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Abstract: To address analytical detection needs, sensitive and selective assay 

methodologies are of great importance. Compared to simple buffer medium, a great 

challenge exists in detecting ultra-low levels of biomarkers in clinical matrices due to their 

inherent complexity and interferences posed by non-specific molecules. In addition, small 

molecules do not yield measurable assay signal changes compared to large biomolecules. 

My thesis research is focused on designing nano-biological interfaces to detect small and 

large molecules at low parts-per-billion and femto/picomolar concentrations in complex 

biofluids (serum and urine samples). Compared to harsh and tedious chemical 

carboxylation, non-covalent carboxylation of multiwalled carbon nanotubes by π-π 

stacking 1-pyrenebutyric acid retains the innate sp2 structure and electronic properties of 

the nanotubes and offers surface carboxyl groups for stable covalent amine coupling of a 

large amount of enzymes, thus improving the sensitivity of the assay. Chapter 2 

demonstrates the first pyrenyl carbon nanostructure modified enzymatic bioelectrode for 

amperometric detection of urine formaldehyde at clinically relevant parts-per-billion levels 

with selectivity and wide dynamic range. Subsequently, we explored the low dielectric 

permittivity and intrinsic plasmonics of graphene for the detection of serum glutamic acid 

decarboxylase autoantibody (GADA). Graphene-based electrochemical immunosensing 

approach is advantageous due to its additional applicability for surface plasmon based 

validation and binding strength analysis with surface immobilized GAD-65 antigens 

(Chapter 3). My thesis focused on the third class of biomarkers, microRNAs, which are 

small oligonucleotides with 21-25 bases. To develop the microRNA assay with quantitative 

characterization, surface plasmon resonance imaging (SPRi) coupled with quartz crystal 

microbalance (QCM) was designed (Chapter 4). Gold nanoparticles (Au NPs) were linked 

to the oligonucleotides to increase the detection sensitivity upon hybridization with the 

selective capture oligonucleotide immobilized on the sensor surface with minimal non-

specific signals. Often, cancer and other similar health disorders have been shown to be 

related to various types of biomarkers. Hence, in Chapter 5, we designed a multiplex assay 

platform for combined measurement of proteins and microRNAs. For this multiplex assay, 

we synthesized iron-gold bimetallic core/shell nanoparticles (Fe3O4@Au NPs) that 

displayed a greater plasmonic signal amplification than either Fe3O4 or Au NPs.  

. 

 



vi 

 

TABLE OF CONTENTS 

 

CHAPTER 1          PAGE 

 

ELECTROCHEMICAL AND SURFACE PLASMON BIOASSAYS FOR 

CIRCULATING BIOMARKERS ...........................................................................1 

 

1.1 Introduction ..............................................................................................................1 

1.2 Nanostructure-modified enzyme electrodes ............................................................3 

1.3 Pyrenyl carbon nanostructures for ultrasensitive measurements of formaldehyde in 

urine (Chapter 2) ......................................................................................................5 

 1.3.1 Approach and novelty .....................................................................................5 

 1.3.2 Outcomes and significance .............................................................................6 

1.4 Ultrasensitive electrochemical immunoassays ........................................................7 

1.5 Electrochemical and surface plasmon correlation of serum autoantibody 

immunoassay with binding insights: graphenyl vs. mercapto-monolayer surface 

(Chapter 3) ...............................................................................................................9 

 1.5.1 Approach and novelty .....................................................................................9 

 1.5.2 Outcomes and significance ...........................................................................10 

1.6 SPRi bioassays for protein and nucleotide biomarkers .........................................11 

1.7 Measuring ultra-low levels of nucleotide biomarkers using quartz crystal 

microbalance and SPR microarray imaging methods: a comparative analysis (Chapter 

4) ............................................................................................................................12 

 1.7.1 Approach and novelty ...................................................................................12 

 1.7.2 Outcomes and significance ...........................................................................13 

1.8 Multiplexed surface plasmon assay for serum proteins and micro-ribonucleic acids: 

signal amplification by bimetallic Fe3O4@Au nanoparticles (Chapter 5) .............14 



vii 

 

 1.8.1 Approach and novelty ...................................................................................14 

 1.8.2 Outcomes and significance ...........................................................................16 

1.9 Conclusions and future directions  .........................................................................16 

1.10 References ............................................................................................................18 

  

CHAPTER 2          PAGE 

 

PYRENYL CARBON NANOSTRUCTURES FOR ULTRASENSITIVE 

MEASUREMENTS OF FORMALDEHYDE IN URINE ....................................23 

 

2.1 Introduction ............................................................................................................23 

2.2 Experimental ..........................................................................................................25 

 2.2.1 Materials and chemicals ................................................................................25 

 2.2.2 Instrumentation .............................................................................................26 

 2.2.3 Surface modification of AuSPE ....................................................................27 

 2.2.4 Chronoamperometric detection of formaldehyde in urine samples ..............28 

2.3 Results and Discussion ..........................................................................................29 

 2.3.1 FTIR characterization of the modified electrodes ........................................29 

 2.3.2 Raman characterization of the nano-bioelectrode fabrication steps .............30 

 2.3.3 Electrochemical impedance spectroscopy characterization ..........................31 

 2.3.4 Amperometric response for the stirred vs flow injection analysis ................32 

 2.3.5 LC-MS confirmation of the presence of HCHO in the prepared urine samples by 

derivatization with DNPH......................................................................................37 

 2.3.6 Stability and selectivity of the electrode .......................................................38 

2.4 Conclusions ............................................................................................................43 

2.5 References  .............................................................................................................44 

 

CHAPTER 3          PAGE 

 

ELECTROCHEMICAL AND SURFACE PLASMON CORRELATION OF SERUM 

AUTOANTIBODY IMMUNOASSAY WITH BINDING INSIGHTS: 

GRAPHENYL VS. MERCAPTO-MONOLAYER SURFACE............................52 



viii 

 

3.1 Introduction ............................................................................................................52 

3.2 Experimental ..........................................................................................................55 

 3.2.1 Materials and chemicals ................................................................................55 

 3.2.2 Instrumentation .............................................................................................55 

 3.2.3 Fabrication of the electrochemical immunosensor .......................................56 

 3.2.4 Magnetic bead-protein A/G capturing of autoantibody from 10% human serum 

(MAG-protein A/G-GADA) ..................................................................................57 

 3.2.5 SPRi microarray modification ......................................................................58 

 3.2.6 Quantitation of GAD-65 on the immunoassay surface .................................59 

 3.2.7 Quantitation of surface carboxyl groups based on electroactive aminoferrocene 

functionalization of graphene-COOH or MPA monolayer surface on 8xSPEs .....59 

 3.2.8 Electrochemical measurements of serum GADA by an immunoassay ........60 

3.3 Results and Discussion ..........................................................................................60 

 3.3.1 Optimization of GAD-65 concentration on the immunosensor surface  ......60 

 3.3.2 Hydrodynamic size and zeta potential measurements ..................................61 

 3.3.3 Microscopic characterization of the graphene immunosensor ......................62 

 3.3.4 Spectroscopic characterization of the graphene immunosensor ...................63 

 3.3.5 Electrochemical impedance spectroscopy characterization of the immunosensor 

fabrication ..............................................................................................................64 

 3.3.6 Estimation of signal enhancement and reduction of non-specific signals by the 

MAG-protein A/G beads over the direct use of serum GADA solution................66 

 3.3.7 Serum GADA concentration dependent increase in charge-transfer resistance  

................................................................................................................................67 

 3.3.8 Comparison of SPR responses for graphene-COOH and MPA modified 

immunosensor and bimolecular kinetic analysis ...................................................68 

 3.3.9 Validation of the graphene-COOH and MPA modified serum GADA  .......71 

 3.3.10 Estimation of the relative surface carboxyl groups on graphene-COOH and 

MPA modified gold surfaces .................................................................................72 

 3.3.11 Application to T1D patient samples and validation by a commercial ELISA kit

................................................................................................................................76 

3.4 Conclusions ............................................................................................................77 



ix 

 

3.5 References  .............................................................................................................78 

 

CHAPTER 4          PAGE 

 

MEASURING ULTRA-LOW LEVELS OF NUCLEOTIDE BIOMARKERS USING 

QUARTZ CRYSTAL MICROBALANCE AND SPR MICROARRAY IMAGING 

METHODS: A COMPARATIVE ANALYSIS.....................................................82 

 

4.1 Introduction ............................................................................................................82 

4.2 Experimental ..........................................................................................................84 

 4.2.1 Materials and chemicals ................................................................................84 

 4.2.2 Instrumentation .............................................................................................85 

 4.2.3 AuNP-linked oligonucleotide preparation ....................................................86 

 4.2.4 Quartz crystal surface modification and detection........................................87 

 4.2.5 Modification of the SPR microarray surface and detection ..........................87 

4.3 Results and Discussion ..........................................................................................89 

 4.3.1 Spectroscopic analysis of AuNP-linked oligonucleotides ............................89 

 4.3.2 Assessment of target hybridization and signal amplification by the mass sensor

................................................................................................................................91 

 4.3.3 Pixel intensity changes in the SPR microarray in response to target or control 

nucleotide hybridization with the surface capture probe .......................................93 

 4.3.4 Comparison of QCM and SPRi methods ......................................................95 

 4.3.5 Assessment of selectivity ..............................................................................96 

4.4 Conclusions ..........................................................................................................100 

4.5 References  ...........................................................................................................101 

 

CHAPTER 5          PAGE 

 

MULTIPLEXED SURFACE PLASMON ASSAY FOR SERUM PROTEINS AND 

MICRO-RIBONUCLEIC ACIDS: SIGNAL AMPLIFICATION BY BIMETALLIC 

Fe3O4@Au NANOPARTICLES .........................................................................107 

 



x 

 

5.1 Introduction ..........................................................................................................107 

5.2 Experimental ........................................................................................................109 

 5.2.1 Materials and chemicals ..............................................................................109 

 5.2.2 Instrumentation ...........................................................................................111 

 5.2.3 Synthesis and characterization of Fe3O4@Au bimetallic nanoparticles .....112 

 5.2.4 Preparation of the covalent conjugates of Fe3O4@Au NPs with detection 

antibodies .............................................................................................................113 

 5.2.5 Preparation of the conjugates of Fe3O4@Au with detection DNA molecules   

..............................................................................................................................113 

 5.2.6 Preparation of the four-channel microarray and multiplexed analysis .......114 

5.3 Results and Discussion ........................................................................................116 

 5.3.1 Hydrodynamic size and zeta potential of Fe3O4@Au NPs and conjugates        

..............................................................................................................................116 

 5.3.2 Elemental composition of the Fe3O4@Au NPs...........................................118 

 5.3.3 Estimation of SPRi signal amplification by Fe3O4@Au NPs over Fe3O4 or Au 

NPs of similar sizes ..............................................................................................118 

 5.3.4 Microscopic characterization of the NPs and surface binding event of the 

conjugates made with detection probes ...............................................................119 

 5.3.5 Quantitation of capture and detection molecules used in the designed SPRi 

microarray for multiplexed detection of miRNAs and ILs ..................................120 

 5.3.6 Real-time analysis of serum biomarkers .....................................................121 

 5.3.7 Analysis of binding strength of protein and miRNA markers ....................123 

5.4 Conclusions ..........................................................................................................129 

5.5 References  ...........................................................................................................130 

 

CHAPTER 6          PAGE 

 

SUMMARY ...............................................................................................................134 



xi 

 

 

 

 

LIST OF TABLES 

 

CHAPTER 2 

 

TABLE           PAGE 

 

Table 1. Comparison of the present MWNT/PBA-FDH nano-bioelectrode with relevant 

reported studies. ................................................................................................................ 40 

 

CHAPTER 3 

 

TABLE                                                                                                                        PAGE 

 

Table 1. Hydrodynamic size and Zeta potential values of MAG-protein A/G and MAG-

protein A/G-GADA beads (five times diluted in PBS, pH 7.4), temperature 25 oC. ....... 62 

 

Table 2. Kinetic parameters for the MAG-protein A/G beads captured serum GADA 

binding onto a surface immobilized GAD-65 antigen. ..................................................... 71 

 

Table 3. Estimated electroactive amounts of aminoferrocene on graphene-COOH and 

MPA modified electrodes. The estimations were based on anodic peak area (Q in nC) or 

peak currents (Ip in nA) from cyclic voltammograms shown in Fig. 9. ............................ 75 

 

Table 4. A. Results from the analysis of patient samples (10% serum) on the designed 

graphene-COOH electrochemical immunosensor and ELISA (N = 3). B. Recovery data 

of the designed EIS immunoassay with the ELISA method for a patient serum sample 

spiked with GADA. .......................................................................................................... 76 

 



xii 

 

CHAPTER 4 

 

TABLE                                                                                                                        PAGE 

 

Table 1. Sequences of designed oligonucleotides. ............................................................ 84 

 

Table 2. Quantitation of oligonucleotides immobilized on the QCM or SPR gold surface 

and conjugated to AuNPs (N = 3 replicates). ................................................................... 90 

 

Table 3. Analysis of the target oligonucleotide in different percentages of serum samples 

(diluted in PBS, pH 7.4) using the QCM and SPR microarray......................................... 97 

 

Table 4. Summary of recent studies related to nucleic acid detection. ............................. 98 

 

CHAPTER 5 

 

TABLE                                                                                                                        PAGE 

 

Table 1. Sequences of the custom-designed DNA oligonucleotides employed in this 

study. (In the hairpin capture DNA, the sequences in italics (underlined) are 

complementarity to the target miRNA sequence, the sequences in bold are the hairpin 

forming sequence, and those highlighted in gray are complementary to the sequence of 

the bimetallic NPs attached detection DNA. The detection DNA partially hybridizes with 

the exposed region of the hairpin surface DNA when pre-hybridized with the miRNA 

marker) ............................................................................................................................ 110 

 

Table 2. The hydrodynamic diameters and ζ-potentials of Fe3O4@Au NPs and their 

conjugates with a detection antibody (shown here for IL-6 second antibody) or a 

detection DNA probe. ..................................................................................................... 117 

 



xiii 

 

Table 3. The quantitation of capture molecules immobilized on the microarray and 

detection molecules conjugated to the Fe3O4@Au NPs. ................................................ 121 

 

Table 4. Detection performance comparison of our method with other SPR methods . 126 

 

  



xiv 

 
 

 

 

 

LIST OF FIGURES 

 

           

CHAPTER 1 
 

FIGURE               PAGE 

 

Figure 1. Types of biomarkers and the categories they fall under according to their 

potential roles (according to FDA, NIH and JDRF Biomarker Working Group 

categorization)..................................................................................................................... 2 

 

Figure 2. A. Schematic of different assay strategies designed in this thesis to measure 

biomarkers in clinical matrices: (1) small molecules, (2) antigens, (3) antibodies and (4) 

microRNAs. B. Various electrochemical and surface plasmon imaging-based detection 

strategies were utilized. ....................................................................................................... 3 

 

Figure 3. Pyrenyl-carbon nanostructure-modified disposable electrode for urine 

formaldehyde detection. ...................................................................................................... 6 

 

Figure 4. Immunosensor containing Graphene-COOH and MPA monolayers for serum 

GADA measurement and binding kinetic determination. ................................................. 10 

 

Figure 5. The QCM and SPRi sensors for selective detection of oligonucleotides of 

miRNA-21 mimic (Target) from a sequence containing five mismatches (Control) with 

AuNPs-based signal amplification. ................................................................................... 14 

 



xv 

 
 

Figure 6. Bimetallic Fe3O4@Au core/shell nanoparticles enhanced multiplexed SPRi 

bioassay to measure four serum cancer biomarkers. ........................................................ 15 

 

CHAPTER 2  

 

FIGURE                                                                                                                       PAGE 

 

Figure 1. Representation of the crystal structure of FDH from Pseudomonas aeruginosa 

(PDB 4JLW). The surface lysine (Lys) residues available for covalent attachment to 

surface carboxylic acid groups of PBA and MWNT are highlighted in red. .................... 27 

 

Figure 2. (A) Schematic of the microfluidics system used in this study. (B) Fabrication 

steps of the AuSPEs with FDH and the reaction sequence for catalyzing HCHO and 

detection by flow injection or stirred solution amperometry. ........................................... 28 

 

Figure 3. FTIR spectra of AuSPE coated with (a) carboxylated MWNTs, (b) after PBA 

stacking, and (c) after covalent immobilization of FDH .................................................. 30 

 

Figure 4. Raman spectra of AuSPEs coated with (a) Carboxylated MWNTs, (b) after 

PBA stacking, and (c) after covalent immobilization of FDH.......................................... 30 

 

Figure 5. Faradaic impedance spectroscopic measurements of Rct values in an aqueous 

solution containing 0.1 M KCl and 10 mM of Fe(CN)63-/4- for stepwise modification of 

(a) AuSPE (1792 Ω), (b) after dry-coating of MWNT (154 Ω), (c) after pi-pi stacking of 

PBA (67 Ω), and (d) after covalent immobilization of FDH (410 Ω). Experimental 

conditions: 0.2 V vs Ag/AgCl, amplitude 10 mV, and frequency range 0.1-100 kHz. .... 32 

 

Figure 6. Amperometric responses (after subtraction of signals for control urine sample 

with no spiked HCHO) of flow injection analysis of 1 ppm HCHO at various dilutions of 



xvi 

 
 

urine samples with PBS (pH 7.4) containing 5 mM NAD+ and 1 mM Q delivered a flow 

rate of 100 µL min–1 at an applied potential of + 0.35 V at 23 oC. ................................... 33 

 

Figure 7. (A) Stirred solution method: (a) Amperometric responses of the 

AuSPE/MWNT/PBA-FDH bioelectrode for various concentrations of HCHO in 10-times 

diluted urine in PBS, pH 7.4, containing 5 mM NAD+ and 1 mM Q at an applied potential 

of + 0.35 V at 23 oC and a constant stirring of solution using a magnetic stirrer at 150 

rpm. Inset shows the enlarged view for lower HCHO concentrations. (b) Michaelis-

Menten fit of the designed bioelectrode in oxidizing HCHO. (B) Flow injection analysis: 

(a) Amperometric responses for the AuSPE/MWNT/PBA enzyme bioelectrode upon 

injection of various concentrations of HCHO at a flow rate of 100 µL min–1. Inset shows 

the enlarged view for lower HCHO concentrations. (b) The corresponding Michaelis-

Menten fit of the experimental data. ................................................................................. 35 

 

Figure 8. Selectivity of the designed AuSPE/MWNT/PBA-FDH bioelectrode for HCHO 

over other similar analytes in stirred solutions. Current signals for 5 ppm of analytes (x-

axis) in 10-times diluted urine solutions in PBS are shown. ............................................ 36 

 

Figure 9. (A) LC-MS analysis of the presence of HCHO (5 ppm) in the prepared urine 

samples (10-times diluted) by DNPH derivatization method. Separation of (a) DNPH 

derivatized urine sample containing HCHO (5 ppm), (b) diluted urine sample with only 

DNPH, (c) diluted urine sample alone, and (d) standard DNPH-HCHO derivative (20 

ppm). (B) MS analysis showing the 209 Da peak for the formed DNPH-HCHO derivative 

in the urine sample. ........................................................................................................... 38 

 

Figure 10. Film stability assessment of the designed AuSPE/MWNT/ PBA-FDH 

bioelectrode for 40 h using electrochemical non-faradaic impedance spectroscopy at an 

applied frequency of 5 Hz in PBS, pH 7.4, room temperature (23 oC). ........................... 39 

 

 



xvii 

 
 

CHAPTER 3 

 

FIGURE                                                                                                                       PAGE 

 

Figure 1. Design of graphenyl  and mercapto monolayer based immunosensors for 

biosensing and binding kinetics analysis. Three electrode system in the 8xSPE array: 

gold working electrode (WE) and counter electrode (CE), pseudo Ag-reference electrode 

(RE). .................................................................................................................................. 53 

 

Figure 2. Rct values for increasing solution concentration of GAD-65 (in PBS solution) 

used for immobilization onto the carbodiimide activated graphene-COOH/gold surface, 

and followed by the binding of a constant concentration of 10% serum GADA (4 ng mL-

1) captured onto MAG-protein A/G beads. ....................................................................... 61 

 

Figure 3. SEM images of A. rough AuSPE surface, B. after dry coating of an aqueous 

suspension of graphene-COOH, C. after covalent attachment of GAD-65 antigen and 

surface blocking with 1% BSA, and D. after the binding of GADA spiked in 10% human 

serum (0.05 ng mL-1) and captured onto MAG-protein A/G beads. ................................. 63 

 

Figure 4. FTIR spectra of a. rough gold 8xSPE, b. after dry-coating with graphene-

COOH, c. after EDC/NHS activation, d. after GAD-65 immobilization, and e. after the 

binding of 5 ng mL-1 concentration of 10% serum GADA captured by the MAG-protein 

A/G beads.......................................................................................................................... 64 

 

Figure 5. Faradaic impedance spectroscopic measurements in an aqueous solution 

containing 0.1 M KCl and 10 mM each of Fe(CN)6
3-/4- mixture: (a) AuSPE (3310 ± 101 

Ω), (b) after dry-coating of graphene-COOH (1054 ± 154 Ω), (c) after covalently 

attaching GAD-65 by the carbodiimide coupling chemistry (2108 ± 67 Ω), (d) after 

blocking the free surface with 1% BSA (4190 ± 410 Ω), and (e) after the binding of 

serum GADA (0.04 ng mL-1) captured onto the MAG-protein A/G beads (9290 ± 580 Ω). 



xviii 

 
 

Experimental conditions: 0.2 V vs Ag/AgCl, amplitude 10 mV, and frequency range 0.1 - 

100 kHz. ............................................................................................................................ 65 

 

Figure 6. A. Rct values for the BSA blocked, graphene-COOH coated gold surface 

immobilized with GAD-65 upon the binding of MAG-protein A/G beads alone (1.25 mg 

mL-1), GADA (2 ng mL-1) spiked in 10% serum in PBS (pH 7.4), and serum GADA (2 ng 

mL-1) captured onto the MAG-protein A/G beads. B. Reduced non-specific background 

signals for MAG-protein A/G added toGADA unspiked serum compared to the GADA 

unspiked free serum solution. ........................................................................................... 66 

 

Figure 7. Nyquist plots obtained from the Faradaic impedance measurements in an 

aqueous solution containing 0.1 M KCl and 10 mM each of Fe(CN)6
3-/Fe(CN)6

4- for 

various concentrations of surface bound serum GADA immunoassembly : A. Graphene-

COOH (0.02, 0.05, 0.1, 0.25, 0.5, 0.75, 1, and 2 ng mL-1) and B. MPA (0.02, 0.05, 0.1, 

0.25, 0.5, and 0.8 ng mL-1) modified immunosensors.C and D represent the dynamic 

range of respective response plots for Rct changes with concentration of GADA for N = 3 

replicates. Ten percent serum not spiked with any GADA but treated with the MAG-

protein A/G beads was used as the control sample, and its Rct value was subtracted from 

each of the GADA spiked serum sample responses. (Experimental conditions:      0.2 V 

vs pseudo-Ag reference electrode, amplitude 10 mV, and frequency range 0.1–100 kHz.)

