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Abstract

Beginning in the summer of 2017 the National Weather Service upgraded the operational

Hurricane WRF (HWRF) to a continuously cycled Gridpoint Statistical Interpolation (GSI)

based, 6-hourly, Hybrid 3-dimensional (3D) Ensemble-Variational (EnVar) data assimila-

tion (DA) system. The Hybrid-3DEnVar system assumes the background error covariance

is constant throughout the 6 hour DA window and is therefore unable to account for tem-

poral evolution. During rapidly evolving conditions this assumption can cause analyses to

be sub-optimal which can lead to degraded forecast performance. Furthermore, in a cycled

DA system this problem may be more pronounced due to the accumulation of these errors

over successive cycles. The first goal of this thesis is to evaluate methods to improve analy-

sis and forecast accuracy compared to the 6-hourly Hybrid-3DEnVar system by accounting

for the evolution of background error covariance.

Two methods are considered that are expected to produce improved analyses and

forecasts compared to the 6-Hourly Hybrid 3DEnVar in HWRF by accounting for evolution

of the background error covariance: 1) 4DEnVar with 6-hourly frequency (hereafter 4DEn-

Var), and 2) 3DEnVar with hourly frequency (hourly-3DEnVar). In 4DEnVar, the temporal

evolution of error covariances is incorporated through the use of 4-dimensional ensemble

perturbations with implicit linearity assumption during the minimizations. However, non-

linear error growth within a 6-hour window can still pose difficulties. Hourly-3DEnVar

assimilates observations in one hour windows instead of one longer six hour window, al-

lowing the error covariances to change each hour. However, frequent interruption of the

model could introduce additional instabilities. The second goal of this study is to evalu-

ate the performance of the hourly-3DEnVar and 4DEnVar hybrid data assimilation systems

relative to each other in the HWRF model. It is expected that the two systems will produce

similar results. While previous work has been done to evaluate different data assimilation

frequencies and methods on thunderstorms, little work has been done comparing these two

methods in the case of a hurricane.
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Experiments are conducted for DA cycles that tail Doppler radar (TDR) data are

available to be assimilated during Hurricane Edouard (2014) and Hurricane Irma (2017).

Edouard became a category 3 hurricane while Irma became a category 5 storm. These cases

are chosen due to the amount of TDR data available during rapid or near-rapid intensifi-

cation and weakening phases of these storms. TDR data allows for abundant data in the

inner core of the hurricane, whereas conventional observations may be sparse in this region

particularly when the storm is over open oceans.

A baseline run is performed using 6-hourly Hybrid-3DEnVar. 4DEnVar and hourly-

3DEnVar experiments are run for each DA cycle where TDR data are available. All experi-

ments start from the same background produced by the control run, except consecutive DA

cycles where TDR data are available, in which case the first cycle uses the background from

the control and then is continuously cycled. Analyses and forecasts are verified against best

track, TCVitals, satellite, stepped frequency microwave radiometer (SFMR), and TDR ob-

servations in order to explain differences seen in these systems.

Both the 6-Hourly 4DEnVar and the 1-Hourly 3DEnVar experiments produce better

analyses and forecasts than 6-Hourly 3DEnVar by most metrics, however the advantages

are limited to early forecast lead times. 6-Hourly 4DEnVar and 1-Hourly 3DEnVar per-

form similarly for most verification metrics, but early 1-Hourly 3DEnVar wind forecasts

are degraded due to spindown. Additionally, 1-Hourly 3DEnVar is associated with larger

computational cost than 4DEnVar.
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Chapter 1

Introduction

Tropical Cyclones (TCs) can cause large losses of life and billions of dollars in damage.

For example, recent category 5 hurricanes Irma (2017), Maria (2017), and Michael (2018)

each caused more than $50 billion in damage and several dozen direct deaths with hundreds

of injuries and indirect deaths. Despite being weaker on the Saffir-Simpson scale at land-

fall, Harvey (2017), and Florence (2018) produced additional significant impacts through

widespread heavy rain and inland flooding after stalling near the coast. Summaries can

be found at (https://www.nhc.noaa.gov/data/tcr). One way to reduce the significant risk

to life and property is through improving numerical predictions of hurricanes. For exam-

ple, if rapid intensification (RI) can be more confidently forecast in advance the decision

to evacuate could be made sooner. While forecasts can be improved through several av-

enues; this study focuses on improving the forecasts of hurricanes by applying advanced

data assimilation (DA) techniques.

Early studies used various vortex initialization methods to initialize hurricane forecasts

when lacking inner-core observations (Kurihara et al. 1990, 1993, 1995, 1998; Thu and

Krishnamurti 1992; Bender et al. 1993; Zou and Xiao 2000; Liu et al. 2000, 2006; Pu and

Braun 2001; Tallapragada et al. 2014). Although these methods improve forecast skill,

they may not produce a realistic storm (e.g. Bogusing). Further improvement has been

shown through the use of ensemble-based DA methods such as the Ensemble Kalman Filter

(EnKF) (Torn and Hakim 2009; Zhang et al. 2009; Li and Liu 2009; Hamill et al. 2011;

Wang 2011; Zhang et al. 2011; Aksoy et al. 2012, 2013; Weng and Zhang 2012; Dong and

Xue 2013; Poterjoy and Zhang 2014; Poterjoy et al. 2014). Such techniques allow the use

of flow dependent characteristics during DA and allow for dynamic and thermodynamic

consistency in the DA analysis for hurricane initialization.
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Ensemble-Variational (EnVar) DA methods have been proposed as a way to further

advance the quality of analyses and subsequent forecasts produced by DA (Hamill and

Snyder 2000; Lorenc 2003; Etherton and Bishop 2004; Wang et al. 2007b, 2013a; Wang

2010, 2011; Li et al. 2012; Schwartz et al. 2013, 2015; Wang and Lei 2014; Li et al. 2015;

Lu et al. 2017a,b). These techniques typically incorporate ensemble error covariances into

the variational framework (Wang et al. 2013c). EnVar DA methods have been studied and

implemented on both global and regional scales with promising results for both hurricane

and non-hurricane applications (Buehner 2005; Wang et al. 2008a,b, 2013c; Buehner et al.

2010a,b; Bishop and Hodyss 2011; Wang 2011; Li et al. 2012; Zhang and Zhang 2012;

Clayton et al. 2013; Wang et al. 2013b; Kutty and Wang 2015; Kleist and Ide 2015b,a; Lu

et al. 2017a,b).

Ensemble-based DA methods, including EnVar, can provide better hurricane track fore-

casts than variational methods which use flow-independent static covariance (Wang et al.

2007a, 2009, 2013a; Buehner et al. 2010b; Wang 2011; Hamill et al. 2011; Zhang and

Zhang 2012; Poterjoy and Zhang 2014; Wang and Lei 2014). Although intensity forecasts

have presented more challenges than track forecasts (Rogers et al. 2013), some studies have

shown there is improvement after assimilating inner-core observations (Pu et al. 2009; Li

et al. 2012; Weng and Zhang 2012; Lu et al. 2017b). When the background is rapidly

evolving during the DA time window (Wang and Lei 2014; Lu et al. 2017b) the station-

ary background error statistics commonly used by the three-dimensional (3D) EnVar may

not be accurate, particularly for data that is temporally distant from the analysis time. For

example, in the most commonly used 6-hourly 3DEnVar DA, the 6-hour long DA time

window could introduce considerable errors in the analysis with some observations found

near the edges of the time window (e.g. about 3 hours away from the analysis time; Wang

and Lei 2014). Wang and Lei (2014) demonstrated using Hurricane Daniel (2010) that the

3DEnVar increment can be nearly the opposite of expected when the background is evolv-

ing rapidly. Such errors would be a significant problem if the storm were to undergo RI.
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The RI process is sensitive to the inner-core structure (Leighton et al. 2018) and is often

missed or weaker in model forecasts than observed (Pu et al. 2009). Therefore, a more

temporally flow-dependent four-dimensional (4D) EnVar or 3DEnVar with a shorter time

window might be helpful in improving RI forecasts (Lu et al. 2017a,b).

One method to account for rapidly-evolving background error is 4DEnVar, which uses

background error covariance at the time of the observation rather than the analysis time.

Several studies have shown that 4D methods perform better than their 3D counterparts

for the same DA window length (Hunt et al. 2004, 2007; Zhang et al. 2011; Wang et al.

2013a,b; Wang and Lei 2014; Lu et al. 2017b; Zhang and Pu 2019). One reason for this

result is seen in Wang and Lei (2014). They found that 4DEnVar produced an increment

similar to that from assimilating the observation near its observation time and propagating

it forward in the model. However, Wang et al. (2013a) found improvements in 4D EnKF

compared to 3D EnKF were limited to early forecast times when assimilating Doppler radar

data in a convective thunderstorm. Additionally, Gauthier et al. (2007) found that even

when the 4D analysis does not notably improve, there may still be improvements in the

forecast, such as with the implementation of 4DVar by Meteorological Service of Canada

in 2005. While no improvement was seen in analyses when compared to radiosonde data,

innovation and forecast statistics improved with the use of 4DVar.

Another method to account for a rapidly-evolving background error covariance is to

reduce the length of the DA window. Shorter DA windows reduce temporal errors between

the observations and background, which may help to reduce errors associated with storm

location in addition to the changing error covariance structures. The shorter DA cycles also

prevent the filtering of dynamical imbalances in the model with periods of 2-4 hours that are

typically filtered out in 6 hour cycles (Huang and Lynch 1993). However, frequent model

interruptions may introduce a shock to the model at each analysis time (Wang et al. 2013b;

Houtekamer and Zhang 2016). As this shock can result in a degraded analysis and forecast,

care must be taken in selecting the length of DA window for optimal results. Furthermore,

3



frequent assimilation is computationally expensive, largely due to the increased I/O cost of

current DA systems.

Short DA cycles are often used when assimilating high-frequency data such as radar or

surface data (Hu and Xue 2007; Dowell and Wicker 2009; Lu et al. 2017a), generally with

positive results. Several studies found that using a DA window shorter than the traditional

6-Hour DA window showed improved forecasts (Lei and Anderson 2014; Tong et al. 2016;

Lu et al. 2017a), although there is some debate over the optimal length. For example Lei

and Anderson (2014) found that assimilating surface pressure at 1-hour intervals produced

better analyses than longer 3- and 6-hour intervals, while Tong et al. (2016) found that

assimilating radar data at 3-hour intervals produced better analyses than 1-hourly 3DVar.

Both studies used the same amount of data per cycle, resulting in more data being as-

similated overall for the same time period in configurations with shorter cycles. Lu et al.

(2017a) found that 1-hour DA in an HWRF based system provided better forecasts than

longer 6-hour DA windows.

While either 4D techniques or shorter 3D cycles can account for rapidly evolving back-

ground error covariances and temporal errors that are introduced by observations that are

near the edges of the DA window, there are different advantages and disadvantages associ-

ated with each. Shorter 3D DA cycles can better account for non-linear background error

evolution compared to 4D DA cycles. Evensen (2018) compared a 5 minute 3DEnKF and

a 10-minute 4DEnKF for a linear case, finding that the two are equivalent. However, it is

unclear how the two methods compare in a case with non-linear error evolution such as a

hurricane. As mentioned previously, frequent interruptions to the model can result in an

increased imbalance in 3D compared to 4D systems. Despite these limitations, Wang et al.

(2013b) found that some shorter DA cycle lengths can be used for a 3D EnKF and still per-

form better than 4D EnKF with a longer window. However, the imbalance problem results

in a limit to the frequency of DA. Fertig et al. (2007) found that for an EnKF it may be

4



necessary to have more frequent DA in some rapidly changing situations to capture short

term or rapidly evolving features.

