next simplest approximation would be two equal and opposite charges sep-

arated by some distance: a dipole. If that still is not good enough, we can use four

charges—two positive and two negative—to create a quadrupole. In fact, we can keep

building up successively more complicated charge distributions to better approximate

our actual charge distribution through a series of multipoles. How do we do this?

To demonstrate our multipole approximation, we follow the method given in Grif-

fiths [14]. Let us start with the general form of the scalar potential of an arbitrary
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localized charge distribution:

V (x) =
1
4π

∫
1

|x − x′|
ρ(x′) d 3x′ . (2.1)

Using the law of cosines, we may write

��x − x′�� = x
√
1 +

x′

x

(x′
x
− 2 cos θ

)
(2.2)

≡ x
√
1 + ε . (2.3)

Now, if we are su�ciently far away from the charge distribution, then ε � 1. Thus,

we can use the binomial approximation to write

1

x
√
1 + ε

=
1
x

(
1 −

1
2
ε +

3
8
ε2 −

5
16
ε3 + · · ·

)
. (2.4)

Substituting our definition of ε and grouping powers of (x′/x ), we obtain

1

x
√
1 + ε

=
1
x


1 +

x′

x
cos θ +

(
x′

x

)2
·
1
2

(3 cos2 θ − 1)

+

(
x′

x

)3
·
1
2

(5 cos3 θ − 3 cos θ) + · · ·


(2.5)

=
1
x

∞∑
i=0

(
x′

x

)i
Pi (cos θ) , (2.6)

where Pi (z ) is the i th Legendre polynomial of z . Thus, the potential can be written as

V (x) =
1
4π

∞∑
i=0

1
x i+1

∫
(x′)iPi (cos θ)ρ(x′) d 3x′ , (2.7)

where ∫
(x′)iPi (cos θ)ρ(x′) d 3x′ (2.8)
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is the i th multipole moment. The zeroth moment is simply the total charge. The first

moment is the dipole moment d:

d =
∫

x′ρ(x′) d 3x′ . (2.9)

Now that we have our electric dipole moment, let us examine its symmetry prop-

erties. If time is reversed, d remains unchanged; d is thus even under time-reversal

T symmetry. On the other hand, d is odd under spatial inversion (parity P ), as the

locations of the positive and negative charges flip and thus cause d to change sign.

We can also deduce the symmetry properties of d by examining the symmetries of

the individual terms on the right-hand side of Eq. (2.9). All three terms, i.e. x′, ρ(x′),

and d 3x , are invariant under time-reversal, so d must be even under T . Likewise, d

must be odd under P because only x′ is odd under P ; the others are even. (Charge

density is even under parity even though the locations of the positive and negative

charges flip. If this seems counter-intuitive, consider the analogy of mass density. If

we spatially invert a teacup or a co�ee mug by flipping it upside down, the density

remains the same even though the location of the mass within the base of the cup has

moved.)

However, an elementary particle also has spin. If an elementary particle were to

have an EDM, dmust lie along the particle’s axis of spin [15, 16]; otherwise it would be

averaged to zero by the act of spinning. Spin behaves the opposite way of d: reversing

time reverses the direction of spin, whereas spatial inversion does nothing. Spin is

thus odd under T and even under P .

If T and P symmetries hold for an elementary particle, then there is a degener-

acy [15, 17]: a particle with an EDM parallel to its spin is actually the same as a

particle whose EDM is antiparallel—just rotate the particle’s axis 180◦, and it looks

the same as the other particle. Therefore, the only way that a particle can have an
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EDM is if T and P symmetries are violated.

We can also derive the T and P violation requirements from the interaction La-

grangian for a fermion [16]:

LI = −i
d f
2
ψ̄γ5σµνψF µν , (2.10)

where

σµν =
i
2
[γµ, γν] . (2.11)

Substituting in,

LI =
d f
4
ψ̄γ5(γµγν − γνγµ)ψ(∂µAν − ∂νAµ) (2.12)

=
d f
2
ψ̄γ5(gµν + γµγν)ψ(∂µAν − ∂νAµ) (2.13)

=
d f
2
ψ̄γ5γµγνψF

µν . (2.14)

Using the antisymmetric properties of F µν and the Cli�ord algebra γµγν+γνγµ = 2gµν,

we can reduce the number of terms to six:

LI =
d f
2
ψ̄γ5

[
γ0γ1(F 01 − F 10) + γ0γ2(F 02 − F 20) + γ0γ3(F 03 − F 30)

+γ1γ2(F 12 − F 21) + γ1γ3(F 13 − F 31) + γ2γ3(F 23 − F 32)
]
ψ . (2.15)

In the chiral basis [18], this becomes

LI = d f ψ̄



*..
,

σ1 0

0 σ1

+//
-
Ex +

*..
,

σ2 0

0 σ2

+//
-
Ey +

*..
,

σ3 0

0 σ3

+//
-
Ez

+i
*..
,

σ1 0

0 −σ1

+//
-
Bx + i

*..
,

σ2 0

0 −σ2

+//
-
By + i

*..
,

σ3 0

0 −σ3

+//
-
Bz


ψ , (2.16)
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where σi are the Pauli spin matrices, or in vector notation,

LI = d f ψ̄



*..
,

σ 0

0 σ

+//
-
· E + i

*..
,

σ 0

0 −σ

+//
-
· B


ψ . (2.17)

Switching to the Hamiltonian formulation (H = −L), Eq. (2.17) reduces to the non-

relativistic single-particle Hamiltonian [19]

HI = −d f σ · E . (2.18)

As before, spin σ is odd underT and even under P . Meanwhile, E is even underT

and odd under P . Thus, our Lagrangian is odd under both T and P . By comparison,

the magnetic dipole moment Hamiltonian is

HI = −µf σ · B , (2.19)

which is even under T because both the spin and the magnetic field are T odd. Since

magnetic dipole moments do not violate T symmetry, they have been experimentally

observed for decades.

