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Abstract 

Electrically conductive particles, such as graphite and pyrite particles, and surface-charge-

bearing nonconductive particles, such as sand and clay grains, are commonly present in subsurface 

geological formations. When a fluid-filled porous geomaterial is exposed to an external 

electromagnetic (EM) field generated by electromagnetic measurement tool, the constituent 

conductive and non-conductive particles surrounded by in situ brine give rise to interfacial 

polarization (IFP) effects, which cause frequency dispersions of effective conductivity and 

effective permittivity of the fluid-filled porous geomaterials. IFP effects when neglected lead to 

inaccurate interpretation of electromagnetic logs/measurements, especially in clay-, graphite- and 

pyrite- rich formations. Also, there is no mechanistic model that accounts for the effect of 

wettability of conductive particles and surface-charge-bearing particles on the electromagnetic 

logs/measurements of geomaterials. 

This thesis describes a mechanistic model (namely PS model) that couple surface-

conductance-assisted interfacial polarization (SCAIP) model with perfectly polarized interfacial 

polarization (PPIP) model to estimate effective conductivity and effective permittivity of shale 

formations containing both nonconductive and conductive particles at various fluids saturations. 

The model is developed based on the Poisson-Nernst-Planck (PNP) equations for a dilute solution 

in a weak electrical field regime to calculate the dipolarizability of the representative volume 

comprising a single isolated spherical particle in an electrolyte host. Then the effective medium 

theory is used to determine effective complex conductivity of the whole mixture. The PS model is 

further improved to consider the wettability effect by introducing a wettability model, which is 

developed based on the solution of the Young-Laplace equation that determines the shape of the 

oil-water interface (meniscus) at equilibrium. 

The model shows that the IFP effects of conductive particles dominate the frequency 

dispersions of complex conductivity as compared to nonconductive particles. Also, the frequency 

dispersion reduces as contact angle or oil saturation increases, and the effect of oil saturation on 

the frequency dispersions of complex conductivity is less than the effect of contact angle (i.e. the 

contact angle plays a primary effect and oil saturation plays a secondary effect). At the end of this 

thesis, a Markov chain Monte Carlo (MCMC) inversion method is coupled with the PS model to 

process the multifrequency electromagnetic logs/measurements to estimate oil saturation, contact 

angle and conductivity of brine.  
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Chapter 1: Introduction 

This thesis presents work performed for a Master of Science in Petroleum Engineering 

degree that was conducted at the Mewbourne School of Petroleum and Geological Engineering of 

the University of Oklahoma. The research presented the development of a mechanistic model of 

multi-frequency complex conductivity of porous media containing water-wet nonconductive 

particles and conductive particles of varying wettability. The research work was done in close 

collaboration and supervision of Dr. Siddharth Misra. 

 

1.1. Motivation and Problem Statement 

Under an external electric field generated by electromagnetic (EM) measurement tool, 

conductive and surface-charge-bearing nonconductive particles in the formation give rise to 

interfacial polarization (IFP) effects, which causes frequency dispersion of effective conductivity 

and effective permittivity of the mixture containing such particles. The neglect of IFP effects leads 

to inaccurate estimation of petrophysical properties of formations, especially in clay- and pyrite- 

rich formations. Also, the wettability of conductive particles and surface-charge-bearing particles 

influences the electromagnetic properties of subsurface formations or the rock samples brought to 

the surface. A mechanistic model is needed to couple the interfacial polarization of uniformly 

distributed water-wet nonconductive spherical grains possessing surface conductance with 

interfacial polarization of uniformly distributed conductive spherical inclusions in redox-inactive 

conditions of varying wettability. 

 

1.2. Objective 

a. Develop a mechanistic model that accounts for the interfacial polarization effects of 

conductive particles and surface-charge-bearing nonconductive particles on the 

multifrequency electromagnetic logs/measurements. 

b. Develop a mechanistic model that accounts for the effect of wettability of conductive 

particles on the multifrequency electromagnetic logs/measurements. 
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1.3. Thesis Structure 

Chapter 1 is the introduction about this thesis. 

Chapter 2 contains a literature review about interfacial polarization phenomena and wettability 

effect. 

Chapter 3 discusses a detailed derivation of the mechanistic model that accounts for the interfacial 

polarization effect of conductive and surface-charge-bearing nonconductive particles on 

electromagnetic logs (PS model) and the derivation of the mechanistic model that accounts for 

wettability effect (wettability model). 

Chapter 4 shows the validation of the PS model. 

Chapter 5 presents some results and discussions about the models. 

Chapter 6 discusses the application of MCMC inversion method to estimate model parameters (oil 

saturation and contact angle) by processing the multi-frequency electromagnetic logs. 

Chapter 7 is the conclusion 
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Chapter 2: Literature Review 

2.1. Interfacial Polarization Effect 

Interfacial polarization phenomena (Dukhin et al., 1974; Wong, 1979; Schmuck and 

Bazant, 2015) influences the migration, accumulation, depletion, and diffusion of charge carriers. 

If neglected, interfacial polarization (IFP) effects will lead to inaccuracy when estimating 

petrophysical properties of formations using conventional resistivity/conductivity/permittivity 

interpretation methods (Clavier et al., 1976; Misra et al., 2016a). Some of the interpretation 

techniques for the subsurface galvanic resistivity (laterolog), electromagnetic (EM) induction and 

EM dielectric dispersion logs do not consider the IFP effects (Anderson et al., 2007; Corley et al., 

2010), which cause inaccurate estimates for pyrite-rich sedimentary rocks (Altman et al., 2008) 

and pyrite- and graphite-rich organic source rocks (Altman et al., 2008). Although in the last 

decade, some papers included IFP effect in EM induction logs (MacLennan et al., 2013), or in 

dielectric model which considers cation exchange capacity (Revil, 2013), there is still a need to 

investigate the IFP effect. Recently, for hydrocarbon volume estimation, Deng et al. (2018) applied 

spectral induced polarization method to estimate oil saturation in oil-contaminated clayey soils. 

Freed et al. (2018) also developed a physics-based model for the dielectric response that accounts 

for the IFP effect due to the cation exchange capacity in low-salinity shaly sands formations. 

Mechanistic model of the IFP phenomena can improve resistivity/conductivity/permittivity 

interpretation in clay- and conductive-mineral-rich formations. To model the IFP effect of 

electrically conductive inclusions, Misra et al. (2016b) applied Poisson-Nernst-Planck (PNP) 

equation. Their model predictions have a good match with laboratory measurements on 

conductive-mineral-bearing mixtures. Moreover, several mathematical models have been 

developed in the fields of petrology (Revil et al., 2017), geophysics (Revil, 2012; Placencia-Gómez 

and Slater, 2014), biology (Grosse and Schwan, 1992; Zheng and Wei, 2011), electrochemistry 

(Chu and Bazant, 2006) and colloidal science (Grosse and Barchini, 1992; Grosse et al., 1998), all 

of which facilitate the study of interfacial polarization effects arising from various mechanisms. In 

order to accurately interpret multi-frequency electromagnetic measurements, IFP phenomena 

around conductive and non-conductive particles should be accounted for. The influence of 

wettability of conductive particles on the IFP phenomena should also be considered. 

 

2.1.1. Interfacial polarization around surface-charge-bearing nonconductive particles 
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Various mixing models have been developed to quantify the effects of various interfacial 

polarization phenomena. The model proposed by Schwarz (1962) considers interfacial polarization 

(IFP) effect around charged nonconductive particles. It assumes a diffusion of counterion layer 

moving along the surface of the charged particle by calculating the potential outside the counterion 

layer as a solution of Laplace’s equation rather than Poisson’s equation. However, this model fails 

to account for all the bulk diffusion effects. In contrast, Dukhin et al. (1974) concluded that the 

mechanism behind interfacial polarization is the diffusion of ions in the bulk electrolyte around 

the particle. They were unable to provide analytical expressions for IFP effects in terms of various 

relaxation parameters due to mathematical complexity caused by non-linearity of Dukhin et al. 

(1974) equation. This model, called the standard model in colloidal chemistry, does not consider 

the existence of a Stern layer with mobile ions. Grosse and Foster (1987) developed an analytical 

solution of IFP effect by developing a simplified model of charged nonconductive spherical 

particles in bulk electrolyte. In their model, positive ions from the bulk electrolyte can freely 

exchange with the positively charged counterion layer while the negative ions are excluded from 

the counterion layer. This model was generalized in Grosse (1988) by allowing arbitrary charge in 

nonsymmetric electrolytes, assuming finite surface conductivity and considering the entire 

frequency spectrum. 

 

2.1.2. Interfacial polarization around conductive particles 

Garcia et al. (1985) developed a model for conductive spherical particles with insulating 

shells (for e.g. oxidized surface of pyrite) in a conductive medium where the diffusive effects play 

an important role. Grosse and Barchini (1992) improved the previous theory for infinitely 

conductive spherical particles in bulk electrolyte by considering ion flow across the interface. 

Moreover, in comparison to dielectric mixture formulas, Tuncer et al. (2001) applied a finite 

element method on cylinder-like conductive inclusion phase to investigate the dielectric relaxation 

phenomena. Their result shows the two methods match well at low inclusion concentrations. 

However, as the concentration of inclusion increases, mutual interaction of the inclusions becomes 

significant. Recently, Misra et al. (2016b) developed a perfectly polarized interfacial polarization 

(PPIP) model to investigate interfacial polarization phenomena around conductive particles. Their 

work involves solving the Poisson-Nernst-Planck (PNP) equations and applying effective medium 

theory. The model is successfully validated using published experimental data (Misra et al., 2016a). 
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2.2. Wettability Effect 

Kerogen, which is found to be commonly present in mudrock, is believed to be the 

precursor of graphite (Ujiié, 1978). Buried under deep ground, kerogen matures through diagenesis, 

catagenesis and metagenesis processes with the increase of temperature and pressure. Once 

kerogen maturation reaches beyond the metagenesis stage, graphitization would occur (Spötl et al., 

1998), where the structure of kerogen undergoes further progressive rearrangements toward 

forming ordered carbon structure and increasing aromatization, which allows for neat molecular 

stacking in sheets. The final stable structure reached under high pressure and temperature is 

graphite (Tissot and Welte, 2012). Thus, graphite can be found in hydrocarbon-bearing rocks, 

sedimentary rocks and shales (Winchell, 1911; Clark, 1921; Bustin et al., 1995). 

Wettability is defined as the tendency of one fluid to spread on, or adhere to, a solid surface 

in the presence of other immiscible fluids (Crain, 2002). The wettability of graphite is of interest 

to academics. Chakarov et al. (1995) mentioned that water can adsorb on the graphite surface by 

forming hydrogen-bonded aggregates. As discussed by Kozbial et al. (2014), highly ordered 

pyrolytic graphite (HOPG) is intrinsically water wet, proved by measuring the water contact angle 

within 10 seconds after graphite exfoliation. The author also observed the wettability of graphite 

gradually change to oil wet (or intermediate wet) after exposure to the ambient air, which is 

explained by the adsorption of hydrocarbon onto the graphite surface. 

To investigate the effect of wettability on dielectric properties, Garrouch and Sharma (1994) 

conducted a series of experiments on brine-saturated Berea sandstone and Ottawa sand-bentonite 

packs. They concluded that dielectric is constant hardly affected by wettability for fully-brine-

saturated rocks in absence of any conductive inclusions. Further, Capaccioli et al. (2000) 

investigated the wettability effect on electrical responses of partially saturated porous media by 

experiments. Their findings show that the change from strongly water wet to strongly oil wet will 

affect connectivity and shape of water phase, which lead to a smaller charge transport contribution 

at low frequencies and smaller dielectric strength as well as shorter characteristic times of 

Maxwell–Wagner–Sillars (MWS) relaxation at higher frequency. Bona et al. (2002) performed 

experiments to study the influence of wettability on the electrical properties of porous media. They 

conclude that at low frequencies, charge transport is the dominant mechanism, and the governing 

factor is the connectivity of the water phase. While at high frequencies, the shape factor of the 
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water phase is the controlling parameter. In fact, wettability and electrical properties are closely 

related such that wettability can be estimated using the electrical properties (Bona et al., 1998; 

Bona et al., 1999; Moss et al., 2002; Al-Ofi et al., 2018). Additionally, Nguyen et al. (1999) 

observed that the dielectric permittivity of oil-wet sand is smaller than that of the water-wet sand 

at low water saturation, while the dielectric permittivity of oil-wet sand becomes much larger than 

that of the water-wet sand at higher water saturation. Revil et al. (2011) observed that both 

resistivity and magnitude of the phase increase with the oil saturation for sand saturated with 

nonwetting oil, while they both decrease with the oil saturation for sand partially saturated with 

wetting oil. 
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Chapter 3: Mechanistic Model of Interfacial Polarization 

Considering Wettability Effect 

3.1. PS Model 

The PS model is developed by Misra et al. (2016b) for the first time. In this thesis, the 

detailed derivation of the PS model is presented. The aim of this mechanistic model is to quantify 

the interfacial polarization effect of conductive and surface-charge-bearing nonconductive 

particles on the electromagnetic properties of the mixture at various water saturation. The PS 

model can be used for a mixture with < 10% conductive particles. All the particles are assumed to 

be spherical and only interfacial polarization effects are assumed to exist. Individual inclusion 

phases are assumed to be isolated with each other. The magnitude of electric field variations is less 

than the magnitude of intrinsic electrical properties variations. EM interactions between 

heterogeneities are neglected, and the size of heterogeneities is less than the wavelength of EM 

field. 

 

3.1.1. Assumptions 

Both the SCAIP model and PPIP model are based on the Poisson-Nernst-Planck (PNP) 

equations for a dilute solution in a weak electrical field regime. By applying the PNP equations, 

we analyze the EM response of a representative volume comprising a single, isolated 

nonconductive inclusion possessing surface charge or electrically conductive inclusion surrounded 

by an electrolyte-saturated host medium (Zheng and Wei, 2011). To simplify the model, we 

assume only spherical particles are present in the porous media. Also, the host, inclusion, and pore-

filling fluid are assumed to have homogeneous, isotropic, and non-dispersive electrical properties. 

Therefore, the frequency dispersion and dielectric enhancement predicted by the SCAIP model or 

PPIP model solely stems from the SCAIP or PPIP phenomena around the negatively charged 

nonconductive or electrically conductive inclusions. We also assume all the charge carriers bear 

unitary charge and both host and inclusion phases bear binary, symmetric charge carriers. 

 

3.1.2. SCAIP model 

Dr. Misra derived the SCAIP model in his note and the derivation was improved by me. 

The completed derivation of SCAIP model is presented in this section. 
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The surface of a nonmetallic (nonconductive) mineral, such as clay, acquires charges if the 

mineral is surrounded by electrolytes due to ionic adsorption, protonation/deprotonation of the 

hydroxyl groups, and dissociation of other potentially active surface groups, also combinedly 

referred as surface complexation reactions (Leroy and Revil, 2004). In this thesis, surface-

conductance-assisted interfacial polarization (SCAIP) model is developed to investigate the 

interfacial polarization phenomena around surface-charge-bearing spherical nonconductive 

particles. Figure 3.1 shows SCAIP phenomena in a representative volume of a dilute mixture of 

uniformly distributed surface-charge-bearing nonconductive spherical inclusions in an electrolyte-

saturated host medium, where interfacial polarization is independent of the direction of the 

externally applied electric field due to spherical symmetry. 

 

Figure 3.1. Cross-section of a nonconductive spherical inclusion possessing surface charge 

surrounded by an ionic host medium. The inclusion is negatively charged, surrounded by a 

positively charged counterion layer, which forms a Gouy-Chapman model. Charge carriers in the 
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ionic host medium are cations, identified by “+” symbol, and anions, identified by “-” symbol. The 

direction of the externally applied electrical field, e, is identified with a bold arrow next to the 

symbol “e”. The direction of movement of the charge carriers in the ionic host medium is 

represented by the arrow next to the symbol of the charge carrier. 

