A. GRAPHIC SIMULATION PROGRAM FOR
 MICROCOMPUTERS, ELECTRON
 CONFIGURATION

By

BETTY MCNEIL BRANSTETTER
Bachelor of Science in Education Southwestern Oklahoma State University Weatherford, Oklahoma
1950
Bachelor of Science Central State University Edmond, Oklahoma
1971

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 1980

A GRAPHIC SIMULATION PROGRAM FOR

MICROCOMPUTERS, ELECTRON

CONFIGURATION

Thesis Approved:

PREFACE

If the computer is going to be an aid in the public school education process, the classroom teacher will need to become acquainted with and feel comfortable with the computer and its many applications. The objectives of this program development were to determine if the average classroom teacher without prior computer background work could become computerliterate enough to develop programs and to adapt existing programs to fit his or her classroom educational needs; also to determine if simulation programs on the microcomputer are acceptable to the classroom students which in turn would be an aid to their educational process.

I wish to express my appreciation to my advisers, Dr. Tom Johnsten and Dr. John Gelder, for their continual encouragement and assistance throughout the development of this program. A special thanks goes to Dr. Gelder for his many hours of patient instructions and invaluable assistance with the microcomputer. In addition, I want to extend my appreciation to Sharon Higgins for her excellence in preparation of the final copy of this manuscript.

Finally, my special thanks is expressed to my husband, Max, and our children for their understanding, encouragement, and sacrifices while my time and energies have been directed to this project.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
Rationale 1
Background Information 2
Description of the Program 4
Limitations. 6
Summary. 7
II. REVIEW OF LITERATURE 9
History of Computers in Education 9
Future of Computers in Education 10
III. RESULTS 13
Evaluation Instrument. 13
Conclusions and Summary 15
Summary. 16
A SELECTED BIBLIOGRAPHY. 18
APPENDIXES 20
APPENDIX A - A GRAPHIC SIMULATION PROGRAM FOR MICROCOMPUTERS, ELECTRON CONFIGURATION 20
APPENDIX B - COMPUTER EVALUATION SURVEY INSTRUMENT 30
APPENDIX C - DEFINITION OF TERMS 31

TABLE

Table Page
I. Results Obtained from the Evaluation Instrument on the Ranking Scale 15

CHAPTER I

INTRODUCTION

Educators are excited by the greatly expanded possibilities that microcomputers provide for computer applications in chemical education. Using graphic simulation to enhance the presentation of scientific concepts is one application of the use of this new technology. Electron Configuration is a graphic simulation program designed as a supplement to the teacher's total class program in an introductory chemistry course.

Rationale

The revolution in the computer industry brought on by microcomputers has begun to make an impact on education. Education should not ignore the implications of the microcomputer revolution, but should deal with the educational applications of this new technology in its variety of disciplines.

The rate at which new discoveries and developments are being made is accelerating rapidly and the cost of equipment and time needed to acquire and use the microcomputers in the classroom continues to decline. Educators are at a time of transition from the computer as a curiosity to the computer as a tool that should be employed at least occasionally by most educators (1).

Joseph Weisenbaum has pointed out that certain devices given us by technology - the microscope and the telescope for example - have led to profound changes in mankind's view of himself and the universe. These devices have been like special windows which have enlarged man's view of the world around him. The computer, working through special graphics equipment, is likely to become another such window; in this case, however, it will be an inward view. Through the medium of computer graphics, the computer can give pictoral form to abstract formulations of the human intellect (2, p. 644).

The first year chemistry student is inundated with numerous physical and chemical concepts of matter. One of these important concepts is concerned with electrons, their probable locations and energy levels within the atom. A model simulated on the computer may help the students to visualize this complex abstract concept and better understand electron configuration and its application to chemical bonding.

Background Information

The electrons in an atom are of primary interest to the chemist. To be able to describe fully what an electron does, the chemist must know where it is and its velocity. Based on Schrodinger wave equation, there is a set of four quantum numbers of an electron used to establish its state, fixing both its energy and position. The electron configuration of an atom is a statement giving the population and probable location and energy of the electrons.

The first or principal quantum number determines the energy of the electron. It may have any integral value except zero. Electrons of an atom moving about in roughly the same region are said to be in the same principal level or shell.

As the quantum number increases, the energy of the electron increases, and the average distance of the electron cloud from the nucleus also increases.

Each level of electrons in an atom include one or more sublevels or subshells. The subshells are denoted by the second quantum number. Traditionally subshells are expressed by the symbols s, p, d, and f which come from the sharp, principal, diffuse, and fundamental series observed in atomic spectral early in this century. Electrons in sublevels within a given principal level will have energies which increase slightly with increasing value.

Each sublevel contains one or more orbitals which is designated by the third quantum number. This quantum number is associated with the orientations of the electron cloud with respect to a given direction. Each of these orbitals will have essentially the same energy. Each electron in an atom will be in an orbital within a sublevel within a principal level.

The fourth quantum number is called the spin quantum number. The spin quantum number can be associated with the spin of the electron about its own axis. An electron can have one of two possible spins, clockwise or counterclockwise. Two electrons in the same orbital having opposite spins are said to be paired; both of these electrons would have the same amount of energy. It is a rule that no more than two electrons can fit into any atomic orbital. This agrees with the Pauli exclusion principle which states that no two elec-
trons in an atom can have the same set of four quantum numbers.

To arrive at the electron configuration of atoms, the order in which the various sublevels become populated must be known. The electrons are added to sublevels in order of increasing energy, in general filling each sublevel to capacity before beginning the next. This general approach can be used to find the electron configuration of most atoms. This method is sometimes called the Aufbau, or building up, principle, adding electrons one by one as the atomic number increases. The order of sublevels are listed in proper order as follows:

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, $4 \mathrm{~d}, 5 \mathrm{p}, 6 \mathrm{~s}, 4 \mathrm{f}, 5 \mathrm{~d}, 6 \mathrm{p}, 7 \mathrm{~s}, 5 \mathrm{f}, 6 \mathrm{~d}$.

Description of the Program

Electron Configuration (Appendix A) is a graphic simulation program illustrating the filling of the different energy shells and orbitals with electrons. The program is written in BASIC computer language for the Apple II microcomputer. The design of the program makes it suitable to be used with a class lecture format.

At the beginning of the program the s, p, d sublevels through the 4 d level are graphically shown in white to illustrate some of the possible energy levels that can exist. Energy levels, sublevels, or orbitals are not in existence until they actually contain an electron. As the first electron is placed in a shell, the shell will turn green to show
that it is now in existence. (An electron can be added by depression of the space bar or any key.) Two different colors are used to represent an electron pair; the bluish color represents the first electron in an orbital with its clockwise spin, and the pinkish color represents the second electron with its counterclockwise spin.

As stated in the background information, the orbitals of the sublevels will have essentially the same energies. Through experimentation of the properties of the carbon atom, it was indicated that there was an energy difference between the different possible electronic arrangements in the p and d orbitals. The most stable configuration was the one in which electrons are unpaired, with parallel spins. Hund's rule states that in an atom in which orbitals of equal energy are to be filled by electrons, the order of filling is such that as many electrons remain unpaired as possible. In the p and d orbitals in compliance with this rule, the electrons with the clockwise spin are all filled first before they are paired with the opposite spin electrons.

