
 

 

UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

 

CONNECTIVITIES OF VARIOUS COMPONENTS IN ORGANIC-RICH SHALE 

 

 

A THESIS 

SUBMITTED TO THE GRADUATE FACULTY 

In partial fulfillment of the requirements for the 

Degree of 

MASTER OF SCIENCE 

 

By 

Yaokun Wu 

Norman, Oklahoma 

2019  

  



 

 

CONNETIVITIES OF VARIOUS COMPONENTS IN ORGANIC-RICH SHALE 

 

A THESIS APPROVED FOR THE   

MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING 

 

 

By 

 

 

 

 

 

Dr. Siddharth Misra, Chair 

Dr. Deepak Devegowda 

Dr. Rouzbeh Ghanbarnezhad Moghanloo 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by YAOKUN WU 2019 

All Rights Reserved



iv 

 

 

 

Acknowledgements 

 

First, I would like to thank my advisor, Dr. Siddharth Misra for providing me such a good 

opportunity to enhance my research experience. This thesis can only be made with your guidance 

and advise during my research study.  

Second, I would like to thank Dr. Deepak and Dr. Rouzbeh for your willingness to help me with 

this thesis review. Your helpful suggestions and recommendations contribute significantly to the 

completion of the thesis. I also would like to thank Dr. Sondergeld and the IC3 lab for providing 

me with the high-quality image data.  

I would like to express my sincerest thanks to my family overseas for believing in me. Your love 

and support for the past two years truly motivate me to pursue my goals. 

I would like to thank my officemate Hao Li for giving me suggestions in learning Python 

programming.  

Finally, I would like to thank Na Yuan for taking care of me in the past year.  

  



v 

 

Table of Contents 

Acknowledgements ........................................................................................................................ iv 

Table of Contents ............................................................................................................................ v 

Abstract ........................................................................................................................................ viii 

Chapter 1. Introduction ................................................................................................................... 1 

1.1 Motivation of the Work .................................................................................................... 1 

1.2 Organization of the Thesis ................................................................................................ 2 

Chapter 2: Research Background .................................................................................................... 3 

2.1 Image Segmentation Background ..................................................................................... 3 

2.2 Connectivity Background ................................................................................................. 8 

Chapter 3: Methodology ............................................................................................................... 11 

3.1 Workflow of Automated SEM Image Segmentation ...................................................... 11 

3.1.1 Introduction of SEM Map .................................................................................... 11 

3.1.2 Workflow ............................................................................................................. 11 

3.1.3 Preprocessing of SEM Map ................................................................................. 12 

3.1.4 Pixels Selection for Training and Testing ............................................................ 13 

3.1.5 Feature Extraction ................................................................................................ 17 

3.1.6 Model Selection and Hyper-Parameter Optimization .......................................... 23 

3.1.7 Feature Ranking ................................................................................................... 25 

3.2 Quantifying Connectivity with Different Metrics ........................................................... 26 



vi 

 

3.2.1 Introduction of the Synthetic Dataset .................................................................. 26 

3.2.2 S2 and C2 Functions ............................................................................................. 29 

3.2.3 Fast Marching Method ......................................................................................... 31 

3.2.4 Cluster Size Distribution ...................................................................................... 32 

3.2.5 Euler’s Number .................................................................................................... 32 

Chapter 4: Results and Discussion ................................................................................................ 34 

4.1 Image Segmentation Results ........................................................................................... 34 

4.1.1 Four-Component Segmentation ........................................................................... 34 

4.1.2 Multi-label Probability-Based Segmentation ....................................................... 41 

4.1.3 Performance on Testing Dataset .......................................................................... 42 

4.1.4 Deployment of the Segmentation Model ............................................................. 51 

4.1.5 Rank of Features .................................................................................................. 52 

4.1.6 Generalization of the Model ................................................................................ 54 

4.2 Connectivity Results ....................................................................................................... 58 

4.2.1 S2 and C2 Function Results for Synthetic Dataset ............................................... 58 

4.2.2 Fast Marching Method Results for Synthetic Dataset ......................................... 62 

4.2.3 Cluster Size Distribution Results for Synthetic Dataset ...................................... 64 

4.2.4 Euler’s Number Results for Synthetic Dataset .................................................... 65 

4.2.5 Results Comparison between Real SEM Images ................................................. 66 

Chapter 5:  Conclusions and Limitations ...................................................................................... 73 



vii 

 

5.1 Conclusions ..................................................................................................................... 73 

5.2 Limitations and future work............................................................................................ 74 

References ..................................................................................................................................... 76 

Appendix A: Sensitivity of the Segmentation to the Choice of the Wavelet ................................ 81 

Appendix B: Model Dependency on Image Orientation .............................................................. 85 

Appendix C: Effect of Image Size on Connectivity Quantification ............................................. 89 

 

  



viii 

 

Abstract 

The physical properties of shale are fundamentally controlled by its microstructure. Connectivity 

of various components in shale is an important property that governs the transport of mass, energy 

and momentum. Quantifying connectivity of components is a critical aspect to understand the 

microstructure of shales. Scanning electron microscope (SEM) imaging technique is a popular 

technique to capture the microstructure of materials. Before quantifying connectivity of 

components captured in the SEM image, different components in SEM images need to be 

identified and segmented. In the first part of this study, an automated SEM-image segmentation 

workflow involving feature extraction followed by machine learning is developed and tested on 

SEM images of shale. The proposed segmentation workflow is an alternative to classical threshold-

based and object-based segmentation. Four components, namely pore/crack, pyrite, 

organic/kerogen, and rock matrix including clay, calcite and quartz, are automatically identified 

and segmented. The performance of the automated SEM-image segmentation workflow, 

quantified in terms of overall F1 score, on the validation dataset was higher than 0.9. In the second 

part of this study, five different connectivity-quantification metrics, namely two-point statistical 

function (S2), two-point cluster function (C2), cluster size distribution, travel times computed using 

fast marching method (FMM), and Euler’s number, are tested on SEM images of shale. First, the 

relationships between the connectivity and the responses of the five connectivity-quantification 

metrics are determined and validated by statistical analysis on a synthetic dataset of binary images, 

which contains six types of connectivity from the lowest to the highest. Second, such relationships 

are directly applied to quantify the connectivity of organic/kerogen and pore/crack components in 

the SEM images of shale. 
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Chapter 1. Introduction 

1.1 Motivation of the Work 

Unconventional reservoirs, especially gas shales have been mostly paid attention to due to 

the success of hydrocarbon production in the past decade[1]. Shale gas reservoirs have 

been substantiated to store prolific natural gas[2, 3]. The exploration and production from 

shales are found to be challenging and expensive as the demand for stable sources increases. 

Due to their complicated microstructure and extremely low permeability, understanding of 

the microstructure of shales, petrophysical and mechanical properties of the rocks is a 

crucial task needed for shale reservoir characterization. The common shale rocks exhibit 

significant mechanical anisotropy because of the distribution and organization of various 

minerals[4]. The most direct way of capturing the microstructure of shale is to use image 

analysis. Limitation in resolution of optical microscopes make observation and analysis of 

shale rock properties impossible[5]. Using scanning electron microscopy (SEM) technique, 

stitched mosaic of high-resolution SEM images serves to overcome the limited field of 

view, which makes high-resolution images perfect for analysis of characteristics in 

microscale[6].  Fractal geometry, pore structures and heterogeneity characteristics are 

successfully obtained by data from SEM images[7]. The connectivity of various 

components in geomaterials governs the transport of mass, energy and momentum. For 

example, the connectivity of the pore space has critical impact on the shale’s unfractured 

ability to deliver gas to the borehole[8]. However, only limited studies of the connectivity 

quantification from images are found and no comparative study of connectivity from 

images is available.  It is critical to come up with methods that can quantitatively 

characterize connectivity and can measure directional and spatial features of connectivity 
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of various components. In this work, we used automated image segmentation techniques 

for identifying components in SEM images of shale samples, where the components in the 

study are pores, cracks, organic matter, clay, and pyrite. We tested different metrics for 

connectivity quantification and applied these metrics to the segmented SEM images in the 

first step to quantify connectivity of pores/cracks, organic matter in the shale rock sample.  

1.2 Organization of the Thesis 

The thesis is divided into five chapters and is organized as follows: 

Chapter 2 introduces the research background for the study. It includes the background for 

image segmentation and background for connectivity characterization. 

Chapter 3 explains the methodology of machine learning based automatic image 

segmentation as well as the methodology for connectivity characterization/quantification. 

In Chapter 4, SEM segmentation results are shown. The performance of a machine learning 

model is tested as well as its generalization capability is evaluated. The results from 

different connectivity metrics are presented and discussed. 

In Chapter 5, Conclusion and limitation for this work are presented.  
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Chapter 2: Research Background 

2.1 Image Segmentation Background 

Scanning electron microscope (SEM) image analysis facilitates the visualization and 

quantification of the microstructure, topology, morphology (in the secondary electron 

mode, not in the backscattered electron mode) and connectivity of distinct components in 

a porous geological material. The process of the division of an image into spatially 

continuous, disjoint and homogeneous regions, known as image segmentation, is a crucial 

step prior to image analysis. Although manual segmentation performed by the subject 

matter expert is the most reliable approach, it requires considerable time, attention and 

patience, especially for a large size of the high-resolution SEM images.  

Traditional image segmentation is commonly categorized into three approaches: pixel-, 

edge- and region-based segmentation. Histogram thresholding-based segmentation assigns 

a certain class label to each pixel depending on a specific range of pixel intensity. Images 

having single or multiple modal in histograms are generally segmented using this 

method.[9] However, major limitations of the thresholding method include: (1) it requires 

accurate determination of threshold values and the ranges of pixel intensity for each 

component, and (2) it is unreliable when such ranges of pixel intensity for two or more 

components overlap. Another approach is the region-based segmentation, which is also 

widely applied on SEM images. This method iteratively splits or merges various regions 

till all the continuous and homogenous regions are identified in the image. Watershed 

segmentation is one of most popular region-based method in medical image segmentation 

[10]. However, challenges in selecting proper seed points during the process make the 
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method prone to over-segmentation or under-segmentation. Moreover, such method is 

computational expensive and sensitive to noise. 

Machine learning (ML) application in petroleum and geoscience has shown rapid progress 

in the recent years. ML methods are capable of learning mathematical rules derived from 

large datasets to map features and targets, which make task automation possible[11]. In the 

upstream oil and gas industry, ML methods have been widely adopted in the subsurface 

characterization and the subsurface processes forecasting. Rostami et al. [12] used ML 

models  to estimate permeability in heterogeneous carbonate reservoirs. Stacked neural 

networks were recently used to synthesize dielectric dispersion response of geological 

formations in the subsurface [13]. CO2 solubility in oil reservoirs  is successfully predicted 

using ML models based on oil saturation, pressure, oil specific gravity, oil molecular 

weight, reservoir temperature and bubble point pressure [14]. The in-situ pore size 

distribution in the subsurface formations is generated using deep and shallow neural 

network models based on wireline logs, such as gamma ray, resistivity, density, and 

neutron logs [15, 16].  