This thesis aims to compare 1-Hourly 3DEnVar with 6-Hourly 4DEnVar in rapidly

evolving hurricanes using inner core DA. Furthermore, both systems are compared with

6-Hourly Hybrid-3DEnVar to quantify the improvements provided by accounting for the

evolution of the background error covariance. Both 4DEnVar and 1-Hourly 3DEnVar ex-

periments are conducted using background error covariance with 1-hour frequency com-

pared to the 6-hour frequency of the standard 3DEnVar. This allows the evolution to be

captured, even when the background error covariance is changing rapidly. However, to

best of the author’s knowledge, limited studies have compared these methods, especially

in the case of inner-core hurricane DA. While Lu et al. (2017b) found improved results

when applying the 4DEnVar over a 6-hour 3DEnVar for Hurricane Edouard (2014), they

did not explore the potential advantages of an hourly 3DEnVar. It is expected that Hourly

3DEnVar should also improve upon the 6 Hourly 3DEnVar due to the ability to account for

background error evolution but is unknown how it compares to 4DEnVar.

This study utilizes the Hurricane WRF (HWRF). HWRF is a regional hurricane model

developed and maintained since 2002 by the Environmental Modeling Center (EMC), the

Geophysical Fluid Dynamics Laboratory (GFDL), and the University of Rhode Island

(URI) that covers the North Atlantic and Northeast Pacific Basins (Tallapragada et al. 2014;

Biswas et al. 2017). The Hybrid DA systems developed by the OU Multiscale Data Assimi-

lation (MAP) Lab and NOAA (Lu et al. 2017b) are used and further extended to a 1-Hourly

3DEnVar. The 6-Hourly 3DEnVar system differs from the operational HWRF primarily in

the use of the directed moving nest strategy, with 6-Hourly 4DEnVar and 1-Hourly 3DEn-

Var differing further in their use of 4DEnVar and 1 Hour DA windows, respectively. The

remainder of this thesis is organized as follows: Chapter 2 describes the DA configurations,

Chapter 3 describes the model and experiment designs, Chapter 4 describes the results from
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experiments with Edouard (2014), Chapter 5 describes the results from experiments with

Irma (2017), and chapter 6 discusses these results.
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Chapter 2

System Design

A Gridpoint Statistical Interpolation (GSI) based hybrid EnKF-Var DA system for HWRF

is used in this study. The system follows Lu et al. (2017b) for 6-Hourly 3DEnVar and 6-

hourly 4DEnVar experiments, with necessary changes made to extend to 1-Hourly 3DEn-

Var. The complete system description can be found in Lu et al. (2017b). The system is

described here mirroring Lu et al. (2017b) in subsections 2.1-2.4, and a brief description of

the configuration of each DA method is given in subsections 2.5-2.7.

2.1 General Overview

The GSI based hybrid EnKF-Var DA system used in this study utilizes a 40-member en-

semble and a single control member. The control member is updated within a variational

framework using the error covariances calculated from the ensemble, and provides the anal-

ysis from which a 120-hour free forecast is initialized. In the first cycle for each hurricane,

the ensemble and control member are initialized using the ensemble analysis from the Na-

tional Centers for Evironmental Predictions (NCEP) operational GFS hybrid DA system

(Wang et al. 2013c). Ensemble storm centers are relocated using the TCVitals database

(Liu et al. 2000, 2006) after 6 hours, while the control is relocated and modified at 3, 6,

and 9h. Updated storm centers are determined by assimilating the TCVitals storm center

location using an EnSRF (section 2.4). The modified ensemble and control member are

then used as the background for the first DA cycle.

The Hybrid DA process is shown in figure (2.1) and consists of 4 steps:

1. The relocated background for the control member is updated by the dual-resolution

GSI augmented control vector (GSI-ACV) with the relocated ensemble background

covariance.
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2. The relocated ensemble is updated using an EnKF.

3. The ensemble is recentered such that the ensemble mean matches the control analy-

sis.

4. The outermost domain is replaced with the GFS Ensemble and control 27 or 18 km

grids for all members.

Forecasts for the 40-member ensemble and the control member are initialized from the

analysis until a time as required by the specific DA configuration (described in the fol-

lowing sections). A directed moving nest strategy is employed to prevent non-overlapping

domains in the storm following nests. The directed moving nest prescribes the location

for the center of the moving nests’ domain, which is the same for all members, instead

of adopting the HWRF moving nest strategy. The forecast produced by the model using

the directed moving nest strategy is nearly indistinguishable from that produced using the

HWRF moving nest strategy during the first 6 hours (Lu et al. 2017b), providing benefit

during DA without increasing model errors. The directed moving nest strategy is fully de-

scribed in section 2d of Lu et al. (2017b). Vortex relocation and modification are performed

on the forecasts to be used as backgrounds for the next cycle.

A 120-hour free forecast is initialized from the control analysis. Since the primary

benefit of the directed moving nest strategy is forcing overlapping domains for EnVar DA,

the free forecast does not use the directed moving nest strategy, instead using the original

HWRF vortex-following strategy. As a result, this forecast is independent of the control

run.

2.2 GSI-ACV

The GSI-ACV system updates the relocated control background and is further detailed here

following Wang and Lei (2014) and Lu et al. (2017b). For Dual-resolution 4DEnVar, the

analysis increment at time t is defined as
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Figure 2.1: Flowchart of the GSI Based DA System for HWRF [Adapted from Wang et al.

(2013c) and Lu et al. (2017b)]

x′t =D
K

∑
k=1

[ak ◦ (xe
k)t ] (2.1)

where D is an operator mapping coarse ensemble model fields to the finer model grid,

ak is the augmented control vectors for the kth ensemble member, (xe
k)t is the kth ensemble

perturbation normalized by
√
(K−1) at time t, with K being the ensemble size and ◦ is the

Schur product.The 4DEnVar cost function is unchanged from single resolution 4DEnVar

(Wang and Lei 2014):

J(x′1,a) =
1
2
(a)TA−1(a)+

1
2

L

∑
t=1

(yo′
t −Htx

′
t)

TR−1(yo′
t −Htx

′
t) (2.2)

where a is < a1,a, . . . ,ak > for k=1,K; A is the matrix defining the localization to the

ensemble covariance, L is the length of the DA window, Rt , yo′
t , and Ht are the observation

error covariance, innovation vector, and linearized observation operator valid at time t,

respectively. The localization matrix A is defined following Wang et al. (2013c) and Lu

et al. (2017a,b).
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The primary difference between single resolution and dual resolution 4DEnVar is the

use of the operator D, which projects the coarser-resolution ensemble onto the finer resolu-

tion control grid. If D is the identity matrix the equation simplifies to the single resolution

formula. When only a single time is considered equations (2.1) and (2.2) describe 3DEn-

Var since 4DEnVar is a temporal extension of 3DEnVar (Wang and Lei 2014). Both the

4DEnVar and 3DEnVar versions are used in this study.

2.3 EnKF

An EnKF is used to update the ensemble members during the second step in the DA system.

Following Lu et al. (2017a,b) the EnKF utilizes an ensemble square root filter (EnSRF)

(Whitaker and Hamill 2002) The EnKF code is designed for use with HWRF (Lu et al.

2017a,b) and uses the observations preprocessing, quality control, and forward operators

provided by GSI. Horizontal and vertical localization cutoffs are similar to those used in the

GSI-ACV. Finally, the Relaxation to prior spread (RTPS) multiplicative inflation algorithm

developed by Whitaker and Hamill (2002) is adopted and the inflation parameter is set to

0.9 following Lu et al. (2017b).

2.4 Vortex Relocation and Modification

For 6-hour forecasts the average storm location error is 15-40 km (Trahan and Sparling

2012; Tong et al. 2014). Location errors of this magnitude can significantly degrade the

analysis when assimilating inner-core data through ensemble-based DA using a gaussian

error assumption (Chen and Snyder 2007; Yang et al. 2013; Lu et al. 2017a,b). Therefore,

this system adopts vortex relocation (VR) for both the ensemble and control in addition to

the vortex modification for the control. The storm center locations are determined using

the EnSRF method from Whitaker and Hamill (2002) for a single-variable problem. The

EnSRF is a three-step process 1) update the ensemble mean (eq 2.3), 2) update the ensemble
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perturbations (eq 2.4), 3) combine the results of 1) and 2) to compute the final update (eq

2.5). The ensemble mean is updated by

x̄a = x̄b +K(y−Hx̄b) (2.3)

where x̄a is the updated ensemble mean location, x̄b is the prior ensemble mean location,

K is the Kalman gain, y is the TCVitals observation, and H is the unit observation oper-

ator. K is given by P bHT (HP bHT +R)−1, where P b is the location error variance in

the ensemble, and R is the error variance of the TCVitals location, estimated to be 10 km

following Trahan and Sparling (2012).

Ensemble location perturbations are updated by:

x′ak = (I−K̃H)x′bk (2.4)

where x′ak is the ensemble analysis location perturbations, I is the identity matrix, K̃ is

the reduced Kalman game computed as K̃ = [1+
√

R
(HP bHT )+R

]−1K , x′bk is the prior

ensemble location perturbations. Equations (2.3) and (2.4) are combined to produce the

final analysis of storm center locations used for VR:

xa
k = x̄a +x′ak (2.5)

where xa
k is the updated ensemble of locations.

Once updated ensemble storm locations are calculated, vortex relocation procedures are

used based on the HWRF VR procedure (Liu et al. 2000, 2006; Tallapragada et al. 2014;

Biswas et al. 2017) to relocate both the control and ensemble backgrounds. The vortex

from the HWRF forecast is removed and placed in the location determined by equation

(2.5). Vortex modification (VM) is then applied to control vortices by adjusting the size

and intensity before placing the vortex back in the environment. Because negative impacts

resulting from the interaction between GSI and VM have been seen (Zhou et al. 2015), the

VM method is not used when inner core data (e.g. TDR data) are available.
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2.5 6-Hourly 3DEnVar

To prepare for the next cycle, a 9-hour forecast is initialized from the previous cycles’

control analysis, while a 6-hour forecast is initalized from each ensemble analysis. Due to

the 6 hour length of the DA window, First Guess at Appropriate time (FGAT) (Trahan and

Sparling 2012) is used during the GSI-ACV step of the DA, thus requiring backgrounds

at hours 3, 6, and 9. These backgrounds are updated using VR and VM prior to DA. The

analysis produced by the 6-Hourly 3DEnVar system is valid at the center of the 6-hour DA

window with observations of +/- 3 hours from analysis time being assimilated.

2.6 6-Hourly 4DEnVar

For 6-Hourly 4DEnVar, a 9 hour forecast is initialized from the previous control and en-

semble analyses. VR is employed to update the background prior to the GSI-ACV step

at 3, 4, 5, 6, 7, 8, and 9 hours. The dual-resolution 4DEnVar data assimilation used for

the GSI-ACV step in the analysis. The analysis is produced at the center of the 6 hour

assimilation window.

2.7 1-Hourly 3DEnVar

Each 6 hour DA window is broken into 7 cycles with an analysis valid each hour, includ-

ing the beginning and end of the mission. As the hourly DA has 7 cycles corresponding

to a single 6-hour DA window, the term mission is used in discussing 1-Hourly 3DEnVar

to refer to a set of cycles matching a 6 hourly DA window in 6-Hourly 3DEnVar and 6-

Hourly 4DEnVar. The first and last cycles of each mission only consider data from the 30

minutes after and 30 minutes before the analysis time, respectively, with the remaining 5

cycles considering data both in the 30 minutes before and after the analysis time. When

continuously cycled, the final analysis of the previous mission is used as the background

for the first cycle of the next mission, effectively creating a single 1-hour cycle that spans
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two missions. This is done so that the data included in each mission is consistent between

experiments. When not continuously cycled, a 3-hour forecast is initialized from the pre-

vious cycle, with VR being used. Before the cycles 2 through 7 in each mission, a 1-hour

forecast is initialized from the previous analysis for each ensemble member and the con-

trol member. A 3DEnVar GSI-ACV update is performed on the control member as in the

6-hourly 3DEnVar, except only using data that occurs during the 30-60 minute cycle as

described above. Similarly, the ensemble is updated using a 3DEnKF using only the data

in the shorter cycle. For times between the standard 6-hourly output for the GFS ensemble

interpolated ensemble data is used to initialize the outermost domain.