........................................................................................................................................... 68 

 

Figure 8. Simulated (red) and real-time SPR sensograms (black) for different 

concentrations (a to c) of 10% serum GADA, 0.05, 0.10, and 0.50 ng mL-1, captured with 

MAG-protein A/G beads and bound onto GAD-65 immobilized sensor surfaces modified 

with A. graphene-COOH and B. MPA. ............................................................................ 70 

 

Figure 9. DPV responses showing the decrease in currents for 10% serum containing 

GADA concentrations of a. 0.0, b. 0.02, c. 0.05, d. 0.1, e. 0.2, f. 0.5, and g. 0.75 ng mL-1 

captured with MAG-protein A/G beads, and upon binding with the surface GAD-65 

antigen on A. graphene-COOH and B. MPA modified immunosensors. Experimental 



xix 

 
 

conditions: aqueous mixture containing 0.1 M KCl and 10 mM each of Fe(CN)6
3-

/Fe(CN)6
4- with potential scanned from + 0.6 to - 0.1 V vs a pseudo-Ag reference 

electrode. C and D represent the linear DPV responses of the immunosensors modified 

with graphene-COOH and MPA, respectively. ................................................................ 72 

 

Figure 10. Background subtracted CVs of A. graphene-COOH, B. MPA modified gold 

electrodes with a. covalently attached, and b. adsorbed films of aminoferrocene in argon 

purged PBS buffer, pH 7.4, 23 °C. The scan rate was 0.1 V s−1. ...................................... 73 

 

Figure 11. Background subtracted scan rate dependent CVs of the covalently attached 

aminoferrocene on A. graphene-COOH and C. MPA modified Au 8xSPEs and the 

respective plots of peak current vs scan rate (B and D). The scan rate inner to outer: 0.075 

- 1.2 V s-1 at 23 oC, in PBS, pH 7.4................................................................................... 74 

 

CHAPTER 4 

 

FIGURE                                                                                                                       PAGE 

 

Figure 1. Fabrication procedure of the SPR microarray chip for selective detection of the 

target miRNA-21 mimic (T) from the control (C) oligonucleotide sequence by 

hybridization in a dual channel SPRi system. ................................................................... 88 

 

Figure 2. UV-visible spectra of (a) AuNPs before conjugation to oligonucleotides and 

AuNPs linked to (b) target or (c) control oligonucleotide present in 0.1 M NaCl/ 0.1 M 

sodium phosphate buffer (pH 7.4). ................................................................................... 89 

 

Figure 3. SEM images of (A) a bare gold spot of the SPR microarray before modification 

and (B) the gold spot self-assembled with the thiol-activated surface capture probe. (C) 

Higher magnification image of (B). .................................................................................. 91 

 



xx 

 
 

Figure 4. A. Mass changes for the gold-coated quartz crystals modified with the surface 

capture probe upon addition of increasing concentration (in pM) of (a) target 

oligonucleotide captured onto AuNPs, (b) target oligonucleotide not linked to AuNPs, (c) 

control oligonucleotide linked to AuNPs, and (d) the control not linked to AuNPs. B. 

Mass changes shown for (a) control and (b) target oligonucleotides (0.5 pM) with or 

without linking to AuNPs. Data shown are mean ± standard deviations represented by 

error bars for N = 3 replicates. Relative standard deviations (RSDs) for the control were 

17% with no AuNPs and 22% with AuNPs linkage. The RSDs for the target were 11% 

(no AuNPs) and 7% (with AuNPs). .................................................................................. 92 

 

Figure 5. Real-time SPR response (average of eight array spots) for the binding of 0.5 pM 

of (a) target or (b) control oligonucleotide linked with AuNPs onto the surface 

immobilized capture probes at a flow rate of 50 μL/min. Sample injection and buffer 

wash points are labeled. .................................................................................................... 93 

 

Figure 6. Representations of SPRi responses: the 3D representation (left) and the line 

profile (right) that depicts the SPR pixel intensities for various concentrations of target 

and control nucleotides. The spot labeled as (a) is the bare gold surface treated with 5 

mM MHOH and that of (b) are the test spots containing the immobilized capture probes. 

(A)-b: control oligonucleotide of (i) 0.1, (ii) 0.5, (iii) 1, (iv) 10, (v) 30, and (vi) 50 pM 

concentrations conjugated with AuNPs; and (B)-b: target oligonucleotide of 

concentrations similar to those of the control allowed to bind with the surface capture 

probe……………………………………………………………………………………94 

 

Figure 7. Double logarithmic calibration plots of (A) QCM response (control response is 

subtracted) and (B) SPRi response (control response is subtracted) upon hybridization of 

various concentrations of the AuNP-conjugated target oligonucleotide with the surface 

capture probe. (mean ± standard deviation for three replicates). ...................................... 96 

 

 



xxi 

 
 

CHAPTER 5 

  

FIGURE                                                                                                                       PAGE 

 

Figure 1. Schematic illustration of the synthesis of Fe3O4@Au bimetallic NPs using the 

reaction mixture consisting of 1. HAuCl4.3H2O, 2. Fe3O4 NPs, and 3. sodium citrate. . 112 

 

Figure 2. A. The experimental set-up for multiplexed SPRi analysis using a four-channel 

flow injection system. B. The SPRi chip was modified with capture probes (CAb: capture 

antibodies or CDNA: capture DNA) and the analytes were assayed as follows: Two lanes 

(4 spots each) of the SPRi microarray were self-assembled with a monolayer of MPA. 

The remaining two lanes were self-assembled with thiol-activated hairpin capture DNAs 

of miRNA-21 and miRNA-155 (4 spots each) followed by blocking the free surface with 

MHOH. The IL-6 and IL-8 capture antibodies were covalently attached to the -COOH 

activated MPA surface (4 spots each) followed by blocking of the free surface with 1% 

BSA. Various concentrations of the protein and miRNA markers were spiked in 10% 

human serum and allowed to bind their respective capture molecules on the chip using 

the designated individual flow channels. The signal amplification step of the bioassay 

was subsequently followed by introducing the respective detection molecules (DAb: 

detection antibodies or DDNA: detection DNA) conjugated to Fe3O4@Au NPs yielding 

detection DNA-Fe3O4@Au or detection antibody-Fe3O4@Au NPs. .............................. 115 

 

Figure 3. The SPRi responses of A. 100 nm Fe3O4 NPs, B. 75 nm Fe3O4@Au NPs, C. 100 

nm Au NPs, and D. 105 nm Fe3O4@Au NPs adsorbed onto 0.1 mg mL-1 PEI coated gold 

surface. (a) Schematic and experimental 3D images of SPR pixel intensity, (b) only the 

PEI adsorbed gold surface. The corresponding line profiles, and difference images (in 

grey) are shown on the right. .......................................................................................... 119 

 

Figure 4. TEM image of A. Fe3O4@Au NPs. SEM images of B. bare Au surface of the 

microarray, C. IL-6 capture antibody/IL-6/Fe3O4@Au NP-IL-6 detection antibody 



xxii 

 
 

assembly, and D. miRNA-155 capture DNA/miRNA-155/Fe3O4@Au NP-miRNA-155 

detection DNA assembly. ............................................................................................... 120 

 

Figure 5. SPRi responses for a multiplexed assay by the 4-channel flow injection analysis 

A. Real-time pixel intensity changes for 10% serum spiked with a. IL-8 (10 nM), b. IL-6 

(10 nM), c. miRNA-21 (0.25 nM), and d. miRNA-155 (0.25 nM). I. Represents the 

introduction of the 10% serum spiked with the markers to the capture probe coated 

microarray and II. represents the introduction of the detection probes conjugated to 

Fe3O4@Au NPs. B. Final difference image of the test spots after detection of protein and 

miRNA markers in a single microarray. C and D. Corresponding 3-D representation and 

line profile, respectively.................................................................................................. 122 

 

Figure 6. SPRi calibration plots for A. protein markers (IL-6 and IL-8) and B. miRNA 

markers (miRNA-21 and miRNA-155) in 10% human serum. (N = 3 replicates). ........ 123 

 

Figure 7. Representative plots of the relative surface coverage (θ) as a function of the 

concertation of A. IL-6, B. IL-8, C. miRNA-21, and D. miRNA-155. The solid line 

represents the Langmuir isotherm fit to the data. All measurements were made in 

triplicates. ........................................................................................................................ 125 

 

 

 



1 

 
 

CHAPTER 1   
 

 

ELECTROCHEMICAL AND SURFACE PLASMON BIOASSAYS FOR CIRCULATING 

BIOMARKERS  

1.1 Introduction  

Designing highly sensitive and selective bioassay methodologies is imperative to overcome the 

analytical challenge of not only determining the ultra-low concentrations of biomarkers that are 

present in complex matrices (blood, serum, urine, saliva, etc.), but also to assess slight variations 

occurring during physiological abnormalities. Biomarkers are specific molecules whose 

concentration levels in blood, tissues and other organs/body fluids can be related to a normal or 

abnormal process, or a condition or disease.1 Assaying clinically relevant biomarkers present in 

complex body fluids can enable early diagnosis and monitoring response to treatments as well as 

recurrence. An outline of various types of biomarkers and their applicability with relevance to 

different stages of disease depending on their biological function is shown in Figure 1.  

Even though many sensitive techniques including chromatography-mass spectrometry, radioactive 

assays, and molecular biology techniques are known, high cost, complexity of assay steps for 

clinical samples, limitation of assaying in a multiplex format, no feature of real-time binding 

analysis (useful for sensitive biosensor development by facilitating conditions to attain strong 

interactions), and the need of expensive labels for the detection steps.   

Electrochemical techniques have received immense attention because they are simple to operate, 

easy to fabricate, produce rapid detection signals, cost effective, and can be used as miniaturized 
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platforms for onsite measurements.2,3 Surface plasmon resonance (SPR) has been predominantly 

used as a sensitive technique that could measure real-time ligand-receptor binding events and the 

kinetics associated with them.4,5 Combining electrochemical and SPR techniques can provide 

complementing information useful for any new bioanalytical assay development.  

Figure 1. Types of biomarkers and the categories they fall under according to their potential roles 

(according to FDA, NIH and JDRF Biomarker Working Group categorization) 

Both electrochemical and SPR biosensors carry or consist of the same basic elements as of a general 

biosensor. A bio-recognition molecule, specific for the target analyte, is immobilized on the surface 

and a transducer producing the desired signal change when the target analyte binds to the surface 

receptor.6 These biosensors face the general limitations of suffering from non-specific signals, 

orientation issues of surface receptors affecting the extent of analyte binding sites, and long-term 

stability. To mitigate some of these drawbacks, various nanomaterials and surface bioconjugation 

chemistries to improve the detection sensitivity, orientation, and stability.  In addition to addressing 

these common pitfalls, we have initiated a research direction focusing on binding constant based 

biosensor optimization to increase detection sensitivity and thus lower the detection limits.  
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This chapter provides an overview of recent trends in electrochemical and surface plasmon 

resonance (SPR) bioassays for small and large biomolecule markers. A summary of contribution 

from my thesis research on the design of various bioassay strategies is presented (Figure 2). 

Furthermore, the use of appropriate surface recognition elements and incorporation of different 

nanomaterial-based approaches for signal amplification and non-specific signal reduction are 

discussed.  

Figure 2. A. Schematic of different assay strategies designed in this thesis to measure biomarkers 

in clinical matrices: (1) small molecules, (2) antigens, (3) antibodies and (4) microRNAs. B. 

Various electrochemical and surface plasmon imaging-based detection strategies were utilized.   

1.2 Nanostructure-modified enzyme electrodes 

Enzyme-based electrochemical sensors are a sub-class of biosensors that are built by immobilizing 

substrate-specific enzymes on the working electrode surface. Electrochemical signals are produced 

as a result of the enzyme catalyzing the small molecule of interest. As the most critical component 

of the sensor, enzymes can be stably immobilized on the sensor by use of various nanomaterials 
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and nanocomposites as a type to improve sensitivity.7 The analyte small molecule can be selectively 

probed as the substrate for a specific enzyme irrespective of the matrix it is available.  

Thulium oxide nanorods (n-Tm2O3) electrophoretically-deposited onto indium-tin oxide glass 

electrode for total cholesterol detection in clinical samples through a dual enzyme functionalization 

(with cholesterol esterase (ChEt) and cholesterol oxidase (ChOx)) has been reported.8 Tm2O3 

improved the electroactive area, diffusion of substrates to the enzymes and electron transfer kinetics 

that resulted in a broad linear range for cholesterol detection. A poly(phenylenediamine) 

biomembrane with a molecular sieving feature was developed to amperometrically determine the 

glutamate uptake and accumulation in the nerve terminals at millimolar levels.9 The biomembrane 

resulted storage stability up to 11 days at 4 oC with a loss of 25% of initial activity. Without the 

biomembrane, the sensor showed a large cross-reactivity with ascorbic acid, which was not clearly 

addressed. A reagentless amperometric biosensor was developed by Hughes et al. following a 

layer-by-layer process by alternatively depositing chitosan and multiwalled carbon nanotubes 

(MWNTs) on Meldola’s Blue screen printed carbon electrodes.10 The layers encapsulated the 

glutamate dehydrogenase enzyme and the cofactor nicotinamide adenine dinucleotide (NAD+).  

The sensor had the capacity to determine glutamate concentrations in food and serum samples with 

less than 10% coefficient of variation among five replicates. Reagentless enzymatic amperometric 

biosensor eliminates the requirement for additional redox probes during the detection step, which 

decreases the assay duration. However, the effectiveness of layer-by-layer modification on the 

reproducibility and shelf-life of the sensor needs to be further investigated. 

As another mechanistic approach to entrap large quantities of enzymes, Reuillard and coworkers 

developed an amperometric glucose sensor, which was efficiently built by polypyrrolic bipyridine 

bis(phenantrolinequinone) Ru(II) complex ([RuII(PhQ)2(bpy-pyrrole)]) formed by 

eletropolymerization on a MWNT-modified glassy carbon electrode (GCE).11 This one-step 
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development of [RuII(PhQ)2(bpy-pyrrole)] nano-polymer composite was compared to a layer-by-

layer deposition of [RuII(PhQ)2(bpy-pyrrole)] and poly[12-(pyrrol-1-yl) dodecyl]triethylamnonium 

tetrafluoroborate. Even though the layer-by-layer method entrapped more enzymes, the sensor 

performance was poor due to additional steric effects imposed on cofactor permeation towards the 

electrocatalytic layer. Recently, a nanostructured enzyme-less glucose sensor was developed on a 

glassy carbon electrode modified with a nanohybrid mixture of MWNTs/Au NPs/iron oxide 

nanoparticles (Fe2O3 NPs).12 The aggregation of Fe2O3 NPs above an optimum concentration 

hindered the electron transfer through MWNTs, which in turn lowered the sensitivity of the sensor 

by 2-folds.  

1.3 Pyrenyl carbon nanostructures for ultrasensitive measurements of formaldehyde in urine 

(Chapter 2) 

1.3.1 Approach and novelty 

We recently demonstrated a novel approach for enzyme-selective detection of formaldehyde in 

urine using a flow injection amperometric sensor (Figure 3).13 An amperometric nano-bioelectrode 

design that uniquely combined 1-pyrenebutyric acid (PBA) units pi-pi stacked with carboxylated 

MWNTs on the surface of gold screen printed electrodes was used for covalent attachment of NAD+ 

dependent formaldehyde dehydrogenase (FDH). Based on our prior reports, the large number of     

–COOH groups made available by MWNT/PBA modification promotes greater covalent 

attachment of surface biomolecules,14-16 and is convenient to perform compared to the tedious 

chemical functionalization of MWNTs that could potentially alter their electronic properties. FDH 

is a selective enzyme towards formaldehyde oxidation, which minimized non-specific 

interferences. Fourier transform infrared, Raman, and electrochemical impedance spectroscopic 

characterizations confirmed the successful design of the FDH bioelectrode. An electron transfer 

mediator-based efficient approach using quinone compound (Q: 1, 2-naphthaquinone-4-sulfonic 
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acid sodium salt) was followed to obtain electrochemical signals that are proportional to 

formaldehyde concentration.   

1.3.2 Outcomes and significance  

The non-covalent functionalization of MWNTs with PBA offered a larger amount of carboxyl 

functionalities, which in turn was useful to covalently immobilize a large amount of FDH on the 

electrode surface to increase the sensitivity. Flow injection analysis provided greater affinity for 

formaldehyde (apparent KM 9.6 ± 1.2 ppm) when compared with stirred solution method (apparent 

KM 19.9 ± 4.6 ppm). The flow injection analysis demonstrated a lower detection limit and wider 

dynamic range than the stirred solution method in 10-times diluted urine matrix. This could be 

likely due to the better diffusion of reactants to products on the electrode surface by use of a 

continuous sample flow. The sensor offered a superior selectivity over other homologous aldehydes 

except for a moderate cross-reaction with acetaldehyde (~25%) possibly due to its partial affinity 

to the enzyme’s binding pocket.17  

 

 

 

 

 

 

Figure 3. Pyrenyl-carbon nanostructure-modified disposable electrode for urine formaldehyde 

detection. 
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Our results demonstrated that pyrenyl carbon nanostructure-based FDH bioelectrode design 

represent a novel and simple for enzyme-selective electrochemical quantitation of small 30 Da 

formaldehyde. Broader applicability of our approach to other small-molecule markers is feasible 

depending on the design of appropriate marker-specific enzyme systems or receptor molecules. 

1.4 Ultrasensitive electrochemical immunoassays  

Nano-modified electrochemical immunoassays have received a sound attention in past few years 

in the rapidly growing biomarker sensing applications.18 A typical electrochemical immunoassay 

consists of a reporter molecule which is responsible to produce the corresponding electrical signal 

upon the target molecule is bound to the specific receptor. Dutta and coworkers reported a sandwich 

type immunosensor to determine the low femtogram per milliliter concentration of Plasmodium 

falciparum histidine-rich protein-2 in plasma.19 A highly sensitive redox-cycling approach was 

followed by using methylene blue tagged second antibodies to produce chronocoulometric signals 

after going through an endergonic reaction with Ru(NH3)6
3+ and a highly exergonic reaction with 

tris (2-carboxyethyl)phosphine (TCEP). This eliminated the requirement for expensive enzymatic 

labels and demonstrated high specificity, excellent reproducibility and good stability. Another 

highly sensitive immunosensing platform, which measured femtogram per milliliter levels of a 

food-borne pathogen marker Enteropathogenic coli (E. coli) antigen, a unique and highly sensitive 

redox-cycling detection mechanism was followed.20 The outersphere reaction-philic/innersphere 

reaction-philic transfer from Ru(NH3)6
3+/2+/immunosensor to ferritin-H2O2 redox system resulted in 

a higher signal to noise ratio than a traditional ferritin labeled immunoassay. While this redox-

cycling scheme offered similar sensitivity to the methylene blue-TCEP redox system, it has the 

advantage of having negligible interference from dissolved oxygen in the electro-reduction process.   

A major number of immunosensors developed recently have been focused on determining 

biomarkers related to various cancer conditions. In this effort, an enzyme cascade reaction was 
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employed to measure serum concentration of a tumor marker neuron-specific enolase (NSE) 

utilizing a multifunctional conductive hydrogel containing polypyrrole-polythionine-Au NPs with 

glucose oxidase due to its ease of synthesis through a one-pot reaction, large specific surface area 

offered and high conductivity and signal to noise ratio.21 However, the inherent mechanical 

weakness and non-adherence to certain surfaces could limit the use of hydrogels in biosensors.  

Carvajal and coworkers reported a low-cost disposable inkjet-printed electrode array (< $0.25) to 

detect clinically relevant levels of a breast cancer biomarker human epidermal growth factor 

receptor 2 (HER-2).22 Even though a relatively faster assay time (15 min) were achieved by an 

integrated flow of HER-2, biotinylated antibody, and polymerized horseradish peroxide labels via 

a microfluidic system, this study did not demonstrate any evidence that mimics the real-use of 

determining HER-2 in human serum. A direct immunoassay was built on disposable graphene 

screen-printed electrode modified with branched polyethylenimine to detect serum glial fibrillary 

acidic protein, a central nervous system injury biomarker.23 The simple adsorption of PEI provided 

enriched amounts of primary and secondary amine functional groups for the immobilization of a 

large amount of capture antibody via a Schiff base reaction using glutaraldehyde. This was 

advantageous over the creation of self-assembled monolayers, electropolymerization, plasma-

polymerization, and salts with functional groups that have complex protocols with several time-

consuming functionalization steps. Nonetheless, adsorbed layers of polymers are prone to 

desorption due to strong mechanical stress applied on the sensor, which in turn, could hamper the 

sensitivity.  

Recently, significant efforts have been put by scientists in regard to measurements of insulin levels 

in clinical matrices to draw plausible conclusions on diabetic conditions. Krishnan and coworkers 

reported electrochemical immunosensor designs that employed MWNTs non-covalently 

functionalized with 1-pyrenebutyric acid by pi-pi stacking to increase the surface carboxyl 
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functional groups, which in turn improved the amount of immobilized anti-insulin second 

antibodies to detect low picomolar levels of insulin in diluted human serum.24,25 Magnetic 

nanoparticles covalently linked with anti-insulin capture antibodies were used to conveniently 

capture the serum insulin, which reduced the possible non-specific signals and increased the 

sensitivity of the detection signals.  

1.5 Electrochemical and surface plasmon correlation of serum autoantibody immunoassay 

with binding insights: graphenyl vs. mercapto-monolayer surface (Chapter 3) 

1.5.1 Approach and novelty 

Conventionally, radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), 

chemiluminescent immunoarray (CLIA), and electrochemiluminescence assays have been used by 

the researchers for clinical diagnosis of type 1 diabetes (T1D). These analytical techniques are 

tedious to perform, lacked quality check parameters and required expensive labels. We developed 

an immunosensor design on carboxylated graphene (graphene-COOH) or self-assembled 

monolayer of mercaptopropionic acid (MPA)-modified screen printed eight electrode array 

(8xAuSPE). We used an inexpensive ferricyanide reagent to accomplish the simple electrochemical 

detection of serum glutamic acid decarboxylase autoantibody (GADA) (Figure 4).26 According to 

prior studies, both graphene27-29 and mercapto monolayers30-32 have been widely used to effectively 

functionalize immunoassay surfaces in order to immobilize biomolecules.  

Graphene is an excellent alternative to surface chemistries that cannot be directly used on surface 

plasmon resonance imager (SPRi) array surface due to optical limitations (e.g., carbon nanotubes). 

With its conductive 2D nanostructure and intrinsic plasmonic activity, graphene can be used for 

both electrochemical and SPR surface modification. Herein, we used SPRi as a complementary 

method to the electrochemical methods to evaluate binding constants (KD) associated with GADA 

interaction with its antigen, GAD-65. A unique approach was followed to isolate the GAD antibody 
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from serum samples by protein A/G modified magnetic beads to minimize non-specific 

interactions. This comparative analysis of the graphene-COOH and MPA provided useful 

fundamental information regarding immunosensing of serum GADA and binding insights on 

GADA-GAD65 interaction, which are discussed in detail in Chapter 3.   

Figure 4. Immunosensor containing Graphene-COOH and MPA monolayers for serum GADA 

measurement and binding kinetic determination. 

1.5.2 Outcomes and significance  

The graphene surface offered a lower detection limit with a wider dynamic range compared to the 

MPA monolayer surface, and exhibited a good statistical correlation with the commercial ELISA 

method. The lower KD value for the graphene-COOH modified surface suggests that graphene 

provides a stronger GADA-GAD-65 binding interaction, which in turn relates to a more sensitive 

platform. Through electrochemical quantitation, it was found that the number of surface carboxyl 

groups available for covalent interaction was about 9-times greater in graphene-COOH than the 

mercapto monolayer surface. The larger number of carboxyl groups on graphene provided room to 

immobilize a greater amount of GAD-65 antigen combined with the reduction of non-specific 
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binding occurring on the immunosensor surface, which improved sensitivity. The combined 

sensing and binding assessment studies provided useful insights for broader applications on 

developing reliable, and better throughput clinical immunosensors for biomarker based diagnostic 

assays. 

1.6 SPRi bioassays for protein and nucleotide biomarkers   

SPRi is one of the many SPR techniques that have been established, and can operate as a high-

throughput and label-free technique for the analysis of variety of molecular interactions. Typical 

SPRi works based on Kretschmann configuration in which a monochromatic light source is used 

to generate surface plasmons across an array consisting of a thin plasmonic metal film in contact 

with a dielectric medium. A CCD camera is used to acquire digital images to monitor the intensity 

of light reflected as a result of refractive index changes occurring at the metal-dielectric interface.33 

To increase the sensitivity of the SPRi-based detection, various surface nanomaterial assemblies, 

enzymatic amplification, self-assembly of proteins and DNAs and plasmonic nanoparticle coupling 

have been followed.34  

Sankiewicz and coworkers developed an SPR assay to measure fibronectin in blood samples of 

children with thermal injuries.35  The assay used a simple immunoassay strategy by immobilizing 

fibronectin specific monoclonal antibodies on a mercapto monolayer formed on the gold SPRi array 

and did not require any tags, dyes or specialized reagents. However, the assay sensitivity was only 

moderate with the detection limit of 1.5 ng mL-1, limiting its use to measure biomarkers of clinical 

relevance in ultralow picogram or femtogram per milliliter levels. In another work, an orthogonal 

signal amplification strategy was followed by coupling a miRNA-initiated surficial cyclic DNA-

DNA hybridization reaction with a DNA-initiated upward cyclic polymerization reaction.36 In this 

way the sensitivity was improved to sub-femtomolar concentration detection. However, this 
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method has an intrinsic limitation while applying to a multiplexing platform as it would require the 

design of multiple DNA oligonucleotides if a panel of miRNA markers are to be tested.  

