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Abstract

Floods are one of the most devastating natural hazards across the world, accounting for
roughly one third of all global geophysical hazards. The ability to predict and characterize
floods is increasingly important, and in order to achieve effective flash flood characteri-
zation (due to their short lead times and distinct localization), the need to account for
rainfall spatial variability arises.

Spatial precipitiation moments offer a concise yet resourceful set of abstractions, which
condense and expose intrinsic geophysical interactions between rainfall and basin. By
leveraging the richness of these dimensionless statistics, this research aims to construct
supervised machine learning models which could offer a probabilistic characterization of
flood conditions over gauged locations accross the Contigous United States (CONUS).
These models are trained on a real, historical, event-based flood database, which contains
precipitation moment data (pre-generated), as well as hydrological, morphological and
bioclimatic information for each of the flooding events, and the basins over which they
occurred.

Three different machine lerning techniques (MARS, Random Forest and Support Vec-
tor Machines ) are used to characterize and explore three different aspects of floods: basin
response time (lag time), flood stage threshold exceedance and the moment of relative
peak discharge - a proposed indicator which describes the peak streamflow behavior of
a stream with respect to the duration of the flooding event. Both classification and
regression models are built for these responses using the same techniques. Variable im-
portance analysis is also performed in order to determine the relevat factors that influence
each of the modeled response. A probabilistic characterization of flood stage threshold
exceedance is also achieved by extracting classification probabilities from these models,
which are presented and analyzed by using reliability diagrams and other statistical tools.
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Chapter 1

Introduction

Floods are one of the most devastating natural hazards that occur across all of our planet,
and they accounting for roughly one third of all global geophysical hazards. Flash floods
are floods that follow the causative storm event in a short period of time, with water levels
in the drainage network reaching a crest within minutes to a few hours after the onset
of the rain event. These stand out to be one of the most dangerous phenomena, as they
leave extremely short times for warnings to be emitted [1]. In the United States, $2.86
billion dollars of direct flood damages occurred in 2014 alone, there were 55 flood-related
deaths, of which 39 where flash-flood related [2].

The ability to predict and characterize floods is increasingly important, and in order
to achieve effective flash flood characterizations a better understanding of contributing
factors must be achieved. This has been approached by incorporating new techniques,
sources of information and new representations of data which concisely describe complex
geophysical, meteorological and climatological processes into existing hydrological models
[3] [4] [5] [6] [7]. However, all of these approaches have strictly relied on pre-conceived
conceptual, mathematical or even speculative relationships between the phenomena in
question and the available data. In the age of Big Data, where computing resources
are made available (nearly) instantaneously and Machine Learning has never been more
within our reach, a data-driven approach towards the characterization of floods can per-
haps provide an alternative, suitable way of approaching these types of problem. Not
only providing modeling robustness and efficiency (i.e. when making predictions), but
also allowing for a different data-centric perspective when exploring the underlying rela-
tionships which characterize flooding. Ultimately, these relationships can (and should)
be compared and contrasted with the systematically-built models, that Hydrologists and
Hydrometeorologists employ regularly. For these reasons, the proposal for these data-
driven approaches should not exclusively be result oriented (i.e. black-boxes), but also
-and most importantly- process oriented, so that experts and interested actors are able
to understand how these phenomena are characterized from the input data.

The current study is rooted in the need of incorporating the spatial variability of
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rainfall into hydrological models, in order to account for the spatially-distributed interac-
tions of terrain and precipitation [3] [4]. Rainfall is a highly heterogeneous process both
spatially and temporally, but through Spatial Moments of rainfall, precipitation spatial
variability can be described through concise quantities, that can be easily assimilated into
hydrological models to better characterize hydrologic phenomena (such as flooding). The
present approach aims to be significant not only in the exploration and proposal of alter-
natives for characterizing floods by incorporating said precipitation moments, but also in
doing so in a data-driven way.

The notion of watershed (basin, or catchment) is the basic unit used in hydrology, to
denote a finite, contiguous area, such that the net rainfall or runoff over that area will
contribute water to its outlet (see Figure 1.1). Bounds for a given basin can be defined
by topography, where runoff will travel from higher to lower elevation, and rainfall that
falls outside of these boundary will not contribute to runoff at the outlet [8].

Figure 1.1: A general diagram of a watershed or basin [9]

Gauge stations are usually placed at these outlets to register the behavior of a stream,
as it responds to the hydrologic processes affecting the watershed itself. They typically
record data regarding the stream’s stage (water level), velocity and discharge (streamflow).
By using meteorological RADAR data as well as rain gauge networks hydrologists are
able to measure and estimate the spatial and temporal distribution of precipitation over
a basin, and then perform hydrological analyses of how the water inputs over the basin
(i.e. precipitation) relate to the outputs being measured at the outlet. This can be
represented by plotting these data over time, which generates a hydrograph. Typically, a
streamflow hydrograph is presented in conjunction with the basin-averaged precipitation
estimation data (hyetograph), which allows to appreciate the properties of this input-
output relationship over time. An example of this is shown in Figure 1.2.
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Figure 1.2: Parts and properties of a typical streamflow hydrograph [10]

The time difference between the precipitation’s center of mass to the peak discharge
(Q) in the streamflow response is defined as the lag time. This property of catchments
is classically modeled as a relationship of basin characteristics, most prominently the
catchment area [8]. Characterization of Lag Time is of interest in hydrology given its
implications during extreme or heavy rainfall events which may trigger catastrophic flash
floods downstream, as it is generally an indicator of lead time for issuing warnings, evac-
uation and risk assessment planning (among other applications).

Among gauged basins maintained by the United States Geological Survey (USGS),
some have flood stage definitions defined and maintained by the National Weather Ser-
vice (NWS). Flood stage is the level at which inundation is caused on areas that are not
normally covered by water [11]. These are heights of water level associated with flooding
conditions at a given channel, defined by historical records. Four flood stage levels are
defined: ACTION, MINOR, MODERATE and MAJOR. These all refer to the potential
severity of flooding associated with each threshold. Any value below the ACTION thresh-
old is not considered as flood stage. Figure 1.3 shows an example of these flood stage
definitions can be seen from a hydrograph taken from the NWS Advanced Hydrologic
Prediction Service website, for a Mississippi River gauge in Baton Rouge, LA.
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Figure 1.3: USGS Gauge Data: Stage of the Mississippi River at Reserve, Jul9-Jul15 2019
observations with NWS flood stage thresholds [12]

Characterizing flood stage conditions across the US is of interest as well, given that
these are directly related to impacts in surrounding areas. This could dramatically im-
prove a forecaster’s abilities to issue more precise flood watches, warnings and evacuations,
as well as improve flood inundation mapping efforts at ungauged locations. Additionally,
providing probabilistic information for a given event of exceeding these threshold levels
could dramatically improve guidance for forecasters, as well as risk managers and public
service officials.

Rainfall estimation and measurement techniques over basins have evolved over time
from simple measuring buckets into rain gauges, and from rain gauge networks into auto-
mated distributed RADAR networks. This evolution has brought the ability to measure
not only the temporal variability of rainfall, but also its spatial variability. Instead of re-
lying on a handful of geographically distributed data-points over which rainfall data was
measured, averaged and assumed to be uniformly distributed across the terrain, modern
RADAR technology now enables us to capture sub-kilometer gridded rainfall fields.

The spatial distribution of hydrology in general has been a continuous evolution pro-
cess during the past decades. Distributed models were designed as the first approach
to integrate spatially distributed information (elevation, soil moisture, land use, etc.).
Slowly, as our ability to capture spatial variability of rainfall improved over time, these
’lumped’ (spatially aggregated/averaged) hydrologic models became ’distributed’ hydro-
logic models in a way. However, the process of transferring the effects of a distributed
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rainfall field into a streamflow response means that modeling efforts have been refocused
over distributed runoff-generation processes and water transfer (routing) processes within
watersheds. This is by all means a logical and coherent effort in hydrologic modeling,
however, as the need for precision increases, the capability for increased resolution and
sampling increases too; this means that modeling these processes accurately becomes a
cumbersome challenge.

Because of this, ways to characterize the spatial distribution of precipitation in a com-
prehensive and usable way were sought after. Ideally, these new characterizations would
allow existing hydrological models to account for rainfall spatial variability while keeping
the assimilation process simple, as well as improving model accuracy and performance.
Examples of these were proposed by Smith et al. [3], Zoccatelli et al. [4] [5], Douinot et
al. [6] and Emmanuel et al. [7]. In essence, these measures of spatial variability relate to
characteristics of a storm event over a catchment. Figure 1.4 shows the interpretation of
Zoccatelli’s δ1 and δ2 spatial moments of catchment rainfall, as presented by Douinot et
al. [6].

Figure 1.4: Spatial moments of catchment rainfall: range of values and meaning of δ1 and
δ2 [6]

As an example of one of these moments of catchment-scale precipitation, Zoccatelli’s
first moment of spatial rainfall states that: when δ1 < 1 the storm cell is localized down-
stream from the basin’s centroid (near the outlet), and when δ1 > 1 the storm cell is
localized upstream of the basin’s centroid (near the head waters). As can be seen, these
dimensionless statistics can be quite powerful in characterizing the behavior of a storm
event, by reducing complex spatial interactions to a single indicator. Several of these
quantities have been proposed by different authors [3] [4] [5] [7], and several of them were
included in the working dataset for this research, in hopes of leveraging their usefulness
to represent complex behaviors in a rich, concise way. Precipitation moments will be cov-
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ered in more detail on the next chapter, which includes a thorough review of the relevant
literature.

The USGS has over 10,000 gauge stations located all across the CONUS, each corre-
sponding to a given catchment or basin. These gauges report data pertaining streamflow
(discharge), water level (stage) and velocity(surface, or mean channel velocity), which is
readily available online and through various distribution services. In addition to gauge
information, morphological, bioclimatic and climatological data is available for most of
the gauged basins occupying the CONUS. Observations of NEXRAD-based radar rainfall
rates are available through NOAA’s Multi-RADAR Multi-Sensor project, as well as a com-
pilation of Flash Flood events made available through NOAA’s Flooded Locations And
Simulated Hydrographs (FLASH) project. Taking advantage of this abundance of data, a
Spatial Precipitation Moment Flood event database was constructed by Dr. Manabendra
Saharia, Dr. Pierre E. Kirstetter and several other collaborators, which integrated data
from these aforementioned diverse resources, as well as others.

This dataset includes an enormous amount of attributes that describe historical pre-
cipitation events over various catchments across the CONUS, most of which triggered a
flooding event. This dataset includes storm, streamflow and catchment information for
each of the flooding events, including event lag times, peak flows and also each basin’s
USGS flood stage thresholds. Additionally, Dr. Saharia has computed an assortment of
catchment-scale precipitation moments for each of the events.

Given the existence of this comprehensive dataset, and taking into consideration the
matters discussed previously in this chapter, the following research questions arise: can
an effective characterization of floods be achieved by using machine learning techniques
and incorporating catchment-scale precipitation moments? If so: 1) can the relevant
factors that characterize floods be determined? and 2) can distinct flooding conditions
be characterized probabilistically?

In order to answer these questions and fulfill these objectives, this project explores
the construction of supervised machine learning models that could offer a probabilistic
characterization of flood conditions over gauged locations across the CONUS. Conse-
quently, variable importance analyses were performed in order to determine the factors
that influence flood characterization. Given that these models were trained and tested
on the available real, historical, event-based rainfall moments, hydrological, meteorologi-
cal, climatological and morphological data, it is expected that they should also be easily
transferable to ungauged locations in future works.

The characterization of floods is by no means a novel idea, and it has transformed
the way hydrology is applied in real life everyday. However, enhancing, building on top
of these previous efforts, and incorporating new technologies into these types of problem
will surely continue having enormous impacts on existing real-time hydrological modeling
systems.
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Chapter 2

Catchment-Scale Precipitation
Moments

Lumped parameter hydrological models provide punctual outputs (usually at the basin’s
outlet), while distributed hydrologic modeling approaches offer the opportunity to model
processes and discharge at points upstream the basin outlet. As mentioned before, Hy-
drology has struggled with the benefits and compromises of both alternatives for several
decades.

In Smith et al. [3], the authors analyze observed rainfall and streamflow to describe
the spatial variability of rainfall and corresponding basin outflow response in order to
make inferences about model applicability (concerning lumped vs distributed models). It
should be noted that the effects of model error as well as data and parameter uncertainty
were intentionally excluded from this study.

The authors recognize that by accounting for spatial variability of rainfall and physical
features within the basin (i.e. soil composition, morphology, etc.), better simulations can
be achieved at the outlet. However, the nonlinearities and computational elements in
distributed hydrological models could propagate and magnify errors when using high-
resolution data. For this reason, distributed models can underperform when compared
to a well-calibrated lumped model in cases of uniform precipitation. This means that
distributed approached may not always yield improved outlet simulations.

The authors based their work on previous studies which evidenced that, for some cases,
runoff volumes and peak flows can vary considerably between spatially uniform rainfall
and spatially distributed rainfall patterns. However, they do recognize that there are
circumstances where spatial variability might not be great enough to produce variability
on the observed basin response. This can occur due to intrinsic smoothing and dampening
properties of basins, as well as different types of storm event (see Figure 2.1). Convective
storms are characterized by tall, towering cloud formations, product of intense heating
at ground level, which can yield intense and highly focalized rainfall. Stratiform storms
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exhibit layered, extensively horizontal cloud formations which usually present continuous
and uniformly intense rainfall.

Figure 2.1: Effect of basin filtering on outflow response [3]

Their main hypothesis is that Basins characterized by (1) marked spatial variability
in precipitation, and (2) less of a filtering effect of the input rainfall signal will show
improved outlet simulations from distributed versus lumped models. In order to test this,
the authors propose several indices for qualifying the observed basin outflow sensitivity,
and spatially variable precipitation. These diagnostic indicators, which are derived from
the observed data, allowed to formulate inferences to assess the dynamic characteristics
of a basin’s response.

First, the index of rainfall location IL quantifies the generalized location of storms
over the basin: if IL < 1, rainfall is localized closer to the basin’s outlet; if IL > 1 the
center of rainfall is located closer to the headwaters of the basin; if IL = 1 indicates that
rainfall is concentrated around the basin’s center of mass (centroid). Secondly, the index
of general rainfall variability Iσ quantifies the instrastorm rainfall variability for a given
event.

In order to characterize and quantify measures of basin dampening, these indices
were paired with extensive outflow hydrograph variability analysis using signal processing
techniques. This variability was defined was defined in terms of filtering or dampening
performed on the input rainfall signal, as measured in the basins outlet. These effects
are portrayed in Figure 2.1, as the transformation of a input signal into an output signal,
in which the shape of the resulting hydrograph is product of the combined effects of
all of the basin’s processes. Additionally, the effects of rainfall spatial variability are
implicitly present in the transformation. Ultimately, this study was able to concretely tie
and relate the gains in performance of distributed models over lumped models to specific
characteristics in each basin, and spatial properties of precipitation events which took
place in these basins.

In Zoccatelli et al. [4], the authors present a thorough analytical approach towards
further characterizing spatial variability of rainfall for flash flood modeling. Their ap-
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proach is based concretely on the spatial variability of rainfall-excess, measured over the
distance from certain point in the catchment to the outlet (flow distance), along the flow
direction. This approach derives from previously existing efforts referred to as the WS
method, which was developed by Woods and Sivapalan (1999). The WS Method revealed
that the impact of spatial variability of rainfall excess on simulated hydrograph shapes
is controlled by the averaging of space-time rainfall excess fields across locations with
equal flow distances. These results suggest that the sensitivity of hydrograph shapes to
rainfall excess spatial variability is related to the mean and variance (first two statistical
moments) of the distribution of rainfall-excess weighted flow distance.

The authors modify the WS methodology framework to derive two spatial rainfall
statistics that condense the rainfall spatial patterns, aiming to improve runoff modeling.
Fist, the normalized time distance θ1 provides a notion of whether the spatial distribution
of rainfall is concentrated towards the outlet (θ1 < 1), the headwaters (θ1 > 1), or the
centroid of the catchment (θ1 = 1) (case which can be also understood as uniformly
distributed rainfall). This is achieved by comparing the mean flow routing time with the
averaged time it takes to route runoff from the basin’s centroid to the outlet (similarly as
proposed by Smith et al. [3]). Secondly, the normalized time dispersion θ2 expresses how
the rainfall is concentrated over the catchment: unimodal spatial distribution (rainfall
localized somewhere over the catchment, θ2 < 1), bimodal spatial distribution (rainfall
localized both at headwaters and outlet, θ2 < 1), uniform spatial distribution (θ2 = 1).
This is expressed as the ratio between the variances of the flow routing time and the travel
time.

Having readily prepared and analyzed the spatial variability indices, the authors per-
formed an analysis of runoff model sensitivity to spatial rainfall variability. First, a base-
line was established by computing the indices by assuming a uniform runoff coefficient,
which was later compared to the ones obtained on the event-accumulated rainfall fields.
These results showed that both statistics (θ1 and θ2) show a good correlation, and they
seem to behave in a consistent way across most of the data. Subsequently, the effects
of neglecting the spatial distribution of rainfall were tested by simulating each case with
the actual rainfall and contrasting the results with simulations using spatially uniform
precipitations.

Overall results show that neglecting spatial variability results in a considerable loss of
simulation efficiency, which elucidates some of the influence of rainfall spatial variability
on runoff modeling. An additional analysis was performed on the above results, by using
a general rainfall spatial variability index Iσ, based on the one proposed by Smith et al.
[3].

In Zoccatelli et al. [5], the authors build upon previous work [4] in order to redefine
and describe a set of spatial rainfall statistics which describe rainfall spatial organization
in terms of concentration and dispersion, as a function of the distance measured along
the flow routing coordinate. Spatial organization is understood as the systematic spatial
variation of rainfall with respect to certain basin geomorphic properties which directly
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control the runoff response. This updated approach uses rainfall spatial organization
measured along the river network by using the flow distance coordinate: distance measured
along the runoff flow path from a given point to the outlet [3] [4].

Still based on the WS methodology, but now including the developments by Viglione
etc. (2010), the authors reformulate the spatial moments of catchment rainfall, aiming
to provide a synthesis of the the interaction between the space-time variation of rainfall
and basin morphologic properties (runoff coefficient, hillslope and channel routing, etc.),
as well as quantifying their impact (delay and spread) on the resulting flood hydrograph.
Firstly, the moments of catchment rainfall (p0, p1, p2) and flow distance (g1 and g2) are
introduced (smimilar to θ1 and θ2 used in [4]) as means for calculating δ1 and δ2. Similar
and familiar formulations for δ1 and δ2 are presented as scaled moments of catchment
rainfall, with the distinction of clarifying that values of δ2 > 1 (which are rare) indicate
cases of multimodal rainfall distributions. Refer to Figure 1.4 for an illustration of these
two indices. Additionally, temporally-averaged (event-based) version of these moments
are introduced: ∆1 and ∆2.

The statistic ∆1 measures the hydrograph timing shift, relative to the position of the
rainfall centroid over the catchment. This statistics is also an indicator of mean time shift
between hydrographs produced using the actual rainfall pattern for an event compared to
the uniform precipitation baseline. Less-than-one values of ∆1 intricate an anticipation of
the mean hydrograph time with respect to the case of spatially uniform data; values larger
than 1 represent the opposite. ∆2 represent the ratio between the differential variance in
runoff timing generated by rainfall spatial distribution and the variance of the catchment
response time. Values of ∆2 equal to 1 implies spatially uniform rainfall, and values lower
1 indicate that the precipitation is concentrated somewhere over the basin. Cases for
values greater than 1 are rare, and indicate a bimodal (or multimodal) concentration of
the rainfall (both at the headwaters and the outlet). As stated by the authors, in general
the parameter ∆1 is expected to influence the runoff timing, while ∆2 affects the shape
of the hydrograph and the value of the flood peak.

Ultimately, these renewed spatial rainfall statistics assess the dependence of the catch-
ment flood response on the space-time interaction between rainfall and the spatial orga-
nization of catchment flow pathways. The first two spatial moments (δ1 and δ2) allowed
to quantify the impact of rainfall spatial organization on two fundamental properties of
the flood hydrograph: timing and amplitude. They also effectively allowed to describe
the degree of spatial organization and quantify the relevance of rainfall spatial variability
(in terms of timing error), which impact runoff modeling and flood modeling respectively.
The main strength of this approach was a better understanding of the linkages between
the characteristics of rainfall spatial patterns with the shape and magnitude of the catch-
ment flood response, which was applicable across basins and scales (due to the scaling of
moments).