ML applications for image segmentation tasks are also popularized in the recent years. Two 

types of machine learning techniques, namely supervised and unsupervised learning, are 

employed in image segmentation. In supervised learning, a  ML model learns a function to 

map inputs (features) to outputs (targets), where the function is accurately derived and can 

be later used to predict the desired outputs for new, unseen inputs [17, 18]. Segmentation 

methods using supervised learning can be divided into two broad categories: pixel-wise 

classification and object-based classification. Anemone et al. [19] use pixel-wise models 

with an artificial neural network to recognize spectral features of five different classes of 
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land cover in remotely sensed images for locating potential fossil localities. Bauer and 

Strauss [20] introduced an object-based method to classify soil cover types into stones, 

residues, shadow and plants. Deep learning, one of the recently populated ML category, 

also has applications on image segmentation [21]. One of its typical deeply structured 

neural networks known as convolutional neural networks (CNN) has its inhered advantages 

for processing image and thus has been mostly developed in computer vision. CNN learns 

the filters at various scales to be applied on an image for desired classification or regression 

tasks. Wu et al. [22] constructed a CNN with an encoder-decoder architecture for semantic 

segmentation, where the road scene objects, such as cars, trees, and roads, were 

successfully segmented with reasonable accuracy. Ronneberger et al. [23] applied u-net 

architecture on biomedical segmentation applications such as neuronal structures detection, 

cell segmentation, where significant improvement in terms of accuracy is achieved. Due to 

CNN’s capability of capturing localized structures in images, it can achieve the most robust 

segmentation. However, A major drawback of CNN is that it requires large dataset for 

training. Preparing a training dataset of a large size and high quality is often a challenge in 

most of the project. In addition, the training for CNN is time consuming. It often takes days 

or even month to train a reliable model.   

Unsupervised clustering also has been used in image segmentation. Compared to the 

supervised learning method where training data is required, the unsupervised learning can 

deal with unlabeled data [24]. Shen et al. [25] introduced an extension to traditional fuzzy 

c means clustering for the segmentation of T1 weighted magnetic resonance (MR) image 

of brain tissue to identify white matter, gray matter and cerebrospinal fluid.. Self-

organizing map (SOM) is another typical method belonging to unsupervised learning. Ong 
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et al. [26] proposed a two-stage hierarchical neural network for segmentation of color 

images based on SOM. The unsupervised SOM captures dominant colors of an image to 

generate color clusters which are fed into second level SOM to complete the segmentation. 

However, few limitations of SOM include proper selection of the dimension of the map 

and adjustment and optimization of parameters. Jiang and Zhou [27] combined SOM with 

ensemble learning to improve the segmentation performance. By setting SOM with 

different parameters and adopting a scheme for aligning different clusters, a robust 

segmentation result was obtained. However, a major disadvantage is that manually 

selection of the numbers of regions is required.  

Image analysis has been well adopted in the oil and gas industry. Tripathi et al. [28] 

estimated permeability from thin-section image analysis based on the Carman-Kozeny 

model. Budennyy et al. [29] used watershed segmentation and statistical learning on 

polarized optical microscopic images to study the structure of thin section, where the 

properties of grain, cement, voids, and cleavage are successfully extracted. Rahimov et al. 

[30] applied local binary pattern (LBP)  for feature extraction to classify 3D sub-sample 

images into six texture categories and obtain the representative permeability. Asmussen et 

al. [31] developed a semi-automatic region-growing segmentation workflow for rock 

images to quantify modal composition, porosity, grain size distribution, and grain contacts. 

Zhao et al. [32] utilized k-means clustering and principal component analysis (PCA)  for 

the remaining oil classification. Oil film, throat retained oil, heterogeneous multi-pore oil, 

and clustered oil are successfully differentiated. 

In terms of SEM images, various segmentation methods have been proposed by deriving 

information at nanoscale. Narasimha et al. [33] tested kNN, SVMs and Adaboost models 
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on SEM mammalian cells images to segment mitochondria using text-based features. Good 

performance of the ML models showed the ML methods can perform close to manual 

segmentation carried out by an experienced user. Aldo et al. [34] applied CNN on SEM 

images to segment axon and myelin sheath. The model is well structured and trained with 

the help of data augmentation. Trained on rat SEM images, the model was able to achieve 

a pixel-wise accuracy higher than 85%. Hughes A et al. [35] utilize preprocessing, 

segmentation and object classification techniques for SEM image to streamline 

nanostructure characterization with the help of Ilastik software. The random walk method 

combined with the semi-supervised pixel classification precisely classified nanoparticles 

into singles, dimers, flat and piled aggregate. Tang and Spikes [36] used elemental SEM 

images of seven different elements from shale samples as input features to segment original 

images into five components such as calcite, feldspar, quartz, total organic carbon (TOC) 

and clay/pore. However, the limitations lay in the data acquisition of such elemental SEM 

images and that clay and pore were not successfully being differentiated. 

In this study, we propose a workflow for machine-learning-assisted segmentation of SEM 

images that will enable an improved characterization of hydrocarbon-bearing formations. 

The machine learning model can automate the process of segmenting 8-bit grayscale SEM 

images into four distinct component types, namely, pores/cracks, kerogen/organic, matrix 

and pyrite components. The proposed model can accurately locate organic/kerogen and 

pore/crack components in organic rich shales, which is a first of its kind demonstration. 

Importantly, the efficacy of the segmentation technique in the presence of large noise in 

the data is tested.  Based on feature ranking, the second level of wavelet transform is 

perceived to be the most important feature apart from Gaussian blur for distinguishing 
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pores and organic matter. We also investigate the precision, recall, and F1-score as metrics 

to access the performance of the proposed method in inner regions and the transition zones. 

Furthermore, the effectiveness of our approach is demonstrated in comparison to three 

other popular segmentation techniques, namely FIJI-assisted segmentation, object-based 

segmentation, and threshold-based segmentation.  

2.2 Connectivity Background 

The word connectivity both serve as an intuitive notion and a technique term. There is not 

a single mathematical definition adopted by the community. However, the connectivity has 

been defined across multiple discipline. In geomorphology, it is defined as the transfer of 

sediment from one zone or location to another[37]. In hydrological literature, it refers to 

the physical connection between different parts of a catchment[38]. In geoscience, the 

connectivity is related to overall structure of a media and is defined as the proportion of 

the volume of the biggest geobody to the sum of all geobodies[39]]. No matter how 

connectivity is defined, all the study demonstrates the importance of the connectivity. It is 

one of the important properties since it governs the transport of mass, energy and 

momentum. Quantifying connectivity of components is a critical aspect to understand the 

microstructure of shales. Standard and widely adopted way does not emerge to measure or 

to quantify connectivity based on images till now. The percolation theory denotes that 

process of percolation is the transition from disconnected clusters to a large spanning 

cluster as the proportion increases. Connectivity is defined in percolation theory as the 

probability of any two cells belonging to the single percolating cluster, where the 

probability can be estimated numerically by computing the ratio of the volume of the 
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percolation cluster(the dominate cluster) to the volume of the grid for large, finite grids 

[40]. 

However, when the proportion of components cannot reach to the percolation threshold the 

connectivity is literally null and cannot be estimated accurately. 

Euler characteristic, a topological invariant, a number that describes a topological space's 

shape or structure, has been a scalar indicator of connectivity ,which is calculated as the 

number of clusters minus the number of holes in the cluster in 2D [41]. However, the major 

limitation lies in no direction information is involved along which connectivity is measured 

and it fails when the number of holes is substantially higher than clusters. 

Indicator variograms are a measure of spatial continuity at a specific threshold. Multiple 

indicator variograms capture spatial continuity at multiple thresholds and can thus be used 

to capture differences in continuity at different thresholds[42]. However, the parameters 

can only be extracted from indicator variogram based on the natural spatial pattern. No 

quantitively comparison can be found where those parameters directly related to the 

connectivity.   

The microstructure of two-phase random media has been studied using n-point probability 

functions back to 1982. The theory proposed that information contained in the 

microstructure can be captured by a set of n-point probability functions, where the 

probability of finding a certain subset of n -points in the matrix phase and the remainder in 

the particle phase is determined [43]. However, performing such n point test is extremely 

computational expensive, which made it infeasible even on the state-of-the-art 

computational resources.  A lower-order version, known as two point statistical functions 

(S2), has been proposed and widely used in characterization of structure and bulk properties 
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of random textures [44]. The S2 function has been adopted in media reconstruction problem 

due to its capability of capturing structured information. Such methods can determine the 

extent to which the original structure can be reconstructed by comparison of similarity 

between function response in original media and in reconstructed one [45]. 

Orthogonal directions along which the functions are applied are usually considered [46]. 

That reconstruction results of using orthogonal direction only are less preferable than that 

of using four direction suggests the limitation of functions calculated only in two directions, 

where less structural information is preserved [47].   

 Reconstruction result obtained by adding diagonal direction in the study suggests the 

structure information such as connectivity is embedded in the target function along the 

direction it is calculated and also shows the potential of such statistical function for 

capturing connectivity information [48]. 

In this study, the connectivity of component in an image is defined by the responses of 

different metrics. In the two-point correlation function and two-point cluster function, the 

connectivity is defined as the probability of having two cluster pixels connected. In terms 

of fast marching method, the connectivity is defined as the percentage of pixels being 

reached during the boundary evolution. Euler number serves as a direct indicator of 

connectivity in this study. 
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Chapter 3: Methodology 

3.1 Workflow of Automated SEM Image Segmentation 

3.1.1 Introduction of SEM Map  

The high-resolution SEM map is acquired using the FEI Helios NanolabTM 650 

DualBeam™ FIB/SEM machine and FEI SEM MAPS™ software at the Integrated Core 

Characterization (IC3) lab. Fig 3.1 shows the SEM map of dimension of 2058 µm by 

260.6µm thin section of a shale rock sample from Wolfcamp formation.  