The free forecast is only launched from the final analysis of each mission, placing the

initialization time of the free forecast 3 hours later than that of the 6 Hourly 3DEnVar and 6

Hourly 4DEnVar. As described above, this ensures that the same data is assimilated during

each mission for each experiment.
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Chapter 3

Case Details and Experiment Design

3.1 HWRF Configuration

The HWRF model has been developed by the Environmental Modeling Center (EMC) with

the Geophycisal Fluid Dynamics Laboratory (GFDL) and the University of Rhode Island

(URI) since 2002 (Tallapragada et al. 2014; Biswas et al. 2017). The 2014 configuration

is used in this study following Lu et al. (2017b) for experiments with Hurricane Edouard

(2014) and the 2017 configuration is used for experiments with Irma (2017). For Edouard

(2014) a two-way triple nested domain with horizontal grid spacing of 0.18◦/0.06◦/0.02◦

(approximately 27/9/3 km) is used, with 61 vertical levels. The model top is 2 hPa fol-

lowing Lu et al. (2017a,b). The outermost domain uses 216 x 432 horizontal grid points,

the intermediate domain uses 232 x 454 horizontal grid points, and the innermost domain

uses 181 x 322 (figure 3.1). For Experiments with Hurricane Irma (2017) a triple nested

domain with horizontal grid spacing of 0.135◦/0.045◦/0.015◦(approximately 18/6/2 km) is

used, with 75 vertical levels, with the model top at 10 hPa. The outermost domain uses 348

x 516 horizontal gridpoints, the intermediate domain uses 265 x 532 horizontal grid points

and the innermost domain uses 235 x 472 horizontal grid points. The physics parameters

follow the 2014 (Edouard) (Tallapragada et al. 2014) and 2017 (Irma) (Biswas et al. 2017)

operational HWRF (Table 3.1), except that the ocean coupling is turned off.

3.2 Observational Data

Conventional observations, clear-sky radiances from satellites, and sattelite derived winds

(Tallapragada et al. 2014; Biswas et al. 2017) as well as radial velocities from TDR are
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Figure 3.1: Example domain configuration for Edouard (2014) [Adapted from Lu et al.

(2017b)]
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Table 3.1: Table of model physics used for Edouard (2014) and Irma (2017).

Physics 2014 2017

Microphysics Ferrier Ferrier-Aligo

Cumulus
Simplified

Arakawa-Schubert (SAS)

Scale Aware Simplified

Arakawa-Schubert

(SASAS)

Surface Layer HWRF Surface Layer HWRF Surface Layer

Land-surface Model GFDL slab scheme Noah LSM

Planetary Boundary Layer Non-local

Non-local Hybrid

Eddy-Diffusivity

Mass-Flux (Hybrid

EDMF)

Radiation
Eta Longwave and

Shortwave

RRTMG Longwave and

Shortwave

assimilated each cycle (table 3.2). While satellite radiances are only assimilated on the in-

termediate domain, conventional observations, satellite derived winds, and radial velocities

(when available) are assimilated on both the intermediate and innermost domains.

Radial velocities are recorded by Tail Doppler Radar (TDR) mounted on the NOAA

P-3 aircraft. Descriptions of the processing of TDR data can be found in Gamache et al.

(2015) and Lu et al. (2017a)

3.3 Case Description

This study uses Hurricane Edouard (2014) and Hurricane Irma (2017) to evaluate the per-

formance of 1-Hourly 3DEnVar and 6-Hourly 4DEnVar in the case of a rapidly evolving
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Table 3.2: Data types assimilated.

Data Type
Domain

(d01)

Domain

(d02)

Domain

(d03)

Conventional

Observations

Radiosondes

No obser-

vations are

assimilated

Y Y

Dropwindsondes Y Y

Aircraft Reports Y Y

Surface Ship and Buoy

Observations
Y Y

Surface Observations over

Land
Y Y

Pibal Winds Y Y

Wind Profilers Y Y

Radar-derived Velocity

Azimuth Display Winds
Y Y

WindSat Scatterometer

Winds
Y Y

Integrated Precipitable Water

Derived from the Global

Positioning System

Y Y

Tail Doppler Radar Observations Y Y

Satellite Derived Winds Y Y

Satellite

radiances

IR Y N

MW Y N
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hurricane when abundant data is available in the inner core. These cases are selected due

to the amount of inner-core TDR data available during rapid or near-rapid intensification

and weakening. A description of each hurricane, the data assimilated, and the experiments

conducted are provided in this section.

3.3.1 Edouard

Hurricane Edouard developed 720 n mi west of the Cape Verde Islands on 1200 UTC 11

September 2014. Edouard peaked in intensity at 105 kts at 1200 UTC 16 September 2014

before immediately weakening due to an eyewall replacement cycle (https://www.nhc.

noaa.gov/data/tcr/AL062014_Edouard.pdf). Edouard then began a northward and

then northeastward motion during this weakening phase, accelerating ahead of a midlati-

tude trough. Finally, Edouard transitioned into a post-tropical cyclone on 19 September,

before the remnant low was absorbed into a frontal system on 21 September.

This study focuses on inner core assimilation of TDR data, therefore experiments are

performed only for cycles in which TDR data is available (Figure 3.2. These cycles are

the 16th , 17th, 21st, 24th, and 25th cycles valid at 1200 UTC 15 October, 1800 UTC 15

October, 1800 UTC 16 October, 1200 UTC 17 October, and 1800 UTC 17 October (Table

3.3).

3.3.2 Irma

Hurricane Irma developed into a TC around 0000 UTC 30 August about 120 n mi west-

southwest of Sao Vicente in the Cabo Verde Islands, before intensifying to a tropical storm

just 6 hours later. Irma quickly became a hurricane by 0600 UTC 31 August, and later a

major hurricane at 0000 UTC 1 September. Due to eyewall replacement cycles and dry air

intrusion (https://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf), Irma fluctu-

ated between category 2 and 3 for the next 3 days. Irma then rapidly intensified from on 4

and 5 of September, reaching maximum intensity of 155 kts around 1800 UTC 5 September.
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Figure 3.2: Edouard (2014) Best track maximum wind speed (Vmax; blue) with Tail

Doppler Radar (TDR) data availability overlaid (green). Center of missions marked with

red dot.
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Table 3.3: Table of Edouard (2014) and Irma (2017) missions used. Time provided is the

center of the 6-hour data assimilation (DA) window. Mission number is the indicates which

DA cycle in the baseline 6-Hourly 3DEnVar system the mission corresponds with.

Date Mission Nickname

Edouard (2014)

1200 UTC 15 September 2014 16 E16

1800 UTC 15 September 2014 17 E17

1800 UTC 16 September 2014 21 E21

1200 UTC 17 September 2014 24 E24

1800 UTC 17 September 2014 25 E25

Irma (2017)

0000 UTC 04 September 2017 18 I18

0600 UTC 04 September 2017 19 I19

1200 UTC 04 September 2017 20 I20

1200 UTC 05 September 2017 24 I24

0000 UTC 06 September 2017 26 I26

Irma made landfall in Barbuda on 6 September as a category 5 hurricane. Further landfalls

occurred on St. Martin, the British Virgin Islands, the Bahamas, Cuba, and Florida over the

next several days. Irma finally became a remnant low by 0600 UTC 12 September, which

dissipated 30 hours later.

Eight missions have TDR data available, however only five of the missions are used.

The remaining missions occurred during analyses near landfall, and the forecast statistics

were dominated by intensity differences caused by small track differences. This is not

representative of the case as a whole and are therefore excluded from this study. The cycles
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Figure 3.3: Irma (2017) Best track Vmax (blue) with TDR data availability overlaid

(green). Center of missions marked with red dot.
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used are the 18th, 19th, 20th, 24th, and 26th cycles valid at 0000 UTC 04 September, 0600

UTC 04 September, 1200 UTC 04 September, 1200 UTC 05 September, and 0000 UTC 06

September (Figure 3.3, Table 3.3).

3.4 Experiments

The baseline experiment 6H-3DEnVar uses the 6-Hourly 3DEnVar method as described in

section (2.5). and is run for the entire storm to be used as the background for the other

experiments. The model is continuously cycled starting on 1200 UTC 11 September for

Edouard (2014), beginning when it developed into a tropical depression. For Irma (2017)

continuous cycling began at 1200 UTC 30 August. A 6 hour spinup time is allowed prior

to DA.

Table 3.4: Table of experiments.

Experiment

Name
DA Window

Vortex Relocation

Method
DA Method

6H-3DEnVar 6 hours TCVitals 3DEnVar

6H-4DEnVar 6 hours TCVitals 4DEnVar

1H-3DEnVar 1 hours TCVitals 3DEnVar

6H-4DEnVar-sl 6 hours Satellite 4DEnVar

1H-3DEnVar-sl 1 hours Satellite 3DEnVar

Two experiments to test the hypothesis that 6-Hourly 4DEnVar and 1-Hourly 3DEnVar

produce better analyses and forecasts than 6-Hourly 3DEnVar are conducted. The first is

6H-4DEnVar and the second is 1H-3DEnVar. The results of these two experiments will

be compared to each other in order to determine if a difference exists between the two

systems. 6H-4DEnVar uses the 6-Hourly 4DEnVar method as described in section (2.6).
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It is only run for cycles in which TDR data is available. If no TDR data is available for

the previous cycle the same background as 6H-3DEnVar is used, except that the relocation

occurs every hour for hours 3-9 instead of just hours 3, 6, and 9. If TDR data is available for

multiple cycles 6H-4DEnVar is continuously cycled, using the forecast from the previous

6H-4DEnVar cycle as the background, which is then relocated. 1H-3DEnVar uses the

1-Hourly 3DEnVar method described in section (2.7). Like 6H-4DEnVar, it is only run

when TDR is available. If TDR data is available for consecutive missions 6H-4DEnVar is

continuously cycled. When TDR data is not available for the previous mission, the 3-hour

forecast from the previous cycles 6H-3DEnVar is used as the background for the first cycle,

and undergoes VR prior to DA.

To investigate the impact of storm center location on the analysis and forecast two ad-

ditional experiments are conducted. 6H-4DEnVar-sl and 1H-3DEnVar-sl are the same as

6H-4DEnVar and 1H-3DEnVar, respectively, except that during vortex relocation storm

center locations are manually determined using satellite imagery. All members are relo-

cated to this location instead of using TCVitals and EnSRF to determine the position of

each member.

23



Chapter 4

Edouard Results

4.1 RMSE for Wind and Pressure

Maximum wind speed (Vmax) and minimum sea-level pressure (MSLP) forecasts are veri-

fied against the National Hurricane Center’s (NHC) best track data for the five cases where

TDR data is available. The root mean square error (RMSE) is calculated for each exper-

iment at each forecast lead time to evaluate the typical error seen in the forecasts, with

each experiment having 5 forecasts. An F-Test of equal variances is used to determine

statistical significance of all RMSE based metrics and significance is indicated on figures.