In Douinot et al., the authors present a new approach based on the Flash Flood
Guidance (FFG) methodology (Mogil et al., 1978) which is widely used for flash flood
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forecasting throughout the US. It’s defined as ”the threshold rainfall [L] over accumulation
periods of 1, 3 and 6 hours required to initiate flooding on small streams that respond
to rainfall within a few hours” (Georgakakos, 1986; Sweeney, 1992). The term flash flood
refers to sudden floods having high peak charges in a short response time. This short
and rapid flood response is usually associated with watershed characteristics such as
small catchments or steep slopes. Generally, the rapidity of these hydrological responses
(within a few hours, up to a day) reduces the forecast time, and short lead times often
prevent real-time observations of discharge and rainfall from being accurately assimilated
into models. Therefore, forecasting methods should be achieved over small scales in both
space and time.

The authors propose a new method for forecasting flash floods, named Spatialized
Flash Flood Guidance Method (SFFG), aiming to improve the performance of the cur-
rent FFG method while retaining its operational simplicity. Given that distributed hy-
drological models had shown significant improvements after including the local aspects of
precipitation, a physically-based distributed hydrological model was used for both FFG
and SFFG. In order to incorporate spatial information from rainfall data, the authors
resort to Zoccatelli’s spatial moments of precipitation [5] (δ1, δ2), which provide a de-
scription of the interaction between spatial rainfall organization and basin morphology.
It should be noted that the authors took the liberty to rewrite Zoccatelli’s formulation in
a simpler, more straightforward way by redefining the flow distance average.

In order to calculate threshold intensities that integrate rainfall spatial information,
rainfall forcing is was assumed to be spatially uniform anymore. This newly defined
SFFG method accounted for global spatial variability of forecasted storms through δ1 and
δ2 (it should be noted that the temporal dimension is ignored). This way, rainfall spatial
distribution with specific (δ1, δ2) values were used to force the distributed hydrologic
model and calculate threshold intensities. Overall, the spatial distribution of rainfall
events was found to have a significant effect on the calculation of threshold intensities,
and flash flood forecasting was found to be sensitive to upstream-downstream location
of storms. This was consistent with Zoccatelli et al. [4] [5] and other authors which
show the significant influence of δ1) on flash and moderate flood response timing. The
spreading index δ2) was found to have a major effect on the amplitude of the flood, but
almost negligible effects in terms of the timing of the hydrological response; so it doesn’t
significantly impact flood rising alerts. Also, the authors highlight that the interaction
between the spatial distribution of rainfall and the spatial distribution of the storage
capacity of the catchment could lead to either an attenuation or an amplification of the
hydrological response, as stated by Smith et al. [3].

In conclusion, the proposed SFFG method provided encouraging improvements when
compared with the FFG method: it offered the potential to analyze the sensitivity of hy-
drological responses to the spatial characteristics of the precipitation events as a function
of the forecast lead time. However, any improvement in calculating the threshold intensity
using SFFG should not be taken for granted, given that the effect of spatial variability of
rainfall events was only significant for events of large amplitude. Factors other than the
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spatial distribution of rainfall probably influenced the results, and thus the effect of its
interaction with other spatial distributions such as soil properties should be taken into
account.

In Emmanuel et al. [7], the authors begin by acknowledging that the link between
rainfall space-time variability and hydrological modeling is still an open issue in hydrology.
Studies have compared the performance of hydrological models obtained through several
rainfall estimation scenarios which include only rain gauge data, weather radar data or
a combination of both. By doing so, different levels of rainfall spatial variability are
corresponded, however, the influence of rainfall measurement errors are also indirectly
introduced. Even though, most of these studies confirm the benefit of a spatially-detailed
representation of adjusted radar images (bias correction using rain gauges), the influence
of rainfall measurement errors on runoff modeling can still be significant.

The impact of rainfall spatial variability on runoff modeling at the catchment scale
depends on the combined influence of several factors: rainfall patterns, catchment char-
acteristics, and runoff generation processes. Studies on the topic (like the ones mentioned
above) generally compare observed hydrographs to modeled hydrographs, which were ob-
tained by forcing (precipitation through) a distributed hydrologic model using various
spatial resolutions (high resolution radar images to catchment-averaged rainfall), have
provided results and conclusions which shown contrasts and differences among them.
These studies have also highlighted the difficulties involved in evaluating said influence.
These include rainfall and outflow measurement errors, as well as modeling errors which
can not be distinguished from the influence of spatial variability.

The authors state that by relying on a simulation approach can be helpful in: (1)
deriving a better understanding of the way rainfall spatial variability propagates in the
catchment; (2) exploring various and contrasted situations and controlling catchment
characteristics; and (3) proposing a procedure to evaluate the influence of rainfall spatial
variability on runoff modeling at the catchment-scale. More importantly, by proceeding by
simulation would allow to control and eliminate error sources intrinsically present within
streamflow and precipitation measurements. For this purpose, a simulation chain was de-
veloped, capable of simulating rainfall, stream networks and model hydrological processes
product of their interaction (distributed hydrological model). Using this simulation chain,
a simulated event database was created, which grouped contrasted simulation scenarios
composed from combinations of four different simulated catchments and 6 distinct rainfall
configurations.

In this study, the authors use this simulation chain-generated dataset to test the
pertinence of the spatial variability indices proposed by Zoccatelli et al. (∆1,∆2,) [4] [5],
and improve upon them. Results confirm the findings exposed by Zoccatelli et al., in
that for a given catchment, the influence of spatial variability of precipitation on basin
response depends on the contrast of rainfall amount between upstream and downstream
areas. Furthermore, given these results, the authors propose two new additional indices
to represent rainfall spatial organization relative to the distance along the stream network
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from the outlet.

For these new moments, they relied on the concept of a width function w(x), usually
defined as the portion of the basin area at flow distance x of the outlet. A new precipitation
width function wp(x) was proposed, as the proportion of rainfall on the catchment falling
at a flow distance x from the outlet. Thus, by comparing w(x) to wp(x) the influence of
rainfall spatial organization on basin’s response could be assessed. For this comparison,
the authors propose to compare cumulative distribution functions of these width functions
by using two criteria: the first index vertical gap (V G), is the absolute value of the
maximum vertical difference between w(x) and wp(x); the second index horizontal gap
(HG), is the corresponding difference between w(x) and wp(x), divided by the length
of the longest hydrological path of the catchment. V G values close to 0 indicate weak
spatial rainfall variability over the catchment, and the higher these values are, the more
concentrated the rainfall is over a small portion of the catchment. HG values close to 0
indicate that rainfall is either distributed close to the catchment centroid or distributed
uniformly. Values of HG other than 0 indicate rainfall concentration downstream (HG <
0) or upstream (HG > 0) of the catchment centroid. Figure 2.2 illustrates the comparison
of w(x) and wp(x) accumulations, showing the presence of V G and HG.

Figure 2.2: Distribution of wp(x) (black) and w(x) (gray) rainfall accumulations [7]

Ultimately, the authors found that ∆1 and HG appear to be highly correlated, and
∆2 does not appear to hold significant correlation with the other indices. Moreover, a
combination of V G and HG seem to hold strong explanatory power for the catchment
response. Therefore, these indices yet again, through a rigorous simulation approach,
prove useful in characterizing basin response. They also note that these newly proposed
indices may explain better the impact of rainfall variability on hydrograph amplitude,
than the ones proposed by Zoccatelli et al. and Smith et al..

From the above literature review, it can be seen that these catchment-scale precipi-
tation moments have been proven to encapsulate and describe the spatial variability of
rainfall events, as well as their interactions with each catchment. Because of these prop-
erties they are natural candidates for the data-driven approach proposed in this current
study. Table 2.1 describes the spatial moments of catchment rainfall, and associated
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indices included in the Spatial Precipitation Moment Flood event database.

Variable Name Index Source

P0 0-th order moment of catchment precipita-
tion

p0 Smith /
Zoccatelli

P1 1st order moment of catchment precipitation p1 Smith /
Zoccatelli

P2 2nd order moment of catchment precipita-
tion

p2 Smith /
Zoccatelli

G1 1st order moment of flow distance g1 Smith /
Zoccatelli

G2 2nd order moment of flow distance g2 Smith /
Zoccatelli

delta1 Catchment-averaged flow distance with re-
spect to the catchment centroid

∆1 Smith /
Zoccatelli

delta2 Rainfall field dispersion with respect to its
mean position

∆2 Smith /
Zoccatelli

EcartVertical Vertical Gap: vertical difference between
w(x) and wp(x)

V G Emmanuel

EcartHorizontal Horizontal Gap: corresponding difference be-
tween w(x) and wp(x), divided by the length
of the longest hydrological path of the catch-
ment

HG Emmanuel

precip mean Mean of precipitation accumulated during
the centroid lag time period over the acti-
vated basin

µp Saharia &
Kirstetter

precip sdev Standard deviation of precipitation accumu-
lated during the centroid lag time period over
the activated basin

σp Saharia &
Kirstetter

precip skew Skewness of precipitation accumulated dur-
ing the centroid lag time period over the ac-
tivated basin

γp Saharia &
Kirstetter

precip kurt Kurtosis of precipitation accumulated during
the centroid lag time period over the acti-
vated basin

κp Saharia &
Kirstetter

flowdist mean Mean of flow distance of the activated basin µf Saharia &
Kirstetter

flowdist sdev Standard deviation of flow distance of the ac-
tivated basin

σf Saharia &
Kirstetter

flowdist skew Skewness of flow distance of the activated
basin

γf Saharia &
Kirstetter

flowdist kurt Kurtosis of flow distance of the activated
basin

κf Saharia &
Kirstetter
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Table 2.1 continued from previous page

Variable Name Index Source

prod mean Mean of the product of accumulated pre-
cipitation and flow distance of the activated
basin

µpf Saharia &
Kirstetter

prod sdev Standard deviation of the product of accu-
mulated precipitation and flow distance of
the activated basin

σpf Saharia &
Kirstetter

prod skew Skewness of the product of accumulated pre-
cipitation and flow distance of the activated
basin

γpf Saharia &
Kirstetter

prod kurt Kurtosis of the product of accumulated pre-
cipitation and flow distance of the activated
basin

κpf Saharia &
Kirstetter

Table 2.1: Catchment-scale precipitation moments

Notice that within these available catchment-scale precipitation moments, the first
four statistical moments (mean, standard deviation, skewness and kurtosis) were also cal-
culated by Dr. Saharia and Dr. Kirstetter for each event’s precipitation, flow distance
and their product. This was done as an effort to propose precipitation moments that are
comparable and generalizable in a broader sense than the ones proposed by the litera-
ture. Traditional hydrology approaches rely on the characterization of phenomena and
events over a select group of basins, under the assumption that these characterizations
are generalizable to other cases. Conversely, a more generalized, systematic and data-
driven approach is sought after by characterizing spatial variability with these statistical
moments.
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Chapter 3

Methodology

The methodology followed during the execution of this project derives from the Cross-
Industry Standard Process for Data Mining (CRISP-DM) [13]. CRISP-DM is a data-
centric, standardized, iterative knowledge discovery process composed of six distinct
phases: project understanding, data understanding, data preparation, modeling, eval-
uation and deployment. Figure 3.1 shows a descriptive diagram of the process.

The project understanding phase was fulfilled over the first two chapters of this doc-
ument (Introduction and Literature Review), where the problem at hand is introduced
and the project objectives are defined. This chapter will cover the the phases correspond-
ing to data understanding, data preparation and modeling (partially), whereas Chapter
4 will deal with the outcomes of modeling and the evaluation phase. Finally, Chapter
5 will treat aspects of the last CRISP-DM phase (deployment), but the extent of these
conclusions will pertain to the exploratory nature of this study.

3.1 Data

The complete dataset provided by Dr. Manabendra Saharia for the development of this
study was comprised of 21,143 observations for 133 variables. These variables include mor-
phological, bioclimatic, climatological, precipitation and gauge data from 17,491 rainfall
events across 902 different basins over the Contiguous United States (CONUS). Among
these variables, various precipitation moments are present as well, such as the ones pro-
posed by Zocattelli et. al [5] [6] [3] [7], as well as others proposed by Dr. Saharia and
Dr. Pierre E. Kirstetter: first three statistical moments of spatial rainfall distribution,
normalized flow distance and their products (9 in total) for each event. These variables
are all summarized and defined in the Appendix item Table 5.1, and Table 3.1 shows the
names and types of the 57 variables which were selected through the process described in
the remainder of this chapter.
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Figure 3.1: Diagram of the CRISP-DM methodology [14]

VARIABLE TYPE

est area Morphological
rl Morphological
rr Morphological
si Morphological
slopeoutlet Morphological
precip Climatological
temp Climatological
cnbasin Morphological
cncell Morphological
coemcell Morphological
imperviousbasin Morphological
imperviouscell Morphological
kfact Morphological
rockdepth Morphological
rockvolume Morphological
bpartexture Morphological
lbm Morphological
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Table 3.1 continued from previous page

VARIABLE TYPE

ruggedness Morphological
rt Streamflow
mf.event Streamflow
tp Streamflow
activatedBasinPixels Streamflow
totalBasinPixels Morphological
precip mean Precipitation Moment
precip sdev Precipitation Moment
precip skew Precipitation Moment
precip kurt Precipitation Moment
flowdist mean Precipitation Moment
flowdist sdev Precipitation Moment
flowdist skew Precipitation Moment
flowdist kurt Precipitation Moment
prod mean Precipitation Moment
prod sdev Precipitation Moment
prod skew Precipitation Moment
prod kurt Precipitation Moment
G1 Precipitation Moment
G2 Precipitation Moment
delta1 Precipitation Moment
delta2 Precipitation Moment
EcartVertical Precipitation Moment
EcartHorizontal Precipitation Moment
snowpercent Morphological
bio 1 Bioclimatic
bio 2 Bioclimatic
bio 3 Bioclimatic
bio 4 Bioclimatic
bio 7 Bioclimatic
bio 8 Bioclimatic
bio 10 Bioclimatic
bio 11 Bioclimatic
bio 12 Bioclimatic
bio 15 Bioclimatic
bio 17 Bioclimatic
bio 18 Bioclimatic
lag centroid peak event Response
peakq moment Response
exceeds threshold Response

Table 3.1: Selected Variables
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Preliminarily, the target variables of interest in this study were lag time, and each
event’s peak discharge with respect to the flood stage exceedance thresholds previously
established for each basin outlet (action, minor, moderate, major). Lag time was cal-
culated based on MRMS quantitative precipitation estimates (QPE) and USGS stream
gauge observations, and was provided as part of the dataset by Dr. Saharia. The dataset
also contained non-relevant attributes for the objectives of this study (i.e. IDs, flags, tags
and arbitrary control/reference variables) which will be removed. A detailed account of
this process and further dataset preparations will be provided in the following sections.

3.2 Preliminary Variable Selection

The dataset, as originally obtained, contained several variables that were vestigial from a
quality control process performed in the selection of the rainfall events, gauges and basins
affected by these events. These 34 variables were immediately identified upon inspection,
and were removed from the dataset. Table 3.1 lists these variables and their reason for
removal.

Variable Reason for removal

fips ID
gauge ID
lat Non-relevant for model
lon Non-relevant for model
HUC ID
agency Non-relevant for model
gname Non-relevant for model
cc Quality control variable used while constructing the dataset
area Same as usgs area
regulation All basins are ‘regulated’
error Quality Control variable used by the provider of the dataset
ldd Only four distinct values were present in the data; for which

only 3 basins have values different than 0
Group.1 ID
county Non-relevant for model
prop Non-relevant for model
state Non-relevant for model
month Non-relevant for model
year Non-relevant for model
start Not needed, as peak flow and flow duration times are provided

through other variables
end Not needed, as peak flow and flow duration times are provided

through other variables
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Table 3.2 continued from previous page

Variable Reason for removal

fness Categorical; basins with an f.ecdf value higher than 0.5 are
considered ‘Flashy’

eventID ID
gaugenum ID
lag start peak event Non-relevant for model; we’re interested in lag time measured

from the center of mass of rainfall to the peak flow
lag max peak event Non-relevant for model; we’re interested in lag time measured

from the center of mass of rainfall to the peak flow
casetag ID
mean Quality Control variable used by the provider of the dataset
season Categorical and non-relevant for model
maxseason Categorical and non-relevant for model
class Categorical and non-relevant for model
std Quality Control variable used by the provider of the dataset
a1 Quality Control variable used by the provider of the dataset
a12 Quality Control variable used by the provider of the dataset
a2 Quality Control variable used by the provider of the dataset

Table 3.2: Preliminary Variable Removals

After removing these 34 variables, the working dataset was left with 21,143 obser-
vations for 99 variables. Further analysis and feature engineering of these remaining
attributes will be presented in the following sections.

3.3 Feature Engineering

Having retained 99 variables from the original dataset, additional features were con-
structed in order to be explored as target variables. One of them was designed to simplify
the relationship between event peak discharge with respect to the exceedance of flood
thresholds (aiming to characterize the probability of exceeding pre-existing flood stages).
The other proposed feature to be modeled was designed to describe the temporal distri-
bution of peak discharge with respect to its corresponding rainfall event, in a generalized
and comparable way. These two features will be described in detail below.

3.3.1 Moment of Relative Peak Discharge

The Moment of Relative Peak Discharge is proposed and defined as a scalar quantity,
which characterizes whether an rainfall event’s peak discharge occurred near the begin-
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ning, middle or end of the precipitation event. It was conceptualized as:

τpq = 1− (End of Event− Start of Event)− (Time of Peak F low − Start of Event)
(End of Event− Start of Event)

= 1− fd− dt
fd

(3.1)

such that:

{τpq|0 ≤ τpq ≤ 1} =


peak occurs near the beggining of the event, if 0 ≤ τpq ≤ 0.33

peak occurs near the middle of the event, if 0.33 < τpq ≤ 0.66

peak occurs near the end of the event, if 0.66 < τpq ≤ 1

(3.2)

This additional feature peakq moment was computed by using the variables fd (flow
duration) and dt (time difference between the start of the event and peak flow), and then
added back to the dataset. The distribution of resulting peakq moment values is shown
in Figure 3.2.

Figure 3.2: Moment of relative peak discharge histogram
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3.3.2 Exceedance of Flood Stage Thresholds

In order to concisely characterize flood stage threshold exceedance, an encoding for when
the peak discharge of a given event exceeded any of the defined thresholds (action, minor,
moderate, major) for the basin over which it occurred was defined. In order to achieve this,
four temporary new variables were created in the dataset: ‘Exceeded Major‘, ‘Exceeded
Moderate‘, ‘Exceeded Minor‘ and ‘Exceeded Action‘. By assigning a binary value (yes/no,
1/0, True/False) to each of these columns, according to whether a given peak flow exceeded
any of the aforementioned thresholds, and then collapsing these occurrences into a 4-bit
binary number, final ’class’ labels were defined. These allowed to identify for each event
whether any of the flood stage exceedance thresholds were exceeded, as well as identifying
which ones. Table 3.3 illustrates the logic behind this encoding and class labels.

Class
Label

Exceeded
Major

Exceeded
Moderate

Exceeded
Minor

Exceeded
Action

No Exceedance (0) N N N N
Exceeds Action (1) N N N Y
Exceeds Minor (2) N N Y Y

Exceeds Moderate (4) N Y Y Y
Exceeds Major (8) Y Y Y Y

Table 3.3: Flood Stage Exceedance Class Encoding

The histogram in Figure 3.3 shows the class label distribution of the whole working
dataset:
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Figure 3.3: Flood Stage exceedance class label distribution

Lastly, having engineered these two new features, the original and temporal variables
created used to construct them were removed from the dataset. Additionally, after con-
sulting both Dr. Kirstetter and Dr. Saharia on the remaining pool of attributes, 29
additional variables were removed. These are listed in the Appendix Table 5.2.

At this point, the dataset was reduced to 21,143 observations for 78 variables. Both
the Moment of Relative Peak Discharge and the Exceedance of Flood Stage Thresholds
were then selected as target variables (attributes to be modeled from the rest), in addition
to the originally selected Lag Time.

3.4 Data Transformation

The 78 selected variables from the original data set were further explored in terms of
their density distributions. Histograms were plotted for each of the selected attributes,
and their shape was observed and analyzed. Almost all of the available predictors exhib-
ited a pronounced skewness in their distributions, and a wide range of value scales was
observed in them: some variables include negative values, others include a large number
of zeroes, and a few vary within very small or extremely large ranges of values. Because
of the above, the decision to normalize the dataset was made. The normalization process
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was performed in order to maximize the efficiency of modeling techniques and algorithms
which might be sensitive to skewness and scaling [15] [16]. Because of a large presence
of zero-values, a logarithmic transformation was deemed inadequate, and because of the
prominent presence of negative values in some of the predictors, a Box-Cox transformation
would be unsuitable. Fortunately the Yeo-Johnson transformation provides a comparable
method to the Box-Cox or Logarithmic transformations, but allowing for zeros and nega-
tive values to be transformed. The Yeo-Johnson transformation implementation available
in the bestNormalize R package also allowed to compute the optimal parameter (λ) for the
centering and scaling of the data. Each predictors density was then plotted alongside its
optimal transformed counterpart in order to supervise the data standardization process.
Figure 3.4 shows an example of this for the estimated area for each basin.