 

Figure 3.1: High-resolution SEM Map of dimension of 2058µm-by-260.6µm  

 

3.1.2 Workflow 

The proposed machine-learning-assisted SEM image segmentation (Fig 3.2) is to facilitate 

the process of identifying the four rock components in the shale reservoir, i.e. whether 

pixels in a SEM image represent (1) pores/cracks, (2) organic/kerogen (3) matrix 

comprising clay, calcite and/or quartz, (4) pyrite components. The proposed segmentation 

workflow involves two steps, feature extraction from images followed by classification of 

the extracted feature vectors using ML models. To access the performance of models, , the 

260.6 μm 

2058 μm 
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workflow for training and testing stages in chronological order (Fig 3.2a) involves (1) 

pixels selection for training and testing, (2) feature extraction from images, (3) Create 

training and testing datasets by the compilation of feature vectors of the selected pixels , 

(4) training ML models using the training dataset, and (5) testing the performance of the 

ML model on the testing dataset. In the deployment phase (Fig 3.2b), the trained model is 

applied directly on the rest SEM images to obtain the segmented SEM map. 

 

Figure 3.2: Workflows for (a) the training and testing stages for the ML model and 

(b) the deployment phase for the model 

 

3.1.3 Preprocessing of SEM Map  

Because the size of original SEM map is more than a regular computer can handle, the 

preprocessing is needed in the first place. The SEM map is therefore divided into 1000 

same-sized images, where each image has a dimension of 20.58 μm-by-26.06 μm. 
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3.1.4 Pixels Selection for Training and Testing 

Training data is used to fit parameters of ML models. The learning and generalization of a 

ML model depend largely on training dataset. Good training set selection in the image 

annotation process can have positive influences on the segmentation model performance 

while requiring short time to train a model. Pixels selection for creating the training and 

testing dataset needs to be paid attention to, especially when we deal with pixels around 

transition area from one component to another. A ML model can be falsified by wrongly 

annotated pixels.   

During the annotation process, ground-truth pixels corresponding to pore/crack were 

selected from both organic/kerogen region and from the matrix region. In Fig 3.3, the 

rectangles with red-colored edges show where the training pixels were selected. As a result, 

705, 2074, 17373, 15000 pixels were selected for pore/crack, organic/kerogen, rock matrix, 

and pyrite components respectively.  
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Figure 3.3: Rectangles with red-colored edges indicate the location of training pixels, 

where green, grey, black, and blue represents the kerogen/organic, matrix, 

pore/crack, and pyrite components. 

It is expected that pores from matrix or inside organic matter can be distinguished.  

Unfortunately, the segmentation method currently cannot distinguish between pores in 

matrix and pores in kerogen/organic component. 

Test dataset is used to assess the performance of a ML model. Proper selection of testing 

pixels can reflect the true performance of a model. We divided pixels in the images into 

two classes based on the location of the pixels, namely, inner region pixels and transition 

zone pixels shown in Fig 3.4.  
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Figure 3.4: Zoomed in visualization of the inner region (IR) and transition zone (TZ) 

around crack/pore and matrix interface. Interfaces exhibit grayscale transitions that 

are hard to segment 

A gradual change in pixel intensity can be observed from one component to another. The 

transition zone for the matrix and pore/crack interface is vague and may seem like 

organic/kerogen component. It is expected that pixels in transition zone should be more 

difficult to classify based on the intensity than in inner region. To test the reliability of the 

model, the test dataset was created with an emphasis on quantifying the performance in the 

transition zones. Pixels are manually selected from both the inner region and transition 

zones of the components to constitute the inner-region (IR) and transition-zone (TZ) test 

dataset, respectively. Manual selection of pixels from the inner region is a straightforward 

task whereas the selection from the transition zone requires attention to details. The 

summarization of numbers of pixels Table 3.1 summarize the number of pixels for each 

component in inner region and transition zones. The locations where these pixels are 

selected are shown in Fig 3.5. 
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Figure 3.5: Locations of test pixels, which were selected from both inner region and 

transition zone of different images to effectively test the performance of proposed 

segmentation. 

The red rectangles cover the locations of the test pixels, and the area of each rectangle 

approximates the number of pixels making up the test data. 
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Table 3.1: Number of pixels in the test dataset corresponding to the four components 

in the SEM image 

Components Number of pixels 

Inner region Transition zone  

Pore & crack 2498 2623 

Organic & kerogen 1977 4392 

Matrix 2375 3623 

Pyrite 1765 3010 

 

3.1.5 Feature Extraction 

Intensity of pixels on a gray scale image is a prominent feature to distinguish various 

components. Obtaining SEM images of uniform intensity for components is a major 

challenge because the focal distance must be the same throughout the imaging process. 

Threshold-based method uses only this feature to generate segments. The SEM map, shown 

in Fig 3.1, was used by Tran et al. [6] to identify pores, cracks, organic matter, pyrite, 

silica-rich clay grains, and calcite-rich clay grains using this method. However, the pixel 

intensity is sometimes a weak feature when the components to be segmented have 

overlapping magnitudes of pixel intensity. For our shale images, the threshold-based 

method has poor performance for distinguishing pore/crack component from 

organic/kerogen component where pore/crack and organic/kerogen have pixel intensity 

between 0 to 125, 80-130, respectively., In this case, increasing the number of features is 

inevitable to ensure robust segmentation result.  



18 

 

Our extensive study indicates that seven categories of features (Fig 3.6) are the most 

important for the proposed segmentation, namely Gaussian blur. Difference of Gaussians 

(DoG), Sobel operator, Hessian matrix, Wavelet transform, statistical information of the 

neighboring pixels (local information), and pixel intensity. These features describe each 

pixel based on the spatial and scale-related information at multiple resolutions. The 

effectiveness of the features depends largely on the choice of parameters in the 

corresponding mathematical/statistical transformations. The optimum parameters are 

selected based on the performance of the ML model on the testing dataset. The descriptions 

of above-mentioned feature extract technique and the number of features extracted in each 

category are listed below. Note that the pixel intensity subjects to change when one 

acquires the image, the study does not consider the variations of pixel intensity range. 

Gaussian blur (1 feature) 

The feature map of a given image from Gaussian blur is obtained by convolving a 2D 

Gaussian function with the image.  For example, the feature map of the training image from 

Gaussian blur is shown in Fig 3.6h. High spatial frequency information is removed during 

the process, which result in a smoothed version of original image where noise level in the 

original image is reduced.  A typical 2D Gaussian function is shown in Equ.1.  

𝐺2𝐷(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2  

where 𝜎 is the standard deviation of the Gaussian distribution, x and y are the location 

indices of pixels in the image. The value of 𝜎 determines the extent of the blurring effect. 

In the proposed method, sigma values ranging from 0.1 to 16 are tested and the sigma value 

of 3 is determined as the optimum value.  
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Figure 3.6: Examples of features extracted from one SEM Image after the first level 

of processing 

Difference of Gaussians (1 Feature) 

Difference of Gaussians (DoG) is calculated as the difference between two feature maps 

obtained in Gaussian blur with different sigma values. The DoG capture information in a 

specific spatial frequency domain of original image where such frequency range depends 

on the sigma values of the two Gaussian blur. Both high-frequency spatial information and 

low-frequency information are removed during the subtraction of the two Gaussian blur 

feature maps. This feature extraction technique are popular in object detection, where key 

points for charactering objects are determined by the response of DoG in an image. Fig 

3.6c shows the feature map from the DoG where the two sigma values used in the study 

are 1.414 and 1, respectively.  

Sobel Operator (1 Feature) 
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The Sobel operator performs a 2D spatial-gradient operation on an image for the edge 

enhancement. The operator consists a pair of 3-by-3 convolution kernels (two 

perpendicular directions). The two kernels are applied separately to an image to generate 

the gradients at each pixel. The edges are enhanced due to the sharp pixel intensity changes, 

where  the gradients calculated at pixels around edges are larger than those in the 

homogeneous region. The feature map of the training image obtained by Sobel operator is 

shown in Fig 3.6d.  

Hessian affine region detector (3 Features) 

Unlike the Sobel operator for the detection of 1st order variation of pixel intensity, the 

Hessian affine region detector captures the 2nd order variations of local intensity around a 

pixel It describes the local curvature of spatial structures in the image; where the shape 

information is preserved. It has been widely used to structure orientation, brightness 

detection, and varies structures differentiation. It is computed by convolving an image with 

the second derivatives of the Gaussian kernel in the x and y directions. The Hessian matrix 

H applied on a 2D function f(𝑥, 𝑦) is expressed as 

H[f(𝑥, 𝑦)] = [
Hxx Hxy

Hyx Hyy
] 

where   

Hxx =
𝜕2𝑓

𝜕𝑥2
 , Hxy =

𝜕2𝑓

𝜕𝑥𝜕𝑦
= Hyx =

𝜕2𝑓

𝜕𝑦𝜕𝑥
 , Hyy =

𝜕2𝑓

𝜕𝑦2
 

A standard deviation of 1 in the Gaussian kernel is used in our study. Three feature maps, 

namely Hxx, Hxy, and Hyy, are obtained and shown in  Fig 3.6e, 3.6f, and 3.6g. 
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Wavelet Transforms (6 features) 

Wavelet transforms allows multi-resolution space-scale (time-frequency) analysis of 

signals. Wavelet transform is well known as it can capture both frequency and time/space 

localization property of the signal being processed. 2D discrete Wavelet transforms 

generates coefficients with respect to certain basis function (wavelet). In our study, we start 

off with the Haar wavelet as our basis function and the sensitivity of the ML model to the 

choice of different wavelet family is compared afterwards. (Haar, filter length of 4 in 

Dauchies family, filter length of 6 in Coiflet family) 

When a single operation (level 1) of the wavelet transform is applied on a given image, 

four set of coefficients (sub-images) are generated at half the resolution of the original 

image. Further wavelet transform (level 2 and so on) can be obtained by applying the 

operation on the one set of coefficients obtained in the previous one. The Level-1 and 

Level-2 wavelet transforms (decompositions) are shown in Fig 3.7. In decomposition level-

1, Three sub-images, HL1, LH1, and HH1 are obtained to capture high spatial frequency 

and local pixel intensity changes in horizontal, vertical and diagonal directions 

respectively,, whereas LL1 is an low frequency approximation of the original image The 

LL1 can be further decomposed in the next-level decomposition to yield LL2, LH2, HL2, 

and HH2 and so on. 

In the study, the six high frequency, downscaled coefficients obtained in level 1 and level 

2 wavelet transform are inversely used to-reconstruct the horizontal details (HLd1 and HLd2), 

vertical details (LHd1 and LHd2), and diagonal details (HHd1 and HHd2) of the original image, 

where the subscripts d1 and d2 represent the level of decomposition. Fig 3.6a and 3.6b 

show the feature maps of horizontal and vertical details. The LL1, LL2 and higher-level 
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decompositions are not used in the method due to the following reasons. First, LL1 and LL2 

are merely approximation (blurred version) of original image, behaving similar to the 

Gaussian Blur feature and such approximations are not suitable for distinguishing 

pore/crack from organic/kerogen components, and not for components around interfaces. 

Importantly as it turns out, the segmentation performance didn’t improve with the addition 

of LL1 and LL2. Second, the higher-level decompositions are not preferred because the 

effect of noise is greatly enhanced.  