Multiplexing combined with a microfluidic format allows a rapid and efficient analysis of multiple 

biomarkers, minimizing the need for multiple experiments. Hendriks and coworkers recently 

developed a multiplexed SPRi detection cascade using neutravidin and gold nanoparticles to 

measure IL-1β, IL-6, IFN-γ, and TNF-α in femtogram and picogram per milliliter range.37 Though 

the enhancement cascade improved the sensitivity by about 40,000 times in a buffer medium, when 

applied to complex fluids, large non-specific interactions of the surface receptor antibodies led to 

a 1000-fold decrease in the overall sensitivity of the assay. In another recent report, a competitive 

multiplexed SPRi immunoassay was developed to measure insulin, glucagon and somatostatin in 

buffer medium.38 The indirect assay was useful to overcome the limitation arising from small 

molecule detection signals by SPRi, which would often result in no measurable signal changes at 

ultralow concentrations. The drawback in such assay is that it has detection limits in the nanomolar 

range and has not achieved measurements of markers under study in any complex matrix. 

SPRi can become a vital complementary technique to electrochemical methods by enabling real-

time binding insights on various types of molecules associated with appropriate receptor molecules 

immobilized on the array surface. Also, SPRi can be used as a better throughput platform at 

instances where the electrochemical methods cannot measure more than a single sample at a time. 

1.7 Measuring ultra-low levels of nucleotide biomarkers using quartz crystal microbalance 

and SPR microarray imaging methods: a comparative analysis (Chapter 4) 

1.7.1 Approach and novelty 

Circulating serum nucleotide biomarkers are useful indicators for early diagnosis of various deadly 

diseases. In particular, miRNA-21 (miRNA-21) has been found to be relevant to infectious 

diseases, such as viral and bacterial infections, as well as non-infectious diseases such as 
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cardiovascular disorders and cancer. A combination of mass sensor and SPRi methods that utilize 

the same assay chemistry on gold are useful detection with quantitative insights. In this work, we 

compared detection performances of a quartz crystal microbalance (QCM), which is a mass sensor, 

with that of a SPRi microarray for an oligonucleotide mimic of the miRNA-21 biomarker (Figure 

5).39  

A surface immobilized capture oligonucleotide probe was designed and custom synthesized to 

hybridize with the target oligonucleotide (i.e., the miRNA-21 mimic) to facilitate selective 

detection. The direct method of forming a self-assembled monolayer of capture probes on the gold 

surface eliminated the need for additional surface functionalization steps. Gold nanoparticles (Au 

NPs, 50 nm) were conjugated with the target oligonucleotide to increase the detection sensitivity 

by adding more mass on the surface on the QCM sensor as well as enhancing the plasmonic signals 

in an SPRi microarray. To assess the selectivity of the capture probes towards the target 

oligonucleotide, an Au NP-linked control oligonucleotide containing five base-pair mismatches to 

the target oligonucleotide was used. Additionally, sample recovery studies were performed to 

analyze the serum matrix effect. 

1.7.2 Outcomes and significance  

We achieved detection limits of 28 and 47 fM for the target oligonucleotide by the QCM and SPRi 

microarray approaches, respectively. Although the QCM was more sensitive and had a lower 

detection limit, it was throughput limited. The microarray approach offered better throughput for 

analysis of up to 16 samples, thus the analysis of sample and controls in a single experiment using 

a dual channel microfluidic system was possible. 

The combination of QCM with SPRi can be practically significant as it is useful for quantitative 

characterization and assay step optimization before applying for a high-throughput platform. We 

confirmed that the designed assay was selective for the target oligonucleotide and did not show 
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signals for the control base mismatch oligonucleotide. According to the sample recovery studies (> 

90%), there was a negligible interference from the serum matrix up to 25% in buffer. QCM studies 

revealed the effectiveness of conjugating Au NPs with the target oligonucleotides to increase the 

sensitivity of the detection signal by about three times. The strategy discussed above opens up an 

avenue in developing a SPRi-based multiplexed platform to measure multiple biomarkers in 

clinical matrices. 

 

 

 

 

 

 

 

Figure 5. The QCM and SPRi sensors for selective detection of oligonucleotides of miRNA-21 

mimic (Target) from a sequence containing five mismatches (Control) with AuNPs-based signal 

amplification.  

1.8 Multiplexed surface plasmon assay for serum proteins and micro-ribonucleic acids: 

signal amplification by bimetallic Fe3O4@Au nanoparticles (Chapter 5) 

1.8.1 Approach and Novelty  

Highly expressed circulating protein and miRNA markers play a significant role in indicating 

critical health conditions and measuring them together in one assay platform offers the advantages 

of increasing the prediction rates and reduction of false positive diagnoses. We recently expanded 
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our existing dual channel SPRi microfluidic system into a four-channel system to develop a 

multiplexed assay to simultaneously measure four circulating cancer biomarkers (two proteins: IL-

6 and IL-8, and two miRNAs: miRNA-21 and miRNA-155) in human serum (Figure 6).40 The SPRi 

microarray uniquely employed citrate-stabilized bimetallic iron-gold bimetallic core/shell 

nanoparticles (Fe3O4@Au NPs) as signal amplification labels covalently linked with secondary 

detection molecules. Various bimetallic NPs have been built by combining the beneficial properties 

of two metals and have been employed in biosensing applications.41 In particular, the Fe3O4@Au 

NPs offered the distinctive benefits of easy conjugation and magnetic separation of desired 

compounds for subsequent detection in the assay.42 The plasmonic properties of the gold shell were 

useful for amplifying the SPR detection signals.43 SPRi allowed the real-time monitoring of the 

binding events of the protein and miRNA biomarkers to their surface receptors. Multiplexing was 

useful to directly assay the two protein markers by a sandwich immunoassay and the two serum 

miRNA markers by a double hybridization assay in a serum sample.  

Figure 6. Bimetallic Fe3O4@Au core/shell nanoparticles enhanced multiplexed SPRi bioassay to 

measure four serum cancer biomarkers.   
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1.8.2 Outcomes and significance  

The Fe3O4@Au (105 nm) NPs exhibited 13-times higher plasmon signal intensities than that of 

only Fe3O4 NPs (100 nm) and 6-times greater signals than Au only NPs (100 nm). The magnetic 

feature of Fe3O4@Au NPs was useful for convenient separation of the detection probes that were 

covalently linked (binding efficiency > 70%). The plasmon enhancing features of Fe3O4@Au NPs 

aided in amplifying the SPRi signal output for analyte markers while minimizing the non-specific 

signals arising from the serum matrix. The detection limits achieved for the markers were in the 

pM to sub-pM concentration range.  

In 10% serum, the dynamic range of detection for the proteins was from pM to nM (~104 orders of 

magnitude), and for the miRNAs, the dynamic range was from fM to nM (~106 orders of 

magnitude). The binding constants determined from Langmuir-type binding kinetics was from µM 

to nM range, which provided evidence of strong affinities between the analyte biomarkers and their 

receptor molecules on the designed sensor surface. This feature is vital in understanding the degree 

of interaction of the chosen receptors with the target analytes in bioassays. Further, this SPRi array 

has the potential to be adopted as a tool for analysis of other biomarkers present in clinical samples. 

1.9 Conclusions and future directions 

In summary, this chapter mainly attempted on discussing various electrochemical and SPRi assay 

methodologies developed recently to measure biomarkers in complex matrices, and the 

contributions of the research presented in this dissertation have added new knowledge on 

combining electrochemical and SPRi methods to determine quality check parameters in devising 

clinical biosensors with high sensitivity and selectivity. Up to date, scientists have been working 

tirelessly to advance the field of sensors by developing many impressive electrochemical and SPR 

based biosensor technologies and have disseminated their findings through a plethora of research 

publications. However, so far, only a handful of electrochemical biosensors have reached the 
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commercialization stage. A similar trend can be observed with the reported superior SPR diagnostic 

assays for biomarker measurement that have still not made it to a clinical setting. Of course, it 

should be noted that significant research efforts are needed to increase the efficiency, robustness 

and reproducibility of bioassay designs, and applicability for a large number of samples in order to 

translate them from laboratory bench into practically implementable methods.  

With the increasing population suffering from numerous types of deadly diseases, advanced 

biosensor technologies are critical for early-diagnosis and prognosis, in order to commence suitable 

therapeutic regimes in a timely manner. In particular, the advantages of electrochemical sensor 

technologies and nanotechnology can be combined to develop potential miniaturized devices for 

personalized continuous biomarker measurements. Future developments in embroidered 

electrochemical sensors, contact-lens based sensors, sweat sensors and edible biosensors would 

shift the diagnostic world to a new paradigm. Similarly, besides the biosensing feature, the ability 

to determine binding insights of various biomolecule interactions by SPRi can be utilized in 

selecting appropriate surface designs and biorecognition elements for a wide range of biosensors. 

In parallel to electrochemical techniques, SPR is expected to transform to a user friendly technology 

by appropriate tuning of the portability and interfacial sensing features. The outlook for 

electrochemical and SPR research certainly remains positive and many breakthroughs are realizable 

with continuous explorations.   
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CHAPTER 2   
 

 

PYRENYL CARBON NANOSTRUCTURES FOR ULTRASENSITIVE MEASUREMENTS 

OF FORMALDEHYDE IN URINE 

2.1 Introduction 

Biomarkers are molecular indicators that play a crucial role in the diagnosis, prognosis, and 

theranostics of diseases such as cancer.1 As a result, bioanalytical methods that allow sensitive and 

selective measurements of biomarkers are significant for clinical applications and therapeutics 

development. In view of diagnostic challenges, the molecular size of a biomarker present in 

complex body fluid matrices inversely affects the detection sensitivity. This is because small 

molecules do not yield measurable assay signal changes compared to large biomolecules. 

Additionally, dilution of samples to minimize clinical matrix effects can further lower the 

biomarker concentration and its detection. False-positive signals, tedious extraction procedures of 

analytes from the matrices, simplicity of the assay and detection protocol, and selectivity are other 

related problems.  

Despite the issues described, nanotechnology-based optical and electrochemical methods have 

allowed detection of large proteins, receptors, antibodies, DNA, and RNA biomarkers at clinically 

relevant pM to aM concentrations in body fluids.2 However, development of such analytical assays 

with simplicity, selectivity, sensitivity, and low-cost for detecting small-molecule markers of 

Adapted from G. Premaratne, S. Farias, and S. Krishnan, Pyrenyl carbon nanostructures for ultrasensitive 

measurements of formaldehyde in urine, Analytica Chimica Acta, 2017, 970, 23 –29 with permission from 

Elsevier. 
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cancer and other diseases non-invasively remains to be a significant challenge. In particular, 

bioanalytical methods for detection of ultra-low ppb levels of formaldehyde (HCHO) in a complex 

clinical matrix (e.g., plasma, serum, urine) suffer by interferences from non-analyte components 

present in the matrix (non-specific signals), poor detection capability, and issues of enzyme 

instability and loss of enzyme activity. Furthermore, non-invasive detection of biomarker levels is 

advantageous for routine diagnosis of these diseases at an early stage as it eliminates painful 

invasive procedures (e.g., biopsy, bronchoscopy), which are known to cause tissue and organ 

damage.3 Moreover, we can eliminate minimally invasive procedures, such as drawing of blood 

from patients for analysis.4 In this study, we demonstrate for the first time the design of pyrenyl 

carbon nanostructure modified electrodes for formaldehyde dehydrogenase (FDH) immobilization 

and electrochemical quantitation of HCHO in a urine matrix with a 6 ppb detection limit. 

Aldehydes, including HCHO, have received considerable attention as a key class of volatile organic 

compound markers that exhibit toxic effects in humans, and are suggested to be relevant for cancer 

and neural diseases.5-8 Many techniques have been developed to detect HCHO, including 

spectrophotometric,9 electrochemical,10,11 optical,12 electronic,13 and colorimetric14 methods. 

Sensitive detection of urine HCHO by chromatography-mass spectrometry methods is known. 

However, these methods involve expensive instrumentation, and time consuming laborious sample 

preparation, measurement, and analysis steps.5 In contrast, electrochemical methods are 

straightforward and cost effective.15,16 In particular, electrochemical enzymatic amperometric 

biosensors offer the advantages of direct and quick detection of analytes with simplicity. By 

appropriate design of surface strategies, high sensitivity, robustness, and excellent reproducibility 

can be attained. 

FDH (~ 170 kDa), an enzyme of the oxidoreductase family,17,18 is a homotetrameric enzyme 

containing 398 amino acids per subunit. Ali et al. developed a biosensor made from NAD+ and 

glutathione-dependent recombinant FDH immobilized on the surface of a Si/SiO2/Si3N4 structure.11 
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A mediator-based amperometric biosensor was constructed on disks of woven graphite gauze 

coated with NAD+ and glutathione-independent FDH from Hyphomicrobium zavarzinii strain ZV 

58.19 Demkiv et al. modified platinized graphite electrodes with NAD+ and glutathione-dependent 

FDH isolated from a genetically engineered strain H. polymorpha. In that study, electron transfer 

between the enzyme and the electrode was established using low molecular weight redox mediators 

or positively charged cathodic electrodeposition paints modified with Os-bis-N,N-(2,2'-bipyridyl)-

chloride ([Os(bpy)2Cl]).20 FDH from Pseudomonas sp. immobilized on mesoporous silica 

materials21 and multiwalled carbon nanotube-modified screen printed electrodes22 for HCHO 

detection in buffer solution have been developed. 

Herein, we report for the first-time 1-pyrenebutyric acid (PBA) pi-pi stacked with carboxylated 

multiwalled carbon nanotubes (MWNTs) on the surface of the gold screen printed electrodes 

(AuSPEs) for covalent FDH immobilization offering highly sensitive and selective ultra-low 

detection HCHO concentration in a 10-times buffer diluted urine. We combined here the –COOH 

groups of MWNTs with the non-covalently attached PBA because this combination approach, 

discovered by us recently, offered 3-fold improved sensitivity for a serum insulin immunosensor 

compared to the use of only carboxylated MWNTs.23 HCHO was quantitated using a quinone 

compound (Q: 1, 2-naphthaquinone-4-sulfonic acid sodium salt) as an electron transfer mediator to 

obtain electrochemical signals in proportion to HCHO concentration. To our knowledge, this is the 

first report of a pyrenyl carbon nanostructure based enzymatic bioelectrode for urine HCHO 

quantitation. 

2.2 Experimental  

2.2.1 Materials and chemicals 

Gold screen printed electrodes (AuSPEs) with a three-electrode cell configuration integrated on a 

ceramic substrate (Model: 250 BT, 4 mm diameter Au working electrode, Pt counter electrode, and 
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Ag pseudo reference electrode) were purchased from DropSens Inc. (Spain). Multiwalled 

carboxylic acid functionalized carbon nanotubes (MWNTs, > 8% carboxylic acid functionalized, 

avg. diam. 9.5 nm, length 1.5 µm), β-nicotinamide adenine dinucleotide sodium salt (NAD+), FDH 

from Pseudomonas sp., PBA, 1,2-naphthaquinone-4-sulfonic acid sodium salt (Q), HCHO solution 

(36.5 – 38% in water), 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC),       

N-hydroxysuccinimide (NHS), and formaldehyde-2,4-dinitrophenylhydrazone analytical standard 

(HCHO-DNPH) for liquid chromatography were purchased from Sigma and were used as received. 

Vivaspin 6 ultrafiltration cartridges (molecular weight cut off: 3 kDa, GE Healthcare, Little 

Chalfont, Buckinghamshire, UK) were used for filtration of urine. All aqueous reagents were 

prepared in deionized water (DI H2O) using a Milli-DI water purification system (Millipore Ltd., 

Billerica, Massachusetts, USA). All other chemicals were high purity analytical grade. 

2.2.2 Instrumentation 

Amperometric measurements were performed at room temperature (23 oC) using a CHI 6017E 

electrochemical workstation coupled to a faraday cage and a picoamp booster (Austin, TX, USA).  

The flow-cell was connected to a syringe pump system (New Era Pump Systems Inc., NY, USA) 

and a sample injector valve (Rheodyne model 9725i PEEK injector, IDEX Health & Science LLC, 

CA, USA). The sample loop volume was 200 μL. Spectroscopic characterizations of the 

bioelectrode fabrication steps were carried out using Fourier transform infrared spectroscopy 

(FTIR, Thermo Scientific Nicolet iS50) in the attenuated total reflectance (ATR) mode. The 

bioelectrodes were placed directly on the ATR diamond crystal and 32 scans were taken and 

averaged to obtain a good signal-to-noise ratio. In addition, Raman spectroscopy (Nicolet NXR 

FT-Raman module, Nd:YVO4 laser, 1064 nm, 0.2 W, resolution 4 cm-1) and  electrochemical 

impedance spectroscopy (Interface 1000 potentiostat/galvanostat/ZRA, Gamry instruments, 

Warminster, PA) were used for the characterization of the designed bioelectrode. Liquid 

chromatography-mass spectrometry (LC-MS) with an electrospray ionization source (Shimadzu 
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LCMS-2010EV) was used for identification of HCHO-DNPH derivative, methanal 2,4-

dinitrophenylhydrazone. 

2.2.3 Surface modification of AuSPE  

Briefly, on the surface of disposable AuSPEs, 5 µL dispersions of 2 mg mL–1 MWNTs in 

dimethylformamide (DMF) were added to cover the entire AuSPE surface and allowed to dry at 

room temperature. The electrodes were washed well with deionized H2O and dried under nitrogen 

prior to adding 3 µL of 3 mg mL–1 PBA solution in DMF. The electrodes were kept in a cold and 

moist environment for 1 h to allow the formation of strong pi-pi interactions between MWNTs and 

PBA. The electrodes then were washed well with deionized H2O and dried under nitrogen.  

Figure 1. Representation of the crystal structure 

of FDH from Pseudomonas aeruginosa (PDB 

4JLW). The surface lysine (Lys) residues 

available for covalent attachment to surface 

carboxylic acid groups of PBA and MWNT are 

highlighted in red. 

 

 

FDH enzyme was covalently linked via its free surface lysine residues (PDB: 4JLW, Figure 1) to 

the –COOH terminal groups of both the MWNT and PBA assembly by the established 

carbodiimide chemistry.24 To carry out this reaction, MWNT/PBA-modified AuSPEs were treated 

with 5 µL solution of a freshly prepared mixture containing 0.35 M EDC and 0.1 M NHS for 15 

min to activate the surface carboxylic acid groups of MWNTs and PBA into lysine (Lys) amine 

reactive N-succinimidyl esters. The electrodes were then washed with deionized H2O to remove 

unreacted reagents and subsequently treated with 5 µL of 200 µg/mL FDH solution prepared in 
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phosphate buffered saline (PBS) and incubated for 1 h to obtain covalently linked FDH films. The 

prepared electrodes were used immediately for measuring HCHO in urine. 

2.2.4 Chronoamperometric detection of formaldehyde in urine samples  

Urine samples were collected from a healthy male adult volunteer in a 50 mL sterile polyethylene 

vial. Samples were then immediately vortexed and divided into 10 mL aliquots and stored at -20 

oC for up to 30 days to avoid any storage loss. Before use, the frozen samples were thawed at 

room temperature. Prior to spiking with formaldehyde, a 6 mL aliquot of the urine sample was 

subjected to centrifugal filtration using Vivaspin-6 cartridges at a speed of 4000 rpm for 30 min at 

room temperature.25 Filtered urine samples were diluted 10-times in PBS. Various concentrations 

of formaldehyde were spiked in the 10-times diluted urine and were used for analysis.  

Figure 2. (A) Schematic of the microfluidics system used in this study. (B) Fabrication steps of the 

AuSPEs with FDH and the reaction sequence for catalyzing HCHO and detection by flow injection 

or stirred solution amperometry. 

FDH-immobilized AuSPE/MWNT/PBA electrodes were attached to an in-house designed flow cell 

that was connected to a syringe pump and a sample injector (Figure 2A). The running buffer was 

made up of PBS containing 5 mM NAD+ and 1 mM Q. Various concentrations of HCHO prepared 

in 10-times diluted urine in PBS were injected via a manual injector valve onto the bioelectrode 

surface. Real-time measurements of the oxidation currents of QH2 formed from NADH as a result 
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of FDH catalyzed HCHO oxidation were performed at an applied constant potential of + 0.35 V 

(Figure 2B).21,26 The current versus HCHO concentration was plotted and the resulting curve was 

fit by the Michaelis-Menten non-linear regression equation available with the K-graph software 

used. 

2.3 Results and Discussion  

2.3.1  FTIR characterization of the modified electrodes 

Figure 3 shows the baseline corrected FTIR-ATR results for the modified bioelectrode surface that 

confirmed the covalent immobilization of FDH onto the –COOH groups of AuSPE/MWNT/PBA 

electrodes. A strong vibrational peak at 1714 cm–1 indicated the presence of carbonyl stretching 

from the –COOH groups of MWNTs. Pi-pi stacking of PBA with MWNTs red shifted the C=O 

stretching vibration to 1698 cm–1, which has been attributed to the partial electron transfer from 

PBA to MWNT resulting in a relatively weaker C-C bond strength in the MWNT/PBA complex 

than the MWNT alone.27 Additionally, a broad peak at 3136 cm–1 for the O-H stretching was 

observed.28 Following covalent FDH attachment via coupling of Lys amines with surface 

carbodiimide activated (EDC/NHS) -COOH groups of PBA and MWNTs forming amide bonds, 

typical amide-I and amide-II bands from the peptide backbone of FDH were observed at 1683 and 

1603 cm–1, respectively.29 The disappearance of the prior O-H stretching and appearance of a new 

broad band at 3472 cm–1 arising from N-H stretching of FDH indicated amide bond formation and 

thus the enzyme immobilization. Furthermore, it is possible that a partial non-covalent adsorption 

of the FDH onto the MWNT/PBA surface cannot be ruled out. Despite this, based on the observed 

FTIR spectral changes of the surface carboxylic acids the covalent FDH attachment is evident. 
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Figure 3. FTIR spectra of AuSPE coated 

with (a) carboxylated MWNTs, (b) after 

PBA stacking, and (c) after covalent 

immobilization of FDH 

 

 

 

 

2.3.2 Raman characterization of the nano-bioelectrode fabrication steps 

Figure 4 represents the Raman spectra of AuSPE coated with MWNT, after pi-pi stacking with 

PBA, and subsequent covalent immobilization of FDH by Lys amine-carboxylic acid coupling 

chemistry using EDC/NHS reagents. The Raman spectrum of carboxylated MWNT-coated 

AuSPEs showed the characteristics D, G, and G′ bands at 1316, 1594, and 2614 cm-1, 

respectively.30,31 Decrease in frequency of these bands to 1304, 1585, and 2605 cm-1, respectively, 

as a result of pi-pi stacking of the PBA molecules was observed.32,33  

Figure 4. Raman spectra of AuSPEs 

coated with (a) Carboxylated 

MWNTs, (b) after PBA stacking, and 

(c) after covalent immobilization of 

FDH. 
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Another band at 2902 cm-1 can be attributed to the aromatic C-H groups arising from PBA 

molecules. A further shift in the G band and the appearance of new peaks at 1634 and 3310 cm-1 

indicated the presence of amide groups confirming the covalent attachment of FDH onto 

MWNT/PBA assembly on AuSPEs.  

2.3.3 Electrochemical impedance spectroscopy characterization  

Figure 5 represents the Nyquist plots corresponding to the faradaic impedance measurements for 

each step of the FDH bioelectrode construction in an aqueous solution containing 0.1 M KCl and 

a mixture of 10 mM of each potassium ferricyanide and potassium ferrocyanide redox probe 

[Fe(CN)6
3-/4-]. The Randles equivalent circuit model was used to fit the experimental impedance 

spectra to estimate the charge transfer resistance (Rct) similar to our prior report.34 MWNT/PBA 

modification of AuSPE surface decreased the Rct and thus made the surface more conductive (inset 

of Figure 5 for clarity). This is suitable for facilitating interfacial charge transport. Subsequent 

covalent attachment of the FDH enzyme onto the EDC/NHS activated surface –COOH groups of 

PBA and MWNT increased the Rct value, as would be expected for non-conductive enzyme 

molecules.  
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Figure 5. Faradaic impedance spectroscopic measurements of Rct values in an aqueous solution 

containing 0.1 M KCl and 10 mM of Fe(CN)63-/4- for stepwise modification of (a) AuSPE (1792 

Ω), (b) after dry-coating of MWNT (154 Ω), (c) after pi-pi stacking of PBA (67 Ω), and (d) after 

covalent immobilization of FDH (410 Ω). Experimental conditions: 0.2 V vs Ag/AgCl, amplitude 

10 mV, and frequency range 0.1-100 kHz. 