Figure 3.4: Example of variable standardization using the Yeo-Johnson transformation

It must be noted that the exceeds threshold variable was not transformed given that
it is the only categorical feature in the dataset. Through this transformation and in-
spection process, it was noticed that the variables lbm and lfocf had identical values and
distributions, and therefore one of them was discarded (lfocf ) reducing the number of
variables to 77. Close inspection also revealed that certain variables were not scaled cor-
rectly by the Yeo-Johnson transformation (rr, si, slopeoutlet and precip mean), and thus
were log-transformed first, given that none of them held negative values, and then were
transformed using Yeo-Johnson. This way, all continuous variables were normalized and
held values within an order of magnitude of each other.
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3.5 Correlation Analysis

Efforts were also made to explore the dataset with hopes to reduce the number of pre-
dictors that were to be used for the modeling phase. Two distinct correlation analyses
were performed on the data set: a pairwise correlation analysis between predictors, and
a correlation analysis between each predictor and each of the continuous responses (lag
time, moment of relative peak discharge). The first analysis was performed through the
construction of a correlogram (see Figure 3.5) which allowed to explore the strength of
overall correlations between all feature pairs. It should be noted that the underlying
structure of the correlogram was used to explore the correlations, and not the visualized
diagram itself.

Figure 3.5: Correlogram built for the correlation analysis of the transformed dataset.
Though not really useful for comparing this many variables, it highlights the high dimen-
sionality of the working dataset

3.5.1 Pairwise Correlation

Highly correlated predictors were selected from the correlogram in order to determine if
any of them could be further removed from the data set (given redundant explanatory
power in highly correlated variables)[16] [15]. An absolute correlation of 0.75 was chosen
as a diagnostic indicator of strong linear correlation between features. Strong correlations
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were defined as values between [0.75, 0.80), values between [0.80, 0.90) indicated high
correlation, and values in the range [0.90, 1.00] showed very high correlation. Evaluating
these ranges on the results obtained revealed the following strong correlations:

• bio 17 is very highly correlated to bio 14

• prod sdev is very highly correlated to prod mean

• est area is very highly correlated to rbm

• totalBasinPixels is very highly correlated to rbm

• EcartHorizontal is very highly correlated to delta1

• rdd is very highly correlated to rfocf

• bio 11 is very highly correlated to bio 9

• G1 is very highly correlated to rbm

• precip mean is very highly correlated to prod mean

• rl is very highly correlated to rbm

• G2 is very highly correlated to rbm

• bio 6 is very highly correlated to bio 9

• bio 3 is highly correlated to bio 9

• flowdist mean is highly correlated to rbm

• si is highly correlated to rr

• bio 19 is highly correlated to bio 14

• temp is highly correlated to bio 9

• bio 1 is highly correlated to bio 9

• bio 12 is highly correlated to bio 14

• activatedBasinPixels is highly correlated to flowdist sdev

• bio 16 is highly correlated to precip

• bio 7 is highly correlated to bio 19

• snowpercent is highly correlated to bio 6

• bio 15 is highly correlated to bio 14
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• prod skew is strongly correlated to prod kurt

• precip is strongly correlated to bio 14

• bio 10 is strongly correlated to bio 6

• bio 9 is strongly correlated to bio 19

• bio 13 is strongly correlated to precip

• k is strongly correlated to el

• flowdist sdev is strongly correlated to rbm

• bio 5 is strongly correlated to bio 11

• rt is strongly correlated to tp

• bio 4 is strongly correlated to bio 19

Thus, the following 43 variables became candidates for removal: activatedBasinPixels,
delta1, EcartHorizontal, el, est area, flowdist mean, flowdist sdev, G1, G2, k, precip mean,
precip, prod kurt, prod mean, prod sdev, prod skew, rbm, rdd, rfocf, rl, rr, rt, si, snow-
percent, temp, totalBasinPixels, tp, bio 1, bio 3, bio 4, bio 5, bio 6, bio 7, bio 9, bio 10,
bio 11, bio 12, bio 13, bio 14, bio 15, bio 16, bio 17, bio 19. However, these will only be
removed if they also lack any meaningful correlation with any of the target variables.

3.5.2 Response Correlations

The correlation analysis between the 74 attributes and the two continuous target variables
lag time and the moment of relative peak discharge, was performed by calculating both
Pearson’s and Spearman’s correlation in order to address both linear and ranked correla-
tions. For this correlation analysis, an absolute linear correlation threshold of |0.15| was
defined in order to identify those variables that exhibit a quantifiable correlation, and this
value was set to such a low number given the non-linear nature of these relationships.

Lag Time

Regarding lag time, the analysis revealed that 22 predictors exhibit correlation with
lag centroid peak, which were deemed to hold some explaining power for building models:

• est area: Estimated Area

• rl : River length

27



• rr : Relief ratio

• si : Slope index

• rbm: Basin magnitude, total number of first-order streams

• imperviousbasin: Basin total surface imperviousness

• rt : Recession time; peakq-to-end time

• mf : Basin median Flashiness

• tp: Rise time; start-to-peakq time

• activatedBasinPixels : Total number of 1km x 1km gridcells in a basin that received
rainfall from centroid of precipitation to flow peak

• totalBasinPixels : Total number of 1km x 1km gridcells in a basin

• precip mean: Mean of precipitation accumulated during the centroid lag time period
over the activated basin(part of the basin where rainfall falls)

• precip sdev : Standard deviation of precipitation accumulated during the centroid
lag time period over the activated basin(part of the basin where rainfall falls)

• flowdist mean: Mean of flow distance of the activated basin(part of the basin where
rainfall falls)

• flowdist sdev : Standard deviation of flow distance of the activated basin(part of the
basin where rainfall falls)

• prod mean: Mean of the product of accumulated precipitation and flow distance of
the activated basin(part of the basin where rainfall falls)

• prod sdev : Standard deviation of the product of accumulated precipitation and flow
distance of the activated basin(part of the basin where rainfall falls)

• prod skew : Skewness of the product of accumulated precipitation and flow distance
of the activated basin(part of the basin where rainfall falls)

• G1 : First-order Moment of flow distance (Catchment averaged flow distance)

• G2 : Second-order Moment of flow distance

• delta2 : Rainfall field dispersion (with respect to its mean position) relative to the
dispersion of the flow distances

• EcartVertical : Vertical Gap, the higher the VG value, the more concentrated the
rainfall over a small part of the catchment

These 22 variables become now candidates for selection (being kept instead of dis-
carded due to quantifiable correlation with the response). Figures 3.6 and 3.7 show bar
plots of these correlations, with relationship to the defined thresholds.
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Moment of relative Peak Discharge

The same analysis performed for Lag Time was done for the 74 attributes and peakq moment.
In this case, correlations between predictors and this response appeared to be extremely
low. So low that only the variables tp and rt show any noticeable correlation, given
that they are intrinsically related with how the moment of relative peak discharge was
calculated, as they all describe the flow hydrograph for each event. Thus, they are both
candidates for selection for modeling lag time and flood stage threshold exceedance, but
should be discarded to model peakq moment. Figures 3.8 and 3.9 show bar plots of these
correlations, with relationship to the defined thresholds.

Having performed these correlation tests for all attributes and two of the response
variables, a final analysis of these results lead to the definition of a final predictor set,
which was used in modeling all three target variables.
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3.6 Final Data Selection and Partitioning

3.6.1 Final Predictor Set

Following the above analysis, some of the candidate variables for removal were expunged
from the previously selected attributes: el, k, rdd, rfocf, bio 5, bio 6, bio 9, bio 13, bio 14,
bio 16 and bio 19. The following variables were revindicated by the second correla-
tion analysis: activatedBasinPixels, est area, flowdist mean, flowdist sdev, G1, G2, pre-
cip mean, prod mean, prod sdev, prod skew, rl, rr, rt, si, totalBasinPixels, tp,bio 1, bio 3,
bio 4, bio 7, bio 10, bio 11, bio 12, bio 15 and bio 17. At this point, it should be noted
that totalBasinPixels and est area are very highly correlated, and are analogous. Due to
a mistake in the construction of this final predictor dataset, both of them were kept and
used for modeling and this fact should be kept in mind when analyzing the results in the
next section.

Even though rbm was revindicated by the second correlation analysis, it was expunged
as well because it had high correlation with 7 other variables. Conversely, the following
variables were kept regardless of having been selected for removal and not being revin-
dicated by the second correlation analysis because they are of particular interest to this
study: delta1, EcartHorizontal, precip, prod kurt, snowpercent and temp. Variables that
did not pop up in the correlation analyses were kept as well. These remaining variables
will be further studied through predictor importance analyses to determine how they
contribute to the prediction of the response variables.

After having performed the aforementioned correlation-supported variable selection/re-
moval from the transformed dataset, 57 variables were left in the working dataset (54 pre-
dictors and 3 target variables), which still held 21,143 observations. These 57 variables
are detailed in Table 3.1, shown at the beginning of this chapter.

3.6.2 Data Partitioning

Even though the training processes were carried out implementing cross-validation, an ad-
ditional validation hold-out set was extracted from the working dataset. This allowed for
a robust assessment and validation of the models constructed in this study, by examining
their performance on previously unseen data. Given the large number of instances in the
dataset, an 80-20 split was chosen: 80% of the data was going to be used for training and
testing (using cross-validation) machine learning models, and the remaining 20% was used
as validation of said trained models. This allows for training the best possible model on
a large portion of the data, and also test its performance on a smaller but representative
set of unseen data as a way to establish feasible realistic performance estimates [16] [15].

This split left the training dataset with 16,914 observations, and the validation dataset
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with 4,229 observations. Figures 3.10, 3.11 and 3.12 illustrate the split frequency of
each response variables, for both datasets. These were used to validate that the value
distributions remained similar/representative across both datasets.

Figure 3.10: Training/validation dataset split - distribution of lag time

The Figures 3.10, 3.11 and 3.12 show that the distributions for the studied responses
remained similar for both the training and validation datasets. Therefore, validation
dataset was apt for verifying models built on the training dataset.

3.7 Modeling

Given the multidimensional and non-linear nature of the phenomena this project aims to
model, three non-linear regression approaches based on diverse statistical, computational
and learning techniques were selected to be explored during the modeling phase:

• MARS Multilinear Adaptive Regression Splines - multidimensional, segmented
spline-based method using piecewise linear-like regressions to model non-linear prob-
lems in n-dimensional spaces. It is highly efficient, and it’s able to rank and select
variables that build an optimal model. [16][15][17].
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Figure 3.11: Training/validation dataset split - distribution of moment of relative peak
discharge

• Support Vector Machines non-linear, multidimensional technique, which is a
able of performing classification and regression. Support vectors are critical bound-
ary instances derived from each class of the dataset. This technique relies on the use
of kernel functions to perform higher-order spatial transformations, where high-order
decision boundaries are established in order to separate said support vectors. Re-
quires extensive parameter tuning, but provides accurate results while maintaining
the interpretability of the model (unlike, for example, neural networks)[16][15][17].

• Random Forest versatile bagged decision tree approach, mainly intended for
classification, which can also be used for multidimensional non-linear regression
models. It is highly robust to outliers in the data, as well as scaling and non-
normalized predictors [16][15][17].

Given that both MARS and Random Forest incorporate automatic variable selection,
ranking and importance capabilities, contrasting their outputs will provide an interest-
ing and robust assessment of the relevance of the selected predictors in the dataset, for
characterizing the selected target variables.

Regarding the MARS approach, the models were parameterized to perform an impor-
tance evaluation of the input variables regarding their contribution to the minimization
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Figure 3.12: Training/validation dataset split - distribution of flood stage threshold ex-
ceedance

of errors (or increase in accuracy) of the final model. Training was also configured to
perform a grid search-based parameter tuning for the optimal number of model terms to
retain (from 2 up to 54) in the final model, as well as the optimal degree of interaction
between predictors (from 1 up to 5). Residual plots and training analyses were performed
in order to check the modeled response for possible outliers and other artifacts.

For the random forest approach, variable importance analysis was performed based
on their contribution to the minimization of errors (or decrease in accuracy), but also
to their relevance in making splits (decisions to characterize the response) in each of
the tree’s nodes. The number of trees to train was chosen to be 100 in order to allow
sufficient variability in models throughout the training process, and a tuning grid was
configured to find out what the optimal number of variables available for splitting at each
tree node should be. This bagged tree approach also provided us with sensible metrics on
the amount of variance explained by the model, as a proxy measure of fitness, as well as
Out of Bag error rates.

Finally, regarding the support vector machines approach, a radial basis function kernel
(e−σ|x−C|

2
) was chosen to fit a multidimensional non-linear regression model. During

training, a grid search-based tuning was performed in order to estimate the kernel function
parameters σ and C. Values for both C and σ were allowed to vary greatly, between 0
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and 5.

In the k -fold cross validation approach, the data is randomly divided into k subsets,
such that each time, one of these subsets is used as the test set and the other remaining
k−1 of this sets are put together as the training dataset. After having tested on all of the k
subsets, the error estimation is averaged over all k trials, to estimate the total effectiveness
of a model. This process is usually repeated for an additional n number of times (n repeats
of). All models were trained using 10 repeats of 10-fold cross-validation in order to miti-
gate overfitting on the training dataset (by averaging error estimations for all 10 repeats,
and for each 10 folds), and once trained these were also tested to predict known out-
puts on a validation (holdout, not included in training) dataset. For all three approaches
standard error metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE),
Mean Percentage Error (MPE) and Mean Absolute Percentage Error (MPAE) were calcu-
lated, in order to provide a means for comparing the performance between these different
approaches. Additional modeling metrics such as R2, RSS, Accuracy, Cohen’s Kappa
coefficient and linear Correlation Coefficients are provided as outputs from running and
fitting each model. The following chapter will present the results obtained after training
these models, and their respective performances will be analyzed.

All these models were trained under similar circumstances (similarly-spec’d hardware),
making use of the parallel capabilities of R packages such as caret and its integration with
the doParallel library. All training processes were executed using a pool of 8 dedicated
cores for building each model, and training times are reported in Table 3.3. All models
were trained on the same machine using an Intel R© Xeon R© E5-2687W v4 CPU, with 24
hyper-threaded cores (48 threads) running at a base clock of 3.00GHz.

Target Model
Problem
Type

Training Time
(hours)

Lag Time MARS Regression 2.8
Moment of Relative Peak Discharge MARS Regression 3.6
Flood stage Threshold Exceedance MARS Classification 9.5
Lag Time Random Forest Regression 16.8
Moment of Relative Peak Discharge Random Forest Regression 16.3
Flood stage Threshold Exceedance Random Forest Classification 3.0
Lag Time SVM Regression ∼200
Moment of Relative Peak Discharge SVM Regression ∼230
Flood stage Threshold Exceedance SVM Classification ∼150

Table 3.4: Model training times per target variable

38



Chapter 4

Results

After having analyzed, selected, transformed and partitioned the working dataset, three
different machine learning models (MARS , Random Forest and Support Vector Machines)
were built for each of the three target variables selected and constructed for this study:
Lag Time, Moment of Relative Peak Discharge and Flood Stage Threshold Exceedance.

These models were trained on several servers with similar configurations and specifi-
cations, where more processing power was available, and dedicated scripts were built to
execute and save model states and outputs. These serialized model objects were then
downloaded and unpacked for analysis and validation in a workstation. Training and val-
idation results for each of these models will be presented, analyzed and discussed in this
chapter. A copy of these scripts can be found in the Appendix section Model training
scripts.

4.1 MARS

First, Lag time (lag centroid peak event), the Moment of Relative Peak Discharge (peakq moment)
and the Flood Stage Threshold Exceedance (exceeds threshold) were modeled by fitting
parameter-tuned MARS models, which explored combinations of parameters (degrees of
interaction x number of terms to retain) using a tuning grid. This way, optimal param-
eter settings were found for a model which would minimize error measures, or maximize
performance measures. Additionally, these models were trained using 10 times 10-fold
cross-validation in order to mitigate overfitting on the training dataset, and once trained
these were also tested to predict known outputs on a validation dataset (holdout, not
included in training).
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4.1.1 Lag Time Modeling

This Lag Time model was trained using 8 dedicated cores, and took ∼3 hours to complete.
Parameter tuning was performed from 1 up to 5 degrees of interaction (model terms could
be composed of products of up to 5 predictors), and from 2 up to 54 model terms (up
to one term per predictor). The parameter tuning results during training are shown in
Figure 4.1.

Figure 4.1: MARS: Lag Time Training - Parameter Tuning results

From this tuning grid results, the best fit was found to be a model with up to 39
terms, each with up to 2 degrees of interaction. Root Mean Squared Error was used to
determine the model fitness throughout training. The structure and output of the best
model found is shown in the Appendix on Listing 5.1.

The final model was constructed with 34 terms (17 of which where 2nd degree interac-
tion terms) and using only 18 of of the 52 possible predictors. This model shows R2 values
ranging from 0.42 to 0.43 which indicate an estimate of ∼42% - ∼43% of the variance
explained. MARS also provided a variable importance ranking for this model, which can
be seen in Table 4.1.

Variable nsubsets gcv rss

prod mean 33 100.0 100.0
mf.event 32 70.5 70.9
precip 29 44.0 44.9
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Table 4.1 continued from previous page

Variable nsubsets gcv rss

flowdist mean 26 31.7 33.1
precip sdev 25 30.0 31.4
bio 2 25 30.0 31.4
snowpercent 24 27.6 29.0
prod sdev 23 33.1> 34.2>
precip mean 23 25.7 27.2
bio 18 20 21.3 22.9
rr 17 18.0 19.6
imperviousbasin 17 18.0 19.6
bio 15 17 18.0 19.6
flowdist sdev 14 14.5 16.1
flowdist skew 13 13.2 14.9
prod skew 13 13.2 14.9
bio 3 12 12.0 13.7
kfact 7 6.2 8.1

Table 4.1: MARS Variable importance - Lag Time

MARS assesses variable importance based on the reduction of error estimates in the
Generalized Cross-Validation (gcv), as well as in the change of Residual Sum of Squares
obtained by including each variable in the model.

According to this variable importance ranking, the most important variables to char-
acterize Lag Time seem to be prod mean, mf.event, precip, flowdist mean, precip sdev,
bio 2 and snowpercent. In this case, MARS seems to acknowledge the importance of bio-
climatic, morphological variables but overall statistical rainfall moments to characterize
lag time. Curiously, the only variables directly related to catchment area are the firtst
three statistical moments of flow distance, as well as relief ratio.
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Figure 4.2: MARS: Lag Time training metrics and residual plots

The above plot shows a detailed portrait of the training process which led to the
final model. A chart showing the increment in R2 with respect to the tuned parameters
summarizes the model’s construction. The residual vs fitted plot shows a slight pattern
(indicating some underlying unexplained variance), and the normality plot shows a slight
deviation from normal behavior, particularly on the right tail of the distribution (large
lag times).

In order to establish a baseline, the trained model was tested against the expected
results from the samples in the training dataset. Baseline results are shown in Figure 4.3
and Table 4.2.

Baseline Metrics

CC 0.658
MAE 0.574
MSE 0.569
MPE 0.673
MAPE 2.361
Rsq 0.433

Table 4.2: MARS Baseline Error Metrics - Lag Time

It’s noteworthy that the model’s performance on previously seen data seems to be
consistent with the model’s expected explanatory power. This baseline shows a correlation
coefficient between the expected and predicted values of 0.658. Error metrics and r2 values
for this fit are consistent with the training metrics. All this likely means that the use of
cross-validation during training succesfully avoided overfitting on the training data.
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Figure 4.3: MARS: Lag Time fit using training data

Having constructed this baseline, now the trained model was used to predict the
response values from the validation dataset, which where not part of the training data.
These results are shown in Figure 4.4 and Table 4.3.

Figure 4.4: MARS: Lag Time fit using validation data
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Validation Metrics

CC 0.645
MAE 0.578
MSE 0.577
MPE 1.009
MAPE 2.188
Rsq 0.416

Table 4.3: MARS Validation Error Metrics - Lag Time

This validation shows a correlation coefficient between the expected and predicted
values of 0.645, which remains consistent with the baseline previously established on the
training dataset. Error metrics for this fit lie within the expected ranges as well, and
so does the R2 value. These results suggest that the trained model performs with solid
consistently when predicting on previously unseen data.

4.1.2 Moment of Relative Peak Discharge Modeling

This Moment of Relative Peak Discharge model took ∼4 hours to train. Parameter tuning
was performed from 1 up to 5 degrees of interaction (products of up to 5 predictors), and
from 2 up to 54 model terms (two terms over the total amount of predictors). The
parameter tuning results during training can be seen Figure 4.5.