For Vmax and MSLP no times are significant at the 95% level due to a maximum sample

size of 5. However, the results are still analyzed with emphasis on the need for a larger

sample size. Both 1H-3DEnVar and 6H-4DEnVar produce smaller Vmax errors at 0-6 h

than 6H-3DEnVar (Figure 4.1a). From forecast 12 h until 24 h, 6H-3DEnVar is similar to

6H-4DEnVar and has less Vmax error than 1H-3DEnVar. After 24 h, the Vmax RMSE

is similar for all experiments. Multiple spuriously strong wind maxima in 6H-3DEnVar

analyses (figure 4.1c) are responsible for the increased RMSE for 6H-3DEnVar during the

first 6 hours of the forecast. Figure 4.1b shows 6H-3DEnVar has a larger RMSE for 0-

12h than 1H-3DEnVar and 6H-4DEnVar before improving to produce the least error of all

experiments for 24-48h. As is the case for Vmax, MSLP is spuriously strong in multiple

cases resulting in large error for 6H-3DEnVar. Most forecasts cross the best track value for

MSLP at some point in the first 48 hours (Figure 4.1d), with some overcorrecting, and even

overcorrecting back to being too strong. As a result, the magnitude of the improvement is

misleading during the 18-48h period, as the individual forecasts tend to have comparable

error to other experiments when they are not crossing the best track value. Comparing
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6H-4DEnVar and 1H-3DEnVar reveals initial Vmax RMSEs are similar but 12-24h 1H-

3DEnVar Vmax RMSE is increased due to spindown that is occurring more frequently

in 1H-3DEnVar. The tendency for spindown in 1H-3DEnVar is not seen in MSLP. 1H-

3DEnVar has a larger MSLP RMSE in 0-48 h than 6H-4DEnVar due to a bias toward

higher MSLP values.

Figure 4.1e shows the relationship between Vmax and MSLP. If the model is capturing

the intensity evolution correctly the slope and the mean of each variable will be similar to

best track. 6H-3DEnVar and 6H-4DEnVar have similar slopes to best track but each shows

a bias along the slope, suggesting the strength in the model is biased but the relationship is

reasonable. 1H-3DEnVar has a shallower slope than best track (significant at 83% level),

suggesting the relationship between wind and pressure is too weak. This is primarily seen

in the 0-30h analysis and forecast due to the spindown only occurring in Vmax. While 6H-

3DEnVar and 6H-4DEnVar produce similar results, 1H-3DEnVar is worse in both slope

and bias.

4.2 Structure Verification using TDR data

Calculation of a three-dimensional spatial correlation of the model wind and the TDR wind

composite (figure 4.2) reveals that 6H-3DEnVar provides a worse wind analysis than other

experiments. 6H-3DEnVar never produces the highest correlation and the mean of the

correlation is about 4.7% smaller that of 1H-3DEnVar and 6H-4DEnVar. 6H-4DEnVar and

1H-3DEnVar produce similar quality wind analyses. 1H-3DEnVar provides the highest or

second highest correlation in all cases. E21 and E24 show the largest difference between

experiments, with 6H-4DEnVar having the highest correlation, 1H-3DEnVar the second

highest, and 6H-3DEnVar is the lowest. Despite 6H-3DEnVar having the worst analyzed

structure of the 3 experiments results were inconclusive when applied to forecast structure.
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Figure 4.1: a) Vmax and b) MSLP RMSE. Thin lines are forecast minus best track for

each individual forecast, thick lines are RMSE for each experiment. Individual c) Vmax

and d) MSLP Forecasts plotted over Best track. Hour is hours from 1200 UTC September

15. Scatter plot of e) Vmax vs MSLP plotted over Best track. Red lines and dots are 6H-

4DEnVar, blue lines are 6H-3DEnVar, green lines are 1H-3DEnVar, and black lines are best

track. p = 0.17 for difference of 1H-3DEnVar and Best track slopes
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Figure 4.2: 3-Dimensional spatial correlation of the model wind speed analysis with the

TDR wind composite.
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4.3 Structure verification vs TDR reflectivity

Model simulated reflectivity is compared to reflectivity from TDR. Due to the spinup time

for hydrometeors in the model, only forecasts are compared. Only two missions observed

the inner core near the valid time of forecasts. This discussion focuses on 6 hour forecast

from valid at 1800 UTC 15 September (Figure 4.3) and the 18 hour forecast from valid at

1200 UTC 17 September (Figure 4.4). 6H-3DEnVar produces an eyewall that is stronger

and broader than that of 6H-4DEnVar and 1H-3DEnVar in Figure (4.3), although observa-

tions show that reflectivity is too high in all experiments. Observations show a region with

weak reflectivity counterclockwise from the primary band of precipitation in the eyewall,

which 1H-3DEnVar fails to capture. Additionally, a rain shield is observed by TDR that is

weaker than in all models, with 6H-3DEnVar and 6H-4DEnVar showing a less continuous

but stronger shield than 1H-3DEnVar. Generally 1H-3DEnVar and 6H-4DEnVar produce

a better forecast than 6H-3DEnVar. Comparing 6H-4DEnVar and 1H-3DEnVar reveals

that 6H-4DEnVar simulates the inner core better with both the eyewall and the dry region

present, however the outer regions are better represented by 1H-3DEnVar.

A double eyewall structure is observed on 1200 UTC 17 September (Figure 4.4). Both

6H-4DEnVar and 1H-3DEnVar simulate a weak secondary eyewall, however this structure

is absent from 6H-3DEnVar. All 3 experiments show the dry region surrounding the eye-

walls, however the radial distance of the rain band from the eyewall in 6H-3DEnVar is

shorter than observed. Outside this band observations show a weaker second rainband that

is present in all models. However, 6H-4DEnVar produces broad regions of >35 dBZ reflec-

tivity that are not present in the observations. Comparing 1H-3DEnVar and 6H-4DEnVar,

the outer eyewall wraps further around and is stronger than in observations in 1H-3DEnVar,

while 6H-4DEnVar has a magnitude and size are similar to that of the observations. The

dry region around the eyewall in 1H-3DEnVar is far broader than in 6H-4DEnVar, where

both are already dryer than the observations. However, the outer rain band in 1H-3DEnVar

is generally close to that observed, in contrast to the regions of >35 dBZ already mentioned
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Figure 4.3: Simulated radar reflectivity valid 1800 UTC 15 September for a) 6H-3DEnVar,

b) 6H-4DEnVar from forecast launched 1200 UTC 15 September, and c) 1H-3DEnVar

from forecast launched at 1500 UTC 15 September (E16) and Observed and Observed

TDR reflectivity valid at 1801 UTC 15 September 15
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Figure 4.4: Simulated radar reflectivity valid 1200 UTC 17 September for a) 6H-3DEnVar,

b) 6H-4DEnVar from forecast launched 1800 UTC 16 September and, c) 1H-3DEnVar

from forecast launched at 2100 UTC 16 September (E21) d) and observed TDR reflectivity

valid at 1312 17 UTC September
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in the 6H-4DEnVar. In general both 6H-4DEnVar and 1H-3DEnVar produce better reflec-

tivity forecasts than 6H-3DEnVar, with 6H-4DEnVar producing better inner core forecast,

and 1H-3DEnVar producing better forecasts in the outer regions of the hurricane for both

forecasts analyzed.

4.4 Verification against independent flight-level and SFMR data

In situ measurements made by the NOAA-P3 aircraft and the Stepped Frequency Mi-

crowave Radiometer (SFMR) provide independent measurements with which to verify the

inner-core structure of the simulated TCs. SFMR wind speed and NOAA-P3 flight level

(hereafter flight level) specific humidity (q) and temperature are used. RMSEs for analyses

and model forecasts during each penetrating leg are calculated and the mean of the RMSEs

for each leg in each mission are computed. Model output is recentered so the simulated

TC center matches the observed TC location at the time of each leg, allowing for the direct

comparison of the hurricane structure. The number of legs in each mission is listed in table

4.1. For forecasts only the first forecast time that SFMR and flight level data is available is

verified, specifically E16’s 6 hour forecast, E17’s 24 hour forecast, E21’s 18 hour forecast

and E24’s 6 hour forecast. No forecast is verified for E25 as there is no data available after

analysis time.

SFMR wind speed verification of the analyses shows that 3D has a mean RMSE 40%

larger than those of both 6H-4DEnVar and 1H-3DEnVar (Figure 4.5), and 6H-3DEnVar

has a larger RMSE than both 1H-3DEnVar and 6H-4DEnVar for 4 of the 5 analyses. No

notable difference in RMSE occurs between 1H-3DEnVar and 6H-4DEnVar. Figure (4.6)

shows the increased error in 6H-3DEnVar can be attributed to a wider eye than observations

with stronger wind maxima than other experiments. 1H-3DEnVar produces a storm with a

properly sized eye, but 6H-4DEnVar captures the wind speed better except in the eyewall.

For the forecast, 3 of 4 analyses show the 6H-4DEnVar and 1H-3DEnVar produce better

results than 6H-3DEnVar (Figure 4.7). Similarly, the mean RMSE of all cases shows the
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Figure 4.5: Wind speed Analysis error as verified using Stepped Frequency Microwave

Radiometer (SFMR). The value for each experiment is combined RMSE of the penetrating

legs for each mission. Black triangles indicate statistically significant difference between

6H-3DEnVar and 6H-4DEnVar at 95%level, black stars indicate statistically significant dif-

ferences between 6H-3DEnVar and 1H-3DEnVar at 95% level, and black squares indicate

statistically significant differences between 6H-4DEnVar and 1H-3DEnVar at 95% level.
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Figure 4.6: SFMR wind speed (black) and model surface wind speed along the SFMR

flight track for each leg. Analysis valid at 1800 UTC 16 September 2014
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Table 4.1: Number of SFMR and flight level penetrating legs used for each mission. Dates

and mission numbers as in table 3.3

.

Date Mission Number of Legs

Edouard (2014)

1200 UTC 15 September 2014 16 5

1800 UTC 15 September 2014 17 2

1800 UTC 16 September 2014 21 4

1200 UTC 17 September 2014 24 2

1800 UTC 17 September 2014 25 1

largest RMSE for 6H-3DEnVar, although the difference is smaller than for the analyses.

6H-3DEnVar produced the largest wind speed of any experiment in all legs (Figure 4.8).

Because all experiments result in similarly sized eyes, the primary differences are caused

by the strength of the eyewall.

Flight level data only showed notable differences for analyses. In 4 of the 5 cases,

as well as in the overall mean, 6H-3DEnVar produces a worse specific humidity analysis

than 1H-3DEnVar and 6H-4DEnVar (Figure 4.9). Figure (4.10) shows that 6H-3DEnVar

produces a specific humidity analysis that is more moist than other experiments and obser-

vations. There is not a notable difference between 1H-3DEnVar and 6H-4DEnVar. Model

temperature analyses were also verified. While 6H-3DEnVar performed worse than 6H-

4DEnVar in 4 of 5 missions, 1H-3DEnVar performed worse than 6H-3DEnVar in 4 mis-

sions (Figure 4.9). Similarly, 6H-4DEnVar performed better than 1H-3DEnVar in 4 mis-

sions. The mean RMSE for 6H-4DEnVar was smallest with 1H-3DEnVar being the largest.

All experiments have a bias toward a horizontally large warm core, however 1H-3DEnVar
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Figure 4.7: Wind speed forecast error as verified using Stepped Frequency Microwave Ra-

diometer (SFMR). The value given for each experiment is the combined RMSE of the pene-

trating legs for each mission. Black triangles indicate statistically significant difference be-

tween 6H-3DEnVar and 6H-4DEnVar at 95%level, black stars indicate statistically signif-

icant differences between 6H-3DEnVar and 1H-3DEnVar at 95% level, and black squares

indicate statistically significant differences between 6H-4DEnVar and 1H-3DEnVar at 95%

level.
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Figure 4.8: SFMR wind speed (black) and model surface wind speed along the SFMR flight

track for each leg. Forecast valid at 1800 UTC 16 September 2014 from forecast launched

18 hours prior
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Figure 4.9: Specific humidity analysis error as verified using NOAA-P3 flight level data.

