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Abstract 

Medium-sized rings (8–12 membered) are a unique class of cyclic molecules. These 

structures are present within a plethora of relevant natural products often possessing 

enhanced pharmacokinetic properties due to their dynamic structures. However, these 

molecules are drastically underrepresented due to the challenges associated with their 

construction.  For this reason, more efficient methods to synthesize medium-sized rings 

may increase their presence in future drug scaffolds. The research presented in this thesis 

provides a highly convergent strategy to access diverse medium-sized heterocycles. The 

strategy relies on ambiphilic rhodium vinylcarbenoid precursors and dual-purpose 

nucleophile/electrophile synthons, which allow for smaller ring construction followed by 

subsequent ring expansion. The initial ring annulation occurs via a heteroatom insertion 

into a highly electrophilic rhodium carbenoid, derived from diazo synthons, generating a 

reactive zwitterionic intermediate. This intermediate then undergoes an intramolecular 

aldol cyclization to provide an oxy-Cope capable synthon primed for ring expansion which, 

upon thermal treatment, yields the highly functionalized medium-sized ring. This approach 

has been applied to O–H and N–H nucleophiles. Furthermore, this zwitterionic portion of 

the cascade was further extended to tolerate carboxylic acids, different ring sizes and the 

use of earth abundant iron catalysts. In addition to the synthesis of medium-sized rings, 

these products proved to be versatile substrates for serendipitous ring contraction cascades, 

leading to relevant bioactive natural product cores, such as highly functionalized quinolines 

and cyclopentanes in a diastereoselective manner. As a final remark, many of the products 

produced have been submitted for high throughput screening which has allowed for the 
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identification of hit molecules that are now being further studied in the Sharma Research 

Group.  
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Chapter 1. Introduction 

A convergent cascade approach to access diverse medium-sized rings. 

1.1 Medium-Sized Rings 

Medium-sized rings (8–12 membered) are important structural motifs that possess 

unique synthetic challenges associated with their construction compared to small and 

macrocyclic structures. These ring scaffolds exist within a plethora of relevant natural 

products exhibiting favorable bioactivity through enhanced bioavailability, potency, 

selectivity, and cell permeability due to their rotational and conformational restrictions.1-2 

 

Figure 1. Examples of medium-sized natural products 

Key examples include vinblastine,3 (+)-manzamine A,4 brevetoxin-A,5 and taxol 

(Figure 1).6 Although, when considering these and other examples, only taxol and 

vinblastine have been commercialized as pharmaceuticals. Furthermore, taxol is the only 



2 

 

drug possessing a medium-sized ring within the top 200 most prescribed pharmaceuticals 

in the market.7-8 In addition, the production of taxol is accomplished through a 

semisynthetic route that bypasses the synthesis of the medium-sized carbocycle.9 This 

scarcity of commercialized medium-sized ring construction can be linked to difficulties 

associated with accessing these cores, which has created a significant rift in current 

structure activity relationship data for biological targets with respect to medium-sized rings 

ligands.10 The general structure and stability of these compounds is often dictated by 

transannular interactions within the molecule as well as substituents and heteroatoms 

present within the ring scaffold.  Furthermore, these interactions often play a pivotal role 

in the synthesis of medium-sized rings, as intramolecular interactions often inhibit or 

prevent synthetic methods used for cyclization. Currently there are a variety of methods to 

access medium-sized rings, the most common approaches involve end-to-end cyclizations, 

and rearrangement strategies. Unfortunately, current methods generally require high 

dilution conditions or the preparation of highly complex precursors, limiting their utility 

for general application. Thus, the development of a convergent strategy to synthesize 

functionalized medium-sized rings will provide direct access to diverse scaffolds difficult 

to access through traditional approaches. 

1.2 End-to-End Cyclization Strategies 

The most conventional approach to access medium-sized rings is via an end-to-end 

cyclization strategy.  This direction has led to beautiful examples of medium-sized ring 

construction utilizing coupling reactions,11 alkene metathesis,12 addition reactions,13 

radical cyclization,14 Diels–Alder cyclizations.15 These strategies are often dependent on 

substituents introducing conformational constraint to promote cyclization.16 Furthermore, 
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these linear approaches require highly dilute conditions and often have high risk of 

polymerization side reactions.17-19 Andrus and co-workers exhibited these limitations 

during their synthesis of octalactin lactone and side chain. While performing a systematic 

study for their key lactonization step using EDC/DMAP conditions, they realized that 

substituents situated on their precursors (1a–1c) played a significant role in product 

formation (2a–2c).  When the corresponding substituents were removed, they observed 

that the yield of intramolecular cyclization drastically decreased with each deletion and 

ultimately led to no formation of product 2c (Scheme 1). 

 

Scheme 1. Substrate dependence for lactonization strategies 

Although coupling reactions are not the only victims of decreased reaction rates; a 

similar substrate dependence trend can be associated with alkene metathesis too. Lubell 

and co-workers, using precursor 3a, successfully performed ring-closing metathesis 

(RCM) to form medium-sized ring 4a, clearly showing constraint dependence. By simply 

removing a dimethoxybenzyl protecting group from the amide nitrogen, Lubell and co-

workers showed that 3b failed to cyclize under typical metathesis conditions (Scheme 2).20 



4 

 

 

Scheme 2. substrate dependence in olefin metathesis 

In addition to substituents, ring size can also play a significant role on the rate of 

cyclization. Danishefsky and co-workers showed that intramolecular Suzuki couplings 

with 5 resulted in low yield of 6, likely due to entropic and enthalpic barriers associated 

with medium-sized head-to-tail cyclizations (Scheme 3). Furthermore, they determined 

that ring sizes of greater than 13 proved to cyclize as expected, thus highlighting the unique 

characteristics of medium-sized ring systems.21 

 

Scheme 3. Suzuki coupling substrate dependence 

Insight into the phenomena associated with medium-sized rings has been provided 

by a systematic study performed by Illuminati and co-workers. By tabulating the rate of 
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intramolecular cyclization of bifunctional chain molecules, they identified that 

intramolecular cyclization occurs slowest with ring sizes 8 through 12 (Figure 2).   

 

Figure 2. Rate of lactonization versus ring size21 

The main reason for this decrease in rate is due to unfavorable transannular interactions 

also known as Prelog strain. In addition, torsional strain and negative entropy also inhibit 

the formation of medium-sized rings.17, 22  
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1.3 Rearrangement and Ring Expansion Strategies to Synthesize Medium-Sized 

Rings  

Alternative to the common head-to-tail cyclization approaches, many researchers 

have been developing rearrangement and ring expansion strategies which circumvent the 

entropic and enthalpic barriers associated with medium-sized ring formation as well as the 

necessity for high dilution factors. One of the most common employments of bond 

migration is through homologation, usually facilitated by reacting a diazo compound (8) 

with a ketone (7) to yield a transient -hydroxy diazo compound which then undergoes a 

homologation to yield medium-sized ring 9.  

 

Scheme 4. Bond migration and ring expansion strategies 

This transformation often proceeds with high stereo- and chemoselectivity. 

Because of one carbon homologation, it is necessary to have a medium-sized ring precursor 

to access 9- through 12-membered rings with this transformation, so this method fails to 

provide a robust solution to medium-sized ring construction (Scheme 4a).23 There are 
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alternative medium-sized ring expansions such as translactonization strategy developed by 

Corey et al. (Scheme 4b).24 However, translactonization of medium-sized rings 10 to 11 

suffers from similar drawbacks as homologation as well as equilibrium dependencies. 

Other methods of ring expansion have also been developed to access medium-sized rings 

via Grob fragmentation, which was accomplished by Paquette et al. for the synthesis of 

diterpenoids jatrophatrione and citlalitrione. The key step of the synthesis incorporated a 

Grob fragmentation of 12 to yield intermediate 13 (Scheme 5).25 

 

Scheme 5. Example of Grob fragmentation 

In addition to Grob fragmentation, other ring expansion methods have been utilized, 

such as -hydroxy retro aldol cascades. A perfect example of this type of chemistry is 

shown by Unsworth and co-workers where acylation of lactam 14 with the bifunctional 

acid chloride 15 provided precursor 16, which is capable of undergoing a base-initiated 

ring expansion to yield heterocycle 17.  This two-step method provides access to medium-

sized rings, as well as successive ring expansions to yield macrocycles (Scheme 6).26-28  
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Scheme 6. -hydroxy carbonyl ring expansion26-28 

Other two-step protocols for ring expansion methods have been developed where oxidation 

of the phenol precursor 18 allows for a dearomatization cyclization to form the intermediate 

quinone 19, which is capable of undergoing an acid catalyzed rearomatization ring 

expansion sequence to yield 20 (Scheme 7).8  

 

Scheme 7. Oxidative ring expansion sequence 

Comparison of these methods to access medium-sized rings, reveals that they often 

require multistep procedures and complex starting materials. To diverge from previous 

strategies, development of a highly convergent strategy to access medium-sized rings from 

readily available synthons could provide a more suitable foundation for a diversity-oriented 

synthesis of medium-sized ring libraries for drug discovery; a research program aim of the 

Sharma Research Group. 
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1.4 A Concise Retrosynthesis of Medium-Sized Rings 

We envisioned that medium-sized rings could be constructed from a convergent 

cascade reaction yielding the desired product in a single step from two readily available 

fragments. Retrosynthetic analysis identified our first disconnection as an oxy-Cope 

reaction providing a divinyl ring-contracted intermediate. Our second disconnection 

incorporated a X–H insertion/aldol cascade that utilizes a two-bond disconnection leading 

to two readily available starting materials (Scheme 8).  

 

Scheme 8. Retrosynthetic disconnection of medium-sized rings 

To further support the feasibility of this strategy, there were literature reports validating 

this synthetic route. Regarding our first retrosynthetic disconnection, Shair and co-workers 

formed medium-sized ring 22 through a similar divinyl ring intermediate 21 via an anionic 

oxy-Cope reaction (Scheme 9).29  

 

Scheme 9. Anionic oxy-Cope ring expansion 

Our second retrosynthetic disconnection was corroborated by a very mild and efficient 

method to access a variety of tetrahydrofurans and pyrrolidines developed by Moody and 

co-workers.(Scheme 10).30-31  
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Scheme 10. Representation of diverted X–H insertion developed by Moody30-31 

The cascade involved the decomposition of a donor/acceptor diazo 23 with a transition 

metal catalyst (Rh or Cu) generating a metal carbenoid capable of reacting with -hydroxy 

ketone 24 to generate highly functionalized 5-membered heterocycles; although no divinyl 

products were ever synthesized.30-31  

Inspired from these literature reports, we decided to focus our efforts towards the 

extension of this diverted X–H insertion, developed by Moody, to operate with vinyl 

diazoacetate and -hydroxy vinyl ketone precursors, which would provide direct access to 

intermediates capable of undergoing oxy-Cope ring expansions to provide medium-sized 

rings. 

1.5 Diazo Chemistry 

The diazo N–N bond was first discovered by Peter Griess in 1858, over a 100 years 

ago when he accomplished the diazotization of anilines.32  The motif itself is a unique 

wonder of elemental reactivity because of the atoms involved.  Normally, when 

considering two elements such as carbon and nitrogen, carbon can possess reactivity in a 

variety of fashions, while dinitrogen alone ordinarily exists as an inert substance. Although 

when dinitrogen is combined with carbon, the subsequent molecule possesses augmented 
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reactivity arising from its resonance character. Furthermore, diazo surrogates such as 

triazoles have also been identified as possessing similar resonance qualities (Figure 3).33  

 

Figure 3. Diazo resonance structures and diazo surrogates 

1.6 Diazo Structure and Reactivity 

More recent applications of the diazo motif are seen at the -position of carbonyl 

compounds.  The electronic nature of the -center strongly dictates the reactivity of the 

diazo compound.  In fact, there are three categories of diazo compounds, termed as 

acceptor/acceptor, acceptor and acceptor/donor with their corresponding stabilities as most 

stable, stable, and least stable, respectively. Acceptor (A)  groups withdraw electron 

density while donor (D) groups release electron density; R substituents are neutral in nature 

and leave the electron density unperturbed (Figure 4).34 

 

Figure 4. General stability of diazo precursors34 



12 

 

1.7 Application of -Diazocarbonyl Compounds 

For more than 40 years, -diazocarbonyl precursors  have been exploited for their 

ability to generate reactive carbenes and metal carbenoids.35  These transient intermediates 

inspired diverse reactions such as the Wolff rearrangement, homologation, 

cyclopropanation and cyclopropenation, dipolar cycloadditions,36-42 C–H insertion,34, 43-44 

ylide formation,45 heteroatom insertion.46-50 From these applications, the two focused most 

in this research will be heteroatom insertion and ylide generation chemistry will be the 

focus of research reported herein (Figure 5). 

 

Figure 5. Versatility of -diazocarbonyl compounds35 

1.8 Preparation of Diazo Compounds 

Arguably, the most common method of preparation for -diazocarbonyl 

compounds is via diazo transfer reagents, but a variety of methods exist such as 

diazotization, dehydrogenation, acylation, substitution or cross-coupling, and deacylative 

diazo transfer (Figure 6).35 For the research performed in this thesis, most -carbonyl diazo 

compounds were prepared utilizing diazo transfer reagents, which are most widely used 

due to their stability, robustness, and ease of removal during workup procedures. One diazo 



13 

 

transfer reagent utilized most often due to these benefits is 4-acetamidobenzenesulfonyl 

azide (p-ABSA) developed by Huw Davies.51 

 

Figure 6. Common methods to prepare -diazocarbonyl precursors 

1.9 Carbenoids 

The most common application of diazo precursors arises from their ability to 

decompose into a corresponding metal carbenoid, meaning that a metal-carbon double 

bond is formed while subsequently evolving N2 gas; which are quite different than a free 

carbene. A free carbene is a carbon with two unpaired valence electrons that can exist in 

either a singlet or a triplet state.  

 

Figure 7. General stability of carbenoid intermediates 
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Carbenoids, on the other hand, are carbenes stabilized by transition metal catalysts either 

existing as a Fisher or Schrock carbene; Fisher carbenes tend to be electrophilic in nature 

while Schrock carbenes tend to be nucleophilic. With respect to this research, we will focus 

on electrophilic Fischer carbenoids. Interestingly, the reactivity of the carbenoids is reverse 

compared to the diazo precursors based on substituents (Figure 7a). Even though 

donor/acceptor diazo synthons may be the most unstable of these three types, the 

corresponding carbenoid generated is most stable. In order to synthesize medium-sized 

rings, we envisioned the use of vinyl metal carbenoids which would provide one of the 

necessary vinyl groups for ring expansion. Vinyl metal carbenoids, however, possess a 

multitude of reaction possibilities and potential side reactions due to their electrophilicity 

at both the  and vinylogous positions (Figure 7b).52  For this reason, it is necessary to 

understand the reactivity of metal vinylcarbenoids to facilitate our desired heteroatom 

insertion/aldol cascade to access medium-sized rings. 

1.10 Different Transition Metal Carbenoids for Heteroatom Insertion Reactions 

C–X bonds are found in numerous natural products and direct methods to form 

these bonds are of high value to the synthetic community. One such way is through 

heteroatom insertion reactions, most commonly accomplished via diazo derived transition 

metal carbenoids. The first examples were performed with copper catalysts.46 Although 

these initial reports were racemic, ligand incorporation soon lead to enantioselective 

variants.53 Despite these advancements, the overall development of X–H insertion 

reactions remained stagnant due to more focus on C–H functionalization and 

cyclopropanation chemistry.54 This chemistry has had some development with other metal 

catalysts such as rhodium, gold, silver and iron, as well (Figure 8). 



15 

 

  

Figure 8. Catalysts used in heteroatom insertion chemistry relative to scale of symbol52 

Specifically, rhodium and copper have been the main focus of heteroatom insertion as they 

tend to react through similar mechanisms, allowing for their use in cascade reactions, such 

as transition metal carbenoid-initiated intermolecular heteroatom insertion/ylide trapping 

by Hu and co-workers.54-55 Rhodium catalysts have become increasingly popular due to 

their high turnover rates and low catalyst loading. 

1.11 Rhodium Catalysis 

Rhodium catalysts have been a mainstay in carbenoid chemistry. 56-57 This arises 

from the capabilities of dirhodium catalysts to decompose diazo precursors to form reactive 

rhodium carbenoids with extremely low catalyst loadings, broad substrate scope, high 

chemoselectivity, and often potential diastereo- and enantioselective induction. 



16 

 

 

Figure 9. Simplified mechanism of rhodium carbenoid generation from diazo precursors 

and Rh catalysts 

A simplified mechanism for the formation of rhodium carbenoids involves the  donation 

of a diazo synthon to the dirhodium center followed by back bonding resulting in the 

evolution of N2 gas, which can often be visualized due to the high turnover rate of these 

catalysts (Figure 9).58  These carbenoids initially exhibit extreme electrophilicity that 

facilitates a variety of insertion type reactions. Upon insertion, a reactive ylide or zwitterion 

is formed with nucleophilic character that can often be trapped by an electrophile. Thus, 

the dual character of these rhodium carbenoids is defined as ambiphilic reactivity.59 

1.12 Types of Rhodium (II) Catalysts Utilized in Diazo Chemistry 

In terms of the rhodium catalysts for diazo decomposition, rhodium (II) paddle 

wheel complexes have been most utilized. There are a variety of different types carboxylate 

ligands that attenuate the rate of decomposition of diazo precursors, as well as provide a 

steric environment capable of inducing diastereo- and enantioselectivity (Figure 10). 



17 

 

 

Figure 10. Common types of rhodium catalysts 

Furthermore, these rhodium complexes perform well under extremely low catalyst 

loadings; usually as low as 1 to 0.1 mol%. Thus, even though the price of rhodium is high, 

costs are not prohibitive.  

1.13 Metal Carbenoid Reactions 

Ambiphilic metal carbenoid is a modern term labeling the dual character reactivity 

of the metallocarbenoid; often best termed as ylide formation.60  The formation of the ylide 

followed by ylide trapping is the foundation for many cascades that employ diazo derived 

carbenoids.61 This dual character has been implemented into dipolar cycloaddition 

reactions along with various intra- and inter-molecular cascades.  Whenever a X–H 

insertion is the initial stage of a cascade sequence, there is always a risk of 

protodemetalation via 1,2-proton transfer of the transient zwitterionic or ylide intermediate, 

yielding an insertion byproduct (Figure 11). With suitable reaction conditions and catalyst 

selection this protodemetalation can be avoided to facilitate a cascade reaction.  This 

strategy for X–H insertion initiated cascades has been implemented into our approach to 

medium-sized rings as well as the ylide based cascades developed by the Moody and Hu 
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research groups.30-31, 54, 62 Our envisioned approach compliments the methodologies by 

Moody by extending this cascade to vinylcarbenoids derived from vinyl diazo precursors. 

 

Figure 11.  Two pathways of carbenoid cascades initiated by X–H insertions 

Furthermore, we expected to utilize this method in tandem sequence with a compatible 

oxy-Cope ring expansion to yield the medium-sized rings. 

1.14 Cascades Involving Sigmatropic Ring Expansion Reactions 

Sigmatropic ring expansions have been integrated in cascade sequences and applied 

to the construction of a variety of complex molecules. This strategy is often seen through 

transient intermediates such as ylides and zwitterions formed in situ. In addition, the [3,3] 

rearrangements most utilized for these expansions are the Cope rearrangement promoted 

by ring strain or the oxy-Cope variation that provides a thermodynamic sink by forming a 

subsequent ketone. A perfect example of a rhodium carbenoid initiated cyclopropanation 

ring expansion incorporating a strain release Cope rearrangement was developed by Padwa 

et al. (Scheme 11). The mechanism involves an initial carbenoid formation from diazo 26, 

followed by olefin metathesis and carbenoid transfer to yield intermediate 27, which 

performs a cyclopropanation to produce intermediate 28 followed by ring expansion to 

arrive at the final complex molecule 29 in good yield.63 
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Scheme 11. Rhodium initiated cope cascade 

Another example includes an anionic oxy-Cope ring expansion transannular ring 

cyclization (Scheme 12).64 One key aspect to consider regarding the rhodium-initiated 

cascade developed by Padwa et al. was the use of sigmatropic rearrangements within the 

cascade sequence.  

 

Scheme 12. Anionic oxy-Cope initiated cascade 

Furthermore, Raja-gopalan et al. showed an example proving that oxy-Cope ring expansion 

cascades can provide medium-sized ring products such as 31 from allene 30, but the 

generated product may further react due to internal strain leading to transannular ring 
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contraction product 32; a possible future challenge associated with the construction of 

medium-sized rings. 65 

1.15 [3,3] Sigmatropic Rearrangements 

Pericyclic reactions are defined as concerted reactions involving orbital symmetry 

of molecular components oriented in a cyclic transition state. Each of these examples have 

been incorporated into numerous syntheses via cascade strategies. Sigmatropic reactions 

are probably the most unique of these three types because the process retains the same 

number of each type of bond, such as double and single, unlike Diel–Alder and 

electrocyclizations that sacrifice  bonds for the formation of  bonds.  

 

Figure 12. Examples of common [3,3] sigmatropic rearrangements 

Furthermore, there are numerous varieties of [3,3] sigmatropic rearrangements available 

such as the Cope, oxy-Cope, anionic oxy-Cope, Claisen rearrangement, etc. with a number 
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of varieties in each of these subclasses (Figure 12). When comparing the Cope 

rearrangement alone, literature shows that catalytic efforts are generally needed to reduce 

the thermal temperature necessary to access the rearrangement.  In addition, these 

rearrangements are always in a dynamic equilibrium, so it is quite pertinent to incorporate 

a thermodynamic sink to push the reaction in the forward generally through the formation 

of a carbonyl or by relieving ring strain.66 

1.16 Oxy-Cope Rearrangement 

The oxy-Cope rearrangement is disparate from other [3,3] sigmatropic 

rearrangements due to a hydroxy located at the 1 position.67-70 In regards to the transition 

state itself, both the chair and the boat transition state are possible, although the energy 

difference (G) is not significant in most cases; generally a difference of only 10 kcal/mol 

(Figure 13).66   

 

Figure 13. Two possible oxy-Cope transition states 

Furthermore, oxy-Cope and Cope ring expansion reactions occur best when substrates are 

expanding smaller ring sizes such as cyclopropanes and cyclobutanes, and these examples 

tend to favor the boat transition state.  When considering the thermodynamic driving  



22 

 

 

Figure 14. Comparison of thermal oxy-Cope and anionic oxy-Cope 

force of the oxy-Cope rearrangements it is also necessary to consider the anionic oxy-Cope, 

which is generally induced by basic potassium salts. The anionic oxy-Cope has been a 

significant advancement in oxy-Cope reaction methodology and there are significant 

advantages often seen with this modification, such as rate enhancement and reduced 

reaction temperatures (Figure 14). However, depending on substrate and product stability, 

the anionic oxy-Cope can be an unsuitable method compared to thermal conditions. For 

example, 33 proceeds with greater success thermally to produce product 34 (Scheme 

13a).71-72 Another concerned voiced by Moody and co-workers was the potential risk of a 

retro-aldol fragmentation (Scheme 13b, 36).30   
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Scheme 13. Preference to use thermal oxy-Cope over anionic oxy-Cope 

Aside from specific rearrangements of linear substrates, the Cope and oxy-Cope are often 

most implemented in ring expansion methods to access medium sized rings, but accessing 

the necessary starting materials to perform the desired ring expansions is often 

problematic.73-75 

1.17 Goals of this Thesis 

The work described in this thesis provides a highly convergent approach to 

medium-sized heterocycles. Our approach utilizes a rhodium-catalyzed heteroatom 

insertion/aldol cyclization that operates cohesively with oxy-Cope ring expansion to access 

medium-sized heterocycles in a single step. The cascade strategy incorporates various 

nucleophiles shown in previous reports of diverted heteroatom insertion as well as 

unprecedented variants. Chapter 2 describes the initial implementation of our rhodium 
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carbenoid initiated cascade strategy to access medium-sized oxacycles. In chapter 3, this 

cascade is further extended to incorporate ketoacid precursors for the synthesis of diverse 

lactones and medium-sized decanolides. Furthermore, earth abundant iron as a catalyst in 

the O–H insertion/aldol cyclization is investigated. Striving to move away from O–H to 

other heteroatoms such as N–H, chapter 4 delineates the synthesis of diverse quinoline 

scaffolds derived from initial attempts to access medium-sized azacycles. Finally, chapter 

5 discusses how quinoline formation was avoided to effectively synthesize 9-membered 

medium-sized azacycles. 
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Chapter 2: Synthesis of Medium-Sized Oxacycles. 

First example of insertion/aldol/oxy-Cope cascade 

2.1 Introduction*  

A significant source of unique medium-sized cyclic ethers is marine 

microorganisms.76 Isolates from these bacteria and fungi have led to the discovery of 

bioactive compounds, such as the marine ladder toxins:  ciguatoxins, brevetoxins, and other 

various derivatives of these macromolecular polycyclic frameworks, which often target the 

voltage ion channels of cells.77 In addition, simpler metabolites have also been elucidated 

such as laurencin, obtusenyne and eunicellin, but many of these molecules have yet to be 

thoroughly screened for bioactivity (Figure 15).  

 

 

Figure 15. Oxacycle natural products 

                                                           
*Reproduced in part from “Rhodium Carbenoid Initiated O-H Insertion/Aldol/Oxy-Cop Cascade for the 

Stereoselective Synthesis of Functionalized Oxacycles.” Kiran Chinthapally, Nicholas P. Massaro and 

Indrajeet Sharma. Org. Lett. 2016, 18, 24, 6340-6343 with permission from Organic Letters. Copyright © 

American Chemical Society. N.P.M. contributed by designing substrate scope, preparing precursors, product 

characterization, and manuscript preparation. 
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Even with the lack of biological data, their medium-sized ring scaffolds have attracted the 

attention of synthetic chemists due to the challenges associated with their construction.78-

81  This has inspired significant advancements in medium-sized ring construction, but there 

still remains a lack of convergent approaches capable of efficient library synthesis for drug 

discovery. For this reason, the core scaffolds found in many bioactive natural products 

remain underexplored.82-85  

There have been several reports in literature for the synthesis of oxacycles through 

cyclization of an appropriate linear precursor (Scheme 14).13-14, 86 The cyclization step 

often poses challenges due to entropic and enthalpic barriers as well as the necessity for 

high dilution conditions to avoid polymerization.17-19 Current ring expansion reactions that 

are insensitive to substrate conformational effects provide an alternative to conventional 

cyclization strategy.8, 87 However, the synthesis of an appropriate precursor for the ring 

expansion reactions requires multiple steps, and limits the synthetic utility.  

 

Scheme 14. Linear methods to access 9-membered cyclic ethers. 



27 

 

 

Scheme 15. Retrosynthetic analysis of 9-membered cyclic ethers 

As discussed during chapter one, a cascade approach was envisioned that could produce 

medium-sized heterocycles such as cyclic ethers via a heteroatom insertion/aldol/oxy-Cope 

cascade to access 9-membered cyclic ethers.30, 88-91 The focus of this chapter is to 

demonstrate the feasibility of this cascade with O-H nucleophiles to yield the desired 9-

membered cyclic ethers. Originating from the disconnections shown in chapter one, a more 

specific retrosynthetic analysis involves an oxy-Cope reaction followed by aldol O–H 

insertion/aldol cyclization resulting from readily accessible vinyl diazoacetates and -

hydroxy vinyl ketones (Scheme 15).  

2.2 Preparation of Model Substrates and Precursors 

 

We chose -hydroxy vinyl ketone 39a (Figure 16) and vinyl diazobenzoate 48 as 

model substrates for optimization of this cascade. 39a was synthesized using an efficient 

three-step route, enabling convenient diversification of the -hydroxy vinyl ketone 

fragment to access a variety of oxacycles. 
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Scheme 16. General scheme for the preparation of -hydroxy vinyl ketones 

 

The route began with a conventional aldol reaction performed with LiHMDS followed by 

reduction with LiAlH4 to a diol synthon that was then subjected to selective allylic 

oxidation using either MnO2 or Pd(OAc)2 in the presence of oxygen (Scheme 16). Using 

this three-step route, five primary -hydroxy vinyl ketones were prepared (Figure 16).  

 

Figure 16. -hydroxy vinyl ketone starting materials 39a, 39c-39f 

Secondary -hydroxy vinyl ketone 39b was prepared by a different method (Scheme 17). 

Starting with ethyl acetate (40), an aldol reaction was performed on benzaldehyde (41) 

yielding benzyl alcohol 42. This was subsequently transformed into Weinreb amide 44 

using 43 and n-BuLi conditions. At this point, the amide product 44 was then subjected to 

a Grignard addition, selectively providing the -hydroxy vinyl ketone 39b in a single step. 
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Scheme 17. Preparation of -hydroxy vinyl ketone 39b 

The corresponding diazo precursors were also prepared via two separate three-step 

protocols. Benzyl 2-diazobut-3-enoate 48 was prepared by first synthesizing a very stable 

acceptor/acceptor diazo 46 from commercially available benzyl acetoacetate 45 using 

diazo transfer conditions. Then, 46 was selectively reduced with sodium borohydride to 

the corresponding secondary alcohol 47 which was then dehydrated to yield benzyl 2-

diazobut-3-enoate 48 (Scheme 18).  

 

Scheme 18. Preparation of benzyl 2-diazobut-3-enoate 4892 



30 

 

Methyl (E)-2-diazohexa-3,5-dienoate 52 was prepared with a different synthetic route 

starting from commercially available sorbic acid 49, which was subjected to esterification 

conditions in methanol to yield the methyl sorbate 50. Following this, 52 was accessed 

directly following deprotonation and selective -diazo transfer with p-ABSA. Better yields 

were eventually obtained with a two-step process, starting with isomerization of methyl 

sorbate 50 to the deconjugated diene 51 followed by diazo transfer to yield methyl (E)-2-

diazohexa-3,5-dienoate 52 (scheme 19). 

 

Scheme 19. Preparation of methyl (E)-2-diazohexa-3,5-dienoate 5293 

2.3 Reaction Setup 

From our initial attempts and previous literature reports, diazoacetate precursors 

often exhibit a high level of reactivity and thermal instability that results in complex 

mixtures.30-31 For this reason, we introduced our diazo precursors to the reaction mixture 

via slow addition over several hours. To accommodate this, a basic but effective apparatus 

shown in figure 17 was utilized for all of the cascades shown in this and the following 



31 

 

chapters unless otherwise stated. As shown in figure 17, the reaction pot contained the -

hydroxy vinyl ketone 39 and catalyst in refluxing solvent while a solution of vinyl 

diazoacetate (48/52) was added via syringe pump through a 12” needle fixed through the 

reflux condenser. It is important to note that the needle needed to be above the line of reflux 

to avoid diazo decomposition in the needle. 

 

Figure 17. Slow addition reaction setup 

2.4 Reaction Optimization 

For the initial optimization, model substrates 48 and 39a were screened with 

Rh2(esp)2 due to this catalyst’s efficient performance in O–H insertion reactions.49 At the 

outset, Rh2(esp)2 in CH2Cl2 at 25 °C resulted in chemoselective O–H insertion followed by 
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an aldol cyclization to yield 53 but did not proceed through the oxy-Cope rearrangement 

to complete the third step of the envisioned cascade sequence (Table 1, entry 1).  

Table 1. Efficiency of metal-salts in carbene O—H insertion/aldol/oxy-Cope cascade 

 

entry reagent solvent, temp (°C) product yield (%)b 

1 Rh2(esp)2 CH2Cl2, 25 °C 53, 45 

2 Rh2(esp)2 CH2Cl2, reflux 53, 72 

3 Rh2(esp)2 DCE, reflux 53, 71 

4 Rh2(esp)2 toluene, reflux 54a, 42 

5 Rh2(OAc)4 toluene, reflux 54a, 68 

6 Rh2(TFA)4 toluene, reflux 54a, 26 

7 Rh2(HFB)4 toluene, reflux 54a, 29 

8 Rh2(OAc)4 trifluorotoluene, reflux 54a, 67 

9 Rh2(OAc)4 chlorobenzene, reflux 54a, 68 

10 Cu(acac)2 toluene, reflux CM 

11 Cu(OAc)2 toluene, reflux CM 

12 Cu(OTf) toluene, reflux CM 

aAll optimization reactions were performed by adding a 0.38 M solution of 48 (1.5 equiv) 

into a 0.17 M solution of 39a (1 equiv) with catalyst (1 mol %) over 3 h via a syringe pump, 

after the addition of diazo compound, all reactions were refluxed for an additional 1 h. 
bIsolated yields after column chromatography. 
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Furthermore, the yield of aldol product 53 obtained was quite low (45%) with a high 

account of insertion byproduct. Due to the tendency of Rh2(esp)2 to lead to 

protodemetalation quickly, these results were not surprising, but it required us to solve two 

problems sequentially. First, we sought to identify whether ring expansion would occur. 

Since it is known that oxy-Cope rearrangements can be thermally driven75, 94 we focused 

our attention toward identifying an appropriate solvent and temperature that would induce 

the ring expansion. We initially attempted refluxing conditions in CH2Cl2 (b.p. 40 °C) 

yielding good results for aldol product 53, but still no trace of medium-sized ring 54a (entry 

2). We elevated the refluxing temperature further by screening dichloroethane (DCE, b.p. 

84 ºC) which resulted in similar aldol conversion, suggesting that further thermal 

enhancement of the O–H insertion/aldol step was not plausible (entry 3). Furthermore, we 

still had not obtained medium-sized ring 54a at 84 °C. To our delight, when we performed 

the same reaction in toluene (b.p. 110 °C), we obtained the medium-sized ring 54a in 42% 

yield (entry 4). These encouraging results led us to screen other Rh (II)-salts (entries 5–7) 

using refluxing toluene temperatures. Among them, Rh2(OAc)4 was found to be the most 

efficient catalyst for the cascade sequence (entry 5). We then screened solvents with 

varying levels of polarity and boiling points with no improvement in the overall yield of 

54a. With hope to achieve the cascade sequence with earth abundant transition metal 

catalysts known to effectively form carbenoid intermediates, we also screened various Cu-

salts,95 but only observed a complex mixture of different products (entries 10–12). 

Interestingly, the copper salts utilized by Moody et al.30 failed to even provide aldol product 

53 suggesting that the vinylcarbenoid derived from 48 possess different reactivity 

compared to the aryl diazoacetate counterparts. 