Figure 4.5: MARS: Moment of Relative Peak Discharge Training - Parameter Tuning
results
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From the parameter tuning, the best fit was found to be a model with up to 54 terms,
each with up to 5 degrees of interaction (the maximum allowed for both parameters). The
structure and output of the best model found is shown in the Appendix on Listing 5.2.
The final model was constructed with 54 terms (7 of which where 1st degree interaction
terms) and using only 26 of of the 52 possible predictors. This model shows R2 values
ranging from 0.13 to 0.15 which indicate an estimate of ∼13% - ∼15% of the variance
explained. Table 4.4 presents the results for this model’s variable importance analysis.

variable nsubsets gcv rss

bio 10 53 100.0 100.0
ruggedness 51 92.4 92.9
slopeoutlet 49 85.0 86.0
imperviouscell 48 82.7 83.8
precip sdev 48 82.7 83.8
bio 1 48 82.7 83.8
bio 7 48 82.7 83.8
bio 8 48 82.7 83.8
si 46 78.2 79.6
snowpercent 44 75.0 76.5
rr 44 73.7 75.3
kfact 42 69.1 71.0
bio 2 40 63.7 66.0
cncell 39 61.1 63.6
bio 3 39 61.1 63.6
lbm 38 58.7 61.3
bio 15 38 58.7 61.3
G1 34 53.3 56.0
G2 34 53.3 56.0
mf.event 30 47.6 50.5
bio 18 29 46.2 49.1
rockdepth 27 43.6 46.5
cnbasin 24 41.8 44.4
bio 12 12 27.8 29.9
precip mean 11 26.3 28.4
coemcell 10 24.7 26.7

Table 4.4: MARS Variable Importance - peakq moment

According to MARS, the most important variables to characterize the Moment of
Relative Peak Discharge seem to be bio 10, ruggedness, slopeoutlet, imperviouscell, pre-
cip sdev, bio 1 and bio 7. This points to a clear influence of bioclimatic and morphological
variables. Additionally, statistical rainfall moments as well as the catchment-scale mo-
ments of flow distance seem to be relevant as well. These make sense, due to this target
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variable’s dependency on the basin’s flow response, and the influence of these variables
on it.

Figure 4.6: MARS: Moment of Relative Peak Discharge training metrics and residual
plots

Figure 4.6 shows a the same MARS training statistics presented for lag time. Even
though the normality plot seems to be behaving better than in the case of lag time, the
distribution of residuals vs fitted show clear signs of unexplained variance, as well as
apparent artifacts. This is expected due to the low skill presented by the model, as well
as the very low correlations between predictors and the target variable.

In order to establish a baseline, the trained model was tested against the expected
results from the samples in the training dataset. Baseline results can be seen in Figure
4.7 and Table 4.5.
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Figure 4.7: MARS: Moment of Relative Peak Discharge fit using training data

Baseline Metrics

CC 0.391
MAE 0.713
MSE 0.846
MPE 0.436
MAPE 2.571
Rsq 0.153

Table 4.5: MARS Baseline Error Metrics - peakq moment

This baseline shows a correlation coefficient between the expected and predicted val-
ues of 0.391 and error metrics for this fit lie in the neighborhood of what is expected
from training ( 0.85). The R2 value also points towards a consistent explanatory power
according to training results. Having constructed this baseline, now the trained model
will be used to predict the expected values from the validation dataset, which where not
part of the training data. These results are shown in Figure 4.8 and Table 4.6.
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Figure 4.8: MARS: Moment of Relative Peak Discharge fit using validation data

Validation Metrics

CC 0.332
MAE 0.731
MSE 0.898
MPE 0.932
MAPE 2.224
Rsq 0.11

Table 4.6: MARS Validation Error Metrics - peakq moment

This validation shows a correlation coefficient between the expected and predicted
values of 0.332, which remains consistent with the baseline previously established on the
training dataset. Error metrics for this fit lie between 0.731 and 0.898. Remarkably, these
results suggest that the trained model for the moment of relative peak discharge performs
consistently when predicting on previously unseen data.

4.1.3 Flood Stage Threshold Exceedance Modeling

This Flood Stage Threshold Exceedance model took∼10 hours to train. Parameter tuning
was performed from 1 up to 5 degrees of interaction (products of up to 5 predictors), and
from 2 up to 52 model terms (up to one term for each predictor). Note that the number
of predictors is two less than the other models, given that for this case variables tp and
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rt were not used. Note that in this instance MARS will be used to perform classification
instead of regression. Figure 4.9 shows training accuracy curves for the parameter tuning
process.

Figure 4.9: MARS: Flood Stage Threshold Exceedance Training - Parameter Tuning
results

From the parameter tuning, the best fit was found to be a model with up to 52 terms
(the maximum allowed), each with up to 4 degrees of interaction. Also note that given
that this is a classification model, the training metric used was accuracy. The structure
of the best model found is shown in the Appendix on Listing 5.3. As can be seen from
these model results, MARS is able to perform classification by generating a model for
each of the response classes. Some generalized training metrics were extracted from this
model, as well as per-class metrics. These can be seen on Table 4.7 and 4.8.
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Class Error Metric Value

ALL RSS 3471.72
ALL Rsq 0.401
ALL GRsq 0.392

Table 4.7: MARS: Flood Threshold Exceedance - Gen-
eralized Error Metrics

Class Label RSS Rsq GRsq

No Exceedance 0 59.65 0.259 0.248
Exceeds Action 1 411.39 0.433 0.424
Exceeds Minor 2 509.87 0.158 0.145
Exceeds Moderate 4 1300.42 0.229 0.217
Exceeds Major 8 1190.37 0.558 0.552

Table 4.8: MARS: Flood Threshold Exceedance - Per-
class Error Metrics

The final model was constructed with 52 terms (the maximum number possible), 5 of
which where 1st degree interaction terms and only 19 out of the 52 possible predictors
were used. This model shows R2 values ranging from 0.39 to 0.40 which indicate an
estimate of ∼39% - ∼40% of the variance explained. Table 4.9 present the results for this
model’s variable importance.

variable nsubsets gcv rss

est area 51 100.0 100.0
mf.event 50 82.4 82.8
prod mean 48 65.1 66.0
slopeoutlet 41 48.8 50.1
totalBasinPixels 41 48.8 50.1
bio 10 39 45.1 46.4
G1 38 43.5 44.8
imperviousbasin 37 41.7 43.1
imperviouscell 36 40.1 41.6
G2 36 40.1 41.6
precip 35 38.7 40.1
cnbasin 34 37.6 39.0
rl 32 35.0 36.6
rockdepth 28 30.8 32.4
snowpercent 28 30.8 32.4
bio 3 25 28.1 29.6
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Table 4.9 continued from previous page

variable nsubsets gcv rss

bio 17 25 28.1 29.6
ruggedness 17 20.5 22.0
si 16 20.0 21.4

Table 4.9: MARS Variable Importance - ex-
ceeds threshold

According to MARS’ variable importance ranking, the most important variables to
characterize the Exceedance of Flood Stage Thresholds seem to be est area, mf.event,
prod mean, slopeoutlet, totalBasinPixels, bio 10, G1 and imperviousbasin. Note that both
est area and totalBasinPixels appear to be very relevant, which is expected as they are
evidently highly correlated (one is a direct function of the other), and once could anticipate
them both to appear together when the catchment’s area is relevant. However, the fact
that their contribution to minimizing gcv errors differs by over 50% also show how other
morphological and bioclimatic factors, as well as precipitation moments and moments of
flow distance play a role in characterizing this response.

Given that this MARS training generated 5 different models (one per response class),
there are five sets of training metrics and residual plots. These are shown in Figures 4.10
through 4.14.

Figure 4.10: MARS: Flood Stage Threshold Exceedance training metrics and residual
plots for No-Exceedance
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Figure 4.11: MARS: Flood Stage Threshold Exceedance training metrics and residual
plots for Exceeds Action

Figure 4.12: MARS: Flood Stage Threshold Exceedance training metrics and residual
plots for Exceeds Minor
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Figure 4.13: MARS: Flood Stage Threshold Exceedance training metrics and residual
plots for Exceeds Moderate

Figure 4.14: MARS: Flood Stage Threshold Exceedance training metrics and residual
plots for Exceeds Major

Overall, the same chart for R2 is presented in all cases. As classes move from No-
Exceedance to major threshold exceedance, the cumulative distribution of absolute resid-
uals tends to exhibit a softer attack, which reflects the lower amount of cases for all classes
with respect to Exceeds Major. Given that each of these represent the model partially, the
normality plots as well as the residual vs fitted plots exhibit various fragmentations and
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step-like behaviors, corresponding to the binary nature of whether a sample is classified
with each label or not. In other words, they reflect each class’ bimodal nature, as well as
evidence of underlying unexplained variance.

In order to establish a baseline, the trained model was tested against the expected
results from the samples in the training dataset. Baseline classification results and metrics
are shown in Tables 4.10, 4.11 and 4.12.

Reference

prediction 0 1 2 4 8

0 28 19 1 5 3
1 44 529 121 124 71
2 3 24 66 51 14
4 3 127 275 702 308
8 3 61 166 1019 13147

Table 4.10: MARS Baseline Confusion Matrix - ex-
ceeds threshold

MARS - exceeds threshold

Accuracy 0.8556
95% CI (0.8502, 0.8609)
No. of information Rate 0.8007
P-value [Acc >NIR] <2.2e-16
Kappa 0.5288
Mcnemar’s Test P-Value <2.2e-16

Table 4.11: MARS Baseline Overall Statistics - ex-
ceeds threshold

This baseline shows that accuracy metrics for this fit lie between 0.85 and 0.86, and
the Kappa statistic establishes a baseline value of 0.52. The kappa statistic is a measure
of how closely the instances classified by the machine learning classifier matched the data
labeled as ground truth. Per-class statistics reflect once more the effect of training on
unbalanced classes, where accuracy for classifying Exceeds Action (Class 1) and Exceeds
Major (Class 8) are much higher than the other classes; particularly No-Exceedance.

Statistic Class: 0 Class: 1 Class: 2 Class: 4 Class: 8

Sensitivity 0.345679 0.69605 0.104928 0.36928 0.9708
Specificity 0.998337 0.97771 0.994351 0.95251 0.6295
Pos Pred Value 0.500000 0.59505 0.417722 0.49611 0.9132
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Table 4.12 continued from previous page

Statistic Class: 0 Class: 1 Class: 2 Class: 4 Class: 8

Neg Pred Value 0.996856 0.98559 0.966400 0.92264 0.8427
Prevalence 0.004789 0.04493 0.037188 0.11239 0.8007
Detection Rate 0.001655 0.03128 0.003902 0.04150 0.7773
Detection Prevalence 0.003311 0.05256 0.009341 0.08366 0.8511
Balanced Accuracy 0.672008 0.83688 0.549640 0.66089 0.8001

Table 4.12: MARS Baseline Class Statistics - ex-
ceeds threshold

Having constructed this baseline, now the trained model will be used to predict the
expected values from the validation dataset, which where not part of the training data.
Validation classification metrics and results are presented in Tables 4.13, 4.14 and 4.15.

Reference

prediction 0 1 2 4 8

0 5 5 0 3 0
1 13 123 45 35 16
2 1 5 21 16 8
4 2 30 86 164 86
8 0 14 55 238 3258

Table 4.13: MARS Validation Confusion Matrix - ex-
ceeds threshold

MARS - exceeds threshold

Accuracy 0.8444
95% CI (0.8331, 0.8552)
No. of information Rate 0.7964
P-value [Acc >NIR] 7.076e-16
Kappa 0.5082
Mcnemar’s Test P-Value NA

Table 4.14: MARS Validation Validation Statistics - ex-
ceeds threshold

Statistic Class: 0 Class: 1 Class: 2 Class: 4 Class: 8

Sensitivity 0.238095 0.69492 0.101449 0.35965 0.9673
Specificity 0.998099 0.97310 0.992541 0.94593 0.6434
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Table 4.15 continued from previous page

Statistic Class: 0 Class: 1 Class: 2 Class: 4 Class: 8

Pos Pred Value 0.384615 0.53017 0.411765 0.44565 0.9139
Neg Pred Value 0.996205 0.98649 0.955481 0.92437 0.8343
Prevalence 0.004966 0.04185 0.048948 0.10783 0.7964
Detection Rate 0.001182 0.02908 0.004966 0.03878 0.7704
Detection Prevalence 0.003074 0.05486 0.012060 0.08702 0.8430
Balanced Accuracy 0.618097 0.83401 0.546995 0.65279 0.8054

Table 4.15: MARS Validation Class Statistics - ex-
ceeds threshold

This validation shows Accuracy metrics for this fit lie between 0.83 and 0.85 for unseen
data, which remains consistent with the baseline previously established on the training
dataset. The Kappa statistic is also at 0.508, which resembles closely the baseline results.
These results suggest that the trained model performs consistently when predicting on
previously unseen data, still favoring Exceeds Action (Class 1) and Exceeds Major (Class
8).

4.2 Random Forest

In second instance, Lag time, the Moment of Relative Peak Discharge and the Flood Stage
Threshold Exceedance were also modeled by fitting bagged, parameter-tuned Random
Forest models, which explored the number of terms to retain at each split using a tuning
grid, and a bag of 100 trees. This way, optimal parameter settings were found for a model
which would minimize error measures, or maximize performance measures. Like MARS,
these models were trained using 10 times 10-fold cross-validation in order to mitigate
overfitting on the training dataset, and once trained these were also tested to predict
known outputs on a validation (holdout, not included in training) dataset.

4.2.1 Lag Time Modeling

This Lag Time model took ∼16 hours to train. Parameter tuning was performed from
1 up to 54 variables to retain per split in each tree (all variables could be considered to
perform a split at a given node), and 100 trees were used. Parameter tuning results for
this model are shown in Figure 4.15, and model outputs are shown in Table 4.16.
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Figure 4.15: Random Forest: Lag Time Training - Parameter Tuning results

Random Forest - Lag time

Random Forest Type Regression
No. of Trees 100
No. of of variables tried at each split 20
Mean Squared Residuals 0.565
% Var. Explained 43.66

Table 4.16: Random Forest Best Fit - Lag Time

The final model produced by the tuning process, was achieved by using 20 variables
at each split and 100 trees. The mean RSS for the bagged tree model was around 0.56,
and the final model explains around 43% of the variance in the training data. Figure 4.16
shows the results for variable importance calculated for this model.
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Figure 4.16: Random Forest: Lag Time Training - Variable importance results

According to this Random Forest model, mf.event, prod mean, EcartVertical, prod sdev,
precip mean, precip sdev and delta2 are some of the most significant factors for charac-
terizing Lag Time. This variable importance assessment is done with respect to each
variable’s contribution to reducing the MSE during training (%IncMSE), and with re-
spect to how much the presence of each variable at any given split reduces node impurity
(IncNodePurity, pure nodes make splits according to values of a single predictor). In
a similar and consistent fashion with MARS’ results, Random Forest highlights the im-
portance of statistical precipitation moments, as well as morphological and bioclimatic
variables. Both models seem to agree on the importance of moments of flow distance,
however a different one is selected between MARS and Random Forest.

In order to establish a baseline, the trained model was tested against the expected
results from the samples in the training dataset. Baseline results are shown in Figure 4.17
and Table 4.17.
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Figure 4.17: Random Forest: Lag Time fit using training data

Baseline Metrics

CC 0.965
MAE 0.225
MSE 0.095
MPE 0.214
MAPE 0.957
Rsq 0.931

Table 4.17: Random Forest Baseline Error Metrics - Lag Time

This baseline shows a correlation coefficient between the expected and predicted values
of 0.964, and error metrics for this fit lie between 0.09 and 0.22. Given the above plot
this model exhibits a high correlation between the fitted model and the original response
variable which could be an indication of overfitting. However, given the implementation
of a bagged tree approach and 10x10-fold cross-validation, the performance of this model
on unseen data should still be able to explain around 43% of the variance of the new data
(according to training metrics).

Having constructed this baseline, now the trained model will be used to predict the
expected values from the validation dataset, which where not part of the training data.
Validation results and error metrics are shown in Figure 4.18 and Table 4.18.
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Figure 4.18: Random Forest: Lag Time fit using training data

Validation Metrics

CC 0.664
MAE 0.553
MSE 0.552
MPE 1.033
MAPE 2.187
Rsq 0.441

Table 4.18: Random Forest Validation Error Metrics - Lag Time

This validation shows a correlation coefficient between the expected and predicted
values of 0.664, which is considerably lower than the baseline previously established on
the training dataset. However, the error metrics for this fit lie around 0.55, which is
consistent with the explanatory power of the constructed model according to training
metrics. These results suggest that, even though the Random Forest model tends to overfit
when presented with it’s own training data, the trained model performs as expected when
predicting on previously unseen data.

4.2.2 Moment of Relative Peak Discharge Modeling

This Moment of Relative Peak Discharge model took ∼16 hours to train. Parameter
tuning was performed from 1 up to 54 variables to retain per split in each tree, and 100
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trees were used. Parameter tuning results for this model are shown in Figure 4.19 and
model outputs in Table 4.19.

Figure 4.19: Random Forest: Moment of Relative Peak Discharge Training - Parameter
Tuning results

Random Forest - peakq moment

Random Forest Type Regression
No. of Trees 100
No. of of variables tried at each split 1
Mean Squared Residuals 0.820
% Var. Explained 17.85

Table 4.19: Random Forest Best Fit - peakq moment

The final model produced by the tuning process, was achieved by using 1 variable at
each split and 100 trees (note how error quickly rises the more predictors are selected).
The mean RSS for the bagged tree model is around 0.82, and the final model explains
only around 18% of the variance in the training data. Figure 4.20 shows the variable
importance results calculated for this model.
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Figure 4.20: Random Forest: Moment of Relative Peak Discharge Training - Variable
importance results

Regarding variable importance, this Random Forest model shows flowdist mean, lbm,
imperviouscell, rl, bio 7, G2 and precip sdev to be some of the most influential factors for
characterizing the Moment of Relative Peak Discharge. Notice that the overall contribu-
tion for each variable on the importance metrics is rather small, which is a reflection of
the low correlation of the predictors on this target variable. These agree partially with
MARS’ assessment, and even though different morphological variables are highlighted by
Random Forest, these still hold a close relationship with the basin’s flow response.

In order to establish a baseline, the trained model was tested against the expected
results from the samples in the training dataset. Baseline results and error metrics are
presented in Figure 4.21 and Table 4.20.
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Figure 4.21: Random Forest: Moment of Relative Peak Discharge fit using training data

Baseline Metrics

CC 0.862
MAE 0.482
MSE 0.4
MPE 0.25
MAPE 1.863
Rsq 0.683

Table 4.20: Random Forest Baseline Error Metrics - peakq moment

This baseline shows a correlation coefficient between the expected and predicted values
of 0.826, and error metrics for this fit lie between 0.4 and 0.5. Given the above plot this
model exhibits a moderately high correlation between the fitted model and the original
response variable which could be an indication of overfitting. However, given the imple-
mentation of a bagged tree approach and 10x10-fold cross-validation, the performance of
this model on unseen data should still be able to explain at least 17% of the variance of
the new data (according to training metrics). Even though this model’s predictive power
doesn’t seem to be high, it is of interest due to this research’s exploratory nature.

Having constructed this baseline, now the trained model will be used to predict the
expected values from the validation dataset, which where not part of the training data.
Validation results are shown in Figure 4.22 and Table 4.21.
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Figure 4.22: Random Forest: Moment of Relative Peak Discharge fit using validation data

Validation Metrics

CC 0.404
MAE 0.697
MSE 0.843
MPE 1.001
MAPE 2.309
Rsq 0.163

Table 4.21: Random Forest Validation Error Metrics - peakq moment

This validation shows a correlation coefficient between the expected and predicted
values of 0.404, which is considerably lower than the baseline previously established on
the training dataset. The error metrics for this fit lie between 0.69 and 0.85. The R2 value
for this fit is consistent with the explanatory power of the constructed model according
to training metrics. These results suggest that the trained model performs consistently
when predicting on previously unseen data, however it should be noted that predictive
power is low. Regardless, valuable information was be collected from this model, which
can help better understand which variables hold relevance for modeling the Moment of
Relative Peak Discharge.
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4.2.3 Flood Stage Threshold Exceedance Modeling

This Exceedance of Flood Stage Thresholds model took ∼3 hours to train. Parameter
tuning was performed from 1 up to 52 variables to retain per split in each tree (tp and
rt were excluded), and 100 trees were used. Note that this Random Forest will be used
to build a classification model. Figure 4.23 shows training accuracy for the parameter
tunning, and Tables 4.22 and 4.23 show model training results.