The values for each experiment is the combined RMSE of the penetrating legs for each

mission. Black triangles indicate statistically significant difference between 6H-3DEnVar

and 6H-4DEnVar at 95%level, black stars indicate statistically significant differences be-

tween 6H-3DEnVar and 1H-3DEnVar at 95% level, and black squares indicate statistically

significant differences between 6H-4DEnVar and 1H-3DEnVar at 95% level.
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Figure 4.10: Flight level specific humidity (black) and model surface wind speed along the

NOAA-P3 flight track for each leg. Analysis is valid at 1200 UTC 17 September 2014

tends to be consistently too warm near the center (Figure 4.10). Outside the inner core

there is not a notable difference in many legs.

4.5 Diagnosis of the spindown issue in 1H-3DEnVar

Frequent spindown is observed in 1H-3DEnVar (figure 4.1c), causing a degradation of the

Vmax verification early in forecasts. Spindown occurs when Vmax decreases greater than 5

m s-1 (6 h)-1 during the first 6-12 h of model integration (Lu and Wang 2019) with no such

weakening occuring in observations. An investigation into the cause of the spindown is

discussed in this section. First, model stability is evaluated due to the limitations discussed

in chapter 1 pertaining to shortening the DA window. To further investigate the cause of

the inferior performance of 1H-3DEnVar a representative case on 1800 UTC 15 September

2014 case is chosen (E17) due to the spindown in 1H-3DEnVar that is typical of all cases

and more in-depth diagnostics are performed. This section provides results and a discussion

of the investigation.
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Figure 4.11: Temperature analysis error as verified using NOAA-P3 flight level data. The

values for each experiment is the combined RMSE of the penetrating legs for each mission.

Black triangles indicate statistically significant difference between 6H-3DEnVar and 6H-

4DEnVar at 95%level, black stars indicate statistically significant differences between 6H-

3DEnVar and 1H-3DEnVar at 95% level, and black squares indicate statistically significant

differences between 6H-4DEnVar and 1H-3DEnVar at 95% level.
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Figure 4.12: Flight level temperature (black) and model surface wind speed along the

NOAA-P3 flight track for each leg. Analysis is valid at 1800 UTC 16 September 2014
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4.5.1 Model Stability.

Mean absolute pressure tendency (Mdpdt) is calculated following eq (1) to diagnose model

instability.

Md pdt =
m

∑
i=1

n

∑
j=1

d pdti j

m∗n
, d pdt = | pt− pt−1

∆t
| (4.1)

where p is pressure, t is time, m and n are the number of grid points along each axis

in the subdomain being averaged over. Data assimilation can produce an analysis that is

not dynamically balanced, resulting in a pressure wave that shows up as rings of high dpdt

propagating outward from a source. These waves are present in this experiment (Figure

4.13). Averaging over the outermost domain reveals that dpdt in 1H-3DEnVar increases

steadily over time (not shown), while the 6H-4DEnVar and 6H-3DEnVar do not show a

similar increase. However, when averaging over the region corresponding to the innermost

domain, the peak magnitude of dpdt is similar for all experiments. No growth is seen in 1H-

3DEnVar and Mdpdt returns to similar baseline levels as 6H-3DEnVar and 6H-4DEnVar

before each analysis. The wave propagates outside of the inner domain in 45 minutes

(seen as a return to baseline values of Mdpdt in figure 4.13) therefore this instability is not

impacting future DA.

Figure 4.13: Mean absolute pressure tendency averaged over a box approximating the path

of the inner domain during E16 and E17 (a), E21 (b), and E24 and E25 (c)
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4.5.2 Moisture Increments and model spread

Two regions appear in the 1H-3DEnVar analyses during E17 where a negative moisture

increment occurs in the analysis for several consecutive cycles (Figure 4.14) at 2 km above

ground level (agl). The first is 3◦ northeast of Edouard where drying occurs in several

consecutive cycles. The second is north and northwest of Edouard, which is not seen in

6H-4DEnVar and has a smaller magnitude of drying than the former region. The later re-

gion of dry air is advected into the inner core during the free forecast (not shown) intruding

on and weakening convection leading to spindown. Comparing simulated satellite to satel-

lite imagery confirms that the 1H-3DEnVar analysis is too dry, whereas the 6H-4DEnVar

analysis is not nearly as dry (Figure 14.15).

A difference in storm location is observed between the model background and the satel-

lite imagery (Figure 4.16a). Due to a strong wind gradient in the eyewall, radar radial ve-

locity data located along this wind gradient near can result in large innovations during DA

if the gradients are not aligned accurately. Large innovations from the GSI plotted on the

model background in figure (4.16b) confirm that large innovations occur in regions along

the axis of dislocation. This analysis shows that the largest innovations occur near the eye-

wall along the axis of dislocation between the background and observations, confirming

that this is the cause of the large innovations. Due to the location in the storm and the

dislocation of the eye the observations will result in a U innovation <0. Ensemble cross-

covariance between a wind observation at a point representative of large innovations with

specific humidity (Figure 4.16c) shows that regions of positive cross-covariances occur in

regions of drying suggesting the drying is a result of this dislocation.

A reduction in storm location spread in the ensemble (Figure 4.17) occurs over time

for 1H-3DEnVar leading to an underdispersive ensemble. Due to the EnSRF process used

to determine the relocated centers the underdispersive ensemble results in less correction

than expected in an optimal analysis. The 6H-4DEnVar ensemble is also underdispersive

but the magnitude of the underdispersiveness and the ratio of the two lines is smaller. As
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Figure 4.14: Left column: Specific humidity analysis (colors) for E17 1H-3DEnVar at a)

1600 UTC, c) 1700 UTC, e) 1800 UTC, and g) 1900 UTC with pressure (contours) every

4 hPa and wind barbs overlaid. Right column: Specific humidity (colors) and pressure

(contours) increments for E17 1H-3DEnVar at b) 1600 UTC, d) 1700 UTC, f) 1800 UTC,

and h) 1900 UTC. All figures are for a high of 2 km agl.
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Figure 4.15: Observed satellite from GOES 13 in a), c) and e) at 1600 UTC, 2100 UTC,

and 1800 UTC 15 September 2014 respectively, simulated brightness temperature from

the 1H-3DEnVar analysis in d) and e) at 1600 UTC and 2100 UTC respectively, and f)

6H-4DEnVar analysis at 1800 UTC.

Figure 4.16: a) Satellite imagery with TCVital (red) overlaid. b) 1H-3DEnVar 1700 UTC

wind analysis (colors and barbs) overlaid with wind speed increments >10m/s (blue dots)

and TCVital (red). c) 1700 UTC 1H-3DEnVar Ensemble cross-covariance between U wind

speed and specific humidity (Q) for a sample observation (green triangle) corresponding to

the region of large innovations. TCVital overlaid (Black square)
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a result, 6H-4DEnVar does not experience the same problems with poor location updates

during the relocation step.

Figure 4.17: Ensemble spread (solid lines) and mean background position error (dotted

lines) for 6H-4DEnVar (red) and 1H-3DEnVar (green) by forecast hour

To confirm that poor location updates are degrading the quality of forecast 1H-3DEnVar

and 6H-4DEnVar are rerun using satellite derived storm centers for the relocated back-

ground instead of the EnSRF and TCVitals derived centers. Figure 4.18 shows that while

some spindown still occurs in 1H-3DEnVar, the magnitude is reduced such that that error

remains comparable to that of 6H-4DEnVar for 12-24h. This is consistent with the hy-

pothesis that position error is causing the reduced performance of 1H-3DEnVar in this time
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frame. No improvement (and even a slight degradation) is seen in 1H-3DEnVar MSLP fore-

cast. However, a reduction in MSLP error is observed in 6H-4DEnVar for 6-48h. The im-

provement appears as be a reduction in pressure spindown, suggesting that the 6H-4DEnVar

system could still see further improvement with improved VR and VM strategies.

Figure 4.18: Vmax (a) and MSLP (b) RMSE (thick lines) and individual forecast errors

(thin lines). Experiments with -sl use satellite derived locations during VR
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Chapter 5

Irma Results

5.1 RMSE for wind and pressure

RMSE is calculated for Vmax (figure 5.1a) and MSLP (figure 5.1b) against best track data

for Irma. The Vmax RMSE reveals that for early lead times 1H-3DEnVar has larger error

than 6H-3DEnVar before becoming comparable for 24-36h. 6H-4DEnVar is comparable to

6H-3DEnVar for 0-48h. An improvement is seen in both 1H-3DEnVar and 6H-4DEnVar

such that during the 48-90h time frame both experiments consistently exhibit smaller error

than 6H-3DEnVar. However the error difference is small. During 0-12h, 1H-3DEnVar has

a larger RMSE than 6H-4DEnVar. From 36-80h, 1H-3DEnVar has a smaller error than

6H-3DEnVar, with both experiments having similar RMSE’s for remaining times. RMSE

for MSLP reveals 1H-3DEnVar has smaller errors than 6H-3DEnVar for 12-54h but has

larger errors for later times (figure 5.1b). MSLP error for 6H-4DEnVar are comparable

to 6H-3DEnVar prior to 84h, but are typically worse at later times. Due to differences

in storm tracks in individual free forecasts, 1H-3DEnVar and 6H-4DEnVar see degraded

Vmax and MSLP RMSEs at longer forecast lead times. Large errors are introduced when

an experiment produces a landfalling hurricane when none was present in the observations,

or an experiment’s forecast track stays over the ocean when the observations show the

storm making landfall. Prior to 60h 1H-3DEnVar shows smaller error than 6H-4DEnVar,

after 60h 1H-3DEnVar shows larger RMSE than 6H-4DEnVar.

Both 6H-4DEnVar and 6H-3DEnVar exhibit spindown in cases with the largest wind

speeds (Figure 5.1c). While not shown in Figure 5.1c, 1H-3DEnVar spins down in the first

3 hours in 4 of 5 cases. During the peak intensity all experiments exhibit a weak bias. For

MSLP, there is a consistent weak bias in all experiments during peak intensity. However,

1H-3DEnVar shows a smaller bias than either 6H-4DEnVar and 6H-3DEnVar, consistent
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with the smaller RMSE. Comparing the relationship between pressure and Vmax (Figure

5.1e) reveals that the relationship between Vmax and RMSE is too weak in all experiments

(significant at the 95% level for each experiment relative to best track) during the first 30

hours, as shown by the shallower slope than in the best track. All 3 experiments show a

similar slope (The differences are not statistically significant at the 95% level), however 1H-

3DEnVar is an outlier with stronger MSLP for a given wind speed than both 6H-3DEnVar

and 6H-4DEnVar.

5.2 Structure Correlation

A three-dimentional structure correlation is calculated between the model wind analyses

and the TDR wind speed (Figure 5.2). 1H-3DEnVar correlates 24% better to observations

than both 6H-3DEnVar and 6H-4DEnVar and has the largest correlation in 4 of 5 cases.

This increase in the mean of the correlation is largely due to I24, however, if this case is re-

moved the correlations are similar with 1H-3DEnVar still being the largest. The difference

between 6H-3DEnVar and 6H-4DEnVar is small.