The configuration of electrons generally follow the Aufbau principle. The major exceptions occur for the elements of medium to high atomic number in which a sublevel is close to being filled or half-filled. Having a full or half-full sublevel confers a measure of stability on the electronic structure of an atom. Where 3d sublevels are involved, with energies close to those of the 4 s sublevels, the effect is large enough in chromium to allow a 4 s electron to move
to the 3d sublevel, giving chromium five 3d electrons. In the copper atom a 4 s electron is also placed in the 3 d sublevel, thereby filling that sublevel. These anomalies of chromium and copper are taken into account and illustrated in the program.

As each electron is added, the symbol for that particular element with its atomic number will appear on the screen. Also along the bottom of the screen, typed out, will be the total electron configuration notation for the element symbolized above.

As each electron is added by the depression of a key, the program can proceed at a rate determined by the lecturer and the class. When the program has been completed, it can easily be run again for reinforcement of the concepts or for review.

Limitations

Due to the availability of space on the television screen, the 5p through the 7 s electron orbitals could not be incorporated into the program. Also the differences of relative energies of the atomic orbitals, especially the difference of energy levels of the $1 s$ and the $2 s$ orbitals, could not be accurately illustrated because of limited space on the screen.

Another limitation is the portraying of the correct capitalization of the element symbols due to the graphic nature of drawing the letters. When the symbol is composed of two letters, the second letter is drawn to smaller dimen-
sions to illustrate the correct capitalization procedure. Sometimes models can be useful even if they are not quite right.

Summary

Most educators accept the premise that students learn best by direct experiences. If educators accept this premise, then the microcomputer used as a simulator and enhanced by color graphics can save students a lot of time in getting that experience. To cite an example, the Milligan oil-drop experiment used in physics and chemistry courses requires several weeks of work and extensive equipment for students to become proficient enough to set up and run (3). Titration is another example of a computer simulated experiment program used to replace time consuming experiments (4). Now these experiments can be shared with a large group of students through a program graphically simulated on a microcomputer. The Gas Laws is a computer simulation laboratory experiment that is designed to teach concepts rather than manipulative skills (5). The program saves much student time as well as cost associated with actually performing the experiments. Extensive use of graphics and sound not only add to the realism of the simulation, but also enhances the student's interest in the exercise.

With the development of the microprocessor, the cost/ benefit ratio is now within the range for computer-based education to be brought into the school systems on a broad basis.

The problem of hardware cost is receding, and with graphic possibilities of these microcomputers, low-cost simulations are now a reality. Educators now have the means of simulating physical events, experiments, and other learning scenes that lend themselves to graphical presentations.

REVIEW OF LITERATURE

Rapid advances in technology and the range of possible uses of technology in science education is overwhelming. New technology represents a considerable resource, but it is a largely unrealized potential. It seems likely that technological advances will continue which can have a dramatic effect on teaching methodology (6).

History of Computers in Education

Beginning about 1960 there was a concerted effort by many people to explore and to demonstrate the value of digital computers in the learning environment. The educational community largely ignored all these efforts. There were many reasons for this, such as the cost and the unavailability. The expenditures for textbooks, films, and other instructional material measured in pennies per student per hour as compared to two to five dollars per student per hour for computer time. Also the learners had to be transported to the computers rather than the computer brought into the learning environment due to the size and weight of the computers and the peripheral devices.

The flexibility of computer use was also hindered because of the complexity of interconnections of most time-sharing
systems (the primary source of computing power at that time). This resulted in many interruptions and wasted class periods. Many teachers rejected computers as unreliable for class use.

In the late 1960's computer-aided instruction was going to revolutionize the learning process; the best teachers were going to write courseware that would be nationally distributed. Students would learn rapidly and efficiently. However, the educational community had not overcome its reluctance to adopt computer-aided instruction on a wide scale; so reality turned out to be quite different from the dream.

The lure of computer-aided instruction is once again being felt by those who have maintained their interest in this problem-ridden educational tool and believe that advances in technology will give it another chance (7, p. 29).

Future of Computers in Education

According to the National Science Foundation, the future for computer-aided instruction is exploration aimed at learning about learning through interactive computer use rather than at achieving specific learning goals (7). Since learning is still in its infancy as a cognitive science, with or without computers, many educators have responded by using computers as a complement to regular course offerings rather than as a complete self-paced course where the traditional student-teacher dialogue is replaced with a student-computer interaction. As machines communicate faster than humans, they should be able to provide more and better communications. This objective
has been achieved in drill and practice but not in the larger fraction of educational environment (3).

New approaches for computer-aided instruction are not based on the existence of a general-purpose communications model. Instead, they implore the computer to develop the model.

> After a decade of allowing children mainly to play games, draw pictures, and learn geometry on their computers, educators working at the Massachusetts Institute of Technology and elsewhere are expending their efforts in other areas. In the past year, the M.I.T. group has deployed computers to provide a creative learning environment in a public school setting, to design new course material that allows graphical interaction in high school mathematics and physics, and to augment the sensory environment of handicapped children $(3$, pp. $44-45)$.

The future for computer technology in the educational environment may be in the personal computers. The personal computer defies exact definition, but may be broadly defined as any general purpose computer affordable by an individual or a small group which may be designed for a specific area of application. In the home, in business, in science, and in education, the personal computer is an increasingly available resource, prompting widespread attention to both its use and its impact. The widespread availability of inexpensive computing systems will bring information processing to large numbers of burgeoning society more and more preoccupied with education, entertainment, science, and business. Worldwide communications will be readily accessible via the computer-as the printed book brought reading to large numbers of people in early industrial society (8).

The rapid technological evolution which has brought us time-shared, interactive computing, pocket calculators, video games, and home computers is now having its effect on computer graphics. Modern graphic devices support two-way interaction between the user and the computer. This capability has stimulated a wide variety of graphic applications in many fields, including education.

We are in a true microelectric revolution. Pocket calculators that are cheaper, more accurate, and more versatile than slide rules; smart scientific instruments that can control experiments, analyze data; and small inexpensive microcomputer systems that rival in computing with the large machines of only a decade ago are having a profound effect on how chemists learn, teach, do research, store, and access information. Over the next decade microprocessors and similar microelectric devices are certain to have an impact on almost every facet of chemists' professional lives (9, p. 701).

CHAPTER III

RESULTS

While no one has proven the merit of using computer simulation for education, arguments for it are a lot easier to appreciate than those for conventional Computer-Aided Instruction (3). Electron Configuration program (Appendix A) was used as a supplement to the teacher's lecture in a college first semester summer term chemistry course as well as in a high school class. The total student number for both classes was 48. The students that made up the high school class were juniors and seniors; the students in the college chemistry class were freshmen through seniors. The range of ages for the total number of students was from 16 to approximately 21 years.