Figure 4.23: Random Forest: Flood Stage Threshold Exceedance Training - Parameter
Tuning results

Random Forest - exceeds threshold

Random Forest Type Classification
Number of Trees 100
No. of variables tried at each split 2
OOB estimate of error rate 13.59%

Table 4.22: Random Forest Best Fit - exceeds threshold

Label 0 1 2 4 8 class error

0 41 37 0 2 1 0.49382716
1 23 581 61 54 41 0.23552632
2 2 151 173 226 77 0.72496025
4 2 147 115 855 782 0.55023672
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Table 4.23 continued from previous page

Label 0 1 2 4 8 class error

8 1 82 52 443 12965 0.04267887

Table 4.23: Random Forest Best Fit: Confusion Matrix
- exceeds threshold

The final classification model produced by the tuning process, was achieved by using
2 variables at each split (note the stark dip in accuracy at around 3) and 100 trees.
The out of bag estimated error for this model is around 13%, and class errors range
widely from 72% to 4%. These error discrepancies are a reflection of the imbalance
of the training classes (more training samples for a given class than another). Variable
importance analysis was also calculated for this model, and its results are shown in Figure
4.24.

Figure 4.24: Random Forest: Flood Stage Threshold Exceedance Training - Variable
importance results

Regarding variable importance, this Random Forest model shows cncell, bio 3, flowdist skew,
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bio 18, est area, G1, rl, totalBasinPixels, flowdist sdev and flowdist mean to be some of
the most influential factors for characterizing flood stage threshold exceedance. Random
Forest’s variable importance for classification are slightly different than for regression, in
that each variable is asses by how much mean decrease in accuracy they reduce by being
included,instead of each variable’s contribution to reducing MSE. Similarly each variables
contribution to the Mean Decrease of Gini coefficient (a measure of inequality among
values in each class), instead of their contribution to node impurity. Once again, est area
and totalBasinPixels appear close to one another, as expected due to their similitude.
However, the later only appears in the one of the two importance metrics. Conversely,
even though this model and MARS agree on the relevance of moments of flow distance,
bioclimatic and morphological variables, different sets seem to be highlighted by each
method.

In order to establish a baseline, the trained model was tested against the expected
results from the samples in the training dataset. Basline results and classification metrics
are presented in Tables 4.24, 4.25 and 4.26.

Reference

Prediction 0 1 2 4 8

0 59 10 1 3 1
1 22 692 111 96 55
2 0 30 389 26 27
4 0 20 102 1487 141
8 0 8 26 289 13319

Table 4.24: Random Forest Baseline Confusion Matrix -
exceeds threshold

RF - exceeds threshold

Accuracy 0.9428
95% CI (0.9392, 0.9462)
No. of information Rate 0.8007
P-value [Acc >NIR] <2.2e-16
Kappa 0.8311
Mcnemar’s Test P-Value <2.2e-16

Table 4.25: Random Forest Baseline Validation Statistics
- exceeds threshold

Statistic Class: 0 Class: 1 Class: 2 Class: 4 Class: 8

Sensitivity 0.728395 0.91053 0.61844 0.78222 0.9835
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Table 4.26 continued from previous page

Statistic Class: 0 Class: 1 Class: 2 Class: 4 Class: 8

Specificity 0.999109 0.98242 0.99490 0.98248 0.9042
Pos Pred Value 0.797297 0.70902 0.82415 0.84971 0.9763
Neg Pred Value 0.998694 0.99573 0.98540 0.97270 0.9315
Prevalence 0.004789 0.04493 0.03719 0.11239 0.8007
Detection Rate 0.003488 0.04091 0.02300 0.08792 0.7875
Detection Prevalence 0.004375 0.05770 0.02791 0.10346 0.8066
Balanced Accuracy 0.863752 0.94647 0.80667 0.88235 0.9438

Table 4.26: Random Forest Baseline Class Statistics -
exceeds threshold

This baseline shows a accuracy between 93% and 94%, with a kappa statistic of 0.83.
Given the above results, this model exhibits a very high correlation between the fitted
model and the original response variable which could be an indication of overfitting. How-
ever, given the implementation of a bagged tree approach and 10x10-fold cross-validation,
the performance of this model on unseen data should still be consistent.

Having constructed this baseline, now the trained model will be used to predict the
expected values from the validation dataset, which where not part of the training data.
Validation results are shown in Tables 4.27, 4.28 and 4.29.

Reference

Prediction 0 1 2 4 8

0 9 7 0 0 0
1 12 132 63 33 28
2 0 16 56 30 13
4 0 16 65 210 110
8 0 6 23 183 3217

Table 4.27: Random Forest Validation Confusion Matrix
- exceeds threshold

RF - exceeds threshold

Accuracy 0.8569
95% CI (0.846, 0.8674)
No. of information Rate 0.7964
P-value [Acc >NIR] <2.2e-16
Kappa 0.5793
Mcnemar’s Test P-Value NA
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Table 4.28 continued from previous page

RF - exceeds threshold

Table 4.28: Random Forest Validation Validation Statis-
tics - exceeds threshold

Statistic Class: 0 Class: 1 Class: 2 Class: 4 Class: 8

Sensitivity 0.428571 0.74576 0.27053 0.46053 0.9552
Specificity 0.998337 0.96644 0.98533 0.94938 0.7538
Pos Pred Value 0.562500 0.49254 0.48696 0.52369 0.9382
Neg Pred Value 0.997152 0.98864 0.96330 0.93574 0.8113
Prevalence 0.004966 0.04185 0.04895 0.10783 0.7964
Detection Rate 0.002128 0.03121 0.01324 0.04966 0.7607
Detection Prevalence 0.003783 0.06337 0.02719 0.09482 0.8108
Balanced Accuracy 0.713454 0.85610 0.62793 0.70495 0.8545

Table 4.29: Random Forest Validation Class Statistics -
exceeds threshold

This validation shows an accuracy of 0.85, and metrics for this fit that resemble closely
the trained model’s kappa statistic, therefore we can say it is consistent with the explana-
tory power of the constructed model according to training metrics. These results suggest
that the trained model performs well when predicting on previously unseen data.

4.3 Support Vector Machines

Lastly, Lag time (lag centroid peak event), the Moment of Relative Peak Discharge (peakq moment)
and the Flood Stage Threshold Exceedance (exceeds threshold) were modeled by fitting
parameter-tuned Support Vector Machine (SVM) models, using a tuning grid to find the
most optimal parameters (σ and C) for the radial basis kernel that was used. This way,
optimal parameter settings were found for a model which would minimize error measures,
or maximize performance measures. Additionally, these models were trained using 10
times 10-fold cross-validation in order to mitigate overfitting on the training dataset, and
once trained these were also tested to predict known outputs on a validation (holdout,
not included in training) dataset.

69



4.3.1 Lag Time Modeling

This Lag Time model was took ∼200 hours to train. Parameter tuning was performed for
ten evenly-spaced values of σ and C, both ranging from 0 to 5. Parameter tuning results
are presented in Figure 4.25.

Figure 4.25: SVM: Lag Time Training - Parameter Tuning results

The final model produced by the tuning process, was achieved by using values sigma
= 0.5555556 and C = 1.666667, where RMSE dropped at around 0.89. The structure and
output of the best model found is shown in the Appendix on Listing 5.4.

In order to establish a baseline, the trained model was tested against the expected
results from the samples in the training dataset. Baseline results are shown in Figure 4.26
and Table 4.30.
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Figure 4.26: SVM: Lag Time fit using training data

Baseline Metrics

CC 0.988
MAE 0.123
MSE 0.034
MPE 0.216
MAPE 0.603
Rsq 0.977

Table 4.30: SVM Basline Error Metrics - Lag Time

This baseline shows a correlation coefficient between the expected and predicted val-
ues of 0.988, and error metrics for this fit lie between 0.03 and 0.6. Given the above plot
this model exhibits a extremely high correlation between the fitted model and the original
response variable which could be an indication of overfitting. However, given the imple-
mentation of a bagged tree approach and 10x10-fold cross-validation, the performance of
this model on unseen data should be consistent with a training R2 of 0.97.

Having constructed this baseline, now the trained model will be used to predict the
expected values from the validation dataset, which where not part of the training data.
Validation results and error metrics are presented in Figure 4.27 and Listing 4.31.
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Figure 4.27: SVM: Lag Time fit using validation data

Validation Metrics

CC 0.48
MAE 0.673
MSE 0.763
MPE 1.234
MAPE 1.714
Rsq 0.23

Table 4.31: SVM Validation Error Metrics - Lag Time

This validation shows a correlation coefficient between the expected and predicted
values of 0.48, which is considerably lower than the baseline previously established on
the training dataset. The error metrics for this fit lie between 0.67 and 0.76. The R2

value for this fit diverges drastically from the explanatory power of the constructed model
according to training metrics. These results suggest that the trained model underperforms
dramatically when predicting on previously unseen data.

4.3.2 Moment of Relative Peak Discharge Modeling

This Moment of Relative Peak Discharge Modeling model took ∼230 hours to train.
Parameter tuning was performed for ten evenly-spaced values of σ and C, both ranging
from 0 to 5. Parameter tuning results are presented in Figure 4.28.
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Figure 4.28: SVM: Moment of Relative Peak Discharge Training - Parameter Tuning
results

The final model produced by the tuning process, was achieved by using values sigma
= 0.5555556 and C = 0.5555556, where RMSE dropped at around 0.95. The structure
and output of the best model found is shown in the Appendix on Listing 5.5.

In order to establish a baseline, the trained model was tested against the expected
results from the samples in the training dataset. Baseline results are shown in Figure 4.29
and Listing 4.32.
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Figure 4.29: SVM: Moment of Relative Peak Discharge fit using training data

Baseline Metrics

CC 0.867
MAE 0.401
MSE 0.39
MPE 0.307
MAPE 0.881
Rsq 0.751

Table 4.32: SVM Baseline Error Metrics - peakq moment

This baseline shows a correlation coefficient between the expected and predicted val-
ues of 0.867, and error metrics for this fit lie between 0.3 and 0.4. Given the above plot
this model exhibits a extremely high correlation between the fitted model and the original
response variable which could be an indication of overfitting. However, given the imple-
mentation of a bagged tree approach and 10x10-fold cross-validation, the performance of
this model on unseen data should be consistent with a training RMSE of 0.95 for unseen
data.

Having constructed this baseline, now the trained model will be used to predict the
expected values from the validation dataset, which where not part of the training data.
Validation results and error metrics are presented in Figure 4.30 and Listing 4.33.
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Figure 4.30: SVM: Moment of Relative Peak Discharge fit using validation data

Validation Metrics

CC 0.299
MAE 0.737
MSE 0.915
MPE 0.996
MAPE 1.491
Rsq 0.089

Table 4.33: SVM Validation Error Metrics - peakq moment

This validation shows a correlation coefficient between the expected and predicted
values of 0.299, which is considerably lower than the baseline previously established on
the training dataset. The error metrics for this fit lie between 0.73 and 0.91. The R2 value
for this fit is consistent with the explanatory power of the constructed model according to
training metrics. These results suggest that the trained model underperforms dramatically
when predicting on previously unseen data, however given the high training error figure,
this is a consistent behavior.

4.3.3 Flood Stage Threshold Exceedance Modeling

This Flood Stage Threshold Exceedance model took ∼150 hours to train. Parameter
tuning was performed for ten evenly-spaced values of σ and C, both ranging from 0 to 5.
Parameter tuning results are presented in Figure 4.31.
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Figure 4.31: SVM: Flood Stage Threshold Exceedance Training - Parameter Tuning re-
sults

The final model produced by the tuning process, was achieved by using values sigma
= 0.5555556 and C = 1.666667, where Accuracy peaked at around 0.827. The structure
and output of the best model found is shown in the Appendix on Listing 5.6.

In order to establish a baseline, the trained model was tested against the expected
results from the samples in the training dataset. Baseline results are shown in Tables
4.34, 4.35 and 4.36.

Reference

Prediction 0 1 2 4 8

0 71 1 0 0 0
1 10 729 25 20 8
2 0 8 556 6 3
4 0 16 31 1770 26
8 0 6 17 105 13506

Table 4.34: SVM Basline Confusion Matrix - ex-
ceeds threshold

SVM - exceeds threshold

Accuracy 0.9833
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Table 4.35 continued from previous page

SVM - exceeds threshold

95% CI (0.9813, 0.9852)
No. of information Rate 0.8007
P-value [Acc >NIR] <2.2e-16
Kappa 0.9508
Mcnemar’s Test P-Value NA

Table 4.35: SVM Baseline Statistics - exceeds threshold

Statistic Class: 0 Class: 1 Class: 2 Class: 4 Class: 8

Sensitivity 0.876543 0.95921 0.88394 0.9311 0.9973
Specificity 0.999941 0.99610 0.99896 0.9951 0.9620
Pos Pred Value 0.986111 0.92045 0.97033 0.9604 0.9906
Neg Pred Value 0.999406 0.99808 0.99553 0.9913 0.9887
Prevalence 0.004789 0.04493 0.03719 0.1124 0.8007
Detection Rate 0.004198 0.04310 0.03287 0.1046 0.7985
Detection Prevalence 0.004257 0.04683 0.03388 0.1090 0.8061
Balanced Accuracy 0.938242 0.97766 0.94145 0.9631 0.9796

Table 4.36: SVM Baseline Class Statistics - ex-
ceeds threshold

This baseline shows an accuracy of around 0.98%, with a Kappa statistic of 0.95. Given
the above results, this models exhibits a very high correlation between the fitted model
and the original response variable with could be a indication of overfitting. However,
given the implementation of 10x10-fold cross-validation throughout the parameter tuning
process, the performance of this model on unseen data should still be consistent with the
training accuracy of 0.82.

Having constructed this baseline, now the trained model will be used to predict the
expected values from the validation dataset, which where not part of the training data.
Validation results are shown in Tables 4.37, 4.38 and 4.39.

Reference

Prediction 0 1 2 4 8

0 4 4 0 1 0
1 5 61 19 11 6
2 0 8 27 17 9
4 0 11 35 97 43
8 12 93 126 330 3310
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Table 4.37 continued from previous page

Reference

Table 4.37: SVM Validation Confusion Matrix - ex-
ceeds threshold

SVM - exceeds threshold

Accuracy 0.8274
95% CI (0.8156, 0.8387)
No. of information Rate 0.7964
P-value [Acc >NIR] 1.879e-07
Kappa 0.3475
Mcnemar’s Test P-Value NA

Table 4.38: SVM Validation Statistics - ex-
ceeds threshold

Statistic Class: 0 Class: 1 Class: 2 Class: 4 Class: 8

Sensitivity 0.1904762 0.34463 0.130435 0.21272 0.9828
Specificity 0.9988118 0.98988 0.991546 0.97641 0.3484
Pos Pred Value 0.4444444 0.59804 0.442623 0.52151 0.8551
Neg Pred Value 0.9959716 0.97189 0.956814 0.91120 0.8380
Prevalence 0.0049657 0.04185 0.048948 0.10783 0.7964
Detection Rate 0.0009459 0.01442 0.006384 0.02294 0.7827
Detection Prevalence 0.0021282 0.02412 0.014424 0.04398 0.9153
Balanced Accuracy 0.5946440 0.66726 0.560991 0.59457 0.6656

Table 4.39: SVM Validation Class Statistics - ex-
ceeds threshold

This validation shows an accuracy of 0.82, and metrics for this fit that resemble closely
the trained model’s kappa statistic as well as the training accuracy. Therefore, we can
say that it is consistent with the explanatory power of the constructed model according
to training metrics. These results suggest that the trained model performs well when
predicting previously unseen data. Once more, clear signs of unbalanced training classes
can be seen in the per-class statistics. However, these results seem to project a much
homogeneous class accuracy than the ones observed for MARS and Random Forest.
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4.4 Model Performance Summary

Overall, the MARS approach seems to be able to produce models that avoid overfitting
on the training data. Even though predictive power appears to be in a modest range, its
performance is maintained very consistently when presented with unseen samples. This
is true for both regression as well as classification models. Additionally, from all three
models, MARS took the least amount of time to train continuous target variables; time
is extended when performing classification, as a model must be fit for each class in the
response.

Concerning Random Forest, even though it’s predictive power is generally similar
to what was achieved with MARS (slightly higher, but not really significant), it tends
to overfit dramatically on its training dataset. Even though training times were higher
for regression, Random Forest really shines for classification, showing near MARS-based
regression performance.

Lastly, Support Vector Machines appear to produce both classification and regression
models, that in spite of requiring substantially more time to train, and a more rigorous
and extensive parameter tuning, offer no significant overall performance increase. Addi-
tionally, SVMs are prone not only to overfitting on the training data, but also introduce
strange artifacts on verification data, likely due to unexplained variance and their reliance
on higher order spatial transformations. However, improvement was seen regarding the
characterization of unbalanced classes. Furthermore, SVM offers no built-in assessments
for variable importance, which would require the implementation of alternatives like ran-
domized stepwise variable selection into the training process, but given the extensive
aforementioned training times, this would only add up to them.

Table 4.40 presents a summary of training and validation statistics for all the models
built. Note that in order to present this table as a whole, column names had to be
abbreviated. VAL. represents validation results, while TRN. represents Training results.
CC stands for Correlation Coefficient, Rsq represent the Coefficient of Determination R2,
MSE is Mean Squared Error and ACC. stands for Accuracy.
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4.5 Variable Importance Summary

Regarding insights gained about variable importance for modeling each of the proposed re-
sponses, table 4.41 summarizes each model’s assessment for characterizing each response.
In cases where both est area and totalBasinPixels were selected together, only the highest
ranking one will be shown.

For characterizing lag time, common variables between models are prod mean, mf.event
and precip sdev. In the case of the moment of relative peak discharge, imperviouscell,
bio 7 and precip sdev are common choices between MARS and Random Forest. Lastly,
characterization of flood stage threshold exceedance seems to be commonly associated
with est area and G1 by both techniques. Statistical and catchment-based precipitation
and flow distance moments, as well as morphological variables are common to all of these
characterizations.
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4.6 Probability of Flood Stage Threshold Exceedance

Classification models were built for characterizing the exceedance of flood stage thresholds,
and these were also used for prediction using the validation dataset. Effectively forecasts
were made for each of the threshold exceedance classes, which means class probabilities
were able to be extracted from these models and forecasts. By doing so, we were able
to compare and contrast the skill of each classification model to predict (or forecast) the
probability of each verification sample for each of the threshold exceedance classes. In
order to assess this skill in a comprehensive but straightforward way, reliability diagrams
were built for each model’s per-class skill.

Reliability diagrams are commonly used statistical tools in the atmospheric sciences,
used to represent the performance of probability forecasts of dichotomous events. These
diagrams consist of only the plot of observed relative frequency as a function of forecast
probability, where the 1:1 diagonal line implies perfect reliability. Additionally, a summary
of the frequency distribution of forecast values is shown, given that the plotted points
represent the conditional distribution of observations. This allows for a compact display
of the full distribution of forecasts and observations [18].

Figure 4.32: Examples of hypothetical reliability diagrams [18]

Figure 4.32 shows the stacked reliability diagrams for the forecast of the class No-
Exceedance, product of all three models for floodstage threshold exceedance. Given the
skewed distribution of samples in the histograms and the sparse distribution of points, we
could say that all three forecasts are product of a limited dataset, which due to it’s small
sample size of observations for this class lead to unreliable forecasts for this class. Of the
three, Random Forest appears to underestimate consistently throughout the distribution.
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Figure 4.33: No-Exceedance Reliability Diagrams: MARS (top), Random Forest (middle),
SVM (bottom)

Figure 4.33 shows the stacked reliability diagrams for the forecast of the class Ex-
ceeds Action, product of all three models for floodstage threshold exceedance. All three
diagrams show a similar behavior along the perfect reliability diagram, generally over-
estimating on higher probability values, and underestimating towards lower values. All
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models appear to behave similarly, but Support Vector Machines shows a smoother overall
behavior near the 1:1 line. Random Forest shows a consistent overestimation trend past
probability values of 0.3.

Figure 4.34: Exceeds Action Reliability Diagrams: MARS (top), Random Forest (middle),
SVM (bottom)
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Figure 4.34 shows the stacked reliability diagrams for the forecast of the class Exceeds
Minor, product of all three models for floodstage threshold exceedance. MARS seems to
perform poorly compared to the other two models, however, Random Forest seems to be
the best performer of them all. The overall trend for the three models is to underestimate
low, and overestimate high probabilities.

Figure 4.35: Exceeds Minor Reliability Diagrams: MARS (top), Random Forest (middle),
SVM (bottom)
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Figure 4.35 shows the stacked reliability diagrams for the forecast of the class Exceeds
Moderate, product of all three models for floodstage threshold exceedance. Regarding the
forecast of this class, even though MARS shows no frequency of observed probabilities
beyond 0.85, it appears to have a smoother distribution across the perfect reliability line.
In general, all three models struggle with high probability values, which seem to be scarce
for this class.

87



Figure 4.36: Exceeds Moderate Reliability Diagrams: MARS (top), Random Forest (mid-
dle), SVM (bottom)

Lastly, Figure 4.36 shows the stacked reliability diagrams for the forecast of the class
Exceeds Major, product of all three models for floodstage threshold exceedance. This
is clearly the best performing class for all three models, as they all exhibit remarkable
skill to forecast this flood stage exceedance. Random Forest and MARS show similar
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underestimation for low probability values, which is smaller in Random Forest, and seems
to be entirely mitigated when using Support Vector Machines. However, as values move
higher, SVM’s performance deteriorates. MARS’ performance is really good staying near
the perfect reliability line beyond values of 0.3, and Random Forest exhibits unparalleled
skill beyond values of 0.4.