 

The phenomenological basis of interfacial polarization considered in our work builds on 

the mechanistic descriptions outlined by Grosse (1988). The negatively charged inclusion, together 

with its positive counterion layer, essentially behaves as a conductor of positive charge carriers, 

which allows the positive ions in the host medium to freely exchange with the ions in the 

counterion layer, and as a non-conductor of negative charges, which excludes the negative ions 

from the counterion layer. 

In the absence of an externally applied electric field, a Gouy-Chapman double layer is 

assumed around the surface-charge-bearing nonconductive inclusions, where the positive 

counterion layer is characterized by a finite surface conductivity. We assume the thickness of 

counterion layer is negligible, which is valid when 𝑎 ≫ 𝜆𝐷 , where 𝜆𝐷  is the Debye screening 

length and a is the characteristic length of the inclusion phase. 

 

3.1.2.1. SCAIP model development 

The Poisson-Nernst-Planck (PNP) equation has been used to model electromigration and 

diffusion of ionic charge carriers in electrolytes (Zheng and Wei, 2011) and that due to holes and 

electrons in semiconductors (Schmuck and Bazant, 2015). It is based on a mean-field 

approximation of charge carrier interactions and continuum descriptions of charge concentration 

and electrostatic potential. We apply the PNP equations to model charge dynamics and relaxation 

in the representative volume containing only two phases: the host medium, denoted by subscript 

ℎ , and the conductive (to be discussed in the following section) or nonconductive particles 

(inclusions), denoted by subscript 𝑖. In our formulation, the host medium can be assumed as a 

homogeneous mixture of electrolyte and nonconductive matrix or as a pure electrolyte. At time 

𝑡 < 0, it is assumed that there is no external electric field exciting the representative volume. Initial 

charge carrier densities at equilibrium conditions in both the host and inclusion phases are denoted 

as 𝑁0,𝑗
± , where subscript 𝑗 takes the form of 𝑖 for the inclusion phase and ℎ for the host phase. 

Starting at time 𝑡 = 0, the representative volume experiences a uniform externally applied electric 
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field 𝐸 = 𝐸0𝑒𝑖𝜔𝑡, where 𝐸0 is the amplitude of the externally applied electric field, 𝑖 is square root 

of -1, 𝜔 is the angular frequency (rad/s) of the externally applied electric field, and 𝑒 is Euler’s 

number. Note 𝜔 = 2𝜋𝑓, where 𝑓 is frequency (Hz). We assume the negatively charged spherical 

nonconductive particle is surrounded by a layer of positively charged, conducting counterion layer, 

which has a surface conductance 𝜆 and bears a field-induced surface charge density 𝜌𝑒𝑖𝜔𝑡 𝑐𝑜𝑠 𝜃, 

where 𝜃 is the angle between the normal to the interface and the incident external electric field. 

Under a weak field approximation, charge carrier densities in host and inclusion phases are 

perturbed from their equilibrium conditions near the host-inclusion interfaces, resulting in a new 

linearly approximated charge distribution, given by 

𝑁𝑗
±(𝑟, 𝑡, 𝜃) = 𝑁0,𝑗

± + 𝑐𝑗
±(𝑟)𝑒𝑖𝜔𝑡 𝑐𝑜𝑠 𝜃                                              (1) 

such that |𝑐𝑗
±| ≤ 𝑁0,𝑗

± , 𝑐𝑗
±  is the charge density variation near the host-inclusion interface in 

medium 𝑗 due to the externally applied electric field and 𝑟 is the radial distance along the normal 

to the interface. Note that in this section, for nonconductive inclusion, 𝑐𝑖
±(𝑟) = 0. In addition, one 

assumption is the absence of charge carriers in the nonconductive inclusion phase, 𝑁0,𝑖
± = 0. 

Further, the symbol “+” identifies positive-charge carriers such as holes and cations, while the 

symbol “-” identifies negative-charge carriers such as electrons and anions. 

We assume that the characteristic length 𝑎 of the inclusions phase is far greater than the 

Debye screening length 𝜆𝐷. Note that 𝜆𝐷 is a measure of induced charge distribution that forms 

around an inclusion particle due to surface charges that exist on the inclusion particle in the absence 

of an externally applied electric field. In other words, 𝜆𝐷 represents a volume outside of which 

surface charges on an inclusion particle are electrically screened. The characteristic length 𝑎 is 

equal to the radius of spherical inclusion. Mathematically, 𝜆𝐷 =  √𝜀ℎ𝑘𝐵𝑇 (2𝑍ℎ
+𝑍ℎ

−𝑞2𝑁0,ℎ)⁄  , 

where 𝜀ℎ  is dielectric permittivity of the host, 𝑘𝐵  is Boltzmann’s constant, 𝑇  is absolute 

temperature, 𝑍ℎ
± is charge number of positive and negative charge carriers in the host, and 𝑞 is the 

elementary charge. The volume fraction of conductive (for e.g. pyrite) and nonconductive particles 

(for e.g. clays) is assumed to be in the range of 5%-15%. Another simplifying assumption is that 

all the charge carriers bear unitary charge and that both host and inclusion phases bear binary, 

symmetric charge carriers. In other words, 

𝑍𝑗
± = 1, 𝜇ℎ

+ = 𝜇ℎ
− = 𝜇ℎ, 𝜇𝑖

+ = 𝜇𝑖
− = 𝜇𝑖, 𝑁0,𝑖

+ = 𝑁0,𝑖
− = 𝑁0,𝑖, 𝑁0,ℎ

+ = 𝑁0,ℎ
− = 𝑁0,ℎ            (2) 
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where  𝜇𝑗
± is the electrical mobility of positive and negative charge carriers in medium 𝑗, and 𝑍𝑗

± 

is charge number of positive and negative charge carriers in medium 𝑗. 

The current density of each charge carrier type in the host and inclusion phases is the sum 

of current density due to drift current and diffusion current. In the absence of 

generation/recombination reactions, the transport equation representing conservation laws for 

charge-carrying species can be written as 

𝒋𝑗
± = 𝒋𝑗,𝑑𝑟𝑖𝑓𝑡

± + 𝒋𝑗,𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛
± = 𝑞𝑁𝑗

±𝜇𝑗𝒆𝑗 ∓ 𝑞𝐷𝑗
±𝛻𝑁𝑗

±                           (3) 

where 𝒋𝑗
± is the current density of positive and negative charge carriers, respectively, in medium 𝑗, 

𝐞𝑗 is the net electric field vector in medium 𝑗, and 𝐷𝑗
± is the diffusion coefficient of positive and 

negative charge carriers, respectively, in medium 𝑗. When using the simplifying assumption for 

electrical mobility of charge carriers, as mentioned in equation 2, and Einstein’s relationship of 

diffusion coefficient with electrical mobility, namely 𝐷𝑗 = (𝜇𝑗𝑘𝐵𝑇) 𝑞⁄ , we obtain 

𝐷ℎ
+ = 𝐷ℎ

− = 𝐷ℎ;  𝐷𝑖
+ = 𝐷𝑖

− = 𝐷𝑖                                                    (4) 

By substituting 𝒆𝑗 = −𝛻𝜑𝑗 into the low-frequency limit of Maxwell’s equations (induction 

neglected) and substituting equation 4 into equation 3, we express the charge species conservation 

condition as 

𝒋𝑗
± = −𝑞𝑁𝑗

±𝜇𝑗𝛻𝜑𝑗 ∓ 𝑞𝐷𝑗𝛻𝑁𝑗
±                                                (5) 

where 𝜑𝑗  is the electrical potential in medium 𝑗 . Equation 5 is Nernst-Planck’s equation that 

describes the relationship of the flux of charge-carrying species to its concentration gradient and 

that to the applied electrical potential gradient in a given medium. Nernst-Planck’s equation can 

alternatively be expressed as 

𝒋𝑗
± = −𝐷𝑗

±𝑁𝑗
±𝛻𝜑𝑐𝑗

±                                                              (6) 

where 𝜑𝑐𝑗
± = 𝑘𝐵𝑇 𝑙𝑛 𝑁𝑗

± ± 𝑞𝑍𝑗
±𝜑𝑗  is the electrochemical potential of charge carriers. The 

continuity equation for charge carrier density based on mass conservation for each charge carrier 

type in an incompressible medium without any convective flow can be written as 

∓𝑞
𝜕𝑁𝑗

±

𝜕𝑡
= 𝛻 ∙ 𝒋𝑗

±                                                                (7) 

By applying equation 5 to equation 7, we obtain 

𝜕𝑁𝑗
+

𝜕𝑡
= 𝛻 ∙ (𝐷𝑗𝛻𝑁𝑗

+ + 𝜇𝑗𝑁𝑗
+𝛻𝜑𝑗)                                                  (8) 
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and 

𝜕𝑁𝑗
−

𝜕𝑡
= 𝛻 ∙ (𝐷𝑗𝛻𝑁𝑗

− − 𝜇𝑗𝑁𝑗
−𝛻𝜑𝑗)                                                  (9) 

The time derivative of equation 1 assuming axial symmetry is 

𝜕𝑁𝑗
±

𝜕𝑡
= 𝑖𝜔𝑐𝑗

±                                                                    (10) 

where 𝑐𝑗
± = 𝑐𝑗

±(𝑟, 𝑡, 𝜃) = 𝑐𝑗
±(𝑟)𝑒𝑖𝜔𝑡 𝑐𝑜𝑠 𝜃. We apply equation 10 to equations 8 and 9, then we 

add and subtract equation 8 and equation 9 to obtain equations 11 and 12 expressed as: 

−𝑖𝑞𝜔𝑑𝑗 = −2𝑞𝑁0,𝑗𝜇𝑗∆𝜑𝑗 − 𝑞𝐷𝑗∆𝑑𝑗                                                (11) 

and 

−𝑖𝑞𝜔𝑠𝑗 = −𝑞𝐷𝑗∆𝑠𝑗                                                        (12) 

where 𝑑𝑗 = 𝑐𝑗
+ − 𝑐𝑗

−  represents net charge density variation, 𝑠𝑗 = 𝑐𝑗
+ + 𝑐𝑗

−  represents total ion 

density variation, and ∆ (∇2) is Laplace’s operator. Note 𝑑𝑗  and 𝑠𝑗  are finite everywhere in the 

representative volume, and for nonconductive particles, 𝑑𝑖 = 𝑠𝑖 = 0. We obtained equations 11 

and 12 by assuming 𝑑𝑗𝜇𝑗 ≪ 1 and 𝑠𝑗𝜇𝑗 ≪ 1 as |𝑐𝑗
±| ≤ 𝑁0,𝑗

± . 

Under the influence of an externally applied EM field, the distribution of charge carriers in 

both media leads to a time-varying electric potential that is expressed as 𝜑𝑗(𝑟, 𝑡, 𝜃) =

𝜑𝑗(𝑟)𝑒𝑖𝜔𝑡 𝑐𝑜𝑠 𝜃. Using Gauss’s law and equation 1, we obtain 

𝛻 ∙ (𝜀𝑗𝒆𝑗) = 𝑃𝑓,𝑗 = 𝑞(𝑁𝑗
+ − 𝑁𝑗

−) = 𝑞(𝑐𝑗
+ − 𝑐𝑗

−) = 𝑞𝑑𝑗                              (13) 

where 𝑃𝑓,𝑗 is the net free charge density in medium j due to charge redistribution in the presence 

of an externally applied EM field, 𝒆𝑗, and 𝜀𝑗 =  𝜀𝑟,𝑗𝜀0 is the dielectric permittivity of medium 𝑗, 

𝜀𝑟,𝑗  is the relative permittivity of medium 𝑗 , and 𝜀0 = 8.854 × 10−12 F m⁄  is the vacuum 

permittivity. Equation 13 relates the spatial distribution of electric charge to the time-varying 

electric field. Assuming both media are linear, isotropic, and homogeneous, and that the electric 

field can be defined by a scalar electrical potential field, 𝜑𝑗, we obtain 

𝛻 ∙ (𝜀𝑗𝒆𝑗) = −𝛻 ∙ (𝜀𝑗𝛻𝜑𝑗) = −𝜀𝑗∆𝜑𝑗                                            (14) 

By combining equations 13 and 14, we obtain an alternate expression of Poisson’s equation, 

expressed as 

∆𝜑𝑗 = −
𝑞𝑑𝑗

𝜀𝑗
                                                               (15) 
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Poisson’s equation is applied to describe the electric field in terms of the electrical potential, 

the gradient of which governs electromigration in both media. By substituting equation 15 into 

equation 11, we obtain the Poisson-Nernst-Planck (PNP) equation, given by 

−𝑖𝑞𝜔𝑑𝑗 = 2𝑞2𝑁0,𝑗𝜇𝑗𝑑𝑗 𝜀𝑗⁄ − 𝑞𝐷𝑗∆𝑑𝑗                                           (16) 

which can be re-written as 

∆𝑑𝑗 = (
𝑖𝜔

𝐷𝑗
+  

𝜎𝑗

𝜀𝑗𝐷𝑗
) 𝑑𝑗                                                          (17) 

where 𝜎𝑗 = 2𝑁0,𝑗𝜇𝑗𝑞 is the electrical conductivity of medium 𝑗. We rewrite equations 17 and 12 

as 

∆𝑑𝑗 = 𝛾𝑗
2𝑑𝑗                                                                       (18) 

where 

𝛾𝑗
2 = (

𝑖𝜔

𝐷𝑗
+  

𝜎𝑗

𝜀𝑗𝐷𝑗
)                                                               (19) 

and 

∆𝑠𝑗 = 𝜉𝑗
2𝑠𝑗                                                                            (20) 

where 

𝜉𝑗
2 =

𝑖𝜔

𝐷𝑗
                                                                            (21) 

respectively. Equations 18 and 20 are Helmholtz partial differential equations (PDE) which can be 

solved to obtain distinct analytical expressions of 𝑑𝑗  and 𝑠𝑗  for the host and inclusion phases, 

respectively. Equation 18 is inserted into equation 15 to obtain the following Laplace PDE that 

can be solved for the electric potential field in the representative volume: 

∆𝜗𝑗 = 0                                                                           (22) 

where 

𝜗𝑗 = 𝜑𝑗 + (𝑞𝑑𝑗) (𝛾𝑗
2𝜀𝑗)⁄                                                              (23) 

 

3.1.2.2. Solution of Helmholtz PDE 

As mentioned before, for nonconductive inclusions, 𝑑𝑖 = 𝑠𝑖 = 0. So, we’re solving the 

Helmholtz PDEs to obtain the distinct analytical expressions of 𝑑ℎ and 𝑠ℎ for the host phase. A 

sphere of radius equal to a exhibits dipolarizability (dipole moment) in the radial direction. Such 

an inclusion identifies a grain or vug. In order to compute the dipolarizability of the representative 
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volume comprising a spherical inclusion in an electrolytic host, equation 18 can be expressed in 

spherical coordinates, assuming azimuthal symmetry, axial symmetry, and a separable solution 

(Young, 2009) for 𝑑ℎ(𝑟, 𝜃) = 𝑅ℎ(𝑟)𝑇ℎ(𝜃), as 

1

𝑅ℎ

𝜕

𝜕𝑟
(𝑟2

𝜕𝑅ℎ

𝜕𝑟
) − 𝛾ℎ

2𝑟2 +
1

𝑇ℎ 𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
(

𝑠𝑖𝑛 𝜃 𝜕𝑇ℎ

𝜕𝜃
) = 0                                 (24) 

and 

1

𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
(

𝑠𝑖𝑛 𝜃 𝜕𝑇ℎ

𝜕𝜃
) = −𝑛(𝑛 + 1)𝑇ℎ                                               (25) 

where n is an integer referring to the order of the standing wave solution. A standing wave solution 