 

Figure 3.7: Wavelet transforms generated in level one and level two. Each subsequent 

level generates a downscaled image 

Local Information (3 Features) 

Local information includes the minimum, maximum and mean values of pixel intensity in 

a local neighborhood. A 3 by 3 kernel centered at each pixel moves throughout the entire 

image while the min, max and mean values are calculated at each location of the kernel.  

Other Features Investigated for this Study 
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Features tested but not in use in the study includes empirical mode decomposition (EMD), 

Local binary pattern (LBP), Scale-invariant feature transform (SIFT) and speeded up 

robust features (SURF) either due to computational complexity or the lack of reliable 

computational infrastructure. For example, EMD is a decomposition method similar to the 

wavelet transforms. Unfortunately, it takes considerable time to run when it was tested on 

a 256-by-256 image. LBP is popular in texture classification of regions, but not suitable 

for individual pixels classification. Scale- SIFT and SURF are two other feature extraction 

methods; However, the two methods specialized only on object detection, and tracking. 

 

3.1.6 Model Selection and Hyper-Parameter Optimization 

Tree-based models usually excel in classification problem. The simplest tree-based model, 

decision tree, always serve as a single unit in ensemble learning due to its overfitting. Tree-

based model using ensemble learning includes random forest model, gradient boosting 

model and Adaboost models.  Random forest model is a bagging-type ensemble of decision 

trees that reduces the variance and bias of the classification task. The representative 

structure of a Random forest model is shown in Fig 3.8. It combines a group of decision 

tree classifiers trained on various sub-samples of the dataset with bootstrapping. In this 

study, the random forest classifier is implemented in the Scikit-Learn package, which uses 

an optimized CART algorithm for building decision trees. The hyperparameters of random 

forest need to be tuned to overcome the challenge of distinguishing pore/crack component 

from organic/kerogen component. Important hyper-parameters include maximum depth of 

the trees, maximum features and the weight assigned to each component. The model 

selection along with hyper-parameter optimization is achieved through 3-fold cross-
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validation grid search. Hyperparameters are determined by evaluating the average model 

performance with different hyperparameters in the cross-validation.  

 

Figure 3.8: A simplified representation of the architecture of the random forest 

classifier used for the proposed segmentation 

The other classification techniques tested in the study include Gradient Boosting (GB), k-

Nearest-Neighbor (kNN), Logistic Regression, Linear Support Vector Classifier (SVC), 

Multi-Layer Perceptron (MLP)). For each unsegmented pixel, kNN first finds k pixels, 

which have feature vectors that are closest to the feature vector of the unsegmented pixel. 

After that, the unsegmented pixel is assigned a component type that occurs the most among 

the k pixels. kNN requires careful selection of k, the number of neighbors. Linear SVC is 

a binary classifier that finds a boundary that best separates two classes, whereas logistic 

regression finds a boundary by identifying a log-likelihood distribution that b1est 

represents the data. Linear SVC and logistic regression require careful selection of 

parameters: alpha and C that govern the nature of boundary and the penalty of 
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misclassifying few data samples. Non-linear SVC cannot be used for the proposed 

segmentation because it is inefficient for a large dataset with high-dimensional features. 

When using neural network model for classification, all features need to be properly scaled 

and requires hyperparameter optimization with cross-validation to find the optimum values 

for the regularization term, the number of hidden layers, and the number of neurons in each 

hidden layer. Based on our extensive study, the random forest model was the most accurate, 

reliable and computationally inexpensive as compared to others for the desired 

segmentation. Invariant to the scaling of data and requiring little effort in tuning hyper-

parameters while maintaining high reproducibility make the Random forest model the best 

one in the segmentation task.  

 

3.1.7 Feature Ranking 

Feature ranking gives the rank of importance for each feature based on how it contributes 

to the results. Permutation importance is an operation for determination of feature 

importance. It replaces one feature at a time with noise data having mean and variance 

equal to that of the replaced feature. After the replacement, this ranking scheme measures 

the reduction in the classification score (In this study F1 score is applied). Feature 

importance is directly proportional to the reduction in score.  
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3.2 Quantifying Connectivity with Different Metrics 

3.2.1 Introduction of the Synthetic Dataset 

Performance of the five connectivity-quantification metrics are tested and compared to 

quantify the connectivity of different components in the SEM images. To that end, the five 

metrics will be applied on six types of synthetic binary images with different levels of 

connectivity. The six types of binary images will be referred as Type 1 to 6. Type has the 

best connectivity of the white component, whereas the Type 6 has the worst connectivity 

of the white component. 

  

Figure 3.9: A typical binary image of Type 1 connectivity 

One typical synthetic binary image of Type 1 connectivity is shown in Fig 3.9. The image 

contains ten horizontal bars and ten vertical bars in white with random distribution. All the 

bars have the same dimension, i.e. hundred pixels in length and two pixels in width. The 

dimension of the synthetic binary image are 200 pixels by 200 pixels. White pixels 

represent the component of interest for which the connectivity is to be quantified, whereas 
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pixels in black represent the background. Type 1 image has approximately 4000 pixels in 

white representing 10% fraction of the entire image. 500 different realizations of such 

image are obtained by randomly selecting the location of the bars.  

For creating the Type 2 images, all the bars have the same dimension, i.e. fifty pixels in 

length and two pixels in width. 500 images of Type 2 are generated by random 

redistribution of the smaller bars. A typical Type 2 image is shown in Fig 3.10. 

 

Figure 3.10: A typical binary image of Type 2 connectivity 

Smaller length of bars was used to generate synthetic binary images with other four types 

of connectivity. With the reduction in length of the bar, the connectivity of the white pixels 

in the binary image reduces. The typical images for these types of connectivity are shown 

in Fig 3.11.  
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Figure 3.11: A typical binary image of Type 3, 4, 5 and 6 connectivity 

For evaluating the connectivity-quantification metrics, 500 different realizations of 

randomly distributed bars were generated for each type of connectivity. Each image for 

each connectivity type has approximately 10% fraction of white pixels. The assumption is 

that these different realizations for each connectivity type have relatively similar 

connectivity of white pixels.  
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3.2.2 S2 and C2 Functions 

A binary indicator function 𝐼(𝑖)(𝒙) describes the affiliation between pixels for 2D digitized 

images [48]. For the synthetic binary images, the indicator function takes the following 

form at each location x in the two-dimensional Euclidian space:  

𝐼(𝑖)(𝒙) = {
1, 𝒙 ∈ 𝑽𝑖

0, 𝒙 ∈ 𝑽𝑖

 

where 𝑽𝑖  is the region occupied by component i and 𝑽𝑖 is the region occupied by the 

components other than component i. 

The S2 statistical function is calculated as the probability of finding two pixels belonging 

to the same component type separated by a distance of r. There may not be a path 

connecting the two pixels. The S2 function consider two pixels belonging to the component 

type which may be disconnected. 

For a certain realization, the probability of two pixels of the same component type at a 

distance r is calculated as the ratio of the number of paired points belonging to the same 

component type at a distance of r to the number of all possible combinations of paired 

points at a distance of r. The paired points are selected randomly for a specified direction. 

In our study, C2 and S2 are calculated along four directions as shown in Fig 3.12.  
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Figure 3.12: Schematic for S2 and C2 correlation function computed in four directions 

(X, Y, X-diagonal and Y-diagonal) for the two-component synthetic binary image 

We choose only four directions to calculate the probability because the distance between 

two pixels in the response of S2 is specified as integer numbers, it is impractical to select 

paired points at such distance in all directions of 360 degree. It would also be extremely 

computational expensive if all possible directions are considered. 

By definition, C2 statistical function is different from S2 in that it requires paired pixels to 

lie in the same cluster, where a cluster is defined as a group of connected pixels, as shown 

in Fig 3.13. Compared to S2, C2 is a better indicator of connectivity since the C2 consider 

only two pixels belonging to the same component type where the two pixels are connected. 
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Figure 3.13: Identification of clusters in a sample binary image where five clusters 

are identified and labeled as 1 to 5. 

 

3.2.3 Fast Marching Method 

The fast-marching method is used to model the evolution of boundaries and interfaces. By 

specifying travel speed for each individual component and the location where the wave 

start, the travel times from the source point to other pixels (when the contour crosses the 

pixels) are calculated using the fast-marching computation. For fast marching calculation, 

the component of interest is assigned a high velocity and the rest of the components are 

assigned very low velocity. In other words, for the synthetic binary image, prior to fast 

marching calculations, white pixels were assigned a velocity of 3 m/s and the black pixels 

were assigned a velocity close to zero. Fast marching computes the travel time for a wave 

as the wave propagates from the source to other connected white pixels. By randomly 

initiating travel time calculations from different white pixels in the different realizations 

for a certain connectivity type, we can obtain a probabilistic distribution of travel times 
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that is related to the connectivity of white pixels.  Statistical information contained in the 

histogram of travel time, as well as the number of pixels being reached and the time of 

arrival at a certain pixel are considered to be indicators of connectivity.  

 

3.2.4 Cluster Size Distribution 

In this study, the number of clusters as well as the size of clusters are considered as 

indicator of connectivity based on the assumption that connectivity increases with the 

emergence of large size clusters. Thus, the distribution of clusters size would have 

connectivity information embedded. A common observation suggests connectivity starts 

to increase as disconnected points or small clusters merge together given the unchanged 

quantity of the component before and after. To generate the distribution of cluster size in a 

2D image, individual cluster across the image is identified while the size of cluster is 

calculated as the number of pixels in the cluster.   

 

3.2.5 Euler’s Number 

Euler’s number is a topological invariant. It describes topological space’s shape and 

structure. In 3D, it is the number of clusters minus the number of handles plus the number 

of holes. It is simplified as the total number of clusters minus total number of holes within 

clusters in 2D. As the proportion of a component increases starting from zero, at beginning, 

Euler’s number increases due to the increase in the number of clusters and no increase in 

the number of holes.  As the proportion continue to increase and the number of clusters 

riches to its maximum, the scattered clusters start to merge together, which results in a 
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decrease of the number of clusters and a formation of holes within clusters, which in turn 

results in a decrease of Euler’s number. Further, holes in the clusters start to be filled up 

by the component, Euler’s number increases. Eventually, Euler’s number become unity as 

all the clusters merge together and all holes are filled to form a single large cluster. Thus, 

Euler’s number serves as a strong, easy-to-understand indicator of connectivity.  
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Chapter 4: Results and Discussion 

4.1 Image Segmentation Results 

4.1.1 Four-Component Segmentation 

The segmentation model is trained to identify four components: namely, pore/crack (black), 

kerogen/organic (green), pyrite (blue), and rock matrix comprising clay, quartz, and calcite 

(light grey). These minerals show differences in grey scale proportional to atomic or bulk 

densities. The segmentation method involves feature extraction followed by random forest 

model training to assign a component type to pixels. The proposed method performs better 

than conventional methods, such as threshold-based segmentation (Fig 4.1), object-based 

segmentation (Fig 4.2), and ImageJ Fiji segmentation (Fig 4.3).  
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Figure 4.1: Comparison of SEM-image segmentation generated by (b) threshold-

based segmentation and that by the (c) proposed machine-learning-assisted 

segmentation of (a) original image. Threshold-based segmentation performs 

poorly in regions indicated by the red-edged boxes. 