34 

 

2.5 Substrate Scope of Aldol/Oxy-Cope/Cascade 

With optimized conditions in hand, we then moved to test the substrate scope of 

this cascade. To our delight, this cascade tolerated substituents on all positions of the -

hydroxy vinyl ketone fragment in good yield providing exclusively Z-olefin oxacycles. 

Specifically, the cascade tolerated both primary and secondary -hydroxy vinyl ketones 

(Scheme 20, 54a, 54b).  

 

Scheme 20. Scope of Rh2(OAc)4-catalyzed carbene-OH insertion/aldol/oxy-Cope 

cascade: modifying the keto-alcohol fragment  
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Furthermore, the reaction tolerates a variety of different methyl substituents (39c–39e) as 

well as a vinyl substituent (39f) providing medium-sized oxacycles 54c–54f respectively 

in good yield. Methyl (E)-2-diazohexa-3,5-dienoate 52 performed the desired cascade 

chemoselectively with most aforementioned -hydroxy vinyl ketones (Scheme 21).  

 

Scheme 21. Scope of Rh2(OAc)4-catalyzed carbene-OH insertion/aldol/oxy-Cope cascade 

with methyl (E)-2-diazohexa-3,5-dienoate 52 

Upon treatment with substituted vinyl keto alcohols, 52 underwent the desired cascade 

sequence smoothly to obtain the corresponding oxacycle in good yields with complete 

stereoselectivity (Scheme 21, 54g-k). Remarkably, methyl (E)-2-diazohexa-3,5-dienoate 
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52 underwent the desired cascade with no observed C–H activation or cyclopropanation 

diversions, attesting to the chemoselectivity of this reaction. The rest of the -hydroxy 

vinyl ketone precursors were then screened with this diene diazo exhibiting similar yields 

(scheme 21). In addition, this diazo also allowed us to demonstrate the diastereoselectivity 

of the cascade sequence. We obtained a single diastereomer in all cases except 54k, which 

is explained by the reaction mechanism further in this chapter. Furthermore, we 

hypothesized that 54h could undergo further ring expansion via subsequent Cope reaction 

to form a 13-membered oxacycle (Scheme 21). Unfortunately, this expansion did not occur 

under thermal conditions or with the use of catalysts know to induce Cope rearrangements, 

such as bisbenzonitrile palladium dichloride.96 

2.6.  Probing the Mechanism of the Reaction 

The stereochemical arrangement of substituents and Z-configuration of olefin was 

determined based on the nOe correlations and was further confirmed by the single crystal 

structure of 54i using X-ray diffraction (Figure 18).  

  

Figure 18. X-ray crystal structure of oxacycle 54i 

For further insights into the reaction mechanism, additional experiments were carried out. 

First, the intermediate aldol product 53, isolated as a single diastereomer, was exposed to 
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Rh2(OAc)4 in refluxing toluene. As expected, we observed a clean formation of oxy-Cope 

rearrangement product 54a in excellent yield (Table 2, entry 1). Next, 53 was refluxed in 

toluene without Rh2(OAc)4 to rule out the involvement of Rh-metal in the oxy-Cope 

rearrangement. As expected, the reaction took the same time to afford product 54a 

suggesting a thermally driven oxy-Cope rearrangement (Table 2, entry 2). Since oxy-Cope 

rearrangements can be catalyzed under basic conditions,70, 72 aldol product 53 was 

subjected to different bases known to promote an anionic oxy-Cope rearrangement. 

Unfortunately, we observed significant decomposition without any trace of desired 

oxacycle 54a (Table 2, entry 3, 4). 

Table 2. Oxy-Cope rearrangement of compound 53 into 54a control experiments 

 

entry reagent solvent, temp (ºC), t yield (%)b 

1 Rh2(OAc)4 toluene, reflux, 2 h 88 

2 - toluene, reflux, 2 h 90 

3 KH, 18-crown-6 THF, 0 ºC, 5 min CM 

4 LiHMDS THF, 0 ºC, 15 min CM 

5 CSA toluene, 25 °C to reflux, 2 h CM 

aAll optimization reactions were performed with 0.1 M solution of 53;  

bIsolated yields after column chromatography. 
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We also attempted acidic conditions to catalyze the oxy-Cope rearrangement but did not 

observe any desired product (Table 2, entry 5). These findings allow us to propose the 

reaction mechanism shown in Scheme 22.  

First, diazo compound 48/52 is decomposed by the Rh2(OAc)4 to form an 

ambiphilic Rh-carbenoid that undergoes a chemoselective O–H insertion reaction with -

hydroxy vinyl ketone 39 (Scheme 22). The resulting insertion intermediate then undergoes 

a 5-exo-trig aldol cyclization to provide the tetrahydrofuran intermediate 53 with high 

diastereoselectivity.30, 88-91. 

 

Scheme 22. Proposed reaction mechanism for Rh2(OAc)4-catalyzed diazo-OH 

insertion/aldol/oxy-Cope cascade 
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The divinyl tetrahydrofuran 53 sets the stage for a thermally driven, concerted oxy-Cope 

rearrangement via a boat-type transition state, which results in an enol product with the 

substituents syn to each other. The enol-form then tautomerizes to provide the 

thermodynamically more stable keto-tautomer 54. The boat transition state of this oxy-

Cope rearrangement was confirmed due to the retention in syn stereochemistry from aldol 

intermediate 53 to oxacycle product 54. Otherwise, a chair transition state would have 

caused an inversion in stereochemistry. With the proposed mechanism, the observed 

decrease in diastereoselectivity (dr = 3:1) with 54k (Scheme 21) can be explained. This is 

attributed to the keto-enol tautomerism of the final cascade product. The concerted oxy-

Cope rearrangement initially leads to the enol-form, which rearranges to the 

thermodynamic keto-form under the reaction conditions racemizing this stereocenter 

(Scheme 22). 

2.7 Conclusion and Future Directions 

In conclusion, the reported diazo-OH insertion/aldol/oxy-Cope cascade sequence 

is convergent in nature and uses readily accessible starting materials to access highly 

functionalized 9-membered oxacycles.  

 

Scheme 23. Synthesis of oxacycle by ring expansion strategy 
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An important feature of this transformation is its excellent regio- and stereo-selectivity. 

This work was published in Organic Letters and was highlighted in an Organic Chemistry 

blog established by Professor Douglas Taber known as Organic Chemistry Portal (Scheme 

23). Furthermore, the compounds synthesized in this chapter were submitted for high-

through-put screening for fungicide properties. Unfortunately, none of the molecules 

reported herein resulted in any hit compounds.  

Thus, the future direction of this medium-sized ring construction strategy is to 

incorporate new nucleophiles and/or attain different ring sizes. During the initial 

optimization of this work, we often observed competitive protodemetalation, yielding the 

major insertion byproduct. However, with proper catalyst selection, alcohol synthons were 

capable of cascade transformations due to their lower tendency of 1,2-proton transfer. 

Conversely, carboxylic acid nucleophiles only lead to insertion products when reacted 

under similar conditions.  We speculate that the lower pKa of carboxylic acids compared 

to alcohols prevents the zwitterionic intermediate from reacting in a productive manner by 

always leading to the insertion byproduct.  Thus, in the next chapter, we show that this 

problem can be circumvented to provide a diverse array of lactones in a diastereoselective 

fashion. 
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Chapter 3. Stereoselective Synthesis of Diverse Lactones  

Stereoselective Synthesis of Diverse Lactones through a Cascade Reaction of Rhodium 

Carbenoids with Ketoacids 

3.1 Introduction* 

Spanning the realm of complexity that exists within natural and synthetic organic 

frameworks, the lactone motif is unquestionably prominent, useful, and attractive to the 

scientific community.97 With ring sizes ranging from 3 to 60, the lactone ring is present in 

food additives,98 perfumes,99-100 pharmaceuticals,101 and exists in more than 10% of natural 

products often possessing significant bioactivity or synthetic utility.102-105 Due to the 

importance of the lactone motif, their synthesis remains an area of current interest to the 

chemical community.  

  

Figure 19. A potent fungicide diolide 

                                                           
* Reproduced in part from, “Stereoselective Synthesis of Diverse Lactones through a Cascade Reaction of 

Rhodium Carbenoids with Ketoacids.” Nicholas P. Massaro, Joseph C. Stevens, Aayushi Chatterji and 

Indrajeet Sharma. Org. Lett. 2018, 20, 23, 7585–7589 with permission from Organic Letters. Copyright © 

American Chemical Society. N.P.M. developed cascade sequence, performed optimization, designed and 

synthesized substrate scope, characterized all unknown compounds, prepared manuscript and developed iron 

cascade. 
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Furthermore, fenpicoxamid had been launched by Corteva as a potent fungicide (Figure 

19).106 The utility of this 9-membered diolide inspired us to extend our previously 

developed strategy to accommodate carboxylic acids in order to synthesize medium-sized 

lactones.35, 53 In comparison to the previously known reports of alcohol O–H insertion/aldol 

cyclization in literature for the synthesis of tetrahydrofurans (Scheme 24a),30, 107 we 

presumed that the incompatibility of carboxylic acids in carbene cascade reactions may be 

attributed to the competing insertion reaction via proton transfer resulting from low pKa 

values of protonated carboxylic acids in the zwitterionic intermediate (Scheme 24b).  

 

Scheme 24. Recent Applications of O-H insertion/aldol Cyclization 

Thus, we made a hypothesis that proton transfer could be delayed by promoting a 

Zimmerman-Traxler transition state by changing the electronics of the catalyst that forms 
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the diazo-derived rhodium carbenoid (Scheme 24b), leading to aldol cyclization. This 

would provide valuable  -lactones which are important, complex building blocks. For 

example, 3-hydroxybutyrolactone has been utilized as an enantiopure precursor for both 

Pfizer’s Lipitor and AstraZeneca’s Crestor (Figure 20).108-109. In addition to this, we 

envisioned that these synthons could also be ring-expanded to the nine membered lactones. 

However, as will be stated in this chapter, the necessary -keto-acid precursors were less 

suitable for this expansion cascade due to thermal instability, so the reaction was adjusted 

to incorporate a 6-membered exo-trig cyclization via aromatic ring constraint which 

provided direct access to functionalized, benzannulated valerolactones and the ring 

expanded 10-membered lactones. This was quite  

 

Figure 20. Examples of natural and synthetic lactone products  
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useful because benzannulated lactones represent an interesting class of medium-sized 

heterocycles such as sporostatin and apicularen that have biological and industrial 

relevance (Figure 21).110-112 

3.2 Optimization of Acid Insertion/Aldol Cascade 

When developing the carboxylic acid insertion/aldol cascade, it was a significant challenge 

to determine a viable model substrate for which to base our optimization efforts. Initially, 

β-ketoacid 55 and aryl diazoacetate 56a were chosen as model substrates. We performed 

an initial screening of catalyst conditions as shown in Table 3. As expected, both 

Rh2(OAc)4 and Rh2(esp)2 provided insertion product exclusively (Table 3, entries 1–2).  

Table 3. Initial optimization of acid insertion/aldol cascade 

 

entry catalyst ratio 57:58a (%)b 

1 Rh2(OAc)4 100:0 

2 Rh2(esp)2 100:0 

3 Rh2(TPA)4 100:0 

4 Rh2(TFA)4 37:63 

5 Rh2(HFB)4 50:50 

aAll optimization reactions were performed by adding a 0.24 M solution of 56a (24.0 mg, 

0.12 mmol, 2.0 equiv.) into a 0.12 M solution of 55 (15.0 mg, 0.06 mmol, 1.0 equiv.) with 

catalysts via a syringe pump for 1.5 h, after the addition of diazo, all reactions were refluxed 

for an additional 30 min.  
bThe percent ratio of 57 and 58a was determined by crude 1H NMR. 
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We then turned our attention to more sterically encumbering catalysts such as Rh2(TPA)4 

but did not observe promising results of aldol formation (Table 3, entry 3).  

Table 4. Optimization of  -ketoacid O–H insertion/aldol cascade with diazoacetate 56a 

 

entry catalyst solvent, temp (°C) ratio 60a:61ab 

(%)[b] 

yield 61a (%)c 

1 Rh2(OAc)4 CH2Cl2, reflux 100:0 0 

2 Rh2(esp)2 CH2Cl2, reflux 100:0 0 

3 Rh2(TPA)4 CH2Cl2, reflux 100:0 0 

4 Rh2(TFA)4 CH2Cl2, reflux 37:63 60 

5 Rh2(HFB)4 CH2Cl2, reflux 50:50 46 

6 (CuOTf)2•benzene CH2Cl2, reflux 100:0 0 

7 Cu(acac)2 CH2Cl2, reflux 100:0 0 

8 Fe(TPP)Cl CH2Cl2, reflux 100:0 0 

9 – CH2Cl2, reflux 100:0 0 

aAll optimization reactions were performed by adding a 0.24 M solution of 56a (24.0 

mg, 0.12 mmol, 2.0 equiv.) into a 0.12 M solution of 59a (15.0 mg, 0.06 mmol, 1.0 

equiv.) with catalysts via a syringe pump for 1.5 h, after the addition of diazo, all 

reactions were refluxed for an additional 30 min.  
bThe percent ratio of 60a and 61a was determined by crude 1H NMR.  
cIsolated yields of 61a obtained after column chromatography. 

 

Then two our delight, we decided to screen more electron deficient catalysts such 

as Rh2(TFA)4 and Rh2(HFB)4 which both provided aldol product 58a; although Rh2(TFA)4 
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provided slightly superior results. These results were encouraging, but the isolated yield of 

58a was only 54%. We then realized that the β-ketoacid precursor 55 was prone to 

decarboxylation.113  

We then decided to initiate our optimization reaction with γ-ketoacids which 

provided a new challenge to overcome. First, the acid insertion/aldol cascade was not 

known aside from our preliminary result stated earlier. Secondly, the desired aldol reaction 

was now expanded to a 6-exo-trig cyclization, which was not previously accomplished in 

literature reports with rhodium ylide chemistry. For the second optimization, commercially 

available 2-acylbenzoic acid 59a and aryl diazoacetate 56a were selected as model 

substrates and subjected to a similar catalyst screening.48 As anticipated, Rh2(OAc)4, 

Rh2(esp)2,  and Rh2(TPA)4,   in refluxing CH2Cl2 provided exclusively insertion product 

60a (Table 4, entry 1–3). To our delight, when we moved to our previously identified 

catalyst systems Rh2(TFA)4 and Rh2(HFB)4, we obtained similar insertion to aldol product 

ratio, but with much higher isolated yield, likely because 59a exhibits higher thermal 

stability than 55 (Table 4, entry 4–5). With the hope to achieve the cascade sequence with 

earth abundant transition metal catalysts known to effectively decompose diazo 

compounds, we also screened copper and iron salts but failed to observe any desired 

product (entries 6–8).95, 114 Finally, the cascade was attempted under metal-free conditions 

in refluxing CH2Cl2,
115 which led to diazo decomposition to provide exclusively the 

insertion product 60a (entry 9). Due to the overall goal of synthesizing medium-sized rings, 

a similar optimization table was performed to test the applicability of vinyl starting 

materials (Table 5). When this was performed, an interesting enhancement in aldol 

production was observed with almost all rhodium catalysts screened except for Rh2(TPA)4, 
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which did not provide insertion (60b) or aldol (61g) products (Table 5, entry 3). As 

expected, the best results were obtained with Rh2(TFA)4, which provided aldol product 61g 

exclusively in excellent yield.  

Table 5. Optimization of  -ketoacid O–H insertion/aldol cascade with diazoacetate 48 

 

entry catalyst solvent, temp (°C) ratio 60b:61gb 

(%)[b] 

yield 61g (%)c 

1 Rh2(OAc)4 CH2Cl2, reflux 19:81 79 

2 Rh2(esp)2 CH2Cl2, reflux 35:65 65 

3 Rh2(TPA)4 CH2Cl2, reflux - 0 

4 Rh2(TFA)4 CH2Cl2, reflux 0:100 97 

5 Rh2(HFB)4 CH2Cl2, reflux 0:100 67 

6 (CuOTf)2•benzene CH2Cl2, reflux CM 0 

7 Cu(acac)2 CH2Cl2, reflux 100:0 0 

8 Fe(TPP)Cl CH2Cl2, reflux NR 0 

aAll optimization reactions were performed by adding a 0.24 M solution of 48 (24.0 mg, 

0.12 mmol, 2.0 equiv.) into a 0.12 M solution of 59b (15.0 mg, 0.06 mmol, 1.0 equiv.) 

with catalysts via a syringe pump for 1.5 h, after the addition of diazo, all reactions were 

refluxed for an additional 30 min.  
bthe percent ratio of 60b and 61g was determined by crude 1H NMR.  
cIsolated yields of 61g obtained after column chromatography. 
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3.3 Synthesis of Readily Available Starting Materials 

As stated in subsection 3.1, during the initial development of this cascade, -

ketoacid 55 was initially utilized. The preparation of this -ketoacid was achieved by 

saponification of ethyl acetoacetate 62 with NaOH, yielding 3-oxobutanoic acid 55 as a 

white solid (Scheme 25). 

 

Scheme 25. Synthesis of -ketoacid 55116 

In order to synthesize 9-membered lactones, (E)-3-oxo-5-phenylpent-4-enoic acid 

67 was synthesized. The preparation of 67 was achieved via a three-step protocol with 52% 

overall yield (Scheme 26). First, the addition of tert-butyl acetate (63) to cinnamyl 

aldehyde (64) was accomplished followed by allylic oxidation of the secondary alcohol 65 

with MnO2 yielding tert-butyl (E)-3-oxo-5-phenylpent-4-enoate 66 in 95% over two steps.  

 

Scheme 26. Synthesis of vinyl -ketoacid 
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Then tert-butyl (E)-3-oxo-5-phenylpent-4-enoate 66 was efficiently deprotected by stirring 

in a 1:1 ratio of TFA:CH2Cl2 yielding (E)-3-oxo-5-phenylpent-4-enoic acid 67 as the keto-

enol tautomeric mixture (Scheme 26). 

The second optimization table utilized commercially available 2-acylbenzoic acid 

59a. This starting material provided efficient access to ketoacid chalcones which were also 

utilized for the third optimization table and substrate scope of this cascade. These chalcones 

were achieved via a Claisen-Schmidt condensation with 2-acylbenzoic acid 59a with 

various aryl aldehydes 68 (Scheme 27).  

 

Scheme 27. Chalcone carboxylic acid synthesis117 

Since this insertion/aldol cascade was not previously explored with rhodium 

carbenoids, we felt it was appropriate to test the substrate scope of this 6-exo-trig 

cyclization. Thus, we needed to prepare a variety of aryl diazoacetates as well.  

 

Scheme 28. Synthesis of aryl diazoacetates 56a-56c118-121 
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Diazo starting materials 56a-c, were synthesized via known diazo transfer conditions with 

p-ABSA (Scheme 28). 1-diazo-1-phenylpropan-2-one 72 was prepared through a similar 

method starting from commercially available phenylacetone 71 and performing a diazo 

transfer reaction with p-ABSA and DBU in acetonitrile to furnish the desired product in 

good yield (Scheme 29). 

 

Scheme 29. Synthesis of 1-diazo-1-phenylpropan-2-one 72 

3-diazo-1-methylindolin-2-one 75, was synthesized using a known literature protocol, 

converting N-methylisatin 73 into the tosylhydrazone 74 which could be exposed to basic 

conditions to generate 3-diazo-1-methylindolin-2-one 75 (Scheme 30).122 

 

Scheme 30. Synthesis of 3-diazo-1-methylindolin-2-one 75122 

Ethyl (E)-2-diazopent-3-enoate 78 was synthesized in a 70% overall yield following an 

aldol addition of ethyl diazoacetate 76 to propanal and subsequent elimination of the 

secondary alcohol 77 with phosphoryl chloride and triethylamine (Scheme 31).40  
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Scheme 31. Synthesis of Ethyl (E)-2-diazopent-3-enoate 78 40 

3.4 Substrate Scope of Acid/Insertion Aldol Cascade 

With optimized conditions in hand, we then investigated scope of the carbene 

cascade (Scheme 32). The cascade proceeds in good and excellent yield to produce 61a 

and cinnamoyl derivative 61b, respectively (Scheme 32) presumably due to the less steric 

interference of the styryl substituent compared to the methyl group in regard to A-values.123 

Electron-withdrawing and -donating groups are both tolerated on the aromatic ring of the 

diazoacetate fragments (Scheme 32, 61c, 61d). The decrease in aldol yield for ethyl 2-

diazo-2-(4-(trifluoromethyl)phenyl)acetate 59b is presumably due to electron deficiency at 

the carbenoid carbon, reducing its capability to perform the subsequent aldol cyclization 

compared to electron-rich carbenoid precursors like ethyl 2-diazo-2-(4-

methoxyphenyl)acetate 56c. Notably, the cascade reaction also accommodates -

diazoketones (72), which are prone to undergo the Wolff rearrangement, providing 61e in 

good yield (Scheme 32).124 The cascade reaction proceeds in good yield with 3-diazo-1-

methylindolin-2-one 75 to provide the corresponding spirocyclic oxindole (Scheme 32, 

61f). 



52 

 

 

Scheme 32 Scope of Rh2(TFA)4-catalyzed carbene carboxylic acid O–H insertion/aldol 

cascade sequence with aryl diazoacetates 

Relative stereochemistry of the spirocyclic oxindole 61f was determined using single 

crystal X-ray diffraction (Figure 21). As expected, the resulting hydroxyl group and 

carbonyl moiety of the diazo were found to be in a cis configuration as reported in chapter 

two and previously in literature.30, 48 This encouraged us to extend our cascade to vinyl  
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Figure 21. Crystal structure of 61f 

diazoacetates,125-126 which would result in aldol products having divinyl motifs capable of 

undergoing a thermally induced oxy-Cope ring expansion48 to provide access to 10-

membered benzannulated lactones.  

3.5 Substrate Scope of Acid Insertion/Aldol/oxy-Cope Cascade 

To our delight, benzyl 2-diazobut-3-enoate 48 exhibited analogous reactivity to the 

aryl diazoacetates utilized in scheme 32. In this case, we modified the electronic nature of 

the chalcone ketone motif. The cascade performed well with 2-cinnamoylbenzoic acid 59b 

obtaining an excellent yield (61g, Scheme 33). The reaction also operates in excellent yield 

with electron withdrawing groups attached to the chalcone ring (61h, Scheme 33). 

Conversely, when an electron donating group was installed, the ketone becomes less 

electrophilic resulting in a decreased yield of aldol product 61i. The cascade also tolerated 

the presence of halogens as well as a cinnamyl group (Scheme 33, 61j, 61k).  
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Scheme 33 Scope of Rh2(TFA)4-catalyzed carbene carboxylic acid O–H insertion/aldol 

cascade sequence with vinyl diazoacetates 

With regard example 61k, we envisioned incorporating methyl (E)-2-diazohexa-3,5-

dienoate 52, utilized in chapter 2, to provide a tetraene product capable of successive Cope 

ring expansion to yield 14-membered rings. Unfortunately, when we attempted the reaction 

with diazo 52, no product was observed. Although, the cascade did tolerate ethyl (E)-2-

diazopent-3-enoate 78 to access -lactone 61l in respectable yield with a slightly reduced 
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diastereoselectivity. With this small library of oxy-Cope capable precursors, we decided to 

expand these 6-membered lactones to their corresponding 10-membered decanolides. -

lactones 61g–61l were subjected to thermally induced oxy–Cope ring expansion conditions 

in refluxing toluene (b. p. 110 ºC), similar to conditions reported in chapter 2.48 

 

Scheme 34. Scope of thermal oxy-Cope ring expansion strategy 

Ring expansion occurs under these solvent conditions, although the reaction is quite 

sluggish, and we continuously observed a unique side reaction between the starting 
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material and toluene that produced an unidentified set of by-products, causing a reduction 

in isolated yield. We suspect that radical oxidation of toluene may be occurring. To 

circumvent this unexpected problem, the solvent was changed to chlorobenzene in a sealed 

tube and the reaction was maintained under nitrogen atmosphere. The benefit of utilizing 

this solvent is that it is more deactivated due to the chlorine substituent, and has a higher 

boiling point (b. p. 131 ºC) to further promote the ring expansion. To our delight, the oxy-

Cope ring expansion proceeds cleanly in good yield to the corresponding benzannulated 

decanolides (Scheme 34, 79a–79e).  

 

Scheme 35. One-pot synthesis of decanolide 79a 

Furthermore, we attempted the synthesis of decanolides as a one-pot cascade by 

performing the reaction in refluxing chlorobenzene. The synthesis of decanolide 79a was 

successful, but the yield was diminished as compared to our two-step protocol (Scheme 

35). 
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To our surprise, when the aldol product 61l was subjected to the same reaction 

conditions, we obtained a spirophthalolactone bearing a highly functionalized 

cyclopentane ring (Scheme 34, 80a).  

 

Figure 22. X-ray crystal structure of 80a 

The structure of 80a was determined based on the nOe correlations and single crystal X-

ray diffraction (Figure 22).  

3.6 Serendipitous Rearrangement Yielding Spirophthalolactones 

Since functionalized cyclopentanes are present in numerous bioactive natural 

products,127-128 we decided to test the substrate scope of this serendipitous cascade. We 

synthesized aldol products 61m–61o with high diastereoselectivity using ethyl (E)-2-

diazopent-3-enoate 78. As expected, the corresponding δ-lactones 61m–61o underwent the 

rearrangement to form the desired cyclopentanes 80b–80d (Scheme 36) in good yield as 

single diastereomers at 200 °C, albeit with prolonged reaction times needed of one to three 

days. 
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Scheme 36. Scope of rearrangement to access spirocyclic fused phthalolactones 

3.7 Proposed Mechanism of Decanolide Synthesis 

For further insights into the reaction mechanism of the ketoacid insertion/aldol 

cyclization, additional control experiments were carried out (Scheme 37). We attempted 

the same O–H insertion/aldol cascade with commercially available 3-benzoyl propionic 

acid 81 yielding exclusively the insertion product 82 (Scheme 37a). This result suggests 
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that the conformational constraint is necessary for a 6-exo-trig aldol cyclization. The 

aromatic ring brings the electrophilic ketone moiety in closer proximity of the rhoda-

enolate in the zwitterionic intermediate lowering the entropic barrier of ring cyclization 

associated with the corresponding linear alternatives.129-132  Next, we performed two 

experiments with the corresponding insertion product 60a (Scheme 37b). We refluxed the 

insertion product in CH2Cl2 with Rh2(TFA)4 alone and with the addition of excess 

triethylamine. We did not observe any conversion of insertion product 60a to aldol product 

61a suggesting that a rhodium bound zwitterionic intermediate is necessary for the aldol 

cyclization.30, 35, 47-48, 89, 133 

 

Scheme 37. Control experiments.  

From these results we were able to propose a mechanism for this cascade sequence. 

Similar to previously developed method reported in chapter 2, the vinyl diazo substrate 
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(48/78) decomposes to the corresponding rhodium vinylcarbenoid that undergoes a 

regioselective O–H insertion with 59, generating a ylide possessing a Z-rhoda-enolate 

capable of a enol-exo-6-exo-trig cyclization to yield syn aldol product 61 which is isolated 

or directly subjected to thermal expansion conditions to produce decanolide 79. We 

presume that the syn aldol product stereochemistry occurs following the Zimmerman-

Traxler model.  

 

Scheme 38. Proposed mechanism of acid insertion/aldol/oxy-Cope cascade. 

Furthermore, this transition state model also provides some reasoning for the diminished 

stereochemistry observed for aldol products 61m-61o, because the additional methyl group 

on vinyl diazoacetate 78 may sterically disrupting the ordered Zimmerman-Traxler 

transition state or may affect the geometry of the rhoda-enolate. To further identify the 
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nature of the oxy-Cope rearrangement, we proposed a chair transition state. With the 

mechanism shown in scheme 38, both transition states are possible, but as will be discussed 

in the following subsection, we have discovered evidence suggesting that this mechanism 

operates via a chair transition state exclusively. 

3.8 Proposed Mechanism of Serendipitous Rearrangement 

When considering the cause of the serendipitous product 80a formed during our 

attempt to synthesize a decanolide utilizing ethyl (E)-2-diazopent-3-enoate 78 (Scheme 

34), we rationalized that the additional methyl substituent on the diazo fragment was key. 

When considering the stability of medium-sized rings, 9- and 10-membered rings tend to 

possess significantly high internal strain energy as shown in Figure 23.17, 134  

 

Figure 23. Transition state strain for the formation of medium-sized rings17, 134 
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Furthermore, this internal strain is enhanced with the addition of a methyl group. In fact, 

during two independent studies on the reactivity of cyclic ketones, it was shown 

empirically that cyclodecanones were the most unreactive in terms of reduction and 

nucleophilic addition. Reetz and Brown have both suggested that transition from a sp2 to 

sp3 carbon center causes a drastic increase in Prelog strain resulting in low or no conversion 

for their desired reactions135-136 In regard to product 80,  it presumably forms through the 

planned oxy-Cope ring expansion to yield the desired decanolide 79, an intermediate that 

likely suffers from significant Prelog strain136-138 due to the additional methyl group, 

causing the decanolide to undergo an intramolecular aldol cyclization followed by 

translactonization to provide the spirophthalolactone 80 (Scheme 39).  

 

Scheme 39. Plausible mechanism of spirophthalolactone fused cyclopentanes. 

The stereochemistry of 80 was confirmed by X-ray diffraction (Figure 22). Both the methyl 

and aryl substituents were found to be anti on the cyclopentane fragment of the 

spirophthalolactones suggesting that the proposed mechanism of the oxy-Cope ring 
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expansion shown in Schemes 38 and 39 must proceed via a chair-type transition state, 

which is opposite from our previous reports shown in chapter 2.139 

3.9 Substrate Scope of 5-Membered Lactone Cascade 

 To further demonstrate the utility of this cascade, we also attempted the reaction 

with β-ketoacids, which are prone to decarboxylation.113 To our delight, the cascade 

accommodates β-ketoacids with a wide range of diazo compounds to provide 

functionalized γ-butyrolactones (Scheme 40).  

  

Scheme 40. Scope of Rh2(TFA)4-catalyzed carbene carboxylic acid O-H insertion/aldol 

cascade sequence for the synthesis of 3-hydroxy--lactones 

As anticipated, the cascade reaction proceeds in lower yield due to instability of the 

ketoacid starting materials under these reaction conditions. We also observe similar 

electronic trends involved with the carbenoid intermediates generated in Scheme 37. 



64 

 

Specifically, the electronically unperturbed substrate ethyl 2-diazo-2-phenylacetate 56a 

undergoes the acid insertion/aldol cascade in good yield (Scheme 40, 58a).  However, the 

electron deficient rhodium carbenoid generated from 56b undergoes the 5-exo-trig cascade 

in much lower yield (Scheme 40, 58b). Conversely, electron rich aryl diazoacetate 56c 

affords the desired cyclization in good yield (Scheme 40, 58c). The cascade reaction also 

tolerates 3-diazo-1-methylindolin-2-one 75 to provide the corresponding spirocyclic 

oxindole (Scheme 40, 58d). Relative stereochemistry of 58d was determined using single 

crystal X-ray diffraction (Figure 24). As expected, the resulting hydroxyl group and the 

carbonyl moiety of diazo were found to be in a syn configuration similar to previous 

reports.48 

 

Figure 24. X-ray of 58d 

Against the overwhelming odds of precursor decarboxylation, we still explored 

medium-sized ring synthesis with these -keto-acids. We performed the cascade with (E)-

3-oxo-5-phenylpent-4-enoic acid 67 and ethyl 2-diazo-2-phenylacetate 56a yielding 3-

hydroxybutyrolactone 58e. However, we quickly realized that (E)-3-oxo-5-phenylpent-4-

enoic acid 67 was even more thermally unstable than 3-oxobutanoic acid 55, as represented 

by the decreased yield (Scheme 40, 58e).  
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3.10 Notable Byproducts Observed During the Development of this Cascade. 

Even though we obtained lactone 58e in low yield, we then attempted this cascade 

with ketoacid 67 and benzyl 2-diazobut-3-enoate 48. During our attempts to synthesize 9-

membered lactones, we realized that the method was incompatible with both starting 

materials due to thermal instability. This was further confirmed during our screening of 

conditions where a common byproduct observed was the thermal decarboxylation of 67 to 

cinnamyl ketone 83 (Scheme 41a). Furthermore, it was observed that in the absence of a 

nucleophile, the vinyl diazoacetate 48 undergoes a thermal [1,5] electrocyclization to 

produce 84 exclusively.140 

 

Scheme 41. Observed byproducts for 5-exo-trig cyclization 

Interestingly, this vinyl diazoacetate had another byproduct pathway, which was observed 

during the optimization of this cascade (Table 5, entry 3). During this entry, the starting 

material 2-cinnamoylbenzoic acid 59b was not consumed but one major byproduct was 

observed.  



66 

 

 

Scheme 42. Benzyl 2-diazobut-3-enoate 64 trimerization 

The product was determined to be a vinyl diazo trimer, which was previously reported by 

Davies and co-workers (Scheme 42). 

 

Scheme 43. Proposed mechanism of benzyl 2-diazobut-3-enoate 48 trimerization 

The first stage of this mechanism involves the generation of rhodium carbenoid that 

undergoes a cyclopropanation reaction with another molecule of the vinyl diazoacetate 

(Scheme 43, A). This cyclopropane diazo, then forms a subsequent rhodium carbenoid, 

generating an oxonium ylide (Scheme 43, B) that leads to cyclopropane ring opening to 

generate a 1,4 skipped diene pyran (Scheme 43, C). Then another vinyl diazoacetate 

decomposes to the rhodium vinylcarbenoid capable of a cyclopropanation to the terminal 
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vinyl group of the pyran intermediate (Scheme 43, D) that subsequently performs a cope 

ring expansion to yield bicycle 100 (Scheme 43, E).141 Davies and co-workers reported that 

this reaction performs best with Rh2(piv)4, which is bulkier compared to Rh2(OAc)4 and 

Rh2(TFA)4. However, when comparing the sterics of Rh2(TPA)4 and Rh2(piv)4, similar 

steric environments are noted, which seems to inhibit the O-H insertion reaction 

specifically with this keto-acid substrate (Figure 25).   