(Young, 2009) to the above differential equation is 

𝑇ℎ = ∑[𝐴𝑛,ℎ𝑃𝑛
0(𝑐𝑜𝑠 𝜃) + 𝐵𝑛,ℎ𝑄𝑛

0(𝑐𝑜𝑠 𝜃)]

∞

𝑛=1

                                      (26) 

where 𝑃𝑛
0 and 𝑄𝑛

0 are associated Legendre functions of the first and second kind (Weisstein, 2018a) 

respectively, of n-th order and 𝐴𝑛,ℎ  and 𝐵𝑛,ℎ  are unknown complex-valued coefficients of the 

general solution of the partial differential equation 25. Substituting equation 25 in equation 24, we 

obtain 

𝜕

𝜕𝑟
(𝑟2

𝜕𝑅ℎ

𝜕𝑟
) − [𝛾ℎ

2𝑟2 + 𝑛(𝑛 + 1)]𝑅ℎ = 0                                        (27) 

A standing wave solution to the above differential equation is 

𝑅ℎ = ∑[𝐶𝑛,ℎ𝑖𝑛(𝑟𝛾ℎ) + 𝐷𝑛,ℎ𝑘𝑛(𝑟𝛾ℎ)]

∞

𝑛=1

                                            (28) 

where n is an integer for the standing wave solution (Young, 2009), 𝑖𝑛 and 𝑘𝑛 are the modified 

spherical Bessel function of the first and second kind (Weisstein, 2018b), respectively, of n-th 

order. 𝐶𝑛,ℎ and 𝐷𝑛,ℎ are unknown complex-valued coefficients of the general solution of the partial 

differential equation 27. 𝑖𝑛 and 𝑘𝑛 can be expressed in terms of modified Bessel function of the 

first and second kind, respectively, as 𝑖𝑛(𝑟𝛾ℎ) = √
𝜋

2𝑟𝛾ℎ
𝐼

𝑛+
1

2

(𝑟𝛾ℎ)  and 𝑘𝑛(𝑟𝛾ℎ) =

√
2

𝜋𝑟𝛾ℎ
𝐾

𝑛+
1

2

(𝑟𝛾ℎ), where 𝐼
𝑛+

1

2

 and 𝐾
𝑛+

1

2

 are the modified Bessel function of the first and second 

kind, respectively, of (n+1/2)-th order. To simplify the analytical derivation of our model, we 

reduce the series to a single term and use n=1 and 𝐵𝑛,ℎ = 0  by considering the following 
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symmetries of the charge density: (1) axial symmetry, (2) anti-symmetry with respect to 𝜃, and (3) 

dipolar nature of the externally applied field. This reduces equations 28 and 26 to 

𝑅ℎ = 𝐶ℎ𝑖1(𝑟𝛾ℎ) + 𝐷ℎ𝑘1(𝑟𝛾ℎ)                                             (29) 

and 

𝑇ℎ = 𝐴ℎ 𝑐𝑜𝑠 𝜃                                                               (30) 

respectively, where 𝐶ℎ, 𝐷ℎ, and 𝐴ℎ and are unknown complex-valued coefficients of the particular 

solution obtained from equations 26 and 28. The general representation of 𝑑ℎ(𝑟, 𝜃) can now be 

written, by combining equations 29 and 30, as 

𝑑ℎ(𝑟, 𝜃) = 𝐴ℎ[𝐶ℎ𝑖1(𝑟𝛾ℎ) + 𝐷ℎ𝑘1(𝑟𝛾ℎ)] 𝑐𝑜𝑠 𝜃                               (31) 

Using the condition that 𝑑ℎ(𝑟, 𝜃) should be finite at 𝑟 → ∞, we obtain a particular solution 

of 𝑑ℎ for the host phase that can be represented as 

𝑑ℎ(𝑟, 𝜃) = 𝐵ℎ1𝑘1(𝑟𝛾ℎ) 𝑐𝑜𝑠 𝜃                                              (32𝑎) 

or 

𝑑ℎ(𝑟, 𝜃) = 𝐵ℎ1 [𝑒−𝑟𝛾ℎ (
1

𝑟𝛾ℎ
+

1

(𝑟𝛾ℎ)2
)] 𝑐𝑜𝑠 𝜃                                    (32𝑏) 

where 𝐵ℎ1 is unknown complex-valued coefficient of the particular solution in the host medium 

obtained from equation 31. Note when 𝑟 → ∞, 𝑑ℎ(𝑟, 𝜃) = 0. Repeat the above procedure, we can 

obtain a particular solution of 𝑠ℎ for the host phase from equation 20 that can be represented as 

𝑠ℎ(𝑟, 𝜃) = 𝐵ℎ2𝑘1(𝑟𝜉ℎ) 𝑐𝑜𝑠 𝜃                                                 (33𝑎) 

or 

𝑠ℎ(𝑟, 𝜃) = 𝐵ℎ2 [𝑒−𝑟𝜉ℎ (
1

𝑟𝜉ℎ
+

1

(𝑟𝜉ℎ)2
)] 𝑐𝑜𝑠 𝜃                                (33𝑏) 

where 𝐵ℎ2 is unknown complex-valued coefficient of the particular solution in the host medium. 

 

3.1.2.3. Solution of Laplace PDE 

The Laplacian partial differential equation (PDE) must be solved to obtain the electric 

potential field in the representative volume. Assuming azimuthal symmetry and a separable 

solution for 𝜗𝑗(𝑟, 𝜃, 𝜑) =  𝑅𝜖𝑗(𝑟)𝑇𝜖𝑗(𝜃), equation 22 can be expressed in spherical coordinates as 

∆𝜗𝑗 =
1

𝑅𝜖𝑗

𝜕

𝜕𝑟
(𝑟2

𝜕𝑅𝜖𝑗

𝜕𝑟
) +

1

𝑇𝜖𝑗 𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
(

𝑠𝑖𝑛 𝜃 𝜕𝑇𝜖𝑗

𝜕𝜃
) = 0                        (34) 
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Assuming axial symmetry, a general solution (Hogg, 2001) to the above PDE can be 

expressed as 

𝜗𝑗(𝑟, 𝜃) = ∑[𝐴𝑛,𝑗𝑟𝑛 + 𝐶𝑛,𝑗𝑟−(𝑛+1)][𝐸𝑛,𝑗𝑃𝑛
0(𝑐𝑜𝑠(𝑛𝜃)) + 𝐹𝑛,𝑗𝑄𝑛

0(𝑠𝑖𝑛(𝑛𝜃))]

∞

𝑛=0

         (35) 

where n is an integer and 𝐴𝑛,𝑗, 𝐶𝑛,𝑗, 𝐸𝑛,𝑗, and 𝐹𝑛,𝑗 are unknown complex-valued coefficients of the 

general solution of the PDE expressed in equation 34. For analytical modeling purposes for our 

model, we assume n=1 and 𝐹𝑛,𝑗 = 0, 𝐴0,𝑗 = 0 and 𝐶0,𝑗 = 0, which ensures remaining terms satisfy 

the polar angle dependence of the model. Simplified representation of equation 35 is expressed as 

𝜗𝑗(𝑟, 𝜃) = (𝐴1,𝑗𝑟 + 𝐶1,𝑗𝑟−2)𝐸1,𝑗 𝑐𝑜𝑠 𝜃                                      (36𝑎) 

which can be rewritten using equation 23 as 

𝜑𝑗(𝑟, 𝜃) = (𝐴𝑗𝑟 + 𝐶𝑗𝑟−2) 𝑐𝑜𝑠 𝜃 −
𝑞𝑑𝑗(𝑟, 𝜃)

𝛾𝑗
2𝜀𝑗

                               (36𝑏) 

Using the condition that 𝑑𝑖 = 0 and 𝜑𝑖 should be finite when 𝑟 → 0, we can obtain 𝐶𝑖 = 0. 

So, a standing wave representation of equation 36b for the nonconductive inclusion phase is 

𝜑𝑖(𝑟, 𝜃) = 𝐴𝑖𝑟 𝑐𝑜𝑠 𝜃                                                        (37) 

where 𝐴𝑖 is unknown complex-valued coefficient of the particular solution in the nonconductive 

inclusion phase obtained from equation 36b. Using the condition when 𝑟 → ∞, 𝑑ℎ = 0, we can 

obtain 𝐴ℎ = −𝐸0 . A standing wave representation of equation 36b for the host phase, using 

equation 32b, is 

𝜑ℎ(𝑟, 𝜃) = (−𝐸0𝑟 + 𝐶ℎ𝑟−2) 𝑐𝑜𝑠 𝜃 −
𝑞𝐵ℎ1

𝛾ℎ
2𝜀ℎ

[𝑒−𝑟𝛾ℎ (
1

𝑟𝛾ℎ
+

1

(𝑟𝛾ℎ)2
)] 𝑐𝑜𝑠 𝜃            (38) 

where 𝐶ℎ is unknown complex-valued coefficient of the particular solution in the host obtained 

from equation 36b and 𝐸0 is the amplitude of the externally applied electric field. 

 

3.1.2.4. Boundary conditions 

To obtain an expression for the dipolarizability (dipole moment), we need first to identify the 

boundary conditions (Grosse, 1988): 

a) Continuity of the electric potential at the interface. 

𝜑𝑖(𝑟 = 𝑎) = 𝜑ℎ(𝑟 = 𝑎)                                                      (39𝑎) 
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b) Discontinuity of the normal component of the displacement current at the interface 

because of the surface charge distribution on the inclusion phase. This boundary condition 

is derived from Gauss’ Law. 

𝜀𝑖

𝜕𝜑𝑖

𝜕𝑟
|

𝑟=𝑎
− 𝜀ℎ

𝜕𝜑ℎ

𝜕𝑟
|

𝑟=𝑎
= 𝜌 𝑐𝑜𝑠 𝜃                                              (39𝑏) 

c) Continuity of the surface charge density at the host-inclusion interface qualitatively 

expressed as: Rate of change of surface charge density = normal drift/conduction current 

at the interface due to potential gradient arising from the external electromagnetic field + 

normal diffusion current due to concentration gradient in the host media at the interface + 

tangential conduction current due to the potential gradient arising from the surface-charge-

bearing inclusion phase. In other words, this boundary condition shows that the time 

derivative of surface charge density in the counterion layer is equal to the sum of the 

normal conduction and diffusion current due to potential and concentration difference, 

separately, from the host medium and the tangential conduction current due to potential 

from the inclusion phase. 

−𝑖𝜔𝜌 𝑐𝑜𝑠 𝜃 = −
𝜎ℎ

2

𝜕𝜑ℎ

𝜕𝑟
|

𝑟=𝑎
− 𝑞𝐷ℎ

𝜕𝑐ℎ
+

𝜕𝑟
|

𝑟=𝑎

+
2𝜆

𝑎
𝐴𝑖 𝑐𝑜𝑠 𝜃                  (39𝑐) 

d) The normal component of the current density of negative ions in the host medium must 

vanish at the interface due to the assumption that the negative ions are excluded from the 

counterion layer. 

𝒋ℎ
− = −

𝜎ℎ

2

𝜕𝜑ℎ

𝜕𝑟
|

𝑟=𝑎
+ 𝑞𝐷ℎ

𝜕𝑐ℎ
−

𝜕𝑟
|

𝑟=𝑎
= 0                                   (39𝑑) 

e) Due to the application of the external electric field, we use a simplifying assumption that 

the relative change of the positive ion density in the counterion layer (which is assumed 

to be negligibly thin) and that in the host medium must be equal because the positive ions 

in the host medium can freely exchange with the ions in the counterion layer. 

𝑐ℎ
+(𝑟 = 𝑎, 𝜃)

𝑁0,ℎ
=

𝜌 𝑐𝑜𝑠 𝜃

𝜌0
                                                            (39𝑒) 

where 𝜌0 is the initial equilibrium surface change density in the counterion layer and 𝜌 

is the net resultant surface charge density in the counterion layer after the application 

of electric field. 

 



18 
 

3.1.2.5. Solution for the dipolarizability 

Using boundary condition (39a), equations 37 and 38 can be equated on the surface of the 

sphere of radius equal to a. The resulting equation can be abbreviated as 

−𝐸0𝑎 +
𝐶ℎ

𝑎2
− 𝐸ℎ𝐵ℎ1 = 𝐴𝑖𝑎                                                     (40𝑎) 

where 

𝐸ℎ =
𝑞

𝛾ℎ
2𝜀ℎ

𝑒−𝑎𝛾ℎ [
1

𝑎𝛾ℎ
+

1

(𝑎𝛾ℎ)2
]                                             (40𝑏) 

The equation obtained using boundary condition (39b) at the surface of the sphere can be 

abbreviated as 

𝜀ℎ (𝐸0 +
2𝐶ℎ

𝑎3
− 𝐺ℎ𝐵ℎ1) + 𝜀𝑖𝐴𝑖 = 𝜌                                          (41𝑎) 

where 

𝐺ℎ =
𝑞

𝛾ℎ𝜀ℎ
𝑒−𝑎𝛾ℎ [

1

𝑎𝛾ℎ
+

2

(𝑎𝛾ℎ)2
+

2

(𝑎𝛾ℎ)3
]                                   (41𝑏) 

Boundary condition (39c) gives us the following abbreviated equation: 

𝑖𝜔𝜌 = −
𝜎ℎ

2
𝐸0 −

𝜎ℎ𝐶ℎ

𝑎3
+

𝜎ℎ

2
𝐺ℎ𝐵ℎ1 −

𝐷ℎ

2
𝛾ℎ

2𝐺ℎ𝐵ℎ1𝜀ℎ −
𝐷ℎ

2
𝜉ℎ

2𝐿ℎ𝐵ℎ2𝜀ℎ −
2𝜆

𝑎
𝐴𝑖           (42a) 

where 

𝐿ℎ =
𝑞

𝜉ℎ𝜀ℎ
𝑒−𝑎𝜉ℎ [

1

𝑎𝜉ℎ
+

2

(𝑎𝜉ℎ)2
+

2

(𝑎𝜉ℎ)3
]                                (42𝑏) 

Similarly, the equation obtained using boundary condition (39d) can be abbreviated as 

𝜎ℎ

2
𝐸0 +

𝜎ℎ𝐶ℎ

𝑎3
−

𝜎ℎ

2
𝐺ℎ𝐵ℎ1 =

𝐷ℎ

2
𝜉ℎ

2𝐿ℎ𝐵ℎ2𝜀ℎ −
𝐷ℎ

2
𝛾ℎ

2𝐺ℎ𝐵ℎ1𝜀ℎ                  (43) 

For boundary condition (39e), we assume the electrical mobilities in the two regions are 

the same to re-write this boundary condition as 

2𝑞𝑐ℎ
+(𝑟 = 𝑎) =

𝜌𝜎ℎ

𝜆
                                                  (44) 

After solving equations 40a, 41a, 42a, 43 and 44, we obtain the dipolarizability (dipolar 

field coefficient) of the representative volume comprising a spherical nonconductive inclusion in 

an electrolytic host as 

𝑓𝑛𝑐𝑜𝑛𝑑(𝜔) =
𝐶ℎ

𝐸0𝑎3
=

𝑄(𝑅 + 𝐴) − 𝑃

𝑄(𝑅 − 2𝐴) + 2𝑃
                                             (45) 

where 
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𝐴 =
1

𝑎2
                                                                   (45𝑎) 

𝑃 = 𝛾ℎ
2 + 𝜉ℎ

2
𝐺

𝐻
+

2𝐺

𝑎2𝐿
                                                     (45𝑏) 

𝑄 =
1

𝑖𝐹 + 1
[2 −

𝑎2𝜉ℎ
2

𝐻
(

𝐿

𝑖𝐹
+ 𝐸) −

2𝐸

𝐿
]                                       (45𝑐) 

𝑅 =
𝑃

𝑄
(

𝑖𝐹𝐸 + 𝐿

𝑖𝐹 + 1
)                                                      (45𝑑) 

𝐻 =
𝑎𝐿ℎ

𝐹ℎ
, 𝐺 =

𝑎𝐺ℎ

𝐸ℎ
, 𝐿 =

2𝜆

𝑎𝜎ℎ
, 𝐸 =

𝜀𝑖

𝜀ℎ
, 𝐹 =

𝜔𝜀ℎ

𝜎ℎ
                                 (45𝑒) 

𝐹ℎ =
𝑞

𝜉ℎ
2𝜀ℎ

𝑒−𝑎𝜉ℎ [
1

𝑎𝜉ℎ
+

1

(𝑎𝜉ℎ)2
]                                             (45𝑓) 

 

3.1.3. PPIP model 

The PPIP model was first developed and published by Misra et al. (2016b). The derivation 

procedure is similar to that of the SCAIP model. The final expression of PPIP model was obtained 

by applying different boundary conditions. 