2.3.4 Amperometric response for the stirred vs flow injection analysis 

The enzyme fabricated SPEs were assessed for HCHO oxidation in a 10-times diluted urine matrix. 

The ability of the enzyme to function well in the urine matrix was very important, and thus adequate 

NAD+ cofactor (5 mM) was supplied. Ten times dilution of urine provided the optimum 

performance of the FDH bioelectrode with minimal non-specific signals in the working potential 

region as discussed below. FDH-catalyzed detection of HCHO was performed according to the 

reaction sequence shown in Figure 2B. Q was used as the electron transfer mediator to transfer 

electrons to the electrode from NADH formed in solution as a result of the FDH-catalyzed HCHO 

oxidation.21 This in turn regenerates NAD+ to receive subsequent protons upon HCHO oxidation. 
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Upon dilution of the urine matrix, an increase in the amperometric current was observed (Figure 6, 

tested using 1 ppm of HCHO for method optimization). This could be attributed to the reduction in 

high salt concentration and other interfering agents for the optimum performance of the sensor 

and/or the FDH enzyme.35 Diluting the urine samples more than ten times did not significantly 

increase the amperometric response. Hence, ten times dilution of the urine was selected for further 

studies.  

 

 

 

 

 

 

Figure 6. Amperometric responses (after subtraction of signals for control urine sample with no 

spiked HCHO) of flow injection analysis of 1 ppm HCHO at various dilutions of urine samples 

with PBS (pH 7.4) containing 5 mM NAD+ and 1 mM Q delivered a flow rate of 100 µL min–1 at 

an applied potential of + 0.35 V at 23 oC. 

Figure 7A-a shows the increase in currents of the bioelectrode in stirred solutions containing 

various concentrations of HCHO from ppb to ppm levels in 10-times diluted urine matrix at an 

optimum solution stirring rate of 150 rpm. Linearity of the currents vs. concentration of HCHO 

was observed between 100 ppb and 16 ppm (initial range in Fig. 7A-b), which is a wide dynamic 

range useful for clinical assay of such markers. A deviation from the linearity was observed at 

higher concentrations of HCHO (i.e., > 16 ppm) and followed typical electrochemical Michaelis-

Menten enzyme kinetics (Fig. 7A-b).36 The estimated apparent Michaelis-Menten constant (KM
app) 

using KaleidaGraph software (version 4.1) was 19.9 ± 4.6 ppm. The limit of detection (LOD) (the 
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signal at three times the standard deviation of the mean of the HCHO unspiked control urine 

sample37) of the described stirred solution-based HCHO detection was 73 ppb.                                        

To examine improvements on the detection sensitivity of the stirred solution method by facilitating 

better mass transport of HCHO and other assay reagents, we used flow injection analysis.38  

The cofactor and electron transfer mediator containing solution mixture (5 mM NAD+ and 1 mM 

Q in PBS, pH 7.4) was delivered at an optimum flow rate of 100 µL min–1 onto the FDH 

bioelectrode surface using a syringe pump. Various concentrations of HCHO spiked in 10-times 

diluted urine in PBS (pH 7.4) then were injected via a manual injection valve, and the resulting 

oxidation currents were measured (Figure 7B-a).   

The sensitivity of HCHO detection was only moderately enhanced (by two times) in the flow 

injection method compared to the stirred solution (calculated from the slopes of the initial linear 

range in Fig. 7A-b and 7B-b). A possible reason could be that the HCHO and mediators used are 

small molecules. As a result the mass transport by convection (stirring vs fluid flow) does not seem 

to be greatly different in view of sensitivity (i.e., the slope of response plots covering the linear 

range of HCHO concentrations). Nevertheless, the flow injection analysis significantly decreased 

the LOD to 6 ppb, which is 12-fold smaller than the stirred-solution method. This is likely because 

diffusion of reactants to products (cofactor, urine matrix, and mediator reaching the electrode and 

the product diffusing away) becomes much more prominent at the lowest concentration 

corresponding to the LOD. As a result, the flow injection method for the designed bioelectrode 

seems to be better than the stirred-solution analysis in facilitating effective electronic 

communication of the low levels of urine HCHO with the surface of the AuSPE/MWNT/PBA 

enzyme electrode. 
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Figure 7. (A) Stirred solution method: (a) Amperometric responses of the AuSPE/MWNT/PBA-

FDH bioelectrode for various concentrations of HCHO in 10-times diluted urine in PBS, pH 7.4, 

containing 5 mM NAD+ and 1 mM Q at an applied potential of + 0.35 V at 23 oC and a constant 

stirring of solution using a magnetic stirrer at 150 rpm. Inset shows the enlarged view for lower 

HCHO concentrations. (b) Michaelis-Menten fit of the designed bioelectrode in oxidizing HCHO. 

(B) Flow injection analysis: (a) Amperometric responses for the AuSPE/MWNT/PBA enzyme 

bioelectrode upon injection of various concentrations of HCHO at a flow rate of 100 µL min–1. 

Inset shows the enlarged view for lower HCHO concentrations. (b) The corresponding Michaelis-

Menten fit of the experimental data. 

Reported studies based on chromatography and mass spectrometry methods identified increased 

levels of HCHO present in the urine samples of patients with dementia and bladder cancer 

conditions compared to healthy individuals. Thus, the obtained LOD of the FDH bioelectrode for 

measuring HCHO in urine meets the reported clinically relevant range [e.g., bladder cancer (> 85 
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ppb),39 dementia (> 5.8 ppm),8a and early stages of cognitive impairments in older adults (> 330 

ppb)8b]. The lower LOD illustrates the advantages of flow injection analysis in improving analyte 

mass transport and minimizing noise levels, resulting in an enhanced signal-to-noise ratio and thus 

an improved detection limit. The linear dynamic range of our flow analysis for HCHO in 10-times 

diluted urine was from 10 ppb to 10 ppm. 

The relationship between current signal and HCHO concentration was fit by the Michaelis-Menten 

non-linear regression curve (Figure 7A-b and 7B-b) using KaleidaGraph software (version 4.1). 

The estimated KM
app of flow injection method was 9.6 ± 1.2 ppm,  which is better than the stirred-

solution method and likely due to enhanced substrate mass transport facilitating kinetically faster 

steady state conditions in the flow system. The observed difference between the affinity constants 

was calculated to be significant at 95% confidence level. Previously reported KM
 values of HCHO 

solution bioassays were 5.4 ppm for FDH from genetically engineered H. polymorpha,20 7.5–8.7 

ppm for a homologous enzyme from Candida boidinii,40 6.3 ppm for FDH from H. polymorpha,41 

and 12.9 ppm for FDH from Pichia pastoris.42 Results indicate that the KM
app values obtained in 

the present work are comparable with the reported bioassays. 

Figure 8. Selectivity of the designed 

AuSPE/MWNT/PBA-FDH bioelectrode 

for HCHO over other similar analytes in 

stirred solutions. Current signals for 5 

ppm of analytes (x-axis) in 10-times 

diluted urine solutions in PBS are shown. 
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The presented FDH bioelectrode design offers sensitivity, ultra-low clinically useful LOD, and 

simplicity, but it is also essential to meet selectivity criteria for clinical diagnosis of small-molecule 

disease markers. Figure 8 depicts the current signals for HCHO with two immediate aldehyde 

homologues and with acetone and two types of alcohol. The current responses confirm the high 

selectivity for HCHO, with ~ 25% cross-reactivity for acetaldehyde (CH3CHO) and negligible 

cross-reactivity for propanaldehyde, acetone, methanol, and ethanol. The moderate cross-reactivity 

for acetaldehyde suggests that the substrate binding pocket of the FDH enzyme has a slight affinity 

for this immediate homologue of HCHO that does not vary significantly in size. 

2.3.5 LC-MS confirmation of the presence of HCHO in the prepared urine samples by 

derivatization with DNPH  

The presence of spiked HCHO in the urine samples was independently verified by LC-MS (Figure 

9).43-45 In brief, to a vial containing 5 mL of HCHO (5 ppm) in 10-times diluted urine,  2 mL of 1 

mg mL-1 DNPH and 0.2 mL of 5 N H3PO4 were added and the solution was thoroughly mixed. The 

solution was allowed to stand for 30 min for DNPH derivatization of HCHO forming a Schiff base 

(methanal 2,4-dinitrophenylhydrazone derivative: HCHO-DNPH)). The samples were then filtered 

using a 0.22 µm PTFE syringe membrane filter before analysis by LC-MS.  A Premier C18, 3 µ 

100 x 4.6 mm column (Schimadzu) was used with a mobile phase composition of acetonitrile:water 

mixture (60:40) and a flow rate of 0.3 mL min-1. The LC peaks were detected using a photodiode 

array detector operating in the wavelength range of 200-800 nm with a selected wavelength of 354 

nm that corresponds to the HCHO-DNPH derivative. Mass spectra were recorded in the m/z range 

of 100 to 350 Da using an electrospray ionization operated in negative ion mode. As shown in 

Figure 9-A(a), the HCHO-DNPH derivative appears around 5.8 min in agreement with the peak of 

the derivative standard [Figure 9-A(d)]. The peak at 4.5 min corresponds to the underivatized 

DNPH in the sample [Figure 9-A(a and b)]. It can be noted that the blank urine sample does not 
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interfere with the derivative detection [Figure 9-A(c)]. The 209 m/z corresponds to the HCHO-

DNPH derivative that is in agreement with the prior report in literature (Figure 9-B).45 

Figure 9. (A) LC-MS analysis of the presence of HCHO (5 ppm) in the prepared urine samples 

(10-times diluted) by DNPH derivatization method. Separation of (a) DNPH derivatized urine 

sample containing HCHO (5 ppm), (b) diluted urine sample with only DNPH, (c) diluted urine 

sample alone, and (d) standard DNPH-HCHO derivative (20 ppm). (B) MS analysis showing the 

209 Da peak for the formed DNPH-HCHO derivative in the urine sample. 

2.3.6 Stability and selectivity of the electrode  

The fabricated FDH bioelectrodes were tested for film stability in PBS (pH 7.4 at 23 oC) for 40 h 

by non-faradaic impedance spectroscopy at an applied constant frequency of 5 Hz (Figure 10).46 A 

stable impedance magnitude of 232 Ω was noted for more than 40 h. It is worth mentioning that 

AuSPEs are intended to be for disposable use and hence the observed stability upon continuous 

soaking of the modified, FDH attached SPE surface in a buffer solution is reasonably good. 
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Figure 10. Film stability assessment 

of the designed AuSPE/MWNT/ 

PBA-FDH bioelectrode for 40 h 

using electrochemical non-faradaic 

impedance spectroscopy at an 

applied frequency of 5 Hz in PBS, 

pH 7.4, room temperature (23 oC). 

 

 

 

Excluding the MWNT/PBA surface modification of AuSPEs, the bioelectrode design only required 

one step for FDH immobilization and subsequent detection and quantitation of HCHO in 10-times 

diluted urine. The various sample matrices used in the literature for HCHO and the reported linear 

dynamic range, detection limit, sensitivity, and bioelectrode stability are presented in Table 1. This 

comparison shows better performance of the pyrenyl-cabon nanostructure bioelectrode than simple 

buffer solution-based HCHO quantitation methods. 
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Table 1. Comparison of the present MWNT/PBA-FDH nano-bioelectrode with relevant reported studies. 

Sensor type Construction material Sensing method Sensing element  Matrix Linear dynamic 

range/ Sensitivity/ 

Detection limit 

Ref. 

Planar 

electrochemical 

transducers 

Potentiometric sensor – 

Si3N4-ISFET 

Conductometric and 

amperometric sensor – gold 

interdigitated electrodes 

vacuum deposited with 

sintered aluminum oxide 

 

Potentiometry, 

conductometry, 

and  amperomety 

Alcohol oxidase from 

Hansenula polymorpha 

10 mM Phosphate 

buffer (pH 7.7) 

150 – 9000 ppm 

 

 

47 

Enzyme biosensor Si/SiO2/Si3N4 structure  as 

physical transducers 

Capacitance NAD+ and glutathione-

dependent recombinant 

formaldehyde 

dehydrogenase 

2.5 mM Borate 

buffer (pH 8.40) 

0.3 – 600 ppm 

Sensitivity  

31 mV/ decade 

 

Detection limit  

0.3 ppm 

 

11 

Amperometric 

enzyme sensor 

Disks of woven graphite 

gauze 

Amperometry NAD+ and glutathione-

independent 

formaldehyde 

dehydrogenase from 

0.1 M KCl, 

80mM KH2PO4 

(pH 8.0) 

0.5 – 15 ppm  

Sensitivity  

0.39 µA/ppm 

19 
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Hyphomicrobium 

zavarzinii strain ZV 58 

 

Amperometric 

biosensor  

Platinized graphite electrode   

modified with low-molecular 

free-diffusing redox 

mediators or positively 

charged cathodic 

electrodeposition paints 

modified with Os-bis-N,N-

(2,2’-bipyridil)-chloride 

([Os(bpy)2Cl]) 

 

Amperometry NAD+ and glutathione- 

dependent 

formaldehyde 

dehydrogenase isolated 

from a gene-engineered 

strain of the 

methylotrophic 

yeast Hansenula 

polymorpha 

 

20 mM Phosphate 

buffer (pH 8.2) 

0.3 – 3 ppm 

Sensitivity    

358 Am−2 M−1 

 

Detection limit   

90 ppb  

 

20 

Electrochemical 

biosensor 

Glassy carbon electrode 

containing a membrane 

constructed with  

mesoporous silica materials 

 

Amperometry Formaldehyde 

dehydrogenase  

from Pseudomonas sp. 

Phosphate buffer 

(pH 7.4)  

30 ppb – 30 ppm  

Detection limit   

36 ppb 

21 

Electrochemical 

biosensor  

Screen-printed carbon 

electrode modified with 

MWCNT 

Amperometry Formaldehyde 

dehydrogenase  

from Pseudomonas 

putida 

PBS  (based on in 

situ released 

HCHO from a 

prodrug treated 

cancer cells in 

PBS) 

3 ppb – 3 ppm  

Detection limit   

300 ppb  

 

22 
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Electrochemical 

biosensor 

Screen printed gold 

electrodes modified with 

MWNT/PBA-FDH via the –

COOH groups of both 

MWNT and PBA 

Amperometry Formaldehyde 

dehydrogenase from 

Pseudomonas sp. 

10-times diluted 

urine (in PBS, pH 

7.4) 

Stirred solution 

analysis: 

100 ppb  - 16 ppm 

 

Sensitivity (based on 

the initial linear range, 

Fig. 3) 

174 nA/ppm 

 

Detection limit  

73 ppb 

 

Flow injection 

analysis: 

10 ppb – 10 ppm 

 

Sensitivity (based on 

the initial linear range, 

Fig. 3) 

 

342 nA/ppm 

 

Detection limit  

6 ppb 

This 

work 
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2.4 Conclusions 

Ther results presented confirm the analytical detection features of pyrenyl carbon nanostructure-

modified FDH bioelectrode for sensitive and selective quantitation of urine HCHO related to 

abnormal conditions that are known to result in elevated urine HCHO. The presented approach 

provides a viable nano-bioelectrode design for non-invasive detection of small-molecule markers 

for cancer and other diseases at clinically relevant ultra-low levels in complex matrices. Combining 

the current method with measurements of other biomarkers and assays of significance is expected 

to allow successful diagnostic outcome of an abnormal condition. By appropriate immobilization 

of marker specific-receptor molecules or enzymes coupled with a detection probe or mechanism, 

the proposed methodology is expected to allow broader applicability for quantitative measurement 

of any other small-molecule markers with selectivity. 
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CHAPTER 3   
 

 

ELECTROCHEMICAL AND SURFACE PLASMON CORRELATION OF SERUM 

AUTOANTIBODY IMMUNOASSAY WITH BINDING INSIGHTS: GRAPHENYL VS. 

MERCAPTO-MONOLAYER SURFACE  

3.1 Introduction 

The design of a reliable and reproducible biosensing assay platform with molecular insights into 

binding and quantitative nano-bio surface designs is significant for successful diagnostic 

applications. Serum concentration of autoantibodies has been proposed to associate with the 

occurrence of type 1 diabetes (T1D).1,2 T1D is a chronic immune disorder that results from the 

destruction of β-cell function in the islets of Langerhans, causing deficient insulin production and 

hyperglycemia.3 The etiology of T1D is largely unknown, but a combination of genetic 

predisposition, environmental factors, and a dysregulated immune system is believed to be the 

cause of the disorder.4-6 Over recent years, the prevalence of diabetes, in particular T1D has 

significantly increased from 5% to 10%. This has in turn affected the incidence of associated health 

complications on a large population of children and adults worldwide.7,8  

Pociot and Lernmark recently reported that T1D could be characterized by the appearance of β-cell 

autoantibodies at an early stage, and glutamic acid decarboxylase autoantibody (GADA) is one of 

them.9 In the early 1990s, GADA was recognized to interact with a 65-kDa autoantigen known as 

the glutamic acid decarboxylase-65 (GAD-65).
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Later, Urban and coworkers reported the association of GAD-65 and GADA immune complexes 

in stiff syndrome and T1D.10  GADA has been recognized as a highly valuable biomarker for the 

prediction of T1D, thus representing significance for the development of simple and accurate 

methods for early diagnosis of T1D. 

Figure 1. Design of graphenyl  and mercapto monolayer based immunosensors for biosensing and 

binding kinetics analysis. *Three electrode system in the 8xSPE array: gold working electrode 

(WE) and counter electrode (CE), pseudo Ag-reference electrode (RE). 

Over the past two decades, many research groups have demonstrated methods including 

radioimmunoassay (RIA),11 enzyme-linked immunosorbent assay (ELISA),12  chemiluminescent 

immunoarray (CLIA)13, and electrochemiluminescence assay14 for clinical diagnosis of T1D. Here 

we use an inexpensive ferricyanide reagent to demonstrate the electrochemical detection of GADA, 

compare the binding constants and analytical assay parameters, and provide quantitative insights 

into carboxylated graphene and mercapto-monolayer surface modifications (Figure 1).  
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As a novel class of two-dimensional nanocarbon material, graphene has recently attracted 

researchers in biomedical sciences for the development of sensitive electrochemical and optical 

devices.15-17  The high surface area to volume ratio, electrical conductivity, aqueous dispersibility 

suitable for screen-printed electrode surfaces, thin structure and apparent biocompatibility of 

carboxylated graphene makes it a unique carbon nanomaterial for biorecognition events and 

biosensing applications.18-20 Although, glucose and insulin biosensors are useful for diabetes 

management, non-glucose biomarkers are critical for enabling early diabetes prediction in children 

and adults.21-23 

To increase detection sensitivity, sensor surface modifications with various nanomaterials and 

selective isolation of analytes from complex sample matrices (e.g., blood, saliva, urine) by 

nanomaterials for amplified detection have been demonstrated.24-29  In particular, magnetic (MAG) 

beads are unique for the ease of magnetic isolation, separation, and highly sensitive detection of 

proteins, nucleic acids, and cells due to their high surface area and intrinsic magnetic properties.30-

34 Appropriate designs of the surface of MAG beads with specific capture molecules can be used 

to separate biomolecules selectively from complex clinical matrices to facilitate ultra-low detection 

with reduced nonspecific signals.30,31,35-37 In the present study, we demonstrate that by combining 

electrochemical immunosensing with surface plasmon resonance (SPR) spectroscopy, we can 

validate the electrochemical platform, and use the binding constant as a quality control checkpoint 

for large-scale production of the relatively inexpensive electrochemical sensors. 

Furthermore, in this work, a carboxylated graphenyl surface is quantitatively compared with the 

conventional mercapto-monolayer surface to obtain insights into analytical assay performance. The 

knowledge gained from the combined sensing and binding assessment is useful for developing 

reliable and better throughput clinical immunosensors for biomarker based diagnostic assays. 
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3.2 Experimental  

3.2.1 Materials and chemicals 

Eight-channel screen-printed gold electrodes (8xSPE) were purchased from DropSens, Spain 

(Product No. 8x220BT). SPR imaging (SPRi) gold array chips (Spot Ready 16, 1 mm diameter 

gold spots) were purchased from GWC Technologies (Madison, WI).  Carboxylated graphene 

(graphene-COOH) was purchased from ACS materials (Medford, MA). Glutamic acid 

decarboxylase-65 antigen (GAD-65) was bought from Creative Diagnostics (Shirley, NY, USA). 

Monoclonal glutamic acid decarboxylase autoantibody (GADA), bovine serum albumin (BSA, ≥ 

98%), aminoferrocene, 3-mercaptopropionic acid (MPA, ≥99%), 1-ethyl-3-[3-(dimethylamino) 

propyl] carbodiimide (EDC), and N-hydroxysuccinimide (NHS) were purchased from Sigma (St. 

Louis, MO, USA). Normal human serum was purchased from Atlanta Biologicals (Flowery 

Branch, GA, USA).  

Human serum samples were diluted 10-times in phosphate buffered saline (PBS), pH 7.4. Protein 

A/G coated magnetic beads (MAG-protein A/G, 2 µm, 10 mg mL-1) were purchased from Biotool 

(Houston, TX, USA). The beads contain 9.3×1013 protein A/G molecules/cm2 (Biotool). All other 

chemicals used were analytical grade. A NanoOrange Protein Quantitation Kit was purchased from 

Thermo Fisher Scientific (Waltham, MA, USA).  The commercial GADA ELISA kit was 

purchased from MyBioSource, Inc. (San Diego, CA, USA). The reagents were prepared using ultra-

pure water (Invitrogen Corporation, Grand Island, NY, USA). All measurements were carried out 

at room temperature (23 ˚C).  

3.2.2 Instrumentation 

Electrochemical impedance spectroscopy (EIS) measurements were performed to characterize the 

sensor surface modification as well as measure the GADA concentration dependent increase in 

charge transfer resistance (Rct) for ferricyanide/ferrocyanide redox probe added in solution. For the 
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EIS, an Interface 1000 potentiostat/galvanostat/ZRA from Gamry Instruments was used 

(Warminster, PA, USA).  

Surface plasmon measurements of GADA-GAD-65 interaction were made using GWC SPR 

imager-II (Horizon SPR imager model, GWC Technologies, Madison, WI). A light source with an 

operating wavelength of 800 nm was used. Real-time reflectivity changes followed by imaging of 

these changes as pixel intensity was completed using a charge-coupled device. The SPR curves 

were fit for kinetic analysis using TraceDrawer Software (Ridgeview Instruments AB, Vänge, 

Sweden). 

ELISA measurements were performed using a Biotek Synergy H1 Plate Reader based on 

UV/VIS/Fluorescence quantitation (BioTek Instruments, Inc., Winooski, VT, USA).   

Characterization of each step of the surface modification was conducted by scanning electron 

microscopy (SEM, Model: FEI Quanta 600FE) at an accelerating voltage of 20 kV. The images 

were acquired using FEIxT Microscope Control Software. Additional characterization of the sensor 

designs was conducted by Fourier transform infrared spectroscopy (FTIR, Thermo Scientific 

Nicolet iS50) operated in the attenuated total reflection mode using a diamond crystal. 

NanoOrange protein quantitation kit that works based on fluorescence was employed for 

quantifying the surface immobilized GAD-65 by measuring the difference in GAD-65 

concentration in solution before and after the immobilization step (Varian Cary Eclipse 

Fluorescence Spectrophotometer). 

3.2.3 Fabrication of the electrochemical immunosensor  

Each gold disk working electrode (geometric area = 0.2 cm2) of 8xSPE arrays were drop-coated 

with a 3.5 µL aliquot of a well-dispersed aqueous solution of carboxylated graphene (2.0 mg          

mL-1). The electrodes were placed in an oven (50 oC) for 30 mins in order to dry-coat the graphene 
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on the gold surface. The electrodes were then washed well with deionized water. For comparison, 

a conventional monolayer of MPA on 8xSPE arrays was prepared by incubating the working 

electrodes with 3.5 µL of 2 mg mL-1 solution of MPA in ethanol for 4 h in a cold and moist 

environment. All further assay steps were carried out under ice cold conditions. Carbodiimide 

chemistry was followed to covalently link the surface lysine groups of GAD-65 (PDB: 2OKK, ~29 

surface lysine residues) to the electrode surface via surface carboxyl groups of graphene or a MPA 

monolayer.38-40 For this, the 8xSPEs were treated with 4 µL of a freshly prepared solution mixture 

of EDC (0.35 M) and NHS (0.1 M) in deionized water for 20 min to activate the carboxyl groups 

to converting them to amine reactive N-succinimidyl esters. Following removal of unreacted 

reagents with deionized water, 3.5 µL of GAD-65 solution (6.5 µg mL-1 in PBS) was placed on 

each electrode of the arrays to covalently link GAD-65 through formation of amide bonds with the 

activated surface carboxyl groups for a duration of 30 min. After washing the unbound antigens 

with PBS, the free graphene surface was blocked for 15 min using 3 µL of a 1% BSA solution 

prepared in PBS. Finally, 3.5 µL of MAG-protein A/G-captured 10% serum GADA samples of 

various concentrations were added on the electrodes and allowed to incubate for 1 h. The modified 

immunosensor was rinsed in PBS to remove any unbound molecules and used for electrochemical 

measurements.  