The program was used as a review after the basic concepts had been presented in the teacher's usual techniques. After the testing over the unit, the students were administered an evaluation survey instrument (Appendix B).

Evaluation Instrument

The evaluation instrument was designed in two parts. One part permitted the students to briefly rank the program on a ranking scale. The second part of the instrument provided questions which allowed the students to express their opinions
concerning the use of microcomputer simulation programs as a supplement to the overall class program.

The second part of the instrument had four questions; one was concerned with the design of the program. Was the design of the program such that you could clearly understand what it was trying to represent? The second question addressed itself to the benefit which the program had in the students' understanding of the concept that was being presented. The third question asked the students to comment about the effectiveness of simulation programs when used in conjunction with the class lecture format. The last question was concerned with the general interest that the students had about microcomputers and their desire to have access to microcomputers for future class work.

Of the 48 evaluation instruments issued, 34 were returned with both sections completely answered and 14 papers were returned with only the two ranking questions answered. Table I shows the ranking scale results from this instrument.

Of the 34 students who expressed their opinions concerning the graphic simulation program, most were highly receptive and felt it was a definite aid in learning the concepts. They also expressed approval of the use of computer simulation programs as a supplement to class lectures. But only slightly more than half the students who responded wanted to learn to use and to personally interact with the computer. The students who responded less than enthusiastically about their personal use of the computer were of the college group; all the high
'school students were eager to have access to the computer and were highly motivated to learn more. They felt that the computer had many opportunities for enhancing classroom instruction.

TABLE I
RESULTS OBTAINED FROM THE EVALUATION INSTRUMENTS ON THE RANKING SCALE

	Low							High
Scale	1	3	4	6	7	8	9	10

Results:
Question 1
Question 2
$\begin{array}{lllllll}1 & 4 & 2 & 11 & 8 & 10 & 12\end{array}$
$\begin{array}{ll}\text { Total Number of Subjects } & 48\end{array}$

Conclusions and Summary

The low cost of microcomputer hardware of all kinds provides opportunities for chemistry teachers from high school through graduate school level to incorporate computer-aided instruction into their courses, provided, of course, that they are willing to spend the time necessary to write or acquire and adapt necessary software for their classes (10).

Computer graphics as an instructional tool is making rapid progress with developments in hardware and software coming
rapidly. It appears that society may be on the verge of a new era of computing in which the powers of the computer, through its graphic capabilities, will have many and varied applications in education, especially science education.

The pressures of the marketplace in the area of microprocessor based TV games and home computers are going to produce new, more powerful, less expensive display methods. High resolution dynamic color displays with easy graphic input as well as output coupled with transparent graphics software will make interactive computer graphics a new kind of window, expanding our visual horizons. We chemistry educators--whose job it is to help students see in their minds' eyes potential energy surfaces, conformational isomerism, orbitals--we should be able to take special advantage of the emerging graphics technology to help our students achieve concrete visualization of these abstract concepts (2, p. 649).

The answer, at the moment, resides in specialized uses of the computer for supplementing the teacher. Computer as a low cost simulator presents educators with a means of simulating physical events, experiments, and other learning scenes that lend themselves to graphical presentations. Classroom use of computer graphics offers opportunities for enhancing elementary and secondary teaching in many subject areas.

Summary

Computers are here to stay. Computer usage is no longer a skill needed only in certain professions and occupations. Many opportunities are being missed because teachers do not know how to use computers in the classroom and know very little about the potential for computer applications (11). Technical obsolescence is not something that happens
only to machines and hardware--it happens to teachers also. Many educators do not seem to feel the relevance of computing in the curriculum and therefore give it low priority. Often high school and college students are far ahead of faculty in organizing microcomputer clubs, developing and evaluating hardware and software; as Milner (ll) states, students may well become more computer literate than their teachers. The revolution in the computer industry brought on by microcomputers has begun to make an impact on education. Many schools are likely to own at least one microcomputer within the next few years. Educators should not ignore the implications of the microcomputer revolution.

Andrew Molnar of the National Science Foundation sees computer literacy as the next crisis in American education. Only a few years ago most educators felt that the role of computers in education would be defined some time in the future. Microcomputers have changed all that-the future is now (11, p. 546).

A SELECTED BIBLIOGRAPHY

(I) Moore, J. W., and Collins, R. W. "A Tool, Not a Gimmick." Journal of Chemical Education, 56, 3 (March, 1979), 140-147.
(2) Saltzberg, L. J. "Computer Graphics for Chemical Education." Journal of Chemical Education, 56, 10 (Oct., 1979), 644-649.
(3) Sugarman, Robert. "'What's New, Teacher?' Ask the Computer." IEEE Spectrum (Sept., 1979), 44-50.
(4) Gelder, John I. Titration. Lab. Simulation \#l. Oklahoma State University, Department of Chemistry, Stillwater: High Technology, Inc., 1979.
(5) Snelling, R., and Gelder, J. Gas Laws. Lab. Simulation \#2. Oklahoma State University, Department of Chemistry, Stillwater: High Technology, Inc., 1979.
(6) Kuhn, David J. "Science Education in the Year 2000." School Science and Mathematics (Jan., 1979), 63.
(7) Sugarman, Robert. "A Second Chance for Computer-Aided Instruction." IEEE Spectrum (Aug., 1979), 29-37.
(8) Isaacson, P., Gammell, R., Heiser, R., Osborn, A., Tesler, L., and Warren, J. Jr. "Personal Computing." Computer (1978), 86-96.
(9) Gerhold, G., Macero, D., Lyndrup, M., and Moore, J. "Bytes, Boards, Buses, and Beyond." Journal of Chemical Education, 56, 11 (Nov., 1979), 701.
(10) Moore, J., Gerhald, G., Breneman, G., Owen, S., Butler, W., Smith, S., and Lyndrup, M. "Computer-Aided Instruction with Microcomputers." Journal of Chemical Education, 56, 2 (Feb., 1980), 93-99.
(11) Milner, Stuart D., "Teaching Teachers about Computers; A Necessity for Education." Phi Delta Kappan, 61, 8 April, 1980), 544-546.
(I2) Butler, W., and Griffin, H. "Simulations in the General Chemistry Laboratory with Microcomputers." Journal of Chemical Education, 56, 8 (Aug., 1979), 543-545.
(13) Lower, S., Gerhold, G., Smith, S., Johnson, K., and Moore, J. "Computer-Assisted Instruction in Chemistry." Journal of Chemical Education, 56, 4 (April, 1979), 219-227.
(14) Moore, S., Smith, S., and Avner, R. "Facilitation of Laboratory Performance through CAI." Journal of Chemical Education, 57, 3 (March, 1980), 196-198.