Parity violation was experimentally observed in 1956 by C. S. Wu et al. [20] in

weak interactions.* It is T violations that are currently of interest [15].

*Grodzins [21] claims that an experiment conducted by Cox, McIlwraith, and Kurrelmeyer [22] in
1928 retrospectively showed evidence of parity violations in weak interactions. At that time, however,
no one would have thought to look for violations of symmetries in nature.
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Chapter 3

Violation of Time Reversal Symmetry and CPT

Invariance

In the previous chapter, we explored how the EDM Hamiltonian violates P and

T symmetries. Furthermore, we noted that it was T violations that are currently

of experimental interest. At this point, two questions come to mind. First, since

one cannot simply reverse the direction of time, how does one find T violations?

Second, why are EDM’s a possible candidate for signatures of CP violation if they are

dependent on T symmetry violations?

The intuitive answer to the first question is to measure reactions that can be run

in both directions. However, this is very di�cult to do with weak interactions, where

we expect T violations are most likely to appear [23].

The answer is the CPT theorem. According to the CPT theorem, all systems

are invariant under the combined symmetry of parity P , time reversal T , and charge

conjugation C . (A formal statement and the proof of the theorem may be found in

Ref. [23].) Therefore, a violation of any one of these three symmetries is equivalent to

violation of the product of the other two. Violation of T symmetry is thus equivalent

to violation of CP symmetry. Hence, an elementary particle with an EDM would be

evidence of CP violation, which also answers the second question. Conversely, any

non-Standard-Model physics that involves a CP -violating interaction can predict an

EDM that, at least in principle, can be measured or ruled out by experiment.

The CPT theorem is of fundamental importance in quantum field theory—in

fact, it is an inherent property of all quantum field theories* [23]. Therefore, tests of

*R. Penrose [24] points out some subtleties that may question the validity of the CPT theorem
when attempting to unify quantum field theory with general relativity. Should the theorem fail, all of
quantum field theory would need to be rewritten [23].
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its validity are also important. For example, CPT invariance requires that a particle

and its antiparticle must have the same mass and lifetime; current experimental limits

confirm this to about one part in 1018 [25].
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Chapter 4

CP Violation in Two Higgs Doublet Models

In the Standard Model, CP violation arises solely from the complex phase of the

Cabibbo-Kobayashi-Maskawa (CKM) matrix [26]. As we noted in Chapter 1, however,

the Standard Model is unable to produce CP violations of su�cient magnitude to sat-

isfy the Sakharov conditions for the baryon asymmetry of the universe. The addition

of one (or more) Higgs doublets to the Standard Model could produce su�ciently

large CP violations. A common extension of the Standard Model is the two Higgs

doublet model (2HDM).

There are several types of 2HDM’s, the most popular of which is type II, first

proposed by J. F. Donoghue and L. F. Li [27]. In type II 2HDM’s, one Higgs doublet

(called φ2 by convention) couples to up-type quarks (u, c , t) while the other doublet

φ1 couples to down-type quarks (d , s , b) and charged leptons (e , µ, τ).

Now, there are actually three basis sets used to write these doublets: the Higgs

basis Φi , the Yukawa basis φi , and the Mass basis (H 0,h0). They are written

Φ1 =
*..
,

G+

H1+v+iG 0
√
2

+//
-

Φ2 =
*..
,

H +

H2+iA0
√
2

+//
-

(4.1)

φ1 =
*..
,

φ+1
h1+v1+iπ1√

2

+//
-

φ2 =
*..
,

φ+2
h2+v2+iπ2√

2

+//
-

(4.2)

*..
,

H 0

h0

+//
-
=

*..
,

cos(β − α) − sin(β − α)

sin(β − α) cos(β − α)

+//
-

*..
,

H1

H2

+//
-
. (4.3)

Here, G+ and G 0 are Goldstone bosons, H + is a charged scalar Higgs, H1 and H2

are neutral scalar Higgs, and A0 is a pseudoscalar Higgs. The Standard Model
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Higgs vacuum expectation value and 2HDM vacuum expectation vaules are given

by v = 246 GeV and v1, v2, respectively.

We can translate from one basis to another through rotations in vector space,

e.g. from the Yukawa basis to the Higgs basis:

*..
,

Φ1

Φ2

+//
-
=

*..
,

cos β sin β

− sin β cos β

+//
-

*..
,

φ1

φ2

+//
-
. (4.4)

We can use this to derive relations for the expectation values:

*..
,

v

0

+//
-
=

*..
,

cos β sin β

− sin β cos β

+//
-

*..
,

v1

v2

+//
-
, (4.5)

which gives v =
√
v21 + v

2
2 and tan β = |v2/v1 |.

To include CP violation in this 2HDM with a complex v2, let us consider

*..
,

Φ1

Φ2

+//
-
=

*..
,

cos β sin βe−iθ

− sin β cos βe−iθ

+//
-

*..
,

φ1

φ2

+//
-
. (4.6)

The matrix is unitary; thus, U −1 = U †. That leads to

*..
,

φ1

φ2

+//
-
=

*..
,

cos β − sin β

sin βe iθ cos βe iθ

+//
-

*..
,

Φ1

Φ2

+//
-
, (4.7)

or more explicitly,

φ1 = cos βΦ1 − sin βΦ2 (4.8)

φ2 = e iθ (sin βΦ1 + cos βΦ2) , (4.9)
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which leads to

φ01 = cos β(H1 + iG 0) − sin β(H2 + iA0) (4.10)

φ02 = e
iθ [sin β(H1 + iG 0) + cos β(H2 + iA0)] . (4.11)

In our 2HDM, Higgs mixing will give the following terms [28]:

A0(p2) ≡
1
v∗1v2
〈φ0 ∗1 φ02〉 =

∑
n

√
2GFZ0n

p2 −m2
n

(4.12)

Ã0(p2) ≡
1
v1v2
〈φ01φ

0
2〉 =

∑
n

√
2GF Z̃0n

p2 −m2
n

(4.13)