In the threshold-based method, the pixel intensity range are determined for each component. 

In the 8bit SEM images, the intensity ranges from 0 to 255. Pixel intensity ranges of 0-80, 

81-119, 120-190, 190-255 are manually selected for pore/crack, organic/kerogen, matrix 

and pyrite components, respectively. A component type was then assigned to each pixel in 

the image based on the intensity of the pixel. Fig 4.1 compares the threshold-based 

segmentation against our proposed method. The threshold-based method performs poorly 

in the rectangular regions marked with red-colored edges., e.g., the method overpredicts 

pore/crack by sprinkling pores all over the image and fails to detect it from rock matrix. 
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Pore/crack and organic/kerogen components tend to be misclassified in threshold-based 

segmentation due to the overlap of intensity range for the two components.  

 

Figure 4.2: Comparison of SEM-image segmentation generated by (b) object-based 

segmentation and that by the (c) proposed machine-learning-assisted segmentation of 

(a) original image. Object-based segmentation performs poorly in regions indicated 

by the red-edged boxes. 

Another popular method widely used in segmentation tasks is the object-based 

segmentation. It involves object creation, feature extraction, and classification. Unlike 

pixel-wise based segmentation where individual pixel serve as sample to be assigned label, 

object-based segmentation firstly create sample (object) as a aggregation of pixels having 

similar properties, where the aggregation process is defined by a graph-based region 

comparison algorithm  [49]. Then, the statistical parameters of pixel intensity for each 
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sample (object), such as mean, median, minimum, maximum, skewness, and kurtosis, are 

calculated to describe the sample. Next, these features are combined to form feature vectors 

and are fed into a ML model for training and testing. A major drawback of the method is 

that the graph-based region comparison algorithm omits samples having the number of 

pixels lower than a certain threshold in generating those them, which causes the 

segmentation result tend to be coarse (Fig 4.2). In Fig 4.2, pores and cracks spread over a 

limited number of pixels cannot be identified by the method.  

To obtain robust segmentation results, it requires the ML model not be sensitive to the 

training set selection. Low sensitivity of the model to the training data ensures reproducible 

segmentation. An image processing package called Fiji is a popular open-source platform 

for biological-image analysis. One of its plugin called the Waikato Environment for 

Knowledge Analysis (WEKA) can perform automated image segmentation [50]. The 

Trainable Weka Segmentation follows the same machine learning workflow for pixel-

wised classification. A set of features can be selected from the software such as membrane 

projection, Gabor filter, entropy and so on. The user defined set of features thus serve as 

input to varies ML models. The only drawback is that the optimum set of features and ML 

model are hard to determine, and the segmentation results are sensitive to the training pixels 

according to our extensive research. 

 Compared to our segmentation result, the segmentation result from Fiji segmentation 

varies significantly with different training datasets. As shown in Fig 4.3, the Fiji 

segmentation method frequently misclassifies pore and crack as organic/kerogen matter 

and pyrite as pores and cracks in the transition zone.  
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Figure 4.3: Comparison of SEM-image segmentation generated by (b) Fiji-based 

segmentation and that by the (c) proposed machine-learning-assisted segmentation of 

(a) original image. FIJI-based segmentation performs poorly in regions indicated by 

the red-edged boxes.  

The four SEM segmentation methods are compared based on their performances on the test 

image shown in Fig 4.4. 
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Figure 4.4: One of the SEM images of shale sample used for testing the four 

segmentation methods 

The segmentation results comparison is shown in Fig 4.5. 
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Figure 4.5: Comparison of SEM-image segmentation generated by (a) proposed 

machine-learning-assisted segmentation, (b) threshold-based segmentation, (c) Fiji-

based segmentation, and (d) object-based segmentation. Red edged boxes indicate 

regions where methods fail. 

As observed in the Fig 4.5b, the threshold-based method fails for rectangular regions 

marked with red-colored edges, e.g., pore/crack and organic/kerogen components tend to 

be misclassified, and the method fails to differentiate pore/crack from rock matrix 

component. In Fig 4.5b, the object-based method fails to identify many pores and cracks 

spreading over a limited number of pixels cluster. Fiji-based segmentation method 

misclassifies pixels around interface between pore/crack and organic/kerogen, as shown in 



41 

 

Fig 4.5c.  Fig 4.5d indicates that our proposed method can identify not only small pores in 

rock matrix, but also those inside organic matter.  

 

4.1.2 Multi-label Probability-Based Segmentation 

Multilabel segmentation is performed using the Random forest model, where the model 

generates four probabilities of   pixels to be one of the four rock components. The 

probabilities generated by the model describe the confidence in assigning the component 

types to each pixel.   As a result, the uncertainty in the component type assigned by the 

segmentation is successfully assessed.  

Figure 4.6 shows the probability distributions for the four components in a SEM image as 

obtained by the multilabel model, where the red indicates high confidence and blue 

indicates low confidence. The segmentation results show that pixels located around the 

transition zone usually has low confidence associated. Scattered/dispersed pores and 

organic matter in the matrix also shows region hard to differentiate. The observation 

confirmed that for each component, regions having high prediction probability usually 

locate at the inner region of that component whereas uncertainty are observed at boundary 

region. By selecting a threshold value of 0.7, the probability above which a pixel is assigned 

to that component type. When none of the single component have a probability greater than 

0.7, we assign two labels (component types) to the pixel if the sum of probabilities fortwo 

components is higher than 0.7. 
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Figure 4.6: Probabilities of a pixel to be (a) pore/crack, (b) organic/kerogen, (c) rock 

matrix, and (d) pyrite components as generated by the trained random forest 

classifier for purposes of multilabel classification. Each pixel is assigned four 

probabilities corresponding to the four components. Regions with probability < 1 

indicates the uncertainty in the assigned class-type. 

 

4.1.3 Performance on Testing Dataset 

The performance on the test data set is expressed in terms of Precision, Recall and F1 score, 

AUC-ROC curve and PR curve Precision is the ratio of true positives to the sum of true 

positives and false positives. Recall (also referred to as sensitivity) is the ratio of true 

positives to the sum of true positives and false negatives. True positive is when the 
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predicted component of a pixel is the true component of the pixel, whereas false positive 

is when a pixel is wrongly predicted to be the component of interest. Vice versa, the true 

negative is when a pixel is correctly predicted to be a component other than the component 

of interest, whereas false negative is when a pixel is wrongly predicted to be a component 

other than the component of interest.  

The reliability of the component type assigned by the ML model is measured by the 

precision specific to that component. Similarly, Recall, specific to a component type, is a 

measure of the classifier’s ability to correctly assign that component type; in other words, 

it is the ability of the model to find the class of interest (similar to the sensitivity of the 

classifier to a certain class). For example, the scanners at the airport need high recall with 

respect to dangerous materials but it is not crucial for the scanner to have high precision. 

The F1 score is the harmonic average of calculated precision and recall. It ranges from 0 

to 1, where 0 indicates poor model performance and 1 indicates robust performance. AUC 

(Area Under the Curve) – ROC (Receiver Operating Characteristics) curve is another way 

of performance measurement for classification problem at various thresholds settings. 

ROC is a probability curve and AUC represent degree or measure of separability. It tells 

how much model is capable of distinguishing between classes. Higher the AUC, better the 

model is at predicting[51]. The precision-recall curve((PR) is similar to ROC-AUC curve. 

The PR curve shows the tradeoff between precision and recall for different threshold. A 

high area under the curve represents both high recall and high precision, where high 

precision relates to a low false positive rate, and high recall relates to a low false negative 

rate. High scores for both show that the classifier is returning accurate results (high 

precision), as well as returning a majority of all positive results (high recall)[52]. 
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As a result, for SEM image with and without twenty percent Gaussian noise, F1 scores of 

our model are above 0.98 for all the four components in the inner region as listed in Table 

4.1 (without noise) and Table 4.2 (with noise). Majority pixels in the test images are 

correctly segmented and the model has good tolerance to noise. The model performance 

for the transition zone is substantially lower than that for the inner region, especially for 

the matrix and pyrite components. Matrix component in transition zone has low precision 

of 0.79 and high recall of 0.9, which indicates that pixels segmented as matrix component 

have higher uncertainty and the model has ability to identify the actual matrix component 

correctly. The exact opposite trend is shown for the pyrite component in the transition zone, 

where a precision of 1 and a recall of 0.74 are observed, which indicates pyrite component 

is never assigned to any other component whereas pyrite component tends to be wrongly 

labeled as others. 
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Table 4.1: Performance of the proposed image segmentation method on the test 

dataset without noise for the four rock components in the image, where IR and TZ 

stand for inner-region and transition zone.  

Components Precision Recall F1-score 

IR TZ IR TZ IR TZ 

Pore & Crack 1.00 0.93 1.00 0.97 1.00 0.95 

Organic & Kerogen  1.00 0.96 1.00 0.99 1.00 0.97 

Matrix 1.00 0.79 1.00 0.90 1.00 0.84 

Pyrite 1.00 1.00 1.00 0.74 1.00 0.85 

Weighted Avg. 1.00 0.92 1.00 0.91 1.00 0.91 
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Figure 4.7: ROC-AUC curve for the four components (a) pore/crack, (b) 

organic/kerogen, (c) rock matrix, and (d) pyrite 

Fig 4.7 shows the ROC-AUC curve for the four components. AUC is calculated to be the 

area covered by the ROC curve with x-axis for the four components, where the area for 

Pores/cracks, organic, matrix and pyrite are 1.00, 1.00, 0.98, and 0.97, respectively. The 

high AUC indicates the model perform well for all the four components. 
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Figure 4.8: PR curve for the four components (a) pore/crack, (b) organic/kerogen, (c) 

rock matrix, and (d) pyrite 

Fig 4.8 shows the PR curve for the four components. In the plot, AUC is calculated to be 

the area covered by the PR curve with x-axis for the four components, where the area for 

Pores/cracks, organic, matrix and pyrite are 1.00, 0.99, 0.91, and 0.95, respectively. The 

high AUC indicates the model performance for pores/cracks and organic matter are better 

than matrix and pyrite components. 