A GRAPHIC SIMULATION PROGRAM FOR
MICROCOMPUTERS, ELECTRON
CONFIGURATION
LIST
90 REM ELECTRON CONFIGURATIONS
95 HOME : VIAB 24
100 GR :X $=26: Y=26$
101 GOSUB 6000
106 GOSUB 2000:X $=26: Y=26$
110 COLOR= 4
120 HLIN 6,9 AT 39
130 VLIN 37,39 AT 6: VLIN 37,39 AT 9
140 VTAB 23: HTAB 1: PRINT "1S"
145 COLOR= 2: PLOT 7,38
150 VTAB 22: HTAB 3: PRINT "I"
155 COLOR= 8: GOSUB 5010: GOSUB 7000
160 GOSUB 2000: COLOR= 9: PLOT 8,38
166 VIAB 22: HTAB 3: PRINT "2"
167 COLOR= 0: GOSUB 7000: COLOR= 8: GOSUB 5020: GOSUB 7010
169 GOSUB 2000: COLOR= 2: PLOT 7,30
170 COLOR= 4: HLIN 6,9 AT 31
180 VLIN 29,31 AT 6: VLIN 29,31 AT 9
185 VIAB 23: HTAB 5: PRINT " 2 S "
195 VIAB 22: HTAB 7: PRINT "1"
196 COLOR= 0: GOSUB 5010: GOSUB 7010: GOSUB 5020: COLOR=8: GOSUB 5030: GOSUB 7020
200 GOSUB 2000: COLOR= 9: PLOT 8,30
201 VIAB 22: HTAB 7: PRINT "2"
202 COLOR= 0: GOSUB 5030: GOSUB 7020: COLOR= 8: GOSUB
5040: GOSUB 5020: GOSUB 7030
205 GOSUB 2000: COLOR= 2: PLOT 15,27
208 REM 2 P
210 COLOR= 4: HLIN 14,21 AT 28
220 VLIN 26,28 AT 14: VLIN 26,28 AT 21
225 VIAB 23: HTAB 8: PRINT " 2P"
231 VTAB 22: HTAB 10: PRINT "1"
232 COLOR= 0: GOSUB 5040: GOSUB 5020: GOSUB 7030: COLOR=8: GOSUB 5040: GOSUB 7040
235 GOSUB 2000: COLOR= 2: PLOT 17,27
236 VIAB 22: HTAB 10: PRINT "2"

237 COLOR= 0: GOSUB 5040: GOSUB 7040: COLOR= 8: GOSUB 5050: GOSUB 7050
238 GOSUB 2000: COLOR= 2: PLOT 19,27
240 VIAB 22: HTTAB 10: PRINT "3"
241 COLOR $=0$: GOSUB 5050: GOSUB 7050: COLOR= 8: GOSUB 5060: GOSUB 7060
245 GOSUB 2000: COLOR= 9: PLOT 16,27
246 VTAB 22: HTAB 10: PRINT "4"
247 COLOR= 0: GOSUB 5060: GOSUB 7060: COLOR= 8: GOSUB 5070: GOSUB 7070
250 GOSUB 2000: COLOR= 9: PLOT 18,27
251 VTAB 22: HTAB 10: PRINT "5"
252 COLOR= 0: GOSUB 5070: GOSUB 7070: COLOR= 8: GOSUB 5080: GOSUB 7080
254 GOSUB 2000: COLOR= 9: PLOT 20,27
255 VIAB 22: HTAB 10: PRINT "6"
256 COLOR $=0$: GOSUB 5080: GOSUB 7080: COLOR= 8: GOSUB 5060: GOSUB 5020: GOSUB 7090
260 GOSUB 2000: COLOR= 2: PLOT 7,22
270 COLOR $=4$: HLIN 6,9 AT 23
280 VLIN 21,23 AT 6: VLIN 21,23 AT 9
285 VTAB 23: HTAB 12: PRINT "3S"
295 VIAB 22: HTAB 14: PRINT "l"
296 COLOR= 0: GOSUB 5060: GOSUB 5020: GOSUB 7090: COLOR= 8: GOSUB 5060: GOSUB 5090: GOSUB 7100
300 GOSUB 2000: COLOR= 9: PLOT 8,22
305 VTAB 22: HTAB 14: PRINT "2"
310 COLOR= 0: GOSUB 5060: GOSUB 5090: GOSUB 7100: COLOR= 8: GOSUB 5100: GOSUB 5110: GOSUB 8000: GOSUB 701 0

320 GOSUB 2000: COLOR= 2: PLOT 15,19
330 COLOR=4: HLIN 14,21 AT 20
340 VLIN 18,20 AT 14: VLIN 18,20 AT 21
345 VTAB 23: HTAB 15: PRINT "3P"
355 VTAB 22: HTAB 17: PRINT "1"
356 COLOR= 0: GOSUB 5100: GOSUB 5110: GOSUB 7010: COLOR= 8: GOSUB 5120: GOSUB 7020
360 GOSUB 2000: COLOR= 2: PLOT 17,19
361 VIAB 22: HTAB 17: PRINT "2"
362 COLOR= 0: GOSUB 5120: GOSUB 7020: COLOR= 8: GOSUB 5130: GOSUB 5140: GOSUB 7030
GOSUB 2000: COLOR= 2: PLOT 19,19
370 VIAB 22: HTAB 17: PRINT "3"
375 COLOR= 0: GOSUB 5130: GOSUB 5140: GOSUB 7030: COLOR= 8: GOSUB 5150: GOSUB 7040
380 GOSUB 2000: COLOR= 9: PLOT 16,19
385 VIAB 22: HTAB 17: PRINT "4"
386 COLOR= 0: GÖSUB 5150: GOSUB 7040: COLOR= 8: GOSUB 5130: GOSUB 7050
390 GOSUB 2000: COLOR= 9: PLOT 18,19
395 VIAB 22: HTAB 17: PRINT "5"
396 COLOR= 0: GOSUB 5130: GOSUB 7050: COLOR= 8: GOSUB 5160: GOSUB 7060
405 VTAB 22: HTAB 17: PRINT "6"406 COLOR= 0: GOSUB 5160: GOSUB 7060: COLOR= 8: GOSUB5170: GOSUB 7070
410 GOSUB 2000: COIOR= 2: PLOT
420
430
435
445
446
5180: GOSUB 7080
450455
500 COLOR= 0: GOSUB 5180: GOSUB 8000: GOSUB 7080: COLOR=8: GOSUB 5050: GOSUB 5090: GOSUB 8010: GOSUB 8020
510
520 COLOR= 4: HLIN 24,35 AT 13
530 VLIN 11,13 AT 24: VLIN 11,13 AT 35
535 VIAB 23: HTAB 23: PRINT "3D"
545 VTAB 22: HTAB 25: PRINT "1"
546 COLOR= 0: GOSUB 5050: GOSUB 8020: GOSUB 5090: GOSUB8010: COLOR= 8: GOSUB 5130: GOSUB 5190: GOSUB 8030: GOSUB 7000
550551
VTAB 22: HTAB 25: PRINT "2"
552 COLOR= 0: GOSUB 5130: GOSUB 5190: GOSUB 8030: GOSUB7000: COLOR= 8: GOSUB 5200: GOSUB 5140: GOSUB 8010: GOSUB 7010
555 GOSUB 2000: COLOR= 2: PLOT 29,12
556 VITAB 22: HTAB 25: PRINT "3"
557 COLOR= 0: GOSUB 5200: GOSUB 5140: GOSUB 7010: COLOR=8: GOSUB 5210: GOSUB 7020
558
559 VTAB 22: HTAB 2l: PRINT "l"
560 COLOR= 2: PLOT 31,12: PLOT 33,12
561 VTAB 22: HTAB 25: PRINT "5"
562 COLOR= 0: GOSUB 5210: GOSUB 7020: COLOR= 8: GOSUB5050: GOSUB 5220: GOSUB 7030
563 GOSUB 2000: COLOR= 9: PLOT 8,15
564 VIAB 22: HTAB 21: PRINT "2"
565 COLOR= 2: PLOT 33,12570 COLOR= 0: GOSUB 5050: GOSUB 5220: GOSUB 7030: COLOR=8: GOSUB 5100: GOSUB 5230: GOSUB 7040
580585586 COLOR= 0: GOSUB 5100: GOSUB 5230: GOSUB 7040: COLOR $=$8: GOSUB 5240: GOSUB 5020: GOSUB 7050
590 GOSUB 2000: COLOR=9: PLOT 28,12
591 VTAB 22: HTAB 25: PRINT "7"
592 COLOR= 0: GOSUB 5240: GOSUB 5020: GOSUB 7050: COLOR=8: GOSUB 5050: GOSUB 5250: GOSUB 7060
595 GOSUB 2000: COLOR= 9: PLOT 30,12
596 VTAB 22: HTAB 25: PRINT "8"
597 COLOR= 0: GOSUB 5050: GOSUB 5250: GOSUB 7060: COLOR=