5.3 Structure verification using TDR reflectivity

Simulated reflectivity is compared to TDR reflectivity at 1200 UTC September 04 and 0000

UTC September 06, analysis time for I20 and I26 respectively. The I19 6h forecast (figure

5.3) and the I24 12h forecast (figure 5.4) are compared at 3000m and 2000m respectively.

Both 6H-4DEnVar and 1H-3DEnVar show the small inner eyewall accurately, where 6H-

3DEnVar fails to produce one (Figure 5.3). The rain bands in the inner core are too strong

in all experiments. 1H-3DEnVar produces precipitation in the eye that is not present in

the observations. Outside the inner core, both 1H-3DEnVar and 6H-4DEnVar capture the

rain bands better than 6H-3DEnVar. However, due to attenuation it is difficult to quantify

the magnitude of the reflectivity produced by the model in these bands. At 0000 UTC
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Figure 5.1: As in 4.1, but for Irma (2017), and all slopes are different than best track at the

95% significance level.

49



Figure 5.2: As in 4.2 but for Irma (2017)
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September 16 observations show two distinct eyewalls (Figure 5.4). In 6H-4DEnVar the

outer band appears to be two spiraling bands emanating from the inner band. 6H-3DEnVar

and 1H-3DEnVar more correctly resolve the outer eyewall as a separate feature from the

inner eyewall, although neither produces a fully closed ring as in the observations. Both

6H-4DEnVar and 1H-3DEnVar resolve the band of convection to the north of the inner

eyewall better than the 6H-3DEnVar as it is absent in 6H-3DEnVar. All models place the

storm further east than the observations as well, with 1H-3DEnVar being the furthest east.

Figure 5.3: Simulated radar reflectivity valid 1200 UTC 04 September for a) 6H-3DEnVar,

b) 6H-4DEnVar from forecast initialized 0600 UTC 04 September and, c) 1H-3DEnVar

from forecast initialized at 0900 UTC 04 September (I19) and Observed and Observed

TDR reflectivity valid at 1142 UTC 04 September.
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Figure 5.4: Simulated radar reflectivity valid 0000 UTC 06 September for a) 6H-3DEnVar,

b) 6H-4DEnVar from forecast initialized 1200 UTC 05 September and, c) 1H-3DEnVar

from forecast launched at 1500 UTC 05 September (I24) and Observed and Observed TDR

reflectivity valid at 2359 UTC 05 September
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5.4 Satellite location

As was done for Edouard in section 4.5.2, experiments were conducted using satellite de-

rived locations instead of the TCVitals and EnSRF derived locations for VR. Both 1H-

3DEnVar-sl and 6H-4DEnVar-sl show improvements over 1H-3DEnVar and 6H-4DEnVar

for Vmax for 0-24h (Figure 5.1a). Similarly, 6H-4DEnVar-sl improves upon the 6H-

3DEnVar results after 66h. Both 1H-3DEnVar-sl and 6H-4DEnVar-sl exhibit smaller RM-

SEs for much of the forecast than 6H-3DEnVar and provide comparable results to each

other for most times after 30h. For MSLP (Figure 5.1b), 1H-3DEnVar-sl improves upon

1H-3DEnVar errors primarily after 54h, becoming comparable to 6H-4DEnVar errors for

this time frame. 6H-4DEnVar-sl further improves upon errors seen in 6H-4DEnVar for all

forecast hours. Both 1H-3DEnVar-sl and 6H-3DEnVar-sl show smaller errors than 6H-

3DEnVar in 0-48, and are comparable or better than 6H-3DEnVar from 48h to 84h. Af-

ter this time 6H-4DEnVar-sl and 1H-3DEnVar-sl have larger RMSE’s than 6H-3DEnVar.

However, the improvements compared to 1H-3DEnVar and 6H-4DEnVar are largest during

this time.

Figure 5.5: As in 4.18, but for Irma
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Chapter 6

Discussion and Conclusion

A GSI-Based Ensemble-Variational Data Assimilation system for HWRF is tested to com-

pare the four-dimensional and one-hourly three-dimensional implementations. Experi-

ments are conducted using Edouard (2014) and Irma (2017) to evaluate whether accounting

for the evolution of background error covariance in rapidly evolving hurricanes with inner

core data can improve analyses and forecasts in HWRF. Specifically 1-Hourly 3DEnVar

and 6-Hourly 4DEnVar are proposed as alternatives to the 6-Hourly Hybrid-3DEnVar sys-

tem that uses stationary covariances over the 6-hour DA window. Furthermore, 1-Hourly

Hybrid-3DEnVar and 6-Hourly Hybrid-4DEnVar are compared to determine if one system

produces better analyses and forecasts than the other.

Between several experiments, 6H-3DEnVar is seen to produce poor analyses. Edouard

(2014) 6H-3DEnVar shows a large RMSE in Vmax and MSLP as well as SFMR wind

speed and flight level specific humidity. Structure correlation shows a similar result but

with a small difference in magnitude for Edouard (2014). In Edouard, flight level tem-

perature shows that 6H-3DEnVar is worse than 6H-4DEnVar but not 1H-3DEnVar. These

results suggest that both 6H-4DEnVar and 1H-3DEnVar produce better analyses than 6H-

3DEnVar, supporting the hypothesis that accounting for background evolution when the

background is evolving rapidly improves the analysis.

Comparing 6H-4DEnVar and 1H-3DEnVar, Vmax and MSLP RMSE are the only met-

rics that show a notable difference at analysis time. 6H-4DEnVar analysis MSLP verifies

better than 1H-3DEnVar, however for Vmax 1H-3DEnVar has a smaller RMSE for Edouard

(2014). The 1H-3DEnVar forecast experiences spindown in nearly every cycle, so the im-

proved analysis is not representative of the early forecast.
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During the forecast, simulated reflectivity and SFMR wind speed suggest that 6H-

3DEnVar typically does not perform as well as 1H-3DEnVar and 6H-4DEnVar, especially

when a double eyewall is present for reflectivity. For Vmax the poor analysis does not

necessarily produce a poorer forecast than 6H-4DEnVar or 1H-3DEnVar, where any degra-

dation does not last beyond hour 12. Instead, the spindown in 1H-3DEnVar results in 1H-

3DEnVar producing the worst Vmax forecast for the first 12-18 hours. For Edouard (2014)

MSLP RMSE shows that early 6H-3DEnVar forecasts take longer to adjust than in Vmax,

but from hours 24-48 the 6H-3DEnVar MSLP forecast produces the smallest RMSE. This

is in part due to a combination of a bias toward low MSLP in the analysis correcting to a

better forecast before strengthening again to degrade the forecast. Overall, most differences

between 6H-3DEnVar and the other experiments is within the first 24-48 hours, with most

suggesting that 6H-3DEnVar is the worst in this time frame, aside from MSLP during the

second half of this window.

1H-3DEnVar exhibits a poor relationship between MSLP and Vmax during the Anal-

ysis through the first 30 hours of the forecast in Edouard (2014). 6H-3DEnVar and 6H-

4DEnVar show a similar slope to best track, with both experiments having a bias along the

slope. Additionally, 1H-3DEnVar has a larger bias than 6H-4DEnVar and 6H-3DEnVar.

These issues appear to be related to the spindown issue seen in the 1H-3DEnVar fore-

cast where Vmax weakens, and there is no notable corresponding increase in MSLP. This

spindown was shown to be a result of poorly predicted storm locations in the relocated

background. A strong wind gradient exists in the transition from eye to eyewall, and a

slight dislocation between the observations and the background can result in large inno-

vations and a violation of gaussian assumptions. This problem is further exacerbated by

an underdispersive 1H-3DEnVar ensemble with regard to storm center locations. Since

the vortex modification procedure uses an EnSRF to determine the location of the storm

in the relocated background, storms location may not be relocated far enough toward the

TCVitals observation.
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Regular TCVitals observations are available every 6 hours. However, 6H-4DEnVar and

1H-3DEnVar perform vortex relocation every hour. A linear interpolation is used to provide

an observation in between regular TCVitals observations. Given the results suggesting that

the background location impacts results, in some cases using a more advanced non-linear

interpolation method may improve results. In cases where the storm is propagating non-

linearly over the 6 hour window additional error is introduced in the linearly interpolated

TCVitals. Barring an increase in the temporal frequency of TCVitals observations, the

quality of the TCVitals for times other than 0, 6, 12, and 18 UTC will be dependent on the

quality of the interpolation.

Experiments with Irma (2017) show that relative Vmax RMSEs between experiments

are similar to Edouard (2014). The primary differences are 6H-3DEnVar not showing as

large of error in the analysis, and 1H-3DEnVar having increased RMSE starting at hour 3,

instead of 9. For MSLP RMSE 6H-3DEnVar has the largest error instead of the smallest as

is seen in the Edouard results, suggesting that the small error in Edouard is not represen-

tative. MSLP-Vmax relationship is similar to that seen in Edouard, however 6H-3DEnVar

and 6H-4DEnVar have poor slopes similar to 1H-3DEnVar. Radar forecast verification

also results in similar conclusions to Edouard, with 6H-4DEnVar and 1H-3DEnVar resolv-

ing inner core structure better than 6H-3DEnVar. Structure correlation for Irma suggests

that 1H-3DEnVar produces the best results. However, this is due to a single case, and the

correlations are similar for the remaining cases. Comparing results for individual missions

reveals that for most metrics 4 of the 5 missions produce 6H-3DEnVar analyses that are

worse than both 6H-4DEnVar and 1H-3DEnVar. While most results for Irma (2017) are

similar to those for Edouard (2014), there are some differences. To fully understand the

differences more cases are needed, as some results may be due to the small sample sizes

used in this study.

As mentioned in chapter 1 decreasing the length of the DA cycle increases compu-

tational costs, as does using 4D DA. As such, 1H-3DEnVar is the most computationally
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expensive, with 6H-4DEnVar being the second most expensive, and 6H-3DEnVar the least

expensive. The lesser computational cost is the only consistent advantage seen in 6H-

3DEnVar compared to the other experiments. The 6H-4DEnVar and 1H-3DEnVar exper-

iments perform similarly in most metrics, but there is a greater computational cost asso-

ciated with 1H-3DEnVar due to the large number of cycles. Additional problems were

presented in 1H-3DEnVar related to choosing the exact setup of the experiments. Because

of the 1-hour DA cycles in 1H-3DEnVar, several difficulties were presented regarding the

timing of the cycles and the free forecast. If the free forecast is launched at the same time

as with the 6-hour DA, any data valid in the second half of the 6-hour DA window will

not be assimilated, thus providing a 3 hour mismatch in the data assimilated between free

forecasts. If the 6-hour DA window is divided into six 1-hour windows then the analyses

will be valid at HH:30, leaving a 30 minute difference in the launch of the free forecast

between experiments, as well as not being consistent with the operational HH:00 analyses.

In order to remain consistent with the HH:00 convention, the window that observations fall

into between free forecasts in 1H-3DEnVar would be shifted by 30 minutes compared to

the 6-hour DA window in 6H-3DEnVar and 6H-4DEnVar. In order to alleviate this prob-

lem, the DA cycles that span two DA windows are split into two smaller 30-minute cycles,

but no forecast or VR/VM is performed between them. This allows the same data to be

assimilated for each mission. However, it does present the negative affect of having the

free forecast launch at the end of the mission, thus three hours later than the 6H-3DEnVar

and 6H-4DEnVar free forecasts.

In summary, both 6H-4DEnVar and 1H-3DEnVar perform better than 6H-3DEnVar by

most metrics in both the analysis and early forecast but become similar after about 48 hours.

