Optimizing DNA Barcoding Protocols for Identifying Invertebrates

Introduction

- Purpose of this research:
- Efficiently identify organisms
- Can be applied to all organisms
- Why invertebrates?
- Important for the transfer of energy
- Can tell the overall health of a population or ecosystem
- How?
- We used a lab culture of the zooplankton species Daphnia magna to develop a robust protocol for DNA Barcoding zooplankton
- Can be applied to other Crustaceans as well • Protocol for other organisms was modified using different primers

Braylen Phelps, Caroline Cowles, Dr. Jie Ren, Dr. Andrew Dzialowski, Dr. Donald French

Results

- DNA Sequencing Results for Positive Control and for Lab Culture Unknown (Figure 1 and Figure 2)
- We have developed the protocol for the DNA extraction of individuals from mixed cultures as confirmed by Nanodrop readings
- We have optimized the protocols for PCR master solutions and cycles as confirmed by Gel Electrophoresis
- We have identified individual organisms belonged to several different families in lab cultures and environmental samples (listed in Table 1)

Table 1:List of identified organisms using optimized protocols

Family	Source of sample(s)	Number of Organisms ID'd	Species
Daphniidae	South Carolina (Lab Culture), Keystone	4	Daphnia magna
Diaptomidae	Keystone	1	Arctodiaptomus cf. dorsalis3
Dogielinotidae	South Carolina (Lab Culture)	3	Hyalella sp. Tbird, Hayaella azteca

B	OLD SYSTEMS		DATABASES	IDENTIFICATION	ΤΑΧΟΝΟΜΥ	WORKBENCH	RESOURCES	login Q
	Results Summary	у					📥 D (ownload
	Query ID	Best ID	Searc	h DB Tre	е Тор%	Graph		Low %
	unlabeled_sequence	No match	COI FU DATAE (incluc withou design	JLL N/A BASE des records ut species nation)	N/A	N/A		N/A

Figure 1: Bold Systems search results for Lab Culture Unknown

<u>bownload</u> <u>CenBank</u> <u>Graphics</u>

Sequence ID: <u>JX446311.1</u> Length: 1569 Number of Matches: 1

Range 1: 139 to 730 GenBank Graphics

Score 1037 bits(561)

Identities 582/592(98%) 0.0

Gaps 1/592(0%)

Figure 2: GenBank blast search results for Lab Culture Unknown

earch complete

Blast search sequence in GenBank database

- of different organisms.
- freshwater crustaceans.
- Protocols for organisms that are not freshwater crustaceans, such as horse hairworms and algae, are still being developed and optimized

- cysts
- Species of algae

Acknowledgements

We would like to acknowledge and thank the following people for their help:

- Dr. John Stewart
- Austin Leon
- Christina Anaya

e

me

Conclusion

 We successfully developed a method including extraction, amplification, and analysis of individuals • We are developing multiple protocols that works for different organisms, and have one completely optimized protocol that works efficiently for

Future Directions

• Optimize protocols for identifying: • All species in a mixed culture using next generation sequencing (NGS) • Species of Zooplankton from resting eggs. • Species of horse hairworms, earthworms, and

• Students of the DNA Barcoding course OSU Biochemistry and Molecular Biology **Recombinant DNA and Protein Core Facility**

References

http://boldsystems.org/index.php/IDS OpenIdEngin

 https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM= blastx&PAGE TYPE=BlastSearch&LINK LOC=blastho