8: GOSUB 5060: GOSUB 5140: GOSUB 7070
600 GOSUB 2000: COLOR= 9: PLOT 32,12: PLOT 34,12: COLOR= 0: PLOT 8,15
602 VIAB 22: HTAB 21: PRINT "l"
605 VIAB 22: HTAB 25: PRINT "10"
606 COLOR= 0: GOSUB 5060: GOSUB 5140: GOSUB 7070: COLOR= 8: GOSUB 5050: GOSUB 5260: GOSUB 7080
608 GOSUB 2000: COLOR= 9: PLOT 34,12
610 VTAB 22: HTAB 21: PRINT "2": COLOR= 9: PLOT 8,15
612 COLOR= 0: GOSUB 5050: GOSUB 5260: GOSUB 8010: GOSUB 7080: COLOR= 3: GOSUB 5270: GOSUB 5230: GOSUB 80 40: GOSUB 8020
620 GOSUB 2000: COLOR= 2: PLOT 15,9
630 COLOR= 4: HLIN 14,21 AT 10
640 VLIN 8,10 AT 14: VLIN 8,10 AT 21
645 VIAB 23: HTAB 28: PRINT "4P"
655 VIAB 22: HTAB 30: PRINT "l"
656 COLOR $=0$: GOSUB 5270: GOSUB 5230: GOSUB 8040: GOSUB 8020: COLOR= 8: GOSUB 5280: GOSUB 5090: GOSUB 80 50: GOSUB 7000
660 GOSUB 2000: COLOR= 2: PLOT 17,9
661 VIAB 22: HTAB 30: PRINT "2"
662 COLOR $=0$: GOSUB 5090: GOSUB 8050: GOSUB 7000: COLOR= 8: GOSUB 5020: GOSUB 8040: GOSUB 7010
665 GOSUB 2000: COLOR= 2: PLOT 19,9
666 VTAB 22: HTAB 30: PRINT " 3"
668 COLOR= 0: GOSUB 5280: GOSUB 5020: GOSUB 7010: COLOR= 8: GOSUB 5290: GOSUB 7020
670 GOSUB 2000: COLOR= 9: PLOT 16,9
675 VIAB 22: HTTAB 30: PRINT "4"
676 COLOR $=0$: GOSUB 5290: GOSUB 7020: COLOR= 8: GOSUB 5130: GOSUB 5020: GOSUB 7030
680 GOSUB 2000: COLOR= 9: PLOT 18,9
682 VTAB 22: HTAB 30: PRINT "5"
683 COLOR= 0: GOSUB 5130: GOSUB 5020: GOSUB 7030: COLOR= 8: GOSUB 5040: GOSUB 5220: GOSUB 7040
685 GOSUB 2000: COLOR= 9: PLOT 20,9
690 VTAB 22: HTAB 30: PRINT "6"
695 COLOR= 0: GOSUB 5040: GOSUB 5220: COLOR= 8: GOSUB 5180: GOSUB 5220
697 COLOR $=0$: GOSUB 5040: GOSUB 7040: COLOR=8: GOSUB 5180: GOSUB 7050:
699 END
700 GOSUB 2000: COLOR=2: PLOT 7,6
710 COLOR=4: HLIN 6,9 AT 7
720 VLIN 5,7 AT 6: VLIN 5,7 AT 9
725 VIAB 23: HTAB 32: PRINT "5S"
735 VIAB 22: HTAB 34: PRINT "1"
736 COLOR= 0: GOSUB 5180: GOSUB 5220: COLOR= 8: GOSUB 5300
740 GOSUB 2000: COLOR= 9: PLOT 8,6
745 VIAB 22: HTAB 34: PRINT "2"
750 COLOR= 0: GOSUB 5300: COLOR= 8: GOSUB 5130: GOSUB
5220
760 GOSUB 2000: COLOR= 2: PLOT 25,3
770 COLOR= 4: HLIN 24,35 AT 4
780 VLIN 2,4 AT 24: VLIN 2,4 AT 35
785 VIAB 23: HTAB 36: PRINT "4D"
795 VIAB 22: HTAB 38: PRINT "1"
796 COLOR= 0: GOSUB 5130: GOSUB 5220: COLOR= 8: GOSUB 5310
800 GOSUB 2000: COLOR= 2: PLOT 27,3
801 VTAB 22: HTAB 38: PRINT "2"
802 COLOR= 0: GOSUB 5310: COLOR= 8: GOSUB 5270: GOSUB5220
805 GOSUB 2000: COLOR= 2: PLOT 29,3
806 VIAB 22: HTAB 38: PRINT "3"
808 COLOR= 0: GOSUB 5270: GOSUB 5220: COLOR= 8: GOSUB5060: GOSUB 5320
810 GOSUB 2000: COLOR= 2: PLOT 31,3
812 VIAB 22: HTAB 38: PRINT "4"
814 COLOR= 0: GOSUB 5060: GOSUB 5320: COLOR= 8: GOSUB5100: GOSUB 5250
815 GOSUB 2000: COLOR= 2: PLOT 33,3
816 VTAB 22: HTAB 38: PRINT " 5 "
818 COLOR= 0: GOSUB 5100: GOSUB 5250: COLOR= 8: GOSUB 5200: GOSUB 5190
820 GOSUB 2000: COLOR= 9: PLOT 26,3
825 VIAB 22: HTAB 38: PRINT "6"
828 COLOR= 0: GOSUB 5200: GOSUB 5190: COLOR= 8: GOSUB
5330: GOSUB 5260
830 GOSUB 2000: COLOR= 9: PLOT 28,3
832 VTAB 22: HTAB 38: PRINT "7"
833 COLOR= 0: GOSUB 5330: GOSUB 5260: COLOR= 8: GOSUB5330: GOSUB 5340
835 GOSUB 2000: COLOR= 9: PLOT 30,3
836 VITAB 22: HTAB 38: PRINT "8"
838 COLOR= 0: GOSUB 5330: GOSUB 5340: COLOR= 8: GOSUB5150: GOSUB 5350
840 GOSUB 2000: COLOR= 9: PLOT 32,3
845 VITAB 22: HTAB 38: PRINT "9"
848 COLOR= 0: GOSUB 5150: GOSUB 5350: COLOR= 8: GOSUB5360: GOSUB 5110
850 GOSUB 2000: COLOR= 9: PLOT 34,3
855 VTAB 22: HTAB 38: PRINT "10"
858 COLOR= 0: GOSUB 5290: GOSUB 5110: COLOR= 8: GOSUB 5050: GOSUB 5350
860 CALL - 380: END
2000 POKE - 16368,0