A1(p2) ≡
1

v21
〈φ01φ

0
1〉 =

∑
n

√
2GFZ1n

p2 −m2
n

(4.14)

A2(p2) ≡
1

v22
〈φ02φ

0
2〉 =

∑
n

√
2GFZ2n

p2 −m2
n
, (4.15)

where the sum is over the mass eigenstates of H1, H2, and A0. Now, recall that the

Feynman propagator for a spin zero field φ is [18]

DF (x − y ) = 〈0|T φ(x )φ(y ) |0〉 =
∫

d 4p

(2π)4
∆F (p2)e i p ·x , (4.16)

where

∆F (p2) =
i

p2 −m2 + iε
→ A(p2) . (4.17)

From this, we can obtain the propagators [12]

〈H1A〉 =
1
2

∑
n

sin(2β)ImZ0n

p2 −m2
φn

(4.18)

〈H2A〉 =
1
2

∑
n

cos(2β)ImZ0n − ImZ̃0n

p2 −m2
φn

. (4.19)
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Chapter 5

The Electric Dipole Moment of the Tau Lepton

We will now calculate the electric dipole moment of the tau lepton. We will follow

the methods and notations of Ref. [18]. Our interaction Lagrangian density is

LI = −e τ̄γµτAµ −
mτ

v
τ̄τ(H1 − tan βH2) + i

mτ

v
tan βτ̄γ5τA0 , (5.1)

where tan β = |v2/v1 | and v =
√
v21 + v

2
2 is the Standard Model Higgs field vacuum ex-

pectation value, which we derived in Chapter 4. Our two relevant Feynman diagrams

are shown in Fig. 5.1.

p1 p2k

A0

ℓ

H1,H2

p1 p2k

H1,H2

ℓ

A0

Fig. 5.1: The two one-loop Feynman diagrams that contribute to the electric dipole
moment of the tau lepton. The crossed circle represents the conversion of the scalars
H1, H2 into the pseudoscalar A0 or vice versa.

Our transition matrix is

T µ = ū (p2)Γµu (p1) . (5.2)

By the Feynman rules, the first diagram gives

Γ
µ
1 =

∫
d 4ℓ

(2π)4
(−i )

(mτ

v

)
*
,

1
2

∑
n

sin(2β)ImZ0n

ℓ 2 −m2
φn

− tan β
1
2

∑
n

cos(2β)ImZ0n − ImZ̃0n

ℓ 2 −m2
φn

+
-

×
i [(��ℓ + ��p2) +mτ]

(ℓ + p2)2 −m2
τ + iε

(−ieγµ)
i [(��ℓ + ��p1) +mτ]

(ℓ + p1)2 −m2
τ + iε

(−1)
(mτ

v

)
tan βγ5 . (5.3)
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Likewise, the second diagram gives

Γ
µ
2 =

∫
d 4ℓ

(2π)4
(−1)

(mτ

v

)
tan βγ5 *

,

1
2

∑
n

sin(2β)ImZ0n

ℓ 2 −m2
φn

− tan β
1
2

∑
n

cos(2β)ImZ0n − ImZ̃0n

ℓ 2 −m2
φn

+
-

×
i [(��ℓ + ��p2) +mτ]

(ℓ + p2)2 −m2
τ + iε

(−ieγµ)
i [(��ℓ + ��p1) +mτ]

(ℓ + p1)2 −m2
τ + iε

(−i )
(mτ

v

)
. (5.4)

For both diagrams, we can simplify the scalar/pseudoscalar mixing propagator

and couplings

(−i )
(mτ

v

)2
tan β *

,

1
2

∑
n

sin(2β)ImZ0n

ℓ 2 −m2
φn

− tan β
1
2

∑
n

cos(2β)ImZ0n − ImZ̃0n

ℓ 2 −m2
φn

+
-
. (5.5)

Using sin(2β) = 2 sin β cos β and cos(2β) = cos2 β − sin2 β,

=
−i
2

(mτ

v

)2∑
n

1

ℓ 2 −m2
φn

(
sin(2β) tan βImZ0n − cos(2β) tan2 βImZ0n + tan2 βImZ̃0n

)
(5.6)

=
−i
2

(mτ

v

)2∑
n

1

ℓ 2 −m2
φn

(
sin2 β(1 + tan2 β)ImZ0n + tan2 βImZ̃0n

)
(5.7)

=
−i
2

(mτ

v

)2
tan2 β

∑
n

1

ℓ 2 −m2
φn

(
ImZ0n + ImZ̃0n

)
. (5.8)

We assume the lightest neutral scalar Higgs dominates, so we drop the sum

−i
2

(mτ

v

)2
tan2 β

1

ℓ 2 −m2
φ

(
ImZ0 + ImZ̃0

)
. (5.9)

We also note that 1/v2 =
√
2GF , thus

−i
2
m2
τ

√
2GF tan2 β

1

ℓ 2 −m2
φ

(
ImZ0 + ImZ̃0

)
. (5.10)
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Substituting back in, our expressions for Γµ become

Γ
µ
i = −

1
2
em2

τ

√
2GF tan2 βI

µ
i (ImZ0 + ImZ̃0) , (5.11)

where

I µ1 =
∫

d 4ℓ
(2π)4

[(
��ℓ + ��p2

)
+mτ

]
γµ

[(
��ℓ + ��p1

)
+mτ

]
γ5(

ℓ 2 −m2
φ

) ((
ℓ + p1

)2
−m2

τ

) ((
ℓ + p2

)2
−m2

τ

) (5.12)

I µ2 =
∫

d 4ℓ
(2π)4

γ5
[(

��ℓ + ��p2
)
+mτ

]
γµ

[(
��ℓ + ��p1

)
+mτ

](
ℓ 2 −m2

φ

) ((
ℓ + p1

)2
−m2

τ

) ((
ℓ + p2

)2
−m2

τ

) . (5.13)

(The only di�erence between the two integrals is the location of the γ5.)