 

Figure 25. Comparison of rhodium catalyst sterics 

3.11 Earth Abundant Alternatives for O-H Insertion/Aldol Cascade. 

Our initial efforts to generate medium-sized rings all required the  precious metal 

rhodium as a catalyst. Fortunately, the catalyst loading for these reactions are so minuscule 

that cost is not a concern. However, metals such as rhodium, ruthenium and iridium are not 

very abundant on the earth’s crust and sustainability of their applications in chemistry is 

limited. There is an ongoing need for more earth abundant alternatives (Figure 26). 
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Figure 26. Iron earth abundance compared to rhodium 

With that in mind, iron is an ideal sustainable catalyst source because it is the most 

abundant metal in the earth’s crust and is capable of diverse chemical transformations due 

to its ability to exist in a variety of oxidation states. From a poetic perspective, these 

benefits of iron as a catalyst make it an ideal choice for further development of carbenoid 

chemistry. In reference to a poem shown below, iron is master of them all. 

Gold is for the mistress – silver for the maid – 

Copper for the craftsman cunning at his trade.  “Good!” said the Baron, sitting in his 

hall, “But Iron – Cold Iron – is master of them all.” 

Rudyard Kipling, Cold Iron 

 

Surprisingly with such reactivity, there are significant key gaps in iron carbenoid 

chemistry; specifically, in terms of cascade catalysis. Iron (III) porphyrin complexes are 

known to react with ethyl diazoacetate to form iron carbenoids capable of heteroatom 

insertion reactions.  



69 

 

 

Figure 27. Key gaps in iron carbenoid cascades 

Unfortunately, current methods are limited to ethyl diazoacetate, while also requiring high 

reaction temperatures and prolonged reaction times. Furthermore, prior to our work 

described herein, there are no examples of iron carbenoid initiated cascades.142 Fortunately, 

we have developed cationic iron(III) porphyrin complexes capable of performing 

heteroatom insertion/aldol cascades under ambient temperatures with excellent 

diastereoselectivity, making these catalysts suitable alternatives to their precious rhodium 

counterparts.   

3.12 Optimization of Iron Insertion/Aldol Cascade 

 

We decided to focus our efforts towards commercially available iron (III) porphyrin 

complexes such as Fe(TPP)Cl; a catalyst known to react with ethyl diazoacetate (76). Prior 

to our work, attempts to utilize catalyst to generate iron carbenoids with donor/acceptor 

diazo precursors failed. We hypothesized that the covalently bound axial chloride ligand 

may be the reason for low reactivity. Previous reports state that reduction of Fe(TPP)Cl 

with cobaltocene increased the reactivity of the catalyst.142 Furthermore, when considering 
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ethyl diazoacetate (76) as a molecule, it can also serve as a mild reductant,143 thus it became 

apparent that making the axial coordination site of the Fe(TPP) catalyst more accessible to 

 donation from a diazo, might facilitate carbenoid formation with donor/acceptor diazo 

precursors.  

Table 6. Optimization of iron O-H insertion/aldol cascade 

 

Entry Catalyst Mol (%), t (h) Temp. °C Ratio 88:89ab Yield (%)c 

1 Fe(TPP)SbF6 20.0, 1.5 40 - 30% 

2 Fe(TPP)SbF6 10.0, 1.5 40 0.19:1.00 - 

3 Fe(TPP)BF4 10.0, 1.5 40 1.63:1.00 - 

4 Fe(TPP)PF6 10.0, 1.5 40 0.00:1.00 76% 

5 Fe(TPP)TFA 10.0, 1.5 40 0.10:1.00 75% 

6 Fe(TPP)Cl 10.0, 1.5 40 0.00:0.00 NR 

7 AgTFA 10.0, 1.5 40 0.38:1.00 -% 

8 - -, 1.5 40 0.00:0.00 NR 

9 Fe(TPP)TFA 10.0, 24 25 0.00:1.00 69% 

10 Fe(TPP)PF6 10.0, 24 25 0.00:1.00 77% 

aAll reactions were performed by adding keto-alcohol 86 (10 L, 0.1 mmol, 1.0 equiv) to 

a solution of FeTPPX in 450 L CH2Cl2 (0.05 M) prepared in situ followed by addition of 

diazo 87 (20 mg, 0.1 mmol, 1 equiv).  
bThe percent ratio of 88 and 89a was determined by crude 1H NMR.  
cIsolated yields of 89a obtained after column chromatography. 
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For initial optimization, commercially available 4-hydroxybutan-2-one 86 and methyl 2-

diazo-2-phenylacetate 87 were utilized as model substrates. Upon initial screening with 

Fe(TPP)SbF6, we obtained promising results, isolating the aldol product 89a in 30% yield 

(entry 1). Encouraged by these results, we decreased the catalyst loading due to the 

difficulty in removing catalyst impurities from the product and found a ratio of 0.19:1.00 

insertion to aldol product (entry 2). We screened a variety of other noncoordinating counter 

anions and found that both Fe(TPP)PF6 and Fe(TPP)TFA provide excellent results at reflux 

(entry 4 and 5). To prove that the silver additive was not responsible for the transformation 

we screened the reaction in absence of Fe(TPP)Cl,  which provided 89a but with a less than 

optimal ratio of insertion to aldol products, proving the iron carbenoid formation (entry 7). 

In addition, to prove this reaction is not occurring thermally as well, the reaction was 

performed without any additives, which resulted in no reaction. During this optimization, 

we realized that slow addition of the diazo precursor was not necessary because the rate of 

the iron carbenoid cascade appears to be slower compared to rhodium catalyzed reactions. 

Thus, we hypothesized that this cascade may occur at lower temperatures. To our delight, 

when the cascade was performed at 25 °C over 24 hours better results were obtained (Table 

6, entry 10). This result is a significant discovery because it suggests that this process is 

occurring through an iron carbenoid at extremely mild conditions in comparison to a free 

carbene. 

3.13 Substrate Scope of Iron Insertion/Aldol Cascade 

With optimized conditions in hand, we then screened a variety of diazo precursors 

and quickly realized that electronic modification of the diazo synthon drastically inhibites 

the aldol cascade. The reaction proceeds well to provide 89b, but alteration of the carbonyl 
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species to a methyl ketone (72), results in a drastically reduced yield of the desired product 

89c.  

 

Scheme 44. Iron catalyzed insertion/aldol cascade substrate scope 

To our delight, the reaction tolerates a vinyl keto-alcohol to yield 89d in good yield. Thus, 

we envisioned we could extend this work for the synthesis of 9-membered rings. 

Unfortunately, this vinyl keto-alcohol utilized to prepare 89d did not react with the iron 

vinylcarbenoid. Thus, we then tested this iron cascade with ketoacids. The O–H carboxylic 

acid insertion/aldol cascade was achieved with some success, but in much lower yield 

compared to similar entries with Rh2(TFA)4 (Scheme 44, 58a). Interestingly, the rate of 

reaction increased drastically when ketoacid precursors were utilized. Full conversion and 

product formation occurred within minutes with ketoacid starting materials; this rate 

enhancement has not been fully studied to effectively provide reasoning for this 

observation. Regardless, with these acid insertion aldol results, we once again attempted to 
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extend this cascade for the synthesis of medium-sized lactones by performing an acid 

insertion/aldol cascade with benzyl 2-diazobut-3-enoate 48. To our surprise, we did not 

observe O-H insertion at the iron carbenoid center, but instead at the vinylogous position 

yielding product 89e. At this point, we concluded that this Fe(TPP)PF6 catalyzed cascade 

was not going to provide access to medium-sized cyclic ethers and lactones. 

3.14 Conclusion and Future Directions 

 

In conclusion, the research reported in chapter 3 discusses the development and 

application of a rhodium carbenoid initiated carboxylic O–H insertion/aldol cascade 

sequence, which is convergent in nature and uses readily accessible ketoacids and diazo 

carbonyls as starting materials to access highly functionalized  and  lactones. 

Furthermore, this cascade was complemented with an oxy-Cope ring expansion strategy to 

efficiently access η lactones as well as highly functionalized spirophthalolactone fused 

cyclopentanes via a serendipitous rearrangement. An important feature of this 

transformation is its high chemo-, regio- and stereo-selectivity. This work specifically with 

the rhodium carbenoid initiated cascade has been published in Organic Letters. 

Furthermore, this research has led to the identification of a hit compound (Scheme 34, 79b) 

that targets the Bax and Bak proteins. Currently, these synthesized scaffolds are now being 

further diversified in collaboration with the Shao research group at the University of 

Oklahoma. 
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Figure 28. Synthesis of diverse lactones 

In addition to the synthesis of medium-sized rings, significant advances have been 

made in the application of cationic iron (III) porphyrin complexes as suitable earth 

abundant catalysts for diazo derived carbenoid methodologies. Both O–H and acid 

insertion/aldol cascade described in chapter 2 and 3 have been successfully performed with 

Fe(TPP)PF6. This is the first example of an iron catalyzed O–H insertion/aldol cascade, but 

there is still room for further development due to the limited substrate scope observed by 

iron in comparison to rhodium catalysts. 

 Finally, we have demonstrated this ring expansion strategy with two different 

oxygen nucleophiles. Thus, the next stage of development of our ring expansion cascade 

strategy is to incorporate nitrogen nucleophiles for the synthesis of diverse azacycles. 
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Chapter 4: Synthesis of Diverse Tricyclic Quinolines 

A serendipitous cascade for the synthesis of functionalized tricyclic quinolines. 

4.1 Introduction* 

As an extension of our previously developed O–H insertion/aldol/oxy-Cope 

cascade, we sought to adapt our ring expansion strategy to synthesize medium-sized 

azacycles. During our initial attempts to identify a model substrate suitable for optimizing 

this N–H insertion/aldol/oxy-Cope cascade, we did not observe any success with amine 

starting materials utilized by Moody and coworkers, due to incompatibility with our vinyl 

diazoacetate precursors.31 Although, there were reports by Hu and co-workers that 2’-

aminochalcone substrates (90) efficiently reacted with aryl diazoacetates, such as 87, to 

yield 91 (Scheme 45).144 

 

Scheme 45. Benzannulated N-H insertion/aldol cascade by Hu and co-workers144 

To our delight, these 2’-aminochalcone precursors (90a) reacted with the rhodium 

vinylcarbenoid derived from 48; the most effective rhodium (II) catalyst identified by Hu 

and coworkers for benzannulated diverted N–H insertion.144  

                                                           
* Reproduced in part from, “A Serendipitous Cascade of Rhodium Vinylcarbenoids with Aminochalcones 

for the Synthesis of Functionalized Quinolines” Kiran Chinthapally, Nicholas P. Massaro, Haylee L. Padgett 

and Indrajeet Sharma. Chem. Commun., 2017, 53, 12205-12208 with permission from The Royal Society of 

Chemistry. Copyright © RSC Publishing. N.P.M. contributed equally with K.C. concerning the work 

presented in this chapter. N.P.M. prepared all starting material precursor, prepared multiple products, equally 

worked with control experiments, grew single crystals for X-ray, and derivatized products. 
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Scheme 46. A serendipitous discovery leading to a biologically relevant scaffold 

We expected the formation of a 9-membered azacycle but instead observed a different 

major product (Scheme 46). After TLC analysis, we determined that the product possessed 

significant UV activity and was a solid upon purification. The NMR spectral analyses 

indicated a single product, but the characteristic azacycle enamine proton in 1H-NMR and 

ketone peak in 13C-NMR spectrum were missing. Further structural analyses suggested the 

formation of an unexpected quinoline scaffold 92a (Scheme 46).  

Since the discovery of quinoline in 1842 by Gerhardt, the bicyclic ring system has 

been observed in a myriad of natural products and medicinally relevant compounds.145  

Often quinoline based structures possess a broad range of biological activity, such as 

antimalarial, anti-bacterial, antifungal, anthelmintic, cardiotonic, anticonvulsant, anti-

inflammatory, and analgesic activity.146-147  In addition, quinoline containing compounds 

have found significant application in anti-cancer therapeutics, establishing the quinoline 

ring system as a privileged scaffold.  Quinine and Topotecan are key examples of this 

structural family that have had a profound impact on human health (Figure 29).148-150   
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Figure 29. Examples of bioactive quinoline compounds 

Due to the bioactive relevance of quinolines and our interests in rhodium vinylcarbenoid 

initiated tandem reactions, we pursued this unexpected reactivity to develop a new 

approach to functionalized quinolines that leverages a distinct retrosynthetic disconnection. 

4.3 Optimization of Quinoline Synthesis 

Encouraged by the preliminary result, we examined different dirhodium 

carboxylates to increase the yield of quinoline 92a (Table 7, entries 2–5). Among them, 

Rh2(esp)2 was found to be the most efficient, which was consistent with previous literature 

reports for the corresponding N–H insertion reactions (entry 2).151-152 With hope to achieve 

the cascade sequence with earth abundant transition metal catalysts, we screened 

Fe(TPP)Cl and two copper salts. Both copper catalysts resulted in a complex mixture of 

different products without any trace of desired quinoline (entries 6, 7).153-154 To our delight, 

Fe(TPP)Cl  (2 mol %) provided the desired quinoline, albeit in very low yield (entry 8). 

We thought that increasing the catalyst loading of Fe(TPP)Cl  (10 mol%) would improve 

the yield although this was not observed. We also attempted to synthesize quinoline 92a 

without the use of any metal catalyst, but we did not observe any desired product.155 As 

expected, benzyl 2-diazobut-3-enoate 48 fully decomposed but did not react with 2’-
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aminochalcone 90a, which was recovered from the reaction in quantitative yield; 

suggesting the cascade will only proceed with a metal carbenoid.  

Table 7 Optimization of the reaction conditions for the formation of the quinoline 

scaffold 92a. 

 

entry Catalyst  mol (%), t yield (%)b 

1 Rh2(OAc)4 1.0, 3 h 61 

2 Rh2(esp)2 1.0, 3 h  77 

3 Rh2(TPA)4 1.0, 3 h 42 

4 Rh2(TFA)4 1.0, 3 h 12 

5 Rh2(HFB)4 1.0, 3 h 15 

6 (CuOTf)2•benzene 5.0, 3 h CM 

7 Cu(acac)2 5.0, 3 h CM 

8 Fe(TPP)Cl 2.0, 3 h 13 

9 –  3 h NR 

10 Rh2(esp)2 0.1, 4 h 67 

 

aAll optimization reactions were performed by adding a 0.45 M solution of 48 (2.0 equiv) 

into a 0.1 M solution of 90a (1 equiv) with catalysts via a syringe pump over 2.5 h, after 

the addition of diazo, all reaction were refluxed for an additional 30 min.  

bIsolated yields after column chromatography.  
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Finally, the cascade also functioned with lower catalyst loading of Rh2(esp)2 (0.1 mol %), 

obtaining the desired quinoline 92a in comparable yield (entry 10).  

4.2 Preparation of Model Substrates and Other Precursors 

Similar to chapter 3, 2’-aminochalcone precursors were easily derivatized to 

efficiently access a diverse substrate scope. 2’-aminochalcone 90a and other precursors 

were prepared via a Claisen-Schmidt condensation with 2’-aminoacetophenones 93 and 

various aryl aldehydes 68 (Scheme 47).  

 

Scheme 47. Synthesis of 2’-aminochalcones 90 

In terms of the diazo fragment, benzyl 2-diazobut-3-enoate 48 was utilized most often, but 

two other vinyl diazoacetates were prepared. Prop-2-yn-1-yl 2-diazobut-3-enoate 96 was 

synthesized similarly to benzyl 2-diazobut-3-enoate 48 (Scheme 48).  

 

Scheme 48. Synthesis of prop-2-yn-1-yl 2-diazobut-3-enoate 96 
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The synthesis of ethyl (E)-5-((TBS)oxy)-2-diazopent-3-enoate 100 began first with the 

selective monoprotection of 1,3-propanediol 97 with TBS-Cl to provide 3-

((TBS)oxy)propan-1-ol 98 (Scheme 49). 

 

Scheme 49. Synthesis of ethyl (E)-5-((TBS)oxy)-2-diazopent-3-enoate 100 

This alcohol was then oxidized to aldehyde 99 via a Swern oxidation. The final 

transformation incorporated an aldol reaction with ethyl diazoacetate 76 and 3-

((TBS)oxy)propanal 99, furnishing an aldol product that was immediately dehydrated to 

yield ethyl (E)-5-((TBS)oxy)-2-diazopent-3-enoate 100 (Scheme 49). 

4.4 Substrate Scope of Quinolines 

With starting materials and optimized conditions in hand, we investigated the scope 

of this cascade sequence using Rh2(esp)2 as a catalyst (Scheme 50). Both the electron-

donating and -withdrawing groups were tolerated on the aromatic side chain of 

aminochalcones (Scheme 50, 92b–92e). Interestingly, we did not observe expected 

fluctuation in the yields for compounds 92a through 92e. Unexpectedly, the yield decreased 

with the presence of electron-withdrawing groups on the chalcone 90e and increased with 
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the presence of electron-donating groups 90d which was opposite the trend witnessed 

during the carboxylic acid insertion/aldol cascade shown in chapter 3.      

 

 

Scheme 50. Scope of Rh2(esp)2-catalyzed serendipitous cascade 

Fortunately, during this initial probing of the substrate scope, we were also able to 

confirm the structure of 92b by single crystal X-ray diffraction (Figure 30). We were 

pleased to find that the cascade sequence equally tolerated substitution at the aniline ring 

of 2’-aminochalcones (Scheme 51, 92f–92i). It was shown that multiple halogens could be 

tolerated (92f–92g) and that electron-withdrawing groups known to slow down carbene-
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heteroatom insertion reactions,151 did not have any strong influence in the efficiency of the 

cascade process; but did decrease the yield slightly (Scheme 51, 92h). 

 

Figure 30. X-ray structure of 92b 

What is also very impressive about this serendipitous cascade is its high chemoselectivity 

in the presence of additional olefin functionalities present in the aminochalcone 92j 

(Scheme 51, 92j).  

 
Scheme 51. Continued scope of Rh2(esp)2-catalyzed serendipitous cascade 
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Scheme 52. Scope of Rh2(esp)2-catalyzed serendipitous cascade with different vinyl 

diazoacetate precursors 

This chemoselectivity was further demonstrated with aminochalcone 92k bearing a 

reactive furan functionality performing the cascade successfully (Scheme 51, 92k).156-158 

To further explore the generality of this transformation, substituted vinyl diazoacetates 

were also examined with 2’-aminochalcones. Remarkably, prop-2-yn-1-yl 2-diazobut-3-

enoate 96 on treatment with 2’-aminochalcone 90a underwent the desired cascade 

sequence smoothly to obtain the corresponding quinoline in high yield (Scheme 52, 92l) 

without any evidence of side reactions from the alkyne functionality, which has the 

propensity to undergo cyclopropenation,159-160 as well as carbene-alkyne metathesis161-163 
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with rhodium carbenoids. We then probed the diastereoselectivity of the cascade reaction. 

First, ethyl (E)-2-diazopent-3-enoate 78 was reacted with 90a and 90b both providing the 

desired quinoline scaffold in good yield with complete syn stereoselectivity (Scheme 52, 

92m, 92n). The stereochemical arrangement of substituents was determined based on the 

nOe correlations, and was further confirmed by single crystal X-ray diffraction of 92m 

(Figure 33).164 Finally, the cascade was performed with ethyl(E)-5-((TBS)oxy)-2-

diazopent-3-enoate 100 bearing a TBS-ether side chain as an additional diversification 

handle. 

 

Figure 31. X-ray structure of 92m 

To our delight, the cascade proceeded in high yield to provide quinoline scaffold 92o with 

complete stereoselectivity. Subsequent deprotection of the TBS-ether with TBAF triggered 

lactonization to provide the tetracyclic quinoline scaffold (Scheme 53, 101).165  

 

Scheme 53. Further diversification to yield 101 
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4.5 Probing the Mechanism of Tricyclic Quinoline Formation 

We had suspicion that the cascade was proceeding via a N–H insertion/aldol/oxy-

Cope followed by a ring contraction aromatization sequence. To probe for all aspects of 

this mechanism, we wanted to effectively isolate each possible intermediate to confirm the 

pathway. First, we synthesized the intermediate aldol cyclization product 91a as a single 

diastereomer. This was achieved by treating 2’-aminochalcone 90a with benzyl 2-diazobut-

3-enoate 48 in the presence of Rh2(esp)2 at 25 °C; surprisingly at dichloromethane refluxing 

temperatures, quinoline formation still proceeded.166  

Table 8. Rearrangement of indoline 91a into quinoline 92a under thermal, basic and 

acidic conditions 

 

entry reagent solvent, temp (ºC), t yield (%)b 

1 Rh2(esp)2 toluene, reflux, 1 h 93 

2 – toluene, reflux, 1 h 95 

3 KH, 18-crown-6 THF, 0 ºC, 5 min CM 

4 LiHMDS THF, 0 ºC, 15 min CM 

5 CSA toluene, rt to reflux, 1 h CM 

 

aAll optimization reactions were performed with 0.1 M solution of 91  

bIsolated yields after column chromatography. 
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We then exposed 91a to Rh2(esp)2 in refluxing toluene. As expected, we observed a clean 

formation of quinoline 92a in excellent yield (Table 8, entry 1). Next, 91a was refluxed in 

toluene without Rh2(esp)2 to rule out the involvement of Rh-metal in the oxy–Cope 

rearrangement. As expected, the reaction took the same time to afford 92a suggesting a 

thermally driven rearrangement (Table 8, entry 2).167 As the oxy-Cope rearrangement could 

be catalyzed under basic conditions,168-171 aldol product 91a was subjected to different 

bases known to promote anionic oxy-Cope rearrangement. As from our previous reports, 

we observed a complex mixture without any trace of desired quinoline 92a (Table 8, entry 

3, 4). This was suspected to be due to the propensity for retro-aldol of substrate 91a which 

had been identified with similar products.30 We also attempted acidic condition to catalyze 

oxy-Cope rearrangement, but did not meet any success (Table 8, entry 5).  

 

Scheme 54. Synthesis of ethyl 2-diazo-3-methylbut-3-enoate 104 

To further probe the mechanism, we wanted to isolate the intermediate prior to 

aromatization. To accomplish this, we installed a group methyl group on the vinyl 

diazoacetate fragment subsequently causing the generation of an all carbon quaternary 

center incapable of aromatization. First, we prepared ethyl 2-diazo-3-methylbut-3-enoate 

104 from a two-step sequence by performing an aldol reaction with ethyl diazo acetate 76 

and acetone 102 which provided tertiary alcohol 103. This tertiary alcohol was then 

eliminated to provide desired vinyl diazoacetate 104 (Scheme 54). The cascade was then 
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performed with ethyl 2-diazo-3-methylbut-3-enoate 104 and 2’-aminochalcone 90a.  To 

our delight, the cascade did proceed and stopped exclusively prior to the aromatization 

stage of the cascade sequence providing tertiary alcohol 105 (Scheme 55). 

 

Scheme 55. Synthesis of cascade intermediate 105 

4.6 Proposed Mechanism of the Serendipitous Cascade and New Hypothesis 

These findings allow us to propose a reaction mechanism (Scheme 56). First, vinyl 

diazoacetate is decomposed by the dirhodium carboxylate Rh2(esp)2 to form a rhodium 

vinylcarbenoid that undergoes a chemoselective N–H insertion/aldol cyclization to provide 

indoline 91 with high diastereoselectivity.166 The intermediate indoline 91 then sets the 

stage for a thermally driven, concerted oxy-Cope rearrangement to provide an intermediate 

azacycles having both the substituents syn to each other.167 The azacycle then rearranges 

to the functionalized quinolines 92 through an intramolecular aldol/dehydration 

sequence.172  
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Scheme 56. Proposed reaction mechanism for the rhodium vinylcarbenoid initiated 

serendipitous cascade for the synthesis of functionalized quinolines 

4.7 Conclusion and Future Directions 

In summary, the reported rhodium vinylcarbenoid initiated serendipitous five-step 

cascade is convergent in nature and uses readily accessible starting materials to provide 

highly functionalized tri- and tetra-cyclic quinolines. An important feature of this 

transformation is its complete chemo-/regio- and stereo-selectivity. Furthermore, this work 

was then published in chemical communication47 and then subsequently highlighted in 

Synfacts by Victor Snieckus and Paul Richardson (Pfizer)173 (Scheme 57).  
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Scheme 57. A serendipitous discovery leading to a synthetically relevant scaffold 

Furthermore, the products synthesized in this methodology were submitted for In silico 

high-through-put screening for a variety of biological targets, but no hits have currently 

been identified. After this achievement, we turned our attention to our original goal to 

synthesize medium-sized azacycles. We were sure that an intermediate azacycle was 

forming through the mechanism of preparing these tricyclic quinolines. Thus, we had to 

devise a way to stop the intramolecular aldol ring contraction step of this intermediate 

azacycle. 
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Chapter 5: Synthesis of Medium-Sized Azacycles 

Trapping Rhodium Vinylcarbenoids with Aminochalcones for the Synthesis of Medium-

Sized Azacycles 

5.1 Introduction*  

Compared to alternative nitrogenous medium-sized circumferences, 9-membered 

azacycles and lactams in particular are commonly present within indole alkaloid natural 

products; such as (-)-indolactam V, (-)-rhazinicine,174 vinblastine175 and quebrachamine.176  

.  

Figure 32. 9-membered lactam and azacycle natural products 

This list provides biologically relevant examples of compounds that contain 9-membered 

azacycles. Some of these examples have found use as potent anticancer drugs; for example, 

                                                           
* The work presented within this chapter was performed by Chinthapally, K.; Massaro, N. P.; Ton, S.; 

Gardner, E.; Sharma, I. N.P.M. contributed to optimization of the reaction, all precursor synthesis, some 

product synthesis, X-ray structures, characterization of products and manuscript preparation. 

 



91 

 

vinblastine, a current chemotherapy drug, as well as (-)-rhazinicine, which has also shown 

potent antitumor properties. Their importance and intricate structures have inspired the 

development of a variety of beautiful methods to construct 9-membered azacycles. The 

most common method is the head-to-tail cyclization which is seen prominently in alkene 

metathesis as demonstrated by Aubé and co-workers where they constructed 9-membered 

cyclic amines (Scheme 63a).177  

 

Scheme 58. Common methods to access medium-sized azacycles and lactams 
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Another very popular method that has been recently developed  by Jeffery Bode 

incorporates his patented SnAP reagent that requires an end-to-end coupling with an alkyl 

tin reagent (Scheme 63b).11 Aside from the more prevelent linear approaches, there have 

also been clever examples of ring rearrangments such as the base induced ring expansion 

by Clayden178-179 (Scheme 63c) or the successive ring expansion devised by Unsworth et 

al. (Scheme 63d).27  

From the work developed in chapter 4, we had hypothesized that alkylation of the 

nitrogen atom of 2‘-aminochalcone 105 may provide access to 9-membered azacycles by 

inhibiting the formation of 107 (Scheme 64). To test this hypothesis, N-benzyl protected 

aminochalcone 121a was synthesized and exposed to the same reaction conditions with 

benzyl 2-diazobut-3-enoate 64. 

 

Scheme 59. Finding a solution to synthesize 9-membered azacycles 

To our delight, the Rh(II)-catalyzed cascade reaction underwent the carbene N–H 

insertion/aldol/oxy-Cope sequence to provide azacycle 122a without any trace of quinoline 

107a (Scheme 65). Unfortunately, the azacycle synthesis was low yielding which is 

attributed to the corresponding N–H insertion/aldol sequence where the cascade stops at 
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the first step, favoring the competing 1,2-proton transfer over the desired aldol cyclization. 

Furthermore, secondary anilines were reported by Hu and co-workers to be less reactive 

towards diverted N–H insertion cascades.144 Regardless of the reduced yield, the absence 

of quinoline formation suggesting that benzyl protection did in-fact provide a solution to 

the transannular ring contraction aromatization sequence reported in chapter four. 172 

 

Scheme 60. Rhodium-carbenoid initiated N–H insertion/aldol/oxy–Cope cascade for the 

synthesis of functionalized azacycles 

5.2 Optimization of Azacycle Synthesis 

For the initial optimization, (E)-1-(2-(benzylamino)phenyl)-3-phenylprop-2-en-1-

one 106a and benzyl 2-diazobut-3-enoate 48 were selected as model substrates. As shown 

from our initial attempt to achieve the cascade with Rh2(esp)2 in toluene (boiling point 110 

°C) at reflux, we obtained the desired 9-membered azacycle 107a, albeit in low conversion 

(entry 1).47 Encouraged by this interesting result, we screened other Rh(II)-salts to improve 

the yield of the transformation (Table 9, entries 2−5). Among them, Rh2(OAc)4 was found 

to be the most efficient catalyst for the cascade sequence and provided the corresponding 

9-membered azacycle 107a (entry 2). As was consistently seen with bulkier catalysts such 

as Rh2(TPA)4, we witnessed no conversion of our 106a, but full conversion of 48.With 
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optimized conditions in hand, we decided to prepare our starting material to test the 

substrate scope of this transformation. 

Table 9. Optimization of azacycle formation 

 

Entry Catalyst Mol (%), t Yield (%)b 

1 Rh2(esp)2 1.0, 3 h 38 

2 Rh2(OAc)4 1.0, 3 h 67 

3 Rh2(TPA)4 1.0, 3 h NR 

4 Rh2(TFA)4 1.0, 3 h 10 

aAll optimization reactions were performed by adding a 0.45 M solution of 48 (2.0 equiv) 

into a 0.1 M solution of 106a (1.0 equiv) with catalysts via a syringe pump over 2.5 h, after 

the addition of diazo, all reactions were refluxed for an additional 30 min.  

bIsolated yields after column chromatography.  

5.1 Preparation of Model Substrates and Precursors for Azacycle Synthesis 

Conveniently, many of the starting material for this synthesis were prepared by a 

one-step benzyl protection of the previously synthesized 2’-aminochalcones utilized for 

the cascade reported in chapter 4. This benzylation was accomplished by reacting our 2’-

aminochalcone starting materials 90 with benzyl bromide and potassium carbonate in DMF 

at 25 °C. The yields of these protected 2’-aminochalcones 106 ranged from 50% to 60% 

for most compounds, although purification tended to be a challenge due to the similar Rf 

values of these starting materials and products (Scheme 61). 
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Scheme 61. Protection of 2’-aminochalcones 

For the synthesis of 106g, a similar 2-step process was followed, although the intermediate 

chalcone was taken forward at the crude stage, benzyl protected and then purified (Scheme 

62). 

 

Scheme 62. Synthesis of protected 2’-aminochalcone 121g 

Regarding the diazo fragment utilized in this cascade, the vinyl diazobenzoate 48 and 

propargyl vinyl diazo 96 from our previous reports were utilized.  

 

Scheme 63. Synthesis of 2,2,2-trichloroethyl 2-diazobut-3-enoate 126 

Although 2,2,2-trichloroethyl 2-diazobut-3-enoate 111 was prepared via a similar method 

as 48 starting from literature known 109 followed by selective reduction of the ketone and 
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elimination of the subsequent secondary alcohol 110 to yield vinyl diazoacetate 111 in 67% 

yield over two steps (Scheme 63). 

5.3 Substrate Scope of Azacycle Synthesis 

With optimized conditions in hand, we then investigated the scope of this cascade 

sequence using Rh2(OAc)4 as a catalyst. The cascade tolerated a variety of N-benzyl 

protected 2‘-aminochalcones derivatives. The cascade tolerated the presence of halogens 

(106b) by provided azacycle 107b in good yield. 

 

Scheme 64. Substrate Scope, modification of electronics 

We screened both electron-withdrawing and electron-donating groups on the aromatic side 

chain of the protected 2’-aminochalcone observing similar yield trends as the 

aforementioned quinoline cascade in chapter 4 (Scheme 64, 107c, 107d). We were pleased 

to find that the cascade sequence tolerated substitution at the aniline ring of N-benzyl 

protected 2‘-aminochalcones equally well (Scheme 65, 107e–107g). We did not observe 

any major byproducts resulting from alkyne functionality (107g & 107h), which have the 
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propensity to undergo cyclopropenation,159 as well as carbene-alkyne metathesis16 with 

rhodium carbenoids. Finally, the cascade was attempted with vinyl diazoacetate 111 

bearing a trichloroethyl ester chain. To our delight, the cascade proceeded in high yield to 

provide azacycle scaffold 107i (Scheme 65). 

 

Scheme 65. Substrate Scope, substitution of aniline ring and ester 

5.4 Proposed Mechanism of Aza-cycle Cascade 

To our delight, while testing the substrate scope of this transformation we were able 

to confirm the structure of both 107g and 107i by X-ray analysis. As expected from our 

previous reports, the geometry of the double bond is found to be the Z-isomer (Figure 33). 

From our previous knowledge obtained from the cascades developed throughout this thesis 

and with this crystal structure data, we were able to propose a mechanism for this cascade.  
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Figure 33. X-ray structure of 107g and 107i 

The reaction is initiated by decomposition of the vinyl diazoacetate precursor to the 

ambiphilic rhodium vinylcarbenoid that undergoes a chemoselective N–H insertion to 

generate a reactive zwitterionic intermediate that can perform a subsequent intramolecular 

5-exo-trig cyclization to yield an indoline intermediate primed for oxy-Cope ring expansion 

under these toluene reflux conditions.  

 

Scheme 66. Proposed mechanism of azacycle cascade 
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Upon ring expansion, the enol tautomer of the azacycle is formed followed by keto-enol 

tautomerization yielding the final highly functionalized 9-membered azacycle 107 

(Scheme 66). 

5.5 Conclusion and Future Directions 

In conclusion, this cascade is highly convergent in nature taking readily available 

diazo precursors and protected 2-aminochalcones to synthesize a variety of highly 

functionalized 9-membered azacycles in good yield. This research also validates the 

progression of the cascade in chapter 4 and is a simple solution to an undesired transannular 

ring contraction. As a final note, the role of the benzyl group may not be to reduce 

nucleophility but may be due to conformation restriction to prevent the undesired quinoline 

formation. Currently, this work is being prepared for publication. Future extension of this 

work will be the transition to possible earth abundant alternatives. Furthermore, many of 

the compounds synthesized in this cascade will be submitted for high-through-put 

screening to identify hit compounds that may be elaborated more by future members of the 

Sharma Research Group.  
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Chapter 6:  Conclusion 

Medium-sized rings (8–12 membered) represent a unique class of cyclic molecules 

present within numerous natural products often exhibiting enhanced pharmacokinetics. 