2010 IF PEEK (- 16384) > 128 THEN POKE - 16368,0: REIURN
2020 GOTO 2010
3050 COLOR $=0$
5010 HLIN X,X + 4 AT Y + 3: VLIN Y,Y + 6 AT X: VLIN$\mathrm{Y}, \mathrm{Y}+6 \mathrm{ATX}+4$
5015 REM H
5018 REIURN

```
5020 HLIN X + 6,X + 9 AT Y + 2: HLIN X + 6,X + 9 AT
    Y + 4: HLIN X + 6,X + 9 AT Y + 6: VLIN Y + 2,Y +
    6 AT X + 6: VLIN Y + 2,Y + 4 AT X + 9
5025 REM LE
5028 REIURN
5030 VLIN Y,Y + 6 AT X: HLIN X,X + 4 AT Y + 6: PLOT
    X + 6,Y + l: VLIN Y + 3,Y + 6 AT X + 6
5035 REM L LI
5038 REIUPN
5040 HLIN X,X + 4 AT Y: HLIN X,X + 4 AT Y + 3: HLIN
    X,X + 4 AT Y + 6: VLIN Y,Y + 6 AT X: VLIN Y,Y +
    AT X + 4
5045 REM B
5048 REIURN
5050 HLIN X,X + 4 AT Y: HLIN X,X + 4 AT Y + 6: VLIN
    Y,Y + 6 AT X: PLOT X + 4,Y + l: PLOT X + 4,Y + 5
5055 REM C
5058 REIURN
5060 VLIN Y,Y + 6 AT X: VLIN Y,Y + 6 AT X + 4: VLIN
    Y + l,Y + 2 AT X + l: PLOT X + 2,Y + 3: VLIN Y +
    4,Y + 5 AT X + 3
5065 REM N
5068 REIURN
5070 HLIN X,X + 4 AT Y: HLIN X,X + 4 AT Y + 6: VLIN
    Y,Y + 6 AT X: VLIN Y,Y + 6 AT X + 4
5075 REM O
5078 REIURN
5080 HLIN X,X + 4 AT Y: HLIN X,X + 3 AT Y + 3: VLIN
    Y,Y + 6 AT X
5085 REM F
5088 REIURN
5090 HLIN X + 7,X + 10 AT Y + 2: HLIN X + 7,X + 10 AT
    Y + 4: HLIN X + 7,X + 10 AT Y + 6: VLIN Y + 2,Y +
    6 AT X + 10: VLIN Y + 4,Y + 6 AT X + 7
5095 REM LA
5098 REIURN
5100 VLIN Y,Y + 6 AT X: VLIN Y,Y + 6 AT X + 4: VLIN
    Y + l,Y + 2 AT X + l: PLOT X + 2,Y + 3: VLIN Y +
    l,Y + 2 AT X + 3
5105 REM M
5108 REIURN
5110 HLIN X + 6,X + 9 AT Y + 4: HLIN X + 6,X + 9 AT
    Y + 6: HLIN X + 6,X + 9 AT Y + 9: VLINN Y + 4,Y +
    6 AT X + 6: VLIN Y + 4,Y + 9 AT X + 9
5115 REM IG
5118 REIURN
5l20 HLIN X,X + 4 AT Y: HLIN X,X + 4 AT Y + 3: VLIN
    Y,Y + 6 AT X: VLIN Y,Y + 6 AT X + 4: VLIN Y,Y +
    6 AT X + 6
5125 REM A LL
5128 RETURN
5l30 HLIN X,X + 4 AT Y: HLIN X,X + 4 AT Y + 3: HLIN
    X,X + 4 AT Y + 6: VLIN Y,Y + 3 AT X: VLIN Y + 5,
```

```
    Y + 6 AT X: VLIN Y,Y + l AT X + 4: VLIN Y + 3,Y +
    AT X + 4
5135 REM S
5138 REIURN
5140 PLOT X + 6,Y + l: VLIN Y + 3,Y + 6 AT X + 6
5145 REM L I
5 1 4 8 ~ R E T U R N
5150 HLIN X,X + 4 AT Y: HLIN X,X + 4 AT Y + 3: VLIN
    Y,Y + 6 AT X: VLIN Y,Y + 3 AT X + 4
5155 REM P
5158 REIURN
5l60 HLIN X,X + 4 AT Y: HLIN X,X + 4 AT Y + 6: VLIN
    Y,Y + 6 AT X: PLOT X + 4,Y + l: PLOT X + 4,Y + 5
    : VLIN Y,Y + 6 AT X + 6
5165 RFM C L L
5168 REIURN
5l70 HLIN X,X + 4 AT Y: HLIN X,X + 4 AT Y + 3: VLIN
    Y,Y + 6 AT X: VLIN Y,Y + 6 AT X + 4: VLIN Y + 2,
    Y + 6 AT X + 6: HLIN X + 6,X + 8 AT Y + 3
5175 REM A LR
5178 REIURN
5l80 VLIN Y,Y + 6 AT X: PLOT X + 2,Y + 2: PLOT X + 2
    ,Y + 4: HLIN X,X + l AT Y + 3: PLOT X + 3,Y + l:
    PLOT X + 4,Y:: PLOT X + 3,Y + 5: PLOT X + 4,Y +
    6
5185 REM K
5 1 8 8 ~ R E I U R N
5190 HLIN X + 6,X + 9 AT Y + 2: VLIN Y + 2,Y + 6 AT
    X + 6: VLIN Y + 2,Y + 3 AT X + 9: VLIN Y + 5,Y +
    6 AT X + 9: HLIN X + 6,X + 9 AT Y + 6
5195 REM L C
5 1 9 8 ~ R E I U R N
5200 HLIN X,X + 4 AT Y: VLIN Y,Y + 6 AT X + 2
5205 REM T
5208 REIURN
5210 VLIN Y,Y + 4 AT X: VLIN Y,Y + 4 AT X + 4: HLIN
    X + 1,X + 3 AT Y + 5: PLOT X + 2,Y + 6
52l5 REM V
5218 REIURN
5220 VLIN Y + 2,Y + 6 AT X + 6: HLIN X + 6,X + 8 AT
    Y + 3
5225 REM L R
5 2 2 8 \text { REIURN}
5230 VLIN Y + 2,Y + 6 AT X + 6: HLIN X + 7,X + 9 AT
    Y + 3: VLIN Y + 3,Y + 6 AT X + 9
5235 REM L N
5 2 3 8 ~ R E I U R N
5240 HLIN X,X + 4 AT Y: HLIN X,X + 3 AT Y + 3: VLIN
    Y,Y + 6 AT X
5245 REM F
5 2 4 8 ~ R E I U R N
5250 HLIN X + 6,X + 9 AT Y + 2: HLIN X + 6,X + 9 AT
    Y + 6: VLIN Y + 2,Y + 6 AT X + 6: VLIN Y + 2,Y +
    6 AT X + 9
```