With respect to the transition zone, the F1 scores for pore/crack and organic/kerogen 

components of noise-bearing test dataset (Table 4.2) are similar to those of noise-free test 

dataset (Table 4.1), which indicates that the method is reliable in differentiating pore/crack 
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from organic/kerogen even if the SEM-image has low acquisition quality (i.e. increased 

Gaussian noise). However, in the presence of noise, the method is not able to segment 

matrix and pyrite components reliably in the transition zone, where the F1 score drops from 

0.84 and 0.85 to 0.75 and 0.79, respectively. The precision for the matrix component and 

recall for the pyrite component are greatly deteriorated in the transition zone by the addition 

of noise. The best F1 score is observed for organic/kerogen component in the transition 

region. 

Table 4.2: Performance of the proposed image segmentation method on the test 

dataset containing 20% Gaussian noise for the four rock components in the image, 

where IR and TZ stand for inner-region and transition zone. 

Components Precision Recall F1-score 

IR TZ IR TZ IR TZ 

Pore & Crack 1.00 0.91 0.98 0.96 0.99 0.93 

Organic & Kerogen  0.99 0.99 0.98 0.96 0.99 0.97 

Matrix 0.97 0.64 1.00 0.89 0.98 0.75 

Pyrite 1.00 1.00 0.99 0.65 1.00 0.79 

Avg. 0.99 0.89 0.99 0.87 0.99 0.86 
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Table 4.3: Performance of thresholding-based segmentation method on the test 

dataset without noise for the four rock components in the image, where IR and TZ 

stand for inner-region and transition zone. 

Components Precision Recall F1-score 

IR TZ IR TZ IR TZ 

Pore & Crack 0.85 0.77 1.00 1.00 0.92 0.87 

Organic & Kerogen  0.99 0.89 0.78 0.85 0.87 0.87 

Matrix 0.98 0.87 1.00 0.82 0.99 0.84 

Pyrite 1.00 1.00 0.97 0.86 0.99 0.93 

Avg. 0.95 0.88 0.94 0.87 0.94 0.87 

Table 4.3 lists the performance of threshold-based method, which is compared with Table 

4.1 to gauge the robustness of the newly proposed segmentation method. Threshold-based 

method shows good performance only in the inner region of two components, rock matrix 

and pyrite. For transition zone, A significant drop in performance is observed for 

pore/crack and organic/kerogen components, whereas an increase is shown for the pyrite 

component, which is primarily due to the improvement in recall. For both inner region and 

transition zones, pore/crack exhibits lower precision, whereas organic/kerogen exhibits 

lower recall.  
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Table 4.4: Performance of object-based segmentation method on the test dataset 

without noise for the four rock components in the image, where IR and TZ stand for 

inner-region and transition zone. 

Components Precision Recall F1-score 

IR TZ IR TZ IR TZ 

Pore & Crack 0.93 0.59 0.94 0.99 0.93 0.74 

Organic & Kerogen  0.97 0.89 0.91 0.71 0.94 0.79 

Matrix 0.73 0.50 1.00 0.75 0.84 0.60 

Pyrite 1.00 1.00 0.57 0.08 0.72 0.15 

Avg. 0.90 0.75 0.87 0.64 0.87 0.59 

The performance of object-based segmentation is shown in Table 4.4. Low recall and high 

precision for pyrite component indicates pixels belonging to pyrite component are not 

reliably segmented. The object-based method performed even worse than the threshold-

based method especially for the pyrite and matrix components. Pyrite component has 

perfect precision for both inner and transition zone. Perfect recall is observed for matrix 

component in inner region.   

Gradient Boosting model trains decision trees in series, where each subsequent tree 

improves the performance of the previous tree, which leads to reduction in bias with a 

possibility of overfitting. On the other hand, random forest trains decision trees in parallel 

with a subset of samples and features, referred as bootstrapping; followed by the 

aggregation of decisions of the trees. This results in lowering the bias and variance of the 
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classifications. F1 scores for the Gradient Boosting model are similar to those of Random 

Forest model, as shown in Table 4.5. Both precision and recall of the gradient boosting 

model for matrix and pyrite components are lower as compared to random forest model. 

Table 4.5: Performance of Gradient Boosting algorithm on the test dataset without 

noise for the four rock components in the image, where IR and TZ stand for inner 

region and transition zone 

Components Precision Recall F1-score 

IR TZ IR TZ IR TZ 

Pore & Crack 1.00 0.92 0.99 0.98 0.99 0.95 

Organic & Kerogen  1.00 0.96 1.00 0.99 1.00 0.98 

Matrix 0.98 0.75 1.00 0.89 0.99 0.82 

Pyrite 1.00 1.00 0.99 0.68 1.00 0.81 

Avg. 0.99 0.91 0.99 0.89 0.99 0.89 

 

4.1.4 Deployment of the Segmentation Model 

The trained model is directly applied on other SEM images of the shale sample. For one 

image of 2058-pixel by 2606-pixel in size, it takes no more than 5 seconds for feature 

extraction and less than30 seconds is required to obtain the segmentation result. Few 

random selected segmented images are shown in Fig 4.9. The comparison between original 

and the segmented results clearly outlines the excellent performance of the proposed 

segmentation methodology. 
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Figure 4.9: Application of the trained segmentation method on other SEM images of 

shale samples. The segmented images exhibit good consistency when compared to the 

real images 

The porosity (volume fraction of pores and cracks) can be calculated directly from the 

segmentation results. The porosity is simply calculated as ratio of the number of pixels 

being pores and cracks to the number of pixels in the image. As the result, the porosity of 

the image from left to right in Figure 4.7 are calculated to be 2.46%, 1.90%, 3.55%. 

 

4.1.5 Rank of Features 

Sixteen features are used in this study. The permutation-importance-based rank of the 16 

features from high importance to low importance is reported in Fig 4.10. 
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Figure 4.10: Rank of features in the Random forest model based on permutation 

importance 

The rank is as follow from the most importance feature to the least one: HLd2, Hxx, Gaussian 

blur, local minimum, Sobel operator, pixel intensity, local mean, HLd1, HHd1, Hxy, local 

maximum, Hyy, DoG, LHd2, LHd1and HHd2. The performance of the model constructed by 

the three top-ranked feature (Gaussian blur, HLd2, and Hxx) reduces only 10% of the 

performance achieved when using all the features, which is a reduction from 0.95 to 0.86 

in averaged F1 Score. 
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4.1.6 Generalization of the Model 

This section quantifies generalization of the ML assisted segmentation to a different 

formation. We study the performance of the model when it applies to testing pixels from a 

difference formation, SEM map 2. Both the inner-region testing pixels the outer-region 

testing pixels were selected from different slices of Map-2. We compare the performances 

of the same model on the inner region testing pixels from the two maps (Fig 4.11). 

Figure 4.11: Comparison of segmentation model performance (P, precision; R, recall; 

and F1, F1 score) on inner-region test pixels of Map-1 against those on inner-region 

test pixels of Map-2. The model was trained on training pixels from Slice 90 of Map-

1. Model-1 exhibits good generalization to another formation for the inner regions of 

matrix and pyrite components. 

One thing to note is that there is a significant difference in the distribution of pore/crack 

components in the two maps and the gray value ranges of each component are different 

between the two maps. Map-2 is dominated by the presence of pores embedded in 

organic/kerogen components, whereas Map-1 consists of both organic and inorganic pore 
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systems. In Map-1, the cracks are present in the form of thin strips, whereas Map-2 is 

characterized by clusters of black pixels representing the pores. As a result, a drop in the 

F1 score is observed for both the inner and outer-region pixels of the pore/crack and 

organic/kerogen components, when Model-1 is tested on Map-2 (Fig 4.11). For the inner 

region the precision was 0.41 with a high recall for the pore/crack component, and the 

recall was 0.49 with high precision for the organic/kerogen component. As supported by 

the confusion matrix (Fig 4.12), a large number of pixels (1615 pixels) belonging to the 

organic/kerogen in Map-2 are being classified as pore/crack by Model-1, thereby resulting 

in low precision for pore/crack and low recall for organic/kerogen. Matrix and pyrite 

components are robustly segmented both in terms of precision and recall. One explanation 

is that the difference in pixel intensities of pore/crack and organic/kerogen is much smaller 

than that between these components and the matrix or pyrite components. 
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Figure 4.12: Confusion matrix related to the segmentation performance of the model 

trained on Slice 90 of Map-1 when applied on the inner-region pixels of Map-2. 1615 

out of 5263 organic/kerogen pixels got segmented as pore/crack pixel, resulting in a 

drop in precision of pyrite component and a drop in recall of organic/kerogen pixel. 

In a confusion matrix, the diagonal elements represent the number of cases where the true 

label is same as the predicted label (i.e., true positives), whereas the off-diagonal elements 

show the number of cases where the components have been misclassified by the model 

(true negatives and false positives). Therefore, the higher the diagonal values, the better 

the accuracy of the model. In Fig 4.12, for the matrix and pyrite components, the number 

of support pixels are equal to the number of diagonal elements, thereby proving that they 

have been correctly classified. But a significant number of support pixels in 

organic/kerogen phase has been classified as cracks, resulting in a low value of the F1 score 

for these two components. 
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For the outer region, the model was tested on 395, 722, 693, and 2015 pixels corresponding 

to the pore/crack, organic/kerogen, matrix, and pyrite components, respectively, of Map-2. 

On an average, the model delivered a lower performance for the outer-region pixels, with 

F1 scores of 0.89 and 0.81 for Map-1 and Map-2, as compared with that of the inner-region 

pixels, with F1 scores of 1.00 and 0.82 for Map-1 and Map-2 (Fig 4.13). This occurs since 

the model tends to misclassify the organic/kerogen pixels as pore/crack because the gray-

scale intensities of the components have greater overlap in Map-2. For Map-1 (Fig 4.13), 

we observe much lower precision for matrix and much lower recall for pyrite compared 

with others, suggesting that the pyrite pixels at the boundary of matrix and pyrite may have 

been classified as matrix. However, in Map-2, organic/kerogen exhibits very low recall 

indicating Model-1 is not suitable for organic/kerogen detection. At the same time, the 

precision for pore/crack of Map-2 is very low, indicating a possibility that the 

organic/kerogen pixels at the interface of organic/kerogen and pore/crack are being 

segmented as pore/crack. Interestingly, segmentation performance for matrix and pyrite 

components improve for Map-2 as compared with Map-1, primarily, due to the shaper 

contrast at the interfaces in Map-2. 
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Figure 4.13: Comparison of segmentation model performance (P, precision; R, recall; 

and F1, F1 score) on outer-region test pixels of Map-1 against those on outer-region 

test pixels of Map-2. Model-1 exhibits good generalization to another formation for 

the outer regions of matrix and pyrite components. 