Although this motif is currently underrepresented with respect to drug design. This scarcity 

is linked to the challenges associated with their construction limiting the synthesis of 

analogues for structure-activity relationships (SAR). Thus, more efficient methods to 

access these diverse scaffolds will provide a better foundation for medium-sized ring 

library generation with the goal of drug discovery.  

In this thesis, a highly convergent cascade approach to access diverse highly 

functionalized medium-sized rings was developed. The cascade was based on the 

ambiphilic reactivity of rhodium vinylcarbenoids and the compatibility of pericyclic 

reactions such as oxy-Cope being implemented into cascades flawlessly.  

With this approach, we first prepared functionalized 9-membered cyclic ethers. 

Proving not only that our method easily accessed these scaffolds in a one-pot procedure, 

but that rhodium vinylcarbenoids could perform an O-H insertion aldol reaction. We also 

proposed a mechanism of this reaction supported by X-ray crystallographic data. During 

this time, we had identified from our own experiences that previous O-H insertion aldol 

cascade reactions conditions did not tolerate carboxylic acids due to the lower pKa value. 

 Thus, we strived to extend this cascade to tolerate carboxylic acids, which was 

achieved by identifying an electron deficient catalyst capable of the performing the 

transformation, providing direct access to diverse lactones. The cascade was further 

modified to promote a 6-exo-trig cyclization enabled by aromatic constraint. With this 

method, a variety of lactones ranging in sizes (5, 6, and 10) were produced. In addition to 
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these efforts, earth abundant alternatives for O-H insertion aldol cascades was also briefly 

explored providing some insight into this zwitterionic cascade. Furthermore, a hit 

compound was identified that is active towards the Bax Bak proteins, and this method now 

provides direct access to library synthesis   

Finally, the strategy was then extended to N-H nucleophiles which provided 

azacycles, but also highly functionalized tricyclic quinolines during the journey. This 

serendipitous event to produce quinolines was explored thoroughly identifying and 

isolating each intermediate in the reaction mechanism to eventually develop a solution to 

produce 9-membered azacycles exclusively. 
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Chapter 7:  Experimentals 

Chapter 7.1. Experimentals for Chapter 2 

General Procedure 1 for the synthesis of keto-alcohol. Method A 

 

To a stirred solution of ethyl ester (1.0 equiv, commercially available) in THF (0.55 

M) was added LiHMDS (1.1 equiv, 1.0 M) at −78 °C. The resulting mixture was stirred 

for 1 h at −78 °C. Corresponding aldehyde (1.0 equiv, commercially available) was then 

added via syringe and the temperature was maintained for 3 h at −78 °C. Reaction was then 

quenched at –78 °C with saturated aqueous NH4Cl solution. The aqueous layer was 

separated and extracted with ethyl acetate (3x). The combined extracts were dried over 

Na2SO4. The crude reaction extract was filtered through a silica gel plug, evaporated under 

reduced pressure and the residue was taken forward without further purification.  

To a stirred suspension of LiAlH4 (1.2 equiv, 0.25 M) in dry THF at 0 °C was added a 

solution of crude aldol product (1.0 equiv, 0.4 M) in freshly distilled THF (0.4 M). Reaction 

was monitored by TLC until completion (1-2 h). Reaction was quenched by adding copious 

amounts of ethyl acetate followed by 15% aqueous NaOH solution at 0 °C. The crude 

mixture was filtered through a celite pad and extracted with ethyl acetate (3x). The 

combined organic layers were then dried over sodium sulfate, filtered through a silica gel 

plug and concentrated by rotary evaporation to afford the crude diol that was taken forward 

without further purification.  

Pd(OAc)2 (0.01 equiv) and Et3N (0.03 equiv) were dissolved in THF–toluene (15%; 

3.4 mL). Crude diol (1.0 mmol) was added and the reaction mixture was heated to 45 °C 
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under 1 atm of O2 (balloon) for 20 h. After completion of reaction, solvent was evaporated 

under reduced pressure. Purification by silica gel flash chromatography using hexanes-

ethyl acetate (30-40%, gradient elution) afforded -hydroxy vinyl ketone.  

General Procedure 2 for the synthesis of keto-alcohol. Method B 

 

To a stirred solution of ethyl ester (1.0 equiv, commercially available) in THF (0.55 

M) was added LiHMDS (1.1 equiv, 1.0 M) at −78 °C. The resulting mixture was stirred 

for 1 h at −78 °C. Corresponding aldehyde (1.0 equiv, commercially available) was then 

added via syringe and the temperature was maintained for 3 h at −78 °C. Reaction was then 

quenched at –78 °C with saturated aqueous NH4Cl solution. The aqueous layer was 

separated and extracted with ethyl acetate (3x). The combined extracts were dried over 

Na2SO4. The crude reaction extract was filtered through a silica gel plug, evaporated under 

reduced pressure and the residue was taken forward without further purification.  

To a stirred suspension of LiAlH4 (1.2 equiv, 0.25 M) in dry THF at 0 °C was added a 

solution of crude aldol product (1.0 equiv, 0.4 M) in freshly distilled THF (0.4 M). Reaction 

was monitored by TLC until completion (1-2 h). Reaction was quenched by adding copious 

amounts of ethyl acetate followed by 15% aqueous NaOH solution at 0 °C. The crude 

mixture was filtered through a celite pad and extracted with ethyl acetate (3x). The 

combined organic layers were then dried over sodium sulfate, filtered through a silica gel 

plug and concentrated by rotary evaporation to afford the crude diol that was taken forward 

without further purification.  
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To a stirred solution of crude diol (1.0 equiv) in CH2Cl2 (0.1 M) was added MnO2 (20.0 

equiv) all at once. The reaction was stirred 12−24 hours. Then the mixture was filtered over 

a celite pad and concentrated by rotary evaporation to afford the crude product.  

Purification by silica gel flash chromatography using hexanes-ethyl acetate (30-40%, 

gradient elution) afforded -hydroxy vinyl ketone. 

 

5-hydroxypent-1-en-3-one (39a). Prepared from acrolein and ethyl acetate using general 

procedure 1. Pale yellow oil (392 mg, 80%). TLC: Rf 0.28 (1:1 hexanes/EtOAc). IR 

(NaCl): 3410, 3394, 2947, 2893, 1672, 1614, 1406, 1197, 1049, 972, 621. 1H NMR (500 

MHz) δ 6.33 (dd, J = 17.7, 10.5 Hz, 1H), 6.23 (dd, J = 17.7, 1.1 Hz, 1H), 5.88 (dd, J = 

10.4, 1.1 Hz, 1H), 3.87 (t, J = 5.5 Hz, 2H), 2.84 (t, J = 5.0 Hz, 2H), 2.78 (s, 1H). 13C NMR 

(126 MHz) δ 200.9, 136.5, 129.1, 57.6, 41.1. 

 

5-hydroxy-5-phenylpent-1-en-3-one (39b). To a solution of Weinreb amide (600 mg, 

2.87 mmol 1.0 equiv, prepared from known literature protocol180 ) in THF (48 mL) was 

added vinyl magnesium bromide solution (6.9 mL, 6.90 mmol, 2.4 equiv, 1.0 M) at −78 °C 

over the course of 10 minutes. The temperature was maintained at −78 °C for six hours 

prior to quenching with ammonium chloride at −78 °C. The aqueous layer was separated 

and extracted with ethyl acetate (3x).  The combined extracts were dried over Na2SO4 and 

concentrated by rotary evaporation to afford crude product. Purification by silica gel flash 

chromatography using hexanes-ethyl acetate (25-30%, gradient elution) afforded pure 2f 



105 

 

as a pale yellow oil (121 mg, 24%). TLC: Rf 0.40 (7:3 hexanes/EtOAc). IR (NaCl): 3458, 

1682, 1614, 1402, 760, 702. 1H NMR (400 MHz) δ 7.41–7.31 (m, 4H), 7.31–7.23 (m, 1H), 

6.35 (dd, J = 17.7, 10.4 Hz, 1H), 6.22 (dd, J = 17.8, 1.1 Hz, 1H), 5.89 (dd, J = 10.5, 1.1 

Hz, 1H), 5.19 (dt, J = 8.8, 2.6 Hz, 1H), 3.51 (d, J = 2.9 Hz, 1H), 3.09–2.89 (m, 2H). 13C 

NMR (101 MHz) δ 200.4, 142.8, 136.5, 129.4, 128.4 (2C), 127.5, 125.6 (2C), 69.7, 47.8. 

Data matches known literature values.181 

 

5-hydroxy-4-methylpent-1-en-3-one (39c). Prepared from acrolein and ethyl propionate 

using general procedure 1. Pale yellow oil (127 mg, 16% isolated over three steps). TLC: 

Rf 0.30 (2:3 hexanes/EtOAc). IR (NaCl): 3491, 2972, 2935, 2882, 1738, 1686, 1516, 1462, 

1406, 1030, 980.  1H NMR (400 MHz) δ 6.39 (dd, J = 17.5, 10.5 Hz, 1H), 6.24 (dd, J = 

17.6, 1.3 Hz, 1H), 5.78 (dd, J = 10.5, 1.3 Hz, 1H), 3.77−3.57 (m, 2H), 3.00 (pd, J = 7.2, 

4.5 Hz, 1H), 1.07 (d, J = 7.2 Hz, 3H). 13C NMR (101 MHz) δ 203.8, 135.1, 128.9, 64.0, 

45.2, 13.4. Data matches known literature values.182 

 

5-hydroxy-2-methylpent-1-en-3-one (39d). Prepared from methacrolein and ethyl acetate 

using general procedure 2. Pale yellow oil (347 mg, 27% isolated over three steps). TLC: 

Rf 0.20 (3:2 hexanes/EtOAc). IR (NaCl): 3445, 2957, 2928, 2889, 2357, 2326, 1672, 1373, 

1053, 939, 737. 1H NMR (400 MHz) δ 6.00 (s, 1H), 5.85−5.83 (m, 1H), 3.91 (q, J = 5.3 

Hz, 2H), 2.95 (t, J = 5.4 Hz, 2H), 2.53 (s, 1H), 1.92–1.86 (m, 3H). 13C NMR (101 MHz) δ 

201.4, 144.1, 125.3, 57.6, 39.3, 16.9. 
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(E)-1-hydroxyhex-4-en-3-one (39e). Prepared from predominately trans crotonaldehyde 

and ethyl acetate using general procedure 2. Pale yellow oil (726 mg, 61% isolated over 

three steps). TLC: Rf 0.48 (1:1 hexanes/EtOAc). IR (NaCl):  3443, 3422, 3398, 2965, 

2945, 2889, 1661, 1632, 1443, 1373, 1055, 972, 737. 1H NMR (400 MHz) δ 6.89 (dq, J = 

15.8, 6.8 Hz, 1H), 6.13 (dq, J = 15.8, 1.7 Hz, 1H), 3.88 (t, J = 5.4 Hz, 2H), 2.79 (t, J = 5.4 

Hz, 2H), 2.61 (s, 1H), 1.92 (dd, J = 6.8, 1.7 Hz, 3H). 13C NMR (101 MHz) δ 200.6, 143.9, 

132.1, 58.1, 41.2, 18.3. Data matches known literature values.183 

 

(4E,6E)-1-hydroxyocta-4,6-dien-3-one (39f). Prepared from sorbaldehyde and ethyl 

acetate using general procedure 2. Pale yellow oil (412 mg, 35% isolated over three steps). 

TLC: Rf 0.2 (3:2 hexanes/EtOAc). IR (NaCl): 3441, 3416, 2963, 2938, 2913, 2886, 2359, 

1678, 1636, 1591, 1377, 1190, 1055, 999. 1H NMR (500 MHz) δ 7.19–7.12 (m, 1H), 6.29–

6.13 (m, 2H), 6.07 (d, J = 15.7 Hz, 1H), 3.89 (t, J = 5.4 Hz, 2H), 2.82 (t, J = 5.4 Hz, 2H), 

2.65 (s, 1H), 1.88 (d, J = 5.1 Hz, 3H). 13C NMR (126 MHz) δ 201.0, 143.9, 141.2, 130.1, 

127.6, 58.2, 41.7, 18.8. 

 

Benzyl 2-diazobut-3-enoate (48). Compound was prepared using known literature 

procedure.92 
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Methyl (E)-2-diazohexa-3,5-dienoate (52). To a stirred solution of diisopropylamine (1.1 

mL, 8.09 mmol, 1.2 equiv) in dry THF (10 mL) at ‒78 °C was added n-BuLi (4.6 mL, 7.44 

mmol, 1.1 equiv, 1.6 M) and stirred for 30 minutes at ‒78 ºC. Then HMPA (2.3 mL, 13.5 

mmol, 2.0 equiv) was added and allowed to stir for an additional 5 minutes. Methyl (E)-

hexa-3,5-dienoate, prepared from known literature procedures93 was then added (850 mg, 

6.70 mmol, 1.0 equiv) in 10 mL THF and allowed to stir for 30 minutes at −78 °C. Once 

enolate formation was complete, a solution of 4-Acetamidobenzenesulfonyl azide (p-

ABSA) (1.94 g, 8.09 mmol) in 8 mL THF was added and the reaction was allowed to stir 

for an additional 30 minutes at −78 °C. The reaction was then allowed to slowly reach −20 

°C over 1.5 h before it was quenched with saturated solution of NH4Cl (10 mL). The 

reaction mixture was then extracted with EtOAc (3 × 30 mL), and the combined EtOAc 

layers were washed with water (20 mL), dried over anhydrous Na2SO4 and concentrated 

under reduced pressure to give crude compound. Column chromatographic purification of 

the crude compound over silica gel (9:1 hexanes/EtOAc) afforded the compound 1b (622 

mg, 65%) as a red oil. TLC: Rf 0.50 (9:1 hexanes/EtOAc). IR (NaCl): 3005, 2085, 1710, 

1627, 1436, 1327, 1168, 1103, 999, 742.  1H NMR (400 MHz) δ 6.57–6.30 (m, 1H), 5.93 

(m, J = 1.6 Hz, 2H), 5.14–5.07 (dd, 1H), 4.99 (dd, J = 10.1, 1.6 Hz, 1H), 3.80 (s, 3H).  13C 

NMR (101 MHz) δ 165.3, 136.0, 124.2, 115.1, 114.9, 52.2. 
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Benzyl 3-hydroxy-2,3-divinyltetrahydrofuran-2-carboxylate (53). To a flame dried 15 

mL pear shaped round bottom with stir bar was added Rh2(esp)2 (1 mol%).  A solution of 

-hydroxy vinyl ketone (25 mg, 0.25 mmol) in 1.5 mL CH2Cl2 was then added, the flask 

was equipped with a reflux condenser, and set to stirring while at reflux. While at reflux, a 

solution of vinyl diazo (76 mg, 0.37 mmol) in 1 mL CH2Cl2 was added over 3 h via syringe 

pump at this temperature. After the addition was completed, the reaction was left to reflux 

for an additional 1 hour. After reaction was completed, the crude reaction mixture was 

concentrated using rotary evaporation and then purified using flash column 

chromatography eluting with 1:3 ethyl acetate: hexanes to afford aldol product 3a as a 

colorless liquid (49 mg, 72%). TLC: Rf 0.21 (7:3 hexanes/EtOAc). IR (NaCl): 3522, 3496, 

3481, 3466, 2981, 2951, 2893, 1734, 1718, 1639, 1456, 1375, 1267, 1151, 1056, 991, 929, 

742. 1H NMR (400 MHz) δ 7.36–7.31 (m, 5H), 6.09–5.98 (m, 2H), 5.51 (dd, J = 17.0, 1.4 

Hz, 1H), 5.33 (dd, J = 17.3, 1.1 Hz, 1H), 5.29–5.15 (m, 4H), 4.33–4.25 (m, 1H), 4.20–4.15 

(m, 1H), 2.43 (d, J = 2.8 Hz, 1H), 2.25–2.16 (m, 1H), 1.90 (ddd, J = 12.8, 6.1, 1.7 Hz, 1H). 

13C NMR (101 MHz): δ 170.2, 137.4, 135.5, 135.3, 128.5 (2C), 128.2, 128.1 (2C), 116.5, 

115.8, 91.9, 84.3, 67.0, 66.9, 37.2. ESI-MS m/z calcd for C16H18O4Na ([M+Na]+) 

297.1102; found 296.5. Relative stereochemistry was assigned based on previous literature 

reports.184 

General Procedure 3 for the Synthesis of Oxacycles 54a−54k 

To a flame dried 15 mL pear shaped round bottom with stir bar was added Rh2(OAc)4 

(1 mol%).  A solution of -hydroxy vinyl ketone (0.25 mmol) in 1.5 mL toluene was then 

added, the flask was equipped with a reflux condenser, and set to stirring while at reflux. 

While at reflux a solution of vinyl diazo (0.37 mmol) in 1 mL toluene was added over 3 h 
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via syringe pump at this temperature. After the addition was completed, the reaction was 

left to reflux for an additional 1 hour. After reaction was completed, the crude reaction 

mixture was purified using flash column chromatography eluting with 1:3 ethyl acetate: 

hexanes to afford oxacycle 54a−54k. 

 

Benzyl (Z)-7-oxo-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (54a). Synthesized using 

general procedure 3. Colorless liquid (47 mg, 68%). TLC: Rf 0.34 (7:3 hexanes/EtOAc). 

IR (NaCl): 3496, 2953, 2937, 1726, 1712, 1647, 1498, 1454, 1269, 1170, 1101, 769, 752, 

738, 698. 1H NMR (400 MHz) δ 7.40–7.34 (m, 5H), 6.39 (t, J = 8.4 Hz, 1H), 5.23 (s, 2H), 

4.34 (t, J = 6.0 Hz, 2H), 2.67 (t, J = 6.0 Hz, 2H), 2.47–2.44 (m, 2H), 2.26–2.20 (m, 2H), 

1.94–1.88 (m, 2H). 13C NMR (101 MHz): δ 212.6, 163.4, 146.8, 135.6, 128.7, 128.6 (2C), 

128.3, 128.2 (2C), 127.4, 69.8, 66.8, 44.6, 37.6, 23.0. HRMS (ESI) m/z calcd for 

C16H18O4Na ([M+Na]+) 297.1102; found 297.1105. 

 

Benzyl (Z)-7-oxo-9-phenyl-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (54b). 

Synthesized using general procedure 3. Colorless liquid (34.6 mg, 58%). TLC: Rf 0.46 (7:3 

hexanes/EtOAc). IR (NaCl): 3061, 3032, 2947, 1712, 1649, 1498, 1452, 1379, 1263, 975, 

916, 744, 698. 1H NMR (400 MHz) δ 7.40–7.26 (m, 8H), 7.17–7.15 (m, 2H), 6.37 (t, J = 
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7.9 Hz, 1H), 5.27 (dd, J = 11.2, 3.5 Hz, 1H), 5.06 (q, J = 12.3 Hz, 2H), 3.18 (dd, J = 14.3, 

11.3 Hz, 1H), 2.66–2.57 (m, 3H), 2.55–2.49 (m, 1H), 2.39 (dt, J = 17.0, 6.5 Hz, 1H), 2.13 

(dtd, J = 14.8, 7.6, 2.8 Hz, 1H), 1.80–1.71 (m, 1H). 13C NMR (101 MHz): δ 211.7, 163.3, 

146.5, 141.4, 135.4, 128.4 (2C), 128.4 (2C), 128.2 (2C), 128.1, 127.6, 127.0, 125.5 (2C), 

82.4, 66.7, 52.5, 41.4, 24.6, 22.9. HRMS (ESI) m/z calcd for C22H22O4Na ([M+Na]+) 

373.1415; found 373.1419. 

 

Benzyl (Z)-8-methyl-7-oxo-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (54c). 

Synthesized using general procedure 3. Colorless liquid (35 mg, 60%). TLC: Rf 0.44 (7:3 

hexanes/EtOAc). IR (NaCl): 3977, 2960, 2933, 1743, 1718, 1647, 1456, 1269, 1170, 1103, 

752, 738, 698. 1H NMR (400 MHz) δ 7.39–7.33 (m, 5H), 6.36 (t, J = 8.5 Hz, 1H), 5.22 (s, 

2H), 4.33 (dd, J = 11.7, 5.4 Hz, 1H), 3.94 (dd, J = 11.6, 8.6 Hz, 1H), 2.87 (ddd, J = 8.4, 

7.0, 5.4 Hz, 1H), 2.44–2.40 (m, 2H), 2.19 (dtd, J = 12.7, 8.5, 4.3 Hz, 2H), 1.93 (td, J = 7.7, 

3.9 Hz, 1H), 1.89–1.78 (m, 1H), 1.04 (d, J = 7.0 Hz, 3H). 13C NMR (101 MHz): δ 214.6, 

163.4, 147.4, 135.6, 128.6 (2C), 128.3, 128.2 (2C), 126.7, 76.0, 66.8, 48.0, 35.5, 22.8, 22.4, 

12.6. HRMS (ESI) m/z calcd for C17H20O4Na ([M+Na]+) 311.1259; found 311.1263. 

 

Benzyl (Z)-6-methyl-7-oxo-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (54d). 

Synthesized using general procedure 3. Colorless liquid (45 mg, 71%). TLC: Rf 0.43 (7:3 
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hexanes/EtOAc). IR (NaCl): 3859, 3741, 3647, 1737, 1712, 1647, 1543, 1512, 1456, 1265, 

1165, 1095, 893, 842, 740. 1H NMR (400 MHz) δ 7.38–7.32 (m, 5H), 6.40 (dd, J = 9.2, 

7.7 Hz, 1H), 5.26–5.18 (m, 2H), 4.46 (dt, J = 12.0, 5.2 Hz, 1H), 4.18 (ddd, J = 12.0, 8.9, 

4.3 Hz, 1H), 2.88 (ddt, J = 9.9, 7.4, 3.7 Hz, 1H), 2.73 (ddd, J = 15.2, 5.5, 4.3 Hz, 1H), 2.62 

(ddd, J = 15.0, 8.9, 5.0 Hz, 1H), 2.43–2.33 (m, 1H), 2.11–2.04 (m, 1H), 1.87 (tdd, J = 10.9, 

5.8, 3.6 Hz, 1H), 1.68–1.60 (m, 1H), 1.03 (d, J = 6.7 Hz, 3H). 13C NMR (101 MHz): δ 

215.7, 163.4, 146.3, 135.6, 128.6 (2C), 128.3, 128.2 (3C), 69.4, 66.8, 43.2, 42.5, 31.9, 22.7, 

17.7. HRMS (ESI) m/z calcd for C17H20O4Na ([M+Na]+) 311.1259; found 311.1263. 

 

Benzyl (Z)-5-methyl-7-oxo-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (54e). 

Synthesized using general procedure 3. Colorless liquid (48.5 mg, 64%). TLC: Rf 0.45 (7:3 

hexanes/EtOAc). IR (NaCl): 2956, 2929, 1726, 1716, 1456, 1267, 1093, 750, 738, 698. 1H 

NMR (400 MHz) δ 7.38–7.33 (m, 5H), 6.44 (t, J = 8.5 Hz, 1H), 5.27–5.18 (m, 2H), 4.47 

(dt, J = 11.8, 5.0 Hz, 1H), 4.20 (ddd, J = 11.8, 9.6, 4.3 Hz, 1H), 2.70 (ddd, J = 14.9, 9.6, 

5.1 Hz, 1H), 2.58 (dt, J = 15.5, 4.6 Hz, 1H), 2.52–2.45 (m, 1H), 2.45–2.36 (m, 2H), 2.22–

2.18 (m, 1H), 2.02 (ddd, J = 13.5, 8.3, 6.0 Hz, 1H), 1.05 (d, J = 6.5 Hz, 3H). 13C NMR 

(101 MHz): δ 211.9, 163.3, 146.5, 135.6, 128.6 (2C), 128.3, 128.2 (2C), 126.5, 69.7, 66.8, 

45.7, 44.8, 31.3, 30.1, 21.4. HRMS (ESI) m/z calcd for C17H20O4Na ([M+Na]+) 311.1259; 

found 311.1263. 
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Benzyl (Z)-7-oxo-5-((E)-prop-1-en-1-yl)-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate 

(54f). Synthesized using general procedure 3. Colorless liquid (34 mg, 61%). TLC: Rf 0.57 

(7:3 hexanes/EtOAc). IR (NaCl): 3747, 3736, 3469, 2960, 1747, 1710, 1649, 1558, 1541, 

1521, 1506, 1454, 1265, 1101, 752, 738, 698. 1H NMR (400 MHz) δ 7.39–7.32 (m, 5H), 

6.42 (dd, J = 9.3, 8.0 Hz, 1H), 5.49–5.45 (m, 1H), 5.29–5.18 (m, 2H), 4.49 (dt, J = 11.8, 

4.9 Hz, 1H), 4.20 (ddd, J = 11.8, 9.6, 4.5 Hz, 1H), 2.95 (ddd, J = 12.2, 8.0, 4.2 Hz, 1H), 

2.74–2.66 (m, 1H), 2.65–2.61 (m, 1H), 2.58 (t, J = 4.6 Hz, 1H), 2.47 (ddd, J = 13.1, 9.3, 

4.0 Hz, 1H), 2.22 (dd, J = 13.5, 4.5 Hz, 1H), 2.10 (ddd, J = 13.4, 8.0, 5.7 Hz, 1H), 1.89–

1.86 (m, 1H), 1.66 (d, J = 8.0, 3H). 13C NMR (101 MHz): δ 211.5, 163.3, 146.7, 135.6, 

133.5, 128.6 (2C), 128.3, 128.2 (2C), 126.4, 124.8, 69.7, 66.8, 44.8, 43.4, 38.8, 28.9, 17.9. 

HRMS (ESI) m/z calcd for C19H22O4Na ([M+Na]+) 337.1415; found 337.1417. 

 

Methyl (Z)-7-oxo-4-vinyl-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (54g). 

Synthesized using general procedure 3. Colorless liquid (34.5 mg, 64%). TLC: Rf 0.44 (7:3 

hexanes/EtOAc). IR (NaCl): 3745, 2954, 1722, 1647, 1541, 1512, 1433, 1340, 1309, 1292, 

1246, 1097, 1001, 918, 775. 1H NMR (400 MHz) δ 6.17 (dd, J = 9.4, 0.9 Hz, 1H), 5.79–

5.70 (m, 1H), 5.09–5.00 (m, 2H), 4.54–4.49 (m, 1H), 4.21–4.14 (m, 1H), 3.80 (s, 3H), 
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3.33–3.24 (m, 1H), 2.78–2.69 (m, 2H), 2.64–2.58 (m, 1H), 2.25–2.14 (m, 2H), 1.62–1.50 

(m, 1H). 13C NMR (101 MHz): δ 212.2, 163.9, 145.5, 139.5, 129.4, 115.1, 69.5, 52.1, 44.5, 

37.9, 37.1, 30.0. HRMS (ESI) m/z calcd for C12H16O4Na ([M+Na]+) 247.0946; found 

247.0948. 

 

Methyl (Z)-7-oxo-5-((E)-prop-1-en-1-yl)-4-vinyl-4,5,6,7,8,9-hexahydrooxonine-2-

carboxylate (54h). Synthesized using general procedure 3. Colorless liquid (32 mg, 59%, 

(dr > 98:2)). TLC: Rf 0.53 (7:3 hexanes/EtOAc). IR (NaCl): 2954, 2927, 2872, 1714, 1639, 

1456, 1435, 1315, 1271, 1238, 1195, 1087, 974, 777, 732. 1H NMR (400 MHz) δ 6.72 (d, 

J = 10.8 Hz, 1H), 6.09–6.02 (m, 1H), 5.86 (ddd, J = 15.4, 8.3, 6.3 Hz, 1H), 5.38–5.21 (m, 

2H), 4.29 (ddd, J = 12.4, 8.1, 2.0 Hz, 1H), 4.20 (ddd, J = 12.4, 6.4, 2.2 Hz, 1H), 3.77 (s, 

3H), 3.01 (d, J = 7.4 Hz, 2H), 2.70 (ddd, J = 19.0, 8.2, 2.2 Hz, 1H), 2.57 (ddd, J = 18.9, 

6.4, 2.0 Hz, 1H), 2.22–2.11 (m, 2H), 1.91–1.82 (m, 1H), 1.06 (d, J = 6.7 Hz, 3H). 13C NMR 

(101 MHz): δ 204.4, 164.4, 141.4, 140.0, 136.9, 127.9, 127.7, 122.0, 64.1, 51.9, 47.1, 40.3, 

39.0, 37.0, 20.6. HRMS (ESI) m/z calcd for C15H20O4Na ([M+Na]+) 287.1259; found 

287.1261. 
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Methyl (Z)-5-methyl-7-oxo-4-vinyl-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (54i). 

Synthesized using general procedure 3. (36 mg, 60%, (dr > 98:2)). Recrystallization from 

hexanes (slow evaporation method) yielded monoclinic colorless crystal (mp 72–74 °C). 

TLC: Rf 0.40 (7:3 hexanes/EtOAc). IR (NaCl): 2962, 1720, 1641, 1442, 1429, 1300, 1238, 

1161, 1095, 1004, 767, 723, 671, 644. 1H NMR (400 MHz) δ 6.31 (d, J = 10.0 Hz, 1H), 

5.81 (ddd, J = 17.2, 10.5, 5.7 Hz, 1H), 5.13–4.98 (m, 2H), 4.57 (ddd, J = 11.9, 5.8, 3.1 Hz, 

1H), 4.11 (td, J = 11.6, 4.2 Hz, 1H), 3.82 (s, 3H), 3.43 (dtt, J = 9.5, 3.6, 1.8 Hz, 1H), 2.83–

2.75 (m, 1H), 2.64–2.43 (m, 3H), 2.10 (dd, J = 13.7, 4.5 Hz, 1H), 0.88 (d, J = 6.9 Hz, 3H). 

13C NMR (101 MHz): δ 211.6, 163.8, 146.5, 138.8, 126.7, 115.9, 77.3, 77.0, 76.7, 69.8, 

52.2, 45.1, 44.5, 40.7, 36.1, 15.2. HRMS (ESI) m/z calcd for C13H18O4Na ([M+Na]+) 

261.1102; found 261.1100. CCDC 1510906. 

 

Methyl (Z)-7-oxo-9-phenyl-4-vinyl-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate (54j). 

Synthesized using general procedure 3. Colorless liquid (33 mg, 67%, (dr > 98:2)). TLC: 

Rf 0.41 (7:3 hexanes/EtOAc). IR (NaCl): 3734, 2312, 1722, 1647, 1541, 1508, 1436, 1352, 

1300, 1247, 1203, 1143, 1097, 1001, 925, 877, 761, 694, 671. 1H NMR (400 MHz) δ 7.44–

7.34 (m, 4H), 7.33–7.27 (m, 1H), 6.17 (d, J = 9.3 Hz, 1H), 5.80 (ddd, J = 17.1, 10.3, 6.7 

Hz, 1H), 5.25 (dd, J = 11.2, 3.8 Hz, 1H), 5.16–5.02 (m, 2H), 3.58 (s, 3H), 3.49–3.38 (m, 

1H), 3.08 (dd, J = 15.3, 11.2 Hz, 1H), 2.82–2.70 (m, 2H), 2.44 (ddd, J = 13.9, 6.5, 4.4 Hz, 

1H), 2.28–2.20 (m, 1H), 1.69–1.57 (m, 1H). 13C NMR (101 MHz): δ 210.9, 163.8, 145.6, 
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141.5, 139.8, 129.2, 128.3 (2C), 127.6, 125.4 (2C), 115.1, 81.9, 53.1, 51.8, 38.4, 38.2, 30.0. 

HRMS (ESI) m/z calcd for C18H20O4Na ([M+Na]+) 323.1259; found 323.1255. 

 

Methyl (Z)-6-methyl-7-oxo-4-vinyl-4,5,6,7,8,9-hexahydrooxonine-2-carboxylate 

(54k). Synthesized using general procedure 3. (41 mg, 68%, (dr = 3:1); 70k (Major 

diastereomer): White solid mp 49–50 °C). TLC: Rf 0.50 (7:3 hexanes/EtOAc). IR (NaCl): 

2962, 1722, 1645, 1460, 1294, 1246, 1093, 999, 923, 775, 675, 624. 1H NMR (400 MHz) 

δ 6.20 (d, J = 9.7 Hz, 1H), 5.77–5.63 (m, 1H), 5.08–4.94 (m, 2H), 4.55–4.48 (m, 1H), 4.21–

4.11 (m, 1H), 3.78 (s, 3H), 3.32–3.23 (m, 1H), 2.94–2.86 (m, 1H), 2.74–2.62 (m, 2H), 

1.99–1.90 (m, 1H), 1.49–1.39 (m, 1H), 1.03 (d, J = 6.8 Hz, 3H). 13C NMR (101 MHz): δ 

215.4, 163.9, 145.4, 139.5, 129.9, 114.9, 69.2, 52.1, 43.3, 40.9, 38.7, 37.3, 17.8. HRMS 

(ESI) m/z calcd for C13H18O4Na ([M+Na]+) 261.1102; found 261.1107. 54k (Minor 

diastereomer): isolated as pale yellow liquid along with major diastereomer (dr = 1:1); 1H 

NMR (400 MHz) δ 6.21 (d, J = 9.6 Hz, 1H), 6.11 (d, J = 9.5 Hz, 1H), 5.72 (dddd, J = 17.1, 

10.4, 6.8, 5.1 Hz, 2H), 5.06–4.98 (m, 4H), 4.52 (dd, J = 11.2, 5.8 Hz, 1H), 4.35–4.23 (m, 

2H), 4.17 (ddd, J = 11.9, 9.1, 4.9 Hz, 1H), 3.80 (s, 3H), 3.76 (s, 3H), 3.41–3.25 (m, 2H), 

2.96–2.83 (m, 2H), 2.75–2.64 (m, 2H), 1.99–1.86 (m, 3H), 1.79 (ddd, J = 14.0, 4.8, 2.5 Hz, 

1H), 1.46 (td, J = 12.8, 4.0 Hz, 1H), 1.05 (s, 3H), 1.04 (s, 3H). 13C NMR (101 MHz): δ 

215.6, 215.4, 163.9, 145.4, 143.4, 139.9, 139.5, 130.7, 123.0, 115.0, 114.7, 69.2, 68.7, 52.1, 

52.1, 46.6, 43.3, 42.7, 41.0, 41.0, 39.5, 38.8, 37.4, 17.9, 17.8. 
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Chapter 7.2. Experimentals for Chapter 3 

 

3-oxobutanoic acid (55). Starting material was synthesized using known literature 

protocol.117  

 

Ethyl 2-diazo-2-phenylacetate (56a). Compound was prepared using known literature 

procedure.118 

 

Ethyl 2-diazo-2-(4-(trifluoromethyl)phenyl)acetate (56b). Compound was prepared 

using known literature procedure.120 

 

Ethyl 2-diazo-2-(4-methoxyphenyl)acetate (56c). Compound was prepared using known 

literature procedure.119 

General Procedure 4 for the Synthesis of -Lactones 58a–58e 

To a stirred solution of keto-acid 55/67 (0.10 mmol) and Rh2(TFA)4 (1 mol%) in 0.5 mL 

dichloromethane was added a solution of corresponding diazo compound 56/75 (0.20 

mmol) in 0.5 mL dichloromethane over 1.5 h via syringe pump at reflux. After the addition 

was completed, the reaction was refluxed for an additional 30 minutes. The crude reaction 
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mixture was concentrated using rotary evaporation and then purified using flash column 

chromatography eluting with 1:10 ethyl acetate:hexanes gradient to 3:7 ethyl 

acetate:hexanes affording 3-hydroxybutyrolactone 58a–58e. 