In this thesis, perfectly polarized interfacial polarization (PPIP) model is applied to 

investigate interfacial polarization phenomena around conductive particle. Figure 3.2 shows PPIP 

phenomena in a representative volume of a dilute mixture of uniformly distributed electrically 

conductive spherical inclusions in an electrolyte-saturated host medium, where interfacial 

polarization is independent of the direction of the externally applied electric field due to spherical 

symmetry. 
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Figure 3.2. Cross-section of a perfectly polarized conductive spherical inclusion surrounded by 

an ionic host medium. Charge carriers in the ionic host medium are cations, identified by “+” 

symbol, and anions, identified by “-” symbol. Charge carriers in the conductive spherical inclusion 

are n- and p-charge carriers, identified by symbol “n” and “p”, respectively. The direction of the 

externally applied electrical field, e, is identified with a bold arrow next to the symbol “e”. The 

direction of movement of the four different types of charge carriers is represented by the arrow 

next to the symbols of the charge carriers. 

 

The phenomenological basis of interfacial polarization considered in this work builds on 

the mechanistic descriptions outlined by Revil et al. (2015). Charge carriers in conductive minerals 

have higher mobility compared to ions in porous geomaterials. In the presence of an externally 

applied EM field, charge carriers in the disseminated electrically conductive inclusions migrate 

faster and accumulate at impermeable interfaces. Consequently, electrically conductive inclusions 
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behave as dipoles in the presence of an externally applied electric field. Subsequently, charge 

carriers in the host medium migrate and accumulate on host-inclusion interfaces under the 

influence of the externally applied electric field and that of the induced charges in conductive 

inclusions. 

In the absence of an externally applied electric field, a negligible initial surface charge is 

assumed on electrically conductive inclusions. Thus, there is typically a negligible double layer 

around the surface of electrically conductive inclusions, whereby the surface conductance of a 

conductive inclusion is negligible. Similar assumptions are made in electrochemistry and colloid 

science with respect to electrochemical relaxation around metallic surfaces (Chu and Bazant, 2006). 

Also, we assume absence of redox-active species and neglect the influence of pH of pore water 

(Revil et al., 2015). The host and inclusion phases can be modeled as an electrically conductive, 

insulating, or dielectric material. Also, pore-filling fluid can be modeled as electrically conductive 

(e.g. brine) or non-conductive material (e.g. oil). 

 

3.1.3.1. PPIP model development 

The development of the PPIP model (Misra et al., 2016b) is very similar to that of the 

SCAIP model. For PPIP model development, spontaneous initial accumulation of charges is 

assumed to be absent on the host-inclusion interfaces. At time t < 0, electro-neutrality is assumed 

throughout the system. 

 

3.1.3.2. Solution of Helmholtz PDE 

The above-mentioned equation 18 must be solved to obtain an analytical expression for 𝑑𝑗 

in the host and inclusion phases around the perfectly polarized host-inclusion interface of 

conductive spherical inclusion. Recall that 𝑑𝑗 = 𝑐𝑗
+ − 𝑐𝑗

− represents net charge density variation, 

where 𝑐𝑗
± is the charge density variation near the host-inclusion interface in medium 𝑗 due to the 

externally applied electric field. Expression for 𝑑ℎ(𝑟, 𝜃) for the mixture containing conductive 

spherical inclusion is the same as that for the mixture containing nonconductive spherical inclusion. 

Using the condition that 𝑑𝑖(𝑟, 𝜃) should be finite at 𝑟 → 0, we obtain a particular solution for 𝑑𝑖 

for the mixture containing conductive spherical inclusion that can be represented as  

𝑑𝑖(𝑟, 𝜃) = 𝐵𝑖𝑖1(𝑟𝛾𝑖) 𝑐𝑜𝑠 𝜃                                                 (46𝑎) 

or 
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𝑑𝑖(𝑟, 𝜃) = 𝐵𝑖 [
𝑐𝑜𝑠ℎ(𝑟𝛾𝑖)

𝑟𝛾𝑖
−

𝑠𝑖𝑛ℎ(𝑟𝛾𝑖)

(𝑟𝛾𝑖)2
] 𝑐𝑜𝑠 𝜃                                    (46𝑏) 

where 𝐵𝑖 is unknown complex-valued coefficient of the particular solution in the inclusion phase 

obtained from equation 31, substituting the subscript ℎ with 𝑖. Note when 𝑟 → 0, it is assumed that 

𝑑𝑖(𝑟, 𝜃) = 0. 

 

3.1.3.3. Solution of Laplace PDE 

The above-mentioned equation 22 must be solved to obtain the electric potential field in 

the representative volume. The expression for 𝜑ℎ(𝑟, 𝜃) for the mixture containing conductive 

spherical inclusion is the same as that for the mixture containing nonconductive spherical inclusion. 

Using the condition when 𝑟 → 0, 𝑑𝑖 = 0 and 𝜑𝑖 should be finite, we can obtain 𝐶𝑖 = 0. A standing 

wave representation of equation 36b for the conductive inclusion phase, using equation 46b, is 

𝜑𝑖(𝑟, 𝜃) = 𝐴𝑖𝑟 𝑐𝑜𝑠 𝜃 −
𝑞𝐵𝑖

𝛾𝑖
2𝜀𝑖

[
𝑐𝑜𝑠ℎ(𝑟𝛾𝑖)

𝑟𝛾𝑖
−

𝑠𝑖𝑛ℎ(𝑟𝛾𝑖)

(𝑟𝛾𝑖)2
] 𝑐𝑜𝑠 𝜃                        (47) 

where 𝐴𝑖 is unknown complex-valued coefficient of the particular solution in the conductive 

inclusion phase obtained from equation 36b. 

 

3.1.3.4. Boundary conditions 

To obtain an expression for the dipolarizability, we need first to identify the boundary 

conditions (Grosse and Foster, 1987): 

a) Assuming a zero-intrinsic capacitance of the host-inclusion interface, the electric potential 

must be continuous at the interface. 

𝜑𝑖(𝑟 = 𝑎) = 𝜑ℎ(𝑟 = 𝑎)                                                       (48𝑎) 

b) The normal component of the displacement current must be continuous at the interface. 

This condition corresponds to the fact that there is no net surface-charge distribution on an 

electrically conductive inclusion phase. 

𝜀𝑖

𝜕𝜑𝑖

𝜕𝑟
|

𝑟=𝑎
= 𝜀ℎ

𝜕𝜑ℎ

𝜕𝑟
|

𝑟=𝑎
                                                      (48𝑏) 

c) The normal component of the current density must vanish at the interface for both media. 

This condition expresses the fact that in the absence of transport of charge carriers and 

exchange of charges along the interface, the diffusive and electro-migrative currents must 
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cancel each other at the interface. Our focus is perfectly polarizable or completely blocking 

interfaces without Faradic processes, wherein fluxes of charge carriers must vanish on both 

sides of the interface. Note that this boundary condition is used to obtain two equations: 

one for the outer volume of the sphere in the host medium, and the other for the inner 

volume of the sphere in the inclusion medium.  

𝒋𝑗
+ + 𝒋𝑗

− = −2𝑁0,𝑗𝑞𝜇𝑗

𝜕𝜑𝑗

𝜕𝑟
|

𝑟=𝑎
− 𝑞𝐷𝑗

𝜕𝑑𝑗

𝜕𝑟
|

𝑟=𝑎
= 0 (𝑗 = ℎ 𝑜𝑟 𝑖)                    (48𝑐) 

 

3.1.3.5. Solution for the dipolarizability 

Using boundary condition (48a), equations 47 and 38 can be equated on the surface of the 

sphere of radius equal to a. The resulting equation can be abbreviated as 

−𝐸0𝑎 +
𝐶ℎ

𝑎2
− 𝐸ℎ𝐵ℎ = 𝐴𝑖𝑎 − 𝐹𝑖𝐵𝑖                                              (49𝑎) 

where 

𝐹𝑖 =
𝑞

𝛾𝑖
2𝜀𝑖

[
𝑐𝑜𝑠ℎ(𝑎𝛾𝑖)

𝑎𝛾𝑖
−

𝑠𝑖𝑛ℎ(𝑎𝛾𝑖)

(𝑎𝛾𝑖)2
]                                      (49𝑏) 

The equation obtained using boundary condition (48b) at the surface of the sphere can be 

abbreviated as 

𝜀ℎ (−𝐸0 −
2𝐶ℎ

𝑎3
+ 𝐺ℎ𝐵ℎ) = 𝜀𝑖(𝐴𝑖 + 𝐻𝑖𝐵𝑖)                                  (50𝑎) 

where 

𝐻𝑖 =
𝑞

𝛾𝑖𝜀𝑖
[
2 𝑐𝑜𝑠ℎ(𝑎𝛾𝑖)

(𝑎𝛾𝑖)2
−

𝑠𝑖𝑛ℎ(𝑎𝛾𝑖)

𝑎𝛾𝑖
−

2𝑠𝑖𝑛ℎ(𝑎𝛾𝑖)

(𝑎𝛾𝑖)3
]                             (50𝑏) 

Similarly, the equation obtained using boundary condition (48c) at the outer surface of the 

sphere in the host medium can be abbreviated as 

𝐶ℎ = −𝑎3 (
𝐸0

2
+

𝑖𝜔𝜀ℎ𝐺ℎ𝐵ℎ

2𝜎ℎ
)                                           (51) 

On the other hand, the equation obtained using boundary condition (48c) at the inner 

surface of the sphere in the inclusion medium can be abbreviated as 

𝐴𝑖 =
𝑖𝜔𝜀𝑖𝐻𝑖𝐵𝑖

𝜎𝑖
                                                            (52) 
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Solve equations 49a, 50a, 51, and 52, we obtain the dipolarizability (dipolar field 

coefficient) of the representative volume comprising a spherical conductive inclusion in an 

electrolytic host as 

𝑓𝑐𝑜𝑛𝑑(𝜔) =
𝐶ℎ

𝐸0𝑎3
= −

1

2
+

3

2

𝑖𝜔

[
2
𝑎

𝜎ℎ

𝜀ℎ

𝐸ℎ

𝐺ℎ
−

2
𝑎

𝜎ℎ
∗

𝜎𝑖
∗

𝜎𝑖

𝜀𝑖

𝐹𝑖

𝐻𝑖
+ 𝑖𝜔 (

2𝜎ℎ
∗

𝜎𝑖
∗ + 1)]

             (53) 

where 𝜎ℎ
∗ = 𝜎ℎ + 𝑖𝜔𝜀ℎ is the complex conductivity of the host medium and 𝜎𝑖

∗ = 𝜎𝑖 + 𝑖𝜔𝜀𝑖 is the 

complex conductivity of the inclusion phase. 

 

3.1.4. Effective medium theory and the expression of PS model 

We aim to develop a mechanistic model to quantify the conductivity and permittivity 

(complex conductivity) of geological mixtures containing clay particles, conductive minerals, oil 

and water. This new model is referred herein as the PPIP-SCAIP (PS) model. To that end, PS 

model accounts for the interfacial polarization (IFP) due to surface conductance of clays and sands 

and the IFP due to conductive mineral grains at various water saturations. PS model development 

requires two steps: first, using PPIP model and SCAIP model to quantify the IFP of the 

representative volume (as described previously), followed by using effective medium theory to 

accurately combine the IFP of various representative volumes present in the mixture. 

We apply the effective-medium theory to determine the effective complex electrical 

conductivity (𝜎𝑒𝑓𝑓
∗ ) of the mixture (Grosse and Barchini, 1992) after we obtain the expressions of 

dipolarizability for spherical nonconductive and conductive particles surrounded by the 

electrolyte-saturated host medium. For the development of our model, as stated in the previous 

sections, PNP equations are first used to obtain dipolarizabilities (dipole moment), which are 

microscopic electrical properties, for the representative volume containing either spherical 

nonconductive or conductive particle. In the derivations of dipolarizabilities, we neglect multipoles 

effect because their magnitude decreases with inverse power of distance (Sihvola, 2007). 

Monopole effects are also neglected since there is zero net charge due to the assumed 

electroneutrality. The macroscopic electrical properties are then computed using effective-medium 

formulations based on the theory that a material composed of a mixture of distinct homogeneous 

media can be seen as a homogeneous material at a sufficiently large observation scale (Giordano, 

2003). 
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In this thesis, we obtain the effective electrical properties using a Maxwell Garnett type 

effective-medium formulation. To meet the requirements of the formulation, the volume fraction 

of nonconductive and conductive inclusions in the mixture should be less than 20% (Revil et al., 

2015). Subsurface water-bearing reservoir rocks have less than 10% volume fraction of conductive 

mineral inclusions but the volume fraction of non-conductive particles possessing surface charge 

(e.g. clay and sand) can exceed 20%.  Moreover, we invoke the PNP equations in the bulk 

electrolyte that introduces a decaying length scale, where the Maxwell Garnett formula may 

become invalid at even lower concentration of inclusion phase (Hou et al., 2018). It is also 

important to mention this formulation used in the calculation neglects the EM interaction between 

the inclusions and other components. Due to the assumed dilution of the uniformly distributed 

inclusion phase, individual elements of the dispersed phase are assumed to be isolated and not in 

contact with each other. Like other mixing theories, our model includes the assumption that the 

magnitude of spatial variations of the electric field is smaller than the magnitude of variations in 

the intrinsic electrical properties and geometrical structures. Moreover, all calculations are 

performed using a quasi-static assumption that requires the size of heterogeneities to be much 

smaller than the wavelength of the applied EM field (Cosenza et al., 2009). Also, when dealing 

with a lossy medium, the skin depth of the EM wave must be considered to avoid strong attenuation 

of the field amplitudes in the conductive heterogeneities. Most importantly, due to the 

implementation of the PNP equations, our effective-medium formulations unlike other theories 

(Giordano, 2003) explicitly accounts for the characteristic lengths of heterogeneities, resulting in 

a physically consistent way to account for the perturbation due to nonconductive or conductive 

inclusions. 