Now, we must integrate Eqs. (5.12) and (5.13). We will make use of the Feynman

parameterization

1
d1d2d3

= Γ(3)
∫ 1

0
dx

∫ x

0
dy

1[
x (d2 − d1) + y (d3 − d2) + d1

]3 , (5.14)

with

d1 = ℓ 2 −m2
φ, d2 = (ℓ + p1)2 −m2

τ, d3 = (ℓ + p2)2 −m2
τ . (5.15)

After some algebra, we can write the denominator of Eq. (5.14) as

ℓ 2 + 2ℓ (p1x + p2y − p1y ) +mφx2 −m2
φ . (5.16)

Next, we complete the square using

q = ℓ + [p1(x − y ) + p2y ] . (5.17)
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Thus, our denominator in Eq. (5.12) can be written as

1
d1d2d3

= Γ(3)
∫ 1

0
dx

∫ x

0
dy

1
[
q 2 − [p1(x − y ) + p2y ]2 + (x − 1)m2

φ + iε
]3 (5.18)

≡ 2
∫ 1

0
dx

∫ x

0
dy

1(
q 2 − p2 +M 2)3 . (5.19)

Next, we must rewrite the numerator in terms of our new variables p and q . Let

us start with the numerator of Eq. (5.12).

N µ
1 =

[(
��ℓ + ��p2

)
+mτ

]
γµ

[(
��ℓ + ��p1

)
+mτ

]
γ5 (5.20)

=
(
��ℓ γµ��ℓ + ��ℓ γµ��p1 + ��ℓ γµmτ + ��p2γ

µ
��ℓ + ��p2γ

µ
��p1

+ ��p2γ
µmτ +mτγ

µ
��ℓ +mτγ

µ
��p1 +m

2
τγ

µ
)
γ5 . (5.21)

The algebra will be the least tedious if we apply the Dirac equation to our numerator

as soon as possible. From our Feynman diagrams, we have

(��p1 −mτ)u (p1) = 0⇒ ��p1u (p1) = mτu (p1) (5.22)

ū (p2)(��p2 −mτ) = 0⇒ ū (p2)��p2 = mτū (p2) . (5.23)

We also need to make note of the algebra of γ5, which leads to

��p1γ5u (p1) = γµp1µγ5u (p1) = γµγ5p1µu (p1)

= −γ5γ
µp1µu (p1) = −γ5��p1u (p1)

= −mτγ5u (p1) . (5.24)
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Thus, applying the Dirac equation to Eq. (5.21),

ū (p2)N µ
1 u (p1) = ū (p2)

(
��ℓ γµ��ℓ + ��ℓ γµ��p1 + ��ℓ γµmτ + ��p2γ

µ
��ℓ + ��p2γ

µ
��p1

+ ��p2γ
µmτ +mτγ

µ
��ℓ +mτγ

µ
��p1 +m

2
τγ

µ
)
γ5u (p1)

= ū (p2)
(
��ℓ γµ��ℓ − ��ℓ γµmτ + ��ℓ γµmτ +mτγ

µ
��ℓ −m2

τγ
µ

+m2
τγ

µ +mτγ
µ
��ℓ −m2

τγ
µ +m2

τγ
µ
)
γ5u (p1)

= ū (p2)
(
��ℓ γµ��ℓ + 2mτγ

µ
��ℓ
)
γ5u (p1) . (5.25)

Now, we substitute ℓ = q − p back in:

N µ
1 =

[
(��q − ��p)γµ(��q − ��p) + 2mτγ

µ(��q − ��p)
]
γ5 (5.26)

=
[
��qγ

µ
��q −��qγ

µ
��p − ��pγ

µ
��q + ��pγ

µ
��p + 2mτγ

µ
��q − 2mτγ

µ
��p
]
γ5 . (5.27)

All terms with only one power of q are odd functions and thus will integrate to zero;

we are left with

N µ
1 =

[
��qγ

µ
��q + ��pγ

µ
��p − 2mτγ

µ
��p
]
γ5 . (5.28)

Next, we use the identity

��pγ
µ + γµ��p = 2p µ (5.29)

to obtain

N µ
1 =

[
��qγ

µ
��q + 2p

µ
��p − γ

µ
��p��p − 2mτγ

µ
��p
]
γ5 . (5.30)
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Furthermore,

��p��p = γ
µpµγνpν = γµγνpµpν

= (2g µν − γνγµ)pµpν

= 2pµp µ − γνγµpµpν = 2p2 − ��p��p

= p2 = m2
τ . (5.31)

Recalling our definition of p,

N µ
1 =

{
��qγ

µ
��q + 2[(x − y )p µ1 + yp

µ
2 ][(x − y )��p1 − y��p2]

− 2mτγ
µ[(x − y )��p1 − y��p2] −m

2
τγ

µ
}
γ5 . (5.32)

Again using Eq. (5.29),

N µ
1 =

{
��qγ

µ
��q + 2[(x − y )p µ1 + yp

µ
2 ][(x − y )��p1 − y��p2]

− 2mτγ
µ(x − y )��p1 − 2mτy (2p µ2 − ��p2γ

µ) −m2
τγ

µ
}
γ5 . (5.33)

We again apply the Dirac equation, which gives

N µ
1 =

{
��qγ

µ
��q + 2[(x − y )p µ1 + yp

µ
2 ][(y − x )mτ − ymτ]

− 2mτγ
µ(y − x )mτ − 2mτy (2p µ2 − ��p2γ

µ) −m2
τγ

µ
}
γ5 (5.34)

=
{
��qγ

µ
��q + 2mτ (x − y )(2y − x )p µ1 + 2mτy (2y − x − 2)p µ2 +m

2
τ (2x − 1)γµ

}
γ5 .

(5.35)
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Finally, we address the ��qγ
µ
��q term:

��qγ
µ
��q = ��qγ

µγνqν

= ��q (2g µν − γνγµ)qν

= 2��qq
µ − q 2γµ . (5.36)

As before, the term with one��q will integrate to zero. Thus the numerator of Eq. (5.12)

is

N µ
1 =

{
−q 2γµ + 2mτ (x − y )(2y − x )p µ1 + 2mτy (2y − x − 2)p µ2 +m

2
τ (2x − 1)γµ

}
γ5 .