 

Ethyl-3-hydroxy-3-methyl-5-oxo-2-phenyltetrahydrofuran-2-carboxylate (58a). 

Synthesized using general procedure 4. Pale yellow oil (16.0 mg, 52%). TLC: Rf 0.20 (7:3 

hexanes/EtOAc). IR (NaCl): 3480, 3061, 2984, 2938, 2907, 1800, 1778, 1755, 1734, 1491, 

1449, 1383, 1369, 1296, 1267, 1231, 1215, 1099, 1055, 1032, 758, 702. 1H NMR (600 

MHz) δ 7.51 (dd, J = 7.9, 1.8 Hz, 2H), 7.42–7.39 (m, 3H), 4.29 (qq, J = 10.7, 7.1 Hz, 2H), 

3.43 (d, J = 1.6 Hz, 1H), 2.75 (d, J = 17.1 Hz, 1H), 2.57 (dd, J = 17.1, 1.7 Hz, 1H), 1.27 (s, 

3H), 1.26 (t, J = 7.2 Hz, 3H). 13C NMR (151 MHz) δ 172.9, 169.8, 134.2, 129.0, 128.7 

(2C), 125.0 (2C), 91.4, 79.3, 62.8, 42.2, 24.2, 13.8. HRMS (ESI) m/z calcd for C14H16O5Na 

([M+Na]+) 287.0895; found 287.0899. 

 

Ethyl-3-hydroxy-3-methyl-5-oxo-2-(4-(trifluoromethyl)phenyl)tetrahydrofuran-2-

carboxylate (58b). Synthesized using general procedure 4. Pale yellow oil (12.7 mg, 35%). 

TLC: Rf 0.30 (7:3 hexanes/EtOAc). IR (NaCl): 3480, 2986, 2940, 1805, 1778, 1736, 1620, 

1456, 1414, 1385, 1369, 1329, 1302, 1281, 1267, 1233, 1169, 1126, 1072, 1018, 847. 1H 

NMR (600 MHz) δ 7.70–7.67 (m, 4H), 4.30 (qq, J = 10.9, 7.2 Hz, 2H), 3.44 (s, 1H), 2.87 
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(d, J = 17.1 Hz, 1H), 2.59 (dd, J = 17.2, 1.3 Hz, 1H), 1.27 (t, J = 7.1 Hz, 3H), 1.23 (s, 3H). 

13C NMR (151 MHz) δ 172.1, 169.5, 138.0, 131.3 (q, JC-F = 32.6 Hz, 1C), 125.8 (2C), 

125.6 (q, JC-F = 3.9 Hz, 2C), 90.4, 79.3, 63.2, 42.5, 24.4, 13.8 [Note: While peaks 

corresponding to the CF3 were observed, some portion of the peaks were lost in signal 

noise]. 19F NMR (376 MHz) δ –62.86. HRMS (ESI) m/z calcd for C15H15F3O5Na 

([M+Na]+) 355.0769; found 355.0775. 

 

Ethyl-3-hydroxy-2-(4-methoxyphenyl)-3-methyl-5-oxotetrahydrofuran-2-

carboxylate (58c). Synthesized using general procedure 4. Pale yellow oil (15.5 mg, 49%). 

TLC: Rf 0.20 (7:3 hexanes/EtOAc). IR (NaCl): 3480, 2980, 2959, 2934, 2849, 1780, 1778, 

1755, 1732, 1611, 1514, 1456, 1369, 1302, 1256, 1233, 1182, 1099, 1059, 1030, 839. 1H 

NMR (600 MHz) δ 7.42 (d, J = 8.9 Hz, 2H), 6.92 (d, J = 8.9 Hz, 2H), 4.32–4.25 (m, 2H), 

3.82 (s, 3H), 3.30 (d, J = 1.7 Hz, 1H), 2.71 (d, J = 17.2 Hz, 1H), 2.56 (dd, J = 17.1, 1.8 Hz, 

1H), 1.29 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H). 13C NMR (151 MHz) δ 173.0, 170.0, 160.1, 

126.4 (2C), 126.1, 114.0 (2C), 91.4, 79.4, 62.7, 55.3, 42.1, 24.1, 13.9. HRMS (ESI) m/z 

calcd for C15H18O6Na ([M+Na]+) 317.1001; found 317.1007. 

 

Ethyl-3-hydroxy-5-oxo-2-phenyl-3-((E)-styryl)tetrahydrofuran-2-carboxylate (58e). 

Synthesized using general procedure 4. Pale yellow oil (9.7 mg, 27%). TLC: Rf 0.30 (7:3 
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hexanes/EtOAc). IR (NaCl): 3468, 3059, 3026, 2982, 2936, 1802, 1776, 1753, 1734, 1493, 

1449, 1369, 1298, 1277, 1252, 1213, 1179, 1096, 1053, 972, 893, 854, 748, 694. 1H NMR 

(600 MHz) δ 7.50–7.48 (m, 2H), 7.42–7.39 (m, 3H), 7.30–7.24 (m, 3H), 7.21 (dd, J = 7.0, 

1.6 Hz, 2H), 6.64 (d, J = 16.0 Hz, 1H), 5.95 (d, J = 16.0 Hz, 1H), 4.34–4.26 (m, 2H), 3.65 

(s, 1H), 2.79 (dd, J = 17.2, 1.8 Hz, 1H), 2.74 (d, J = 17.2 Hz, 1H), 1.27 (t, J = 7.2 Hz, 3H). 

13C NMR (151 MHz) δ 172.8, 169.1, 135.7, 133.9, 131.2, 129.3, 128.7 (2C), 128.6 (2C), 

128.3, 127.2, 126.6 (2C), 125.4 (2C), 92.1, 81.3, 62.9, 41.1, 13.9. HRMS (ESI) m/z calcd 

for C21H20O5Na ([M+Na]+) 375.1208; found 375.1207. 

 

3-hydroxy-1',3-dimethyl-3,4-dihydro-5H-spiro[furan-2,3'-indoline]-2',5-dione (58d). 

Synthesized using general procedure 4. Pale yellow/orange oil (15.8 mg, 54%, mp 178–

180 °C). TLC: Rf 0.40 (2:3 hexanes/EtOAc). IR (NaCl): 3406, 3065, 2984, 2938, 2887, 

1803, 1715, 1612, 1493, 1470, 1418, 1377, 1356, 1267, 1204, 1157, 1098, 1024, 972, 922, 

883, 760, 696. 1H NMR (600 MHz) δ 7.43 (t, J = 7.8 Hz, 1H), 7.30 (d, J = 7.5 Hz, 1H), 

7.14 (t, J = 7.2 Hz, 1H), 6.92 (d, J = 7.9 Hz, 1H), 3.46 (s, 1H), 3.39 (d, J = 17.0 Hz, 1H), 

3.23 (s, 3H), 2.81 (dd, J = 17.0, 1.3 Hz, 1H), 1.40 (s, 3H). 13C NMR (151 MHz) δ 173.3, 

173.2, 144.6, 131.4, 125.7, 123.3, 123.0, 109.4, 87.0, 78.0, 42.6, 26.5, 24.4. HRMS (ESI) 

m/z calcd for C13H13NO4Na ([M+Na]+) 270.0742; found 270.0747. CCDC 1844116.  

General Procedure 5 for the Synthesis of Ketoacids 59b−59h 

According to literature known protocol1, to a solution of 2-Acetylbenzoic acid 59a (1.0 

equiv) and corresponding aldehyde (1.2 equiv) in ethanol (0.3 M) was added an aqueous 
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solution of NaOH (4.0 M, 2.0 equiv) at 0 °C. The ice-bath was removed, and the reaction 

stirred at 25 °C until complete consumption of starting material. The reaction was then 

acidified with 1 M HCl aqueous solution at 0 °C. Then the EtOH was removed completely 

by rotoevaporation and the remaining aqueous layer was extracted with EtOAc, the 

combined organic layers were dried over anhydrous Na2SO4 and concentrated under 

reduced pressure. The crude solids were further purified by trituration using 

dichloromethane and hexanes to provide pure ketoacids 59b−59f. 

 

2-cinnamoylbenzoic acid (59b). Starting Material was prepared using general procedure 

5 and matched literature known values. 148  

 

(E)-2-(3-(4-(trifluoromethyl)phenyl)acryloyl)benzoic acid (59c). Synthesized using 

general procedure 5. White solid (109.5 mg, 38%, mp 195−196 °C). TLC: Rf 0.50 (EtOAc). 

IR (neat): 3051, 3033, 2983, 2836, 2664, 2541, 1686, 1647, 1630, 1595, 1577, 1491, 1416, 

1326, 1298, 1287, 1280, 1268, 1253, 1207, 1192, 1172, 1152, 1113, 1069, 1060, 1041, 

1016, 981, 959, 926, 890, 853, 830, 803, 771, 744, 708, 661, 649, 611, 592, 578, 567, 555, 

549, 542, 529, 521. 1H NMR (600 MHz) δ 8.09 (d, J = 7.7 Hz, 1H), 7.69 (t, J = 7.3 Hz, 

1H), 7.63−7.57 (m, 5H), 7.43 (d, J = 7.6 Hz, 1H), 7.20 (d, J = 16.1 Hz, 1H), 7.08 (d, J = 

16.1 Hz, 1H). 13C NMR (151 MHz) δ 196.3, 170.3, 143.3, 142.2, 137.7, 133.3, 131.1, 
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130.0, 129.5, 128.5 (2C), 127.7, 127.6, 125.8 (q, JC-F = 3.4 Hz, 2C) [Note: While peaks 

corresponding to the CF3 were observed, some portion of the peaks were lost in signal 

noise]. 19F NMR (376 MHz) δ –62.94. HRMS (ESI) m/z calcd for C17H11F3O3Na 

([M+Na]+) 343.0558; found 343.0559. 

 

(E)-2-(3-(4-methoxyphenyl)acryloyl)benzoic acid (59d). Starting Material was prepared 

using general procedure 5 and matched literature known values.148  

 

(E)-2-(3-(4-chlorophenyl)acryloyl)benzoic acid (59e). Starting Material was prepared 

using general procedure 5 and matched literature known values.148 

 

2-((2E,4E)-5-phenylpenta-2,4-dienoyl)benzoic acid (59f). Synthesized using general 

procedure 5. Pale yellow solid (697.9 mg, 83%, mp 163–165 °C). TLC: Rf 0.50 (EtOAc). 

IR (neat): 3016, 2827, 2657, 2533, 1686, 1640, 1617, 1592, 1575, 1488, 1448, 1416, 1285, 

1147, 1060, 994, 947, 885, 771, 754, 711, 695, 684, 658, 615, 552, 542, 529. 1H NMR 

(600 MHz) δ 8.08 (d, J = 7.9 Hz, 1H), 7.65 (t, J = 7.5 Hz, 1H), 7.55 (t, J = 7.7 Hz, 1H), 

7.43 (d, J = 7.4 Hz, 2H), 7.40 (d, J = 7.5 Hz, 1H), 7.36–7.29 (m, 3H), 7.00–6.92 (m, 2H), 

6.83 (d, J = 14.3 Hz, 1H), 6.59 (d, J = 14.4 Hz, 1H). 13C NMR (151 MHz) δ 196.8, 170.6, 
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146.0, 142.5, 141.9, 135.9, 133.0, 131.1, 130.6, 129.6, 129.3, 128.8 (2C), 127.9, 127.7, 

127.3 (2C), 126.7.  HRMS (ESI) m/z calcd for C18H14O3Na ([M+Na]+) 301.0841; found 

301.0841. 

 

2-ethoxy-2-oxo-1-phenylethyl 2-acetylbenzoate (60a). Isolated from optimization table 

experiments as a pale yellow oil. TLC: Rf 0.30 (4:1 hexanes/EtOAc). IR (NaCl): 3065, 

3035, 2982, 2923, 2852, 1722, 1703, 1597, 1575, 1497, 1456, 1446, 1354, 1282, 1258, 

1211, 1181, 1137, 1100, 1063, 1031, 1004, 958, 908, 856, 761, 732, 697, 661, 648, 592. 

1H NMR (600 MHz) δ 8.00 (dd, J = 7.8, 1.2 Hz, 1H), 7.58 (td, J = 7.5, 1.3 Hz, 1H), 7.53–

7.50 (m, 3H), 7.43–7.39 (m, 4H), 6.12 (s, 1H), 4.22 (ddq, J = 43.0, 10.8, 7.1 Hz, 2H), 2.50 

(s, 3H), 1.23 (t, J = 7.1 Hz, 3H). 13C NMR (151 MHz) δ 202.8, 168.5, 166.1, 143.2, 133.5, 

132.5, 130.1, 123.0, 129.3, 128.8 (2C), 127.8, 127.7 (2C), 126.5, 75.6, 61.8, 30.1, 13.9. 

LRMS (ESI) m/z calcd for C19H18O5Na ([M+Na]+) 349.1; found 348.9. 

General Procedure 6 for the Synthesis of -Lactones 61a−61o 

To a stirred solution of ketoacid 1 (0.06 mmol) and Rh2(TFA)4 (1 mol%) in 0.5 mL 

dichloromethane was added a solution of corresponding diazo carbonyl 2 (0.12 mmol) in 

0.5 mL dichloromethane over 1.5 h via syringe pump at reflux. After the addition was 

completed, the reaction was refluxed for an additional 30 minutes. The crude reaction 

mixture was concentrated and then purified using flash column chromatography eluting 

with 1:10 ethyl acetate:hexanes gradient to 3:7 ethyl acetate:hexanes affording lactones 

61a–61o. 
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Ethyl-4-hydroxy-4-methyl-1-oxo-3-phenylisochromane-3-carboxylate (61a). 

Synthesized using general procedure 6. Pale yellow oil (11.9 mg, 60%). TLC: Rf 0.80 (7:3 

hexanes/EtOAc). IR (NaCl): 3480, 3067, 2986, 2936, 1746, 1603, 1495, 1452, 1369, 1290, 

1260, 1101, 1057, 1028, 766, 739, 704, 571, 500. 1H NMR (600 MHz) δ 8.06 (dd, J = 7.9, 

1.4 Hz, 1H), 7.86 (d, J = 8.4 Hz, 2H), 7.82 (d, J = 7.8 Hz, 1H), 7.70 (td, J = 7.6, 1.4 Hz, 

1H), 7.47–7.41 (m, 4H), 4.83 (s, 1H), 4.10 (dq, J = 10.8, 7.2 Hz, 1H), 3.96 (dtd, J = 10.8, 

7.2 Hz, 1H), 1.25 (s, 3H), 0.97 (td, J = 7.1, 1.3 Hz, 3H). 13C NMR (151 MHz) δ 172.4, 

163.1, 148.0, 135.2, 132.3, 129.8, 129.0, 128.4, 128.2 (2C), 126.5 (2C), 124.1, 122.2, 86.9, 

74.3, 62.9, 24.6, 13.5. HRMS (ESI) m/z calcd for C19H19O5 ([M+H]+) 327.1232; found 

327.1239. 

 

Ethyl-4-hydroxy-1-oxo-3-phenyl-4-((E)-styryl)isochromane-3-carboxylate (61b). 

When synthesized using general procedure 6. Pale yellow oil (23.1 mg, 94%). When 

reaction was performed at a 1.07 mmol scale. To a stirred solution of ketoacid 59b (1.07 

mmol) and Rh2(TFA)4 (1 mol%) in 8.9 mL dichloromethane was added a solution of diazo 

carbonyl 56a (2.14 mmol) in 8.9 mL dichloromethane over 1.5 h via syringe pump at 

reflux. After the addition was completed, the reaction was refluxed for an additional 30 
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minutes. The crude reaction mixture was concentrated and then purified using flash column 

chromatography eluting with 1:10 ethyl acetate:hexanes gradient to 3:7 ethyl 

acetate:hexanes affording lactone 61b as a pale yellow oil (369.6 mg, 83%).TLC: Rf 0.60 

(7:3 hexanes/EtOAc). IR (NaCl): 3458, 3063, 3028, 2982, 1746, 1713, 1647, 1603, 1495, 

1450, 1389, 1369, 1287, 1260, 1248, 1088, 1053, 1030, 1011, 968, 748, 710, 694, 559, 

428. 1H NMR (600 MHz) δ 8.11 (d, J = 7.8 Hz, 1H), 7.81 (d, J = 7.7 Hz, 1H), 7.80–7.78 

(m, 2H), 7.72 (td, J = 7.6, 1.2 Hz, 1H), 7.51 (td, J = 7.6, 1.2 Hz, 1H), 7.42–7.38 (m, 3H), 

7.21–7.15 (m, 3H), 7.12 (d, J = 7.6 Hz, 2H), 6.19 (d, J = 15.9 Hz, 1H), 6.07 (d, J = 15.9, 

1H), 5.23 (s, 1H), 4.15 (dq, J = 10.8, 7.2 Hz, 1H), 4.01 (dq, J = 10.8, 7.2 Hz, 1H), 1.01 (t, 

J = 7.1 Hz, 3H). 13C NMR (151 MHz) δ 172.3, 163.2, 145.2, 136.0, 135.3, 132.9, 132.1, 

129.8, 129.1, 128.8, 128.4 (2C), 128.0 (2C), 128.0, 126.9, 126.7 (2C), 126.7 (2C), 125.1, 

122.9, 87.1, 76.6, 63.1, 13.6. HRMS (ESI) m/z calcd for C26H23O5 ([M+H]+) 415.1545; 

found 415.1548. 

 

Ethyl-4-hydroxy-1-oxo-4-((E)-styryl)-3-(4-(trifluoromethyl)phenyl)isochromane-3-

carboxylate (61c). Synthesized using general procedure 6. Pale yellow oil (20.6 mg, 72%). 

TLC: Rf 0.70 (7:3 hexanes/EtOAc). IR (NaCl): 3472, 3063, 3028, 2984, 2936, 2909, 2874, 

2320, 1950, 1749, 1717, 1603, 1454, 1412, 1371, 1327, 1287, 1250, 1169, 1126, 1074, 

1018, 970, 849, 743, 696. 1H NMR (600 MHz) δ 8.12 (d, J = 7.9 Hz, 1H), 7.95 (d, J = 8.3 

Hz, 2H), 7.81 (d, J = 7.8 Hz, 1H), 7.74 (t, J = 8.4 Hz, 1H), 7.66 (d, J = 8.3 Hz, 2H), 7.53 
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(td, J = 7.5, 1.2 Hz, 1H), 7.23–7.17 (m, 3H), 7.11 (d, J = 7.8 Hz, 2H), 6.23 (d, J = 15.8 Hz, 

1H), 6.03 (dd, J = 15.9, 1.3 Hz, 1H), 5.18 (s, 1H), 4.15 (dq, J = 10.7, 7.1 Hz, 1H), 4.02 (dq, 

J = 10.8, 7.1 Hz, 1H), 1.01 (t, J = 7.2 Hz, 3H). 13C NMR (151 MHz) δ 171.9, 162.7, 144.9, 

136.1, 135.7, 135.5, 133.3, 131.19 (q, JC-F = 32.8 Hz, 1C), 129.9, 129.0, 128.5 (2C), 128.2, 

127.3 (2C), 126.7 (2C), 126.1, 125.1, 125.0 (q, JC-F = 3.9 Hz, 2C), 123.9 (q, JC-F = 272.1 

Hz, 1C), 122.7, 86.6, 76.6, 63.5, 13.5 [Note: While peaks corresponding to the CF3 were 

observed, some portion of the peaks were lost in signal noise]. 19F NMR (376 MHz) δ –

62.77. HRMS (ESI) m/z calcd for C27H22F3O5 ([M+H]+) 483.1419; found 483.1428. 

 

Ethyl-4-hydroxy-3-(4-methoxyphenyl)-1-oxo-4-((E)-styryl)isochromane-3-

carboxylate (61d). Synthesized using general procedure 6. Pale yellow oil (24.2 mg, 92%). 

TLC: Rf 0.60 (7:3 hexanes/EtOAc). IR (NaCl): 3466, 3061, 3026, 2982, 2936, 2907, 2837, 

1744, 1709, 1607, 1512, 1458, 1369, 1285, 1250, 1184, 1086, 1032, 968, 839, 741, 696. 

1H NMR (600 MHz) δ 8.11 (dd, J = 7.8, 1.3 Hz, 1H), 7.81 (dd, J = 7.8, 1.1 Hz, 1H), 7.73–

7.70 (m, 3H), 7.50 (td, J = 7.6, 1.1 Hz, 1H), 7.22–7.13 (m, 5H), 6.93–6.90 (m, 2H), 6.22 

(d, J = 15.9 Hz, 1H), 6.09 (dd, J = 15.9, 1.1 Hz, 1H), 5.22 (s, 1H), 4.13 (dq, J = 10.7, 7.1 

Hz, 1H), 4.01 (dq, J = 10.7, 7.1 Hz, 1H), 3.82 (s, 3H), 1.00 (t, J = 7.1 Hz, 3H). 13C NMR 

(151 MHz) δ 172.4, 163.3, 160.0, 145.3, 136.0, 135.2, 132.8, 129.7, 128.7, 128.4 (2C), 

128.1 (2C), 128.0, 127.0, 126.7 (2C), 125.1, 124.2, 123.0, 113.4 (2C), 86.9, 76.7, 63.0, 

55.3, 13.6. HRMS (ESI) m/z calcd for C27H25O6 ([M+H]+) 445.1651; found 445.1655. 
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3-acetyl-4-hydroxy-3-phenyl-4-((E)-styryl)isochroman-1-one (61e). Synthesized using 

general procedure 6. Pale yellow oil (15.1 mg, 66%). TLC: Rf 0.80 (7:3 hexanes/EtOAc). 

IR (NaCl): 3462, 3059, 3026, 2924, 1740, 1705, 1603, 1495, 1450, 1358, 1287, 1248, 

1209, 1082, 1045, 1034, 968, 770, 748, 718, 694, 592, 557. 1H NMR (600 MHz) δ 8.12 

(d, J = 7.8 Hz, 1H), 7.81 (d, J = 7.9 Hz, 1H), 7.73 (t, J = 7.6 Hz, 1H), 7.68 (d, J = 7.8 Hz, 

2H), 7.49 (t, J = 7.6 Hz, 1H), 7.42 (q, J = 7.8, 7.2 Hz, 3H), 7.18 (qd, J = 7.3, 3.8 Hz, 3H), 

7.08 (d, J = 7.8 Hz, 2H), 6.09 (d, J = 16.0 Hz, 1H), 5.97 (d, J = 15.9 Hz, 1H), 5.24 (s, 1H), 

2.13 (s, 3H). 13C NMR (151 MHz) δ 211.2, 163.1, 146.3, 136.0, 135.8, 132.2, 131.4, 130.3, 

129.2, 128.6, 128.4 (2C), 128.3 (2C), 128.0, 127.8, 126.7 (2C), 126.6 (2C), 125.2, 122.0, 

90.6, 76.8, 27.5. HRMS (ESI) m/z calcd for C25H20O4Na ([M+Na]+) 407.1259; found 

407.1263. 

 

4'-hydroxy-1-methyl-4'-((E)-styryl)spiro[indoline-3,3'-isochromane]-1',2-dione (61f). 

Synthesized using general procedure 6. White solid (14.4 mg, 61%, mp 187–190 °C). TLC: 

Rf 0.60 (2:3 hexanes/EtOAc). IR (NaCl): 3337, 3024, 2924, 2853, 1761, 1701, 1612, 1468, 

1460, 1371, 1217, 1090, 1016, 972, 750, 718, 691, 428. 1H NMR (600 MHz) δ 7.66 (d, J 

= 7.6 Hz, 1H), 7.56 (t, J = 7.2 Hz, 2H), 7.50–7.48 (m, 3H), 7.39 (t, J = 7.5 Hz, 1H), 7.33 
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(t, J = 7.5 Hz, 2H), 7.28 (d, J = 7.2 Hz, 1H), 7.19 (t, J = 7.2 Hz, 1H), 7.05 (d, J = 7.0 Hz, 

2H), 7.00 (t, J = 7.7 Hz, 1H), 6.57 (d, J = 7.8 Hz, 1H), 3.40 (s, 1H), 3.10 (s, 3H). 13C NMR 

(151 MHz) δ 174.3, 169.1, 147.3, 143.2, 135.5, 133.8, 133.4, 130.5, 129.8, 128.7 (2C), 

128.6, 127.1 (2C), 126.1, 125.7, 125.6, 125.3, 123.4, 121.8, 121.1, 108.3, 89.7, 80.1, 26.0. 

HRMS (ESI) m/z calcd for C25H20NO4 ([M+H]+) 398.1392; found 398.1397. CCDC 

1844114. 

 

Benzyl-4-hydroxy-1-oxo-4-((E)-styryl)-3-vinylisochromane-3-carboxylate (61g). 

Synthesized using general procedure 6. Pale yellow oil (24.5 mg, 97%). TLC: Rf 0.60 (7:3 

hexanes/EtOAc). IR (NaCl): 3462, 3063, 3032, 2953, 2922, 2851, 1746, 1721, 1602, 1454, 

1285, 1250, 1163, 1086, 970, 746, 696. 1H NMR (600 MHz) δ 7.82 (dd, J = 7.2, 0.6 Hz, 

1H), 7.66 (dd, J = 8.4, 1.2 Hz, 1H), 7.59 (td, J = 7.5, 1.3 Hz, 1H), 7.32 (td, J = 7.5, 1.2 Hz, 

1H), 7.29–7.19 (m, 8H), 7.05–7.03 (m, 2H), 6.54 (d, J = 15.8 Hz, 1H), 6.28 (dd, J = 15.8, 

1.3 Hz, 1H), 6.26 (dd, J = 8.4, 6.0 Hz, 1H), 5.81 (dd, J = 17.3, 0.6 Hz, 1H), 5.55 (dd, J = 

11.0, 0.7 Hz, 1H), 5.15 (d, J = 12.0 Hz, 1H), 4.95 (d, J = 12.0 Hz, 1H), 4.91 (d, J = 1.3 Hz, 

1H). 13C NMR (151 MHz) δ 171.7, 162.8, 143.9, 135.9, 134.8, 133.8, 132.5, 129.9, 129.2, 

128.7, 128.6, 128.6 (2C), 128.5 (2C), 128.3 (2C), 128.1, 126.8 (2C), 126.6, 124.4, 122.9, 

120.6, 86.1, 75.4, 68.4. HRMS (ESI) m/z calcd for C27H22O5Na ([M+Na]+) 449.1365; 

found 449.1376. 
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Benzyl-4-hydroxy-1-oxo-4-((E)-4-(trifluoromethyl)styryl)-3-vinylisochromane-3-

carboxylate (61h). Synthesized using general procedure 6. Pale yellow oil (28.8 mg, 98%). 

TLC: Rf 0.50 (7:3 hexanes/EtOAc). IR (NaCl): 3462, 3069, 3036, 2957, 1746, 1722, 1609, 

1456, 1325, 1250,1167,1123,1069, 974, 741, 698. 1H NMR (600 MHz) δ 7.83 (dd, J = 7.7, 

1.3 Hz, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.60 (td, J = 7.6, 1.3 Hz, 1H), 7.50 (d, J = 8.2 Hz, 

2H), 7.37 (d, J = 8.1 Hz, 2H), 7.34 (td, J = 7.6, 1.2 Hz, 1H), 7.29–7.27 (m, 1H), 7.24 (t, J 

= 7.2 Hz, 2H), 7.04 (d, J = 7.8 Hz, 2H), 6.62 (d, J = 15.8 Hz, 1H), 6.36 (dd, J = 15.7, 1.4 

Hz, 1H), 6.24 (dd, J = 17.3, 11.0 Hz, 1H), 5.82 (d, J = 17.3 Hz, 1H), 5.55 (d, J = 11.0 Hz, 

1H), 5.16 (d, J = 12.0 Hz, 1H), 4.97–4.94 (m, 2H). 13C NMR (151 MHz) δ 171.5, 162.7, 

143.5, 139.4, 135.0, 133.8, 131.1, 130.0, 129.3, 129.0, 128.9, 128.7, 128.6 (2C), 128.3 

(2C), 127.0 (2C), 125.5 (q, JC-F = 4.0 Hz, 2C), 124.4, 122.8, 120.7, 86.0, 75.4, 68.5 [Note: 

While peaks corresponding to the CF3 were observed, some portion of the peaks were lost 

in signal noise]. 19F NMR (376 MHz) δ –62.7. HRMS (ESI) m/z calcd for C28H22F3O5 

([M+H]+) 495.1419; found 495.1429. 
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Benzyl-4-hydroxy-4-((E)-4-methoxystyryl)-1-oxo-3-vinylisochromane-3-carboxylate 

(61i). Synthesized using general procedure 6. Pale yellow oil (15.1 mg, 55%). TLC: Rf 

0.40 (7:3 hexanes/EtOAc). IR (NaCl): 3462, 3067, 3034, 3007, 2957, 2934, 2835, 1744, 

1605, 1512, 1456, 1287, 1250, 1175, 1086, 1032, 970, 779, 696. 1H NMR (600 MHz) δ 

7.82 (d, J = 7.8 Hz, 1H), 7.65 (d, J = 7.7 Hz, 1H), 7.59 (td, J = 7.6, 1.2 Hz, 1H), 7.32 (t, J 

= 7.2 Hz, 1H), 7.24–7.22 (m, 3H), 7.21 (d, J = 8.5 Hz, 2H), 7.04 (d, J = 7.4 Hz, 2H), 6.78 

(d, J = 8.8 Hz, 2H), 6.43 (d, J = 15.8 Hz, 1H), 6.26 (dd, J = 17.3, 11.0 Hz, 1H), 6.15 (dd, J 

= 15.8, 1.2 Hz, 1H), 5.80 (d, J = 17.3 Hz, 1H), 5.55 (d, J = 11.0 Hz, 1H), 5.15 (d, J = 11.9 

Hz, 1H), 4.95 (d, J = 12.0 Hz, 1H), 4.88 (s, 1H), 3.77 (s, 3H). 13C NMR (151 MHz) δ 

171.7, 162.9, 159.6, 144.1, 134.8, 133.9, 132.1, 129.8, 129.2, 128.7, 128.6, 128.6, 128.6 

(2C), 128.3 (2C), 128.1 (2C), 124.4, 124.4, 122.9, 120.5, 113.9 (2C), 86.2, 75.5, 68.4, 55.3. 

HRMS (ESI) m/z calcd for C28H25O6 ([M+H]+) 457.1651; found 457.1654. 
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Benzyl-4-((E)-4-chlorostyryl)-4-hydroxy-1-oxo-3-vinylisochromane-3-carboxylate 

(61j). Synthesized using general procedure 6. Pale yellow oil (21.0 mg, 77%). TLC: Rf 

0.50 (7:3 hexanes/EtOAc). IR (NaCl): 3458, 3065, 3034, 2957, 1744, 1719, 1601, 1491, 

1454, 1375, 1248, 1155, 1088, 972, 910, 748, 696. 1H NMR (600 MHz) δ 7.82 (d, J = 7.8 

Hz, 1H), 7.64 (d, J = 7.7 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.39–7.28 (m,  2H), 7.28–7.19 

(m, 6H), 7.04 (d, J = 7.8 Hz, 2H), 6.50 (d, J = 15.8 Hz, 1H), 6.25 (d, J = 9.0 Hz, 1H), 6.23 

(d, J = 8.4 Hz, 1H), 5.81 (d, J = 17.3 Hz, 1H), 5.55 (d, J = 11.0 Hz, 1H), 5.15 (d, J = 12.0 

Hz, 1H), 4.95 (d, J = 12.0 Hz, 1H), 4.92 (s, 1H). 13C NMR (151 MHz) δ 171.6, 162.7, 

143.7, 134.9, 134.5, 133.8, 133.8 131.3, 129.9, 129.1, 128.8, 128.7 (3C), 128.6 (2C), 128.3 

(2C), 128.0 (2C), 127.4, 124.4, 122.9, 120.6, 86.1, 75.4, 68.5. HRMS (ESI) m/z calcd for 

C27H22ClO5 ([M+H]+) 461.1156; found 461.1165. 

  

Benzyl-4-hydroxy-1-oxo-4-((1E,3E)-4-phenylbuta-1,3-dien-1-yl)-3-

vinylisochromane-3-carboxylate (61k). Synthesized using general procedure 6. Pale 

yellow oil (14.9 mg, 54%). TLC: Rf 0.70 (7:3 hexanes/EtOAc). IR (NaCl): 3460, 3063, 

3030, 2959, 1744, 1717, 1601, 1452, 1250, 1084, 989, 748, 696. 1H NMR (600 MHz) δ 

7.82 (d, J = 7.8 Hz, 1H), 7.64 (d, J = 7.7 Hz, 1H), 7.59 (td, J = 7.5, 1.2 Hz, 1H), 7.34–7.31 

(m, 4H), 7.28 (d, J = 7.7 Hz, 2H), 7.24–7.19 (m, 3H), 7.03 (d, J = 7.5 Hz, 2H), 6.67 (dd, J 

= 15.6, 10.6 Hz, 1H), 6.49 (d, J = 15.6 Hz, 1H), 6.31–6.22 (m, 2H), 5.90 (d, J = 15.1 Hz, 

1H), 5.81 (d, J = 17.3 Hz, 1H), 5.57 (d, J = 11.0 Hz, 1H), 5.14 (d, J = 12.0 Hz, 1H), 4.94 
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(d, J = 12.0 Hz, 1H), 4.83 (s, 1H). 13C NMR (151 MHz) δ 171.6, 162.8, 143.8, 136.8, 

134.8, 134.5, 133.8, 133.0, 130.4, 129.9, 129.1, 128.7, 128.6, 128.6 (2C), 128.6 (2C), 128.3 

(2C), 127.8, 127.5, 126.5 (2C), 124.4, 122.9, 120.6, 86.1, 75.4, 68.4. HRMS (ESI) m/z 

calcd for C29H25O5 ([M+H]+) 453.1702; found 453.1711. 