Figure 4.37: Exceeds Major Reliability Diagrams: MARS (top), Random Forest (middle),
SVM (bottom)
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In general, models show better skill for forecasting the Exceeds Action and the Ex-
ceeds Major classes; particularly the later. This is also a product of the class imbalance
present in the data, and these model’s performance on the Exceeds Major class is a clear
example of the types of skill that can be expected of each of these types of models for
this particular case. There are clear trade-offs between the different types of models, par-
ticularly when comparing overall performance with training time and model complexity.
Also, reliability diagrams prove to be a concise way of assessing and comparing model
skills for classification problems such as this one.
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Chapter 5

Conclusions

Through various analyses, three distinct machine learning models, based on three funda-
mentally different learning techniques were objectively compared in terms of their training
times, performance, variable importance and forecast skill, leading to a comprehensive
case study for future research pertaining the use of catchment-scale rainfall moments in
the characterization of flood-related responses.

Having applied the CRISP-DM methodology on a physically-based spatial precipi-
tation moment flood event database, this study has effectively performed a data-driven
statistical analysis, leading to the characterization of floods by using machine learning
techniques. The models built from this dataset which included catchment-scale precipi-
tation moments were presented and analyzed, showing that effective characterization of
flood-related phenomena such as Lag Time and Flood Stage Threshold Exceedance is
possible.

Additionally, through variable importance analysis the relevant factors that character-
ize these responses were able to be determined, described and compared between models.
Furthermore, even though the newly proposed Moment of Relative Peak Discharge showed
little correlation with the available predictors, and model errors were considerably high
across model types, it was possible to determine the factors that contribute to the char-
acterization of this flow response index.

Lastly, by training and validating classification models for the flood stage thresh-
old exceedance, probabilistic class forecasts were able to be produced, which led to the
probabilistic characterization of model skills for predicting specific flood stage exceedance
classes. These class forecasts were successfully compared between models by using relia-
bility diagrams to assess their skill in characterizing each of these classes.

MARS has proven to be the most consistent performer among all three models, as
well as the most efficient one for continuous responses. It consistently demonstrated
resistance to overfitting, overall training times were the lowest. Random Forest offers a
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marginal improvement over MARS in terms of regression performance, however it swiftly
outperformed MARS when used for classification. Random Forest exhibited prominent
tendencies toward overfitting on training data, regardless of implementing 10 times 10-
fold cross-validation, but training metrics provided sane predictive power estimates for
unseen samples. Lastly, Support Vector Machines represented a cumbersome exercise
in parameter tuning. Even though interesting results were evidenced regarding class-
specific probabilistic forecasting skill for flood stage threshold exceedance, their overall
performance was not significantly better compared to the other two alternatives.

Future research looking to build upon the present study should bear in mind the
following recommendations. First, a more robust variable selection exercise and method-
ology could be implemented. Second, even though statistical moments of precipitation
and flow distance appear to be relevant for modeling these hydrological responses, the
fourth statistical moment Kurtosis, appears to hardly hold any relevant influence over the
target variables explored here. Perhaps a thorougher assessment of whether high order
moments hold significant value is in order.
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Ducrocq, Eric Gaume, Olivier Payrastre, Hervé Andrieu, Pierre-Alain Ayral,
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Appendix

5.1 Variable tables

VARIABLE DEFINITION

fips Federal Information Processing Standard - State and County
codes

gauge USGS gauge ID
lat Latitude of gauge location
lon Longitude of gauge location
start Event start time
end Event end time
peakq Peak Flow
peakt Time of peak flow
dt Time difference start of the event and peak flow
HUC Hydrological Unit Code - Watershed ID
agency Agency who made the streamflow measurement: USGS
gname Gauge Name
area Quality-controlled USGS basin area
carea Corrected (using basin delineation?) area
q2 Q Return Period - 2y
q5 Q Return Period - 5y
q10 Q Return Period - 10y
q25 Q Return Period - 25y
q50 Q Return Period - 50y
q100 Q Return Period - 100y
q200 Q Return Period - 200y
q500 Q Return Period - 500y
action Flood stage threshold - ACTION
minor Flood stage threshold - MINOR
moderate Flood stage threshold - MODERATE
major Flood stage threshold - MAJOR
regulation Regulated or unregulated streams (discrete)
alpha Kinematic Wave parameter: ALPHA
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Table 5.1 continued from previous page

VARIABLE DEFINITION

beta Kinematic Wave parameter: BETA
cc Correlation coefficient for the fit of alpha and beta
usgs area True (reported by USGS) drainage area
est area Estimated Area (from Digital Elevation Model; flow grids)
error Relative error of estimated drainage area
el Elongation Ratio; a measure of basin shape
k Shape factor; a measure of basin shape
rl River length
rr Relief ratio; R divided by Basin Length (highly correlated

with drainage area)
si Slope index
rdd Drainage density; number of streams divided by drainage area
rbm Basin magnitude; the total number of first-order streams

(streams whose only input is overland flow)
rfocf Frequency of first-order channels; the basin magnitude di-

vided by drainage area
slopeoutlet Outlet Slope
precip Climatological precipitation
temp Climatological Average temperature
cnbasin Basin average curve number
cncell Outlet Cell average curve number
coemcell Surface Roughness (function of Manning’s roughness)
imperviousbasin Basin total surface imperviousness
imperviouscell Outlet cell surface imperviousness
kfact K-factor; relative index of susceptibility of bare; cultivated

soil to particle detachment and transport by rainfall
rockdepth Depth to bedrock at the outlet
rockvolume Volume of rock; similar to rock depth
bpartexture A parameter related to soil
dc Diameter of Circle with same Drainage Area as basin
ldd Local Drainage Density at the outlet
lbm Local Basin Magnitude
lfocf Local Frequency of the First-Order Channels
ruggedness Ruggedness expressed as drainage density multiplied by relief
fd Flow duration; duration of the entire event
rt Recession time; peak-to-end time
nfd Normalized (Unit) Flood Duration = Flood Duration/Area
ntp Normalized (Unit) Time to Peak
nrt Normalized (Unit) Recession Time
nq Normalized (Unit) Peak Discharge
f Flashiness
Group.1 Auxiliary dataset merging variable
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Table 5.1 continued from previous page

VARIABLE DEFINITION

county COUNTY
class Koppen Geiger Climate Class
prop Auxiliary dataset merging variable
state State
month Month
year Year
season Season in which the flood happened
maxseason Season in which the Maximum Flood Peak was recorded in

this Gauge
mf Basin median Flashiness
mf.event Event Flashiness
fness Flashiness (discrete): a cutoff of 0.75 on f.ecdf means flashy;

lower is categorized as non-flashy
f.ecdf Empirical Cumulative Distribution Function values of event-

based flashiness
eventID Event ID
gaugenum Gauge number
tp Rise time; start-to-peak time
lag start peak event Time from start of rainfall to peak of flood based on MRMS
lag centroid peak event Time from centroid of rainfall to peak of flood based on

MRMS
lag max peak event Time from maximum of rainfall to peak of flood based on

MRMS
activatedBasinPixels Total number of 1km x 1km gridcells in a basin that received

rainfall from centroid of precipitation to flow peak
totalBasinPixels Total number of 1km x 1km gridcells in a basin
precip mean Mean of precipitation accumulated during the centroid lag

time period over the activated basin(=part of the basin where
rainfall falls)

precip sdev Standard deviation of precipitation accumulated during the
centroid lag time period over the activated basin(=part of
the basin where rainfall falls)

precip skew Skewness of precipitation accumulated during the centroid lag
time period over the activated basin(=part of the basin where
rainfall falls)

precip kurt Kurtosis of precipitation accumulated during the centroid lag
time period over the activated basin(=part of the basin where
rainfall falls)

flowdist mean Mean of flow distance of the activated basin(=part of the
basin where rainfall falls)

flowdist sdev Standard deviation of flow distance of the activated
basin(=part of the basin where rainfall falls)
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Table 5.1 continued from previous page

VARIABLE DEFINITION

flowdist skew Skewness of flow distance of the activated basin(=part of the
basin where rainfall falls)

flowdist kurt Kurtosis of flow distance of the activated basin(=part of the
basin where rainfall falls)

prod mean Mean of the product of accumulated precipitation and flow
distance of the activated basin(=part of the basin where rain-
fall falls)

prod sdev Standard deviation of the product of accumulated precipita-
tion and flow distance of the activated basin(=part of the
basin where rainfall falls)

prod skew Skewness of the product of accumulated precipitation and flow
distance of the activated basin(=part of the basin where rain-
fall falls)

prod kurt Kurtosis of the product of accumulated precipitation and flow
distance of the activated basin(=part of the basin where rain-
fall falls)

P0 Zero-th order moment of precipitation (Catchment-averaged
rainfall)

P1 First-order moment of precipitation
P2 Second-order moment of precipitation
G1 First-order Moment of flow distance (Catchment averaged

flow distance)
G2 Second-order Moment of flow distance
delta1 Delta 1 (Distance of the catchment rainfall centroid with re-

spect to the catchment centroid. Values of d1 close to 1 reflect
a rainfall distribution either concentrated close to the catch-
ment centroid position or else spatially homogeneous. Values
less than 1 (or greater than 1) indicate that rainfall is dis-
tributed downstream (or upstream).)

delta2 Delta 2 (Rainfall field dispersion (with respect to its mean
position) relative to the dispersion of the flow distances. Val-
ues of d2 close to 1 reflect a uniform-like rainfall distribution,
whereas values less (greater) than 1 indicate that rainfall is
characterized by a uni- modal (multimodal) distribution along
the flow distance)

EcartVertical Vertical Gap (VG values close to zero indicate a rainfall distri-
bution over the catchment revealing weak spatial variability.
The higher the VG value; the more concentrated the rainfall
over a small part of the catchment.)
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Table 5.1 continued from previous page

VARIABLE DEFINITION

EcartHorizontal Horizontal Gap (HG values close to 0 reflect a rainfall dis-
tribution either concentrated close to the catchment centroid
position or spatially homogeneous. Values less than 0 (greater
than 0) indicate that rain- fall is distributed downstream (or
upstream).)

casetag Auxiliary spatial moment calculation variable - Flood event
case tag

mean Auxiliary dataset merging variable
std Auxiliary dataset merging variable
a1 Auxiliary dataset merging variable
a12 Auxiliary dataset merging variable
a2 Auxiliary dataset merging variable
snowpercent Percentage of Snow in the Gauge
bio1 Annual Mean Temperature
bio2 Mean Diurnal Range (Mean of monthly (max temp - min

temp))
bio3 Isothermality (BIO2/BIO7) (* 100)
bio4 Temperature Seasonality (standard deviation *100)
bio5 Max Temperature of Warmest Month
bio6 Min Temperature of Coldest Month
bio7 Temperature Annual Range (BIO5-BIO6)
bio8 Mean Temperature of Wettest Quarter
bio9 Mean Temperature of Driest Quarter
bio10 Mean Temperature of Warmest Quarter
bio11 Mean Temperature of Coldest Quarter
bio12 Annual Precipitation
bio13 Precipitation of Wettest Month
bio14 Precipitation of Driest Month
bio15 Precipitation Seasonality (Coefficient of Variation)
bio16 Precipitation of Wettest Quarter
bio17 Precipitation of Driest Quarter
bio18 Precipitation of Warmest Quarter
bio19 Precipitation of Coldest Quarter

Table 5.1: Table of all variables

Expertly Removed Variables

$peakt $q200 $class $ntp
$q2 $q500 $season $nrt
$q5 $alpha $maxseason $nq
$q10 $beta $P0 $peakq
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Table 5.2 continued from previous page

Expertly Removed Variables

$q25 $usgs area $P1 $f
$q50 $carea $P2 $mf
$q100 $dc $nfd $f.ecdf

Table 5.2: Expertly Removed Variables

5.2 Model results and outputs

Call: earth(x=data.frame [16914 ,52] , y=c( -0.403 ,0.396 ,...), keepxy=TRUE ,

degree=2, nprune =39)

coefficients

(Intercept) -0.2146015

h(1.59977 - precip) -0.1391982

h( -0.291407 - imperviousbasin) 0.1327861

h(0.700318 -mf.event) 0.4103090

h(mf.event -0.700318) -0.7494138

h(0.688744 - precip_sdev) 0.2991444

h(precip_sdev -0.688744) -0.0441179

h(0.543984 - flowdist_mean) 0.2619192

h(flowdist_mean -0.543984) -0.4650195

h(1.77731 - flowdist_sdev) -0.0358267

h(flowdist_sdev -1.77731) 0.5161853

h(0.0922843 - prod_mean) -1.6017554

h(prod_mean -0.0922843) 1.5408134

h(0.262394 - prod_sdev) 0.6274666

h(prod_sdev -0.262394) -0.4811582

h(2.63582 - prod_skew) -0.0650089

h(prod_skew -2.63582) 0.3841768

h( -0.442446 -rr) * h(0.543984 - flowdist_mean) -0.0939906

h(rr - -0.442446) * h(0.543984 - flowdist_mean) -0.0885677

h(imperviousbasin - -0.291407) * h(bio_15- -2.39842) -0.0251479

h(imperviousbasin - -0.291407) * h( -2.39842 - bio_15) -4.1795172

h(0.0094663 - kfact) * h(prod_sdev -0.262394) -0.1064142

h(kfact -0.0094663) * h(prod_sdev -0.262394) -0.1028072

h(0.700318 -mf.event) * h(bio_2 -0.917908) -0.0828962

h(0.700318 -mf.event) * h(0.917908 - bio_2) -0.0796223

h(0.700318 -mf.event) * h(bio_18 -1.83243) -0.0749972

h(0.700318 -mf.event) * h(1.83243 - bio_18) 0.0231948

h( -0.564008 - precip_mean) * h(0.688744 - precip_sdev) 0.3973578

h(0.503667 - precip_mean) * h(prod_mean -0.0922843) -1.0087215

h(precip_mean -0.503667) * h(prod_mean -0.0922843) -0.1389018

h(0.688744 - precip_sdev) * h( -1.45447 - bio_3) 0.6394830

h( -1.17561 - flowdist_skew) * h(2.63582 - prod_skew) 0.0424978

h(0.0922843 - prod_mean) * h(snowpercent -2.33135) 0.7048619

h(0.0922843 - prod_mean) * h(2.33135 - snowpercent) 0.0809701

Selected 34 of 39 terms , and 18 of 52 predictors

Termination condition: RSq changed by less than 0.001 at 39 terms

Importance: prod_mean , mf.event , precip , flowdist_mean , precip_sdev , ...

Number of terms at each degree of interaction: 1 16 17

GCV 0.5742863 RSS 9617.81 GRSq 0.4275755 RSq 0.4331463

Listing 5.1: MARS Best Fit - lag time
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Support Vector Machines with Radial Basis Function Kernel

16914 samples

52 predictor

No pre -processing

Resampling: Cross -Validated (10 fold , repeated 10 times)

Summary of sample sizes: 15223, 15224, 15224 , 15222 , 15222, 15223, ...

Resampling results across tuning parameters:

sigma C RMSE Rsquared MAE

0.0000000 0.0000000 NaN NaN NaN

0.0000000 0.5555556 1.0019820 NaN 0.8203102

0.0000000 1.1111111 1.0019820 NaN 0.8203102

0.0000000 1.6666667 1.0019820 NaN 0.8203102

0.0000000 2.2222222 1.0019820 NaN 0.8203102

0.0000000 2.7777778 1.0019820 NaN 0.8203102

0.0000000 3.3333333 1.0019820 NaN 0.8203102

0.0000000 3.8888889 1.0019820 NaN 0.8203102

0.0000000 4.4444444 1.0019820 NaN 0.8203102

0.0000000 5.0000000 1.0019820 NaN 0.8203102

0.5555556 0.0000000 NaN NaN NaN

0.5555556 0.5555556 0.9069105 0.20170954 0.7089658

0.5555556 1.1111111 0.8910200 0.21739448 0.6920289

0.5555556 1.6666667 0.8881179 0.21845658 0.6885907

0.5555556 2.2222222 0.8888401 0.21596645 0.6887640

0.5555556 2.7777778 0.8898763 0.21363715 0.6895134

0.5555556 3.3333333 0.8907036 0.21184671 0.6901420

0.5555556 3.8888889 0.8911733 0.21081937 0.6905901

0.5555556 4.4444444 0.8915411 0.21002139 0.6909359

0.5555556 5.0000000 0.8918132 0.20943263 0.6912014

1.1111111 0.0000000 NaN NaN NaN

1.1111111 0.5555556 0.9465507 0.13384277 0.7522765

1.1111111 1.1111111 0.9327454 0.14799341 0.7371557

1.1111111 1.6666667 0.9293912 0.14965589 0.7333388

1.1111111 2.2222222 0.9292803 0.14850389 0.7329020

1.1111111 2.7777778 0.9296879 0.14718329 0.7331136

1.1111111 3.3333333 0.9301097 0.14593516 0.7333451

1.1111111 3.8888889 0.9302298 0.14556080 0.7334772

1.1111111 4.4444444 0.9303316 0.14524826 0.7335959

1.1111111 5.0000000 0.9304163 0.14499746 0.7336814

1.6666667 0.0000000 NaN NaN NaN

1.6666667 0.5555556 0.9639936 0.10063307 0.7727052

1.6666667 1.1111111 0.9525738 0.11129210 0.7595715

1.6666667 1.6666667 0.9496357 0.11227707 0.7561124

1.6666667 2.2222222 0.9495232 0.11106998 0.7556410

1.6666667 2.7777778 0.9498106 0.11000545 0.7557640

1.6666667 3.3333333 0.9500606 0.10917012 0.7558762

1.6666667 3.8888889 0.9500925 0.10904334 0.7559108

1.6666667 4.4444444 0.9501209 0.10894015 0.7559399

1.6666667 5.0000000 0.9501397 0.10886632 0.7559646

2.2222222 0.0000000 NaN NaN NaN

2.2222222 0.5555556 0.9734253 0.08012466 0.7841209

2.2222222 1.1111111 0.9639010 0.08764243 0.7727083

2.2222222 1.6666667 0.9614090 0.08814069 0.7696350

2.2222222 2.2222222 0.9613030 0.08699285 0.7691570

2.2222222 2.7777778 0.9615110 0.08620073 0.7691966

2.2222222 3.3333333 0.9617029 0.08556148 0.7692554

2.2222222 3.8888889 0.9617114 0.08551921 0.7692704

2.2222222 4.4444444 0.9617152 0.08549820 0.7692769

2.2222222 5.0000000 0.9617145 0.08549787 0.7692759

2.7777778 0.0000000 NaN NaN NaN

2.7777778 0.5555556 0.9790510 0.06619722 0.7910229

2.7777778 1.1111111 0.9709040 0.07164672 0.7809426

2.7777778 1.6666667 0.9688027 0.07180034 0.7781813

2.7777778 2.2222222 0.9686979 0.07081045 0.7776854
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2.7777778 2.7777778 0.9688812 0.07014041 0.7777009

2.7777778 3.3333333 0.9690588 0.06960066 0.7777475

2.7777778 3.8888889 0.9690591 0.06959695 0.7777477

2.7777778 4.4444444 0.9690591 0.06959691 0.7777475

2.7777778 5.0000000 0.9690592 0.06959679 0.7777474

3.3333333 0.0000000 NaN NaN NaN

3.3333333 0.5555556 0.9826492 0.05638909 0.7954569

3.3333333 1.1111111 0.9754990 0.06054270 0.7863526

3.3333333 1.6666667 0.9736847 0.06054990 0.7838365

3.3333333 2.2222222 0.9735889 0.05970640 0.7833381

3.3333333 2.7777778 0.9737650 0.05911600 0.7833412

3.3333333 3.3333333 0.9739425 0.05863749 0.7833884

3.3333333 3.8888889 0.9739425 0.05863742 0.7833880

3.3333333 4.4444444 0.9739425 0.05863740 0.7833878

3.3333333 5.0000000 0.9739425 0.05863735 0.7833876

3.8888889 0.0000000 NaN NaN NaN

3.8888889 0.5555556 0.9850595 0.04934814 0.7984523

3.8888889 1.1111111 0.9786421 0.05269541 0.7900797

3.8888889 1.6666667 0.9770332 0.05268721 0.7877127

3.8888889 2.2222222 0.9769526 0.05195633 0.7872200

3.8888889 2.7777778 0.9771357 0.05140484 0.7872306

3.8888889 3.3333333 0.9773131 0.05096689 0.7872787

3.8888889 3.8888889 0.9773131 0.05096677 0.7872784

3.8888889 4.4444444 0.9773131 0.05096672 0.7872782

3.8888889 5.0000000 0.9773132 0.05096667 0.7872780

4.4444444 0.0000000 NaN NaN NaN

4.4444444 0.5555556 0.9867407 0.04420155 0.8005941

4.4444444 1.1111111 0.9808704 0.04703744 0.7927424

4.4444444 1.6666667 0.9794155 0.04706076 0.7904672

4.4444444 2.2222222 0.9793495 0.04642191 0.7899779

4.4444444 2.7777778 0.9795390 0.04589944 0.7899962

4.4444444 3.3333333 0.9797154 0.04549437 0.7900446

4.4444444 3.8888889 0.9797154 0.04549429 0.7900443

4.4444444 4.4444444 0.9797154 0.04549423 0.7900441

4.4444444 5.0000000 0.9797154 0.04549417 0.7900439

5.0000000 0.0000000 NaN NaN NaN

5.0000000 0.5555556 0.9879571 0.04036538 0.8021905

5.0000000 1.1111111 0.9824997 0.04286573 0.7946900

5.0000000 1.6666667 0.9811587 0.04294924 0.7924973

5.0000000 2.2222222 0.9811062 0.04238221 0.7920100

5.0000000 2.7777778 0.9813000 0.04188335 0.7920338

5.0000000 3.3333333 0.9814756 0.04150415 0.7920819

5.0000000 3.8888889 0.9814756 0.04150407 0.7920816

5.0000000 4.4444444 0.9814756 0.04150403 0.7920814

5.0000000 5.0000000 0.9814756 0.04150400 0.7920812

RMSE was used to select the optimal model using the smallest value.