3.2.4 Magnetic bead-protein A/G capturing of autoantibody from 10% human serum (MAG-

protein A/G-GADA)  

MAG beads functionalized with surface protein A/G molecules offer binding sites with orientation 

for capturing antibodies from serum. The capturing procedure followed the instructions provided 

by the manufacturer with slight modifications. In brief, 25 µL of MAG-protein A/G beads were 

washed twice with 150 µL of phosphate buffered saline (PBS, pH 7.4, 10 mM phosphate, 0.14 M 

NaCl, 2.7 mM KCl), and separated out using a small piece of magnet after each wash. The beads 

were then washed twice in 150 µL of binding buffer (50 mM tris, 150 mM NaCl, 0.1% Tween 20, 
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pH 7.5). Different concentrations of GADA spiked in 10% normal human serum in the binding 

buffer (250 µL) were added to separate aliquots of MAG-protein A/G beads and rotated in a tube 

rotor (Fisher Scientific) for 1 h at room temperature.  Upon completion of the incubation, the 

contents were suspended by pipetting in and out for 10 times, and the supernatant was removed 

immediately from the magnetically separated beads. The beads were washed two times with 300 

µL of the binding buffer. Finally, the beads were suspended to a final volume of 200 µL in the 

binding buffer. The MAG-protein A/G captured serum GADA samples were stored at 4 oC and 

used for up to 5 days.  

3.2.5 SPRi microarray modification  

Prior to use, the SPRi gold array chip was cleaned in piranha solution (3:1 mixture of concentrated 

H2SO4 and 30% H2O2 for 10 seconds. Caution: Piranha solution is highly corrosive and a strong 

oxidizer). First, 0.30 µL of 0.1 mg mL-1 of carboxyl-functionalized graphene (graphene-COOH) 

was dry-coated on each gold spot of the SPRi chip (1 mm diameter) and dried at 50 °C for 30 

minutes. The chip was then washed thoroughly with deionized water to remove any unbound 

material. Following the dry-coating, the immobilization of GAD-65 and BSA blocking steps were 

similar to that described above for the electrochemical immunoassay. The chip was then mounted 

in the SPRi instrument to monitor real-time reflectivity changes upon the binding of various 

concentrations of serum GADA captured onto MAG-protein A/G beads. Once the steady state 

response was reached, the SPR chip surface was rinsed well with PBS (pH 7.4) to remove any 

unbound molecules present in the bulk solution and to attain a new baseline signal. Similar SPR 

measurements were taken for an immunosensor prepared with a self-assembled monolayer of MPA 

instead of the graphene-COOH modification.  
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3.2.6 Quantitation of GAD-65 on the immunoassay surface  

The amount of GAD-65 bound per electrode was quantified using a NanoOrange protein 

quantitation kit as follows: A calibration curve was obtained for various concentrations (2 – 10 ng 

mL-1) of GAD-65 prepared in the NanoOrange working solution provided in the assay kit. The 

solutions were heated at 95 oC for 10 min in the dark followed by cooling to room temperature for 

20 min before measuring fluorescence intensity. GAD-65 (3.5 µL of  6.5 µg mL-1) was then coated 

onto each carboxyl activated graphene working electrode for 30 min and washed twice with 5 µL 

aliquots of PBS. The wash solutions were collected and made up to 2 mL with the NanoOrange 

working solution. A similar heating and cooling protocol as described above was followed before 

measuring the fluorescence intensity (excitation at 465 nm and emission at 603 nm). From the 

difference in fluorescence of free GAD-65 before and after surface immobilization, the amounts of 

GAD-65 immobilized on the graphene-COOH and MPA surfaces were estimated. 

3.2.7 Quantitation of surface carboxyl groups based on electroactive aminoferrocene 

functionalization of graphene-COOH or MPA monolayer surface on 8xSPEs  

8xSPEs were dry-coated with graphene-COOH or with a self-assembled monolayer of MPA (one 

8xSPE was used for each modification) followed by carbodiimide activation of the surface carboxyl 

groups using the EDC (0.35 M)/NHS (0.1 M) solution mixture. A 4.5-µL solution of 1 mM 

aminoferrocene in PBS, pH 7.4 was then placed on the –COOH activated electrodes and incubated 

for 45 min in a cold and moist atmosphere. To ensure the covalent strategy of linking, we prepared 

graphene-COOH or MPA modified 8xSPEs with an electrostatically adsorbed layer of 

aminoferrocene. The electrodes were then rinsed with deionized water to remove any unbound 

molecules. Cyclic voltammograms (CVs) were recorded to calculate the electroactive 

aminoferrocene molecules, and in turn, the relative amounts of –COOH groups on graphene-COOH 

and MPA surfaces.  
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3.2.8   Electrochemical measurements of serum GADA by an immunoassay 

Faradaic impedance measurements for various concentrations of MAG-protein A/G captured serum 

GADA (10% normal human serum) bound onto GAD-65 were performed at room temperature (23 

oC) in an aqueous electrolyte solution containing 0.1 M KCl and 10 mM each of Fe(CN)6
3-

/Fe(CN)6
4- as the redox probe. A potential of 0.2 V vs a pseudo Ag reference electrode was applied 

at an AC amplitude of 10 mV, and the frequency was scanned from 0.1-100 kHz. The experimental 

impedance data were fit by the Randles equivalent circuit model to determine the charge transfer 

resistance (Rct) values. Differential pulse voltammetry (DPV) was employed as a complementary 

technique that measured current signals. The same redox solution as of the EIS assay was used to 

measure the currents upon scanning the potential from +0.6 to -0.1 V vs a pseudo-Ag reference 

electrode (50 mV for amplitude, 10 mV step potential, 20 ms sampling width, and 50 ms pulse 

width). Each experiment was replicated five times to obtain the average responses with good 

reproducibility.   

3.3 Results and Discussion  

3.3.1  Optimization of GAD-65 concentration on the immunosensor surface 

The immunosensor responses for various concentrations of GAD-65 used for surface 

immobilization (325 ng mL-1 – 13 µg mL-1 in PBS, pH 7.4) (Fig. 2) upon binding of a constant 

serum concentration of GADA (4 ng mL-1 in 10% human serum) captured onto the MAG-protein 

A/G beads were measured. This procedure allowed us to identify the optimum GAD-65 

concentration that provided the maximum Rct signals for GADA binding. The Rct values measured 

by Faradaic impedance spectroscopy for increasing concentration of surface immobilized GAD-65 

antigen, are shown in Figure 2. No appreciable change in the Rct was observed beyond 6.5 µg mL−1 

of GAD-65 concentration. Therefore, we chose this solution concentration of GAD-65 to 

immobilize on the designed graphene-COOH surface for the immunosensor. 
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The amount of surface immobilized GAD-65 on the graphene-COOH modified surface was 

estimated to be 17 ± 2 pmol cm-2 when using a solution concentration of 6.5 µg mL-1 of GAD-65. 

This estimation was based on the difference in free GAD-65 amount in solution before and after 

immobilization (NanoOrange protein quantitation kit). The immobilization efficiency of GAD-65 

was 76 ± 4% under the experimental conditions followed. 

 

 

 

 

 

 

 

 

Figure 2. Rct values for increasing solution concentration of GAD-65 (in PBS solution) used for 

immobilization onto the carbodiimide activated graphene-COOH/gold surface, and followed by the 

binding of a constant concentration of 10% serum GADA (4 ng mL-1) captured onto MAG-protein 

A/G beads. 

3.3.2 Hydrodynamic size and zeta potential measurements 

We noted that the capturing of GADA from 10% human serum onto the MAG-protein A/G beads 

caused an increase in the average hydrodynamic size, and a negative shift in the Zeta potential of 

the beads (Table 1). This shift is reasonable because the IgG antibody has a net negative charge at 

pH 7.4 (isoelectric point is 6.1-6.5).41  
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Table 1. Hydrodynamic size and Zeta potential values of MAG-protein A/G and MAG-protein 

A/G-GADA beads (five times diluted in PBS, pH 7.4), temperature 25 oC. 

Particle type Hydrodynamic size 

(nm) 

Zeta potential 

(mV) 

MAG-protein A/G 1980 ± 49 -16 ± 1 

MAG-protein A/G-serum GADA 2061 ± 37 -22 ± 2 

 

The samples used for the hydrodynamic and Zeta potential analysis were five times diluted in 

PBS. This dilution was required to facilitate measurements within the saturating limit of the 

detector in the instrument. 

 

3.3.3 Microscopic characterization of the graphene immunosensor  

The SEM images acquired at each step of the immunoassembly on an 8xSPE array are presented 

in Figure 3 – A to D. We identified that a rough Au surface (gold-ink cured on a ceramic substrate 

at low temperatures, DropSens Inc.) provided better reproducibility of the immunoassay than a 

smooth gold surface (DRP-8x220BT- U20, DropSens Inc.). This is likely due to the stronger 

adhesion of the graphene-COOH onto the rough Au over a smooth Au surface. Also, we determined 

that the aqueous suspension of graphene-COOH is more suitable for dry coating on screen printed 

electrodes than an organic solvent dispersion based carbon nanomaterials. This is because the 

screen-printed electrode surface tends to wear away when exposed for longer duration in organic 

solvents during the dry-coating process of nanomaterials.  
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Figure 3. SEM images of A. rough 

AuSPE surface, B. after dry coating 

of an aqueous suspension of 

graphene-COOH, C. after covalent 

attachment of GAD-65 antigen and 

surface blocking with 1% BSA, and 

D. after the binding of GADA spiked 

in 10% human serum (0.05 ng mL-1) 

and captured onto MAG-protein A/G 

beads. 

 

 

Fig. 3-A shows the image for the rough Au surface of an 8xSPE array. Dry coating of graphene-

COOH on the AuSPE surface resulted in spherical mesh-like and thread-like features (Fig. 3-B).42 

The graphene surface features became denser upon the covalent immobilization of GAD-65 antigen 

followed by blocking with a solution of 1% BSA in PBS (Fig. 3-C). After the binding of the MAG-

protein A/G-GADA conjugate onto the surface GAD-65 sites, the appearance of spherical MAG 

bead features on the electrode surface can be seen (Fig. 3-D). 

3.3.4 Spectroscopic characterization of the graphene immunosensor  

FTIR spectra further confirmed the results obtained from the SEM image analysis. The bare AuSPE 

surface did not show any peak in the measured region of the IR spectrum (Fig. 4-a). Upon coating 

with graphene-COOH (Fig 4-b), the appearance of a strong and broad peak at about 3219 cm-1 was 

attributed to the hydroxyl vibration of surface carboxyl groups.43 Additionally, the peaks at 1719 

cm-1 and 1078 cm-1 are characteristics of the stretching vibrations of carboxylic acid and other 

surface carbonyl groups.44 Upon activation of the surface carboxyl groups using EDC/NHS 

chemistry, the characteristic decrease in the O-H stretching vibration was observed (Fig 4-c). 
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Additionally, new peaks centered at 1764 and 1043 cm-1 corresponding to the C=O and C-O 

stretching vibrations of the succinimidyl esters from the EDC/NHS modification were present.45,46   

Figure 4. FTIR spectra of a. 

rough gold 8xSPE, b. after 

dry-coating with graphene-

COOH, c. after EDC/NHS 

activation, d. after GAD-65 

immobilization, and e. after 

the binding of 5 ng mL-1 

concentration of 10% serum 

GADA captured by the 

MAG-protein A/G beads. 

 

The protein amide-I band at 1639 cm-1 and amide-II band at 1547 cm-1 were observed due to the 

formation of amide bonds after the covalent attachment of the GAD-65 antigen with the graphene-

COOH surface (Fig 4-d).46,47  In addition, a new peak at 3324 cm-1 indicated the N-H stretching 

vibration of the protein. Once the serum GADA carried by the MAG-protein A/G beads was bound 

to the surface GAD-65 antigen, a new peak appearing at 602 cm-1 was assigned to the Fe-O 

stretching of Fe3O4 magnetic beads (Fig. 4-e).48  Furthermore, a slight shift in the amide-I and 

amide-II bands was possibly the result of complexation of GAD-65 with GADA. In addition, the 

N-H bending vibration peak at 794 cm-1 became more prominent due to the overall increase in the 

total protein molecules on the surface as the result of GADA-GAD 65 immunoassembly formation.  

3.3.5 Electrochemical impedance spectroscopy characterization of the immunosensor 

fabrication  

The stepwise construction of the immunosensor assembly starting from the bare gold 8xSPE to the 

GADA binding measurement step was characterized by Faradaic EIS as shown in Figure 5 with 
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Nyquist plots. An aqueous solution containing 0.1 M KCl and a mixture of 10 mM of each 

potassium ferricyanide and potassium ferrocyanide [Fe(CN)6
3-/4-] was employed as the redox probe 

in solution. The Randles equivalent circuit model was used to fit the experimental impedance 

spectra and obtain the Rct values. The Rct corresponds to the diameter of the semicircular region in 

the Nyquist plot.49 

         

 

 

 

 

 

 

Figure 5. Faradaic impedance spectroscopic measurements in an aqueous solution containing 0.1 

M KCl and 10 mM each of Fe(CN)6
3-/4- mixture: (a) AuSPE (3310 ± 101 Ω), (b) after dry-coating 

of graphene-COOH (1054 ± 154 Ω), (c) after covalently attaching GAD-65 by the carbodiimide 

coupling chemistry (2108 ± 67 Ω), (d) after blocking the free surface with 1% BSA (4190 ± 410 

Ω), and (e) after the binding of serum GADA (0.04 ng mL-1) captured onto the MAG-protein A/G 

beads (9290 ± 580 Ω). Experimental conditions: 0.2 V vs Ag/AgCl, amplitude 10 mV, and 

frequency range 0.1 - 100 kHz. 

Figure 5 (curve a) corresponds to the Nyquist plot of a rough Au surface of 8xSPE. Carboxylated 

graphene modification of the Au surface decreased the Rct, implying an increased surface 

conductivity favorable for the redox probe to communicate with the electrode (Fig. 5-curve b). This 

higher conductivity is advantageous to increase interfacial charge transport from the redox probe 

to the electrode, and subsequently facilitate sensitive monitoring of Rct changes. Immobilization of 

the GAD-65 antigen (Fig. 5-curve c), subsequent BSA blocking of the free electrode surface (Fig. 
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5-curve d), and the binding of serum GADA (0.04 ng mL-1) carrying MAG-protein A/G beads onto 

the surface GAD-65 increased the Rct values (Fig. 5-curve e). 

3.3.6 Estimation of signal enhancement and reduction of non-specific signals by the MAG-

protein A/G beads over the direct use of serum GADA solution  

Results indicate that the MAG-protein A/G bead strategy to isolate GADA from serum reduced the 

non-specific background signals from proteins and other components present in the free serum 

matrix, and thus offered an enhanced sensitivity (Fig. 6-A).50-52 Although protein A/G is not 

selective for capturing GADA alone, but to all serum antibodies, the designed immunosensor is 

successful in measuring the low GADA concentration above the nonspecific control serum-treated 

MAG-bead signals (no spiked GADA). 

Figure 6. A. Rct values for the BSA blocked, graphene-COOH coated gold surface immobilized 

with GAD-65 upon the binding of MAG-protein A/G beads alone (1.25 mg mL-1), GADA (2 ng 

mL-1) spiked in 10% serum in PBS (pH 7.4), and serum GADA (2 ng mL-1) captured onto the MAG-

protein A/G beads. B. Reduced non-specific background signals for MAG-protein A/G added to 

GADA unspiked serum compared to the GADA unspiked free serum solution. 

Furthermore, Fig. 6-A shows that the Rct signal enhancement for the binding of 2 ng mL−1 serum 

GADA captured with MAG-protein A/G beads was ~3-times greater than the direct use of GADA 

spiked 10% serum samples not captured onto the beads. This is the result of reduced nonspecific 
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signals from the MAG-protein A/G strategy over the free serum background signals (Fig. 6-B). The 

simplicity of magnetic capturing and isolation of the bound GADA from free serum by the MAG-

protein A/G beads is not feasible with other non-magnetic nanomaterials,53, which would require 

centrifugation and other tedious separation procedures. 

3.3.7 Serum GADA concentration dependent increase in charge-transfer resistance  

The Faradaic impedance responses and the respective calibration plots are presented in Fig. 7-A to 

D. The Rct of GAD-65 sensor surface increased with the binding of increasing serum GADA 

concentration (10% serum in PBS) captured with the MAG-protein A/G beads. This trend suggests 

that the increase in surface bound GADA carried by the MAG-protein A/G beads from the specific 

complexation with GAD-65 antigen sites increased the resistance to the ferri/ferrocyanide redox 

probe added in solution over the control serum treated with magnetic-protein A/G beads (no spiked 

GADA). 

The results infer that the graphenyl sensor compared to the MPA monolayer modified sensor (0.04–

0.75 ng mL−1) displayed a wider dynamic range of 0.02 - 2 ng mL−1 and several thousands enhanced 

Rct values for the same GADA concentration. The slope of the response curve in the linear range 

corresponds to the sensitivity of the sensor. A sensitivity enhancement of about 3-fold was observed 

for the graphenyl surface over the MPA modified surface (slopes in Figures-6C and 1D). The 

detection limits (three times the standard deviation of the control response/slope of the calibration 

graph) were 48 and 124 pg mL−1 for the graphenyl and MPA modified immunosensors, 

respectively. It is evident that the large surface area and -COOH functional groups on graphene-

COOH are favorable for high-density immobilization of surface biomolecules to detect lower 

concentrations of analytes than the MPA monolayer sensor. The clinically relevant serum GADA 

concentration range has been reported to be 0.03–19.9 nM, or 1.95 ng mL−1–1.29 µg mL−1.54 

Saturation behavior on the assay response was observed beyond 2 ng mL−1 serum GADA. 
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Although, higher concentrations of GADA will require a dilution to measure in the designed assay 

platform, several biomarkers with clinically relevant low nM concentrations can directly benefit 

from the assay. 

Figure 7. Nyquist plots obtained from the Faradaic impedance measurements in an aqueous 

solution containing 0.1 M KCl and 10 mM each of Fe(CN)6
3-/Fe(CN)6

4- for various concentrations 

of surface bound serum GADA immunoassembly : A. Graphene-COOH (0.02, 0.05, 0.1, 0.25, 0.5, 

0.75, 1, and 2 ng mL-1) and B. MPA (0.02, 0.05, 0.1, 0.25, 0.5, and 0.8 ng mL-1) modified 

immunosensors.C and D represent the dynamic range of respective response plots for Rct changes 

with concentration of GADA for N = 3 replicates. Ten percent serum not spiked with any GADA 

but treated with the MAG-protein A/G beads was used as the control sample, and its Rct value was 

subtracted from each of the GADA spiked serum sample responses. (Experimental conditions:      

0.2 V vs pseudo-Ag reference electrode, amplitude 10 mV, and frequency range 0.1–100 kHz.) 

3.3.8 Comparison of SPR responses for graphene-COOH and MPA modified immunosensor 

and bimolecular kinetic analysis 

The kinetic parameters from the real-time binding of surface immobilized GAD-65 with MAG-

protein A/G beads captured with serum GADA were determined by use of an SPRi assay. The 
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experimentally obtained SPR sensograms (Figure 8A and B) for different concentrations of GADA 

were fit into a 1:1 bimolecular kinetic model.33,55 The equations presented below were used to 

calculate the association rate (ka), the dissociation rate (kd), and the binding constant (KD) (Table 

2). The kinetic analysis was performed for the biomolecule interaction by assuming a 1:1 binding 

reaction as detailed below: 

A+B ⇌  AB       (1) 

Rate of association: 
d[AB]

dt
= ka[A][B]- kd[AB]   (2) 

Rate of dissociation: 
d[AB]

dt
= - kd[AB]    (3) 

where A is the GAD-65 antigen immobilized on the SPR chip, B is the GADA captured MAG-

protein A/G beads, and AB is the antigen-antibody complex formed. Since the concentration of A 

is constant, the antigen-antibody complex formation is considered to follow pseudo first order 

kinetics, where the SPR responses of the interaction with time is given as: 

dR
dt

= kaCRmax- (kaC+ kd)Rt     (4) 

The integrated form of (4) is given as: 

Rt= 
kaCRmax[1-e-(kaC+ kd)t]

kaC+ kd
+ R0    (5) 

KD
app

= 
kd
ka

       (6) 

Where, Rt and Ro are the SPR responses at any time t and at t = 0 respectively, Rmax is the maximum 

reflectivity change, C is the concentration of serum GADA captured onto the MAG-protein A/G 

beads, ka is the apparent association rate, kd is the apparent dissociation rate, and KD
app

 is the 

apparent binding constant. The values of ka and kd were obtained by fitting the experimental SPR 

curves using the TraceDrawer kinetics software. 
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Figure 8. Simulated (red) and real-time SPR sensograms (black) for different concentrations (a to 

c) of 10% serum GADA, 0.05, 0.10, and 0.50 ng mL-1, captured with MAG-protein A/G beads and 

bound onto GAD-65 immobilized sensor surfaces modified with A. graphene-COOH and B. MPA. 

The lower KD value for the graphene-COOH modified SPRi chip suggests that graphene provides 

a stronger GADA-GAD-65 binding interaction [i.e., a more sensitive platform from an analytical 

perspective] through its increased number of surface carboxyl groups and plasmon enhancing 

feature when compared to the MPA modified chip. Moreover, the KD values of both MPA and 

graphene-COOH modified chips are smaller (better affinity) in comparison to the previously 

reported SPR assay value (KD = 1.37 nM) in PBS buffer medium on the surface of a mixed self-

assembled monolayer.56  This is more likely due to the signal enhancements from the MAG-protein 

A/G bead strategy offering a highly enhanced signal output than free GADA present in solution. 

Moreover, the MAG-bead based strategy was shown to allow a significantly greater amount of 

immobilization of surface antibodies due to the large number of particles with a net high surface 

area.57 This high-density antibody carrying beads are expected to facilitate a greater rate of 

association with surface GAD-65 molecules and a slower dissociation rate for graphene-COOH 

than the MPA surface (Table 2). A prior report estimated that over 100,000 molecules of antibody 

can be bound selectively to MAG-beads to obtain attomolar detection limits of prostate specific 

antigen.52,57  
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Table 2. Kinetic parameters for the MAG-protein A/G beads captured serum GADA binding onto 

a surface immobilized GAD-65 antigen. 

Kinetic parameters Graphene-COOH MPA 

Association rate constant, ka [M-1 s−1] 1.05 (± 0.13) × 109 0.90 (± 0.13) × 109 

Dissociation rate constant, kd [s−1] 3.2 (± 0.4) × 10−3 5.0 (± 0.6) × 10−3 

Binding constant, KD [pM] 3.0 ± 0.5 5.6 ± 1.0  

 

3.3.9 Validation of the graphene-COOH and MPA modified serum GADA 

DPV was employed as a complementary method to the impedimetric immunosensor. Decrease in 

DPV peak currents was observed with the increase in serum GADA MAG-beads binding to surface 

GAD-65. This is because the insulating character imparted on the electrode surface by the bound 

MAG-protein A/G-GADA beads onto GAD-65 is expected to decrease the redox currents of the 

added ferri/ferrocyanide probe in solution (Figure 9). The DPV results are in correlation with EIS. 

The limits of detection were 34 and 92 pg mL−1 for the graphene-COOH and MPA modified 

immunosensors, respectively, which are slightly lower than the EIS method. 
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Figure 9. DPV responses showing the decrease in currents for 10% serum containing GADA 

concentrations of a. 0.0, b. 0.02, c. 0.05, d. 0.1, e. 0.2, f. 0.5, and g. 0.75 ng mL-1 captured with 

MAG-protein A/G beads, and upon binding with the surface GAD-65 antigen on A. graphene-

COOH and B. MPA modified immunosensors. Experimental conditions: aqueous mixture 

containing 0.1 M KCl and 10 mM each of Fe(CN)6
3-/Fe(CN)6

4- with potential scanned from + 0.6 

to - 0.1 V vs a pseudo-Ag reference electrode. C and D represent the linear DPV responses of the 

immunosensors modified with graphene-COOH and MPA, respectively. 