5255 RFM L O
5258
REIURN
5260 VLIN $Y+2, Y+6$ AT $X+6: V L I N Y+2, Y+6$ AT
$X+9:$ HLIN X $+6, X+9$ AT $Y+6$
5265 REM L U
5268 RETURN
5270 HLIN X,X + 4 AT Y: HLIN X,X + 4 AT $Y+6:$ PLOT
$X, Y+5:$ PLOT $X+1, Y+4:$ PLOT $X+2, Y+3:$ PLOT
$X+3, Y+2:$ PLOT $X+4, Y+1$
5275 REM Z
5278 REIURN
5280 HLIN X,X +4 AT Y: HLIN X,X +4 AT Y + 6: HLIN
$X+2, X+4$ AT $Y+3:$ VLIN Y, $Y+6$ AT $X: V L I N Y+$
$3, Y+6$ AT $X+4:$ PLOT $X+4, Y+1$
5285 REM G
5288 RETURN
5290 HIIN X,X + 4 AT Y: HLIN X,X + 4 AT Y + 3: VLIN
$Y, Y+6$ AT $X:$ VLIN $Y, Y+6 A T X+4$
5291 REM A
5292 HLIN $X+6, X+9$ AT $Y+2:$ HLIN $X+6, X+9$ AT
$Y+4:$ HLIN $X+6, X+9$ AT $Y+6:$ PLOT $X+6, Y+$
3: PLOT X $+9, Y+5$
5293 REM L S
5298 REIURN
5300 HLIN X,X + 4 AT Y: HLIN X,X + 4 AT $Y+3:$ VLIN
$Y, Y+6$ AT $X:$ VLIN $Y, Y+3$ AT $X+4: V L I N Y, Y+$
6 AT $X+6:$ VLIN $Y+4, Y+6$ AT $X+9:$ HLIN $X+$
$7, X+9 \mathrm{AT} Y+4:$ HLIN $X+7, X+9 \mathrm{AT} Y+6$
5301 PLOT $X+1, Y+4:$ PLOT $X+2, Y+5:$ PLOT $X+3$,
$Y+6$
5305 REM R L B
5308 REIURN
5310 VLIN $Y, Y+3$ AT $X: V L I N Y, Y+3$ AT $X+4:$ HLIN
$\mathrm{X}, \mathrm{X}+4 \mathrm{AT} \mathrm{Y}+3: \mathrm{VLIN} \mathrm{Y}+4, \mathrm{Y}+6 \mathrm{AT} \mathrm{X}+2$
5315 REM Y
5318 REIURN
5320 VLIN $Y, Y+6$ AT $X+6:$ HLIN $X+6, X+9$ AT $Y+$
4: HLIN $X+6, X+9$ AT $Y+6:$ VLIN $Y+4, Y+6$ AT
$X+9$
5325 RETURN
5328 REIURN
5330 HLIN X,X + 4 AT Y: VLIN Y,Y + 6 AT X: HLIN X,X +
4 AT $Y+3:$ VLIN $Y, Y+3$ AT $X+4:$ PLOT X $+1, Y+$
4: PLOT X + 2,Y + 5: PLOT X + 3,Y + 6
5335 REM R
5338 REIURN
5340 VLIN $Y, Y+6$ AT $X+6: \operatorname{VLIN} Y+4, Y+6$ AT $X+$
9: HLIN X $+6, \mathrm{X}+9 \mathrm{AT} \mathrm{Y}+4$
5345 REM L H
5348 REIURN
5350 VLIN Y, $Y+6$ AT $X+9:$ HLIN $X+6, X+9$ AT $Y+$
4: HLIN $X+6, X+9$ AT $Y+6:$ VLIN $Y+4, Y+6$ AT
$X+6$
5355 REM L D