Most differences between 6H-4DEnVar and 1H-3DEnVar are small except for 1) Flight

level temperature, 2) spindown, 3) computational costs. However, it is uncertain if the first

two differences could be eliminated with further development. Given the improvements

seen using satellite derived locations, hourly TCVitals observations could provide further
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improvement. Additionally, inflating the ensemble of storm location perturbations prior

to the EnSRF step in VR may reduce the affects of the underdispersive ensemble in 1H-

3DEnVar. Further experimentation with more casesand development is necessary to answer

these questions.

58



Bibliography

Aksoy, A., S. D. Aberson, T. Vukicevic, K. J. Sellwood, S. Lorsolo, and X. Zhang,
2013: Assimilation of High-Resolution Tropical Cyclone Observations with an En-
semble Kalman Filter Using NOAA/AOML/HRD’s HEDAS: Evaluation of the 2008-
11 Vortex-Scale Analyses. Monthly Weather Review, 141 (6), 1842–1865, doi:10.1175/
mwr-d-12-00194.1.

Aksoy, A., S. Lorsolo, T. Vukicevic, K. J. Sellwood, S. D. Aberson, and F. Zhang,
2012: The HWRF Hurricane Ensemble Data Assimilation System (HEDAS) for High-
Resolution Data: The Impact of Airborne Doppler Radar Observations in an OSSE.
Monthly Weather Review, 140 (6), 1843–1862, doi:10.1175/MWR-D-11-00212.1.

Bender, M. A., R. J. Ross, R. E. Tuleya, and Y. Kurihara, 1993: Improvements in tropi-
cal cyclone track and intensity forecasts using the GFDL initialization system. Monthly
Weather Review, 121, 2046–2061.

Bishop, C. H., and D. Hodyss, 2011: Adaptive Ensemble Covariance Localization in En-
semble 4D-VAR State Estimation. Monthly Weather Review, 139 (4), 1241–1255, doi:
10.1175/2010mwr3403.1.

Biswas, M., and Coauthors, 2017: Hurricane Weather Research and Forecasting (HWRF)
Model: 2017 Scientific Documentation. Tech. rep., Developmental Testbed Center,
105 pp. URL https://dtcenter.org/HurrWRF/users/docs/scientific documents/HWRFv3.
9a ScientificDoc.pdf.

Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error
covariances: Evaluation in a quasi-operational NWP setting. Quarterly Journal of the
Royal Meteorological Society, 131 (607), 1013–1043, doi:10.1256/qj.04.15.

Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010a: Intercom-
parison of Variational Data Assimilation and the Ensemble Kalman Filter for Global
Deterministic NWP. Part I: Description and Single-Observation Experiments. Monthly
Weather Review, 138 (5), 1550–1566, doi:10.1175/2009mwr3157.1.

Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010b: Intercom-
parison of Variational Data Assimilation and the Ensemble Kalman Filter for Global
Deterministic NWP. Part II: One-Month Experiments with Real Observations. Monthly
Weather Review, 138 (5), 1567–1586, doi:10.1175/2009mwr3158.1.

Chen, Y., and C. Snyder, 2007: Assimilating Vortex Position with an Ensemble Kalman
Filter. Monthly Weather Review, 135 (5), 1828–1845, doi:10.1175/mwr3351.1.

Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of
a hybrid ensemble/4D-Var global data assimilation system at the Met Office. Quarterly
Journal of the Royal Meteorological Society, 139 (675), 1445–1461, doi:10.1002/qj.
2054.

59



Dong, J., and M. Xue, 2013: Assimilation of radial velocity and reflectivity data from
coastal WSR-88D radars using an ensemble Kalman filter for the analysis and forecast of
landfalling hurricane Ike (2008). Quarterly Journal of the Royal Meteorological Society,
139 (671), 467–487, doi:10.1002/qj.1970.

Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble data
assimilation. Journal of Atmospheric and Oceanic Technology, 26 (5), 911–927, doi:
10.1175/2008JTECHA1156.1.

Etherton, B. J., and C. H. Bishop, 2004: Resilience of Hybrid Ensemble/3DVAR Analy-
sis Schemes to Model Error and Ensemble Covariance Error. Monthly Weather Review,
132 (5), 1065–1080, doi:10.1175/1520-0493(2004)132〈1065:rohdas〉2.0.co;2.

Evensen, G., 2018: Analysis of iterative ensemble smoothers for solving inverse problems.
Computational Geosciences, 22 (3), 885–908, doi:10.1007/s10596-018-9731-y.

Fertig, E. J., J. Harlim, and B. R. Hunt, 2007: A comparative study of 4D-VAR and a
4D Ensemble Kalman Filter: Perfect model simulations with Lorenz-96. Tellus, Series
A: Dynamic Meteorology and Oceanography, 59 (1), 96–100, doi:10.1111/j.1600-0870.
2006.00205.x.

Gamache, J. F., J. Franklin, N. Surgi, and Q. Liu, 2015: Real-Time Dissemination of
Hurricane Wind Fields Determined from Airborne Doppler Radar Data Real-Time Dis-
semination of Hurricane Wind Fields Determined. Tech. rep., NOAA, 38 pp. URL
http://www.nhc.noaa.gov/jht/2003-2005reports/DOPLRgamache JHTfinalreport.pdf.

Gauthier, P., M. Tanguay, S. Laroche, S. Pellerin, and J. Morneau, 2007: Extension of
3DVAR to 4DVAR: Implementation of 4DVAR at the Meteorological Service of Canada.
Monthly Weather Review, 135 (6), 2339–2354, doi:10.1175/mwr3394.1.

Hamill, T. M., and C. Snyder, 2000: A Hybrid Ensemble Kalman Filter-3D Varia-
tional Analysis Scheme. Monthly Weather Review, 128 (8), 2905–2919, doi:10.1175/
1520-0493(2000)128〈2905:ahekfv〉2.0.co;2.

Hamill, T. M., J. S. Whitaker, M. Fiorino, and S. G. Benjamin, 2011: Global Ensemble
Predictions of 2009’s Tropical Cyclones Initialized with an Ensemble Kalman Filter.
Monthly Weather Review, 139 (2), 668–688, doi:10.1175/2010mwr3456.1.

Houtekamer, P. L., and F. Zhang, 2016: Review of the Ensemble Kalman Filter for Atmo-
spheric Data Assimilation. Monthly Weather Review, 144 (12), 4489–4532, doi:10.1175/
MWR-D-15-0440.1, URL http://journals.ametsoc.org/doi/10.1175/MWR-D-15-0440.1.

Hu, M., and M. Xue, 2007: Impact of Configurations of Rapid Intermittent Assimilation of
WSR-88D Radar Data for the 8 May 2003 Oklahoma City Tornadic Thunderstorm Case.
Monthly Weather Review, 135 (2), 507–525, doi:10.1175/mwr3313.1.

60



Huang, X.-Y., and P. Lynch, 1993: Diabatic Digital-Filtering Initialization: Applica-
tion to the HIRLAM Model. Monthly Weather Review, 121 (2), 589–603, doi:10.1175/
1520-0493(1993)121〈0589:ddfiat〉2.0.co;2.

Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spa-
tiotemporal chaos: A local ensemble transform Kalman filter. Physica D: Nonlinear
Phenomena, 230 (1-2), 112–126, doi:10.1016/j.physd.2006.11.008, 0511236v2.

Hunt, B. R., and Coauthors, 2004: Four-dimensional ensemble Kalman filtering. Tellus,
Series A: Dynamic Meteorology and Oceanography, 56 (4), 273–277, doi:10.1111/j.
1600-0870.2004.00066.x.

Kleist, D. T., and K. Ide, 2015a: An OSSE-Based Evaluation of Hybrid Variational-
Ensemble Data Assimilation for the NCEP GFS. Part I: System Description and
3D-Hybrid Results. Monthly Weather Review, 143 (2), 433–451, doi:10.1175/
mwr-d-13-00351.1.

Kleist, D. T., and K. Ide, 2015b: An OSSE-Based Evaluation of Hybrid Variational En-
semble Data Assimilation for the NCEP GFS. Part II: 4DEnVar and Hybrid Variants.
Monthly Weather Review, 143 (2), 452–470, doi:10.1175/mwr-d-13-00350.1.

Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane
models by vortex specification. Monthly Weather Review, 121, 2030–2045.

Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1990: Prediction Ex-
periments of Hurricane Gloria (1985) Using a Multiply Nested Movable Mesh
Model. Monthly Weather Review, 118 (10), 2185–2198, doi:10.1175/1520-0493(1990)
118〈2185:peohgu〉2.0.co;2.

Kurihara, Y., M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL
hurricane prediction system. Monthly Weather Review, 123, 2791–2891.

Kurihara, Y., R. E. Tuleya, and M. A. Bender, 1998: The GFDL Hurricane Prediction
System and Its Performance in the 1995 Hurricane Season. Monthly Weather Review,
126 (5), 1306–1322, doi:10.1175/1520-0493(1998)126〈1306:tghpsa〉2.0.co;2.

Kutty, G., and X. Wang, 2015: A Comparison of the Impacts of Radiosonde and AMSU
Radiance Observations in GSI Based 3DEnsVar and 3DVar Data Assimilation Systems
for NCEP GFS. Advances in Meteorology, 2015, 1–17, doi:10.1155/2015/280546.

Lei, L., and J. L. Anderson, 2014: Impacts of Frequent Assimilation of Surface Pressure
Observations on Atmospheric Analyses. Monthly Weather Review, 142 (12), 4477–4483,
doi:10.1175/mwr-d-14-00097.1.

Leighton, H., S. Gopalakrishnan, J. A. Zhang, R. F. Rogers, Z. Zhang, and V. Tallapra-
gada, 2018: Azimuthal Distribution of Deep Convection, Environmental Factors, and
Tropical Cyclone Rapid Intensification: A Perspective from HWRF Ensemble Forecasts

61



of Hurricane Edouard (2014). Journal of the Atmospheric Sciences, 75 (1), 275–295,
doi:10.1175/jas-d-17-0171.1.

Li, J., and H. Liu, 2009: Improved hurricane track and intensity forecast using single field-
of-view advanced IR sounding measurements. Geophysical Research Letters, 36 (11),
9–12, doi:10.1029/2009GL038285.

Li, X., J. Ming, M. Xue, Y. Wang, and K. Zhao, 2015: Implementation of a dynamic equa-
tions constraint based on the stead state momentum equations within the WRF hybrid
ensemble-3DVar data assimilation system and test with radar T-TREC wind assimilation
for tropical Cyclone Chanthu (2010). Journal of Geophysical Research : Atmospheres,
120 (1), 4017–4039, doi:10.1002/2014JD022706.

Li, Y., X. Wang, and M. Xue, 2012: Assimilation of Radar Radial Velocity Data with
the WRF Hybrid Ensemble-3DVAR System for the Prediction of Hurricane Ike (2008).
Monthly Weather Review, 140 (11), 3507–3524, doi:10.1175/mwr-d-12-00043.1.

Liu, Q., S. Lord, N. Surgi, Y. Zhu, R. Wobus, Z. Toth, and T. Marchok, 2006: Hurricane Re-
location in Global Ensemble Forecast System. 27th Conference on Hurricanes and Trop-
ical Meteorology, Monterey, CA, P5.13, URL https://ams.confex.com/ams/pdfpapers/
108503.pdf.

Liu, Q., T. Marchok, H.-l. Pan, M. Bender, and S. Lord, 2000: Improvements in Hurricane
Initialization and Forecasting at NCEP with Global and Regional ( GFDL ) models.
NCEP Office Note, 472.

Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP - A comparison
with 4D-Var. Quarterly Journal of the Royal Meteorological Society, 129 (595 PART
B), 3183–3203, doi:10.1256/qj.02.132.