 

3.3.10 Estimation of the relative surface carboxyl groups on graphene-COOH and MPA 

modified gold surfaces  

Figure 10-A and B show the cyclic voltammograms of the graphene-COOH and MPA coated 

electrodes covalently attached and electrostatically adsorbed with redox active aminoferrocene 

molecules (a and b, respectively, in each plot). Resulting peak currents and integrated peak areas 
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(charge in Coulombs) are directly proportional to the number of aminoferrocene molecules bound 

to either graphene-COOH or MPA surface. No redox peaks were shown by either the graphene-

COOH or MPA surfaces not immobilized with aminoferrocene, confirming no interferences from 

the surface modifications on the –COOH estimation (Insets of Figure 11-A and B). The linear 

dependence of the anodic current with scan rate suggested that the voltammetry of aminoferrocene 

molecules exhibited a surface confined redox process (Figure 11-C and D). 

Figure 10. Background subtracted CVs of A. graphene-COOH, B. MPA modified gold electrodes 

with a. covalently attached, and b. adsorbed films of aminoferrocene in argon purged PBS buffer, 

pH 7.4, 23 °C. The scan rate was 0.1 V s−1. 

The average formal potentials of the covalently attached aminoferrocene film on the graphene-

COOH and MPA surfaces were 112 ± 5 and 114 ± 8 mV, respectively. The electrostatically 

adsorbed films of aminoferrocene on each of the modified surfaces exhibited a similar formal 

potential as the covalent films. However, the covalent films enabled higher electroactive 

aminoferrocene immobilization than the electrostatic films as discussed below.  
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Figure 11. Background subtracted scan rate dependent CVs of the covalently attached 

aminoferrocene on A. graphene-COOH and C. MPA modified Au 8xSPEs and the respective plots 

of peak current vs scan rate (B and D). The scan rate inner to outer: 0.075 - 1.2 V s-1 at 23 oC, in 

PBS, pH 7.4. 

From the measured oxidation peak area, the electroactive surface coverage (Г, Eq. 1) of 

aminoferrocene and in turn the relative extent of carboxyl groups were determined.58 Q is the area 

of the oxidation peak of aminoferrocene, n is the number of electrons involved in the 

aminoferrocene oxidation (n = 1), F is the Faraday constant, and A is the area of the working 

electrode (A = 0.2 cm2). 

Г = Q / nFA       (Eq. 1) 

The Г values were also calculated from the anodic peak current by using Eq. 2,59 where Ip is the 

anodic peak current, ʋ is the scan rate, R is the universal gas constant (8.314 J mol−1 K−1), and T 

(296 K) is the temperature in Kelvin. 

Ip = n2F2ʋAГ/4RT     (Eq. 2) 
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The peak area and peak current based estimations of Г agreed well with each other. The graphene-

COOH surface provided 9-fold greater surface carboxyl groups than the MPA monolayer surface 

(Table 3). 

Table 3. Estimated electroactive amounts of aminoferrocene on graphene-COOH and MPA 

modified electrodes. The estimations were based on anodic peak area (Q in nC) or peak currents 

(Ip in nA) from cyclic voltammograms shown in Fig. 9. 

Parameter Graphene-COOH MPA 

Covalently attached 

aminoferrocene 

Q (nC) 920.3 ± 86.6 98.1 ± 5.9 

Calculated Г 

(pmoles/cm2) 

47.6 ± 5.1 5.1 ± 0.3 

Ip (nA) 918.2 ± 76.2 108.3 ± 5.9 

Calculated Г 

(pmoles/cm2) 

48.6 ± 4.2 5.7 ± 0.6 

Adsorbed 

aminoferrocene 

Q (nC) 189.4 ± 15.4 31.0 ± 1.9 

Calculated Г 

(pmoles/cm2) 

9.8 ± 1.3 1.6 ± 0.11 

Ip (nA) 208.2 ± 28.3 34.2 ± 1.3 

Calculated Г 

(pmoles/cm2) 

11.2 ± 2.5 1.8 ± 0.2 
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3.3.11 Application to T1D patient samples and validation by a commercial ELISA kit  

We determined that the designed immunosensor platform is applicable to measure serum GADA 

concentrations in T1D patient serum samples. The samples were prepared in a similar manner as 

the spiked GADA serum standards, and captured onto MAG-protein A/G beads for detection upon 

binding onto surface immobilized GAD-65. A good correlation was obtained between our 

electrochemical immunoassay and the commercial ELISA kit (paired t-test performed at 95% 

confidence level). The dynamic range was sufficient to determine the sample GADA concentrations 

with a good precision (Table 4-A). 

Table 4. A. Results from the analysis of patient samples (10% serum) on the designed graphene-

COOH electrochemical immunosensor and ELISA (N = 3). B. Recovery data of the designed EIS 

immunoassay with the ELISA method for a patient serum sample spiked with GADA. 

A. T1D 

patient samples 

EIS immunosensor 

(ng mL-1) 

ELISA 

(ng mL-1) 

1 3.4 ± 0.2 3.0 ± 0.1 

2 2.2 ± 0.3 1.9 ± 0.2 

 

 

 

 

 

B. Method Spiked [GADA]   

(ng mL-1) 

Measured [GADA] 

(ng mL-1) 

Recovery % 

EIS 0.50 

2.50 

0.45 

2.34 

90% 

94% 

ELISA 0.50 

2.50 

0.46 

2.43 

92% 

97% 
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To assess the accuracy of our electrochemical assay, a known concentration of GADA was spiked 

to one of the patient serum samples. A recovery percentage of ≥90% was obtained from the 

electrochemical assay, which is comparable to the recovery in ELISA (Table 4-B). The 

electrochemical immunoassay presented takes less time than the ELISA method (EIS immunoassay 

~2 h 30 min, ELISA ~4h), requires smaller sample volumes (EIS immunoassay 3.5 μL per 

electrode, ELISA 100 μL sample per well), and with a reasonably good linear range (EIS 

immunoassay 0.02–2.0 ng mL−1, ELISA 0.16–5.0 ng mL−1). However, the EIS approach is 

throughput limited, because each impedance channel needs a separate potentiostat unit, hence an 

array-based impedance detection is an expensive approach. Therefore, our ongoing research 

direction is to translate the fundamental knowledge and assay designs derived from this work to 

develop a high-throughput cost-effective assay format. 

3.4 Conclusions 

The presented graphene modified immunosensor array successfully measured serum GADA levels 

at clinically relevant concentrations. The selectivity of GAD-65 on the sensor surface was useful 

to capture GADA carried by MAG-protein A/G beads. The combination of protein A/G coated 

MAG beads to separate GADA from serum samples minimized the effect of interferences from the 

serum matrix, and thus enhanced the detection sensitivity. Electrochemical and surface plasmon 

methods correlated with each other. Plasmon enhancing graphene-COOH offered better analytical 

detection features compared to a self-assembled monolayer of MPA. A good, statistically valid 

correlation was obtained for the electrochemical immunosensor with the commercial ELISA. 

Overall, the binding kinetics parameters can be used as an excellent quality control checkpoint for 

large-scale production of graphenyl biosensors for reliable applications in clinical diagnostic 

assays.  
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CHAPTER 4   

 

MEASURING ULTRA-LOW LEVELS OF NUCLEOTIDE BIOMARKERS USING QUARTZ 

CRYSTAL MICROBALANCE AND SPR MICROARRAY IMAGING METHODS: A 

COMPARATIVE ANALYSIS  

4.1 Introduction 

In recent years, DNA-based biosensors have received immense attention due to their applicability 

in the fields of gene sequencing,1 therapeutic and delivery systems,2 pathogen detection,3-5  and 

forensic studies.6 Single stranded DNA molecules can be used as inexpensive molecular analogs of 

RNA for assay methodology development for complex sample matrices. Recently, microRNAs 

(miRNAs) have become important genetic biomarkers for early diagnosis of various diseases, 

including cancer,7,8  and lung diseases.9,10 miRNAs are a group of small RNAs approximately 21–

25 nucleotides in length that function mainly by binding the 3ʹ-untranslated regions of specific 

target messenger RNAs (mRNAs) to repress protein translation or cleave mRNAs.11 In particular, 

miRNA-21 has been found to be relevant to infectious diseases, such as viral12  and bacterial13 

infections, as well as non-infectious diseases such as cardiovascular disorder14 and cancer.15 Hence, 

ultra-sensitive and selective detection of miRNA biomarkers present in a complex clinical matrix 

such as blood, plasma, or serum is significant for diagnostic applications.  

Adapted from G. Premaratne, Z. H. Al Mubarak, L. Senavirathna, L. Liu, and S. Krishnan, Measuring Ultra-

low Levels of Nucleotide Biomarkers Using Quartz Crystal Microbalance and SPR Microarray Imaging 

Methods: A Comparative Analysis, Sensors & Actuators: B. Chemical, 2017, 253,368–375 with permission 

from Elsevier. 
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Suitable structural features of a capture oligonucleotide probe are essential for selective 

hybridization with a target miRNA in the presence of other nucleotides. A quartz crystal 

microbalance (QCM) is a mass sensor that provides both qualitative and quantitative measurements 

by translating changes in the oscillation frequency of the quartz crystal to the corresponding mass 

changes.16  Surface plasmon resonance imaging (SPRi)17-19 is an emerging technique that is superior 

to conventional SPR for in situ detection of biomolecular interactions in real-time in a single 

microarray platform.20,21 SPRi offers simplicity and higher throughput compared to the 

conventional single sample analysis by allowing measurements at a fixed angle of incidence to 

directly collect reflectivity changes (ΔR%) across an array of gold spots.22 Furthermore, the SPRi 

microarray requires less assay time than conventional SPR to analyze several replicates at once 

leading to high precision.23,24 The hybridization of oligonucleotides with the SPR surface-

immobilized capture probe results in an increase in the refractive index. The use of gold 

nanoparticles (AuNPs) has been shown to increase the reflectivity changes of a hybridization 

reaction due to their effect on enhancing the surface plasmon signals.25-27 

In this study, an inexpensive target oligonucleotide containing a similar number of nucleotides to 

that of the miRNA-21 marker with thymine in place of uracil and with a poly-T tail and a free thiol 

group was designed to covalently attach to AuNPs via the well-known Au-thiol chemisorption.28 

The AuNP-linked mimic oligonucleotide was hybridized with a complementary surface 

immobilized capture probe. The effect of serum matrix percentage on the resulting detection signals 

for the miRNA-21 mimic was evaluated. Selectivity of the assay also was assessed using a five 

base pair mismatch-containing sequence as the control. Furthermore, we measured the changes in 

SPR reflectivity with an image output in the designed hybridization assay along with quantitative 

QCM mass analysis. Such oligonucleotide models are a cost-effective way to develop sensitive 

assay strategies for complex sample matrices, compare two analytical methods, and evaluate the 
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efficiency of a hybridization strategy that may be useful for measuring ultra-low levels of miRNA 

markers in circulating body fluids. 

4.2 Experimental 

4.2.1 Materials and chemicals 

Thiol-modified custom-designed oligonucleotides (sequences are presented in Table 1), 

dithiothreitol (DTT), 6-mercaptohexanol (MHOH), and NAP-10 columns were obtained from 

Sigma-Aldrich (Woodlands, TX, USA). AuNPs (50 nm diameter) were purchased from BBI 

Solutions (Cardiff, UK). Human serum samples were purchased from Fitzgerald Industries 

International Inc. (North Acton, MA, USA). SpotReady-16 gold spotted glass microarray chips 

(spot size 1 mm diameter, SPR-1000-016) were obtained from GWC Technologies (Madison, WI, 

USA).Gold disc infused quartz crystals (gold diameter 0.2 inch) used for the QCM were purchased 

from International Crystal Manufacturing Co, Inc.(Oklahoma City, OK, USA). All other chemicals 

were of high-purity analytical grade. To prepare all solutions, ultrapure distilled water (DNAse and 

RNAse free) purchased from Life Technologies (Carlsbad, CA, USA) was used.  

Table 1. Sequences of designed oligonucleotides.  

Surface capture 

Probe 

5′-HS-

TGTCAGACAGCCCATCGACTGGTGTTGCCATGAGATTCAACAG

TCAACATCAGTCTGATAAGCTACCCGACA-3ʹ 

Target 5′-HS-

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

TTTAGCTTATCAGACTGATGTTGA-NH2-3ʹ 

Control 5′-HS-

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

TTTAGGATATCACACTGATGAAGA-NH2-3ʹ 

The hybridization sequences for probe, target, and control are highlighted. Base pair mismatches 

of the control with respect to the target are highlighted in red. The addition of Poly-T50 segments to 

the target and control sequences provides stability and flexibility to the strands.29  
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4.2.2 Instrumentation  

The optical imaging experiments were performed using a SPRimagerII array instrument at room 

temperature (GWC Technologies). The experiments were conducted using a dual-channel set-up 

equipped with two syringe pumps (100 µL sample loop, New Era Pump System, Inc., Farmingdale, 

NY, USA) in order to assess hybridization of the target and control oligonucleotides with the 

surface capture probe. The Digital Optics V++ software package provided with the instrument was 

used to collect SPRi difference images (i.e., differences of the pixel intensities before and after 

hybridization events), and the images were visualized using ImageJ 1.49v software (National 

Institutes of Health, USA). 

The mass changes resulting from hybridization were measured using a QCM instrument (Gamry 

Instruments Inc., Warminster, PA, USA). Each modification step on the gold quartz crystal was 

performed offline, and the frequency changes were measured in the QCM system at a sample 

measurement interval of 0.1 s until a constant frequency response with time was reached. The 

fundamental oscillation frequency of the crystals was 10 MHz, and the QCM sensor surface was 

immersed in 0.1 M NaCl/0.1 M sodium phosphate buffer (pH 7.4) during measurements.  

A Nanodrop ND1000 spectrophotometer (Thermo Scientific, Waltham, MA, USA) was used to 

quantify the surface capture probes immobilized on the SPR array or quartz crystal surface and 

additionally to quantify the target and control oligonucleotides linked to AuNPs. Surface 

characterization of the gold surface of the SPR microarray before and after coating with the surface 

capture probe was conducted by scanning electron microscopy (SEM, Model: FEI Quanta 600FE). 

An accelerating voltage of 20 kV was applied. The images were acquired using the FEIxT 

Microscope Control Software. 
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4.2.3 AuNP-linked oligonucleotide preparation  

The disulfide-modified oligonucleotide reduction protocol provided by the manufacturer (Sigma-

Aldrich) was followed to activate the oligonucleotides to link with the AuNPs. For thiol activation, 

the dry oligonucleotide samples were treated with an aqueous solution of DTT (100 mM) at a 10:1 

ratio (µL DTT to A260 units of oligonucleotides), which is sufficient to activate the thiol groups of 

the oligonucleotides.30 The reaction mixture was incubated for 1 h at room temperature. DTT and 

other reaction byproducts were removed using a NAP-10 column that was pre-equilibrated with 

approximately 15 mL of 50 mM sodium phosphate buffer (pH 6.0). The purified oligonucleotides 

were quantified by measuring absorbance at 260 nm using a Nanodrop spectrophotometer (1 mm 

path length light source; CCD array detector).31,32 The molar extinction coefficient of each 

oligonucleotide sequence was used to calculate concentrations (εprobe: 698.2, εtarget: 637.9, εcontrol: 

622.7 mM–1 cm–1, Sigma-Aldrich). 

AuNP-linked oligonucleotides were prepared with slight modifications to previously described 

methods.33-35 Briefly, 250 µL of test concentrations (50 fM – 50 pM) of the target and control 

oligonucleotides were prepared in sodium phosphate buffer (pH 6.0), mixed with 100 µL of 50 nm 

AuNP solution, and incubated for 4 h at 37 oC. At the completion of incubation, 150 µL of 1 M 

NaCl/0.1 M sodium phosphate buffer (pH 7.4) and 350 µL of distilled water were added, and the 

samples were left to age in an incubator for 24 h at 37 oC. The samples then were centrifuged at 

12,500 rpm for 45 min to remove the supernatant, and the precipitate obtained was rinsed twice 

with 0.1 M NaCl/0.1 M sodium phosphate buffer (pH 7.4). Samples were resuspended to the 

original volume of 250 µL using the same buffer solution for both SPRi and QCM analysis. The 

calibration plot generated for the AuNP-target oligonucleotide conjugates was used to assess the 

recovery when the target oligonucleotide was dissolved in various percentages of human serum. 
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4.2.4 Quartz crystal surface modification and detection 

New gold-coated quartz crystals were washed with ethanol followed by distilled water and dried 

under N2 gas prior to surface modification steps. Each crystal was incubated with 20 µL of thiol-

activated probes for 4 h in a moist and cold environment (4 oC) following a wash with phosphate 

buffer (pH 7.4). The free surface was blocked using 25 µL of 5 mM MHOH, followed by a wash 

with distilled water after a 30 min incubation. The initial oscillation frequency was measured by 

QCM in solution mode. The surface capture probe-modified quartz crystals were exposed to 20 µL 

of AuNP-linked control oligonucleotide for 45 min and then washed with 0.1 M NaCl/0.1 mM 

sodium phosphate buffer (pH 7.4) to remove any unbound material from the crystal surface. 

Decrease in the oscillation frequency was measured on the modified quartz crystal surface. The 

same crystals were exposed to 20 µL of AuNP-linked target oligonucleotide (miRNA-21 mimic) 

and incubated for 45 min. Decrease in the frequency of the quartz crystal was measured after 

washing with 0.1 M NaCl/0.1 M sodium phosphate buffer (pH 7.4) to remove any unbound target 

oligonucleotide. Separate experiments were conducted using the target and control 

oligonucleotides that were devoid of AuNP conjugation to assess the signal amplification resulting 

from the AuNP linkage strategy.   

4.2.5 Modification of the SPR microarray surface and detection 

After an initial wash step of the SPR gold array chip with ethanol, 20 µL of thiol-activated capture 

probes (Figure 1) were added to 12 spots and incubated for 4 h in a moist and cold environment (4 

oC), followed by washing with phosphate buffer (pH 7.4). The free surface of the whole array was 

blocked by incubation with 25 µL of 5 mM MHOH for 30 min to minimize nonspecific binding 

interactions. The modified chip was immediately placed on the SPRi dual flow channel system. 

The chip-prism contact surface was filled with a layer of index matching fluid (Cargille Labs, Cedar 

Grove, NJ, USA). Two sample injector units and two syringe pump systems were connected to the 
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flow channels. Real-time measurements were taken using the running buffer, 0.1 M NaCl/0.1 M 

sodium phosphate buffer (pH 7.4). 

 

 

 

 

 

 

 

 

Figure 1. Fabrication procedure of the SPR microarray chip for selective detection of the target 

miRNA-21 mimic (T) from the control (C) oligonucleotide sequence by hybridization in a dual 

channel SPRi system. 

The running buffer was pumped at a flow rate of 50 µL/min, and a reference image of the array 

was taken. The dual sample injector loops (100 μL volume) were then separately filled with 

suspensions of target or control oligonucleotide-conjugated AuNPs in 0.1 M NaCl/0.1 M sodium 

phosphate buffer (pH 7.4) and allowed to pass onto the capture probe-modified array surface for 

45 min. Upon completion of the incubation, the chip surface was washed for 10 min with the 

running buffer to remove all unhybridized oligonucleotides present in solution. The final images 

of the microarray, after introducing target and control oligonucleotides, were acquired using a CCD 

camera. The difference between the images taken before and after the hybridization events were 

obtained as SPR pixel intensity changes, which can be represented in a 3D format using ImageJ 

software. Gold spots treated with only the blocking reagent were used to assess nonspecific signals. 
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Two control spots and six test spots each for detecting the target and control nucleotides were 

designed within the same microarray chip, which minimized spot-to-spot variations among 

different chips. The average SPR pixel intensities and standard deviations were calculated from the 

results obtained for six test spots with three replicate measurements. 

4.3 Results and Discussion 

4.3.1 Spectroscopic analysis of AuNP-linked oligonucleotides 

Figure 2 shows the UV-vis spectra of unmodified AuNPs in aqueous solution and AuNPs linked 

with 5′- thiol modified control and target oligonucleotides in 0.1 M NaCl/0.1 M sodium phosphate 

buffer (pH 7.4). After linking AuNPs to the target and control oligonucleotides, the Soret band 

absorbance shifted from 517 nm to 526 and 524 nm, respectively.  

Figure 2. UV-visible spectra of (a) AuNPs 

before conjugation to oligonucleotides and 

AuNPs linked to (b) target or (c) control 

oligonucleotide present in 0.1 M NaCl/ 0.1 

M sodium phosphate buffer (pH 7.4).  

 

 

 

 

The shift could be a result of surface modifications that occurred on the AuNPs and/or the 

centrifugation step used to separate the AuNP-linked oligonucleotides affecting the particle size 

distribution.36 The oligonucleotide linking to AuNPs was free of aggregate formation, as no drastic 

changes in the absorption band or decrease in peak intensity were detected. Aggregation of 13 nm 

AuNPs upon conjugation with thiolated oligonucleotides has been shown to red shift the Soret 
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band.37 Thus, the absence of notable aggregation in our system was possibly facilitated by the 

relatively larger AuNPs (50 nm) and/or negatively charged citrate stabilization of the AuNPs that 

repel particle aggregation.38  

Table 2 presents the results of quantitation of thiol-activated oligonucleotides before and after 

attachment to gold surfaces, which was performed to estimate binding efficiency. The 

immobilization efficiency of the surface capture probe was slightly greater for the QCM than for 

the SPR microarray. This can be attributed to the larger surface area provided by the gold disc of 

the QCM crystal (0.2 cm2) compared to the gold spots of the SPR microarray (0.008 cm2). Binding 

of the surface capture probe to the gold surface of the quartz crystal resulted in a frequency change 

of 979 ± 18 Hz, which corresponded to a mass change of 662 ± 12 ng. This correlates with the 

results obtained from Nanodrop analysis of the surface capture probes that were bound to the quartz 

crystal.  

Table 2. Quantitation of oligonucleotides immobilized on the QCM or SPR gold surface and 

conjugated to AuNPs (N = 3 replicates). 

Molecule 

type 

Surface used to 

bind 

Amount 

introduced 

(pmoles) 

Amount 

bound 

(pmoles) 

Average 

percentage 

binding 

Surface 

capture probe 

(9.3 nM) 

SPR microarray 461.4 ± 26.8 375.3 ± 39.6 81% 

Quartz crystal 461.4 ± 26.8 406.5 ± 41.7 88% 

Target        

(10 nM) 

AuNPs 2.48 ± 0.35 2.17 ± 0.23 87% 

Control      

(10 nM) 

AuNPs 2.52 ± 0.41 2.27 ± 0.16 91% 
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Capture efficiencies of >80% suggest that the design of the surface capture probe on the gold 

surface of the quartz crystal and microarray was efficient and that the strategy for AuNP 

conjugation of target and control oligonucleotides was effective. The globular morphologies that 

appeared after modifying the SPR microarray surface with capture probes are presented as SEM 

images (Fig. 3A–C). 

Figure 3. SEM images of (A) a bare gold spot of the SPR microarray before modification and (B) 

the gold spot self-assembled with the thiol-activated surface capture probe. (C) Higher 

magnification image of (B). 

 

4.3.2 Assessment of target hybridization and signal amplification by the mass sensor 

We quantified the mass changes that occurred on the quartz crystal (Δm) based on the observed 

decrease in oscillation frequency for successive modification steps and by using the Sauerbrey 

equation: 

∆𝑓 =  
− 2 𝑓𝑜 

2 ∆𝑚

𝐴 √𝜇𝜌
 

where Δf is the frequency change from the mass adsorbed, fo is the fundamental frequency of 

oscillation (10 MHz), A is the geometric area of the gold disc bonded to the quartz crystal (0.2 

cm2), μ is the shear modulus of the quartz crystal (2.947 × 1011 dyn cm−2), and ρ is the density of 

the quartz crystal (2.648 g cm−3).39-41 The Sauerbrey equation, used to calculate the mass bound on 
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to the quartz crystal, has a thousand times greater sensitivity compared to an electronic balance 

with 0.1 µg sensitivity.42  

Figure 4. A. Mass changes for the gold-coated quartz crystals modified with the surface capture 

probe upon addition of increasing concentration (in pM) of (a) target oligonucleotide captured 

onto AuNPs, (b) target oligonucleotide not linked to AuNPs, (c) control oligonucleotide linked to 

AuNPs, and (d) the control not linked to AuNPs. B. Mass changes shown for (a) control and (b) 

target oligonucleotides (0.5 pM) with or without linking to AuNPs. Data shown are mean ± 

standard deviations represented by error bars for N = 3 replicates. Relative standard deviations 

(RSDs) for the control were 17% with no AuNPs and 22% with AuNPs linkage. The RSDs for 

the target were 11% (no AuNPs) and 7% (with AuNPs). 