The effective medium formulation used by Misra et al. (2016b) is modified to model the 

complex conductivity response of multiphase mixtures containing spherical nonconductive and 

conductive particles, which can be expressed as 

𝜎𝑛̂,𝑒𝑓𝑓
∗ − 𝜎ℎ

∗

𝜎𝑛̂,𝑒𝑓𝑓
∗ + 2𝜎ℎ

∗ = 𝜙𝑐𝑜𝑛𝑑𝑓𝑐𝑜𝑛𝑑(𝜔) + 𝜙𝑛𝑐𝑜𝑛𝑑𝑓𝑛𝑐𝑜𝑛𝑑(𝜔)                                   (54) 

where 𝜎∗ = 𝜎 + 𝑖𝜔𝜀 is a representation of the complex conductivity of a material, 𝜎𝑛̂,𝑒𝑓𝑓
∗  is the 

effective complex conductivity of the geological mixture directed along the 𝑛̂ unit vector that can 

be measured with an externally applied electric field directed along the 𝑛̂ unit vector and 𝜎ℎ
∗ is the 

complex-valued conductivity of the homogenous isotropic host material that surrounds the 
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particles. 𝜙𝑐𝑜𝑛𝑑 and 𝜙𝑛𝑐𝑜𝑛𝑑 is the volume fraction of the conductive and nonconductive inclusion 

phase in the mixture, respectively. 𝑓𝑐𝑜𝑛𝑑(𝜔) and 𝑓𝑛𝑐𝑜𝑛𝑑(𝜔) is the dipolarizability of conductive 

and nonconductive inclusion phase, respectively, along the direction of 𝑛̂ unit vector, along which 

the externally applied electric field is directed. 

 

3.2. Wettability Model 

The mechanistic model developed by us is the first of its kind model for subsurface 

characterization, engineering, and geosciences, with a special emphasis on upstream oil and gas 

exploration and production. For developing the new mechanistic model, we first solve Young-

Laplace equation for a spherical grain in a mixture of oil and water, with known proportion of oil 

and water. Young-Laplace equation determines the shape of the oil-water interface (meniscus) at 

equilibrium by applying appropriate boundary conditions. In doing so, we obtain the expression 

of wetting angle of the conductive or surface-charge-bearing particle as a function of contact angle 

of the solid particle and the water-oil mixture. The aim of this mechanistic model is to quantify the 

wettability effects of solid particles on the electromagnetic properties of a mixture of solids and 

fluids for various fluid saturations and solid wettability. 

 

3.2.1. Model description 

At the representative volume level, we assume the oil layer stays at the top, water layer 

goes to the bottom, the two layers have one common interface, and they are spread across a length 

scale that is orders of magnitude larger than the size of the spherical solid particle. The height of 

these two layers are in proportion to the corresponding fluid saturations. The spherical solid 

particle suspends at the oil-water interface, as shown in the Figure 3.3. The wetting phase will try 

to surround the solid particle to satisfy the contact angle. The climb of oil-water interface generates 

a wetting angle, which represents the degree of exposure of the particle to the wetting phase. The 

interfacial polarization phenomena due to such solid particles are entirely governed by the extent 

to which the solid particle is surrounded by water versus oil, which is governed by the oil saturation 

and wettability of the solid particle. 
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Figure 3.3. Cross-section of a spherical graphite particle suspended in an oil-water medium. In 

the picture, C denotes the point where the oil-water interface contacts the particle surface. 𝜃 is the 

contact angle. 𝜑 is the wetting angle. 𝜓 is the angle between oil-water interface and the horizon 

(x-axis) at point C. 𝑅 is the radius of graphite particle. ℎ𝑖 is the height of oil-water interface in the 

absence of wetting of graphite (far-field height). ℎ𝑐  is the height where the oil-water interface 

contacts the particle surface, ℎ𝑐 = 𝑅(1 − 𝑐𝑜𝑠 𝜑). 𝑟 is the distance from vertical axis z and ℎ(𝑟) is 

the height of oil-water interface at any distance 𝑟 away from the vertical axis z. 

 

We assume the far-field height of oil-water interface in the absence of wetting, ℎ𝑖, have 

linear relationship with oil saturation: 

ℎ𝑖 = 2𝑅(1 − 𝑆𝑜)                                                                   (1) 

where 𝑆𝑜 is oil saturation, such that ℎ𝑖 = 0 when the representative volume has 100% saturation 

of oil and ℎ𝑖 = 2𝑅 when the representative volume has 100% saturation of water. 𝑆𝑜 can be related 

to the volume fraction of oil in the mixture, 𝜙𝑜, using the following equation:  

𝑆𝑜 =
𝜙𝑜

𝜙
                                                                            (2) 
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where 𝜙 denotes porosity of the mixture containing sand, clay, graphite, water, and oil. 

 

3.2.2. Young-Laplace equation 

The shape of the oil-water interface (meniscus) at equilibrium is described by Young-

Laplace equation (Cavallaro Jr, 2012): 

∆𝑝 = 2𝐻𝜎                                                                            (3) 

where ∆𝑝, with a unit of Pa, is Laplace pressure defined as the pressure difference between the 

inside and the outside of the curved surface that forms the boundary between oil and water phase. 

𝐻, with a unit of m-1, is mean curvature of the meniscus surface and 𝜎, with a unit of N/m, is 

interfacial tension between oil and water. Laplace pressure can be expressed by 

∆𝑝 = (𝜌𝑤 − 𝜌𝑜)𝑔[ℎ(𝑟) − ℎ𝑖]                                                      (4) 

where 𝜌𝑤 and 𝜌𝑜 is density of water and oil, respectively, and 𝑔 denotes gravitational acceleration. 

The mean curvature can be expressed as a surface divergence (Kralchevsky et al., 1994): 

2𝐻 = ∇ ∙ [
∇ℎ

√1 + (∇ℎ)2
]                                                      (5) 

Bond number is defined by 𝐵𝑜 =
(𝜌𝑤−𝜌𝑜)𝑔𝑅2

𝜎
, which is the ratio between gravity force and 

surface tension force. Assume typical values: 𝜌𝑜 = 800 𝑘𝑔 𝑚3⁄ , 𝜌𝑤 = 1000 𝑘𝑔 𝑚3⁄ , 𝑔 =

9.8 𝑁 𝑘𝑔⁄ , 𝑅 = 200𝜇𝑚, and 𝜎 = 0.05 𝑁 𝑚⁄ , we can calculate 𝐵𝑜 = 0.0016 ≪ 1. Such a small 

Bond number represents negligible gravity force and the mean curvature remains constant 

everywhere on the interface, which renders a small slope assumption. Under this condition, we 

have (∇ℎ)2 ≪ 1, the mean curvature simplifies to (Cavallaro Jr, 2012): 

2𝐻 = ∇ ∙ ∇ℎ = ∆ℎ                                                         (6) 

Since the meniscus surface is axisymmetric, the mean curvature can be further simplified 

under cylindrical coordinates as 

2𝐻 =
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕ℎ

𝜕𝑟
) = ℎ′′ +

ℎ′

𝑟
                                            (7) 

where ℎ′  and ℎ′′  represents 
𝑑ℎ

𝑑𝑟
 and 

𝑑2ℎ

𝑑𝑟2
, respectively. Substitute equation 4 and 7 into 3, the 

Young-Laplace equation becomes: 

(𝜌𝑤 − 𝜌𝑜)𝑔[ℎ(𝑟) − ℎ𝑖]

𝜎
= ℎ′′ +

ℎ′

𝑟
                                            (8) 

We also define some dimensionless variables to normalize equation 8: 
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𝑟̂ =
𝑟

𝐿𝑐
, ℎ̂ =

ℎ

𝐿𝑐
, 𝐺(𝑟̂) =

ℎ(𝑟) − ℎ𝑖

𝐿𝑐
                                                  (9) 

where 𝐿𝑐 is capillary length, defined by 

𝐿𝑐 = √
𝜎

(𝜌𝑤 − 𝜌𝑜)𝑔
                                                                (10) 

Substituting equation 9 and 10 into 8, we can obtain a modified Bessel differential equation 

(Fiegel et al., 2005): 

𝐺′′ +
𝐺′

𝑟̂
− 𝐺 = 0                                                                   (11) 

where 𝐺′ and 𝐺′′ represents 
𝑑𝐺

𝑑𝑟̂
 and 

𝑑2𝐺

𝑑𝑟̂2, respectively. The solution of the differential equation 11 

consists of modified Bessel functions of the first and second kind of order 0, which is shown below: 

𝐺 = 𝑐1𝐼0(𝑟̂) + 𝑐2𝐾0(𝑟̂)                                                                 (12) 

To solve the equation 12, we need to identify two boundary conditions: 

a) The height of oil-water interface at infinite distance, ℎ(𝑟)|𝑟→∞, is equal to ℎ𝑖, which gives 

𝑙𝑖𝑚
𝑟̂→∞

𝐺 = 0                                                                            (13𝑎) 

b) The height of oil-water interface at distance 𝑟 = 𝑅 𝑠𝑖𝑛 𝜑 is ℎ𝑐, which gives 

𝐺(𝑟̂ = √𝐵𝑜 𝑠𝑖𝑛 𝜑) = ℎ̂𝑐 − ℎ̂𝑖                                                             (13𝑏) 

Using boundary condition 13a, we can obtain 𝑐1 = 0. Using boundary condition 13b, we 

can obtain 𝑐2 =
ℎ̂𝑐−ℎ̂𝑖

𝐾0(√𝐵𝑜 𝑠𝑖𝑛 𝜑)
, where 𝐾0 is modified Bessel function of the second kind of order 0. 

Substitute 𝑐1, 𝑐2 and equation 9 into equation 12, we can obtain the expression for the shape of the 

oil-water interface: 

ℎ̂ = ℎ̂𝑖 +
ℎ̂𝑐 − ℎ̂𝑖

𝐾0(√𝐵𝑜 𝑠𝑖𝑛 𝜑)
𝐾0(𝑟̂)                                                     (14) 

 

3.2.3. Wetting angle determination 

At point C, we have 

𝑡𝑎𝑛 𝜓 = −
𝑑ℎ

𝑑𝑟
|

𝑟=𝑅 𝑠𝑖𝑛 𝜑
= −

𝑑ℎ̂

𝑑𝑟̂
|

𝑟̂=√𝐵𝑜 𝑠𝑖𝑛 𝜑

=
ℎ̂𝑐 − ℎ̂𝑖

𝐾0(√𝐵𝑜 𝑠𝑖𝑛 𝜑)
𝐾1(√𝐵𝑜 𝑠𝑖𝑛 𝜑)         (15) 
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where 𝐾1 is modified Bessel function of the second kind of order 1. The angle 𝜓 can be calculated 

as 

𝜓 = 𝑡𝑎𝑛−1(𝑡𝑎𝑛 𝜓) = 𝑡𝑎𝑛−1 [
ℎ̂𝑐 − ℎ̂𝑖

𝐾0(√𝐵𝑜 𝑠𝑖𝑛 𝜑)
𝐾1(√𝐵𝑜 𝑠𝑖𝑛 𝜑)]                      (16) 

The three angles, 𝜃, 𝜑 and 𝜓, can be related using equation 

180 = 𝜃 + 𝜑 + 𝜓                                                                 (17) 

Substitute equation 16 to 17, we have 

𝜑 = 180 − 𝜃 − 𝑡𝑎𝑛−1 [
ℎ̂𝑐 − ℎ̂𝑖

𝐾0(√𝐵𝑜 𝑠𝑖𝑛 𝜑)
𝐾1(√𝐵𝑜 𝑠𝑖𝑛 𝜑)]                           (18𝑎) 

It’s hard to obtain an analytical solution for wetting angle 𝜑 from equation 18a because it 

is a transcendental equation. But we can find the numerical solution using computer. To solve this, 

we move the left item to the right in equation 18a to define a function: 

𝑓(𝜑) = 180 − 𝜑 − 𝜃 − 𝑡𝑎𝑛−1 [
ℎ̂𝑐 − ℎ̂𝑖

𝐾0(√𝐵𝑜 𝑠𝑖𝑛 𝜑)
𝐾1(√𝐵𝑜 𝑠𝑖𝑛 𝜑)]                  (18𝑏) 

and find the 𝜑  which makes 𝑓(𝜑) = 0  using Newton-Raphson method. To ensure that the 

equation has a unique solution, we examine the monotonicity of the function by plotting 𝑓(𝜑), as 

shown in Figure 3.4. The plot shows that 𝑓(𝜑) is a monotonic function in the range of 0° < 𝜑 <

180°. 
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Figure 3.4. The plot of 𝑓(𝜑) in the range of 0° < 𝜑 < 180°. This plot is generated assuming 

following parameters: 𝜌𝑜 = 800 𝑘𝑔 𝑚3⁄ , 𝜌𝑤 = 1000 𝑘𝑔 𝑚3⁄ , 𝑔 = 9.8 𝑁 𝑘𝑔⁄ , 𝑅 = 200𝜇𝑚, 𝜎 =

0.05 𝑁 𝑚⁄ , 𝜃 = 0° and 𝑆𝑜 = 0.5. 

 

3.3. PS Model of Interfacial Polarization Considering Wettability Effect 

3.3.1. Surface area of graphite particle covered by water and oil 
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The surface area of graphite particle covered by water and oil can easily be calculated using 

equation for the curved surface area of a spherical cap. The surface area of graphite particle 

covered by water is: 

𝐴𝑤 = 2𝜋𝑅2(1 − 𝑐𝑜𝑠 𝜑)                                                            (19) 

So, the proportion of graphite surface that covered by water is: 

𝑝𝑤 =
𝐴𝑤

𝐴𝑠
=

2𝜋𝑅2(1 − 𝑐𝑜𝑠 𝜑)

4𝜋𝑅2
=

1 − 𝑐𝑜𝑠 𝜑

2
                                     (20) 

where 𝐴𝑠 is the surface area of graphite particle. 

The surface area of graphite particle covered by oil is: 

𝐴𝑜 = 2𝜋𝑅2(1 + 𝑐𝑜𝑠 𝜑)                                                            (21) 

So, the proportion of graphite surface that covered by oil is: 

𝑝𝑜 =
𝐴𝑜

𝐴𝑠
=

2𝜋𝑅2(1 + 𝑐𝑜𝑠 𝜑)

4𝜋𝑅2
=

1 + 𝑐𝑜𝑠 𝜑

2
                                     (22) 

 

3.3.2. PS model considering wettability effect 

The previously discussed PS model is coupled with the new wettability model for wetting 

angle estimation, which accounts for the wettability of graphite and oil saturation: 

𝜎𝑒𝑓𝑓
∗ − 𝜎ℎ

∗

𝜎𝑒𝑓𝑓
∗ + 2𝜎ℎ

∗ = 𝜙𝑔𝑝𝑤𝑓𝑔𝑤(𝜔) + 𝜙𝑔𝑝𝑜𝑓𝑔𝑜(𝜔) + 𝜙𝑠𝑓𝑠(𝜔) + 𝜙𝑐𝑓𝑐(𝜔) + 𝜙𝑜𝑓𝑜(𝜔)            (23) 

where 𝑓𝑔𝑤(𝜔) and 𝑓𝑔𝑜(𝜔) is dipolarizability of graphite when host medium is water and oil, 

respectively. Note 𝜎ℎ
∗ is the complex conductivity of host electrolyte, which is water. 

 

3.3.3. Limitations 

The small slope assumption for the determination of meniscus shape requires that the 

distance 𝑟 < the capillary length 𝐿𝑐. If 𝑟 > 𝐿𝑐, gravitational effects become significant and cause 

the interface height to decay exponentially (Cavallaro Jr, 2012). To meet the requirements of the 

Maxwell-Garnett effective medium formula, the volume fraction of nonconductive and conductive 

inclusions in the mixture should be less than 20% (Revil et al., 2015). For the purpose of 

petrophysical studies, the subsurface hydrocarbon-bearing reservoir rocks have less than 10% 

volume fraction of conductive mineral inclusions but the volume fraction of non-conductive 

particles possessing surface charge (e.g. clay and sand) can exceed 20%. Like other mixing 
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theories, our model assumes that the magnitude of spatial variations of the electric field is smaller 

than the magnitude of variations in the intrinsic electrical properties and geometrical structures. 