(5.37)

For the second numerator, we can move the γ5 term to the right:

N µ
2 = γ5

[(
��ℓ + ��p2

)
+mτ

]
γµ

[(
��ℓ + ��p1

)
+mτ

]
(5.38)

=
[
−

(
��ℓ + ��p2

)
+mτ

]
(−γµ)

[
−

(
��ℓ + ��p1

)
+mτ

]
γ5 (5.39)

= −
{ [(

��ℓ + ��p2
)
−mτ

]
γµ

[(
��ℓ + ��p1

)
−mτ

] }
γ5 . (5.40)

Applying the same process that we used for the first numerator, we obtain

N µ
2 =

{
q 2γµ + 2mτ (x − y )(x − 2y − 2)p µ1 + 2mτy (x − 2y )p µ2 +m

2
τ (1 − 2x )γµ

}
γ5 .

(5.41)

Since we are only interested in the overall interaction and not the two diagrams
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individually, let us add the numerators to simplify our calculations:

I µ1 + I
µ
2 = 2

∫ 1

0
dx

∫ x

0
dy

∫
d 4q

(2π)4
N µ
1 + N

µ
2(

q 2 − p2 +M 2)3 (5.42)

= 2
∫ 1

0
dx

∫ x

0
dy

∫
d 4q

(2π)4
4mτ

[
(y − x )p µ1 − yp

µ
2

]
γ5(

q 2 − p2 +M 2)3 . (5.43)

Next, we write the numerator in symmetric and anti-symmetric parts:

I µ = 2
∫ 1

0
dx

∫ x

0
dy

∫
d 4q

(2π)4
4mτ

[
1
2 (y − x − y )(p µ1 + p

µ
2 ) + 1

2 (y − x + y )(p µ1 − p
µ
2 )

]
γ5(

q 2 − p2 +M 2)3
(5.44)

= 4mτ

∫ 1

0
dx

∫ x

0
dy

∫
d 4q

(2π)4

[
(−x )(p µ1 + p

µ
2 ) + (2y − x )(p µ1 − p

µ
2 )

]
γ5(

q 2 − p2 +M 2)3 . (5.45)

The symmetric part corresponds to the electric dipole form factor FD from our ten-

sor structure. The antisymmetric part becomes part of the anapole moment. (See

Appendix B.)

Using the method outlined in Appendix A, the integral over q becomes

I µ = 4mτ

∫ 1

0
dx

∫ x

0
dy

1
(2π)4

π2
Γ(1)
Γ(3)

[
(−x )(p µ1 + p

µ
2 ) + (2y − x )(p µ1 − p

µ
2 )

]
γ5(

−p2 +M 2) (5.46)

=
mτ

8π2

∫ 1

0
dx

∫ x

0
dy

[
(−x )(p µ1 + p

µ
2 ) + (2y − x )(p µ1 − p

µ
2 )

]
γ5

m2
φx −m

2
φ −m

2
τx2

. (5.47)

At this point, we will separate out the antisymmetric part into a GK (p µ1 − p
µ
2 )γ5 term.

Placing the minus sign in the denominator and letting ρ = m2
τ/m

2
φ,

I µ =
mτ

8π2

∫ 1

0
dx

∫ x

0
dy

x

m2
φ(ρx2 − x + 1)

(p µ1 + p
µ
2 )γ5 +GK (p µ1 − p

µ
2 )γ5 (5.48)

=
mτ

8π2m2
φ

∫ 1

0
dx

x2

ρx2 − x + 1
(p µ1 + p

µ
2 )γ5 +GK (p µ1 − p

µ
2 )γ5 . (5.49)
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The last integral may be looked up in a table, e.g. Ref. [29], or computed via a com-

puter algebra system. Dropping the antisymmetric term, our result is

I µ =
mτ

8π2m2
φ

1
ρ

{
1 +

1
ρ(z1 − z2)

×

[
(z1 − 1) ln

(
z1 − 1
z1

)
− (z2 − 1) ln

(
z2 − 1
z2

)]}
(p µ1 + p

µ
2 )γ5 , (5.50)

where z1 and z2 are the positive and negative roots of ρx2 − x + 1 = 0, respectively.

Applying the Gordon identity

ū (p2)(p µ1 + p
µ
2 )γ5u (p1) = ū (p2)iσµνk νγ5u (p1) , (5.51)

where k ν = pν1 − p
ν
2 , we can write

Γ
µ = −

1
2
em2

τ

√
2GF tan2 βI µ(ImZ0 + ImZ̃0) (5.52)

= −
emτ

√
2GF tan2 β
16π2

{
1 +

1
ρ(z1 − z2)

×

[
(z1 − 1) ln

(
z1 − 1
z1

)
− (z2 − 1) ln

(
z2 − 1
z2

)]}
(ImZ0 + ImZ̃0)iσµνk νγ5

(5.53)

≡ FD (k2)iσµνk νγ5 , (5.54)

where in the last line we have defined the electric dipole form factor* FD (k2). The

electric dipole moment dτ is given by −FD (0). Our final result is

dτ =
emτ

√
2GF tan2 β
16π2

{
1 +

1
ρ(z1 − z2)

×

[
(z1 − 1) ln

(
z1 − 1
z1

)
− (z2 − 1) ln

(
z2 − 1
z2

)]}
(ImZ0 + ImZ̃0) , (5.55)

*For a discussion of form factors, see Appendix B.
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where

ImZ0 =
1
2

√
1 +

�����
v1
v2

�����

2

u1u3 +
1
2

√
1 +

�����
v2
v1

�����

2

u2u3 (5.56)

ImZ̃0 =
1
2

√
1 +

�����
v1
v2

�����

2

u1u3 −
1
2

√
1 +

�����
v2
v1

�����

2

u2u3 , (5.57)

where the ui are Lagrange multipliers subject to a unitarity constraint as given in

Weinberg [28].
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Chapter 6

Numerical Results and Experimental Limits

Our result for the tau EDM given in Eq. (5.55) has two free parameters, tan β

and the CP -violating parameter ImZ0 + ImZ̃0. One can, however, place a unitarity

constraint on the latter parameter [28], which can be written in terms of the former

as [12]

���ImZ0 + ImZ̃0
��� ≤ (1/2) cot β

√
1 + tan2 β , (6.1)

which is shown as a function of tan β in Fig. 6.1.