The QCM showed a significant mass change when the crystal was exposed to MHOH, suggesting 

that this reagent has an efficient free surface blocking ability to minimize non-specific interactions. 

The AuNP bioconjugation with the target oligonucleotide amplified the mass changes by ~2.5 times 

in comparison to the hybridization signals without the AuNPs strategy (Fig. 4A–B). The small 

QCM signal responses for the control oligonucleotide suggest good selectivity and specificity for 

the surface capture probe to the target miRNA-21 mimic sequence. Even after linking with AuNPs, 

the responses were quite negligible in the control, which had five base pair mismatches relative to 

the target (~13 times less signal than the target). With the signal amplification strategy, we were 

able to detect the target concentrations from 0.05 to 50 pM. 

A B 
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4.3.3 Pixel intensity changes in the SPR microarray in response to target or control 

nucleotide hybridization with the surface capture probe. 

Selective hybridization of the target over the control oligonucleotide with the surface capture probe 

coated on the SPR gold microarray was observed, similar to the mass sensor results. Figure 5 shows 

the real-time response plots of the SPR imager. Measurements were made from the new steady 

state baseline observed after washing the microarray surface with phosphate-buffered saline (PBS) 

for 10 minutes, which was sufficient to remove bulk and unhybridized oligonucleotides in solution. 

 

 

 

 

 

 

 

  

Figure 5. Real-time SPR response (average of eight array spots) for the binding of 0.5 pM of (a) 

target or (b) control oligonucleotide linked with AuNPs onto the surface immobilized capture 

probes at a flow rate of 50 μL/min. Sample injection and buffer wash points are labeled. 

The blocking agent-treated SPR spots that contained only MHOH (Fig. 6) showed no nonspecific 

hybridization signals after exposure to the AuNP-linked target or control oligonucleotide. The dual-

channel SPR microarray allowed measurement of the pixel intensity changes with the simultaneous 

introduction of similar concentrations of the target and control oligonucleotides. The observed 

changes in the pixel intensities for various concentrations of AuNP-linked target oligonucleotides 

(0.1 – 50 pM) are summarized in Figure 6 as 3D image representations, and line profiles. These 

data show that the small gold spot array surface with about 0.008 cm2 of geometric area allows 
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sufficient immobilization of surface capture probe molecules to hybridize with the low 

concentration of target oligonucleotide.  

Figure 6. Representations of SPRi responses: the 3D representation (left) and the line profile (right) 

that depicts the SPR pixel intensities for various concentrations of target and control nucleotides. 

The spot labeled as (a) is the bare gold surface treated with 5 mM MHOH and that of (b) are the 

test spots containing the immobilized capture probes. (A)-b: control oligonucleotide of (i) 0.1, (ii) 

0.5, (iii) 1, (iv) 10, (v) 30, and (vi) 50 pM concentrations conjugated with AuNPs; and (B)-b: target 

oligonucleotide of concentrations similar to those of the control allowed to bind with the surface 

capture probe. 

 

The surface capture probe demonstrated excellent selectivity for the target oligonucleotide over the 

control oligonucleotide (with five base pair mismatches). The observed changes in the pixel 

intensities for the control spots were very low, illustrating that there was minimal non-specific 

interaction between the control oligonucleotide and the surface capture probe. The spots that were 

completely blocked with MHOH showed negligible non-specific binding to the target or the control 

oligonucleotide, suggesting no false-positive signals in the absence of the surface capture probe. 
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4.3.4 Comparison of QCM and SPRi methods 

QCM is an excellent quantitation method, and it can provide high sensitivity and selectivity with 

use of an appropriate signal amplification strategy and surface chemistry. Results described herein 

are similar to those of our prior demonstration of an electrochemical QCM immunosensor for serum 

insulin measurements based on magnetic nanoparticle conjugation.40 The double logarithmic 

response plot shown in Figure 7A shows a linear correlation (R2=0.99) between the mass change 

and concentration of the target oligonucleotide. The limit of detection (LOD)43,44 for QCM-based 

quantification was 28 fM, which is a promising detection level and indicates the uniqueness of the 

designed experimental conditions in achieving ultra-low detection resulting from minimal 

nonspecific and false-positive signals. 

Although the QCM method provides sensitivity, quantitative details, and is useful for optimization 

of assay conditions, it is a low throughput approach (i.e., one sample at a time, and the most 

commonly available form is single quartz crystals). This is because designing a QCM crystal array 

is challenging due to engineering difficulties arising from the need to control piezoelectric 

properties across the array.45,46 Better throughput can be achieved by using the SPR microarray 

strategy. The advantage of using the SPR microarray is that several concentrations can be studied 

on the same array platform without the need for multiple experiments. Thus, samples and controls 

can be analyzed in the same array in one experiment. Another advantage is that the required volume 

of samples is low (200 nL per SPR array spot are sufficient, whereas a QCM crystal needs several 

μL of sample). The use of AuNPs contributes to enhancement of the SPRi reflectivity changes due 

to the electronic coupling between the plasmons of AuNPs and that of the gold sensor surface upon 

hybridization of the nucleotides.47,48 The LOD for the SPRi method in this study was 47 fM. 

Although this LOD is slightly higher than that of QCM, our assay in a microarray format displays 

a better throughput and similar sensitivity (Fig. 7B). 
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Figure 7. Double logarithmic calibration plots of A. QCM response (control response is subtracted) 

and B. SPRi response (control response is subtracted) upon hybridization of various concentrations 

of the AuNP-conjugated target oligonucleotide with the surface capture probe. (mean ± standard 

deviation for three replicates). 

 

4.3.5 Assessment of selectivity 

A recovery test was performed to evaluate the efficiency of the QCM and the SPRi microarray in 

detecting the AuNP-linked target oligonucleotide marker prepared in various concentrations of 

human serum. Prior to conjugation with AuNPs, 1 pM of the target and control oligonucleotides 

were suspended in different concentrations of human serum (10, 25, 50, and 75%) diluted in PBS 

solution (pH 7.4). A protocol similar to that described under the Experimental methods was 

followed to prepare AuNP-linked target or control oligonucleotides. Table 3 presents the sample 

recovery results for analyzing serum samples. Recovery was calculated as a percentage from the 

fraction of spiked nucleotide concentration detected after subtracting the control signals. The SPR 

microarray offered a reasonably good recovery until 25% serum was reached (> 90%), whereas for 

the QCM sensor analyte recovery (> 90%) was significantly affected above 10% serum. The results 

obtained suggest the likely applicability of calibration plots generated from buffer nucleotide 
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standards for the determination of nucleotide concentrations present in 10 - 25% serum samples. A 

lower dilution factor for serum sample analysis is preferred, as it would minimize dilution of the 

nucleotide marker in serum and facilitate easier detection when applied to patient samples. 

Table 3. Analysis of the target oligonucleotide in different percentages of serum samples (diluted 

in PBS, pH 7.4) using the QCM and SPR microarray. 

Serum % [Actual] (pM) [Detected] from 

calibration (pM) 

Recovery 

(%) 

QCM 

10 1.00 0.93 93% 

25 1.00 0.82 82% 

50 1.00 0.76 76% 

75 1.00 0.67 67% 

SPR microarray 

10 1.00 0.95 95% 

25 1.00 0.93 93% 

50 1.00 0.84 84% 

75 1.00 0.64 64% 
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Table 4 provides a short comparative summary of previous studies that measured various nucleic acids using AuNPs as a source of signal 

amplification. Our SPR microarray (LOD: 47 fM) and QCM (LOD: 28 fM) results are better than or comparable with the detection levels 

reported in prior studies. 

Table 4. Summary of recent studies related to nucleic acid detection. 

Technique Tested molecules Sample matrix Detection limit Ref. 

Multiplexed miRNA detection using 

AuNP-modified poly-T DNA 

hybridization SPR microarray 

 

miRNA-16, miRNA- 

122b, miRNA-23b 

0.3 M NaCl/ 10 mM 

phosphate buffer (pH 7.4) 

10 fM Fang et al., 

200649  

DNA sensing using catalytic growth of 

AuNP-enhanced SPR 

 

cDNA, ssDNA 0.3 M NaCl/ 10 mM 

phosphate buffer (pH 7.0) 

4.8 pM Yang et al., 

200750  

AuNP-amplified SPR interfaces for the 

detection of mercury ions using hairpin 

DNA probes containing a 21mer T-

rich Hg2+ binding sequence loop 

 

Hairpin DNA TE buffer (10 mM Tris–

HCl, 50 mM 

NaCl, 1 mM EDTA, pH 

8) 

1 nM Chang et al., 

201151  

Label free multiplexed detection of 

miRNA using silicon photonic 

microring resonator arrays 

 

miRNA-24-1 PBS 

 
 
 
 
 

150 fM Qavi et al., 

201052  
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Nanopore-based programmable 

oligonucleotide probe for circulating 

miRNA quantification 

 

miRNA-155 1 M KCl buffered with 10 

mM Tris (pH 8.0) 

100 fM Wang et al., 

201153  

Gold nanoprism based localized SPR 

sensor for miRNA detection  

 

miRNA-21, miRNA-

10b 

PBS buffer (pH 7.4) and 

40% human plasma 

50 fM Joshi et al., 

201454  

3D tetrahedral DNA nanostructure for 

DNA recognition and amplification by 

hybridization chain reaction using 

QCM 

 

Synthetic DNA targets TM buffer (10 

mM Tris-HCl and 50 mM 

MgCl2, pH 8.0) 

0.1fM Ge et al., 

201455  

Carboxy-polyethylene glycol 

microarray for AuNP-based detection 

of miRNA using differential 

interference contrast microscopy 

 

let-7a 

let-7b 

let-7f 

let-7g 

Saline sodium citrate  10 fM Roy et al., 

201656  

Mass sensor 

 

SPR microarray 

 

miRNA-21 mimic Phosphate buffer (pH 7.4) 28 fM 

 

47 fM 

This study 
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4.4 Conclusions 

We have designed highly sensitive sensors that provide a platform for detecting specific 

oligonucelotide biomarkers at femtomolar levels by linking them with AuNPs to enhance 

plasmonic sensitivity. The SPR microarray offers better throughput with a comparable LOD than 

a QCM sensor provides. Compared to the QCM sensor, the SPR microarray allows multiple 

experiments to be run with suitable controls using the dual-channel syringe pump system, 

minimizing assay time and offering improved precision. Thus, the SPR microarray approach is 

promising for clinical applications to accomplish early diagnosis, treatment, and monitoring of 

recurrence of diseases based on circulating miRNAs as biomarkers.  
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CHAPTER 5   
 

 

MULTIPLEXED SURFACE PLASMON ASSAY FOR SERUM PROTEINS AND MICRO-

RIBONUCLEIC ACIDS: SIGNAL AMPLIFICATION BY BIMETALLIC Fe3O4@Au 

NANOPARTICLES   

5.1 Introduction 

To increase prediction rates by reducing false positive diagnoses based conventionally on a single 

marker analysis, it is important to measure a panel of key biomarkers. Highly expressed circulating 

protein and micro-ribonucleic acids (miRNA) markers have received increased attention in liquid 

biopsy studies due to their promising predictability feature.1 Many analytical methods including 

enzyme-linked immunosorbent assay (ELISA), spectroscopic and molecular biology techniques 

(real-time polymerase chain reaction, northern blotting, microarray technology, and in situ 

hybridization) have been employed in cancer biomarker detection.2,3  

In view of developing molecular technologies that enable more precise and objective decision 

making, surface plasmon resonance (SPR) spectroscopy with multiplexed imaging integrated with 

the advances in microfluidics is an attractive strategy. SPR is a highly sensitive surface analysis 

technique that can determine the binding events of various ligands to their respective receptors 

through refractive index changes.4,5 Additionally, SPR can be used for high-throughput screening 

and to obtain real-time binding insights of biomolecular interactions by elegantly tuning the surface 

chemistries and metal-dielectric interfacial properties.6-8 Due to these features, SPR methods have 

been widely employed for selective detection of various biomarkers.9-11
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Incorporation of nanomaterials in bioassays offers the unique advantages of robustness due to 

superior chemical and solvent stability compared to light-sensitive labels, versatility to be adopted 

to various analytical techniques, and increased sensitivity and lowered detection limits. However, 

the compromise on the linear dynamic range for high sensitivity needs to be overcome for 

nanomaterial-based assays to measure various analyte concentrations in clinical samples.12,13 

Among metal nanoparticles (NPs), the bimetallic NPs allow tuning of plasmonic and magnetic 

properties, and the core (inner component)/shell (outer component) class is one of the important 

types that combine the beneficial properties of the two different nanomaterials.14,15  Different 

bimetallic combinations such as silver@gold, iron@platinum, platinum@cobalt, and 

gold@platinum have been designed for biosensing, bio-imaging, and drug delivery applications.16 

In particular, the magnetic properties of the iron-gold (Fe3O4@Au) bimetallic NPs offers the dual 

benefit of (i) easy conjugation and magnetic separation of desired compounds for subsequent 

detection in the assay;17 and (ii) the plasmonic gold shell properties are useful for amplifying the 

surface plasmon detection signals.18 In addition, the coating of Fe3O4 NPs with a gold material 

provides more dispersibility and room for various surface functionalization strategies (e.g., thiols, 

polymers, small molecules, dendrimers) for immobilizing biomolecules.19,20 Brown et al. 

demonstrated the synthesis of homogeneous and larger NPs via a seeding method involving the 

reduction of gold salts by using either sodium citrate or hydroxylamine reagents.21  Pham et al. 

magnetically separated IgG protein by gold-coated Fe3O4 NPs of 15-40 nm size.17  

In this report, for the first time, we have devised a multiplexed SPR imager (SPRi) microarray 

utilizing Fe3O4@Au NPs to simultaneously measure two protein and two miRNA markers present 

in human serum. Greater plasmon enhancement signal in the imager by the synthesized Fe3O4@Au 

NPs over either Fe3O4 or Au NPs of similar sizes is demonstrated. To demonstrate the applicability 

of our SPRi bimetallic NP-based assay for health monitoring based on circulating biomarkers, we 

chose two interleukins (IL-6 and IL-8) and miRNAs (miRNA-21 and miRNA-155) as 
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representative biomolecules. These markers were detected by spiking them in 10% normal human 

serum. 

IL-6 has been reported to be one of the major cytokines found in the tumor microenvironment and 

in the circulatory system, and it is found to be over-expressed in all types of tumors depicting their 

progression and severity.22 At the same time, the serum concentration of IL-8 has been found to 

correlate with tumor burden, thus making it a useful pharmacodynamic-biomarker to detect 

responses to cancer immunotherapy.23 Among the members of the miRNA family, miRNA-21 is 

one of the consistently upregulated circulatory biomarkers in cancer patients.24  Similarly, the 

miRNA-155 is a robust oncogenic circulating miRNA, and its overexpression can indicate the 

promotion of tumorigenesis.25 The circulating concentrations of miRNA-21 and miRNA-155 

markers have the potential utility for early diagnosis and monitoring of tumors as well as for 

predicting chemoresistance.  

Fe3O4@Au bimetallic NPs are employed as a signal amplification label on the SPRi platform to 

increase sensitivity and mitigate the responses arising from the non-specific interaction of other 

components in a serum sample. The designed sensor not only detects four biomarkers, but also 

offers kinetic information, which is vital to understanding the degree of interaction of the chosen 

receptors with the target analytes, and the analytical advantage of the designed assay strategy. Such 

an SPRi array platform represents a useful bioassay that can be well adapted for analysis of 

biomarkers present in clinical samples.  

5.2 Experimental  

5.2.1 Materials and chemicals 

Thiol modified custom-designed DNA oligonucleotides and miRNAs (sequences presented in 

Table 1), bovine serum albumin (BSA), dithiothreitol (DTT), 6-mercaptohexanol (MHOH), 3-

mercaptopropionic acid (MPA), ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride 
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(EDC), and N-hydroxysuccinimide (NHS), gold(III) chloride trihydrate (HAuCl4.3H2O), sodium 

borohydride, sodium citrate, gold and iron standards for ICP analysis (1000 ppm) were obtained 

from Sigma-Aldrich (St. Louis, MO). Recombinant IL-6 and IL-8 proteins, and purified anti-human 

IL-6 and IL-8 sandwich antibodies (the surface-immobilized antibody is monoclonal and the 

bimetallic NP-attached detection antibody is polyclonal) were purchased from BioLegend Inc., 

(San Diego, CA). The human serum samples were purchased from Fitzgerald Industries 

International Inc., (North Acton, MA). Citrate-stabilized magnetic nanoparticles (Fe3O4 NPs, 50 

nm hydrodynamic diameter) were purchased from Chemicell GmbH Inc., (Berlin, Germany). 

Ultrapure deionized water (DI water) and NAP-10 columns were obtained from GE Healthcare 

(Cranbury, NJ). SpotReady-16 gold spotted glass microarray chips (spot size 1 mm diameter, SPR-

1000-016) were obtained from GWC Technologies (Madison, WI). 

Table 1. Sequences of the custom-designed DNA oligonucleotides employed in this study. (In the 

hairpin capture DNA, the sequences in italics (underlined) are complementarity to the target 

miRNA sequence, the sequences in bold are the hairpin forming sequence, and those highlighted 

in gray are complementary to the sequence of the bimetallic NPs attached detection DNA. The 

detection DNA partially hybridizes with the exposed region of the hairpin surface DNA when pre-

hybridized with the miRNA marker) 

 

 

 

 

miRNA-21 5'UAGCUUAUCAGACUGAUGUUGA3' 

Hairpin capture DNA 

for miRNA-21 

5'SH-(CH2)6-

ATTGAATCGAGTCAACATCAGTCTGATAAGCTATGCATAGCTTC

AAT-(CH2)3-NH23' 

miRNA-155 5'UUAAUGCUAAUCGUGAUAGGGGU3' 

Hairpin capture DNA of 

miRNA-155 

5'SH-(CH2)6-

ATTGAATCGAGACCCCTATCACGATTAGCATTAATGCATAGCTTC

AAT-(CH2)3-NH23' 

Detection DNA        

(Fe3O4@Au NP bound)   

5'SH-(CH2)3–TTTTTTTTTTTTTGATTGAAGCAT3' 
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5.2.2 Instrumentation 

The optical measurements were made using a SPRimagerII array instrument at room temperature 

(Horizon SPR imager model) operating at a SPR source wavelength of 800 nm (GWC 

Technologies, Madison, WI, USA). The experiments were conducted using our custom designed 

four channel microfluidics set-up, each connected to a syringe pump (100 µL sample loop, New 

Era Pump System, Inc., NY, USA). The SPRi pixel intensities for increased miRNA or IL 

concentrations upon binding to their surface-immobilized selective receptors followed by signal 

amplification from the binding of Fe3O4@Au NPs linked detection probes were measured. Digital 

Optics V++ software package provided in the instrument was used to collect the SPRi difference 

images (i.e., differences of the pixel intensities before and after the binding events), and the 3D-

images were represented using ImageJ 1.49v software (NIH, USA).  

Quantification of oligonucleotides was done by a Nanodrop ND1000 spectrophotometer (Thermo 

Scientific, Waltham, MA). The UV-vis spectral absorbance of antibodies and DNA 

oligonucleotides was measured at 280 and 260 nm, respectively.26 The elemental analysis of the 

Fe3O4@Au NPs was performed by an inductively coupled plasma optical emission 

spectrophotometric analyzer (ICP-OES, SPECTRO Analytical Instruments Inc., NJ, USA). The 

emission line selected for the Fe was 259.9 nm, and for Au, the line was 267.5 nm.27  

 Transmission electron microscopy (TEM, JEOL JEM-2100) images of the synthesized Fe3O4@Au 

NPs were obtained by preparing drop-coated samples on carbon surface grids. Surface 

characterization of the gold microarray before and after coating with the surface capture DNA, after 

hybridizing with the miRNA marker, and subsequently, with the plasmon enhancing Fe3O4@Au 

NPs linked detection probes was conducted by scanning electron microscopy (SEM, Model: FEI 

Quanta 600FE). An accelerating voltage of 20 kV was applied. The images were acquired using 

the FEIxT Microscope Control Software. The hydrodynamic diameter and surface charges of 
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Fe3O4@Au NPs covalently attached with the detection antibody or DNA were measured using a 

ZetaPALS potential analyzer (Brookhaven Instruments Corporation, Holtsville, NY, USA). 

5.2.3 Synthesis and characterization of Fe3O4@Au bimetallic nanoparticles 

By adopting a seed growth technique derived from the process called Ostwald ripening, gold NPs 

coated onto Fe3O4 NPs were synthesized (Figure 1).28 During this process, the continuous growth 

of the gold layer will take place on the surface of Fe3O4 NPs. This will cause the bimetallic NPs to 

significantly grow in size. A reaction flask containing HAuCl4.3H2O (10.3 mg/mL, 5 mL), sodium 

citrate (59.3 mg/mL, 5 mL), Fe3O4 NPs (25 mg/mL, 0.5 mL) and 25 mL of H2O was refluxed at 

100 oC for 10 min. A freshly prepared mixture of HAuCl4.3H2O (4.53 mg/mL, 10 mL), Fe3O4 NPs 

(0.12 mg/mL, 10 mL), and sodium citrate (22.55 mg/mL, 10 mL) was then added to the reaction 

flask as 1 mL aliquots for every 2 min at 90 oC. This secondary addition of the reaction mixture 

controls the size of the outer Au shell formed around the Fe3O4 NPs. 

 Synthesized nanoparticles were characterized to determine their physical and chemical properties. 

The Fe3O4@Au NPs were compared with similarly sized Au NPs or Fe3O4 NPs to estimate the 

relative SPRi signal enhancement property. 

 

 

 

 

 

 

Figure 1. Schematic illustration of the synthesis of Fe3O4@Au bimetallic NPs using the reaction 

mixture consisting of 1. HAuCl4.3H2O, 2. Fe3O4 NPs, and 3. sodium citrate. 
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5.2.4 Preparation of the covalent conjugates of Fe3O4@Au NPs with detection antibodies 

The surface lysine residues of IL-6 and IL-8 second antibodies were attached to the carboxylic acid 

groups of citrate molecules adsorbed around Fe3O4@Au NPs using a protocol employed in our 

previously reported studies.29-31 Briefly, the Fe3O4@Au NPs were suspended in freshly prepared 

aqueous solution containing EDC (0.35 M) and NHS (0.1 M) and allowed to incubate for 20 min 

to create the easily leaving N-succinimidyl ester units of the carboxyl groups. The NPs were 

separated magnetically by using a magnet to remove the unreacted EDC/NHS solution. The 

particles were then washed twice with phosphate buffered saline (PBS), magnetically separated 

after each wash, and resuspended in PBS (pH 7.4). A freshly prepared antibody solution (200 μL 

of 5 µg mL−1 in pH 7.4 phosphate buffer) was immediately added to the NP solution. The covalent 

attachment of antibodies to NPs was carried out for 1 h at room temperature with a continuous 

gentle mixing of the reaction tubes in an incubator (Labnet International Inc.,). Covalently attached 

Antibody-Fe3O4@Au conjugates were separated from the free antibody solution by the magnet and 

the conjugates were washed twice in PBS, resuspended in a 200 μL of a fresh PBS solution before 

using for SPR studies.  

5.2.5 Preparation of the conjugates of Fe3O4@Au with detection DNA molecules 

Initially, to prepare the DNA oligonucleotide linked to Fe3O4@Au NPs, a protocol provided by the 

manufacturer (Sigma-Aldrich) was followed to reduce the disulfide-modified oligonucleotide for 

thiol-activation. For this, the dry oligonucleotide sample was treated with an aqueous solution of 

DTT (100 mM) at 10:1 ratio (µL DTT to A260 units of oligonucleotides) and incubated for 1 h at 

room temperature. A NAP-10 column, pre-equilibrated with approximately 15 mL of 50 mM 

sodium phosphate buffer (pH 6.0), was used to remove DTT and any other irrelevant impurities. 