Moreover, all calculations are performed using a quasi-static assumption that requires the size of 

heterogeneities to be much smaller than the wavelength of the applied EM field (Cosenza et al., 

2009). Also, when dealing with a lossy medium, the skin depth of the EM wave must be considered 

to avoid strong attenuation of the field amplitudes in the conductive heterogeneities. 

Moreover, in the derivation of dipolarizability, Poisson-Nernst-Planck (PNP) equation is 

invoked in the bulk electrolyte that introduces a decaying length scale, where the Maxwell-Garnett 

formula may become invalid at even lower concentration of inclusion phase (Hou et al., 2018). 

Also, a limitation of the PNP equations arises from the omission of the finite volume effect of 

charge carriers, mutual interactions and steric effects, effects due to transport of ions in confined 

channels of the pore system, and correlation effects (Chu and Bazant, 2006). Another limitation 

arises because the model is developed only for symmetric, and binary charge carriers in both the 

host and inclusion phases. This assumption simplifies the analytical complexity of the PNP 

formulations. Another drawback of the PNP equation is that the analysis is performed for materials 

that contain completely dissociated charge carriers at low concentration values. Moreover, in this 

thesis, unlike Chu and Bazant (2006), we only consider the linear response to weak fields where 

exact solutions are possible and are closer to the field conditions. 

We also claim that the PPIP model is reliable for studying the EM response of mixtures 

containing uniformly distributed conductive particles of characteristic length 𝑎  < 1 mm, 

conductivity 𝜎𝑖 < 105 S/m, relative permittivity 𝜀𝑟,𝑖 < 20, relative magnetic permeability equal to 

1, and volume fraction 
𝑖
 < 20% in the frequency range of 100 Hz to 100 MHz. Beyond these 

limits, the PPIP model predictions will incur significant discrepancies with measurements due to 

the skin effect of the inclusion phase. The skin effect is primarily governed by the operating 

frequency and conductivity of the inclusion phase. PPIP model predictions are physically 

consistent only when the estimated skin depth is an order of magnitude larger than the 

characteristic length of the particles, where skin depth is defined by the depth from the surface till 

which alternating current flow in the conductive particle. 
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Chapter 4: Validations 

In this section, the PS model predictions are compared with the published experimental 

data. The properties of mixtures used for generating plots are summarized in the corresponding 

tables, where 𝜙𝑖 is the volume fraction of a specific phase, 𝑎𝑖 is the characteristic length (radius) 

of spherical particles, 𝐷 is diffusion coefficient of charge carriers, 𝜀𝑟 is relative permittivity, 𝜎 is 

conductivity, and 𝜆 is surface conductance. Property of host medium and inclusion phase are 

represented with a subscript of ℎ and 𝑖, respectively. 

Schwan et al. (1962) conducted laboratory investigations of dielectric enhancement and 

dielectric dispersion of colloidal suspensions of polystyrene spheres of uniform size in an ionic 

electrolyte. Their experiments considered the frequency range from 10 Hz to several MHz. For 

modeling purposes, they used a frequency-dependent surface admittance circuit model to explain 

their laboratory measurements. In that paper, the authors mentioned the need to develop a 

mechanistic model to predict experimental data. Figure 4.1 compares the PS model predictions 

and experimental data from Schwan et al. (1962). PS model predictions are in good agreement 

with experimental results, for input values that are similar to published ones. Also, we obtain good 

agreement for the computed 𝜀𝑟,𝑒𝑓𝑓  of the suspension with another set of experimental results 

mentioned in Schwan et al. (1962), as shown in Figure 4.2. Figures 4.1 and 4.2 imply that the 

presence of dispersed polystyrene particles produces drastic dielectric enhancement and dispersion 

due to interfacial polarization phenomena because neither the host nor the inclusion individually 

possesses dielectric characteristics comparable to that measured in the experiments. On the other 

hand, Figure 4.1 indicates relatively smaller conductivity dispersion in the order of 1% relative 

difference between the high- and low-frequency values of conductivity, which is attributed to the 

absence of high-mobility charge carriers in the inclusion phase. 
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Table 4.1. The known, assumed and estimated properties used for generating Figure 4.1 

Property Known Assumed Estimated 

Inclusion 

(polystyrene 

particles) 

𝜙𝑖 (%) 30   

𝑎𝑖 (µm) 0.094   

𝜀𝑟,𝑖  2.5  

𝜆 (S)   6.7×10-9 

Host (KCl 

solution) 

𝐷ℎ (m2/s)  1.6×10-9  

𝜀𝑟,ℎ  78  

𝜎ℎ (S/m)   0.348 

 

 

Figure 4.1. Comparison of the PS model predictions of (a) 𝜎𝑒𝑓𝑓  and (b) 𝜀𝑟,𝑒𝑓𝑓  against that 

measured by Schwan et al. (1962). The properties used for generating this plot is shown in Table 

4.1. 
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Table 4.2. The known, assumed and estimated properties used for generating Figure 4.2 

Property Known Assumed Estimated 

Inclusion 

(polystyrene 

particles) 

𝜙𝑖 (%) 19.5   

𝑎𝑖 (µm) 0.2785   

𝜀𝑟,𝑖  2.5  

𝜆 (S)   6×10-9 

Host (KCl 

solution) 

𝐷ℎ (m2/s)   1×10-9 

𝜀𝑟,ℎ  78  

𝜎ℎ (S/m) 0.125   

 

 

Figure 4.2. Comparison of the PS model predictions of 𝜀𝑟,𝑒𝑓𝑓 against that measured by Schwan et 

al. (1962). The properties used for generating this plot is shown in Table 4.2. 
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Tirado and Grosse (2006) performed broadband dielectric measurements on suspensions 

of spherical polystyrene particles having high surface charge distribution in an aqueous solution. 

Interfacial polarization phenomena in their experiment is dominated by surface conductance 

effects due to high surface charge of polystyrene particles. Figure 4.3 shows a good agreement 

between Tirado and Grosse’s (2006) measurements and the PS model predictions. 

 

Table 4.3. The known, assumed and estimated properties used for generating Figure 4.3 

Property Known Assumed Estimated 

Inclusion 

(polystyrene 

particles) 

𝜙𝑖 (%) 1   

𝑎𝑖 (µm) 0.5   

𝜀𝑟,𝑖  2  

𝜆 (S)   9×10-9 

Host (KCl 

solution) 

𝐷ℎ (m2/s) 2×10-9   

𝜀𝑟,ℎ  80  

𝜎ℎ (S/m) 0.00554   

 

 

Figure 4.3. Comparison of the PS model predictions of (a) change of effective conductivity 

(𝜎𝑒𝑓𝑓(𝜔) − 𝜎𝑒𝑓𝑓(0)) and (b) change of effective relative permittivity (𝜀𝑟,𝑒𝑓𝑓(𝜔) − 𝜀𝑟,𝑒𝑓𝑓(∞)) 
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against that measured by Tirado and Grosse (2006). The properties used for generating this plot is 

shown in Table 4.3. 

 

Further, we modeled experiments performed by Delgado et al. (1998), who worked on 

identifying laboratory techniques to differentiate surface diffusion mechanism from the volume 

diffusion mechanism. They carried out dielectric dispersion measurements on suspensions of 

polymer latex balls in a KCl solution. PS modeling results matched experimental results for two 

different volume fractions of polymer latex balls in a KCl solution, as shown in Figure 4.4. 

 

Table 4.4. The known, assumed and estimated properties used for generating Figure 4.4 

Property Known Assumed Estimated 

Inclusion 

(polymer latex 

balls) 

𝜙𝑖 (%) 15.6 or 12.7   

𝑎𝑖 (nm) 55   

𝜀𝑟,𝑖  5  

𝜆 (S)   2.8×10-10 

Host (KCl 

solution) 

𝐷ℎ (m2/s)   2.3×10-10 

𝜀𝑟,ℎ  78  

𝜎ℎ (S/m)  0.0147  

 



39 
 

 

Figure 4.4. Comparison of the PS model predictions of 𝜀𝑟,𝑒𝑓𝑓 against that measured by Delgado 

et al. (1998). The properties used for generating this plot is shown in Table 4.4. 
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Chapter 5: Results and Discussions 

5.1. Sensitivity of PS Model 

In this section, the effects of PPIP and SCAIP phenomena on low-frequency (100 Hz) 𝜎𝑒𝑓𝑓 

and high-frequency (1 GHz) 𝜀𝑟,𝑒𝑓𝑓 predictions are evaluated. The properties of mixtures used for 

generating plots are summarized in the corresponding tables, where 𝜙𝑖 is the volume fraction of a 

specific phase, 𝑎𝑖  is the characteristic length (radius) of spherical particles, 𝐷  is diffusion 

coefficient of charge carriers, 𝜀𝑟  is relative permittivity, 𝜎  is conductivity, and 𝜆  is surface 

conductance. Property of host medium and inclusion phase are represented with a subscript of ℎ 

and 𝑖, respectively. 

 

5.1.1. PS model sensitivity to the properties of the nonconductive spherical particles 

In this section, we investigate the sensitivity of the PS model predictions of 𝜎𝑒𝑓𝑓 and 𝜀𝑟,𝑒𝑓𝑓  

to the properties of surface-charge-bearing nonconductive particles. In Figure 5.1, curves S1 and 

S2 are pure sand with different volume fractions, which act as the references. Comparing curves 

S1 against S2, we conclude that the increase in volume fraction of nonconductive particles like 

sand grains will decrease the 𝜎𝑒𝑓𝑓 and 𝜀𝑟,𝑒𝑓𝑓. Comparing curves S1C4 and S1C5 against S1C1, 

the decrease of the characteristic length or the increase of the surface conductance of clay particles 

by two orders of magnitude leads to slight decrease in the 𝜎𝑒𝑓𝑓 and increase the 𝜀𝑟,𝑒𝑓𝑓, as shown 

in Figure 5.1a and 5.1b, respectively. Moreover, for our model, mixture S1C2 and S1C3 gives the 

same prediction value for both 𝜎𝑒𝑓𝑓 and 𝜀𝑟,𝑒𝑓𝑓 because the clay particles in both mixtures have the 

same 𝑎𝑖 𝜆⁄  value and the same relative permittivity. It can also be observed that with the variation 

in frequency there are negligible dispersion effects on 𝜎𝑒𝑓𝑓 and 𝜀𝑟,𝑒𝑓𝑓. 
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Figure 5.1. Effect of nonconductive particles. This figure shows a comparison of the PS model 

predictions for different properties of the nonconductive spherical particles. The mixtures contain 

nonconductive spherical sand particles and various types of clay particles (properties listed in 

Table 5.1) fully saturated with electrolyte of 𝜀𝑟,ℎ of 70, 𝜎ℎ of 0.1 S/m, and 𝐷ℎ of 10-9 m2/s. 

 

Table 5.1. Properties used for generating Figure 5.1, where S1 and S2 represent sand, and C1, C2, 

and C3 represent three different clay types, and the host is an electrolyte of 𝜀𝑟,ℎ of 70, 𝜎ℎ of 0.1 

S/m, and 𝐷ℎ of 10-9 m2/s. Typical 𝜀𝑟 of sand and clay ranges from 3 to 5 and 5 to 40, respectively 

(Martinez and Brynes, 2001). In this thesis, we assume 𝜀𝑟 of 4 for sand and 8 for clay. 

 𝜙𝑖 (%) 𝑎𝑖 (µm) 𝜀𝑟,𝑖 𝜆 (S) 𝑎𝑖 𝜆⁄  

Sand1 (S1) 70 1000 4 10-9 1012 

Sand2 (S2) 80 1000 4 10-9 1012 

Clay1 (C1) 10 100 8 10-8 1010 

Clay2 (C2) 10 10 8 10-8 109 

Clay3 (C3) 10 100 8 10-7 109 

Clay4 (C4) 10 1 8 10-8 108 

Clay5 (C5) 10 100 8 10-6 108 

 

5.1.2. PS model sensitivity to the properties of the conductive spherical particles 
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The mixtures studied in Figure 5.2 contain 70% volume fraction of sand and 10% volume 

fraction of uniformly distributed pyrite. In comparison with the reference curve S1, we can 

conclude that the presence of conductive particles will increase the 𝜀𝑟,𝑒𝑓𝑓 and decrease 𝜎𝑒𝑓𝑓 at low 

frequency but will increase 𝜎𝑒𝑓𝑓  at high frequency. The results show that a higher relative 

permittivity or conductivity of conductive inclusions, like mixture S1P2 or S1P4, increases 𝜎𝑒𝑓𝑓 

and decreases 𝜀𝑟,𝑒𝑓𝑓  of mixture, while a mixture with higher diffusion coefficient like S1P3 

decreases 𝜎𝑒𝑓𝑓 and increases 𝜀𝑟,𝑒𝑓𝑓. Moreover, for our model, mixtures S1P1 and S1P5 gives the 

same prediction for both 𝜎𝑒𝑓𝑓 and 𝜀𝑟,𝑒𝑓𝑓 because both mixtures have the same 𝜎/𝐷 value and the 

same 𝜀𝑟. Mixture S1P2 and S1P4 also gives the same prediction for both 𝜎𝑒𝑓𝑓 and 𝜀𝑟,𝑒𝑓𝑓 because 

both mixtures have the same 𝜎𝜀𝑟  and 𝐷 . It’s also worth to notice that the variation in 𝜎𝑒𝑓𝑓 

prediction only occurs for frequency between 1 kHz and 100 kHz, while the variation in 𝜀𝑟,𝑒𝑓𝑓 

prediction only occurs for frequency lower than about 5 MHz. 

 

 

Figure 5.2. Effect of conductive particles. This figure shows a comparison of the PS model 

predictions for different properties of the conductive spherical particles. The mixtures contain 

surface-charge-bearing nonconductive spherical sand particles and various types of conductive 

spherical pyrite particles (properties listed in Table 5.2) fully saturated with electrolyte of 𝜀𝑟,ℎ of 

70, 𝜎ℎ of 0.1 S/m and 𝐷ℎ of 10-9 m2/s. Characteristic length of pyrite and sand particles is assumed 

to be 200 µm and 1000 µm, and the surface conductance 𝜆 of the sand is 10-9 S. 
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Table 5.2. Properties used for generating Figure 5.2, where S1 represents sand, P1 ~ P5 represent 

five different pyrite types, and the host is an electrolyte of 𝜀𝑟,ℎ of 70, 𝜎ℎ of 0.1 S/m and 𝐷ℎ of 10-

9 m2/s. 