Lu, X., and X. Wang, 2019: Improving Hurricane Analyses and Predictions with TCI,
IFEX Field Campaign Observations, and CIMSS AMVs Using the Advanced Hybrid
Data Assimilation system for HWRF. Part I: What is missing to capture the rapid inten-
sification of Hurricane Patricia (2015) when HWRF is already initialized with a more
realistic analysis? Monthly Weather Review, (2015), MWR–D–18–0202.1, doi:10.1175/
MWR-D-18-0202.1, URL http://journals.ametsoc.org/doi/10.1175/MWR-D-18-0202.1.

Lu, X., X. Wang, Y. Li, M. Tong, and X. Ma, 2017a: GSI-based ensemble-variational
hybrid data assimilation for HWRF for hurricane initialization and prediction: impact of
various error covariances for airborne radar observation assimilation. Quarterly Journal
of the Royal Meteorological Society, 143 (702), 223–239, doi:10.1002/qj.2914.

Lu, X., X. Wang, M. Tong, and V. Tallapragada, 2017b: GSI-Based, Continuously Cycled,
Dual-Resolution Hybrid Ensemble-Variational Data Assimilation System for HWRF:
System Description and Experiments with Edouard (2014). Monthly Weather Review,
145 (12), 4877–4898, doi:10.1175/mwr-d-17-0068.1.

62



Poterjoy, J., and F. Zhang, 2014: Intercomparison and Coupling of Ensemble and Four-
Dimensional Variational Data Assimilation Methods for the Analysis and Forecasting
of Hurricane Karl (2010). Monthly Weather Review, 142 (9), 3347–3364, doi:10.1175/
mwr-d-13-00394.1.

Poterjoy, J., F. Zhang, and Y. Weng, 2014: The Effects of Sampling Errors on the EnKF
Assimilation of Inner-Core Hurricane Observations. Monthly Weather Review, 142 (4),
1609–1630, doi:10.1175/mwr-d-13-00305.1.

Pu, Z., X. Li, and E. J. Zipser, 2009: Diagnosis of the Initial and Forecast Errors in the
Numerical Simulation of the Rapid Intensification of Hurricane Emily (2005). Weather
and Forecasting, 24 (5), 1236–1251, doi:10.1175/2009waf2222195.1.

Pu, Z.-X., and S. A. Braun, 2001: Evaluation of Bogus Vortex Techniques with Four-
Dimensional Variational Data Assimilation. Monthly Weather Review, 129 (8), 2023–
2039, doi:10.1175/1520-0493(2001)129〈2023:eobvtw〉2.0.co;2.

Rogers, R., and Coauthors, 2013: NOAA’S Hurricane Intensity Forecasting Experiment:
A Progress Report. Bulletin of the American Meteorological Society, 94 (6), 859–882,
doi:10.1175/bams-d-12-00089.1.

Schwartz, C. S., Z. Liu, and X.-Y. Huang, 2015: Sensitivity of Limited-Area Hybrid
Variational-Ensemble Analyses and Forecasts to Ensemble Perturbation Resolution.
Monthly Weather Review, 143 (9), 3454–3477, doi:10.1175/mwr-d-14-00259.1.

Schwartz, C. S., Z. Liu, X.-Y. Huang, Y.-H. Kuo, and C.-T. Fong, 2013: Comparing
Limited-Area 3DVAR and Hybrid Variational-Ensemble Data Assimilation Methods for
Typhoon Track Forecasts: Sensitivity to Outer Loops and Vortex Relocation. Monthly
Weather Review, 141 (12), 4350–4372, doi:10.1175/mwr-d-13-00028.1.

Tallapragada, V., S. G. Gopalakrishnan, Q. Liu, and T. P. Marchok, 2014: Hur-
ricane Weather Research and Forecasting (HWRF) model: 2014 scientific
documentation. Tech. Rep. September, Developmental Testbed Center, 1–105
pp. URL http://www.dtcenter.org/HurrWRF/users/docs/scientific documents/
HWRFScientificDocumentation August2011.pdf.

Thu, T. V., and T. N. Krishnamurti, 1992: Vortex initialization for typhoon track prediction.
Meteorology and Atmospheric Physics, 47 (2-4), 117–126, doi:10.1007/BF01025612.

Tong, M., V. Tallapragada, E. Liu, W. Wang, C. Kieu, Q. Liu, and B. Zhan, 2014: Im-
pact of Assimilating Aircraft Reconnaissance Observations in Operational HWRF. 2014
HFIP annual meeting, URL http://www.hfip.org/events/annual meeting nov 2014/wed/
15 Tong 2014 HFIP annual meeting.pdf.

Tong, W., G. Li, J. Sun, X. Tang, and Y. Zhang, 2016: Design Strategies of an Hourly Up-
date 3DVAR Data Assimilation System for Improved Convective Forecasting. Weather
and Forecasting, 31 (5), 1673–1695, doi:10.1175/waf-d-16-0041.1.

63



Torn, R. D., and G. J. Hakim, 2009: Ensemble Data Assimilation Applied to RAINEX
Observations of Hurricane Katrina (2005). Monthly Weather Review, 137 (9), 2817–
2829, doi:10.1175/2009mwr2656.1.

Trahan, S., and L. Sparling, 2012: An Analysis of NCEP Tropical Cyclone Vitals and
Potential Effects on Forecasting Models. Weather and Forecasting, 27 (3), 744–756,
doi:10.1175/waf-d-11-00063.1.

Wang, S., M. Xue, and J. Min, 2013a: A four-dimensional asynchronous ensemble square-
root filter (4DEnSRF) algorithm and tests with simulated radar data. Quarterly Journal
of the Royal Meteorological Society, 139 (672), 805–819, doi:10.1002/qj.1987, URL
http://doi.wiley.com/10.1002/qj.1987.

Wang, S., M. Xue, A. D. Schenkman, and J. Min, 2013b: An iterative ensemble square root
filter and tests with simulated radar data for storm-scale data assimilation. Quarterly
Journal of the Royal Meteorological Society, 139 (676), 1888–1903, doi:10.1002/qj.
2077.

Wang, X., 2010: Incorporating Ensemble Covariance in the Gridpoint Statistical Interpo-
lation Variational Minimization: A Mathematical Framework. Monthly Weather Review,
138 (7), 2990–2995, doi:10.1175/2010mwr3245.1.

Wang, X., 2011: Application of the WRF Hybrid ETKF-3DVAR Data Assimilation System
for Hurricane Track Forecasts. Weather and Forecasting, 26 (6), 868–884, doi:10.1175/
waf-d-10-05058.1.

Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008a: A Hybrid ETKF-3DVAR
Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Ex-
periment. Monthly Weather Review, 136 (12), 5116–5131, doi:10.1175/2008MWR2444.
1, URL http://journals.ametsoc.org/doi/abs/10.1175/2008MWR2444.1.

Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008b: A Hybrid ETKF-3DVAR
Data Assimilation Scheme for the WRF Model. Part II: Real Observation Experiments.
Monthly Weather Review, 136 (12), 5132–5147, doi:10.1175/2008MWR2445.1, URL
http://journals.ametsoc.org/doi/abs/10.1175/2008MWR2445.1.

Wang, X., T. M. Hamill, J. S. Whitaker, and C. H. Bishop, 2007a: A Comparison of Hybrid
Ensemble Transform Kalman Filter-Optimum Interpolation and Ensemble Square Root
Filter Analysis Schemes. Monthly Weather Review, 135 (3), 1055–1076, doi:10.1175/
mwr3307.1.

Wang, X., T. M. Hamill, J. S. Whitaker, and C. H. Bishop, 2009: A Comparison of the
Hybrid and EnSRF Analysis Schemes in the Presence of Model Errors due to Unresolved
Scales. Monthly Weather Review, 137 (10), 3219–3232, doi:10.1175/2009mwr2923.1.

Wang, X., and T. Lei, 2014: GSI-Based Four-Dimensional Ensemble-Variational
(4DEnsVar) Data Assimilation: Formulation and Single-Resolution Experiments with

64



Real Data for NCEP Global Forecast System. Monthly Weather Review, 142 (9), 3303–
3325, doi:10.1175/MWR-D-13-00303.1, URL http://journals.ametsoc.org/doi/10.1175/
MWR-D-13-00303.1.

Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013c: GSI 3DVar-Based Ensemble-
Variational Hybrid Data Assimilation for NCEP Global Forecast System: Single-
Resolution Experiments. Monthly Weather Review, 141 (11), 4098–4117, doi:10.1175/
mwr-d-12-00141.1.

Wang, X., C. Snyder, and T. M. Hamill, 2007b: On the Theoretical Equivalence of Differ-
ently Proposed Ensemble-3DVAR Hybrid Analysis Schemes. Monthly Weather Review,
135 (1), 222–227, doi:10.1175/MWR3282.1, URL http://journals.ametsoc.org/doi/abs/
10.1175/MWR3282.1.

Weng, Y., and F. Zhang, 2012: Assimilating Airborne Doppler Radar Observations
with an Ensemble Kalman Filter for Convection-Permitting Hurricane Initialization
and Prediction: Katrina (2005). Monthly Weather Review, 140 (3), 841–859, doi:
10.1175/2011mwr3602.1.

Whitaker, J. S., and T. M. Hamill, 2002: Ensemble Data Assimilation without Per-
turbed Observations. Monthly Weather Review, 130 (7), 1913–1924, doi:10.1175/
1520-0493(2002)130〈1913:edawpo〉2.0.co;2.

Yang, S.-C., K.-J. Lin, T. Miyoshi, and E. Kalnay, 2013: Improving the spin-up of regional
EnKF for typhoon assimilation and forecasting with Typhoon Sinlaku (2008). Tellus
A: Dynamic Meteorology and Oceanography, 65 (1), 20 804, doi:10.3402/tellusa.v65i0.
20804.

Zhang, F., Y. Weng, J. F. Gamache, and F. D. Marks, 2011: Performance of convection-
permitting hurricane initialization and prediction during 2008-2010 with ensemble data
assimilation of inner-core airborne Doppler radar observations. Geophysical Research
Letters, 38 (15), 2–7, doi:10.1029/2011GL048469.

Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-Resolving
Hurricane Initialization and Prediction through Assimilation of Doppler Radar Observa-
tions with an Ensemble Kalman Filter. Monthly Weather Review, 137 (7), 2105–2125,
doi:10.1175/2009mwr2645.1.

Zhang, M., and F. Zhang, 2012: E4DVar: Coupling an Ensemble Kalman Filter with Four-
Dimensional Variational Data Assimilation in a Limited-Area Weather Prediction Model.
Monthly Weather Review, 140 (2), 587–600, doi:10.1175/mwr-d-11-00023.1.

Zhang, S., and Z. Pu, 2019: Numerical Simulation of Rapid Weakening of Hurricane
Joaquin with Assimilation of High-Definition Sounding System Dropsondes during the
Tropical Cyclone Intensity Experiment: Comparison of Three- and Four-Dimensional
Ensemble-Variational Data Assimilation. Weather and Forecasting, 34 (3), 521–538, doi:
10.1175/waf-d-18-0151.1.

65



Zhou, C., H. Shao, and B. Ligia, 2015: Applications of the GSI-Hybrid Data Assimilation
for High-Resolution Tropical Storm Forecasts: tackling the intensity spindown issue in
2014 HWRF. 16th WRF Users Workshop, Boulder, CO, URL https://dtcenter.org/eval/
data assim/publications/GSI-Hybridat2015WRFUsersWorkshop.v2 poster.pdf.

Zou, X., and Q. Xiao, 2000: Studies on the Initialization and Simulation of a Mature Hurri-
cane Using a Variational Bogus Data Assimilation Scheme. Journal of the Atmospheric
Sciences, 57 (6), 836–860, doi:10.1175/1520-0469(2000)057〈0836:sotias〉2.0.co;2.

66