 

Ethyl-4-hydroxy-1-oxo-3-((E)-prop-1-en-1-yl)-4-((E)-styryl)isochromane-3-

carboxylate (61l). Synthesized using general procedure 6. Pale yellow oil (12.5 mg, 56% 

dr 5:1). TLC: Rf 0.71 (7:3 hexanes/EtOAc). IR (NaCl): 3455, 3028, 2978, 2924, 2855, 

1744, 1603, 1452, 1369, 1285, 1248, 1084, 1045, 1028, 966, 750, 694. 1H NMR (600 

MHz) δ 8.04 (d, J = 7.8 Hz, 1H), 7.73 (d, J = 7.8 Hz, 1H), 7.66 (t, J = 7.6 Hz, 1H), 7.45 (t, 

J = 7.6 Hz, 1H), 7.29 (t, J = 8.2 Hz, 3H), 7.26–7.25 (m, 2H), 7.22 (d, J = 7.1 Hz, 1H), 6.55 

(d, J = 15.8 Hz, 1H), 6.32 (d, J = 15.8 Hz, 1H), 6.21 (dq, J = 13.6, 6.6 Hz, 1H), 5.90 (d, J 

= 16.8 Hz, 1H), 5.02 (s, 1H), 4.14–4.07 (m, 1H), 4.05–3.99 (m, 1H), 1.80 (d, J = 6.6 Hz, 

3H), 0.98 (t, J = 7.1 Hz, 3H). 13C NMR (151 MHz) δ 172.4, 163.2, 144.5, 136.1, 134.9, 

132.5, 132.3, 129.7, 128.7, 128.5 (2C), 128.0, 126.9, 126.8 (2C), 124.6, 123.1, 122.2, 85.9, 

75.5, 62.9, 18.1, 13.6. HRMS (ESI) m/z calcd for C23H22O5Na ([M+Na]+) 401.1365; found 

401.1377. 
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Ethyl-4-hydroxy-1-oxo-3-((E)-prop-1-en-1-yl)-4-((E)-4-

(trifluoromethyl)styryl)isochromane-3-carboxylate (61m). Synthesized using general 

procedure 6. Pale yellow oil (18.2 mg, 69% dr 14:1). TLC: Rf 0.75 (7:3 hexanes/EtOAc). 

IR (neat): 3452, 2982, 2940, 1740, 1712, 1615, 1604, 1456, 1370, 1322, 1298, 1285, 1245, 

1162, 1120, 1108, 1082, 1066, 1045, 1015, 966, 864, 825, 809, 762, 731, 702, 650, 596, 

564. 1H NMR (600 MHz) δ 8.06 (dd, J = 7.7, 1.3 Hz, 1H), 7.73 (dd, J = 7.8, 1.2 Hz, 1H), 

7.67 (td, J = 7.6, 1.3 Hz, 1H), 7.52 (d, J = 8.2 Hz, 2H), 7.47 (td, J = 7.5, 1.3 Hz, 1H), 7.39 

(d, J = 8.1 Hz, 2H), 6.64 (d, J = 15.8 Hz, 1H), 6.40 (dd, J = 15.8, 1.3 Hz, 1H), 6.23 (dq, J 

= 15.7, 6.7 Hz, 1H), 5.88 (dq, J = 15.6, 1.7 Hz, 1H), 5.07 (d, J = 1.4 Hz, 1H), 4.12 (dq, J = 

10.5, 7.0 Hz, 1H), 4.03 (dq, J = 10.7, 7.1 Hz, 1H), 1.80 (dd, J = 6.7, 1.7 Hz, 3H), 0.99 (t, J 

= 7.1 Hz, 3H).13C NMR (151 MHz) δ 172.2, 163.0, 144.1, 139.5, 135.1, 132.4, 131.0, 

129.8 (q, JC-F = 32.7 Hz), 129.8, 129.6, 128.9, 127.0 (2C), 125.5 (q, JC-F = 3.8 Hz, 2C), 

124.6, 124.0 (q, JC-F = 271.8 Hz) 123.1, 122.0, 85.7, 75.4, 63.0, 18.1, 13.6. 19F NMR (376 

MHz) δ –62.62. HRMS (ESI) m/z calcd for C24H21F3O5Na ([M+Na]+) 469.1239; found 

469.1253. 
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Ethyl-4-hydroxy-4-((E)-4-methoxystyryl)-1-oxo-3-((E)-prop-1-en-1-yl)isochromane-

3-carboxylate (61n). Synthesized using general procedure 6. Pale yellow oil (16.0 mg, 

65% dr 22:1). TLC: Rf 0.56 (7:3 hexanes/EtOAc). IR (neat): 3451, 3035, 2963, 2936, 2917, 

2854, 2838, 1739, 1713, 1606, 1456, 1285, 1245, 1174, 1082, 1029, 966, 761, 701. 1H 

NMR (600 MHz) δ 8.03 (dd, J = 7.8, 1.4 Hz, 1H), 7.72 (dd, J = 7.9, 1.3 Hz, 1H), 7.65 (td, 

J = 7.5, 1.4 Hz, 1H), 7.44 (td, J = 7.6, 1.3 Hz, 1H), 7.23 (d, J = 8.8 Hz, 2H), 6.79 (d, J = 

8.9 Hz, 1H), 6.45 (d, J = 15.8 Hz, 1H), 6.25–6.15 (m, 2H), 5.90 (dt, J = 15.6, 1.8 Hz, 1H), 

4.98 (s, 1H), 4.11 (dq, J = 10.8, 7.0 Hz,  1H), 4.01 (dq, J = 10.8, 7.0 Hz, 1H), 3.77 (s, 2H), 

1.80 (dd, J = 6.6, 1.7 Hz, 3H), 0.98 (dd, J = 7.6, 6.7 Hz, 3H). 13C NMR (151 MHz) δ 172.4, 

163.3, 159.5, 144.6, 134.9, 132.2, 132.1, 129.6, 128.9, 128.6, 128.1 (2C), 124.7, 124.7, 

123.2, 122.3, 113.9 (2C), 85.9, 75.6, 62.9, 55.3, 18.1, 13.6. HRMS (ESI) m/z calcd for 

C24H24O6Na ([M+Na]+) 431.1471; found 431.1475. 

 



134 

 

Ethyl-4-((E)-4-chlorostyryl)-4-hydroxy-1-oxo-3-((E)-prop-1-en-1-yl)isochromane-3-

carboxylate (61o). Synthesized using general procedure 6. Pale yellow oil (11.8 mg, 48% 

dr 8:1). TLC: Rf 0.75 (7:3 hexanes/EtOAc). IR (NaCl): 3455, 3069, 3038, 2980, 2938, 

2918, 2874, 2855, 1744, 1713, 1668, 1603, 1491, 1456, 1369, 1298, 1285, 1246, 1155, 

1090, 1045, 1028, 1013, 968, 910, 864, 802, 758, 735, 712, 702, 565. 1H NMR (600 MHz) 

δ 8.04 (dd, J = 7.8, 1.3 Hz, 1H), 7.72 (dd, J = 7.7, 1.2 Hz, 1H), 7.66 (td, J = 7.6, 1.4 Hz, 

1H), 7.46 (td, J = 7.5, 1.3 Hz, 1H), 7.25–7.21 (m, 4H), 6.52 (d, J = 15.8 Hz, 1H), 6.29 (dd, 

J = 15.8, 1.3 Hz, 1H), 6.21 (dq, J = 15.6, 6.7 Hz, 1H), 5.88 (dq, J = 15.6, 1.7 Hz, 1H), 5.03 

(s, 1H), 4.11 (dq, J = 10.7, 7.1 Hz, 1H), 4.02 (dq, J = 10.7, 7.1 Hz, 1H), 1.80 (dd, J = 6.7, 

1.7 Hz, 3H), 0.98 (t, J = 7.1 Hz, 3H). 13C NMR (151 MHz) δ 172.3, 163.1, 144.3, 135.0, 

134.6, 133.7, 132.4, 131.3, 129.8, 128.8, 128.7 (2C), 128.0 (2C), 127.6, 124.6, 123.1, 

122.1, 85.8, 75.5, 63.0, 18.1, 13.6. HRMS (ESI) m/z calcd for C23H21ClO5Na ([M+Na]+) 

435.0975; found 435.0980. 

 

(E)-3-oxo-5-phenylpent-4-enoic acid (67). To a solution of (E)-3-oxo-5-phenylpent-4-

enoic acid (100 mg, 0.40 mmol) in dichloromethane (9.4 mL) prepared from literature 

protocol185 was added trifluoroacetic acid (1.4 mL) at 0 °C.  The mixture was stirred at 0 

°C for 3 h and concentrated in vacuo.  The crude residue was then purified by trituration 

with dichloromethane and hexane followed by filtration to provide 67 as a white solid 
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existing in a 1.00:0.85 mixture of the keto and enol tautomers respectively (42.5 mg, 55%, 

mp 108–109 °C, decarboxylation observed). TLC: Rf 0.50 (EtOAc). IR (neat): 3023, 2638, 

1644, 1623, 1587, 1570, 1497, 1481, 1452, 1446, 1319, 1301, 1274, 1235, 1206, 1153, 

973, 930, 863, 854, 809, 789, 759, 717, 690, 666, 654, 555. 1H NMR (600 MHz) Major 

Ketoacid δ 7.72 (d, J = 16.2 Hz, 1H), 7.60 (d, J = 7.5 Hz, 2H), 7.48–7.43 (m, 1H), 7.38 (dt, 

J = 12.8, 7.2 Hz, 2H), 6.82 (d, J = 16.1 Hz, 1H), 3.80 (s, 2H). Minor Enolacid δ 11.76 (s, 

1H, enol OH), 7.52 (d, J = 8.6 Hz, 2H), 7.48–7.43 (m, 4H), 6.48 (d, J = 15.8 Hz, 1H), 5.23 

(s, 1H) HRMS (ESI) m/z calcd for C11H10O3Na ([M+Na]+) 213.0528; found 213.0531. 

 

1-diazo-1-phenylpropan-2-one (72). Compound was prepared using known literature 

procedures.121 

 

3-diazo-1-methylindolin-2-one (75). Compound was prepared using known literature 

procedures.122 

 

Ethyl (E)-2-diazopent-3-enoate (78). Compound was prepared using known literature 

procedures.40 
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General Procedure 7 for the Synthesis of Decanolides 79a–79e 

A solution of lactone 61g–61k (0.40–0.60 mmol, 0.01 M) in 4–6 mL chlorobenzene was 

heated to 140 °C for 12–18 h in a sealed tube under N2 atmosphere.  The reaction was 

cooled to room temperature and purified by flash column chromatography eluting with 

1:10 ethyl acetate:hexanes gradient to 3:7 ethyl acetate:hexanes affording decanolides 79a–

79e. 

 

Benzyl (Z)-1,8-dioxo-6-phenyl-5,6,7,8-tetrahydro-1H-benzo[c]oxecine-3-carboxylate 

(79a). Synthesized using general procedure 7. Pale yellow oil (23.1 mg, 91%). TLC: Rf 

0.70 (7:3 hexanes/EtOAc). IR (NaCl): 3063, 3032, 2949, 2889, 2359, 2336, 1732, 1694, 

1599, 1497, 1452, 1377, 1275, 1242, 1098, 1034, 907, 748, 700. 1H NMR (600 MHz) δ 

7.81 (dd, J = 6.9, 1.8 Hz, 1H), 7.66–7.60 (m, 3H), 7.38 (d, J = 4.3 Hz, 4H), 7.36–7.30 (m, 

3H), 7.25–7.23 (m, 3H), 6.42 (t, J = 8.1 Hz, 1H), 5.33 (d, J = 12.4 Hz, 1H), 5.24 (d, J = 

12.4 Hz, 1H), 3.93 (dq, J = 12.6, 4.3 Hz, 1H), 3.50 (dd, J = 17.4, 11.8 Hz, 1H), 3.04 (ddd, 

J = 13.8, 7.7, 3.6 Hz, 1H), 2.62 (dd, J = 17.4, 4.1 Hz, 1H), 2.41 (ddd, J = 13.9, 8.5, 5.3 Hz, 

1H). 13C NMR (151 MHz) δ 202.0, 165.7, 161.6, 142.7, 142.0, 141.1, 135.4, 132.7, 131.4, 

130.1, 129.2, 128.7 (2C), 128.5 (2C), 128.3, 128.3, 128.2 (2C), 127.9, 127.4 (2C), 127.0, 

67.2, 46.4, 40.8, 29.6. HRMS (ESI) m/z calcd for C27H23O5 ([M+H]+) 427.1545; found 

427.1556. 
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Benzyl (Z)-1,8-dioxo-6-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydro-1H-

benzo[c]oxecine-3-carboxylate (79b). Synthesized using general procedure 7. Pale 

yellow oil (12.5 mg, 57%). TLC: Rf 0.70 (7:3 hexanes/EtOAc). IR (NaCl): 3067, 3036, 

2951, 2893, 2359, 1734, 1694, 1618, 1597, 1452, 1420, 1379, 1325, 1277, 1242, 1165, 

1113, 1094, 1072, 1036, 1018, 843, 752, 700. 1H NMR (600 MHz) δ 7.81 (dt, J = 7.7, 1.2 

Hz, 1H), 7.67–7.60 (m, 3H), 7.58 (d, J = 8.0 Hz, 2H), 7.38–7.33(m, 7H), 6.37 (t, J = 8.0 

Hz, 1H), 5.34 (d, J = 12.3 Hz, 1H), 5.24 (d, J = 12.4 Hz, 1H), 3.98 (dd, J = 11.5, 4.9 Hz, 

1H), 3.48 (dd, J = 17.3, 11.5 Hz, 1H), 3.05 (ddd, J = 14.0, 7.7, 3.5 Hz, 1H), 2.62 (dd, J = 

17.3, 4.2 Hz, 1H), 2.41 (ddd, J = 13.9, 8.3, 5.4 Hz, 1H). 13C NMR (151 MHz) δ 201.5, 

165.6, 161.4, 146.7, 142.4, 140.9, 135.3, 132.8, 131.6, 130.0, 129.3, 128.6 (2C), 128.4, 

128.3, 128.2 (2C), 127.8 (2C), 126.9, 125.7 (q, JC-F = 3.8 Hz, 2C), 124.0 (q, JC-F = 271.6 

Hz, 1C), 67.3, 46.0, 40.6, 29.3 [Note: While peaks corresponding to the CF3 were observed, 

some portion of the peaks were lost in signal noise]. 19F NMR (376 MHz) δ –62.55. HRMS 

(ESI) m/z calcd for C28H22F3O5 ([M+H]+) 495.1419; found 495.1428. 
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Benzyl (Z)-6-(4-methoxyphenyl)-1,8-dioxo-5,6,7,8-tetrahydro-1H-benzo[c]oxecine-3-

carboxylate (79c). Synthesized using general procedure 7. Pale yellow oil (14.4 mg, 65%). 

TLC: Rf 0.70 (7:3 hexanes/EtOAc). IR (NaCl): 3063, 3034, 2999, 2955, 2835, 1730, 1694, 

1607, 1512, 1454, 1375, 1277, 1242, 1184, 1109, 1090, 1034, 833, 754, 737, 702. 1H NMR 

(600 MHz) δ 7.80 (dd, J = 7.0, 1.4 Hz, 1H), 7.65–7.59 (m, 3H), 7.38 (d, J = 4.3 Hz, 4H), 

7.36–7.32 (m, 1H), 7.17 (d, J = 8.5 Hz, 2H), 6.85 (d, J = 8.4 Hz, 2H), 6.41 (t, J = 8.1 Hz, 

1H), 5.33 (dd, J = 12.3, 1.1 Hz, 1H), 5.24 (d, J = 12.0 Hz, 1H), 3.90–3.86 (m, 1H), 3.79 (s, 

3H), 3.45 (dd, J = 17.4, 11.8 Hz, 1H), 3.02 (ddd, J = 13.5, 7.7, 3.6 Hz, 1H), 2.59 (dd, J = 

17.4, 4.2 Hz, 1H), 2.37 (ddd, J = 13.8, 8.6, 5.3 Hz, 1H). 13C NMR (151 MHz) δ 202.0, 

165.7, 161.6, 158.5, 142.0, 141.1, 135.4, 134.7, 132.7, 131.4, 130.2, 129.2, 128.5 (2C), 

128.3, 128.3 (2C), 128.3, 128.2 (2C), 128.1, 114.0 (2C), 67.1, 55.3, 46.6, 40.0, 29.8. 

HRMS (ESI) m/z calcd for C28H25O6 ([M+H]+) 457.1651; found 457.1662. 

 

Benzyl (Z)-6-(4-chlorophenyl)-1,8-dioxo-5,6,7,8-tetrahydro-1H-benzo[c]oxecine-3-

carboxylate (79d). Synthesized using general procedure 7. Pale yellow oil (25.3 mg, 99%). 

TLC: Rf 0.70 (7:3 hexanes/EtOAc). IR (NaCl): 3065, 3034, 2951, 2893, 1732, 1694, 1597, 

1493, 1452, 1377, 1275, 1242, 1090, 1036, 1013, 829, 752, 700. 1H NMR (600 MHz) δ 

7.80 (dd, J = 7.7, 1.6 Hz, 1H), 7.66–7.60 (m, 3H), 7.38–7.32 (m, 5H), 7.28 (d, J = 8.4 Hz, 

2H), 7.18 (d, J = 8.5 Hz, 2H), 6.37 (t, J = 8.1 Hz, 1H), 5.33 (d, J = 12.3 Hz, 1H), 5.24 (d, 
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J = 12.3 Hz, 1H), 3.92–3.87 (m, 1H), 3.44 (dd, J = 17.4, 11.7 Hz, 1H), 3.02 (ddd, J = 13.9, 

7.7, 3.6 Hz, 1H), 2.59 (dd, J = 17.3, 4.1 Hz, 1H), 2.36 (ddd, J = 13.8, 8.4, 5.3 Hz, 1H). 13C 

NMR (151 MHz) δ 201.6, 165.6, 161.4, 142.3, 141.1, 140.9, 135.3, 132.8 (2C), 131.5, 

130.1, 129.2, 128.9 (2C), 128.7 (2C), 128.6 (2C), 128.4, 128.3, 128.2 (2C), 127.3, 67.2, 

46.2, 40.2, 29.5. HRMS (ESI) m/z calcd for C27H22ClO5 ([M+H]+) 461.1156; found 

461.1158. 

 

Benzyl (Z)-1,8-dioxo-6-((E)-styryl)-5,6,7,8-tetrahydro-1H-benzo[c]oxecine-3-

carboxylate (79e). Synthesized using general procedure 7. Pale yellow oil (19.7 mg, 71%). 

TLC: Rf 0.70 (7:3 hexanes/EtOAc). IR (NaCl): 3063, 3030, 2955, 2889, 1749, 1732, 1692, 

1450, 1279, 1234, 1107, 1088, 966, 752, 696. 1H NMR (600 MHz) δ 7.78 (d, J = 7.4 Hz, 

1H), 7.65–7.59 (m, 3H), 7.41–7.35 (m, 7H), 7.31 (t, J = 7.5 Hz, 2H), 7.23 (t, J = 7.3 Hz, 

1H), 6.58 (t, J = 8.2 Hz, 1H), 6.49 (d, J = 15.9 Hz, 1H), 6.24 (dd, J = 15.8, 8.3 Hz, 1H), 

5.33 (d, J = 12.2 Hz, 1H), 5.25 (d, J = 12.2 Hz, 1H), 3.50–3.44 (m, 1H), 3.08 (dd, J = 17.4, 

11.4 Hz, 1H), 2.88 (t, J = 10.7 Hz, 1H), 2.59 (dd, J = 17.5, 4.4 Hz, 1H), 2.35 (dt, J = 14.1, 

7.2 Hz, 1H). 13C NMR (151 MHz) δ 202.0, 165.5, 161.6, 142.4, 141.1, 136.8, 135.3, 132.7, 

131.4, 130.9, 130.6, 130.2, 129.2, 128.6 (4C), 128.4, 128.3 (2C), 128.3, 127.5, 127.4, 126.3 

(2C), 67.2, 46.1, 39.2, 28.0. HRMS (ESI) m/z calcd for C29H25O5 ([M+H]+) 453.1702; 

found 453.1717. 
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General Procedure 8 for the Synthesis of Spirophthalolactones 80a–80d 

A solution of -lactone 61l–61o (0.01–0.03 mmol. 0.01 M) in chlorobenzene was added to 

a sealed tube under nitrogen atmosphere. Reaction was sealed and heated to 200°C until 

complete consumption of starting material; 1–3 days.  Crude reaction was cooled to room 

temperature and immediately subjected to flash column chromatography eluting with 1:10 

ethyl acetate:hexanes gradient to 3:7 ethyl acetate:hexanes affording spirophthalolactones 

80a–80d. 

 

Ethyl (Z)-5-methyl-1,8-dioxo-6-phenyl-5,6,7,8-tetrahydro-1H-benzo[c]oxecine-3-

carboxylate dimer (80a). Synthesized using general procedure 8. White solid (8.8 mg, 

73%, mp 104–107 °C). TLC: Rf 0.40 (7:3 hexanes/EtOAc). IR (NaCl): 3522, 3441, 3059, 

3028, 2965, 2934, 2909, 2874, 1778, 1728, 1605, 1495, 1462, 1373, 1339, 1290, 1265, 

1231, 1144, 1065, 1036, 1016, 962, 924, 851, 760, 737, 698. 1H NMR (600 MHz) δ 7.86 

(dd, J = 7.7, 1.0 Hz, 1H), 7.79 (t, J = 7.5 Hz, 1H), 7.67 (dd, J = 7.8, 1.0 Hz, 1H), 7.58 (t, J 

= 7.5 Hz, 1H), 7.37–7.35 (m, 4H), 7.30–7.27 (m, 1H), 3.97 (q, J = 7.1 Hz, 2H), 3.80 (dd, J 

= 11.1, 0.9 Hz, 1H), 3.08 (td, J = 11.2, 5.9 Hz, 1H), 2.99 (td, J = 10.6, 8.4 Hz, 1H), 2.64 

(dd, J = 14.5, 8.5 Hz, 1H), 2.55 (ddd, J = 14.4, 10.3, 1.0 Hz, 1H), 1.15 (t, J = 7.1 Hz, 3H), 
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1.04 (d, J = 6.4 Hz, 3H). 13C NMR (151 MHz) δ 190.3, 168.5, 161.6, 152.4, 141.2, 134.9, 

129.6, 128.8 (2C), 127.7 (2C), 127.1, 125.4, 125.4, 121.1, 91.8, 63.1, 62.7, 51.1, 48.0, 43.1, 

16.9, 13.7. HRMS (ESI) m/z calcd for C23H23O5 ([M+H]+) 379.1545; found 379.1558. 

 

Ethyl 2-3-methyl-3'-oxo-4-(4-(trifluoromethyl)phenyl)-3'H-spiro[cyclopentane-1,1'-

isobenzofuran]-2-yl)-2-oxoacetate (80b). Synthesized using general procedure 8. White 

solid (7.2 mg, 53%, mp 164–166 °C). TLC: Rf 0.39 (7:3 hexanes/EtOAc). IR (neat): 3005, 

2958, 2923, 2875, 2853, 1768, 1738, 1618, 1470, 1446, 1327, 1289, 1267, 1228, 1158, 

1109, 1066, 1014, 962, 912, 836, 759, 693. 1H NMR (600 MHz) δ 7.87 (dt, J = 7.6, 1.0 

Hz, 1H), 7.80 (td, J = 7.6, 1.1 Hz, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.62 (d, J = 8.1 Hz, 2H), 

7.60 (td, J = 7.5, 0.9 Hz, 1H), 7.49 (d, J = 8.0 Hz, 2H), 3.95 (qd, J = 7.2, 0.9 Hz, 2H), 3.84 

(d, J = 10.6 Hz, 1H), 3.13–3.01 (m, 2H), 2.70 (dd, J = 14.6, 8.3 Hz, 1H), 2.52 (dd, J = 14.6, 

9.4 Hz, 1H), 1.14 (t, J = 7.1 Hz, 3H), 1.05 (d, J = 6.0 Hz, 3H). 13C NMR (151 MHz) δ 

190.1, 168.2, 161.7, 151.7, 145.7, 134.9, 129.8, 129.6 (q, JC-F = 32.7 Hz, 2C), 128.1 (2C), 

125.8 (q, JC-F = 3.7 Hz), 125.6, 125.6, 124.1 (q, JC-F = 271.6 Hz) 121.2, 91.8, 63.1, 62.7, 

50.9, 47.9, 43.4, 29.7, 16.8, 13.7. 19F NMR (376 MHz) δ –62.49. HRMS (ESI) m/z calcd 

for C24H22F3O5 ([M+H]+) 447.1419; found 447.1426. 
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Ethyl 2-3-(4-methoxyphenyl)-4-methyl-3'-oxo-3'H-spiro[cyclopentane-1,1'-

isobenzofuran]-5-yl)-2-oxoacetate (80c). Synthesized using general procedure 8. Pale 

yellow oil (9.6 mg, 78%). TLC Rf 0.39 (7:3 hexanes/EtOAc). IR (neat): 2958, 2927, 2871, 

2853, 1765, 1725, 1611, 1513, 1466, 1288, 1244, 1178, 1059, 1032, 961, 830, 760, 693. 

1H NMR (600 MHz) δ 7.86 (dt, J = 7.7, 0.9 Hz, 1H), 7.79 (td, J = 7.6, 1.1 Hz, 1H), 7.65 

(dt, J = 7.8, 0.9 Hz, 1H), 7.58 (td, J = 7.5, 0.9 Hz, 1H), 7.28 (d, J = 8.7 Hz, 2H), 6.90 (d, J 

= 8.7 Hz, 2H), 3.97 (qd, J = 7.2, 1.1 Hz, 2H), 3.81 (s, 4H), 3.77 (d, J = 11.1 Hz, 1H), 3.02 

(td, J = 11.2, 5.9 Hz, 1H), 2.94 (td, J = 10.9, 8.5 Hz, 1H), 2.61 (dd, J = 14.4, 8.4 Hz, 1H), 

2.51 (dd, J = 14.4, 10.4 Hz, 1H), 1.15 (t, J = 7.2 Hz, 3H), 1.03 (d, J = 6.4 Hz, 3H). 13C 

NMR (151 MHz) δ 190.4, 168.5, 161.7, 158.8, 152.5, 134.8, 133.2, 129.6, 128.6 (2C), 

125.5, 125.4, 121.1, 114.2 (2C), 91.8, 63.2, 62.6, 55.3, 50.5, 48.2, 43.1, 16.9, 13.7. HRMS 

(ESI) m/z calcd for C24H24O6Na ([M+Na]+) 431.1471; found 431.1474. 
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Ethyl 2-(3-(4-chlorophenyl)-4-methyl-3'-oxo-3'H-spiro[cyclopentane-1,1'-

isobenzofuran]-5-yl)-2-oxoacetate (80d). Synthesized using general procedure 8. White 

solid (4.8 mg, 90%, mp 131–133 °C). TLC: Rf 0.45 (7:3 hexanes/EtOAc). IR (neat): 3065, 

3033, 2947, 2882, 1762, 1733, 1646, 1612, 1600, 1492, 1471, 1301, 1288, 1261, 1228, 

1096, 1067, 1040, 1010.  1H NMR (600 MHz) δ 7.86 (dt, J = 7.6, 1.0 Hz, 1H), 7.79 (td, J 

= 7.5, 1.1 Hz, 1H), 7.65 (dt, J = 7.8, 0.9 Hz, 1H), 7.59 (td, J = 7.5, 0.9 Hz, 1H), 7.35–7.28 

(m, 4H), 3.95 (q, J = 7.1 Hz, 2H), 3.80 (d, J = 11.0 Hz, 1H), 3.03 (td, J = 11.0, 6.1 Hz, 1H), 

2.97 (td, J = 11.0, 10.4, 8.7 Hz, 1H), 2.65 (dd, J = 14.5, 8.6 Hz, 1H), 2.48 (dd, J = 14.5, 9.9 

Hz, 1H), 1.14 (t, J = 7.2 Hz, 3H), 1.03 (d, J = 6.3 Hz, 3H). 13C NMR (151 MHz) δ 190.2, 

168.4, 161.6, 152.0, 139.9, 134.9, 132.9, 129.7, 129.0 (2C), 128.9 (2C), 125.5, 125.4, 

121.2, 91.7, 62.9, 62.7, 50.5, 47.9, 43.2, 16.8, 13.7. HRMS (ESI) m/z calcd for C23H22ClO5 

([M+H]+) 413.1156; found 413.1164. 

 

Benzyl 2-((4-oxo-4-phenylbutanoyl)oxy)but-3-enoate (82). To a stirred solution of 3-

benzoylpropionic acid (11 mg, 0.06 mmol) and Rh2(TFA)4 (1 mol%) in 0.5 mL 

dichloromethane was added a solution of 2a (25 mg, 0.12 mmol) in 0.5 mL 

dichloromethane over 1.5 h via syringe pump at reflux. After the addition was completed, 

the reaction was refluxed for an additional 30 minutes. The crude reaction mixture was 

concentrated and then purified using flash column chromatography eluting with 1:10 ethyl 

acetate:hexanes gradient to 3:7 ethyl acetate:hexanes affording 3b as a clear liquid (13.0 

mg, 60%).TLC: Rf 0.70 (7:3 hexanes/EtOAc). IR (neat): 3064, 3033, 2919, 2849, 1740, 

1686, 1449, 1358, 1309, 1268, 1213, 1189, 1126, 1001, 986, 945, 747, 691. 1H NMR (600 
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MHz) δ 7.97 (d, J = 7.8 Hz, 2H), 7.57 (t, J = 7.5 Hz, 1H), 7.47 (t, J = 7.2 Hz, 2H), 7.37–

7.31 (m, 5H), 5.99–5.93 (m, 1H), 5.58 (dd, J = 6.1, 1.7 Hz, 1H), 5.52 (d, J = 17.2 Hz, 1H), 

5.37 (d, J = 10.6 Hz, 1H), 5.20 (q, J = 12.0 Hz, 2H), 3.41–3.28 (m, 2H), 2.99–2.86 (m, 2H). 

13C NMR (151 MHz) δ 197.6, 172.0, 168.3, 136.4, 135.2, 133.3, 129.7, 128.6 (2C), 128.6 

(2C), 128.4, 128.1 (2C), 128.0 (2C), 119.9, 73.2, 67.2, 33.2, 28.0. HRMS (ESI) m/z calcd 

for C21H21O5 ([M+H]+) 353.1389; found 353.1397. 

 

Ethyl 3-hydroxy-3-methyl-2-phenyltetrahydrofuran-2-carboxylate (89b). Isolated 

product matched literature known values.184 

 

3-hydroxy-3-methyl-2-phenyltetrahydrofuran-2-yl)ethan-1-one (89c). Isolated 

product matched literature known values.184 

 

Ethyl 3-hydroxy-2-phenyl-3-((E)-styryl)tetrahydrofuran-2-carboxylate (89d). 

Isolated product matched literature known values.184 
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(E)-4-(benzyloxy)-4-oxobut-2-en-1-yl 2-acetylbenzoate (89e). 24.5 mg, 69%.  1H NMR 

(300 MHz, Chloroform-d) δ 7.90–7.83 (m, 1H), 7.65–7.42 (m, 3H), 7.42–7.31 (m, 7H), 

7.07 (dt, J = 15.8, 4.6 Hz, 1H), 6.15 (dt, J = 15.8, 2.0 Hz, 1H), 5.20 (s, 2H), 4.98 (dd, J = 

4.6, 2.0 Hz, 3H), 2.67–2.43 (m, 4H). 

Chapter 7.3. Experimentals for Chapter 4 

Synthesis of 2'-Aminochalcones 1a−1l 

 

(E)-1-(2-aminophenyl)-3-phenylprop-2-en-1-one (90a). Starting material was 

synthesized using known literature protocol.186 

 

(E)-1-(2-aminophenyl)-3-(4-chlorophenyl)prop-2-en-1-one (90b). Starting material was 

synthesized using known literature protocol.186 

 

(E)-1-(2-aminophenyl)-3-(2-methoxyphenyl)prop-2-en-1-one (90c). Starting material 

was synthesized using known literature protocol.187 
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(E)-1-(2-aminophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (90d). Starting material 

was synthesized using known literature protocol.186 

 

(E)-4-(3-(2-aminophenyl)-3-oxoprop-1-en-1-yl)benzonitrile (90e). Starting material 

was synthesized using known literature protocol.188 

 

(E)-1-(2-amino-5-bromophenyl)-3-phenylprop-2-en-1-one (90f). Starting material was 

synthesized using known literature protocol.189 

 

(E)-1-(2-amino-3,5-dibromophenyl)-3-phenylprop-2-en-1-one (90g). Starting material 

was synthesized using known literature protocol.190 

 

4-amino-3-cinnamoylbenzonitrile (90h). 3-acetyl-4-aminobenzonitrile (3.4 mmol) was 

added to a solution of benzaldehyde (4.1 mmol) in 15 mL of ethanol containing 15 wt % 

NaOH and stirred at 25 °C for 7 h then the solvent EtOH was removed completely, diluted 

with 1 M HCl aqueous solution (10 mL). The aqueous layer was extracted with EtOAc (3 

× 10 mL), the combined organic layers were dried over anhydrous Na2SO4 and 
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concentrated under reduced pressure. Chromatographic purification of the crude compound 

over silica gel (gradient elution with 20–25% EtOAc in Hexane) yielded the compound 

90h as a yellow solid (537 mg, 63%, mp 139–140 °C)  TLC: Rf 0.25 (4:1 hexanes/EtOAc). 