5358 REIURN

5360 HLIN X,X +4 AT Y: HLIN $X, X+4$ AT $Y+3$: VLIN $\mathrm{Y}, \mathrm{Y}+6 \mathrm{AT} \mathrm{X}: \operatorname{VLIN} \mathrm{Y}, \mathrm{Y}+6 \mathrm{AT} \mathrm{X}+4$
5365 REM A
5368 REIURN
6000 COLOR= 15: HLIN 6,9 AT 39: VLIN 37,39 AT 6: VLIN 37,39 AT 9: HLIN 6,9 AT 31: VLIN 29,31 AT 6: VLIN 29,31 AT 9
6010 HLIN 14,21 AT 28: VLIN 26,28 AT 14: VLIN 26,28 AT 21: HLIN 6,9 AT 23: VLIN 21,23 AT 6: VLIN 21,23 AT 9
6020 HLIN 14,21 AT 20: VLIN 18,20 AT 14: VLIN 18,20 AT 2l: HLIN 6,9 AT 16: VLIN 14,16 AT 6: VLIN 14,16 AT 9
6030 HLIN 24,35 AT 13: VLIN 11,13 AT 24: VLIN 11,13 AT 35: HLIN 14,21 AT 10: VLIN 8,10 AT 14: VLIN 8,10 AT 21
$6040 \mathrm{X}=0: \mathrm{Y}=-2:$ GOSUB 5292
$6050 \mathrm{X}=16: \mathrm{Y}=2: \mathrm{HLIN} X, \mathrm{X}+3$ AT Y: HLIN $\mathrm{X}, \mathrm{X}+3$ AT
$Y+2: \operatorname{VLIN} Y, Y+4$ AT X: VLIN Y,Y +2 AT $X+3$
$6060 \mathrm{X}=28: \mathrm{Y}=0:$ HLIN $\mathrm{X}, \mathrm{X}+3 \mathrm{AT} \mathrm{Y}+2:$ HLIN $\mathrm{X}, \mathrm{X}+$ 3 AT $Y+4:$ VLIN $Y+2, Y+4$ AT $X: V L I N Y, Y+4$ AT $X+3$
6080 REM L SPDF
6090 REIURN
7000 VLIN Y + 5,Y + 9 AT X - 2: RETURN : REM 1
7010 FOR D $=0$ TO 4 STEP 2: HLIN X - 4, X - 2 AT Y + 5 + D: NEXT : VLIN Y + 5,Y + 7 AT X - 2: VLIN Y + 7,Y + 9 AT X - 4: REIURN : REM 2
7020 HLIN $X-4, X-2 A T Y+5:$ HLIN $X-4, X-2 A T$ $Y+9:$ HLIN $X-3, X-2$ AT $Y+7:$ VLIN $Y+5, Y+$ 9 AT X - 2: RETURN : RFM 3
7030 VLIN $Y+5, Y+7$ AT $X-4: V L I N Y+5, Y+9$ AT X - 2: HLIN X - 4, X - 2 AT Y + 7: REIURN : REM 4
7040 FOR D $=0$ TO 4 SIEP 2: HLIN X - 4,X - 2 AT Y + 5 + D: NEXT : VLIN Y + 5,Y + 7 AT X - 4: VLIN Y + 7,Y + 9 AT X - 2: REIURN : REM 5
7050 VLIN $Y+5, Y+9$ AT $X-4$: HLIN $X-4, X-2$ AT $\mathrm{Y}+7:$ HLIN $\mathrm{X}-4, \mathrm{X}-2$ AT $\mathrm{Y}+9: \mathrm{VLIN} \mathrm{Y}+7, \mathrm{Y}+$ 9 AT X - 2: REIURN : REM 6
7060 VLIN $Y+5, Y+9$ AT $X-2:$ HLIN $X-4, X-2$ AT Y + 5: REIURN : REM 7
7070 FOR D $=0$ TO 4 STEP 2: HLIN X - 4, X - 2 AT Y + 5 + D: NEXT : FOR D $=0$ TO 2 SIEP 2: VLIN Y + 5, Y + 9 AT X - 2 - D: NEXT : REIURN : REM 8
7080 VLIN $Y+5, Y+7$ AT $X-4:$ VLIN $Y+5, Y+9$ AT X - 2: HLIN X - 4, X - 2 AT $Y+5$: HLIN $X-4, X-$ 2 AT Y + 7: REIURN : REM 9
7090 FOR D $=0$ TO 4 STEP 2: VLIN Y + 5,Y + 9 AT X 6 + D: NEXT : FOR D $=0$ TO 4 STEP 4: HLIN X - 4,
X - 2 AT Y + 5 + D: NEXT : RETURN : REM 10
7100 VLIN $Y+5, Y+9$ AT $X-4:$ VLIN $Y+5, Y+9$ AT
X - 2: REIURN : REM 11

```
8000 X = 22: VLIN Y + 5,Y + 9 AT X - 2:X = 26: REIURN
    : REM l
8010 X = 22: FOR D = 0 TO 4 STEP 2: HLIN X - 4,X - 2 AT
    Y + 5 + D: NEXT : VLIN Y + 5,Y + 7 AT X - 2: VLIN
    Y + 7,Y + 9 AT X - 4:X = 26: REIURN : RFM 2
8020 FOR D = 0 TO 2 STEP 2: VLIN Y + 5,Y + 9 AT X -
    4 + D: NEXT : FOR D = 0 TO 4 STEP 4: HLIN X - 4,
    X - 2 AT Y + 5 + D: NEXT : RETURN : REM 0
8030 X = 24: FOR D = 0 TO 4 SIEP 2: HLIN X - 4,X - 2 AT
    Y + 5 + D: NEXT : VLIN Y + 5,Y + 7 AT X - 2: VLIN
    Y + 7,Y + 9 AT X - 4:X = 26: REIURN : REM
        2
8040 X = 22: HLIN X - 4,X - 2 AT Y + 5: HLIN X - 4,X -
    2 AT Y + 9: HLIN X - 3,X - 2 AT Y + 7: VLIN Y +
    5,Y + 9 AT X - 2:X = 26: REIURN : RFM 3
8050 X = 24: HLIN X - 4,X - 2 AT Y + 5: HLIN X - 4,X -
    2 AT Y + 9: HLIN X - 3,X - 2 AT Y + 7: VLIN Y +
    5,Y + 9 AT X - 2:X = 26: REIURN : REM 3
```

APPENDIX B
COMPUTER EVALUATION
SURVEY INSTRUMENT
Electron Configuration

| | Rank | questions | 1 | and | 2 | using | this scale | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
 High |

1. Overall evaluation of the Electron Configuration program \qquad -
2. I would like to see more use of Microcomputer programs in lecture \qquad -

COMMENTS:
3. Was the design of the program such that you could clearly understand what it was trying to represent?
4. Did the graphic simulation aid in your understanding of the concepts?
5. Do you feel that this type of program can be effective when used in conjunction with the class lecture format?
6. Would you prefer having access to a microcomputer such that you could interact with it individually rather than through someone else?

APPENDIX C

DEFINITION OF TERMS

1. Basic - one of the high-level computer languages.
2. Computer - digital computer, one that performs its task using discrete signals.
3. Courseware - interactive educational computer programs.
4. Electron Configuration - a statement of the populations of the electronic energy sublevels in an atom.
5. Floppy disk - disk make of plastic used for memory storage.
6. Hardware - physical devices that perform the input, output, arithmetic-logic, storage and control functions.
7. Memory - storage of a computer $\left(1 \mathrm{~K}=2^{10}=1024\right.$; 1 byte- 8 bits).
8. Microcomputer - a microprocessor combined with other microelectric circuit components that provide timing, storage or memory, input, output, and other functions.
9. Microprocessor - central processing unit of a computer, miniaturized to fit a silicon chip.
10. Software - collection of programs available to the computer such as compilers, text editors, graphic package and interpreters.

N
 VITA
 Betty McNeil Branstetter
 Candidate for the Degree of
 Master of Science

Thesis: A GRAPHIC SIMULATION PROGRAM FOR MICROCOMPUTERS, ELECTRON CONFIGURATION

Major Field: Curriculum and Instruction
Biographical:
Personal Data: Born in Lawton, Oklahoma, January 24, 1929, the daughter of Mr. and Mrs. C. R. McNeil; Married Max H. Branstetter, 1952; four children: Roy (1956), Beth (1962), Karen (1965), Rex (1967).

Education: Graduated from Lawton High School, Lawton, Oklahoma, in May, 1946; attended Cameron College, 1946-48; received Bachelor of Science in Education degree in Biology from Southwestern Oklahoma State University, 1950; received Bachelor of Science degree in Public Health Services from Central State University, l97l; completed requirements for Master of Science degree at Oklahoma State University, December, 1980.

Professional Experience: High school science teacher for 13 years, 1950-52 (Oklahoma), 1959-61 (Missouri), 1962-64 (Illinois), 1971-80 (Oklahoma); instructor for adult education, 1966 and 1971; instructor for Emergency Medical Self-help, 1964-65, Illinois; Embalming and Funeral Service In-Service and Practicum, 1969-70, Oklahoma; graduate teaching assistant, 1978-79, General Chemistry Department, Oklahoma State University.