Fig. 6.1: Maximum CP -violating parameter allowed by unitarity constraint as a func-
tion of tan β.

Figure 6.2 gives the numerical results for the tau EDM as a function of the domi-
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Fig. 6.2: Predicted tau EDM from Eq. (5.55) as a function of dominant scalar Higgs
mass m0 for various values of tan β. For each value of tan β, the corresponding max-
imum value of the CP -violating phase via Eq. (6.1) is assumed.

nant scalar Higgs mass m0. Table 6.1 gives the EDM values at m0 = 125 GeV, ranging

from 3.66 × 10−24 e cm for tan β = 1 to 2.33 × 10−21 e cm for tan β = 30.

The current limit [4] for the EDM of the tau, |dτ | < 3.9×10−17 e cm, was established

by the Belle Collaboration [30] in 2003. From Fig. 6.2, it is apparent that the predicted

EDM is still far below the current best experimental limit.

Table 6.1: Tau EDM at m0 = 125 GeV

tan β EDM dτ (e cm)
1 3.66 × 10−24

3 2.46 × 10−23

10 2.60 × 10−22

30 2.33 × 10−21
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Chapter 7

Conclusions

We have found that the one-loop EDM of the tau lepton can be much larger than

predicted by the Standard Model but is still far below the current experimental upper

limits.

The most immediate extension of the current work would be to calculate the tau

EDM at the two-loop level. One such possibility would be the tau lepton analog of the

two-loop diagram given in Ref. [31], which is shown in Fig. 7.1. At the two-loop level,

there is only one scalar/pseudoscalar coupling with the tau, giving only one factor of

mτ/v compared to two factors at the one-loop level. Thus, due to the larger mass of

the tau, these diagrams are not as important for the tau as they are for the electron

and muon, where these diagrams dominate at low tan β [12].

t, b, τ
γ

γ, Z
A0

H1,H2

τ

t, b, τ
γ

γ, Z
H1,H2

A0

τ

Fig. 7.1: Two-loop Feynman diagrams for the EDM of the tau lepton. Note that at the
two-loop level, there is only one direct scalar/pseudoscalar interaction versus the two
interactions at the one-loop level.

At this point, it is still unclear whether any particular EDM—if observed—will be

of su�ciently large magnitude to explain baryon asymmetry. Nonetheless, the search

for EDM’s continues to o�er the hope that one day we will have finally answered one of

the foundational questions about our universe. Likewise, it has been said that electric

dipole moment experiments have taught us more about the fundamental forces of

nature than any other type of experiment [17]. Whether true or not, it is clear that
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the limits imposed by EDM experiments—or any EDM’s observed in the future—will

continue to push the limits of our understanding of the nature of physical reality.

26



References
[1] H. R. Quinn, Phys. Today 56, 2, 30 (2003).

[2] P. A. M. Dirac, Proc. Roy. Soc. (London) A 117, 610 (1928).

[3] A. D. Sakharov, J. Exp. Theor. Phys. Lett. 5, 24 (1967).

[4] T. E. Chupp, P. Fierlinger, M. J. Ramsey-Musolf, and J. T. Singh, Rev. Mod. Phys. 91,
015001 (2019).

[5] V. Andreev et al. (ACME Collaboration), Nature 562, 355 (2018).

[6] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay, Phys. Rev. Lett. 13, 138
(1964).

[7] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 86, 2515 (2001).

[8] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett 87, 091802 (2001).

[9] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 122, 211803 (2019).

[10] G. C. Branco et al., Phys. Rep. 516, 1 (2012).

[11] M. Booth, University of Chicago Report No. EFI-93-01, 1993 (unpublished).

[12] V. Barger, A. Das, and C. Kao, Phys. Rev. D 55, 7099 (1997).

[13] E. M. Purcell and N. F. Ramsey, Phys. Rev. 78, 807 (1950).

[14] D. J. Gri�ths, Introduction to Electrodynamics, 4th ed. (Pearson, Boston, 2013).

[15] N. Fortson, P. Sandars, and S. Barr, Phys. Today 56, 6, 33 (2003).

[16] W. Bernreuther and M. Suzuki, Rev. Mod. Phys. 63, 313 (1991).

[17] P. G. H. Sandars, Contemp. Phys. 42, 97 (2001).

[18] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (Westview
Press, Boulder, CO, 1995).

[19] E. D. Commins, J. Phys. Soc. Jpn. 76, 111010 (2007).

[20] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson, Phys. Rev. 105,
1413 (1957).

[21] L. Grodzins, Proc. Nat. Acad. Sci. 45, 399 (1959).

[22] R. T. Cox, C. G. McIlwraith, and B. Kurrelmeyer, Proc. Nat. Acad. Sci. 14, 544 (1928).

[23] T. D. Lee, Particle Physics and Introduction to Field Theory (Harwood Academic Publsihers,
Chur, Switzerland, 1981).

27



[24] R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe (Knopf, New
York, 2005).

[25] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).

[26] I. B. Khriplovich and S. K. Lamoreaux, CP Violation Without Strangeness: Electric Dipole
Moments of Particles, Atoms, and Molecules (Springer, Berlin, 1997).

[27] J. F. Donoghue and L. F. Li, Phys. Rev. D 19, 945 (1979).

[28] S. Weinberg, Phys. Rev. D 42, 860 (1990).

[29] H. B. Dwight, Tables of Integrals and Other Mathematical Data, 4th ed. (Macmillan, New
York, 1961).