IR (NaCl): 3435, 3318, 3059, 3028, 2378, 2311, 2218, 1647, 1618, 1570, 1545, 1489, 

1449, 1423, 1362, 1335, 1302, 1275, 1227, 1173, 1013, 978, 858, 827, 777, 743, 698, 679, 

635.  1H NMR (400 MHz) δ 8.19 (d, J = 1.9 Hz, 1H), 7.78 (d, J = 12.0 Hz, 1H), 7.69–7.62 

(m, 2H), 7.53 (d, J = 12.0 Hz, 1H), 7.50–7.42 (m, 4H), 6.89 (s, 2H), 6.71 (d, J = 8.0 Hz, 

1H). 13C NMR (101 MHz) δ 190.4, 153.5, 144.8, 136.5, 136.2, 134.6, 130.7, 129.0 (2C), 

128.5 (2C), 121.5, 119.4, 118.5, 117.8, 98.2. 

 

(E)-1-(4-amino-[1,1'-biphenyl]-3-yl)-3-phenylprop-2-en-1-one (90i). 1-(4-amino-[1,1'-

biphenyl]-3-yl)ethan-1-one (1.7 mmol) was added to a solution of benzaldehyde (1.7 

mmol) in 15 mL of ethanol containing 15 wt % NaOH and stirred at 25 °C for 24 h then 

the solvent EtOH was removed completely, diluted with 1 M HCl aqueous solution (10 

mL). The aqueous layer was extracted with EtOAc (3 × 10 mL), the combined organic 

layers were dried over anhydrous Na2SO4 and concentrated under reduced pressure. 

Chromatographic purification of the crude compound over silica gel (gradient elution with 

20–25% EtOAc in Hexane) yielded the compound 90i as an orange solid (342 mg, 69%, 

mp 142–143 °C). TLC: Rf 0.40 (4:1 hexanes/EtOAc). IR (NaCl): 3746, 3470, 3383, 3333, 

3059, 3028, 1647, 1620, 1568, 1493, 1479, 1449, 1352, 1331, 1288, 1265, 1202, 1171, 

1074, 1007, 974, 854, 827, 764, 734, 696.  1H NMR (400 MHz) δ 8.08 (d, J = 2.1 Hz, 1H), 

7.82 (d, J = 16.0 Hz, 1H), 7.69 (d, J = 16.0 Hz, 1H),  7.67–7.65 (m, 2H), 7.61–7.55 (m, 
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3H), 7.49–7.41 (m, 5H), 7.37–7.31 (m, 1H), 6.80 (d, J = 8.0 Hz, 1H), 6.41 (s, 2H). 13C 

NMR (101 MHz) δ 191.7, 150.2, 143.2, 140.5, 135.1, 133.2, 130.1, 129.2, 129.0, 128.8 

(2C), 128.8 (2C), 128.3 (2C), 126.5, 126.3 (2C), 123.0, 119.2, 117.8.  

 

(2E,4E)-1-(2-aminophenyl)-5-phenylpenta-2,4-dien-1-one (90j). Starting material was 

synthesized using known literature protocol.191 

 

(E)-1-(2-aminophenyl)-3-(furan-2-yl)prop-2-en-1-one (90k). Starting material was 

synthesized using known literature protocol.192 

Synthesis of aldol cascade intermediate 

 

Methyl 2-((E)-buta-1,3-dien-1-yl)-3-hydroxy-3-((E)-2-oxo-4-phenylbut-3-en-1-

yl)tetrahydrofuran-2-carboxylate (91). To a stirred solution of 2'-aminochalcone 90a 

(0.11 mmol) and Rh2(esp)2 (1 mol%) in 1.1 mL CH2Cl2 was added a solution of vinyl 

diazoacetate 48 (0.22 mmol) in 0.5 mL CH2Cl2 over 2.5 h via syringe pump at room 

temperature. After the addition was completed, the reaction was left to stir for an additional 

30 minutes. The crude reaction mixture was concentrated using rotary evaporation and then 
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purified using flash column chromatography eluting with 1:3 ethyl acetate: hexanes to 

afford aldol product 91 as a liquid (29 mg, 65%).TLC: Rf 0.24 (7:3 hexanes/EtOAc). IR 

(NaCl): 3375, 3030, 2363, 2338, 1734, 1605, 1476, 1464, 1373, 1275, 1258, 1171, 1128, 

1057, 976, 910, 743, 694, 669, 652. 1H NMR (400 MHz) δ 7.42–7.27 (m, 9H), 7.22 (t, J = 

8.1 Hz, 2H), 7.11 (d, J = 7.5 Hz, 1H), 6.90–6.77 (m, 3H), 6.40 (d, J = 16.0 Hz, 1H), 6.18 

(dd, J = 17.1, 10.4 Hz, 1H), 5.44–5.29 (m, 2H), 5.18 (dd, J = 11.4, 4.5 Hz, 2H), 4.64 (s, 

1H). 13C NMR (101 MHz) δ 170.9, 149.1, 136.6, 135.8, 135.3, 131.5, 130.5, 130.4, 128.5 

(2C), 128.5 (2C), 128.2, 128.1 (3C), 127.7 (2C), 126.7, 124.8, 120.0, 115.8, 110.9, 85.8, 

80.4, 67.4. HRMS (ESI) m/z calcd for C26H23NO3Na ([M+Na]+) 420.1576; found 

420.1581. Relative stereochemistry was assigned based on previous literature reports.144 

General procedure 9 for the synthesis of quinolines. 

To a stirred solution of 2'-aminochalcone 90 (0.11 mmol) and Rh2(esp)2 (1 mol%) in 1.1 

mL toluene was added a solution of corresponding vinyl diazoacetate (0.22 mmol) in 0.5 

mL toluene over 2.5 h via syringe pump at room temperature. After the addition was 

completed, the reaction was left to stir for an additional 30 minutes. The crude reaction 

mixture was concentrated using rotary evaporation and then purified using flash column 

chromatography eluting with 1:3 ethyl acetate: hexanes to afford quinoline product 

92a−92o. 
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Benzyl 2-phenyl-2,3-dihydro-1H-cyclopenta[c]quinoline-4-carboxylate (92a). 

Synthesized using general procedure 9. Pale yellow oil (34.0 mg, 77%). TLC: Rf 0.34 (4:1 

hexanes/EtOAc). IR (NaCl): 3738, 3032, 2943, 1718, 1649, 1568, 1500, 1454, 1390, 1317, 

1244, 1192, 1157, 1087, 1012, 754, 698. 1H NMR (400 MHz) δ 8.32 (d, J = 8.6 Hz, 1H), 

7.83 (d, J = 8.2 Hz, 1H), 7.73 (d, J = 7.7 Hz, 1H), 7.65–7.62 (m, 1H), 7.52 (d, J = 6.9 Hz, 

2H), 7.40–7.31 (m, 8H), 5.53 (s, 2H), 4.01–3.79 (m, 3H), 3.56 (dd, J = 16.7, 7.0 Hz, 1H), 

3.41 (dd, J = 16.6, 7.4 Hz, 1H). 13C NMR (101 MHz) δ 165.7, 151.6, 146.8, 144.9, 144.8, 

136.3, 135.8, 131.1, 129.3, 128.6 (2C), 128.6 (2C), 128.5 (2C), 128.5, 128.3, 126.9 (2C), 

126.8, 126.5, 123.9, 67.4, 44.3, 41.7, 39.1. HRMS (ESI) m/z calcd for C26H22NO2 

([M+H]+) 380.1651; found 380.1656. 

 

Benzyl 2-(4-chlorophenyl)-2,3-dihydro-1H-cyclopenta[c]quinoline-4-carboxylate 

(92b). Synthesized using general procedure 9. Pale yellow solid (35.0 mg, 74%). 

Recrystallization from ethyl acetate (slow evaporation method) yielded triclinic colorless 

needles (mp 152–155 °C). TLC: Rf 0.18 (4:1 hexanes/EtOAc). IR (NaCl): 3062, 3034, 

2941, 2370, 1718, 1602, 1579, 1568, 1492, 1454, 1386, 1361, 1317, 1242, 1192, 1157, 

1089, 1012, 827, 758, 698. 1H NMR (400 MHz) δ 8.31 (d, J = 8.5 Hz, 1H), 7.81 (d, J = 

8.2 Hz, 1H), 7.73 (ddd, J = 9.0, 7.7, 1.5 Hz, 1H), 7.63 (ddd, J = 8.1, 6.8, 1.3 Hz, 1H), 7.53–

7.50 (m, 2H), 7.40–7.33 (m, 3H), 7.29–7.26 (m, 2H), 7.23–7.21 (m, 2H), 5.52 (s, 2H), 3.96 

(dd, J = 16.9, 8.3 Hz, 1H), 3.89–3.76 (m, 2H), 3.50 (dd, J = 17.3, 6.7 Hz, 1H), 3.35 (dd, J 
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= 16.0, 6.6 Hz, 1H). 13C NMR (101 MHz) δ 165.6, 151.2, 146.9, 144.7, 143.4, 136.1, 135.8, 

132.2, 131.1, 129.4, 128.7 (2C), 128.6, 128.5 (2C), 128.5 (2C), 128.3 (2C), 128.3, 126.7, 

123.9, 67.4, 43.7, 41.6, 39.0. HRMS (ESI) m/z calcd for C26H21ClNO2 ([M+H]+) 414.1261; 

found 414.1270. 

 

Benzyl 2-(2-methoxyphenyl)-2,3-dihydro-1H-cyclopenta[c]quinoline-4-carboxylate 

(92c). Synthesized using general procedure 9. Pale yellow oil (31.0 mg, 65%). TLC: Rf 

0.39 (7:3 hexanes/EtOAc). IR (NaCl): 3062, 3034, 2943, 2837, 1720, 1598, 1581, 1566, 

1492, 1458, 1436, 1388, 1317, 1244, 1192, 1157, 1111, 1087, 1053, 1022, 754, 698. 1H 

NMR (400 MHz) δ 8.31 (d, J = 8.6 Hz, 1H), 7.83 (d, J = 8.2 Hz, 1H), 7.71 (d, J = 8.4 Hz, 

1H), 7.62 (t, J = 7.8 Hz, 1H), 7.52 (d, J = 7.3 Hz, 1H), 7.39–7.32 (m, 4H), 7.23–7.19 (m, 

2H), 6.92–6.87 (m, 2H), 5.52 (s, 2H), 4.20–4.12 (m, 1H), 3.92–3.84 (m, 1H), 3.82 (s, 3H), 

3.77–3.70 (m, 1H), 3.60 (dd, J = 17.3, 7.7 Hz, 1H), 3.43 (dd, J = 17.1, 7.8 Hz, 1H). 13C 

NMR (101 MHz) δ 165.8, 157.4, 152.2, 146.7, 144.9, 136.8, 135.9, 132.6, 131.0, 129.1, 

128.6, 128.5 (2C), 128.5 (2C), 128.3, 128.2, 127.5, 127.3, 124.1, 120.5, 110.5, 67.3, 55.3, 

39.9, 38.7, 37.5. HRMS (ESI) m/z calcd for C27H24NO3 ([M+H]+) 410.1756; found 

410.1768. 
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Benzyl 2-(4-methoxyphenyl)-2,3-dihydro-1H-cyclopenta[c]quinoline-4-carboxylate 

(92d). Synthesized using general procedure 9. Orange solid (38.3 mg, 80%, mp 108–111 

°C). TLC: Rf 0.32 (7:3 hexanes/EtOAc). IR (NaCl): 3062, 3034, 2939, 2835, 1718, 1610, 

1512, 1456, 1382, 1315, 1246, 1188, 1157, 1087, 1031, 1014, 829, 756. 1H NMR (400 

MHz) δ 8.31 (d, J = 8.6 Hz, 1H), 7.82 (dd, J = 8.4, 1.6 Hz, 1H), 7.73 (ddd, J = 8.5, 6.9, 1.6 

Hz, 1H), 7.63 (ddd, J = 8.3, 6.9, 1.4 Hz, 1H), 7.54–7.51 (m, 1H), 7.40–7.31 (m, 4H), 7.23–

7.21 (m, 2H), 6.86 (d, J = 8.7 Hz, 2H), 5.53 (s, 2H), 3.98–3.91 (m, 1H), 3.88–3.82 (m, 1H), 

3.80 (s, 3H), 3.76 (d, J = 8.5 Hz, 1H), 3.51 (dd, J = 17.0, 6.9 Hz, 1H), 3.36 (dd, J = 16.1, 

7.1 Hz, 1H). 13C NMR (101 MHz) δ 165.7, 158.2, 151.7, 146.8, 144.8, 136.9, 136.4, 135.8, 

131.1, 129.2, 128.5 (2C), 128.5 (2C), 128.4, 128.3, 127.8 (2C), 126.8, 123.9, 113.9 (2C), 

67.4, 55.3, 43.6, 41.8, 39.2. HRMS (ESI) m/z calcd for C27H24NO3 ([M+H]+) 410.1756; 

found 410.1762.  

  

Benzyl 2-(4-cyanophenyl)-2,3-dihydro-1H-cyclopenta[c]quinoline-4-carboxylate 

(92e). Synthesized using general procedure 9. Pale yellow solid (30.3 mg, 62%, mp 165–
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167 °C). TLC: Rf 0.30 (7:3 hexanes/EtOAc). IR (NaCl): 3061, 3035, 2926, 2382, 2345, 

2225, 1720, 1608, 1502, 1317, 1244, 1192, 1157, 1087, 1012, 839, 756. 1H NMR (400 

MHz) δ 8.32 (d, J = 8.5 Hz, 1H), 7.82 (dd, J = 8.3, 1.4 Hz, 1H), 7.76 (ddd, J = 8.6, 6.8, 1.5 

Hz, 1H), 7.66 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.61 (d, J = 8.3 Hz, 2H), 7.53–7.51 (m, 2H), 

7.40–7.33 (m, 5H), 5.52 (s, 2H), 4.04–3.90 (m, 2H), 3.85 (dd, J = 17.0, 8.5 Hz, 1H), 3.54 

(dd, J = 16.4, 6.3 Hz, 1H), 3.39 (dd, J = 17.0, 7.1 Hz, 1H). 13C NMR (101 MHz) δ 165.6, 

150.8, 150.6, 146.9, 144.6, 135.7, 132.5 (2C), 131.2, 129.6, 128.8, 128.6 (3C), 128.6 (2C), 

128.4, 127.8 (2C), 126.6, 123.8, 118.8, 110.4, 67.5, 44.2, 41.5, 38.8. HRMS (ESI) m/z 

calcd for C27H21N2O2 ([M+H]+) 405.1603; found 405.1601. 

 

Benzyl 8-bromo-2-phenyl-2,3-dihydro-1H-cyclopenta[c]quinoline-4-carboxylate 

(92f). Synthesized using general procedure 9. Pale yellow oil (35.0 mg, 76%). TLC: Rf 

0.32 (4:1 hexanes/EtOAc). IR (NaCl): 3062, 3032, 2922, 1722, 1581, 1490, 1292, 1238, 

1182, 1012, 827, 754, 698. 1H NMR (400 MHz) δ 8.16 (d, J = 9.1 Hz, 1H), 7.99 (s, 1H), 

7.79 (d, J = 9.1 Hz, 1H), 7.51 (d, J = 8.0 Hz, 2H), 7.39–7.22 (m, 8H), 5.51 (s, 2H), 4.00–

3.85 (m, 2H), 3.76 (dd, J = 17.0, 8.5 Hz, 1H), 3.56 (dd, J = 16.7, 7.0 Hz, 1H), 3.36 (dd, J 

= 17.1, 7.7 Hz, 1H). 13C NMR (101 MHz) δ 165.4, 150.8, 145.3, 145.1, 144.6, 137.4, 

135.6, 132.9, 132.7, 128.7 (2C), 128.6 (4C), 128.4, 127.9, 126.8 (2C), 126.6, 126.4, 122.9, 

67.5, 44.2, 41.6, 38.9. HRMS (ESI) m/z calcd for C26H20BrNO2Na ([M+Na]+) 480.0575; 

found 480.0574. 
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Benzyl 6,8-dibromo-2-phenyl-2,3-dihydro-1H-cyclopenta[c]quinoline-4-carboxylate 

(92g). Synthesized using general procedure 9. White needles (30.5 mg, 72%, mp 136–137 

°C). TLC: Rf 0.62 (7:3 hexanes/EtOAc). IR (NaCl): 3062, 3030, 2943, 2895, 1720, 1676, 

1597, 1577, 1544, 1496, 1471, 1454, 1425, 1396, 1361, 1330, 1274, 1182, 1116, 1076, 

1026, 956, 908, 856, 777. 1H NMR (500 MHz) δ 8.17 (d, J = 2.0 Hz, 1H), 7.96 (d, J = 2.1 

Hz, 1H), 7.58–7.56 (m, 2H), 7.42–7.39 (m, 2H), 7.36–7.32 (m, 3H), 7.29–7.27 (m, 3H), 

5.54–5.48 (m, 2H), 4.03–3.90 (m, 2H), 3.77 (dd, J = 17.1, 8.5 Hz, 1H), 3.59 (dd, J = 16.9, 

7.0 Hz, 1H), 3.37 (dd, J = 17.2, 7.6 Hz, 1H). 13C NMR (126 MHz) δ 165.0, 151.6, 145.4, 

144.4, 142.8, 138.5, 135.9, 135.7, 128.7 (2C), 128.6 (2C), 128.4, 128.2, 128.1 (2C), 127.8, 

126.8 (2C), 126.7, 126.2, 122.1, 67.3, 44.3, 41.2, 39.1. HRMS (ESI) m/z calcd for 

C26H19Br2NO2Na ([M+Na]+) 557.9680; found 557.9680. 

 

Benzyl 8-cyano-2-phenyl-2,3-dihydro-1H-cyclopenta[c]quinoline-4-carboxylate 

(92h). Synthesized using general procedure 9. Pale yellow oil (32.7 mg, 67%). TLC: Rf 

0.38 (7:3 hexanes/EtOAc). IR (NaCl): 3062, 3032, 2949, 2225, 1724, 1647, 1608, 1566, 

1498, 1454, 1384, 1348, 1307, 1267, 1246, 1184, 1155, 1095, 1053, 1014, 956, 908, 837, 
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754. 1H NMR (400 MHz) δ 8.39 (d, J = 8.8 Hz, 1H), 8.24 (d, J = 1.8 Hz, 1H), 7.86 (dd, J 

= 8.8, 1.8 Hz, 1H), 7.53–7.50 (m, 2H), 7.39–7.33 (m, 6H), 7.30–7.28 (m, 2H), 5.52 (s, 2H), 

4.02–3.92 (m, 2H), 3.87–3.80 (m, 1H), 3.58 (dd, J = 15.8, 5.9 Hz, 1H), 3.47–3.41 (m, 1H). 

13C NMR (101 MHz) δ 165.0, 152.7, 147.6, 147.4, 144.1, 138.2, 135.3, 132.4, 130.6, 

129.7, 128.8 (2C), 128.6 (2C), 128.6 (2C), 128.5, 126.8 (2C), 126.8, 126.1, 118.4, 111.9, 

67.8, 44.2, 41.5, 38.9. HRMS (ESI) m/z calcd for C27H21N2O2 ([M+H]+) 405.1603; found. 

405.1603. 

 

Benzyl 2,8-diphenyl-2,3-dihydro-1H-cyclopenta[c]quinoline-4-carboxylate (92i). 

Synthesized using general procedure 9. Pale yellow oil (33.8 mg, 74%). TLC: Rf 0.19 (4:1 

hexanes/EtOAc). IR (NaCl): 3399, 3368, 3341, 3059, 3032, 2947, 2924, 1721, 1493, 1452, 

1310, 1252, 1182, 1101, 1013, 908, 837, 754.  1H NMR (400 MHz) δ 8.38 (d, J = 8.8 Hz, 

1H), 8.00 (d, J = 9.8 Hz, 2H), 7.74 (d, J = 7.7 Hz, 2H), 7.52 (q, J = 7.7 Hz, 4H), 7.55–7.32 

(m, 9H), 5.54 (s, 2H), 4.03–3.84 (m, 3H), 3.59 (dd, J = 16.9, 6.4 Hz, 1H), 3.46 (dd, J = 

15.9, 6.5 Hz, 1H). 13C NMR (101 MHz) δ 165.7, 151.7, 146.2, 144.9, 144.6, 141.2, 140.1, 

136.8, 135.8, 131.5, 129.1, 129.0 (2C), 128.6 (2C), 128.6 (4C), 128.3, 128.1, 127.5 (2C), 

127.1, 126.9, 126.5, 121.6, 67.4, 44.3, 41.7, 39.1. HRMS (ESI) m/z calcd for C32H26NO2 

([M+H]+) 456.1964; found 456.1964. 
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Benzyl (E)-2-styryl-2,3-dihydro-1H-cyclopenta[c]quinoline-4-carboxylate (92j). 

Synthesized using general procedure 9. Pale yellow oil (35 mg, 72%). TLC: Rf 0.45 (7:3 

hexanes/EtOAc). 1H NMR (400 MHz) δ 8.30 (d, J = 8.6 Hz, 1H), 7.83 (d, J = 8.2 Hz, 1H), 

7.72 (t, J = 7.6 Hz, 1H), 7.63 (t, J = 7.5 Hz, 1H), 7.53 (d, J = 7.4 Hz, 2H), 7.40–7.29 (m, 

7H), 7.26–7.20 (m, 1H), 6.54 (d, J = 15.7 Hz, 1H), 6.39 (dd, J = 15.8, 7.7 Hz, 1H), 5.53 (s, 

2H), 3.76 (dd, J = 16.8, 8.0 Hz, 1H), 3.61 (dd, J = 16.6, 8.3 Hz, 1H), 3.52–3.43 (m, 1H), 

3.36 (dd, J = 17.0, 7.2 Hz, 1H), 3.21 (dd, J = 16.8, 7.3 Hz, 1H). 13C NMR (101 MHz) δ 

165.7, 151.7, 146.7, 144.9, 137.2, 136.3, 135.8, 133.0, 131.1, 129.8, 129.2, 128.6 (2C), 

128.5 (4C), 128.4, 128.3, 127.3, 126.9, 126.1 (2C), 124.0, 67.4, 42.6, 40.1, 37.6. HRMS 

(ESI) m/z calcd for C28H24NO2 ([M+H]+) 406.1807; found 406.1806. 

 

4-((benzyloxy)(l3-oxidaneylidene)methyl)-2-(furan-2-yl)-2,3-dihydro-1H-

cyclopenta[c]quinoline (92k). Synthesized using general procedure 9. Pale yellow oil (30 

mg, 62%). TLC: Rf 0.33 (4:1 hexanes/EtOAc). IR (NaCl): 3743, 3062, 3034, 2947, 1718, 

1560, 1504, 1454, 1425, 1388, 1244, 1192, 1157, 1085, 1012, 756, 736, 698. 1H NMR 

(400 MHz) δ 8.30 (d, J = 8.5 Hz, 1H), 7.82 (dd, J = 8.2, 1.4 Hz, 1H), 7.72 (ddd, J = 8.5, 
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6.8, 1.5 Hz, 1H), 7.63 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.54–7.52 (m, 2H), 7.41–7.34 (m, 

4H), 6.30 (dd, J = 3.2, 1.9 Hz, 1H), 6.11 (d, J = 3.2 Hz, 1H), 5.53 (s, 2H), 3.97–3.85 (m, 

2H), 3.77–3.70 (m, 1H), 3.65–3.60 (m, 1H), 3.50–3.44 (m, 1H). 13C NMR (101 MHz) δ 

165.6, 157.5, 151.1, 146.7, 144.7, 141.4, 135.9, 135.8, 131.1, 129.3, 128.5 (2C), 128.5 

(3C), 128.3, 126.8, 123.9, 110.1, 104.5, 67.4, 39.0, 37.5, 36.5. HRMS (ESI) m/z calcd for 

C24H20NO3 ([M+H]+) 370.1443; found 370.1455. 

 

Prop-2-yn-1-yl 2-phenyl-2,3-dihydro-1H-cyclopenta[c]quinoline-4-carboxylate (92l). 

Synthesized using general procedure 9. Pale yellow oil (34.2 mg, 78%). TLC: Rf 0.28 (4:1 

hexanes/EtOAc). IR (NaCl): 3286, 3061, 3028, 2937, 2846, 2384, 2345, 2038, 1726, 1570, 

1498, 1452, 1429, 1386, 1363, 1317, 1242, 1190, 1157, 1087, 1026, 1004, 758, 702, 636. 

1H NMR (400 MHz) δ 8.32 (d, J = 8.5 Hz, 1H), 7.84 (d, J = 8.3 Hz, 1H), 7.75 (ddd, J = 

8.5, 6.8, 1.5 Hz, 1H), 7.65 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.34–7.33 (m, 4H), 7.27–7.23 

(m, 1H), 5.06 (d, J = 2.5 Hz, 2H), 4.05 (dd, J = 17.1, 8.5 Hz, 1H), 3.97–3.87 (m, 1H), 3.83 

(dd, J = 16.7, 8.8 Hz, 1H), 3.61 (dd, J = 17.2, 7.5 Hz, 1H), 3.43 (dd, J = 16.8, 7.8 Hz, 1H), 

2.53 (t, J = 2.5 Hz, 1H). 13C NMR (101 MHz) δ 165.1, 152.0, 146.9, 145.0, 144.0, 136.8, 

131.2, 129.6, 128.8, 128.8 (2C), 127.1 (2C), 127.0, 126.7, 124.2, 77.6, 75.5, 53.3, 44.5, 

41.8, 39.3. HRMS (ESI) m/z calcd for C22H18NO2 ([M+H]+) 328.1338; found 328.1339. 
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Ethyl 2-(4-chlorophenyl)-3-methyl-2,3-dihydro-1H-cyclopenta[c]quinoline-4-

carboxylate (92m). Synthesized using general procedure 9. Orange solid (24.6 mg, 58%). 

Recrystallization from ethyl acetate (slow evaporation method) yielded triclinic colorless 

plates (mp 165–167 °C). TLC: Rf 0.50 (7:3 hexanes/EtOAc). IR (NaCl): 3061, 2972, 2930, 

2868, 1719, 1568, 1493, 1454, 1371, 1317, 1244, 1188, 1159, 1094, 1032, 1022, 829, 760, 

733. 1H NMR (300 MHz) δ 8.32 (d, J = 9.0 Hz, 1H), 7.91 (dt, J = 8.1, 1.0 Hz, 1H), 7.75 

(ddd, J = 8.5, 6.8, 1.5 Hz, 1H), 7.66 (ddd, J = 8.1, 6.9, 1.3 Hz, 1H), 7.40–7.32 (m, 4H), 

4.56 (q, J = 7.1 Hz, 2H), 4.25 (p, J = 7.1 Hz, 1H), 4.02–3.93 (m, 1H), 3.58 (d, J = 9 Hz, 

2H), 1.49 (t, J = 7.1 Hz, 3H), 0.88 (d, J = 7.0 Hz, 3H). 13C NMR (75 MHz) δ 165.7, 150.6, 

146.6, 144.8, 141.9, 138.8, 132.3, 131.1, 129.5 (2C), 129.4, 128.5 (2C), 128.5, 127.0, 

124.0, 62.0, 48.8, 43.7, 32.0, 15.4, 14.3. HRMS (ESI) m/z calcd for C22H21ClNO2 

([M+H]+) 366.1261 ; found 366.1266. 

 

Ethyl 3-methyl-2-phenyl-2,3-dihydro-1H-cyclopenta[c]quinoline-4-carboxylate 

(92n). Synthesized using general procedure 9. Pale yellow oil (24.8 mg, 56%). TLC: Rf 
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0.30 (4:1 hexanes/EtOAc). IR (NaCl): 3061, 2972, 2934, 2903, 1719, 1603, 1570, 1499, 

1452, 1371, 1317, 1242, 1190, 1159, 1099, 1032, 864, 779, 754, 700. 1H NMR (300 MHz) 

δ 8.31 (ddd, J = 8.5, 1.4, 0.7 Hz, 1H), 7.92 (ddd, J = 8.1, 1.6, 0.7 Hz, 1H), 7.75 (ddd, J = 

8.5, 6.8, 1.6 Hz, 1H), 7.66 (ddd, J = 8.1, 6.8, 1.3 Hz, 1H), 7.42–7.40 (m, 4H), 4.56 (q, J = 

6.0 Hz, 2H), 4.27 (p, J = 9.0 Hz, 1H), 4.09–3.94 (dt, J = 12.0, 6.0 Hz, 1H), 3.70–3.53 (m, 

3H), 1.49 (t, J = 9.0 Hz, 3H), 0.89 (d, J = 9.0 Hz, 3H). 13C NMR (75 MHz) δ 165.7, 150.9, 

146.6, 144.8, 142.2, 140.2, 131.0, 129.3, 128.3 (2C), 128.2 (2C), 127.0, 126.5, 124.1, 

122.4, 62.0, 49.3, 43.8, 31.9, 15.5, 14.3. HRMS (ESI) m/z calcd for C22H22NO2 ([M+H]+) 

332.1651; found 332.1656. 

 

Ethyl 3-(((tert-butyldimethylsilyl)oxy)methyl)-2-phenyl-2,3-dihydro-1H-

cyclopenta[c]quinoline-4-carboxylate (92o). Synthesized using general procedure 9. 

White oil (45.8 mg, 74%). TLC: Rf 0.50 (8:2 hexanes/EtOAc). IR (NaCl): 3854, 3744, 

3618, 2951, 2930, 2887, 2857, 1717, 1647, 1562, 1504, 1464, 1368, 1317, 1248, 1186, 

1157, 1119, 1094, 1061, 1030, 837, 777, 698. 1H NMR (300 MHz) δ 8.30 (d, J = 9 Hz, 

1H), 7.89 (ddd, J = 8.1, 1.6, 0.7 Hz, 1H), 7.74 (ddd, J = 8.5, 6.8, 1.5 Hz, 1H), 7.65 (ddd, J 

= 8.1, 6.8, 1.3 Hz, 1H), 7.54 (ddd, J = 7.6, 1.5, 0.6 Hz, 2H), 7.43–7.36 (m, 2H), 7.33–7.29 

(m, 1H), 4.55 (qd, J = 7.1, 1.3 Hz, 2H), 4.18 (dt, J = 9.0, 3.0 Hz, 1H), 4.03 (dt, J = 11.9, 

8.0 Hz, 1H), 3.92–3.81 (m, 2H), 3.55–3.46 (m, 2H), 1.48 (t, J = 7.1 Hz, 3H), 0.49 (s, 9H), 

-0.33 (s, 3H), -0.59 (s, 3H). 13C NMR (101 MHz) δ 166.1, 154.2, 146.6, 139.9, 137.4, 
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130.9, 129.3, 128.7 (2C), 128.3, 128.3, 128.2 (2C), 126.8, 126.6, 124.0, 62.8, 61.9, 51.6, 

49.1, 35.3, 25.4 (3C), 17.7, 14.4, -6.1, -6.3. HRMS (ESI) m/z calcd for C28H36NO3Si 

([M+H]+) 462.2464; found 462.2461.  

 

Prop-2-yn-1-yl 2-diazobut-3-enoate (96). The solution of prop-2-yn-1-yl 2-diazo-3-

oxobutanoate (3.61 mmol) in 12 mL MeOH at 0 °C was slowly added NaBH4 (137 mg, 

3.61 mmol). The resulting solution was warmed to room temperature and stirred for 30 

min. The MeOH was evaporated and the residue was diluted with water (15 mL) and 

extracted with EtOAc (50 mL) and dried over anhydrous Na2SO4. After the solvent was 

evaporated, the crude product was purified by column chromatography (3:1 

hexanes/EtOAc) to give alcohol. To a solution of alcohol (3.42 mmol) and Et3N (4.0 equiv) 

in 20 mL CH2Cl2 at 0 °C was slowly added a solution of POCl3 (0.48 ml, 5.13 mmol, 1.5 

equiv) in 5 mL CH2Cl2 over 5 minutes. The resulting solution was stirred at 0 °C for 2 h 

then the reaction mixture was diluted with DCM (10 mL) and water (10 mL). The aqueous 

layer was extracted with DCM (2 × 20 mL). The combined organic layers were dried over 

anhydrous Na2SO4 and concentrated under reduced pressure. Chromatographic 

purification of the crude compound over silica gel (gradient elution with 5–10% EtOAc in 

Hexane) yielded the pure compound 96 (351 mg, 65% over two steps) as a red oil. IR 

(NaCl): 3298, 3951, 2091, 1709, 1616, 1433, 1375, 1306, 1267, 1148, 1099, 1148, 1099, 

1032, 978, 920, 880, 743, 681, 644. 1H NMR (400 MHz) δ 6.15 (ddd, J = 17.3, 11.0, 3.3 
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Hz, 1H), 5.13 (dd, J = 11.0, 3.3 Hz, 1H), 4.88 (dd, J = 17.6, 3.3 Hz, 1H), 4.80 (s, 2H), 2.49 

(s, 1H). 13C NMR (101 MHz) δ 163.9, 119.9, 107.9, 77.4, 75.2, 52.4 (C=N2 not observed). 

 

Ethyl (E)-5-((tert-butyldimethylsilyl)oxy)-2-diazopent-3-enoate (100). To a solution of 

ethyl diazoacetate (1.0 equiv, 0.2 M) in 7 mL anhydrous THF at –78 °C, was added 

LiHMDS (1.0 equiv, 1 M) in THF. The resulting mixture was stirred for 15 min at –78 °C. 

3-((tert-butyldimethylsilyl)oxy)propanal (1.0 equiv, 0.8 M) in THF prepared from known 

literature protocol was added.193 The resulting solution was stirred at –78 °C to –20 °C for 

2 h. The reaction mixture was quenched by saturated solution of NH4Cl (10 mL), extracted 

with EtOAc (30 mL) and the combined layers were dried over Na2SO4 and concentrated 

under reduced pressure to give the crude compound ethyl 5-((tert-butyldimethylsilyl)oxy)-

2-diazo-3-hydroxypentanoate (0.5 mmol, 1.0 equiv), was redissolved in dry CH2Cl2 (3 mL) 

and Et3N (2.2 mmol, 4.0 equiv) at 0 °C was slowly added a solution of POCl3 (0.48 mL, 

5.3 mmol) in 3 mL CH2Cl2 over 5 min. The resulting solution was stirred for 2 h at 0 °C. 