The final values used for the model were sigma = 0.5555556 and C = 1.666667.

Listing 5.4: SVM Best Fit - lag time

Support Vector Machines with Radial Basis Function Kernel

16914 samples

52 predictor

No pre -processing

Resampling: Cross -Validated (10 fold , repeated 10 times)

Summary of sample sizes: 15222, 15222, 15224, 15222 , 15224, 15222, ...

Resampling results across tuning parameters:

sigma C RMSE Rsquared MAE

0.0000000 0.0000000 NaN NaN NaN

0.0000000 0.5555556 0.9996931 NaN 0.7878128

0.0000000 1.1111111 0.9996931 NaN 0.7878128

0.0000000 1.6666667 0.9996931 NaN 0.7878128

0.0000000 2.2222222 0.9996931 NaN 0.7878128
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0.0000000 2.7777778 0.9996931 NaN 0.7878128

0.0000000 3.3333333 0.9996931 NaN 0.7878128

0.0000000 3.8888889 0.9996931 NaN 0.7878128

0.0000000 4.4444444 0.9996931 NaN 0.7878128

0.0000000 5.0000000 0.9996931 NaN 0.7878128

0.5555556 0.0000000 NaN NaN NaN

0.5555556 0.5555556 0.9546673 0.08889842 0.7381761

0.5555556 1.1111111 0.9547582 0.08975652 0.7360130

0.5555556 1.6666667 0.9590769 0.08726597 0.7384933

0.5555556 2.2222222 0.9636342 0.08361430 0.7419653

0.5555556 2.7777778 0.9671220 0.08073861 0.7446485

0.5555556 3.3333333 0.9695016 0.07878516 0.7465794

0.5555556 3.8888889 0.9713087 0.07730301 0.7480234

0.5555556 4.4444444 0.9726840 0.07619749 0.7491306

0.5555556 5.0000000 0.9739173 0.07519939 0.7501012

1.1111111 0.0000000 NaN NaN NaN

1.1111111 0.5555556 0.9687017 0.06531231 0.7539174

1.1111111 1.1111111 0.9649787 0.06808458 0.7484700

1.1111111 1.6666667 0.9663706 0.06643798 0.7486826

1.1111111 2.2222222 0.9681664 0.06433412 0.7499722

1.1111111 2.7777778 0.9694721 0.06270459 0.7509825

1.1111111 3.3333333 0.9704042 0.06149992 0.7517690

1.1111111 3.8888889 0.9711958 0.06048239 0.7524128

1.1111111 4.4444444 0.9718580 0.05964648 0.7529646

1.1111111 5.0000000 0.9723960 0.05898539 0.7534025

1.6666667 0.0000000 NaN NaN NaN

1.6666667 0.5555556 0.9762777 0.05219004 0.7620276

1.6666667 1.1111111 0.9718086 0.05530265 0.7562807

1.6666667 1.6666667 0.9719265 0.05466063 0.7554996

1.6666667 2.2222222 0.9729272 0.05306291 0.7560434

1.6666667 2.7777778 0.9737701 0.05172058 0.7566023

1.6666667 3.3333333 0.9743277 0.05085082 0.7570460

1.6666667 3.8888889 0.9747489 0.05019710 0.7573869

1.6666667 4.4444444 0.9750609 0.04971878 0.7576470

1.6666667 5.0000000 0.9752789 0.04938857 0.7578204

2.2222222 0.0000000 NaN NaN NaN

2.2222222 0.5555556 0.9807067 0.04418632 0.7667156

2.2222222 1.1111111 0.9761966 0.04715300 0.7612304

2.2222222 1.6666667 0.9758957 0.04683532 0.7601901

2.2222222 2.2222222 0.9765173 0.04562890 0.7603925

2.2222222 2.7777778 0.9770321 0.04469763 0.7606501

2.2222222 3.3333333 0.9773329 0.04416744 0.7608863

2.2222222 3.8888889 0.9775136 0.04385598 0.7610223

2.2222222 4.4444444 0.9776261 0.04366170 0.7611123

2.2222222 5.0000000 0.9777085 0.04352241 0.7611807

2.7777778 0.0000000 NaN NaN NaN

2.7777778 0.5555556 0.9834920 0.03898680 0.7696787

2.7777778 1.1111111 0.9791649 0.04153570 0.7643987

2.7777778 1.6666667 0.9786091 0.04154264 0.7631445

2.7777778 2.2222222 0.9790206 0.04060957 0.7631348

2.7777778 2.7777778 0.9793207 0.04000679 0.7632387

2.7777778 3.3333333 0.9794763 0.03971695 0.7633581

2.7777778 3.8888889 0.9795587 0.03956539 0.7634388

2.7777778 4.4444444 0.9796292 0.03943827 0.7634987

2.7777778 5.0000000 0.9796918 0.03932685 0.7635531

3.3333333 0.0000000 NaN NaN NaN

3.3333333 0.5555556 0.9853527 0.03540761 0.7716609

3.3333333 1.1111111 0.9811620 0.03771318 0.7665391

3.3333333 1.6666667 0.9805078 0.03783193 0.7651982

3.3333333 2.2222222 0.9807514 0.03717056 0.7650557

3.3333333 2.7777778 0.9809314 0.03677264 0.7650658

3.3333333 3.3333333 0.9810132 0.03661416 0.7651409

3.3333333 3.8888889 0.9810758 0.03649567 0.7652015

3.3333333 4.4444444 0.9811155 0.03642140 0.7652391

3.3333333 5.0000000 0.9811420 0.03637092 0.7652657

3.8888889 0.0000000 NaN NaN NaN

3.8888889 0.5555556 0.9866488 0.03284584 0.7730312

3.8888889 1.1111111 0.9825741 0.03498439 0.7680488
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3.8888889 1.6666667 0.9818580 0.03518321 0.7666670

3.8888889 2.2222222 0.9819769 0.03474361 0.7664269

3.8888889 2.7777778 0.9820926 0.03445915 0.7663926

3.8888889 3.3333333 0.9821446 0.03435613 0.7664390

3.8888889 3.8888889 0.9821770 0.03429339 0.7664730

3.8888889 4.4444444 0.9821974 0.03425216 0.7664952

3.8888889 5.0000000 0.9822076 0.03423002 0.7665099

4.4444444 0.0000000 NaN NaN NaN

4.4444444 0.5555556 0.9875870 0.03092437 0.7740287

4.4444444 1.1111111 0.9836090 0.03296000 0.7691565

4.4444444 1.6666667 0.9828445 0.03324370 0.7677617

4.4444444 2.2222222 0.9828795 0.03295823 0.7674664

4.4444444 2.7777778 0.9829499 0.03275672 0.7673993

4.4444444 3.3333333 0.9829841 0.03268857 0.7674280

4.4444444 3.8888889 0.9830006 0.03265431 0.7674481

4.4444444 4.4444444 0.9830082 0.03263724 0.7674619

4.4444444 5.0000000 0.9830096 0.03263378 0.7674655

5.0000000 0.0000000 NaN NaN NaN

5.0000000 0.5555556 0.9882883 0.02941879 0.7747823

5.0000000 1.1111111 0.9843947 0.03140382 0.7700057

5.0000000 1.6666667 0.9835823 0.03178933 0.7685878

5.0000000 2.2222222 0.9835635 0.03160442 0.7682676

5.0000000 2.7777778 0.9836039 0.03146042 0.7681748

5.0000000 3.3333333 0.9836237 0.03141974 0.7681880

5.0000000 3.8888889 0.9836306 0.03140409 0.7682005

5.0000000 4.4444444 0.9836314 0.03140184 0.7682038

5.0000000 5.0000000 0.9836314 0.03140184 0.7682038

RMSE was used to select the optimal model using the smallest value.

The final values used for the model were sigma = 0.5555556 and C

= 0.5555556.

Listing 5.5: SVM Best Fit - peakq moment

Support Vector Machines with Radial Basis Function Kernel

16914 samples

52 predictor

5 classes: ’0’, ’1’, ’2’, ’4’, ’8’

No pre -processing

Resampling: Cross -Validated (10 fold , repeated 10 times)

Summary of sample sizes: 15223, 15222, 15222, 15224 , 15223, 15223, ...

Resampling results across tuning parameters:

sigma C Accuracy Kappa

0.0000000 0.0000000 NaN NaN

0.0000000 0.5555556 0.8006977 0.000000000

0.0000000 1.1111111 0.8006977 0.000000000

0.0000000 1.6666667 0.8006977 0.000000000

0.0000000 2.2222222 0.8006977 0.000000000

0.0000000 2.7777778 0.8006977 0.000000000

0.0000000 3.3333333 0.8006977 0.000000000

0.0000000 3.8888889 0.8006977 0.000000000

0.0000000 4.4444444 0.8006977 0.000000000

0.0000000 5.0000000 0.8006977 0.000000000

0.5555556 0.0000000 NaN NaN

0.5555556 0.5555556 0.8156498 0.177197309

0.5555556 1.1111111 0.8246184 0.281215198

0.5555556 1.6666667 0.8271254 0.323088856

0.5555556 2.2222222 0.8267708 0.330661634

0.5555556 2.7777778 0.8256533 0.328785786

0.5555556 3.3333333 0.8253636 0.328923874

0.5555556 3.8888889 0.8251980 0.329360306

0.5555556 4.4444444 0.8248018 0.328384143

0.5555556 5.0000000 0.8246600 0.328517604

1.1111111 0.0000000 NaN NaN

108



1.1111111 0.5555556 0.8072781 0.080977036

1.1111111 1.1111111 0.8138170 0.164954911

1.1111111 1.6666667 0.8156853 0.204881403

1.1111111 2.2222222 0.8154606 0.212904338

1.1111111 2.7777778 0.8153246 0.214013336

1.1111111 3.3333333 0.8156084 0.216269661

1.1111111 3.8888889 0.8154133 0.215633819

1.1111111 4.4444444 0.8153778 0.215721790

1.1111111 5.0000000 0.8154133 0.216166382

1.6666667 0.0000000 NaN NaN

1.6666667 0.5555556 0.8039022 0.041991006

1.6666667 1.1111111 0.8094241 0.110361094

1.6666667 1.6666667 0.8108136 0.141018536

1.6666667 2.2222222 0.8111742 0.148925970

1.6666667 2.7777778 0.8108786 0.148782490

1.6666667 3.3333333 0.8107544 0.148645058

1.6666667 3.8888889 0.8108254 0.149275500

1.6666667 4.4444444 0.8108550 0.149833794

1.6666667 5.0000000 0.8107722 0.149559594

2.2222222 0.0000000 NaN NaN

2.2222222 0.5555556 0.8025837 0.024088026

2.2222222 1.1111111 0.8079756 0.084512234

2.2222222 1.6666667 0.8084427 0.108290962

2.2222222 2.2222222 0.8085550 0.113586618

2.2222222 2.7777778 0.8084249 0.113976153

2.2222222 3.3333333 0.8083836 0.113929468

2.2222222 3.8888889 0.8082298 0.113426993

2.2222222 4.4444444 0.8081944 0.113280184

2.2222222 5.0000000 0.8081766 0.113172692

2.7777778 0.0000000 NaN NaN

2.7777778 0.5555556 0.8018506 0.014005483

2.7777778 1.1111111 0.8063615 0.065537857

2.7777778 1.6666667 0.8077154 0.089674564

2.7777778 2.2222222 0.8073193 0.091512966

2.7777778 2.7777778 0.8072957 0.091988335

2.7777778 3.3333333 0.8071656 0.091481363

2.7777778 3.8888889 0.8071715 0.091584206

2.7777778 4.4444444 0.8072602 0.092052738

2.7777778 5.0000000 0.8072484 0.091966729

3.3333333 0.0000000 NaN NaN

3.3333333 0.5555556 0.8013481 0.007998257

3.3333333 1.1111111 0.8050726 0.051140205

3.3333333 1.6666667 0.8063201 0.071619624

3.3333333 2.2222222 0.8061250 0.074819429

3.3333333 2.7777778 0.8062255 0.075667678

3.3333333 3.3333333 0.8062373 0.076194549

3.3333333 3.8888889 0.8062373 0.076232602

3.3333333 4.4444444 0.8061959 0.076106770

3.3333333 5.0000000 0.8062018 0.076148576

3.8888889 0.0000000 NaN NaN

3.8888889 0.5555556 0.8011116 0.004791918

3.8888889 1.1111111 0.8048007 0.044531051

3.8888889 1.6666667 0.8054393 0.059947210

3.8888889 2.2222222 0.8055220 0.063497916

3.8888889 2.7777778 0.8055929 0.064024719

3.8888889 3.3333333 0.8055811 0.063931818

3.8888889 3.8888889 0.8055575 0.063785417

3.8888889 4.4444444 0.8055634 0.063813911

3.8888889 5.0000000 0.8055634 0.063813911

4.4444444 0.0000000 NaN NaN

4.4444444 0.5555556 0.8009401 0.003094190

4.4444444 1.1111111 0.8046292 0.039652012

4.4444444 1.6666667 0.8050254 0.051899570

4.4444444 2.2222222 0.8049781 0.054326753

4.4444444 2.7777778 0.8050017 0.054561548

4.4444444 3.3333333 0.8050077 0.054592083

4.4444444 3.8888889 0.8050077 0.054592083

4.4444444 4.4444444 0.8050077 0.054592083
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4.4444444 5.0000000 0.8050077 0.054590062

5.0000000 0.0000000 NaN NaN

5.0000000 0.5555556 0.8008573 0.001949617

5.0000000 1.1111111 0.8045050 0.036778279

5.0000000 1.6666667 0.8047002 0.046133249

5.0000000 2.2222222 0.8046943 0.048116338

5.0000000 2.7777778 0.8046529 0.048211807

5.0000000 3.3333333 0.8046529 0.048211807

5.0000000 3.8888889 0.8046529 0.048211800

5.0000000 4.4444444 0.8046529 0.048211800

5.0000000 5.0000000 0.8046529 0.048211800

Accuracy was used to select the optimal model using the largest value.

The final values used for the model were sigma = 0.5555556 and C

= 1.666667.

Listing 5.6: SVM Best Fit - exceeds threshold

5.3 Training Reliability Diagrams

5.3.1 MARS
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5.3.2 Random Forest
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5.3.3 Support Vector Machines
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5.4 Validation Reliability Diagrams

5.4.1 MARS
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5.4.2 Random Forest
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5.4.3 Support Vector Machines
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5.5 Model training scripts

# ############################################################

# PROBABILISTIC CHARACTERIZATION OF FLOODS FROM #

# CATCHMENT -SCALE PRECIPITATION MOMENTS #

# by #

# Jorge A. Duarte G. - jduarte@ou .edu #

# The University of Oklahoma #

# Summer 2019 #

# -----------------------------------------------------------#

# Script: MARS MODELING - Lag_centroid_peak_event #

# V.1.0 #

# ############################################################

# Number of cores to run with

NUM_CORES <- 8

# Library Imports

library("smooth") # simulation metrics

library("ggplot2") # plotting

library("earth") # fit MARS models

library("caret") # automating the tuning process

library("vip") # variable importance

library("pdp") # variable relationships

library("doParallel") # CPU Parallelization

print("Imported Libraries")

# Data Imports

training_data <- read.csv("../../Data/final_training_data.csv")

validation_data <- read.csv("../../Data/final_validation_data.csv")

print("Imported Datasets")

# Create a tuning grid for MARS

hyper_grid <- expand.grid(

degree = 1:5, # Interaction effect degrees

nprune = seq(2, 54, length.out = 50) %>% floor() # Number of terms to retain

)

print("Created Tuning Grid")

# Set seed for reproducibiity

set.seed (123)

# Instantiate parallelization socket cluster (# of cores to use)

cl <- makePSOCKcluster(NUM_CORES)

registerDoParallel(cl)

print("Started training MARS for lag_time")

# Record start time

start_time <- Sys.time()

paste("Start time: ", start_time)

# Cross -validated model training

tuned_mars <- train(

x = subset(training_data , select = -c(lag_centroid_peak_event , peakq_moment , exceeds_

threshold)),

y = training_data$lag_centroid_peak ,

method = "earth",

metric = "RMSE",

trControl = trainControl(method = "repeatedcv", repeats = 10, number = 10, p = 0.25,

allowParallel = TRUE),

tuneGrid = hyper_grid

)
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# Record end time

end_time <- Sys.time()

# Stop the socket cluster and free up the cores

stopCluster(cl)

print("Finished Training")

# Save tuned MARS model object

saveRDS(tuned_mars , "lag_time -MARS_10x10CV_tuned.rds")

print("Saved Model Object")

# Write console outputs to log file

sink("./lag_time -MARS_10 x10CV_training_log.txt")

# Record training time

paste("Run time: ", end_time - start_time)

# Return results , best model and summary

tuned_mars$results

tuned_mars$bestTune

summary(tuned_mars)

# Return variable importance

evimp(tuned_mars$finalModel , trim = FALSE)

sink()

print("DONE!")

Listing 5.7: R Script - MARS model: lag time

# ############################################################

# PROBABILISTIC CHARACTERIZATION OF FLOODS FROM #

# CATCHMENT -SCALE PRECIPITATION MOMENTS #

# by #

# Jorge A. Duarte G. - jduarte@ou .edu #

# The University of Oklahoma #

# Summer 2019 #

# -----------------------------------------------------------#

# Script: MARS MODELING - peakq_moment #

# V.1.0 #

# ############################################################

# Number of cores to run with

NUM_CORES <- 8

# Library Imports

library("smooth") # simulation metrics

library("ggplot2") # plotting

library("earth") # fit MARS models

library("caret") # automating the tuning process

library("vip") # variable importance

library("pdp") # variable relationships

library("doParallel") # CPU Parallelization

print("Imported Libraries")

# Data Imports

training_data <- read.csv("../../Data/final_training_data.csv")

validation_data <- read.csv("../../Data/final_validation_data.csv")

print("Imported Datasets")

# Create a tuning grid for MARS

hyper_grid <- expand.grid(
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degree = 1:5, # Interaction effect degrees

nprune = seq(2, 54, length.out = 50) %>% floor() # Number of terms to retain

)

print("Created Tuning Grid")

# Set seed for reproducibiity

set.seed (123)

# Instantiate parallelization socket cluster (# of cores to use)

cl <- makePSOCKcluster(NUM_CORES)

registerDoParallel(cl)

print("Started training MARS for lag_time")

# Record start time

start_time <- Sys.time()

paste("Start time: ", start_time)

# Cross -validated model training

tuned_mars <- train(

x = subset(training_data , select = -c(lag_centroid_peak_event , peakq_moment , exceeds_

threshold)),

y = training_data$peakq_moment ,

method = "earth",

metric = "RMSE",

trControl = trainControl(method = "repeatedcv", repeats = 10, number = 10, p = 0.25,

allowParallel = TRUE),

tuneGrid = hyper_grid

)

# Record end time

end_time <- Sys.time()

# Stop the socket cluster and free up the cores

stopCluster(cl)

print("Finished Training")

# Save tuned MARS model object

saveRDS(tuned_mars , "peakq_moment -MARS_10 x10CV_tuned.rds")

print("Saved Model Object")

# Write console outputs to log file

sink("./peakq_moment -MARS_10 x10CV_training_log.txt")

# Record training time

paste("Run time: ", end_time - start_time)

# Return results , best model and summary

tuned_mars$results

tuned_mars$bestTune

summary(tuned_mars)

# Return variable importance

evimp(tuned_mars$finalModel , trim = FALSE)

sink()

print("DONE!")