[30] K. Inami et al. (Belle Collaboration), Phys. Lett. B 551, 16 (2003).

[31] S. M. Barr and A. Zee, Phys. Rev. Lett. 65, 21 (1990).

[32] P. Raymond, Field Theory: A Modern Primer, 2nd ed. (Addison-Wesley, Redwood City, CA,
1989).

[33] M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables (National Bureau of Standards, Washington, D.C., 1964).

28



Appendix A

Loop Integrals in N Dimensions

This appendix is based heavily on that of Raymond [32].

Suppose we have an N -dimensional integral

I =
∫
dNℓ F (ℓ 2) , (A.1)

where F (ℓ 2) is an arbitrary integrand that depends only on the lengths of the individ-

ual ℓµ, with µ = 1 to N . Of course, if the coordinates are rectangular, we could just

compute N successive integrations like normal. However, this clearly will not work

for other coordinate systems. Furthermore, if N is large, then this process would be

very tedious even in rectangular coordinates. Therefore, we wish to find a simple and

more general method to perform the integrations.

Let us try moving to N -dimensional spherical coordinates, i.e.

(ℓ1,ℓ2, . . . ,ℓN ) → (L, φ, θ1, θ2, . . . , θN −2) , (A.2)

where L = |ℓ | =
√
ℓµℓ µ. Then in N dimensions, our Jacobian becomes

dNℓ = (LN −1 dL)(dφ)(sin θ1 dθ1 sin2 θ2 dθ2 · · · sinN −2 θN −2 dθN −2) (A.3)

= (LN −1 dL)(dφ)
N −2∏
i=1

sini θi dθi (A.4)

with the usual limits

0 ≤ L ≤ +∞ , 0 ≤ φ ≤ 2π , 0 ≤ θi ≤ π . (A.5)
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Thus, our integral becomes

I = 2π
N −2∏
i=1

∫ π

0
sini θi dθi

∫ ∞

0
LN −1F (L2) dL . (A.6)

Next, we note integral 858.46 from Dwight [29]:

∫ π

0
sini θi dθi =

√
π
Γ

(
i+1
2

)
Γ

(
i
2 + 1

) . (A.7)

Recall that we have N − 2 of these integrals, so when multiplied together, we obtain

I = 2π(π1/2)N −2
Γ (1)

Γ
(
3
2

) Γ (
3
2

)
Γ (2)

· · ·
Γ

(
N −2+1

2

)
Γ

(
N −2
2 + 1

) ∫ ∞

0
LN −1F (L2) dL

=
2πN /2

Γ(N /2)

∫ ∞

0
LN −1F (L2) dL . (A.8)

Now, since L is just a magnitude, we can let x = L2 and write

∫ ∞

0
LN −1F (L2) dL =

∫ ∞

0
(x1/2)N x−1/2F (x )

1
2
x−1/2 dx

=
1
2

∫ ∞

0
x (N −2)/2F (x ) dx . (A.9)

Combining Eq. (A.9) with Eq. (A.8), we arrive at

I =
πN /2

Γ(N /2)

∫ ∞

0
x (N −2)/2F (x ) dx . (A.10)

Thus, we have reduced an N -dimensional integral into a one-dimensional integral

times a factor involving pi and a gamma function. However, we can generalize things

a bit further. A more general form of F (x ) is

F (x ) = (x + a2)−m , (A.11)
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where m is an integer greater than or equal to 2. Then we have

∫
dN x (x + a2)−m =

πN /2

Γ(N /2)

∫ ∞

0
x (N −2)/2(x + a2)−m dx . (A.12)

Letting x = a2y ⇒ dx = a2 dy ,

∫
dN x (x + a2)−m = (a2)−m+N /2

πN /2

Γ(N /2)

∫ ∞

0
yN /2−1(1 + y )−m dy . (A.13)

Now we can play a trick with the exponents. If we let p = m − N /2, we have one of

the definitions of the beta function [33]:

∫ ∞

0
yN /2−1(1 + y )−N /2+p dy = B(N /2, p) =

Γ(N /2)Γ(p)
Γ(N /2 + p)

. (A.14)

Putting m back in, we have

∫
dN x (x + a2)−m =

πN /2

Γ(N /2)
Γ(N /2)Γ(p)
Γ(N /2 + p)

(a2)−m+N /2 (A.15)

= πN /2
Γ(m − N /2)
Γ(m)

(a2)−m+N /2 . (A.16)

If we go back to our original variable, we have an equation that facilitates computing

loop integrals:

∫
dNℓ

1
(ℓ 2 + a2)m

= πN /2
Γ(m − N /2)
Γ(m)

1
(a2)m−N /2

. (A.17)
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Appendix B

Form Factors and Tensor Structure of Elementary

Fermions

In Chapter 5, we briefly mentioned form factors but did not discuss them. Let us

look at the general tensor structure of Γµ for our EDM calculation. Our transition

matrix is given by

T µ = ū (p2)Γµu (p1) . (B.1)

At tree level in QED (Fig. B.1), we simply have

e , µ, τ

Fig. B.1: Tree-level QED interaction

Γ
µ = −ieγµ . (B.2)

At higher orders with electroweak corrections, our interaction is no longer a simple

vertex interaction but a series of more complicated interactions as represented by the

e , µ, τ

Fig. B.2: Higher-order interactions of fermions
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gray circle in Fig. B.2. Thus, we can have six possible types of terms, giving

Γ
µ = γµ(A + Bγ5) + (p µ2 − p

µ
1 )(C +Dγ5) + (p µ1 + p

µ
2 )(E + F γ5) , (B.3)

where the coe�cients A–F are functions f (p2). (Recall that at the end of the calcu-

lation these are just numbers, so γµ commutes with them.) We can use the Gordon

identities

ū (p2)γµu (p1) = ū (p2) *
,

p µ1 + p
µ
2

2m
+
iσµν (p2ν − p1ν)

2m
+
-
u (p1) (B.4)