The reaction mixture was poured into ice water and extracted with DCM (30 mL). The 

combined layers were dried over Na2SO4 and concentrated under reduced pressure. 

Chromatographic purification of the crude compound over silica gel (1:49 EtOAc:Hex) 

yielded the pure compound 100 (101 mg, 30% over two steps) as a red liquid TLC: Rf 0.60 

(9:1 hexanes/EtOAc). IR (NaCl): 2955, 2932, 2857, 2083, 1707, 1649, 1468, 1371, 1331, 

1128, 1103, 1065, 1011, 955, 837, 777, 739. 1H NMR (400 MHz) δ 6.02 (dt, J = 16.0, 4.0 

Hz, 1H), 5.44 (dt, J = 16.0, 8.0 Hz, 1H), 4.29–4.23 (m, 4H), 1.29 (t, J = 9.0 Hz, 3H), 0.91 
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(s, 9H), 0.08 (s, 6H). 13C NMR (101 MHz) δ 165.3, 123.2, 113.2, 63.4, 61.1, 25.9 (3C), 

18.4, 14.4, -5.2 (2C).  

 

Ethyl 3-(((tert-butyldimethylsilyl)oxy)methyl)-2-phenyl-2,3-dihydro-1H-

cyclopenta[c]quinoline-4-carboxylate (101). To a solution of 92o (0.06 mmol, 0.03 M) 

in THF was added tetrabutylammonium fluoride solution (4.0 equiv, 1.0 M) in THF at 0 

°C.  Reaction was then refluxed 4 h and then quenched with water. The aqueous layer was 

extracted with EtOAc (3 × 5 mL), the combined organic layers were dried over anhydrous 

Na2SO4 and concentrated under reduced pressure. Chromatographic purification of the 

crude compound over silica gel (gradient elution with 100% EtOAc) yielded the compound 

101 as pale yellow oil (13.8 mg, 73%). TLC: Rf 0.1 (5% MeOH/EtOAc). IR (NaCl): 3408, 

3059, 2928, 2880, 1730, 1663, 1589, 1452, 1387, 1240, 1188, 1159, 1074, 1043, 760, 735, 

702. 1H NMR (400 MHz) δ 8.27 (d, J = 8.5 Hz, 1H), 8.04–7.98 (d, J = 9.0 Hz, 1H), 7.85 

(t, J = 7.7 Hz, 1H), 7.76 (t, J = 7.6 Hz, 1H), 7.50 (d, J = 6.0 Hz, 2H), 7.43 (t, J = 7.5 Hz, 

2H), 7.33 (t, J = 3.0 Hz, 1H), 4.53 (q, J = 6.4 Hz, 1H), 4.12 (dt, J = 12.1, 7.9 Hz, 1H), 3.96–

3.86 (m, 2H), 3.62 (dd, J = 16.5, 7.9 Hz, 1H), 3.52 (dd, J = 11.0, 6.6 Hz, 1H). 13C NMR 

(101 MHz) δ 164.8, 156.8, 143.8, 142.6, 138.7, 137.7, 131.1, 129.3, 128.7 (2C), 128.0 

(2C), 127.5, 127.1, 126.3, 124.6, 62.8, 50.3, 48.8, 33.7. HRMS (ESI) m/z calcd for 

C20H16NO2 ([M+H]+) 302.1181; found 302.1178. 
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Ethyl 2-diazo-3-methylbut-3-enoate (104). Compound was prepared using known 

literature procedure.194 

 

 
 

Prepared using general procedure D. Benzyl 9b-hydroxy-3a-methyl-2-phenyl-

2,3,3a,9b-tetrahydro-1H-cyclopenta[c]quinoline-4-carboxylate (105, major 

diastereomer). Yellow oil (34 mg, 72%) as a 1.4:1 mixture of diastereomers 105 and 105’. 

TLC: Rf 0.25 (4:1 hexanes/EtOAc). IR (NaCl):  2976, 2938, 2378, 2315, 1722, 1678, 1603, 

1514, 1454, 1393, 1369, 1315, 1294, 1265, 1215, 1163, 1128, 1111, 1043, 858, 772, 752, 

702. 1H NMR (400 MHz) δ 7.66–7.64 (m, 1H), 7.56–7.54 (m, 1H), 7.39–7.37 (m, 2H), 

7.33–7.28 (m, 4H), 7.22–7.16 (m, 1H), 4.55–4.45 (m, 1H), 4.45–4.35 (m, 1H), 3.22–3.11 

(m, 1H), 2.73 (dd, J = 13.4, 7.5 Hz, 1H), 2.42 (dd, J = 15.0, 11.5 Hz, 1H), 2.30–2.26 (m, 

1H), 2.13 (dd, J = 15.1, 6.2 Hz, 1H), 1.83–1.77 (m, 1H), 1.44 (t, J = 7.0 Hz, 2H), 1.30 (s, 

3H). 13C NMR (101 MHz) δ 167.3, 165.2, 145.7, 140.1, 133.5, 129.9, 128.8, 128.6, 128.5 

(2C), 127.2 (2C), 126.2, 123.8, 80.9, 61.9, 51.6, 49.5, 44.5, 43.1, 15.3, 14.3. HRMS (ESI) 

m/z calcd for C22H24NO3 ([M+H]+) 350.1756; found 350.1756.  
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Benzyl 9b-hydroxy-3a-methyl-2-phenyl-2,3,3a,9b-tetrahydro-1H-

cyclopenta[c]quinoline-4-carboxylate (105’, minor diastereomer). Yellow oil (20.4 mg, 

38%). TLC: Rf 0.19 (4:1 hexanes/EtOAc). IR (NaCl): 2978, 2936, 2361, 2334, 1719, 1649, 

1558, 1539, 1508, 1456, 1369, 1290, 1238, 1042, 756, 700. 1H NMR (400 MHz) δ 7.69–

7.67 (m, 1H), 7.60–7.57 (m, 1H), 7.42–7.37 (m, 2H), 7.24 (d, J = 7.4 Hz, 2H), 7.20–7.12 

(m, 3H), 4.47–4.39 (m, 1H), 4.36–4.28 (m, 1H), 3.65–3.56 (m, 1H), 2.61 (dd, J = 14.7, 

10.5 Hz, 1H), 2.41 (dd, J = 14.8, 7.1 Hz, 1H), 2.27 (dd, J = 13.6, 7.3 Hz, 1H), 2.05 (dd, J 

= 13.5, 11.5 Hz, 1H), 1.90 (s, 1H), 1.40 (s, 3H), 1.36 (t, J = 7.1 Hz, 2H). 13C NMR (101 

MHz) δ 167.5, 165.3, 144.7, 139.8, 132.9, 130.0, 129.2, 128.8, 128.5 (2C), 127.1 (2C), 

126.2, 124.5, 81.7, 61.9, 50.3, 49.0, 45.2, 39.8, 17.6, 14.2. HRMS (ESI) m/z calcd for 

C22H24NO3 ([M+H]+) 350.1756; found 350.1759.  

Chapter 7.4. Experimentals for Chapter 5. 

 

General Procedure 10:  To a solution of corresponding 2'-aminochalcone 90 (1.0 equiv, 

0.33 M) in DMF was successively added potassium carbonate (3.0 equiv) and benzyl 
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bromide (2.0 equiv) at 0 °C. Reaction was then allowed to stir at 25 °C for 12-24 h.  

Reaction was quenched with water and extracted with diethyl ether (3 x 7 mL). The 

combined organic layers were dried over anhydrous Na2SO4 and concentrated under 

reduced pressure. Chromatographic purification of the crude compound over silica gel 

(gradient elution with 5–15% EtOAc in Hexane) yielded pure benzylated product 106. 

 

 

(E)-1-(2-(benzylamino)phenyl)-3-phenylprop-2-en-1-one (106a). Starting Material was 

prepared using general procedure 10 and matched literature known values.195 

 

(E)-1-(2-(benzylamino)phenyl)-3-(4-chlorophenyl)prop-2-en-1-one (106b). 

Synthesized using general procedure 10. Orange solid (mp 155−156 °C). TLC: Rf 0.57 (4:1 

hexanes/EtOAc). IR (NaCl): 3289, 3076, 3028, 1638, 1605, 1570, 1514, 1487, 1447, 1406, 

1312, 1288, 1269, 1198, 1157, 1086, 1003, 974, 816, 737, 696. 1H NMR (300 MHz) δ 9.52 

(t, J = 5.8 Hz, 1H), 7.92 (dd, J = 8.1, 1.6 Hz, 1H), 7.67 (d, J = 1.6 Hz, 2H), 7.57–7.54 (m, 

2H), 7.40–7.26 (m, 8H), 6.72 (d, J = 8.6 Hz, 1H), 6.67 (t, J = 7.5 Hz, 1H), 4.50 (d, J = 5.6 

Hz, 2H). 13C NMR (75 MHz) δ 191.2, 151.7, 141.1, 138.5, 135.8, 135.1, 133.8, 131.5, 

129.3 (2C), 129.1 (2C), 128.7 (2C), 127.2, 127.1 (2C), 123.6, 118.3, 114.5, 112.3, 46.9. 

HRMS (ESI) m/z calcd for C22H19ClNO ([M+H]+) 348.1155; found 348.1161. 
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(E)-1-(2-(benzylamino)phenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (106c). Starting 

Material was prepared using general procedure 10 and matched literature known values.196 

 

 

(E)-4-(3-(2-(benzylamino)phenyl)-3-oxoprop-1-en-1-yl)benzonitrile (106d). 

Synthesized using general procedure 10. Orange solid (mp 147−149 °C). TLC: Rf 0.80 (4:1 

hexanes/EtOAc). IR (NaCl): 3319, 3287, 3063, 3032, 2924, 2851, 2224, 1641, 1607, 1572, 

1514, 1452, 1414, 1346, 1327, 1296, 1275, 1244, 1207, 1165, 1080, 1053, 1005, 974, 827, 

748, 700, 652. 1H NMR (300 MHz) δ 9.55 (t, J = 5.7 Hz, 1H), 7.90 (dd, J = 8.2, 1.6 Hz, 

1H), 7.76 (d, J = 15.6 Hz, 1H), 7.70−7.64 (m, 5H), 7.40–7.26 (m, 6H), 6.73 (dd, J = 8.7, 

1.1 Hz, 1H), 6.67 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 4.50 (d, J = 5.5 Hz, 2H). 13C NMR (75 

MHz) δ 190.5, 151.8, 139.9, 139.6, 138.3, 135.4, 132.5 (2C), 131.5, 128.7 (2C), 128.4 

(2C), 127.2, 127.0 (2C), 126.3, 118.5, 118.0, 114.5, 112.8, 112.3, 46.8. HRMS (ESI) m/z 

calcd for C23H19N2O ([M+H]+) 339.1497; found 339.1498. 
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(E)-1-(4-(benzylamino)-[1,1'-biphenyl]-3-yl)-3-phenylprop-2-en-1-one (106e). 

Synthesized using general procedure 10. Orange solid (mp 145−147 °C). TLC: Rf 0.77 (4:1 

hexanes/EtOAc). IR (NaCl): 3300, 3028, 2849, 1641, 1614, 1566, 1524, 1491, 1450, 1425, 

1354, 1271, 1186, 1070, 1026, 1001, 974, 853, 818, 766, 737, 696. 1H NMR (300 MHz) δ 

9.58 (t, J = 5.7 Hz, 1H), 8.17 (d, J = 2.3 Hz, 1H), 7.87−7.74 (m, 2H), 7.70−7.58 (m, 5H), 

7.50–7.32 (m, 11H), 6.83 (d, J = 8.8 Hz, 1H), 4.57 (d, J = 5.3 Hz, 2H). 13C NMR (75 MHz) 

δ 191.7, 150.8, 143.0, 140.6, 138.4, 135.2, 133.8, 130.1, 129.9, 128.8 (2C), 128.8 (2C), 

128.7 (2C), 128.3 (2C), 127.6, 127.2, 127.1 (2C), 126.4, 126.3, 123.0, 118.8, 112.8, 46.9. 

HRMS (ESI) m/z calcd for C28H24NO ([M+H]+) 390.1858; found 390.1861. 

 

(E)-1-(2-(benzylamino)-5-bromophenyl)-3-phenylprop-2-en-1-one (106f). Synthesized 

using general procedure 10. Orange solid (mp 137–140°C).  TLC: Rf 0.54 (9:1 

hexanes/EtOAc). IR (neat): 3285, 3052, 3022, 2933, 2909, 2876,1635, 1597, 1563, 1494, 

1474, 1446, 1410, 1348, 1323, 1304, 1276, 1184, 1173, 1096, 988, 854, 805, 769, 734, 

687, 643, 576. 1H NMR (300 MHz) δ 9.48 (t, J = 5.7 Hz, 1H), 8.00 (d, J = 2.4 Hz, 1H), 

7.76 (d, J = 15.5 Hz, 1H), 7.68–7.63 (m, 2H), 7.58 (d, J = 15.5 Hz, 1H), 7.46–7.38 (m, 3H), 

7.38–7.33 (m, 4H), 7.33–7.27 (m, 1H), 6.60 (dd, J = 9.1, 0.9 Hz, 1H), 4.48 (t, J = 2.9 Hz, 

2H). 13C NMR (75 MHz) δ 190.7, 150.4, 150.2, 143.7, 138.0, 137.4, 135.0, 133.6, 130.3, 

128.9, 128.8, 128.4, 127.3, 127.0, 122.4, 122.4, 119.9, 114.2, 114.2, 105.8, 46.9, 46.8. 

LRMS (ESI) m/z calcd for C22H21BrNO2 ([M+H+H2O]+) 410.1; found 410.3. 
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To a solution of 1-(2-amino-5-(phenylethynyl)phenyl)ethan-1-one (2.5 mmol) prepared 

according to literature known protocol and benzaldehyde (3.0 mmol) in 10 mL of ethanol 

was added 1.4 mL of 15 wt % NaOH solution at 0 °C. This was allowed to stir to 25 °C for 

24 h. A precipitate formed, and this was filtered and washed with water and then hexanes. 

The isolated solid was taken forward without further purification. Then 550 mg of chalcone 

was then dissolved in 5 mL anhydrous DMF. Three equivalence of K2CO3 was added 

followed by benzyl bromide at 25 °C. The reaction was allowed to stir for 24 hours upon 

which it was quenched with ammonium chloride solution and extracted with diethyl ether 

three times. The combined organic layers were washed twice with water and filtered over 

sodium sulfate. The filtrate was concentrated to volume and immediately purified by flash 

column chromatography eluting product with a gradient of hexanes to 30% ethyl 

acetate:hexanes providing (E)-1-(2-(benzylamino)-5-(phenylethynyl)phenyl)-3-

phenylprop-2-en-1-one (106g). 109 mg, 11% yield over two steps. IR (neat):  3261, 3056, 

3029, 2917, 2848, 2212, 1641, 1611, 1556, 1516, 1427, 1353, 1271, 1186, 1142, 1069, 

998, 974, 851, 820, 776, 754, 744, 688, 668, 608, 579. 1H NMR (400 MHz) δ 9.70 (t, J = 

5.7 Hz, 1H), 8.14 (d, J = 2.0 Hz, 1H), 7.82–7.64 (m, 4H), 7.57–7.51 (m, 2H), 7.49 (dd, J = 

8.8, 1.9 Hz, 1H), 7.46–7.40 (m, 2H), 7.40–7.28 (m, 5H), 6.71 (d, J = 8.8 Hz, 1H), 4.53 (d, 

J = 5.6 Hz, 2H). 13C NMR (101 MHz) δ 191.2, 151.3, 143.4, 138.0, 137.8, 135.2, 135.1, 

131.4 (2C), 130.3, 128.9 (2C), 128.8 (2C), 128.4 (2C), 128.3 (2C), 127.8, 127.4, 127.1 

(2C), 123.6, 122.6, 118.4, 112.5, 108.8, 89.5, 87.4, 46.9. HRMS (ESI) m/z calcd for 

C30H24NO ([M+H]+) 414.1858; found 414.1866. 
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General procedure 11 for the synthesis of azacycles 107 

To a stirred solution of benzyl protected 2'-aminochalcone (0.11 mmol) and Rh2(OAc)4 (1 

mol%) in 1.1 mL toluene was added a solution of corresponding vinyl diazoacetate 48 (0.22 

mmol) in 0.5 mL toluene over 2.5 h via syringe pump at reflux. After the addition was 

completed, the reaction was left to stir at refluxing temperature for an additional 30 

minutes. The crude reaction mixture was concentrated using rotary evaporation and then 

purified using flash column chromatography eluting with 10-15% ethyl acetate: hexanes to 

afford azacycle product 107a–107e.  

 

Benzyl (Z)-1-benzyl-7-oxo-5-phenyl-4,5,6,7-tetrahydro-1H-benzo[b]azonine-2-

carboxylate (107a). Synthesized using general procedure 11. Pale yellow oil (30 mg, 

67%). TLC: Rf 0.42 (4:1 hexanes/EtOAc). IR (NaCl): 3782, 3030, 2390, 2309, 1721, 1686, 

1595, 1485, 1449, 1240, 1163, 1142, 1034, 750, 698. 1H NMR (500 MHz) δ 7.44 (d, J = 

6.9 Hz, 2H), 7.40–7.27 (m, 9H), 7.24–7.15 (m, 6H), 7.12 (d, J = 8.2 Hz, 1H), 7.00–6.92 

(m, 2H), 5.10 (d, J = 12.4 Hz, 1H), 5.03–4.92 (m, 2H), 4.40 (d, J = 14.2 Hz, 1H), 3.65–

3.56 (m, 1H), 3.46 (t, J = 12.1 Hz, 1H), 2.87 (td, J = 12.1, 9.7 Hz, 1H), 2.44 (d, J = 13.3 

Hz, 1H), 2.07–2.00 (m, 1H). 13C NMR (101 MHz) δ 206.1, 163.9, 146.7, 145.3, 142.5, 

140.7, 137.2, 135.6, 134.6, 131.3, 128.7 (2C), 128.7 (2C), 128.6 (2C), 128.4 (2C), 128.1, 

128.0 (2C), 127.8, 127.6, 126.6, 126.6 (2C), 121.0, 118.3, 66.7, 55.9, 49.4, 41.7, 34.9. 

HRMS (ESI) m/z calcd for C33H29NO3Na ([M+Na]+) 510.2045; found 510.2061. 
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Benzyl (Z)-1-benzyl-5-(4-methoxyphenyl)-7-oxo-4,5,6,7-tetrahydro-1H-

benzo[b]azonine-2-carboxylate (107b). Synthesized using general procedure 11. Red oil 

(32.5 mg, 75%). TLC: Rf 0.22 (4:1 hexanes/EtOAc). IR (NaCl):  3030, 2932, 2835, 1717, 

1682, 1645, 1595, 1512, 1452, 1369, 1288, 1250, 1173, 1142, 1034, 910, 829, 748, 739, 

698. 1H NMR (400 MHz) δ 7.44 (d, J = 7.3 Hz, 2H), 7.39–7.25 (m, 7H), 7.18 (dt, J = 7.5, 

2.1 Hz, 3H), 7.12 (dd, J = 8.4, 4.0 Hz, 3H), 7.00–6.92 (m, 2H), 6.85 (d, J = 8.5 Hz, 2H), 

5.11 (d, J = 12.4 Hz, 1H), 5.04–4.91 (m, 2H), 4.40 (d, J = 14.3 Hz, 1H), 3.79 (s, 3H), 3.63–

3.52 (m, 1H), 3.43 (t, J = 12.2 Hz, 1H), 2.90–2.79 (m, 1H), 2.42 (d, J = 13.3 Hz, 1H), 2.07–

1.97 (m, 1H). 13C NMR (101 MHz) δ 206.3, 163.9, 158.2, 146.7, 142.6, 140.7, 137.4, 

137.2, 135.6, 134.6, 131.3, 128.6, 128.5, 128.4, 128.1, 127.9, 127.7, 127.5, 127.5, 120.9, 

118.2, 113.9, 66.7, 55.9, 55.2, 49.7, 40.9, 35.2. HRMS (ESI) m/z calcd for C34H32NO4 

([M+H]+) 518.2331; found 518.2333. 

 

Benzyl (Z)-1-benzyl-5-(4-chlorophenyl)-7-oxo-4,5,6,7-tetrahydro-1H-

benzo[b]azonine-2-carboxylate (107c). Synthesized using general procedure 11. Brown 

oil (25 mg, 69%). TLC: Rf 0.40 (4:1 hexanes/EtOAc). IR (NaCl):  3063, 3032, 2955, 2932, 
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2864, 2380, 1717, 1684, 1651, 1595, 1489, 1452, 1371, 1296, 1240, 1165, 1142, 1096, 

1042, 1011, 984, 934, 910, 826, 737, 700. 1H NMR (400 MHz) δ 7.41 (d, J = 7.0 Hz, 2H), 

7.38–7.24 (m, 9H), 7.20–7.08 (m, 6H), 6.95 (t, J = 7.4 Hz, 2H), 5.10 (d, J = 12.4 Hz, 1H), 

5.00 (d, J = 14.1 Hz, 1H), 4.95 (d, J = 12.4 Hz, 1H), 4.39 (d, J = 14.1 Hz, 1H), 3.56 (t, J = 

12.0 Hz, 1H), 3.43 (t, J = 12.1 Hz, 1H), 2.76 (q, J = 12.0 Hz, 1H), 2.39 (d, J = 13.3 Hz, 

1H), 1.98–1.93 (m, 1H). 13C NMR (101 MHz) δ 205.7, 163.9, 146.8, 143.7, 142.1, 140.8, 

137.2, 135.6, 134.5, 132.3, 131.4, 128.8 (2C), 128.8 (2C), 128.6 (2C), 128.4 (2C), 128.1, 

128.0 (2C), 127.9 (2C), 127.8, 127.6, 121.1, 118.3, 66.8, 55.9, 49.2, 41.1, 34.8. HRMS 

(ESI) m/z calcd for C33H29ClNO3 ([M+H]+) 522.1836; found 522.1838. 

 

Benzyl (Z)-1-benzyl-5-(4-cyanophenyl)-7-oxo-4,5,6,7-tetrahydro-1H-

benzo[b]azonine-2-carboxylate (107d). Synthesized using general procedure 11. Brown 

oil (24.5 mg, 56%). TLC: Rf 0.13 (4:1 hexanes/EtOAc). IR (NaCl):  3032, 2432, 2386, 

2303, 2228, 1721, 1684, 1595, 1487, 1450, 1375, 1244, 1163, 1043, 910, 735, 700. 1H 

NMR (400 MHz) δ 7.60 (d, J = 7.9 Hz, 2H), 7.40 (d, J = 7.5 Hz, 2H), 7.37–7.28 (m, 9H), 

7.18 (d, J = 7.5 Hz, 4H), 6.99–6.89 (m, 2H), 5.09 (d, J = 12.5 Hz, 1H), 5.00 (d, J = 14.0 

Hz, 1H), 4.95 (d, J = 12.4 Hz, 1H), 4.39 (d, J = 14.1 Hz, 1H), 3.59 (t, J = 12.5 Hz, 1H), 

3.48 (t, J = 12.0 Hz, 1H), 2.72 (q, J = 11.3 Hz, 1H), 2.37 (d, J = 13.1 Hz, 1H), 1.93 (t, J = 

8.0 Hz, 1H). 13C NMR (101 MHz) δ 205.1, 163.8, 150.5, 146.9, 141.4, 140.9, 137.2, 135.5, 

134.3, 132.6 (2C), 131.6, 128.9 (2C), 128.6 (2C), 128.5, 128.4 (2C), 128.2, 128.0 (2C), 
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127.9, 127.7, 127.4 (2C), 121.3, 118.4, 110.7, 66.8, 55.8, 48.6, 41.6, 34.3. HRMS (ESI) 

m/z calcd for C34H29N2O3 ([M+H]+) 513.2178; found 513.2182. 

 

Benzyl (Z)-1-benzyl-7-oxo-5,9-diphenyl-4,5,6,7-tetrahydro-1H-benzo[b]azonine-2-

carboxylate (107e). Synthesized using general procedure 11. Brown oil (25 mg, 71%). 

TLC: Rf 0.39 (4:1 hexanes/EtOAc). IR (NaCl):  3061, 3030, 2361, 2330, 1717, 1686, 1551, 

1603, 1506, 1481, 1452, 1238, 1202, 1153, 1038, 905, 822, 758, 739, 696. 1H NMR (400 

MHz) δ 7.54 (d, J = 8.0 Hz, 3H), 7.47 (d, J = 7.5 Hz, 3H), 7.43–7.34 (m, 5H), 7.34–7.26 

(m, 6H), 7.25–7.15 (m, 6H), 7.01 (t, J = 8.4 Hz, 1H), 5.15 (d, J = 12.5 Hz, 1H), 5.05 (d, J 

= 14.3 Hz, 1H), 4.96 (d, J = 12.4 Hz, 1H), 4.44 (d, J = 14.3 Hz, 1H), 3.64 (t, J = 12.6 Hz, 

1H), 3.49 (t, J = 12.1 Hz, 1H), 2.90 (q, J = 11.4 Hz, 1H), 2.48 (d, J = 13.4 Hz, 1H), 2.06 

(dd, J = 12.5, 7.0 Hz, 1H). 13C NMR (101 MHz) δ 206.1, 163.9, 146.1, 145.2, 142.6, 140.7, 

139.8, 137.2, 135.6, 134.9, 133.7, 129.6, 128.7 (2C), 128.7 (4C), 128.6 (2C), 128.4 (2C), 

128.1, 128.0 (2C), 127.6, 126.9, 126.7, 126.6 (4C), 126.3, 118.7, 66.8, 56.1, 49.5, 41.8, 

35.1. HRMS (ESI) m/z calcd for C39H34NO3 ([M+H]+) 564.2539; found 564.2536. 

 

Benzyl (Z)-1-benzyl-9-bromo-7-oxo-5-phenyl-4,5,6,7-tetrahydro-1H-

benzo[b]azonine-2-carboxylate (107f). Synthesized using general procedure 11. 
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Appearance (34.0 mg, 78%). TLC: Rf  0.40 (4:1 hexanes/EtOAc). IR (neat):  3061, 3029, 

2929, 1717, 1687, 1654, 1584, 1474, 1452, 1399, 1232, 1173, 1151, 807, 731, 694. 1H 

NMR (300 MHz) δ 7.49–7.11 (m, 18H), 7.04–6.91 (m, 2H), 5.15 (d, J = 12.3 Hz, 1H), 

4.99–4.85 (m, 2H), 4.38 (d, J = 14.3 Hz, 1H), 3.64–3.37 (m, 2H), 2.87 (td, J = 11.8, 9.7 

Hz, 1H), 2.51–2.37 (m, 1H), 2.06 (ddd, J = 11.4, 7.3, 2.2 Hz, 1H). 13C NMR (101 MHz) δ 

204.4, 163.7, 145.8, 144.9, 142.7, 140.5, 136.7, 135.9, 135.4, 133.8, 130.3, 128.8 (2C), 

128.7 (2C), 128.6 (2C), 128.5 (2C), 128.2, 128.1 (2C), 127.7, 126.8, 126.5 (2C), 120.2, 

113.8, 66.9, 56.1, 49.2, 41.8, 35.0. HRMS (ESI) m/z calcd for C33H29BrNO3 ([M+H]+) 

566.1331; found 566.1300. 

 

Prop-2-yn-1-yl (Z)-1-benzyl-9-bromo-7-oxo-5-phenyl-4,5,6,7-tetrahydro-1H-

benzo[b]azonine-2-carboxylate (107g). Synthesized using general procedure 11. 

Appearance (29.0 mg, 74%). TLC: Rf 0.43 (4:1 hexanes/EtOAc). IR (neat):  3285, 3061, 

3026, 2129, 1723, 1698, 1597, 1267, 1173, 1074, 933, 731, 697, 632. 1H NMR (400 MHz) 

δ 7.49–7.27 (m, 9H), 7.26–7.18 (m, 4H), 7.07 (d, J = 8.8 Hz, 1H), 7.04–6.97 (m, 1H), 4.97 

(d, J = 14.2 Hz, 1H), 4.72–4.63 (m, 1H), 4.52 (dd, J = 15.6, 2.5 Hz, 1H), 4.45–4.35 (m, 

1H), 3.57 (dd, J = 13.3, 11.8 Hz, 1H), 3.51–3.42 (m, 1H), 2.86 (td, J = 12.0, 9.7 Hz, 1H), 

2.45 (td, J = 5.4, 2.1 Hz, 2H), 2.12–2.01 (m, 1H). 13C NMR (101 MHz) δ 204.5, 163.0, 

145.7, 144.9, 143.5, 139.9, 136.7, 135.9, 133.9, 130.3, 128.8 (2C), 128.7 (2C), 128.7 (2C), 

127.8, 127.6, 126.8, 126.5 (2C), 120.4, 114.0, 75.1, 56.1, 52.5, 49.2, 41.8, 35.0. LRMS 

(ESI) m/z calcd for C29H24BrNO3Na ([M+Na]+) 536.1; found 537.0. 
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Benzyl (Z)-1-benzyl-7-oxo-5-phenyl-9-(phenylethynyl)-4,5,6,7-tetrahydro-1H-

benzo[b]azonine-2-carboxylate (107h). Synthesized using general procedure 11. White 

solid (28.5 mg, 80%, mp 183–185 °C). TLC: Rf 0.38 (4:1 hexanes/EtOAc). IR (neat):  

3031, 2967, 2949, 2844, 2209, 1703, 1690, 1590, 1494, 1253, 1044, 1033, 1024, 1005, 

906, 822, 751, 693, 599. 1H NMR (500 MHz) δ 7.51–7.47 (m, 2H), 7.43 (ddd, J = 8.5, 5.9, 

1.8 Hz, 3H), 7.39–7.28 (m, 11H), 7.25–7.15 (m, 5H), 7.08 (d, J = 8.6 Hz, 1H), 7.00 (dd, J 

= 9.8, 7.4 Hz, 1H), 5.14 (d, J = 12.4 Hz, 1H), 5.03–4.92 (m, 2H), 4.41 (d, J = 14.3 Hz, 1H), 

3.55 (dd, J = 13.3, 11.7 Hz, 1H), 3.47 (tt, J = 11.9, 2.0 Hz, 1H), 2.86 (td, J = 12.0, 9.8 Hz, 

1H), 2.46 (dt, J = 13.1, 1.3 Hz, 1H), 2.09–2.01 (m, 1H). 13C NMR (126 MHz) δ 205.0, 

163.8, 146.7, 145.0, 142.9, 140.3, 136.8, 135.5, 134.5, 134.3, 131.5 (2C), 131.1, 128.8 

(2C), 128.7 (2C), 128.6 (2C), 128.5 (2C), 128.3 (2C), 128.2, 128.1 (2C), 128.0, 127.7, 

126.7, 126.6 (2C), 123.4, 118.2, 115.8, 89.1, 88.7, 66.9, 56.0, 49.4, 41.9, 35.1. HRMS 

(ESI) m/z calcd for C41H34NO3 ([M+H]+) 588.2539; found 588.2525. CCDC 1887929. 

 

2,2,2-trichloroethyl (Z)-1-benzyl-7-oxo-5-phenyl-4,5,6,7-tetrahydro-1H-

benzo[b]azonine-2-carboxylate (107i). Synthesized using general procedure 11. White 

solid (42 mg, 83%, mp 176-178 °C). TLC: Rf 0.35 (4:1 hexanes/EtOAc). IR (neat):  3062, 
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3029, 2949, 2921, 2874, 1719, 1676, 1637, 1593, 1484, 1463, 1225, 1141, 1042, 908, 783, 

752, 720, 701, 579.   1H NMR (500 MHz) δ 7.50–7.46 (m, 2H), 7.40–7.35 (m, 3H), 7.35–

7.28 (m, 3H), 7.25–7.19 (m, 4H), 7.15 (dd, J = 7.5, 1.6 Hz, 1H), 7.10 (dd, J = 9.7, 7.4 Hz, 

1H), 6.97–6.91 (m, 1H), 5.06 (d, J = 14.0 Hz, 1H), 4.65 (qd, J = 12.0, 0.9 Hz, 2H), 4.47 (d, 

J = 14.0 Hz, 1H), 3.60 (dd, J = 13.5, 11.7 Hz, 1H), 3.52–3.42 (m, 1H), 2.85 (td, J = 12.1, 

9.8 Hz, 1H), 2.45 (dt, J = 13.5, 1.4 Hz, 1H), 2.10–2.02 (m, 1H). 13C NMR (101 MHz) δ 

206.1, 162.7, 146.4, 145.1, 144.8, 139.4, 137.0, 134.7, 131.4, 128.9 (2C), 128.7 (2C), 128.6 

(2C), 127.8, 127.7, 126.7, 126.6 (2C), 121.3, 118.5, 94.8, 74.3, 55.8, 49.4, 41.4, 35.1. 

HRMS (ESI) m/z calcd for C28H25Cl3NO3 ([M+H]+) 528.0900; found 528.0905. CCDC 

1887930. 

 

2,2,2-trichloroethyl 2-diazobut-3-enoate (111). Synthesized using the same protocol as 

diazo compound 48. (424.1 mg, 67% over two steps) as a red oil. IR (neat):  3091, 3071, 

3036, 2100, 1713, 1617, 1479, 1373, 1303, 1265, 1113, 1036, 716, 672, 576. 1H NMR 

(500 MHz) δ 6.17 (ddd, J = 17.5, 11.1, 2.1 Hz, 1H), 5.17 (d, J = 11.0 Hz, 1H), 4.95 (d, J = 

2.2 Hz, 1H), 4.84 (s, 1H). 13C NMR (126 MHz) δ 163.0, 119.6, 108.4, 94.9, 73.9 (C=N2 

not observed). HRMS (ESI) m/z calcd for C6H6Cl3N2O2 ([M+H]+) 242.9495; found 

242.9501. 
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Spectral Data 

Chapter 2 NMR Spectra: pages 177–205 

Chapter 3 NMR Spectra: pages 205–265 

Chapter 4 NMR Spectra: pages 265–294 

Chapter 5 NMR Spectra: pages 294–310 
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