Listing 5.8: R Script - MARS model: peakq moment

# ############################################################

# PROBABILISTIC CHARACTERIZATION OF FLOODS FROM #

# CATCHMENT -SCALE PRECIPITATION MOMENTS #

# by #
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# Jorge A. Duarte G. - jduarte@ou .edu #

# The University of Oklahoma #

# Summer 2019 #

# -----------------------------------------------------------#

# Script: MARS MODELING - exceeds_threshold #

# V.1.0 #

# ############################################################

# Number of cores to run with

NUM_CORES <- 8

# Library Imports

library("smooth") # simulation metrics

library("ggplot2") # plotting

library("earth") # fit MARS models

library("caret") # automating the tuning process

library("vip") # variable importance

library("pdp") # variable relationships

library("doParallel") # CPU Parallelization

print("Imported Libraries")

# Data Imports

training_data <- read.csv("../../Data/final_training_data.csv")

training_data$exceeds_threshold <- as.factor(training_data$exceeds_threshold)

validation_data <- read.csv("../../Data/final_validation_data.csv")

validation_data$exceeds_threshold <- as.factor(validation_data$exceeds_threshold)

print("Imported Datasets")

# Create a tuning grid for MARS

hyper_grid <- expand.grid(

degree = 1:5, # Interaction effect degrees

nprune = seq(2, 52, length.out = 50) %>% floor() # Number of terms to retain

)

print("Created Tuning Grid")

# Set seed for reproducibiity

set.seed (123)

# Instantiate parallelization socket cluster (# of cores to use)

cl <- makePSOCKcluster(NUM_CORES)

registerDoParallel(cl)

print("Started training MARS for lag_time")

# Record start time

start_time <- Sys.time()

paste("Start time: ", start_time)

# Cross -validated model training

tuned_mars <- train(

x = subset(training_data , select = -c(lag_centroid_peak_event , peakq_moment , exceeds_

threshold)),

y = training_data$exceeds_threshold ,

method = "earth",

metric = "Accuracy",

trControl = trainControl(method = "repeatedcv", repeats = 10, number = 10, p = 0.25,

allowParallel = TRUE),

tuneGrid = hyper_grid

)

# Record end time

end_time <- Sys.time()

137



# Stop the socket cluster and free up the cores

stopCluster(cl)

print("Finished Training")

# Save tuned MARS model object

saveRDS(tuned_mars , "exceeds_threshold -MARS_10 x10CV_tuned.rds")

print("Saved Model Object")

# Write console outputs to log file

sink("./exceeds_threshold -MARS_10 x10CV_training_log.txt")

# Record training time

paste("Run time: ", end_time - start_time)

# Return results , best model and summary

tuned_mars$results

tuned_mars$bestTune

summary(tuned_mars)

# Return variable importance

evimp(tuned_mars$finalModel , trim = FALSE)

sink()

print("DONE!")

Listing 5.9: R Script - MARS model: exceedsthreshold

# ############################################################

# PROBABILISTIC CHARACTERIZATION OF FLOODS FROM #

# CATCHMENT -SCALE PRECIPITATION MOMENTS #

# by #

# Jorge A. Duarte G. - jduarte@ou .edu #

# The University of Oklahoma #

# Summer 2019 #

# -----------------------------------------------------------#

# Script: RandomForest MODELING - lag_centroid_peak_event #

# V.1.0 #

# ############################################################

# Number of cores to run with

NUM_CORES <- 8

NUM_TREES <- 100

# Library Imports

library("smooth") # simulation metrics

library("ggplot2") # plotting

library("randomForest") # fit Random Forest models

library("caret") # automating the tuning process

library("vip") # variable importance

library("pdp") # variable relationships

library("doParallel") # CPU Parallelization

print("Imported Libraries")

# Data Imports

training_data <- read.csv("../../Data/final_training_data.csv")

validation_data <- read.csv("../../Data/final_validation_data.csv")

print("Imported Datasets")

# Create a tuning grid for MARS

tunegrid <- expand.grid(.mtry=c(1:54))

# Create a training control vector for Random Forest

control <- trainControl(method="repeatedcv", number =10, repeats =10, search="grid")
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# Set seed for reproducibiity

set.seed (123)

# Instantiate parallelization socket cluster (# of cores to use)

cl <- makePSOCKcluster(NUM_CORES)

registerDoParallel(cl)

print("Started training RandomForest for lag_time")

# Record start time

start_time <- Sys.time()

paste("Start time: ", start_time)

# Cross -valiadted model training

rf_gridsearch <- train(lag_centroid_peak_event~., data=subset(training_data , select = -c(

peakq_moment , exceeds_threshold)), method="rf", metric="RMSE", ntree = NUM_TREES ,

importance = TRUE , do.trace=F, tuneGrid=tunegrid , trControl=control)

# Record end time

end_time <- Sys.time()

# Stop the socket cluster and free up the cores

stopCluster(cl)

print("Finished Training")

# Save tuned MARS model object

saveRDS(rf_gridsearch , "lag_time -RF_10x10CV_gridsearch.rds")

print("Saved Model Object")

# Write console outputs to log file

sink("./lag_time -RF_10x10CV_training_log.txt")

# Record training time

paste("Run time: ", end_time - start_time)

# Return results , best model and summary

print(rf_gridsearch)

rf_gridsearch$finalModel

summary(rf_gridsearch)

sink()

print("DONE!")

Listing 5.10: R Script - Random Forest model: lag time

# ############################################################

# PROBABILISTIC CHARACTERIZATION OF FLOODS FROM #

# CATCHMENT -SCALE PRECIPITATION MOMENTS #

# by #

# Jorge A. Duarte G. - jduarte@ou .edu #

# The University of Oklahoma #

# Summer 2019 #

# -----------------------------------------------------------#

# Script: RandomForest MODELING - peakq_moment #

# V.1.0 #

# ############################################################

# Number of cores to run with

NUM_CORES <- 8

NUM_TREES <- 100

# Library Imports

library("smooth") # simulation metrics

library("ggplot2") # plotting

139



library("randomForest") # fit Random Forest models

library("caret") # automating the tuning process

library("vip") # variable importance

library("pdp") # variable relationships

library("doParallel") # CPU Parallelization

print("Imported Libraries")

# Data Imports

training_data <- read.csv("../../Data/final_training_data.csv")

validation_data <- read.csv("../../Data/final_validation_data.csv")

print("Imported Datasets")

# Auxiliary Functions

# Common Error Metrics Function

error_metrics <- function(obs , pred){

outcomes <- data.frame(obs , pred)

print(paste("MAE", round(MAE(obs , pred), 3)))

print(paste("MSE", round(ModelMetrics ::mse(obs , pred), 3)))

print(paste("MPE", round(MPE(obs , pred), 3)))

print(paste("MAPE", round(MAPE(obs , pred), 3)))

}

# Create a tuning grid for MARS

tunegrid <- expand.grid(.mtry=c(1:52))

# Create a training control vector for Random Forest

control <- trainControl(method="repeatedcv", number =10, repeats =10, search="grid")

# Set seed for reproducibiity

set.seed (123)

# Instantiate parallelization socket cluster (# of cores to use)

cl <- makePSOCKcluster(NUM_CORES)

registerDoParallel(cl)

print("Started training RandomForest for lag_time")

# Record start time

start_time <- Sys.time()

paste("Start time: ", start_time)

# Cross -valiadted model training

rf_gridsearch <- train(peakq_moment~., data=subset(training_data , select = -c(lag_

centroid_peak_event , exceeds_threshold)), method="rf", metric="RMSE", ntree = NUM_

TREES , importance = TRUE , do.trace=F, tuneGrid=tunegrid , trControl=control)

# Record end time

end_time <- Sys.time()

# Stop the socket cluster and free up the cores

stopCluster(cl)

print("Finished Training")

# Save tuned MARS model object

saveRDS(rf_gridsearch , "peakq_moment -RF_10x10CV_gridsearch.rds")

print("Saved Model Object")

# Write console outputs to log file

sink("./peakq_moment -RF_10x10CV_training_log.txt")

# Record training time

paste("Run time: ", end_time - start_time)

# Return results , best model and summary

140



print(rf_gridsearch)

rf_gridsearch$finalModel

summary(rf_gridsearch)

sink()

print("DONE!")

Listing 5.11: R Script - Random Forest model: peakq moment

# ############################################################

# PROBABILISTIC CHARACTERIZATION OF FLOODS FROM #

# CATCHMENT -SCALE PRECIPITATION MOMENTS #

# by #

# Jorge A. Duarte G. - jduarte@ou .edu #

# The University of Oklahoma #

# Summer 2019 #

# -----------------------------------------------------------#

# Script: RandomForest MODELING - exceeds_threshold #

# V.1.0 #

# ############################################################

# Number of cores to run with

NUM_CORES <- 8

NUM_TREES <- 100

REPS_CV <- 10

FOLDS_CV <- 10

# Library Imports

library("smooth") # simulation metrics

library("ggplot2") # plotting

library("randomForest") # fit Random Forest models

library("caret") # automating the tuning process

library("vip") # variable importance

library("pdp") # variable relationships

library("doParallel") # CPU Parallelization

print("Imported Libraries")

# Data Imports

training_data <- read.csv("../../Data/final_training_data.csv")

training_data$exceeds_threshold <- as.factor(training_data$exceeds_threshold)

validation_data <- read.csv("../../Data/final_validation_data.csv")

validation_data$exceeds_threshold <- as.factor(validation_data$exceeds_threshold)

print("Imported Datasets")

# Create a tuning grid for MARS

tunegrid <- expand.grid(.mtry=c(1:52))

# Create a training control vector for Random Forest

control <- trainControl(method="repeatedcv", number=FOLDS_CV, repeats=REPS_CV, search="

grid")

# Set seed for reproducibiity

set.seed (123)

# Instantiate parallelization socket cluster (# of cores to use)

cl <- makePSOCKcluster(NUM_CORES)

registerDoParallel(cl)

print("Started training RandomForest for lag_time")

# Record start time

start_time <- Sys.time()

paste("Start time: ", start_time)
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# Cross -valiadted model training

rf_gridsearch <- train(exceeds_threshold~., data=subset(training_data , select = -c(lag_

centroid_peak_event , peakq_moment)), method="rf", metric="Accuracy", ntree = NUM_

TREES , importance = TRUE , do.trace=F, tuneGrid=tunegrid , trControl=control)

# Record end time

end_time <- Sys.time()

# Stop the socket cluster and free up the cores

stopCluster(cl)

print("Finished Training")

# Save tuned MARS model object

saveRDS(rf_gridsearch , paste("exeeds_threshold -RF_",REPS_CV,"x",FOLDS_CV,"CV_gridsearch.

rds", sep=""))

print("Saved Model Object")

# Write console outputs to log file

sink(paste("./exeeds_threshold -RF_",REPS_CV,"x",FOLDS_CV,"CV_training_log.txt", sep=""))

# Record training time

paste("Run time: ", end_time - start_time)

# Return results , best model and summary

print(rf_gridsearch)

rf_gridsearch$finalModel

summary(rf_gridsearch)

sink()

print("DONE!")

Listing 5.12: R Script - Random Forest model: exceeds threshold

# ############################################################

# PROBABILISTIC CHARACTERIZATION OF FLOODS FROM #

# CATCHMENT -SCALE PRECIPITATION MOMENTS #

# by #

# Jorge A. Duarte G. - jduarte@ou .edu #

# The University of Oklahoma #

# Summer 2019 #

# -----------------------------------------------------------#

# Script: Suport Vector Machines - lag_centroid_peak_event #

# V.1.0 #

# ############################################################

# Number of cores to run with

NUM_CORES <- 8

REPS_CV <- 10

FOLDS_CV <- 10

# Library Imports

library("smooth") # simulation metrics

library("ggplot2") # plotting

library("kernlab") # kernel -based learning utilities

library("caret") # automating the tuning process

library("vip") # variable importance

library("pdp") # variable relationships

library("doParallel") # CPU Parallelization

print("Imported Libraries")

# Data Imports

training_data <- read.csv("../../Data/final_training_data.csv")

training_data$exceeds_threshold <- as.factor(training_data$exceeds_threshold)

validation_data <- read.csv("../../Data/final_validation_data.csv")
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validation_data$exceeds_threshold <- as.factor(validation_data$exceeds_threshold)

print("Imported Datasets")

# Create a tuning grid for SVM parameters sigma and C

tunegrid <- expand.grid(sigma = seq(0,5,length =10), C = seq(0,5,length =10))

# Create a training control vector for SVM

control <- trainControl(method="repeatedcv", number=FOLDS_CV, repeats=REPS_CV)

# Set seed for reproducibiity

set.seed (123)

# Instantiate parallelization socket cluster (# of cores to use)

cl <- makePSOCKcluster(NUM_CORES)

registerDoParallel(cl)

print("Started training SVM for lag_time")

# Record start time

start_time <- Sys.time()

paste("Start time: ", start_time)

# Cross -valiadted model training

svm.tune <- train(lag_centroid_peak_event~., data=subset(training_data , select = -c(

exceeds_threshold , peakq_moment)), method = "svmRadial", tuneGrid = tunegrid ,

trControl=control)

# Record end time

end_time <- Sys.time()

# Stop the socket cluster and free up the cores

stopCluster(cl)

print("Finished Training")

# Save tuned MARS model object

saveRDS(svm.tune , paste("lag_time -SVM_",REPS_CV ,"x",FOLDS_CV,"CV_gridsearch.rds", sep="")

)

print("Saved Model Object")

# Write console outputs to log file

sink(paste("./lag_time -SVM_",REPS_CV ,"x",FOLDS_CV ,"CV_training_log.txt", sep=""))

# Record training time

paste("Run time: ", end_time - start_time)

# Return results , best model and summary

print(svm.tune)

summary(svm.tune)

svm.tune$finalModel

summary(svm.tune$finalModel)

sink()

print("DONE!")

Listing 5.13: R Script - SVM model: lag time

# ############################################################

# PROBABILISTIC CHARACTERIZATION OF FLOODS FROM #

# CATCHMENT -SCALE PRECIPITATION MOMENTS #

# by #

# Jorge A. Duarte G. - jduarte@ou .edu #

# The University of Oklahoma #

# Summer 2019 #
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# -----------------------------------------------------------#

# Script: Suport Vector Machines - peakq_moment #

# V.1.0 #

# ############################################################

# Number of cores to run with

NUM_CORES <- 8

REPS_CV <- 10

FOLDS_CV <- 10

# Library Imports

library("smooth") # simulation metrics

library("ggplot2") # plotting

library("kernlab") # kernel -based learning utilities

library("caret") # automating the tuning process

library("vip") # variable importance

library("pdp") # variable relationships

library("doParallel") # CPU Parallelization

print("Imported Libraries")

# Data Imports

training_data <- read.csv("../../Data/final_training_data.csv")

training_data$exceeds_threshold <- as.factor(training_data$exceeds_threshold)

validation_data <- read.csv("../../Data/final_validation_data.csv")

validation_data$exceeds_threshold <- as.factor(validation_data$exceeds_threshold)

print("Imported Datasets")

# Create a tuning grid for SVM parameters sigma and C

tunegrid <- expand.grid(sigma = seq(0,5,length =10), C = seq(0,5,length =10))

# Create a training control vector for SVM

control <- trainControl(method="repeatedcv", number=FOLDS_CV, repeats=REPS_CV)

# Set seed for reproducibiity

set.seed (123)

# Instantiate parallelization socket cluster (# of cores to use)

cl <- makePSOCKcluster(NUM_CORES)

registerDoParallel(cl)

print("Started training SVM for peakq_moment")

# Record start time

start_time <- Sys.time()

paste("Start time: ", start_time)

# Cross -valiadted model training

svm.tune <- train(peakq_moment~., data=subset(training_data , select = -c(lag_centroid_

peak_event , exceeds_threshold)), method = "svmRadial", tuneGrid = tunegrid ,

trControl=control)

# Record end time

end_time <- Sys.time()

# Stop the socket cluster and free up the cores

stopCluster(cl)

print("Finished Training")

# Save tuned MARS model object

saveRDS(svm.tune , paste("peakq_moment -SVM_",REPS_CV,"x",FOLDS_CV,"CV_gridsearch.rds", sep

=""))

print("Saved Model Object")
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# Write console outputs to log file

sink(paste("./peakq_moment -SVM_",REPS_CV ,"x",FOLDS_CV,"CV_training_log.txt", sep=""))

# Record training time

paste("Run time: ", end_time - start_time)

# Return results , best model and summary

print(svm.tune)

summary(svm.tune)

svm.tune$finalModel

summary(svm.tune$finalModel)

sink()

print("DONE!")

Listing 5.14: R Script - SVM model: peakq moment

# ############################################################

# PROBABILISTIC CHARACTERIZATION OF FLOODS FROM #

# CATCHMENT -SCALE PRECIPITATION MOMENTS #

# by #

# Jorge A. Duarte G. - jduarte@ou .edu #

# The University of Oklahoma #

# Summer 2019 #

# -----------------------------------------------------------#

# Script: Suport Vector Machines - exceeds_threshold #

# V.1.0 #

# ############################################################

# Number of cores to run with

NUM_CORES <- 8

REPS_CV <- 10

FOLDS_CV <- 10

# Library Imports

library("smooth") # simulation metrics

library("ggplot2") # plotting

library("kernlab") # kernel -based learning utilities

library("caret") # automating the tuning process

library("vip") # variable importance

library("pdp") # variable relationships

library("doParallel") # CPU Parallelization

print("Imported Libraries")

# Data Imports

training_data <- read.csv("../../../Data/final_training_data.csv")

training_data$exceeds_threshold <- as.factor(training_data$exceeds_threshold)

levels(training_data$exceeds_threshold)[levels(training_data$exceeds_threshold) == ’0’]

<- ’NoExceedance ’

levels(training_data$exceeds_threshold)[levels(training_data$exceeds_threshold) == ’1’]

<- ’Action ’

levels(training_data$exceeds_threshold)[levels(training_data$exceeds_threshold) == ’2’]

<- ’Minor’

levels(training_data$exceeds_threshold)[levels(training_data$exceeds_threshold) == ’4’]

<- ’Moderate ’

levels(training_data$exceeds_threshold)[levels(training_data$exceeds_threshold) == ’8’]

<- ’Major’

validation_data <- read.csv("../../../Data/final_validation_data.csv")

validation_data$exceeds_threshold <- as.factor(validation_data$exceeds_threshold)

levels(validation_data$exceeds_threshold)[levels(validation_data$exceeds_threshold) == ’0

’] <- ’NoExceedance ’

levels(validation_data$exceeds_threshold)[levels(validation_data$exceeds_threshold) == ’1

’] <- ’Action ’
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levels(validation_data$exceeds_threshold)[levels(validation_data$exceeds_threshold) == ’2

’] <- ’Minor’

levels(validation_data$exceeds_threshold)[levels(validation_data$exceeds_threshold) == ’4

’] <- ’Moderate ’

levels(validation_data$exceeds_threshold)[levels(validation_data$exceeds_threshold) == ’8

’] <- ’Major’

print("Imported Datasets")

# Create a tuning grid for SVM parameters sigma and C

#tunegrid <- expand.grid(sigma = seq(0,5, length =10) , C = seq(0,5, length =10))

tunegrid <- expand.grid(sigma = 0.5555556 , C = 1.666667)

# Create a training control vector for SVM

control <- trainControl(method="repeatedcv", number=FOLDS_CV, repeats=REPS_CV, classProbs

= TRUE)

# Set seed for reproducibiity

set.seed (123)

# Instantiate parallelization socket cluster (# of cores to use)

cl <- makePSOCKcluster(NUM_CORES)

registerDoParallel(cl)

print("Started training SVM for exceeds_threshold")

# Record start time

start_time <- Sys.time()

paste("Start time: ", start_time)

# Cross -valiadted model training

svm.tune <- train(exceeds_threshold~., data=subset(training_data , select = -c(lag_

centroid_peak_event , peakq_moment)), method = "svmRadial", tuneGrid = tunegrid ,

trControl=control)

# Record end time

end_time <- Sys.time()

# Stop the socket cluster and free up the cores

stopCluster(cl)

print("Finished Training")

# Save tuned MARS model object

saveRDS(svm.tune , paste("exceeds_threshold -SVM_",REPS_CV ,"x",FOLDS_CV,"CV_gridsearch.rds"

, sep=""))

print("Saved Model Object")

# Write console outputs to log file

sink(paste("./exceeds_threshold -SVM_",REPS_CV ,"x",FOLDS_CV ,"CV_training_log.txt", sep="")

)

# Record training time

paste("Run time: ", end_time - start_time)

# Return results , best model and summary

print(svm.tune)

summary(svm.tune)

svm.tune$finalModel

summary(svm.tune$finalModel)

sink()

print("DONE!")

Listing 5.15: R Script - SVM model: exceeds threshold
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