ū (p2)(p µ1 + p
µ
2 )γ5u (p1) = −ū (p2)iσµν (p2ν − p1ν)γ5u (p1) (B.5)

to write

Γ
µ = γµ(A + Bγ5) + (p µ2 − p

µ
1 )(C +Dγ5)

+ E[2mγµ − iσµν (p2ν − p1ν)] − F iσµν (p2ν − p1ν)γ5 . (B.6)

Now, letting k = p2 − p1 and rearranging terms,

Γ
µ = (A + 2mE)γµ − Bγµγ5 +Ck µ +Dk µγ5 − Eiσµνkν − F iσµνkνγ5 . (B.7)

Applying the Ward identity kµΓµ = 0, we have

0 = kµΓµ = (A + 2mE)kµγµ + Bkµγµγ5 +Ckµk µ

+Dkµk µγ5 − Eiσ
µνkµkν − F iσµνkµkνγ5 . (B.8)
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The momentum kµk µ will not vanish by itself, so C must be zero. This gives

0 = (A + 2mE)kµγµ + Bkµγµγ5 +Dkµk µγ5 − Eiσµνkµkν − F iσµνkµkνγ5 (B.9)

= (A + 2mE)��k + B��kγ5 +Dk2γ5 + E
1
2

(γµγν − γνγµ)kµkν + F
1
2

(γµγν − γνγµ)kµkνγ5

(B.10)

= (A + 2mE)��k − B��kγ5 −Dk2γ5 + E
1
2

(��k��k −��k��k ) + F
1
2

(��k��k −��k��k )γ5 (B.11)

= (A + 2mE)(��p2 − ��p1) + B (��p2 − ��p1)γ5 +Dk2γ5 (B.12)

= B (2m)γ5 +Dk2γ5 . (B.13)

The last line implies B = −Dk2/2m. Plugging this back into Eq. (B.7), we obtain

Γ
µ = (A + 2mE)γµ −

D
2m
k2γµγ5 +Dk

µγ5 − Eiσ
µνkν − F iσµνkνγ5 . (B.14)

We just need to take care of the D terms. First, we write them in terms of a common

coe�cient:

−
D
2m
k2γµγ5 +Dk

µγ5 = −
D
2m

(k2γµ − 2mk µ)γ5 . (B.15)

Next, instead of using the Dirac equation to eliminate factors of ��p1 and ��p2 as we have

before, we will use it to add a factor of ��p1 and ��p2:

ū (p2)2mk µγ5u (p1) = ū (p2)(��p2 − ��p1)k µγ5u (p1) . (B.16)
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Thus,

(k2γµ − 2mk µ)γ5 = [k2γµ − (��p2 − ��p1)k µ]γ5 (B.17)

= (k2γµ −��kk µ)γ5 (B.18)

= (k2γµ − γνk µk ν)γ5 (B.19)

= (k2g µνγν − γνk µk ν)γ5 (B.20)

= γνγ5(k2g µν − k µk ν) , (B.21)

which gives us the overall tensor structure

Γ
µ = (A + 2mE)γµ −

D
2m

γνγ5(k2g µν − k µk ν) − Eiσµνkν − F iσµνkνγ5 . (B.22)

Finally, we can rename our coe�cients according to standard designations, giving

Γ
µ = FV γµ + FAγνγ5(k2g µν − k µk ν) + FM iσµνkν + FD iσµνkνγ5 , (B.23)

where kν is the photon momentum; FV is the vector coupling (form factor), which

behaves as the e�ective charge and becomes the standard charge when reduced back

to tree-level; FA is the axial vector coupling; FM is the magnetic dipole form factor;

and FD is the electric dipole form factor, for which we derived a specific form in

Chapter 5 according to our 2HDM model.
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Appendix C

Derivation of the Gordon Identities

In this Appendix, we derive the Gordon identities

ū (p2)γµu (p1) = ū (p2) *
,

p µ1 + p
µ
2

2m
+
iσµν (p2ν − p1ν)

2m
+
-
u (p1) , (C.1)

ū (p2)[p µ1 + p
µ
2 + iσ

µν (p2ν − p1ν)]γ5u (p1) = 0 . (C.2)

To do so, we need the Dirac equation, the relation ��pγ
µ + γµ��p = 2p µ and

σµν =
i
2
[γµ, γν] . (C.3)

For the second identity, we will also need ��pγ5u (p) = −mγ5u (p). We will start with the

first identity:

R.H.S. = ū (p2)


p µ2 + p
µ
1

2m
+
iσµν (p2ν − p1ν)

2m


u (p1) (C.4)

=
1
2m
ū (p2)[p µ2 + p

µ
1 −

1
2

(γµγν − γνγµ)(p2ν − p1ν)]u (p1) (C.5)

=
1
2m
ū (p2)[p µ2 + p

µ
1 −

1
2

(γµ��p2 − γ
µ
��p1 − ��p2γ

µ + ��p1γ
µ)]u (p1) (C.6)

=
1
2m
ū (p2)[p µ2 + p

µ
1 −

1
2

(γµ��p2 − γ
µ
��p1 − 2p

µ
2 + γ

µ
��p2 + 2p

µ
1 − γ

µ
��p1)]u (p1) (C.7)

=
1
2m
ū (p2)[2p µ2 − γ

µ
��p2 + γ

µ
��p1]u (p1) (C.8)

=
1
2m
ū (p2)[��p2γ

µ + γµ��p1]u (p1) (C.9)

=
1
2m
ū (p2)[2mγµ]u (p1) (C.10)

= ū (p2)γµu (p1) (C.11)

= L.H.S. (C.12)
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For the second identity, the steps of the derivation are the same up to Eq. (C.9). Thus,

we have

L.H.S. = ū (p2)
[
p µ2 + p

µ
1 + iσ

µν (p2ν − p1ν)
]
u (p1) (C.13)

...

= ū (p2)[��p2γ
µ + γµ��p1]γ5u (p1) (C.14)

= ū (p2)[mγµ −mγµ]γ5u (p1) (C.15)

= 0 (C.16)

= R.H.S. (C.17)
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