 

4.2 Connectivity Results 

4.2.1 S2 and C2 Function Results for Synthetic Dataset 

The goal is the test the five connectivity-quantification metrics on synthetic binary images 

of 6 connectivity types. We constructed 500 random realizations for each connectivity type. 

Following that, the five metrics were applied on the 3000 synthetic images. The calculation 

of S2 function are conducted in four directions, two orthogonal and two diagonal direction. 

At each direction, the probability of two pixels located at a distance r to belong to the same 

component is calculated at the distance r ranging from 0 to the maximum length of the 

image. The size of the synthetic binary image is 200 pixels by 200 pixels; therefore, the 

largest r is set to be 200. Each random realization has its unique probability responses 
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across the four direction. We used the averaged probability across the 500 realizations of 

each connectivity type at each distance r to obtain the representative response. Moreover, 

the range of two standard deviation from the averaged value at each distance is used to 

capture the variability of probability for the 500 realizations. Since the bars used in 

generating these random realizations are either horizontal or vertical positioned, the 

connectivity in x direction and y direction consider to be the same. Also, the connectivity 

in x diagonal and y diagonal considered to be the same as well. S2 probability for the six 

types of synthetic images is shown in Fig 4.14.  

 

Figure 4.14: S2 probability as a function of distance r (0 to 200) for the 500 realizations 

of binary synthetic image of six connectivity types  

The red curve indicates the probability in horizontal direction and the green curve indicate 

the probability in diagonal direction. The red shade and green shade represent the 2-

standard deviation of probability at each distance. For each type of the probability response, 

the probability at distance 0 for either horizontal or diagonal directions is around 0.1, which 
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indicate the proportion for the white phase is around 0.1(around 4000 pixels to 200 x 200 

pixels). In the averaged response, the probability starts to drop continuously with small 

local variations. At each distance below the maximum length of the bar, the red curve stays 

above the green curve, which indicates the probability in horizontal direction is higher than 

diagonal direction and suggests that the connectivity in horizontal direction is higher than 

diagonal direction of white component. Across the six plots, the red curve drops more and 

more sharply from distance 0 to the maximum length of the white bars, which indicates the 

short-scale connectivity in horizontal direction decreases from type one to type six. Also, 

the red curve is getting towards the green curve, which suggests the difference in 

connectivity between horizontal and diagonal directions is reduced. The two-sigma range 

for type one is wide below the maximum of length in the bar because the connectivity of 

these random realizations in type one has great variation. This variation decreases from 

type one to type six since the dissection and random redistribution operation make the 

realizations for each type similar to each other gradually. The red and green shade at the 

tail for all the types are extremely high due to the limited selection of pair pixels at that 

distance.  
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Figure 4.15: C2 probability as a function of distance r (0 to 200) for the 500 

realizations of binary synthetic image of six connectivity types  

The two-point cluster function is calculated in orthogonal and diagonal directions as well. 

The C2 responses are shown in Fig 4.15. The red and green curves are the probability of 

C2 response at distance from 0 to 200. Starting from around 0.1 probability at distance 0, 

the same trend is observed that horizontal connectivity larger than diagonal connectivity 

for all the six types of images. It can be clearly seen that connectivity in both horizontal 

and diagonal directions decrease from type one images to type six images. One thing in C2 

results differs from S2 results is that from a certain distance on, the probability starts to 

maintain 0 since pair pixels in different cluster does not count. 
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4.2.2 Fast Marching Method Results for Synthetic Dataset 

 

Figure 4.16: Histogram of travel time summarized across 500 images for the six types 

of images 

In the fast-marching process, we first pick 500 random initializations of starting point of 

source wave, where each of the point is located at pixels of bars in white phase. For setting 

the travel speed, the speed for wave traveling in white phase and background is set to be 3 

m/s and 0 m/s, respectively, where a pixel length represents to 1 m. According to the travel 

speed, the distance from each pixel to the source point, the travel time is therefore recorded 

for pixels that the wave can reach. The histogram shown in Fig 4.16 for each of the type is 

generated by grouping the time responses of pixels that are reached during the 500 random 

initializations across all the images in the type. Horizontal axis is the travel time in seconds 

from source wave to the pixels. Vertical axis is the occurrence at each bin of travel time. 

From the plots, a left shift of maximum travel time toward original point can be observed 

from type one to type six, which indicates images in type one has the longest travel distance 

within a cluster from the source wave to pixels that can be reached. Since the background 
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pixels have no travel speed during fast marching, they block the wave and stop it to transmit 

to other pixels in white phase, a substantial drop in percentage of pixels being reached 

should be observed. Assume that all the white pixels are connected, by random picking a 

location to be the starting point of source wave, all the white pixels could be reached and 

each of them would have a unique travel time. Thus, the connectivity can be compared by 

the ratio of number of pixels being reached to the number of pixels that should be reached 

if they form a single cluster. However, due to the random picking of the source wave, this 

ratio should be averaged across sufficient number of initializations. In practice, we first 

gathered the summation of the number of pixels that are reached in each of the 500 

initializations and the number of white pixels in each image. Then we obtained the 

percentage of pixels being reached by taking the average. From type one to type six, the 

percentages are 0.68, 0.2, 0.037, 0.025, 0.009 and 0.004 respectively. The percentage 

decreases substantially across the six type images during fast marching, which indicates 

the connectivity drops significantly. 



64 

 

4.2.3 Cluster Size Distribution Results for Synthetic Dataset 

 

Figure 4.17: Cluster size distribution of 500 images for each of the six types of images 

The number of clusters and the size of each cluster are recorded and combined type-wise. 

The histograms of cluster size distribution for the six types are shown in Fig 4.17. 

The horizontal axis represent size of clusters in log scale and the vertical axis is the 

occurrence for each bin of cluster size. For type one images, the chance that a group of 

several white bars get connected is high so that larger cluster size is observed most often, 

which results in a rise in the tail of the histogram. By comparison, the histograms shift 

towards the left can be observed, which indicates the average size of clusters decreases 

across the six types of images. Thus, the averaged cluster size could be an indicator of 

connectivity for comparison. 
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4.2.4 Euler’s Number Results for Synthetic Dataset 

The result of Euler’s number for the six types of images are shown in the Fig 4.18. 

 

Figure 4.18: Euler’s number for each image in the six types 

 In each plot, the Euler’s number is shown for the 500 random initializations. For the type 

one images, the average Euler’s number is -5.68 with standard deviation of 6.714. The 

average of Euler’s number indicates a high connectivity for the type one images. The 

standard deviation indicates the variations within the type. The averaged Euler’s number 

increases from -5.68 to 292.770, which means that as white bars get dissected continuously, 

more clusters formed, which result in substantial increases in the minuend such that a 

decrease in connectivity from type one to type six images can be observed and there is no 

overlap of the range of Euler’s number among the six types. 
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4.2.5 Results Comparison between Real SEM Images 

We conduct connectivity quantification on real SEM images in this section. The images 

are selected from segmented results in the segmentation part. The slices have four 

components in it, namely, pores and cracks, organic matter, rock matrix and pyrite.  

 

Figure 4.19: Organic matter in the two images shows different connectivity where the 

connectivity of the first image is substantially higher than the second one. 

We first convert the segmented images into binary images such that component of interest 

is masked as 1 and the rest to be background as 0, where the component of interest 

represents the component we perform quantification of connectivity of. The two binary 

images shown in Fig 4.19 have the same image size of 200 pixel by 200 pixel. 

In this study, organic matter and pores and cracks are our components of interest. In the 

figure, the white phase in the two images represent organic matter and the black represent 

background. The proportion of the organic matter in the two images are the same, 0.15. 

Visually we can differentiate that the organic matter in the first image has higher 

connectivity than the second one. The assumption that the responses from our metrics 
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should be different for these two images and one can tell from the responses which one has 

higher connectivity is made. 

The S2 and C2 responses for the two images are shown in Fig 4.20. 

 

Figure 4.20: Images on top are S2 response and images at bottom are C2 response for 

the two images respectively 
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Since the assumption that two directions in orthogonal, two directions in diagonal are the 

same for synthetic data set does not hold true for these two real images, the S2 and C2 

responses thus are shown in four directions. The red, green, blue and orange lines represent 

horizontal, vertical, X_diagonal and Y_diagonal directions respectively. It is clear seen that 

the C2 probability of the first image in all the four directions drops more gradually at the 

first several distance than that of the second image, which indicates the connectivity for the 

first image is higher than the second one. The red line drops more gradually compared to 

the rest directions, which suggest that the probability at each distance in horizontal 

direction is higher than that in the rest three directions indicating that the connectivity in 

horizontal direction are the highest.  

Travel time responses are gathered using fast marching method on the two images. The 

histogram of travel time is shown in Fig 4.21.  

 

Figure 4.21: Histogram of travel time obtained from fast marching process for the 

two images respectively 
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The occurrence at each bin of travel time for the first image is higher than the second one. 

The mean travel time for the first image is 25s and mean travel time for the second one is 

10s. The mean value for the first image is higher than that of the second one indicates that 

the source wave can reach to pixels far away from it. Also, the percentages of pixels being 

reached during the fast-marching process are 0.78 and 0.07 respectively. The two 

observation suggests that the connectivity of the first image is much higher than the second 

one, which agrees with the conclusion of the visual observation, and S2 and C2 responses. 

Euler’s number for the two images are 6 and 105 respectively, showing that the 

connectivity for the first image is higher than the second one. 

The connectivity of pores and cracks in the study is also being quantified. For a simple 

demonstration, two binary images shown in Fig 4.22 have the same image size of 200 pixel 

by 200 pixel, where the white component represents pores and cracks and the black 

component represents background. The proportion of white component in the two images 

are the same, 0.043. 
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Figure 4.22: Pores and cracks in the two images shows different connectivity where 

the connectivity of the first one is substantially higher than the second one. 

The metrics are directly applied to the two images and responses are shown in Fig 4.23, 

4.24. 
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Figure 4.23: Images on top are S2 response and images at bottom are C2 response for 

the two images of pores and cracks, respectively 
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Figure 4.24: Histogram of travel time obtained from fast marching process for the 

two images of pores and cracks, respectively 

Observation of S2 and C2 response of the second image that much variations in S2 response 

as the distance goes higher compared with 0 probability in C2 response indicates the 

clusters are scattered over the image. At each given distance, the probability of C2 of the 

first image is higher than that of the second one, which suggests that horizontal connectivity 

of pores and cracks in the first image is higher than the other one. Based on the histogram 

of travel time, the average travel time and percentage of pixels being reached for the first 

image are calculated as 20.069s, 45.55%, whereas 2.065s, 2.13% are obtained for the 

second image. Euler number are determined to be 45 and 170 for the two images, 

respectively. All these responses show that connectivity of pores and cracks in the first 

image is much higher than the second one. 
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Chapter 5:  Conclusions and Limitations 

5.1 Conclusions 

Machine-learning-assisted segmentation workflow successfully located kerogen/organic, 

pore/crack, pyrite, and matrix components in SEM images of shale samples. The model 

was trained on 705, 15000, 17373 and 2074 pixels representing the four components, 

respectively. The trained method successfully segmented SEM images of size 2058 pixels 

by 2606 pixels. The model deployment takes an average of 30 seconds on an Intel Xeon 

CPU E5-1650 v3 @ 3.5GHz, 32GB RAM desktop computer to segment a single SEM 

image of that size. 