 𝜙𝑖 (%) 𝐷𝑖 (m
2/s) 𝜀𝑟,𝑖 𝜎𝑖 (S/m) 𝜎𝑖 𝐷𝑖⁄  𝜎𝑖𝜀𝑟,𝑖 

Sand (S1) 70 - 4 - - - 

Pyrite1 (P1) 10 5×10-5 12 500 107 6×103 

Pyrite2 (P2) 10 5×10-5 24 500 107 1.2×104 

Pyrite3 (P3) 10 10-4 12 500 5×106 6×103 

Pyrite4 (P4) 10 5×10-5 12 1000 2×107 1.2×104 

Pyrite5 (P5) 10 10-4 12 1000 107 1.2×104 

 

5.1.3. PS model sensitivity to the mixture of conductive and nonconductive spherical particles 

In this section, the PS model predictions of complex conductivity for mixtures containing 

both nonconductive and conductive inclusions/particles are evaluated. The resulting plots are 

shown as Figure 5.3. Curve S1 act as reference curve representing a clean mixture of sand and 

electrolyte without any clay and pyrite particles. The presence of uniformly distributed surface-

charge-bearing nonconductive and conductive inclusion phases will decrease the 𝜎𝑒𝑓𝑓 to a value 

lower than that of clean formation at low frequency (Figure 5.3a). This is because at low frequency, 

the charge carriers quickly reach the equilibrium distribution around the interfaces under the 

influence of a time-varying electric field, so that the polarized conductive and nonconductive 

particles act as insulators due to the interface that does not allow charge migration, and hence the 

reduction in the net electromagnetic energy transport. For frequencies over 1 kHz, the 𝜎𝑒𝑓𝑓 

increases as frequency increases, which will become higher than that of the clean mixture if the 

frequency is high enough. 𝜎𝑒𝑓𝑓  saturates for frequencies over 100 kHz. The presence of both 

nonconductive and conductive inclusion phases will increase the 𝜀𝑟,𝑒𝑓𝑓 (Figure 5.3b) because the 

PPIP and SCAIP phenomena leads to larger charge accumulation around the interfaces, and hence 

higher net electromagnetic energy storage. The 𝜀𝑟,𝑒𝑓𝑓  decreases as frequency increases and 

become stable for frequencies over around 5 MHz. When both conductive and nonconductive 

spherical inclusions exist in the mixture, the effect of nonconductive inclusions are negligible 
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compared to that of conductive inclusions, which is illustrated by the overlap of S1C1P1 and 

S1C2P1. In other words, the physical properties of conductive inclusions dominate the predictions. 

 

 

Figure 5.3. Effect of the mixture of conductive and nonconductive particles. This figure shows a 

comparison of the PS model predictions for different properties of the mixture of conductive and 

nonconductive spherical particles. The mixtures contain nonconductive spherical sand particles, 

various types of clay particles, and various types of conductive spherical pyrite particles 

(properties listed in Table 5.3) fully saturated with electrolyte of 𝜀𝑟,ℎ of 70, 𝜎ℎ of 0.1 S/m and 𝐷ℎ 

of 10-9 m2/s. 

 

Table 5.3. Properties used for generating Figure 5.3, where S1 represents sand, C1 and C2 

represent two different clay types, and P1 and P2 represent two different pyrite types. The host is 

an electrolyte of 𝜀𝑟,ℎ of 70, 𝜎ℎ of 0.1 S/m, and 𝐷ℎ of 10-9 m2/s. 

 𝜙𝑖 (%) 𝑎𝑖 (µm) 𝐷𝑖 (m
2/s) 𝜀𝑟,𝑖 𝜎𝑖 (S/m) 𝜆 (S) 

Sand (S1) 70 1000 - 4 - 10-9 

Clay1 (C1) 10 100 - 8 - 10-8 

Clay2 (C2) 10 100 - 8 - 10-7 

Pyrite1 (P1) 10 200 5×10-5 12 500 - 

Pyrite2 (P2) 10 200 5×10-5 12 1000 - 
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5.1.4. PS model sensitivity to the characteristic lengths of particles 

In this section, the PS model predictions of complex conductivity for mixtures containing 

both nonconductive and conductive inclusions/particles of various sizes are evaluated. The 

resulting plots are shown as Figure 5.4. Curve S1 is the reference curve. The characteristic length 

of surface-charge-bearing nonconductive particle seems have little effect on model predictions 

when both conductive and nonconductive particles are present in the mixture (as observed from 

the overlap between S1C1P1 and S1C2P1). For conductive inclusions, a smaller characteristic 

length will shift the frequency dispersion of 𝜎𝑒𝑓𝑓 and 𝜀𝑟,𝑒𝑓𝑓 response to higher frequencies (i.e. 

shift the curves towards right in both the plots). Therefore, 𝜎𝑒𝑓𝑓 reduces and 𝜀𝑟,𝑒𝑓𝑓 increases for 

mixtures containing conductive particles of smaller characteristic lengths. 

 

 

Figure 5.4. Effect of the characteristic lengths of particles. This figure shows a comparison of the 

PS model predictions for different characteristic lengths of particles. The mixtures contain 

spherical sand, clay and pyrite particles of various sizes (properties listed in Table 5.4) and fully 

saturated with electrolyte of 𝜀𝑟,ℎ of 70, 𝜎ℎ of 0.1 S/m and 𝐷ℎ of 10-9 m2/s. 
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Table 5.4. Properties used for generating Figure 5.4, where S1 represents sand, C1 and C2 

represent two different clay types, and P1 and P2 represent two different pyrite types and the host 

is an electrolyte of 𝜀𝑟,ℎ of 70, 𝜎ℎ of 0.1 S/m and 𝐷ℎ of 10-9 m2/s. 

 𝜙𝑖 (%) 𝑎𝑖 (µm) 𝐷𝑖 (m
2/s) 𝜀𝑟,𝑖 𝜎𝑖 (S/m) 𝜆 (S) 

Sand (S1) 70 1000 - 4 - 10-9 

Clay1 (C1) 10 100 - 8 - 10-8 

Clay2 (C2) 10 10 - 8 - 10-8 

Pyrite1 (P1) 10 200 5×10-5 12 500 - 

Pyrite2 (P2) 10 20 5×10-5 12 500 - 

 

5.1.5. PS model sensitivity to the volume fractions of particles 

The effects of volume fraction of nonconductive and conductive particles are evaluated in 

this section. Figure 5.5 shows the result, where Curve S1 is the reference curve. Comparing 

S1C1P1, S1C2P1 and S1C1P2 curves in Figure 5.5a, an increase in volume fraction of surface-

charge-bearing nonconductive particles increases the magnitude of the frequency dispersion of 

𝜎𝑒𝑓𝑓 due to the increase in the net polarization effect; this appears as a downward shift. On the 

other hand, an increase in the volume fraction of conductive particles, causes a steep rise (a high 

rate of increase) in the frequency dispersion of 𝜎𝑒𝑓𝑓. For frequencies lower than 1kHz, 𝜎𝑒𝑓𝑓 values 

are constant. Comparison of S1C1P1, S1C2P1 and S1C1P2 curves in Figure 5.5b indicates an 

increase in the volume fraction of nonconductive particles shifts the frequency dispersion curve of 

𝜀𝑟,𝑒𝑓𝑓 to lower values, while an increase in volume fraction of conductive particles shifts the curve 

to much larger values. 
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Figure 5.5. Effect of the volume fractions of particles. This figure shows a comparison of the PS 

model predictions for different volume fractions of particles. The mixtures contain spherical sand, 

clay and pyrite particles at various volume fractions of the inclusion phase (Table 5.5) and fully 

saturated with electrolyte of 𝜀𝑟,ℎ of 70, 𝜎ℎ of 0.1 S/m and 𝐷ℎ of 10-9 m2/s. 

 

Table 5.5. Properties used for generating Figure 5.5, where S1 represents sand, C1 and C2 

represent clay with different volume fractions, and P1 and P2 represent pyrite with different 

volume fractions and the host is an electrolyte of 𝜀𝑟,ℎ of 70, 𝜎ℎ of 0.1 S/m and 𝐷ℎ of 10-9 m2/s. 

 𝜙𝑖 (%) 𝑎𝑖 (µm) 𝐷𝑖 (m
2/s) 𝜀𝑟,𝑖 𝜎𝑖 (S/m) 𝜆 (S) 

Sand (S1) 70 1000 - 4 - 10-9 

Clay1 (C1) 10 100 - 8 - 10-8 

Clay2 (C2) 15 100 - 8 - 10-8 

Pyrite1 (P1) 10 200 5×10-5 12 500 - 

Pyrite2 (P2) 15 200 5×10-5 12 500 - 

 

5.1.6. PS model sensitivity to the conductivity of pore-filling electrolyte 

The effects of conductivity of electrolyte are evaluated in this section. As for 𝜎𝑒𝑓𝑓 

prediction, we can clearly observe that the increase of electrolyte conductivity shifts the dispersion 
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to higher frequencies (right shift). The low-frequency dispersion can hardly be observed for 

electrolyte with conductivity value higher than 1 S/m (Figure 5.6c). When the electrolyte 

conductivity is increased by one order of magnitude, the corresponding 𝜎𝑒𝑓𝑓  prediction also 

increases by one order of magnitude, similar to Archie’s law. As for 𝜀𝑟,𝑒𝑓𝑓 prediction, it can also 

be concluded that 𝜀𝑟,𝑒𝑓𝑓 is positively related to the conductivity of electrolyte because a greater 

charge carrier concentration in electrolyte leads to greater charge accumulation around the 

interface. Moreover, the conductive particles dominate the prediction of 𝜀𝑟,𝑒𝑓𝑓  for frequencies 

below 5 MHz, especially with the conductivity of the electrolyte is high. 

 

 

Figure 5.6. Effect of the conductivities of electrolyte. This figure shows a comparison of the PS 

model predictions for different conductivities of pore-filling electrolyte. The mixtures contain 

spherical sand, clay and pyrite particles (properties listed in Table 5.6) and fully saturated with 

electrolyte of various conductivity 𝜎ℎ, 𝜀𝑟,ℎ of 70, and 𝐷ℎ of 10-9 m2/s. (a), (b), (c) represent 𝜎𝑒𝑓𝑓 

prediction, and (d), (e), (f) represent 𝜀𝑟,𝑒𝑓𝑓 prediction for mixtures fully saturated with 0.05, 0.1, 

and 1 S/m electrolyte, respectively. 
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Table 5.6. Properties used for generating Figure 5.6, where S1 represents sand, C1 represents clay, 

and P1 represents pyrite and the host is an electrolyte of 𝜀𝑟,ℎ of 70 and 𝐷ℎ of 10-9 m2/s. 

 𝜙𝑖 (%) 𝑎𝑖 (µm) 𝐷𝑖 (m
2/s) 𝜀𝑟,𝑖 𝜎𝑖 (S/m) 𝜆 (S) 

Sand (S1) 70 1000 - 4 - 10-9 

Clay (C1) 10 100 - 8 - 10-8 

Pyrite (P1) 10 200 5×10-5 12 500 - 

 

5.1.7. PS model sensitivity to the volume fractions of oil 

In this thesis, we model oil as nonconductive spherical droplets of specific size (100 µm) 

uniformly distributed in the mixture, so the effect of increase in oil saturation can be seen as that 

of increase in the volume fraction of a nonconductive spherical particle with unique properties, as 

described in Table 5.7. Comparing the curves with reference curve S1, we conclude that the 

increase in volume fraction of oil will decrease the 𝜎𝑒𝑓𝑓 and 𝜀𝑟,𝑒𝑓𝑓. 

 

 

Figure 5.7. Effect of the volume fractions of oil. This figure shows a comparison of the PS model 

predictions for different volume fractions of oil. The mixtures contain spherical sand, clay and 

pyrite particles partially saturated with electrolyte of 𝜀𝑟,ℎ of 70, 𝜎ℎ of 0.1 S/m and 𝐷ℎ of 10-9 m2/s 

and containing different volume fractions of oil. The properties of sand, clay, pyrite and oil are 
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listed in Table 7. O1~O3 represent oil volume fractions of 1%, 5% and 8% (which correspond to 

oil saturation of 5%, 25% and 40%, respectively, if porosity is 20%). 

 

Table 5.7. Properties used for generating Figure 5.7, where S1 represents sand, C1 represents clay, 

and O1~O3 represent different volume fractions of oil. The host is an electrolyte of 𝜀𝑟,ℎ of 70, 𝜎ℎ 

of 0.1 S/m and 𝐷ℎ of 10-9 m2/s. 

 𝜙𝑖 (%) 𝑎𝑖 (µm) 𝐷𝑖 (m
2/s) 𝜀𝑟,𝑖 𝜎𝑖 (S/m) 𝜆 (S) 

Sand (S1) 70 1000 - 4 - 10-9 

Clay (C1) 20 10 - 8 - 10-8 

Oil (O1~3) 1, 5, 8 100 - 2 - 10-30 

 

5.2. Sensitivity of PS Model Considering Wettability Effect 

The effect of wettability of graphite particle and oil saturation on effective conductivity 

(𝜎𝑒𝑓𝑓) and effective relative permittivity (𝜀𝑟,𝑒𝑓𝑓) prediction of the mixture in the frequency range 

of 100Hz ~ 10MHz is evaluated. The properties of host mediums and inclusions used for 

generating the plots are summarized in the corresponding tables, where 𝜎 is interfacial tension 

between oil and water, 𝜙𝑖 is the volume fraction of a specific phase, 𝑎𝑖 is the characteristic length 

(radius) of spherical particles, 𝐷𝑗  is diffusion coefficient of charge carriers, 𝜀𝑟,𝑗  is relative 

permittivity, 𝜎𝑗 is conductivity, and 𝜆 is surface conductance. The subscript 𝑗 takes the form of 𝑖 

for the inclusion phase and ℎ for the host phase. In this paper, oil is both inclusion phase (for the 

effect on electrical properties prediction) and host phase (for the effect on graphite wettability). 

We also assume the sand and clay particles are fully water wet. 

 

5.2.1. PS model sensitivity to the contact angle of spherical graphite particles 

In this section, we investigate the sensitivity of PS model predictions of 𝜎𝑒𝑓𝑓 and 𝜀𝑟,𝑒𝑓𝑓 to 

the contact angle of spherical graphite particle. Compare the different curves in Figure 5.8 (a & c) 

or Figure 5.8 (b & d), we can see the frequency dispersion reduces as contact angle increases. 

Because as contact angle increases, graphite surface is covered more by oil, which has much less 

charge carriers than water. Compare Figure 5.8 (a & c) and Figure 5.8 (b & d), the increase of oil 

saturation will also reduce the frequency dispersion because the graphite surface is covered more 
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by oil, similar to the effect of contact angle. The details on the influence of oil saturation will be 

discussed in the next section. Note as oil saturation increases, both 𝜎𝑒𝑓𝑓 and 𝜀𝑟,𝑒𝑓𝑓 will reduce due 

to the increase in the volume fraction of oil as nonconductive inclusion (Jin et al., 2019). Both 

𝜎𝑒𝑓𝑓 and 𝜀𝑟,𝑒𝑓𝑓 will converge to a single value at high frequency, due to the charge carriers move 

rapidly and there is no net accumulation around particles. In this case, the electrical properties are 

only affected by conductivity of host electrolyte and volume fractions of conductive or surface-

charge-bearing nonconductive inclusions (Jin et al., 2019). In contrast, at low frequency, the 

charge carriers quickly reach the equilibrium distribution around the particles’ interface, so that 

the polarized particles act as insulators, which lead to lower 𝜎𝑒𝑓𝑓 and higher 𝜀𝑟,𝑒𝑓𝑓 (Jin et al., 2019). 

 

 

Figure 5.8. Effect of the contact angles of graphite. This figure shows a comparison of the PS 

model predictions for different contact angles of spherical graphite particles. The mixture contain 

graphite with various contact angles (0° ~ 180°), sand and clay particles partially saturated with 

electrolyte and containing 1% (a & c) or 9% (b & d) volume fractions of oil (which correspond to 

oil saturation of 10% and 90%, respectively, given 10% porosity we assumed for this figure). The 

properties of host mediums are listed in Table 5.8. The properties of graphite, sand, clay and oil as 

inclusion are listed in Table 5.9. 
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Table 5.8. Properties of host mediums. 

 𝐷ℎ (m2/s) 𝜀𝑟,ℎ 𝜎ℎ (S/m) 𝜌ℎ (kg/m3) 𝜎 (N/m) 

Water 10-9 70 0.1 1000 
0.05 

Oil 10-15 2 10-30 800 

 

Table 5.9. Properties of inclusions used for generating Figure 5.8. 

 𝜙𝑖 (%) 𝑎𝑖 (µm) 𝐷𝑖 (m
2/s) 𝜀𝑟,𝑖 𝜎𝑖 (S/m) 𝜆 (S) 𝜃 (°) 

Graphite 10 200 5×10-5 12 500 - 0 ~ 180 

Sand 70 1000 - 4 - 10-9 - 

Clay 10 100 - 8 - 10-8 - 

Oil 1 or 9 100 - 2 - 10-30 - 

 

5.2.2. PS model sensitivity to the oil saturation of the mixture 

In this section, we investigate the sensitivity of PS model predictions of 𝜎𝑒𝑓𝑓 and 𝜀𝑟,𝑒𝑓𝑓 to 

the oil saturation of the mixture. Compare the different curves in Figure 5.9 (a & d), Figure 5.9 (b 

& e) or Figure 5.9 (c & f), we can see the frequency dispersion reduces as oil saturation increases 

because graphite surface is covered more by oil, similar to the effect of contact angle. Keep in 

mind that as oil saturation increases, both 𝜎𝑒𝑓𝑓 and 𝜀𝑟,𝑒𝑓𝑓 will reduce due to the increase in the 

volume fraction of oil as nonconductive inclusion (Jin et al., 2019). Also, by comparing the rate 

of change among curves in Figure 5.8 (a & c) and Figure 5.9 (a & d), we can conclude that in our 

model, the effect of oil saturation is less than the effect of contact angle (i.e. the contact angle plays 

a primary effect and oil saturation plays a secondary effect). 
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Figure 5.9. Effect of the oil saturations of the mixture. This figure shows a comparison of the PS 

model predictions for different oil saturations of the mixture. The mixtures contain graphite with 

contact angles of 30° (a & d), 90° (b & e) or 150° (c & f), sand and clay particles partially saturated 

with electrolyte and containing various volume fractions of oil. The properties of host mediums 

are listed in Table 5.8 above. The properties of graphite, sand, clay and oil as inclusion are listed 

in Table 5.10. Oil volume fractions of 1%, 2.5%, 5%, 7.5% and 9% corresponds to oil saturations 

of 10%, 25% 50%, 75% and 90%, respectively, given 10% porosity we assumed for this figure. 

 

Table 5.10. Properties of inclusions used for generating Figure 5.9. 

 𝜙𝑖 (%) 𝑎𝑖 (µm) 𝐷𝑖 (m
2/s) 𝜀𝑟,𝑖 𝜎𝑖 (S/m) 𝜆 (S) 𝜃 (°) 

Graphite 10 200 5×10-5 12 500 - 30, 90 or 150 

Sand 70 1000 - 4 - 10-9 - 

Clay 10 100 - 8 - 10-8 - 

Oil 1 ~ 9 100 - 2 - 10-30 - 

 

5.2.3. PS model sensitivity to the volume fraction of water-wet and oil-wet graphite 

In this section, we investigate the sensitivity of PS model predictions of 𝜎𝑒𝑓𝑓 and 𝜀𝑟,𝑒𝑓𝑓 to 

the volume fraction of water-wet and oil-wet graphite. We set the total volume fraction of graphite 

particles to 10%. Figure 5.10 shows that as we gradually decrease the volume fraction of water-
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wet graphite while increasing that of oil-wet graphite, the frequency dispersion reduces because 

more graphite surface is covered by oil, as we discussed before. 

 

 

Figure 5.10. Effect of the volume fractions of water-wet and oil-wet graphite. This figure shows 

a comparison of the PS model predictions for different volume fractions of water-wet and oil-wet 

graphite. The mixtures contain various volume fractions of water-wet graphite with contact angle 

of 30° (Graphite 1), various volume fractions of oil-wet graphite with contact angle of 150° 

(Graphite 2), sand and clay particles partially saturated with electrolyte and containing 5% volume 

fraction of oil (which correspond to oil saturation of 50% given 10% porosity we assumed for this 

figure). The total volume fraction of graphite is 10%. The properties of host mediums are listed in 

Table 5.8 above. The properties of graphite, sand, clay and oil as inclusion are listed in Table 5.11. 

Table 5.11. Properties of inclusions used for generating Figure 5.10. 

 𝜙𝑖 (%) 𝑎𝑖 (µm) 𝐷𝑖 (m
2/s) 𝜀𝑟,𝑖 𝜎𝑖 (S/m) 𝜆 (S) 𝜃 (°) 

Graphite 1 0 ~ 10 200 5×10-5 12 500 - 30 

Graphite 2 10 ~ 0 200 5×10-5 12 500 - 150 

Sand 70 1000 - 4 - 10-9 - 

Clay 10 100 - 8 - 10-8 - 

Oil 5 100 - 2 - 10-30 - 
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Chapter 6: Application of MCMC Inversion Method to Estimate 

Contact Angle and Oil Saturation 

Formation evaluation in conventional reservoirs always involves the estimation of 

subsurface petrophysical properties such as oil saturation, which can be interpreted from EM log 

measurements. However, the EM log interpretations are more complicated when dealing with 

unconventional reservoirs. Several inversion methods are proposed which are coupled with 

subsurface characterization models to estimate such petrophysical parameters. Han and Misra 

(2018) developed a modified Levenberg- Marquardt algorithm-based inversion method coupled 

with PS model to jointly perform petrophysical interpretation of EM log data. Also, the Markov 

chain Monte Carlo (MCMC) inversion method can be applied to the improved PS model to 

estimate model parameters of interest like oil saturation, contact angle or conductivity of brine 

using the electromagnetic log measurements (Han et al., 2019). Compared to deterministic 

inversion methods such as Gauss-Newton method or Levenberg-Marquardt method which are 

gradient-based least-squares approach and sensitive to initial guess, the MCMC sampling-based 

stochastic method is a global approach for parameter estimation and able to quantify the 

uncertainty of the unknown petrophysical parameters (Chen et al., 2008). 

To illustrate the application of MCMC inversion method for estimating petrophysical 

parameters, we process two sets of synthetic EM broadband dispersion log data of synthetic 

hydrocarbon-bearing formation containing mixed-wet graphite and sand to estimate oil saturation 

and contact angle of graphite. Assume synthetic layer 1 contains water-wet graphite and synthetic 

layer 2 contains oil-wet graphite. The properties of host mediums are summarized in Table 6.1 and 

the properties of inclusions of the mixtures are summarized in Table 6.2. The synthetic EM log 

responses are generated by the above-mentioned PS model using parameters in Table 6.1 and 6.2 

as input for 5 frequencies: 26 kHz, 20 MHz, 100 MHz, 260 MHz and 1 GHz. 5% Gaussian noise 

is added to the synthetic log response. For the two synthetic layers, oil saturation 𝑆o and contact 

angle 𝜃 are the two petrophysical parameters to be estimated using the inversion algorithm. 

 

Table 6.1. Properties of host mediums of synthetic layers 

 𝐷ℎ (m2/s) 𝜀𝑟,ℎ 𝜎ℎ (S/m) 𝜌ℎ (kg/m3) 𝜎 (N/m) 

Water 10-9 70 0.1 1000 
0.05 

Oil 10-15 2 10-30 800 
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Table 6.2. Properties of inclusions of synthetic layers 

 𝜙𝑖 (%) 𝑎𝑖 (µm) 𝐷𝑖 (m
2/s) 𝜀𝑟,𝑖 𝜎𝑖 (S/m) 𝜆 (S) 𝜃 (°) 

Graphite 10 200 5×10-5 12 500 - 30 or 120 

Sand 80 1000 - 4 - 10-9 - 

Oil 8 (𝑆o=80%) 100 - 2 - 10-30 - 

 

To perform MCMC inversion, we need to define the prior ranges and initial values of 

petrophysical parameters for the Markov chains, which is shown in Table 6.3. The prior ranges of 

the petrophysical parameters constrain the boundary of the parameters in the model space. 

 

Table 6.3. Prior ranges and initial values of petrophysical parameters for the Markov chains 

Parameter Prior Range Initial Value 1 Initial Value 2 Initial Value 3 

𝑆o (%) (0, 100) 80 40 10 

𝜃 (°) (0, 180) 30 90 150 

 

We use three Markov chains staring at different initial guesses when inverting the synthetic 

broadband frequency EM log data. The inversion history of the three Markov chains is shown in 

Figure 6.1 and 6.2. The use of three Markov chain starting at different initial values can help to 

detect possible local convergence (Chen et al., 2008). The inversion processes converge after about 

300 iterations for the two synthetic layers. 
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Figure 6.1. Inversion history for synthetic layer 1 

 

 

Figure 6.2. Inversion history for synthetic layer 2 

 

All the samples in the second half of each Markov chain are used to generate the histograms 

of the estimated petrophysical parameters, as shown in Figure 6.3 and 6.4. And the inversion 

results for the two synthetic mixtures are summarized in Table 6.4. The estimated Highest 

Posterior Density (HPD) interval for the parameters are close to the real values. Also, the model 

prediction using the estimated petrophysical values are compared with the true values, as shown 

in Figure 6.5 and 6.6. We can see a good match between the true values and modeled values. We 

conclude that the MCMC inversion is robust to noise and the estimated parameters are close to 

pre-defined synthetic values. 
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Figure 6.3. Histograms of Estimated Parameters for synthetic layer 1. The red line represents true 

value and green lines represent 95% HPD Interval. 

 

 

Figure 6.4. Histograms of Estimated Parameters for synthetic layer 2. The red line represents true 

value and green lines represent 95% HPD Interval. 

 

Table 6.4. Inversion results for the two synthetic layers 

  𝑆o (%) 𝜃 (°) 

Synthetic mixture 1 
True value 80 30 

95% HPD Interval (75.4, 79.3) (25.2, 32.2) 

Synthetic mixture 2 
True value 80 120 

95% HPD Interval (75.5, 79.5) (119.3, 121.6) 
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Figure 6.5. Comparison between model prediction using estimated parameters and true values for 

synthetic layer 1 

 

 

Figure 6.6. Comparison between model prediction using estimated parameters and true values for 

synthetic layer 1 
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Chapter 7: Conclusions 

We developed a mechanistic model of multi-frequency complex conductivity for a 

homogeneous, oil/water-filled, porous geomaterial containing surface-charge-bearing non-

conductive particles (e.g. clay and sand grains) and conductive mineral particles (e.g. pyrite and 

graphite particles).  The mechanistic model accounts for the interfacial polarization (IFP) effects 

due to the surface conductance of water-wet clays and that due to the conductive particles of any 

wettability at any oil saturation. 

We studied the IFP effects of clays and conductive minerals on the effective conductivity 

(𝜎𝑒𝑓𝑓) in the frequency range of 100 Hz to 100 kHz and on the effective permittivity (𝜀𝑟,𝑒𝑓𝑓) in the 

frequency range of 0.5 MHz to 1 GHz. A decrease in size or an increase in the surface conductance 

of surface-charge-bearing nonconductive particles, referred herein as clays, uniformly distributed 

in a porous homogeneous mixture leads to a slight decrease in the 𝜎𝑒𝑓𝑓 and an increase in the 𝜀𝑟,𝑒𝑓𝑓. 

Clay particles with the same ratio of size to surface conductance and the same relative permittivity 

(𝜀𝑟) have the same effects on the complex conductivity. In the frequency windows mentioned 

above, the frequency dispersions of complex conductivity due to the IFP effects for clays are 

negligible compared to conductive particles. 

The presence of conductive particles increases the 𝜀𝑟,𝑒𝑓𝑓 and decreases the 𝜎𝑒𝑓𝑓 at lower 

frequencies. A higher relative permittivity or conductivity of conductive particles increases 𝜎𝑒𝑓𝑓 

and decreases 𝜀𝑟,𝑒𝑓𝑓  of mixture, whereas a higher diffusion coefficient of conductive particles 

decreases 𝜎𝑒𝑓𝑓  and increases 𝜀𝑟,𝑒𝑓𝑓 . Conductive particles with the same ratio of particle 

conductivity to diffusion coefficient and the same 𝜀𝑟 or those with the same value of conductivity 

times permittivity and diffusion coefficient have the same effects on the complex conductivity of 

the mixture. For conductive inclusions, a smaller particle size shifts the frequency dispersion of 

𝜎𝑒𝑓𝑓 and 𝜀𝑟,𝑒𝑓𝑓 responses to higher frequencies. Therefore, 𝜎𝑒𝑓𝑓 reduces and 𝜀𝑟,𝑒𝑓𝑓 increases for 

mixtures containing conductive particles of smaller characteristic lengths. For the conductive 

particles studied in this paper, the frequency dispersion in 𝜎𝑒𝑓𝑓 occurs for frequency between 1 

kHz and 100 kHz, whereas the dispersion in 𝜀𝑟,𝑒𝑓𝑓 occurs for frequency lower than about 5 MHz.  

An increase in volume fraction of surface-charge-bearing nonconductive particles 

increases the magnitude of the frequency dispersion of 𝜎𝑒𝑓𝑓  due to the increase in the net 

polarization effect; this appears as a reduction in 𝜎𝑒𝑓𝑓. On the other hand, an increase in the volume 
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fraction of conductive particles, causes a steep rise (a high rate of increase) in the frequency 

dispersion of 𝜎𝑒𝑓𝑓 . An increase in the volume fraction of nonconductive particles slightly 

decreases 𝜀𝑟,𝑒𝑓𝑓, while an increase in volume fraction of conductive particles increases the values 

by around 20%. An increase in brine conductivity shifts the dispersion of 𝜎𝑒𝑓𝑓 prediction to higher 

frequencies. When the brine conductivity is increased by one order of magnitude, the 

corresponding 𝜎𝑒𝑓𝑓 prediction also increases by one order of magnitude, similar to Archie’s law. 

The low-frequency dispersion can hardly be observed for electrolyte with conductivity value 

higher than 1 S/m. 𝜀𝑟,𝑒𝑓𝑓 is positively related to the conductivity of electrolyte because a greater 

charge carrier concentration in electrolyte leads to greater charge accumulation around the 

interface. Moreover, the conductive particles dominate the prediction of 𝜀𝑟,𝑒𝑓𝑓  for frequencies 

below 5 MHz, especially when the conductivity of the electrolyte is high. 

We also developed a novel mechanistic model to quantify the effects of wettability of 

conductive particles on the multi-frequency complex conductivity of fluid-filled porous materials, 

which involves solving Young-Laplace equation to determine the spreading of oil and water phase 

around the conductive particles. We studied the effect of wettability of graphite particle and oil 

saturation on 𝜎𝑒𝑓𝑓  and effective relative permittivity 𝜀𝑟,𝑒𝑓𝑓  prediction of the mixture in the 

frequency range of 100Hz ~ 10MHz. 

Wettability effects of conductive particles cannot be neglected when dealing with 

conductivity and permittivity measurements at low frequencies, especially at high oil saturations. 

However, wettability effects are negligible when dealing with conductivity and permittivity 

measurements at frequencies greater than 0.1 MHz and 1 MHz, respectively. Frequency 

dispersions of conductivity and permittivity increases with increase in water wetness of the 

conductive particle. As water wetness of conductive particles increases, the low-frequency 

conductivity decreases because more charge carriers are involved in the charge polarization and 

accumulation as compared to charge transport. Contrary to low-frequency conductivity, high-

frequency conductivity is less sensitive to contact angle of the conductive particle as compared to 

the oil saturation. Also, compared to low-frequency permittivity, high-frequency permittivity is 

much less sensitive to oil saturation. The effect of oil saturation is less than the effect of contact 

angle on the frequency dependence of conductivity and permittivity (i.e. the contact angle plays a 

primary effect and oil saturation plays a secondary effect). 
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Markov chain Monte Carlo (MCMC) inversion method is coupled with the PS model to 

process the multifrequency electromagnetic logs/measurements at five frequencies to estimate oil 

saturation and contact angle. The estimated parameters and the 95% HPD intervals are obtained 

for the synthetic data. The MCMC inversion is robust to noise and the estimated parameters are 

close to pre-defined synthetic values. 
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