Average F1 scores of the segmentation for both inner and transition regions are 0.94, 0.97, 

0.8, and 0.83 for (1) pore/crack, (2) organic/kerogen, (3) matrix, and (4) pyrite, respectively. 

The method is shown to be superior to the threshold-based method, object-based method, 

and the Fiji segmentation plugin. The segmentation method is demonstrated to be reliable 

for differentiating pore/crack from organic/kerogen in both inner region and transition zone.  

Five different connectivity-quantification metrics, namely two-point statistical function 

(S2), two-point cluster function (C2), cluster size distribution, travel times computed using 

fast marching method (FMM), and Euler’s number, are tested on synthetic dataset of binary 

images and applied on SEM segmented images.  The area under the curve for C2 are the 

indicator of connectivity for the four directions. S2 response serve as the compliment for 

C2 function to measure how cluster are distributed. The averaged travel time and the 

percentage of pixels being reached is used as indicator of connectivity. Euler’s number is 

compared directly for different images. The relationships between the connectivity and the 
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responses of the five connectivity-quantification metrics are determined and validated by 

statistical analysis on a synthetic dataset of binary images, which contains six types of 

connectivity from the lowest to the highest. The relationships are directly applied to 

quantify the connectivity of organic/kerogen and pore/crack components in the SEM 

images of shale. According to the work on the synthetic dataset, among our connectivity 

metrics, the best method is Euler’s number because one can quickly access to the 

connectivity comparison among these types of images by looking at discrete integers. The 

second-best indicator is the histogram of travel time from the fast-marching method since 

it contains not only distance but also the information about the full path between connected 

pixels irrespective to directions. C2 and S2 plot are also good indicators because they not 

only contain information about the magnitude of connectivity, but also the directional and 

spatial features of the connectivity. The worse method is cluster size distribution since it is 

hard to describe how the distribution of clusters will lead to the conclusion about difference 

in connectivity given only small number of images. 

5.2 Limitations and future work 

For image segmentation, misclassification of pixels still exists in transition zone. Only four 

components can be identified and segmented accordingly. The annotation process is time 

consuming because of the manual selection of pixels. For connectivity quantification, the 

connectivity of components can only be compared by the responses of the metrics, which 

are indirect indicator. S2, C2 and FMM metrics are computational expensive even on a 200 

pixel by 200 pixel image. The effect of image size and volume fraction of components on 

the connectivity are not well understood. 



75 

 

In future work, following tasks need to be accomplished to address existing limitations of 

our study: 

For image segmentation: (1) improve the capability of the method to segment seven 

components, namely pyrite, kerogen/organic, clay, quartz, organic pore, inorganic pore, 

and cracks; (2) improve the segmentation performance for the pixels in the transition zone 

by improving feature extraction and models; (3) apply unsupervised learning and deep 

learning techniques to improve feature extraction and classification; and (4) more 

investigation is required to understand the generalization capability of the proposed 

segmentation method and to compare against existing traditional segmentation methods on 

images of various types of geomaterials.  

For connectivity quantification: (1) the effect of size and volume fraction of components 

on the connectivity should be further investigated; (2) how the image quality will affect the 

connectivity quantification (3) find out ways to reduce computation time for S2, C2 and fast 

marching method (4) investigate 3D connectivity  
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Appendix A: Sensitivity of the Segmentation to the Choice of the 

Wavelet 

In order to test the sensitivity of the segmentation to the choice the wavelet, we selected 

three wavelet families in combination of the rest features to train models and test their 

performance respectively. The performance is reported in terms of precision, recall and F1 

score. Table A1 is the model performance using wavelet Haar of filter length of 2. Table 

A2 is the model performance using wavelet Dauchies of filter length of 4. Table A3 is the 

model performance using wavelet Coiflet of filter length of 6. For the performance in inner 

region, F1 score drops slightly as the filter length goes higher. For the performance in 

transition zone, F1 score for the matrix and pyrite increase from 0.84, 0.85 to 0.85, 0.88 

respectively. In terms of overall performance, weighted average of F1 score shows slightly 

drop for the wavelet Coiflet of filter length of 6. However, the drop in performance is not 

significant, and we conclude that the segmentation is not very sensitive to the choice of 

wavelet given the filter length is less than 6. 
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Table A1: Performance of Random forest model using wavelet Haar of filter length 

of 2 (other features unchanged) on the test dataset without noise for the four rock 

components in the image, where IR and TZ stand for inner region and transition zone 

Components Precision Recall F1-score 

IR TZ IR TZ IR TZ 

Pore & Crack 1.00 0.93 1.00 0.97 1.00 0.95 

Organic & Kerogen  1.00 0.96 1.00 0.99 1.00 0.97 

Matrix 1.00 0.79 1.00 0.90 1.00 0.84 

Pyrite 1.00 1.00 1.00 0.74 1.00 0.85 

Weighted Avg. 1.00 0.92 1.00 0.91 1.00 0.91 
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Table A2: Performance of Random forest model using wavelet Dauchies of filter 

length 4 (other features unchanged) on the test dataset without noise for the four rock 

components in the image, where IR and TZ stand for inner region and transition zone 

Components Precision Recall F1-score 

IR TZ IR TZ IR TZ 

Pore & Crack 1.00 0.92 0.99 1.00 1.00 0.95 

Organic & Kerogen  1.00 0.96 1.00 0.99 1.00 0.97 

Matrix 1.00 0. 82 1.00 0.89 1.00 0.85 

Pyrite 1.00 1.00 1.00 0.78 1.00 0.88 

Weighted Avg. 1.00 0.92 1.00 0.92 1.00 0.92 
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Table A3: Performance of Random forest model using wavelet Coiflet of filter length 

6 (other features unchanged) on the test dataset without noise for the four rock 

components in the image, where IR and TZ stand for inner region and transition zone 

Components Precision Recall F1-score 

IR TZ IR TZ IR TZ 

Pore & Crack 1.00 0.92 0.98 0.96 0.99 0.94 

Organic & Kerogen  1.00 0.97 1.00 0.98 1.00 0.98 

Matrix 0.98 0. 80 1.00 0.90 0.99 0.85 

Pyrite 1.00 1.00 1.00 0.78 1.00 0.88 

Weighted Avg. 0.99 0.92 0.99 0.91 0.99 0.91 
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Appendix B: Model Dependency on Image Orientation 

In order to determine whether the ML model is independent of image orientation, we tested 

the performance of the model trained and tested on images with 90 degree and 180-degree 

rotation from the default orientation, respectively. The performance is reported in terms of 

precision, recall and F1 score. Table B1 is the model performance of using 90-degree 

images. Table B2 is the model performance of using 180-degree images. Compared to 

Table 4-1, the precision, recall and F1 score for each component are almost identical to 

those without rotation. We conclude that our model is independent of image orientation 

and segmentation results are reliable. 

Table B1: Performance of Random forest model trained and tested on images with 

90-degree rotation without noise for the four rock components in the image, where 

IR and TZ stand for inner region and transition zone 

Components Precision Recall F1-score 

IR TZ IR TZ IR TZ 

Pore & Crack 1.00 0.93 0.99 0.94 1.00 0.93 

Organic & Kerogen  1.00 0.96 1.00 0.99 1.00 0.98 

Matrix 0.99 0.79 1.00 0.90 1.00 0.84 

Pyrite 1.00 1.00 1.00 0.79 1.00 0.88 

Weighted Avg. 1.00 0.92 1.00 0.91 1.00 0.91 
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Figure B1: Rank of features in the Random forest model trained on the image with 

90-degree rotation 
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Table B2: Performance of Random forest model trained and tested on images with 

180-degree rotation without noise for the four rock components in the image, where 

IR and TZ stand for inner region and transition zone 

Components Precision Recall F1-score 

IR TZ IR TZ IR TZ 

Pore & Crack 1.00 0.92 0.99 0.93 0.99 0.92 

Organic & Kerogen 1.00 0.96 1.00 0.99 1.00 0.98 

Matrix 0.99 0.79 1.00 0.90 0.99 0.84 

Pyrite 1.00 1.00 1.00 0.78 1.00 0.88 

Weighted Avg. 1.00 0.92 1.00 0.91 1.00 0.91 
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Figure B2: Rank of features in the Random forest model trained on the image with 

180-degree rotation 

Fig B1 and Fig B2 show the feature ranking of models trained on image of 90-degree 

rotation and 180-degree rotation, respectively. The feature ranking shows some variations 

compared to the original one. For the model trained on images with 90-degree rotation, Hyy 

and LH2 ranks above Hxx and HL2, which are the top two features when the images are not 

rotated. The feature ranking between model trained on original image and model trained 

on 180 degree shows similar results, where features captured in horizontal direction are 

better ranked than features captured in vertical. 
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Appendix C: Effect of Image Size on Connectivity Quantification 

In order to see the effect of image size on the connectivity quantification, we applied our 

connectivity metrics on one of synthetic binary image of connectivity type two and the 

enlarged version of that image, where the original image size is 200 pixel by 200 pixel and 

the enlarged version is 400 pixel by 400 pixel. Fig C1 shows the two images used in the 

study. 

 

Figure C1: An image from connectivity type two（left）and the enlarged version 

(right), where the sizes of the left one and the right one are 200 pixel by 200 pixel and 

400 pixel by 400 pixel, respectively. 

The two images have the same proportion of white phase of approximate 10%. 

The S2 and C2 responses are shown in Fig C2. 
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Figure C2: Images on top are S2 response and images at bottom are C2 response for 

the two images, respectively 

Red line in the figure represent responses in horizontal direction and the blue line represent 

responses in X_diagonal direction. The S2 and C2 shows the same trend across the length 

of the images, respectively.  

The FMM responses are shown in Fig C3. 
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Figure C3: Histogram of travel time obtained from fast marching process for the two 

images, respectively 

The averaged travel time of the first image is 41.4s, whereas that of the second one is 

approximately a double of the number, which is 81.59s. However, the percentage of pixels 

being reached are approximately the same for the two images, which are 39.73% and 

40.55%, respectively. Finally, Euler numbers for the two images are calculated to be the 

same, 10. 