The concentration of the purified detection oligonucleotide was determined by measuring 

absorbance at 260 nm using a NanoDrop spectrophotometer (1 mm path length light source; CCD 
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array detector) and the molar extinction coefficient of the detection oligonucleotide sequence 

(εdetection: 227.8 mM-1cm-1, Sigma-Aldrich).  

DNA-Fe3O4@Au conjugates were prepared by chemisorbing the thiol-activated oligonucleotides 

according to our previously described method with slight modifications.32 In short, 500 µL of 2 µM 

detection DNA oligonucleotide solution prepared in sodium phosphate buffer (pH 6.0) was mixed 

with 250 µL of Fe3O4@Au solution and incubated with gentle mixing for 4 h at 37 oC. Upon 

completion of incubation, 250 µL of 1 M NaCl/0.1 M sodium phosphate buffer (pH 7.4) and 500 

µL of distilled water were added and incubated for 24 h at 37 oC. The high salt 1 M NaCl/0.1 M 

sodium phosphate buffer (pH 7.4) solution favors the thiolated DNA to adsorb well on to the gold 

surface of Fe3O4@Au NPs.33 Following this, the DNA-Fe3O4@Au conjugates were magnetically 

separated from the supernatant and were rinsed twice with 0.3 M NaCl/0.1 M sodium phosphate 

buffer (pH 7.4) and brought to the original volume of 500 µL with PBS (pH 7.4), prior to use in the 

assay. The low salt 0.3 M NaCl/0.1 M sodium phosphate buffer (pH 7.4) prevents the irreversible 

growth of the Fe3O4@Au NPs after linking to DNA.33  

5.2.6 Preparation of the four-channel microarray and multiplexed analysis  

Eight spots on the SPRi gold array chip were incubated in 100 mM of MPA solution in ethanol for 

12 h to form a self-assembled monolayer with free carboxyl surface groups. The chip was then 

washed thoroughly with DI water and dried under nitrogen. Following the EDC/NHS activation, 

the spots were rinsed with DI water and air-dried. The capture antibody of IL-6 or IL-8 (0.25 µL 

of 1 µg mL-1 per spot) was placed on four spots of the gold array. Similarly, the thiol-activated 

hairpin capture DNA of miRNA-21 or miRNA-155 (0.25 µL of 1 µM solution per spot) was placed 

on four spots of the gold array.  

The capture molecules were immobilized for a duration of 1 h in a moist, cold environment (4 oC, 

Figure 2). The free surface of the oligonucleotide-coated spots was blocked using 5 mM MHOH 
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for 30 min and the chip was washed with PBS (pH 7.4) to minimize non-specific binding 

interactions. 

  

 

 

 

 

 

 

 

 

Figure 2. A. The experimental set-up for multiplexed SPRi analysis using a four-channel flow 

injection system. B. The SPRi chip was modified with capture probes (CAb: capture antibodies or 

CDNA: capture DNA) and the analytes were assayed as follows: Two lanes (4 spots each) of the 

SPRi microarray were self-assembled with a monolayer of MPA. The remaining two lanes were 

self-assembled with thiol-activated hairpin capture DNAs of miRNA-21 and miRNA-155 (4 spots 

each) followed by blocking the free surface with MHOH. The IL-6 and IL-8 capture antibodies 

were covalently attached to the -COOH activated MPA surface (4 spots each) followed by blocking 

of the free surface with 1% BSA. Various concentrations of the protein and miRNA markers were 

spiked in 10% human serum and allowed to bind their respective capture molecules on the chip 

using the designated individual flow channels. The signal amplification step of the bioassay was 

subsequently followed by introducing the respective detection molecules (DAb: detection antibodies 

or DDNA: detection DNA) conjugated to Fe3O4@Au NPs yielding detection DNA-Fe3O4@Au or 

detection antibody-Fe3O4@Au NPs. 
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The modified chip was immediately assembled on to the SPRi four-channel flow system with a 

layer of index matching fluid between the free glass side of the chip that will be in contact with the 

prism (Cargille Labs, NJ, USA). Each channel was connected to a sample injector unit and a syringe 

pump. Real-time measurements were performed using the running buffer, PBS (pH 7.4). 

Initially, the running buffer was pumped at a flow rate of 50 µL min-1, and a reference image of the 

array was taken at first. The sample injector loops (100 μL volume) were then separately filled with 

known concentrations of IL-6, IL-8, miRNA-21, or miRNA-155 solutions spiked in 10% normal 

human serum in PBS (pH 7.4), and allowed to pass onto the capture molecule modified arrays for 

45 min. Upon completion of the incubation, the chip surface was washed for 10 min with the 

running buffer to remove all unbound molecules. Then 100 μL of Fe3O4@Au NPs conjugated to 

detection molecules were introduced and incubated for 30 min, and washed with running buffer for 

10 min before measuring the net pixel intensity changes. A control experiment was conducted by 

treating the capture probe-modified microarray with only 10% serum to obtain the background 

signals. 

The final images of the microarray were acquired using a CCD camera. The difference images 

taken before and after each assay step are represented in a 3D format using ImageJ software (1.49v, 

NIH, USA). Multiplexing provided room for the analysis of four biomarkers in a single assay and 

minimized multiple experiments due to the microarray platform. 

5.3 Results and Discussion  

5.3.1  Hydrodynamic size and zeta potential of Fe3O4@Au NPs and conjugates 

The average hydrodynamic diameter of the synthesized Fe3O4@Au NPs and its conjugates with the 

detection molecules (second antibody or oligonucleotide) were determined by the dynamic light 

scattering (DLS) method (Table 2). A total of five measurements were made at a 90o angle (2 min 

per measurement). The samples were diluted five times prior to measurements in PBS (pH 7.4). 
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The antibodies contain free surface lysine residues to covalently attach them to the surface carboxyl 

groups on Fe3O4@Au NPs with random orientations, and no additional steps were implemented for 

orienting the antibodies.34  

The average size of the Fe3O4@Au NPs increased by about 25 nm after the antibody attachment. 

This is consistent with the typical hydrodynamic size of the antibodies (10 to 15 nm).35 A similar 

size increment was observed upon chemisorption of thiol-activated DNA to the Fe3O4@Au NPs. 

The polydispersity index was ≤ 0.2 indicating good dispersion and narrow size distributions of the 

conjugated NPs in the buffer medium, which is likely the result of surface charge repulsions. 

Table 2. The hydrodynamic diameters and ζ-potentials of Fe3O4@Au NPs and their conjugates 

with a detection antibody (shown here for IL-6 second antibody) or a detection DNA probe.  

Parameter  Fe3O4@Au NPs Antibody-Fe3O4@Au  DNA-Fe3O4@Au  

Hydrodynamic 

diameter (nm) 

105 ± 6 132 ± 11 124 ± 5 

Polydispersity index 0.19 ± 0.03 0.18 ± 0.05 0.15 ± 0.01 

ζ potential (mV) -38 ± 4 -12 ± 1 -51 ± 3 

 

The ζ-potential was calculated by phase analysis of light scattering (PALS) that determined the 

electrophoretic mobility of the particles by Smoluchowski's equation available with the instrument 

software. Diluted samples were used to measure the ζ-potential of the NPs and conjugates for a 

total of 10 measurements with each measurement lasting for 30 seconds (Table 2). The negative ζ-

potential measured for the unconjugated NPs is due to the citrate surface groups. The anti-IL 

antibodies are members of an IgG class and they typically bear an isoelectric point (pI) of 8-9.536 

and hence a net positive charge at pH 7.4. This is in agreement with the significant shift in the 

positive ζ-potential for the detection antibody attached Fe3O4@Au NPs. The intrinsic negative 

charge of nucleotides37 due to their phosphate groups shifted the ζ-potential of Fe3O4@Au NPs to 

more negative values (Table 2). 
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5.3.2 Elemental composition of the Fe3O4@Au NPs 

One mL of a solution of Fe3O4@Au NPs (3 mg/mL) was digested for 4 h in 9 mL of HNO3:HCl 

(1:3) acid mixture in a hot-water bath.38 Upon completion of the digestion, the samples were diluted 

to 25 mL volume with deionized water. The Fe and Au standard solutions (0.5 to 100 ppm) were 

prepared by diluting the stock solutions (1000 ppm) in DI water. A calibration curve was developed 

using the standard solutions prior to analyzing the digested Fe3O4@Au NPs nanoparticle samples 

(N = 3). The percentage composition of Fe and Au was found to be 21.5 ± 0.4 ppm (91%) and 2.1 

± 0.1 ppm (9%), respectively. 

5.3.3 Estimation of SPRi signal amplification by Fe3O4@Au NPs over Fe3O4 or Au NPs of 

similar sizes 

To determine the SPRi signal amplification, the pixel intensities of Fe3O4 NPs (100 nm), Au NPs 

(100 nm), and the synthesized Fe3O4@Au NPs (75 nm) or Fe3O4@Au NPs (105 nm) were 

compared, similar to that reported previously.39 In brief, the SPRi microarray was coated with a 

polycationic layer, polyethyleneimine (PEI, 0.1 mg mL-1 in DI water), by adsorbing for 30 min, and 

washed with DI water. The negatively charged citrate-stabilized NPs were then adsorbed for 30 

min on the polymer coated spots and rinsed with DI water to remove any unbound NPs. The 

difference image obtained (before and after the coating with NPs) was processed by ImageJ 

software to obtain 3D representations (Figure 3).  

The pixel intensities for the synthesized Fe3O4@Au NPs (75 nm) were 9-times and 4-times higher 

than Fe3O4 (100 nm) NPs and Au NPs (100 nm) alone, respectively. The increase in the Au shell 

size in the case of 105 nm Fe3O4@Au NPs further increased the SPRi pixel intensity to ~ 11-times 

and 6-times over the  Fe3O4 (100 nm) and Au NPs (100 nm) alone, respectively. This could be 

attributed to the spectral overlap of the surface plasmon resonance in the Au shell with an intrinsic 
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electronic transition with the Fe3O4 core.18 The results provide evidence for the Au shell containing 

bimetallic NPs for enhancing the plasmon resonance. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The SPRi responses of A. 100 nm Fe3O4 NPs, B. 75 nm Fe3O4@Au NPs, C. 100 nm Au 

NPs, and D. 105 nm Fe3O4@Au NPs adsorbed onto 0.1 mg mL-1 PEI coated gold surface. (a) 

Schematic and experimental 3D images of SPR pixel intensity, (b) only the PEI adsorbed gold 

surface. The corresponding line profiles and difference images (in grey) are shown on the right. 

 

5.3.4 Microscopic characterization of the NPs and surface binding event of the conjugates 

made with detection probes 

Figure 4A represents the TEM image of synthesized Fe3O4@Au NPs. The particles assumed nearly 

a spherical shape with an observable lighter Au layer around the darker Fe3O4 centers. The smaller 

size observed compared to the hydrodynamic diameter is due to the dried samples under the high 

vacuum conditions applied in the electron microscopic imaging.29 Figures 4B to 4D are the SEM 

images obtained for the smooth gold surface of the microarray, the capture 

antibody/antigen/detection antibody-Fe3O4@Au NP complex for IL-6 protein, and the hairpin 

capture DNA /miRNA/detection DNA-Fe3O4@Au NP complex of miRNA-155, respectively. 
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Figure 4. TEM image of A. Fe3O4@Au NPs. SEM images of B. bare Au surface of the microarray, 

C. IL-6 capture antibody/IL-6/Fe3O4@Au NP-IL-6 detection antibody assembly, and D. miRNA-

155 capture DNA/miRNA-155/Fe3O4@Au NP-miRNA-155 detection DNA assembly. 

5.3.5 Quantitation of capture and detection molecules used in the designed SPRi microarray 

for multiplexed detection of miRNAs and ILs 

The fabricated microarray followed the sandwich type immunoassay strategy for IL detection and 

a dual hybridization of the hairpin capture DNA for selectively capturing the target miRNA marker 

from serum and detection with Fe3O4@Au NPs carrying the detection nucleotide. The 

spectrophotometric quantification of the amount of capture DNA self-assembled on the microarray 

surface and the number of detection probes attached to Fe3O4@Au NPs is presented in Table 3. 

This quantitation confirmed the successful immobilization on the desired surfaces. 
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Table 3. The quantitation of capture molecules immobilized on the microarray and detection 

molecules conjugated to the Fe3O4@Au NPs. 

 

5.3.6 Real-time analysis of serum biomarkers 

The real-time sensograms, difference images, 3-D representations, and line profiles corresponding 

to the multiplexed detection of ILs and miRNAs spiked in 10% human serum are presented in 

Figure 5. The detection probes conjugated to Fe3O4@Au NPs increased the SPRi responses by 

about 2-fold for the ILs and 8-times for the miRNAs. This can be attributed to the additional 

selective biological interaction and the NP-induced plasmon signal enhancements. 

Figure 6 presents the linear response plots of SPRi signals subtracted for the signals resulted from 

the control serum sample.  An increase in the SPRi responses for increased concentration of 

analytes spiked in to the serum confirms the specificity of the surface capture probes towards the 

target analytes of interest. IL-6 and IL-8 demonstrated a linearity from 20 pM – 100 nM and 10 pM 

Molecules used for 

conjugation 

Amount of 

molecules added 

(pmol) 

Amount of 

molecules 

attached  (pmol) 

Average 

immobilization 

efficiency (%) 

Surface 

immobilized 

biomarker 

capture 

molecules 

IL-6 capture 

antibody 

0.013 ± 0.002 0.008 ± 0.001 61 ± 10 

IL-8 capture 

antibody 

0.013 ± 0.002 0.008 ± 0.002 60 ± 11 

miRNA-21 

capture DNA 

200 ± 38 155 ± 18 77 ± 17 

miRNA-155 

capture DNA 

200 ± 30 158 ± 15 79 ± 14  

 

Fe3O4@Au 

NPs 

IL-6 detection 

antibody 

16.6 ± 3.5 12.3 ± 1.8 74 ± 18 

IL-8 detection 

antibody 

16.7 ± 2.3 11.8 ± 1.5 71 ± 13 

miRNA-21/155 

detection DNA 

1000 ± 118 817 ± 52 82 ± 11 
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– 75 nM (~104 orders of magnitude), respectively. A wider dynamic range was observed for 

miRNA-21 and miRNA-155 from 50 fM – 2 nM and 25 fM – 4 nM (~108 orders of magnitud), 

respectively 

Figure 5. SPRi responses for a multiplexed assay by the 4-channel flow injection analysis A. Real-

time pixel intensity changes for 10% serum spiked with a. IL-8 (10 nM), b. IL-6 (10 nM), c. 

miRNA-21 (0.25 nM), and d. miRNA-155 (0.25 nM). I. Represents the introduction of the 10% 

serum spiked with the markers to the capture probe coated microarray and II. represents the 

introduction of the detection probes conjugated to Fe3O4@Au NPs. B. Final difference image of 

the test spots after detection of protein and miRNA markers in a single microarray. C and D. 

Corresponding 3-D representation and line profile, respectively. 

The observed differences in the dynamic range may be due to variations in the functionalization of 

the SPRi chip with capture probes and the sizes of the markers. The smaller self-assembled 

monolayer of capture miRNAs can be immobilized at greater densities than the larger antibodies 

of ILs. Thus, the sensitivities of miRNA detection were ~ 4-times greater than those for the ILs. 

Additionally, the hairpin capture DNA probes consist of a stem-loop oligomer structure that is 

structurally constrained, which thermodynamically increases the specificity of the target miRNA 

compared to a linear DNA probe.40  The hairpin opens up only in the presence of the target to form 

a duplex with the highly specific complementary nucleotide sequence present in the loop. The 
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hairpin DNA probes can recognize nucleotide targets even with a single-nucleotide 

polymorphism.41 

Figure 6. SPRi calibration plots for A. protein markers (IL-6 and IL-8) and B. miRNA markers 

(miRNA-21 and miRNA-155) in 10% human serum. (N = 3 replicates). 

The detection limits (DLs) for miRNAs and ILs were calculated by the following equation: DL = 

3 x standard deviation of the control/slope of the regression line. The DLs for IL-6, IL-8, miRNA-

21, and miRNA-155 were 28 pM, 18 pM, 502 fM, and 483 fM, respectively. These DLs and 

dynamic ranges were compared to those of other recent SPR assays that detected protein or miRNA 

biomarkers in various matrices using different amplification strategies (Table 4). Our methodology 

is unique in quantifying the serum protein and miRNA biomarkers through a multiplexed detection 

format. The higher DLs resulted when measurements are carried out in serum medium over a simple 

buffer solution can be understood from Table 4 data for miRNAs and proteins. 

5.3.7 Analysis of binding strength of protein and miRNA markers 

Determining binding kinetics is an important parameter to assess the strength of inteactions 

between the markers and their receptors on the designed assay surface. Additionally, we can use 

the binding constants as the quality control parameter to reproducibly make and use the bioassays 

for reliable large-scale applications.  
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The Langmuir adsorption isotherm was followed to determine the equilibrium dissociation kinetics 

based on a 1:1 bimolecular interaction model,42 where T is the target biomolecule and P is the 

surface capture probe involving the following binding event forming the complex, TP (eq 1): 

T + P 
𝑘𝑎

⇌
𝑘𝑑

 TP   (1)  

If Γ is the surface concentration of the TP complex and Γ𝑚𝑎𝑥 is the total concentration of binding 

sites available on the surface for the biomarkers, the adsorption (ka) and desorption (kd) kinetics can 

be described by eq 2, 

dθ

dt
 =  𝑘𝑎(1 − 𝜃)[𝑇] − 𝑘𝑑𝜃                (2) 

At equilibrium, the relative surface coverage (θ = Γ/Γ𝑚𝑎𝑥) reaches a steady state (dθ/dt = 0), and θ 

can be expressed by eq 3, 

 θ = 
KadsC

1+ KadsC
 
 
                           (3) 

Γ𝑚𝑎𝑥 can be related to the maximum signal upon saturating all the binding sites of the surface 

capture probes. C is the concentration of biomarkers and Kads is the Langmuir adsorption coefficient 

(Kads = ka/kd).  

Figure 7 shows the plots of relative surface coverage (θ) plotted against the tested concentrations 

of each biomarker. The data points were fit to a Langmuir isotherm (eq. 2) using OriginPro 2015 

software (Originlab, Northampton, MA). The difference in the shapes of the Langmuir isotherms 

for ILs and miRNAs can be due to the variations in their association rates.43 The Kads values obtained 

for IL-6, IL-8, miRNA-21, and miRNA-55 were 2.50 (± 0.17) x 107 M-1, 6.10 (± 1.08) x 107 M-1, 

7.00 (± 0.76) x 108 M-1 and 7.47 (± 1.10) x 108 M-1, respectively. At a bulk concentration equal to 

1/Kads, the concentrations of capture probes at 50% surface coverage (Cθ0.5) were determined. We 
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found Cθ0.5 values of 40.1, 22.4, 1.4, and 1.2 nM for IL-6, IL-8, miRNA-21, and miRNA-155, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Representative plots of the relative surface coverage (θ) as a function of the concertation 

of A. IL-6, B. IL-8, C. miRNA-21, and D. miRNA-155. The solid line represents the Langmuir 

isotherm fit to the data. All measurements were made in triplicates. 

 

 



126 

 

   Table 4. Detection performance comparison of our method with other SPR methods. 

Analyte  Matrix used for             

calibration 

Surface         

receptor 

Amplification 

method 

Dynamic range Detection limit 

 

Ref 

IL-8 Cellular elements 

removed saliva  

Anti-IL-8 

antibody  

Monoclonal second 

antibody  

9.5 - 191 pM (in 

buffer) 

 

184 pM 44 

Thrombin  20 mM HEPES 

buffer (pH 7.4) 

DNA-aptamer  Different shapes of 

Au NPs 

Up to 200 nM 

 

Cages:1 fM  

Rods:10 aM  

Quasi-spheres:1 

aM 

 

45 

C-reactive 

protein 

(CRP) 

1% human serum in 

diluted in 10 mM 

Tris, 15 mM NaCl 

and 2 mM CaCl2 

(pH 7.4) 

 

biotinylated 

aptamers 

CRP-Specific 

Aptamer reacted 

with Quantum dots 

5 – 5000 fg mL-1 5 fg mL-1 10 

miRNA-21 10 mM PBS (pH 

7.4)  

 

Stem-loop DNA AuNPs and DNA 

supersandwich* 

- 8 fM 46 
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miRNA-15a 0.1 M PBS (pH 7.0) Hairpin capture 

DNA 

Orthogonal signal 

amplification 

5 fM - 0.5 nM 0.5 fM 47 

miRNA-21 10 mM PBS (pH 

7.4) 

 

Stem-loop  

DNA 

Ag NPs adsorbed to 

DNA 

supersandwich* on 

DNA-linked AuNPs 

 

- 0.6 fM 48 

miRNA-141 10 mM PBS (pH 

7.4) 

DNA 

oligonucleotide  

DNA-linked 

AuNPs-MoS2 

Nanocomposite 

 

- 0.5 fM 49 

Insulin 

glucagon 

somatostatin 

PBS 

 

Insulin 

glucagon 

somatostatin 

antigens 

Direct binding of 

antibodies to their 

respective antigens 

Insulin: 34 - 633 

ng mL-1 

Glucagon: 85 - 

1592 ng mL-1 

Somatostatin: 

719 - 4000 ng 

mL-1 

 

Insulin: 1 nM  

Glucagon: 4 nM 

Somatostatin: 246 

nM 

50 

Fibronectin  PBS (pH 7.4) anti- 

fibronectin 

antibody 

Direct antigen 

bound to antibodies 

 

5 - 400 ng mL-1 

 

 

1.5 ng mL-1 51 
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IL-1β 

IL-6 

IFN-γ 

TNF-α 

PBS with 0.075% 

Tween 80 and 0.5% 

BSA 

Capture 

antibodies for the 

respective 

antigens 

Neutravidin and a 

gold nanoparticle 

cascade 

7 logarithms (100 

fg mL-1 - 1 μg 

mL-1  test range) 

IL-1β: 1.2 pg mL-1 

IL-6: 50 fg mL-1 

IFN-γ: 22 pg mL-1 

TNF-α:15 pg mL-1 

52 

IL-6 

IL-8 

miRNA-21 

miRNA-155 

10% normal human 

serum diluted in 

PBS (pH 7.4) 

Hairpin capture 

DNA for 

miRNAs and 

capture 

antibodies of ILs 

Fe3O4@Au 

bimetallic NPs 

tagged detection 

molecules  

IL-6: 0.02 - 100 

nM 

IL-8: 0.01 - 75 

nM 

miRNA-21: 50 

fM - 2 nM 

miRNA-155: 25 

fM - 4 nM 

IL-6: 28 pM 

IL-8: 18 pM 

miRNA-21: 502 

fM 

miRNA-155: 483 

fM 

 

This 

work 
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5.4 Conclusions 

The designed surface plasmon microarray platform offers multiplexed assaying of ILs and miRNAs 

directly from human serum samples. The combined magnetic and plasmon enhancing features of 

Fe3O4@Au NPs were useful for separating the attached detection probes easily and  amplifying the 

SPRi signal output while minimizing the non-specific signals arising from the serum matrix. These 

features improved the selectivity and sensitivity of the assay. The binding constants observed from 

the µM to nM range provide evidence for strong affinities between the analyte biomarkers and their 

receptor molecules on the designed sensor surface. Broader application of this approach to other 

proteins and miRNA biomarkers is feasible. 
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CHAPTER 6 
 

 

SUMMARY 

Development of robust and sensitive analytical approaches for the detection of biomarkers present 

in clinical matrices pave an attractive direction towards future diagnostics. As a result, clinicians 

could not only diagnose deadly diseases at a preliminary stage, but also plan suitable therapeutic 

protocols and monitor their outcomes. This dissertation discussed different nano-inspired 

electrochemical and optical analytical methodologies that were developed for small and large 

molecule biomarker measurement in view of advancing the field of biosensors. A summary of the 

objectives and associated key contributions under each chapter is presented below:    

The first chapter of this dissertation attempted to summarize and recognize the recent scientific 

contributions made on developing sensitive biosensor approaches for clinically relevant small and 

large molecule biomarker measurements. A literature review was conducted on novel 

electrochemical sensor methodologies, which combined the advancements in nanochemistry and 

the biorecognition elements such as enzymes, aptamers, antigens and antibodies. Furthermore, 

SPRi based approaches for multiplexed biomarker measurement were summarized. The 

combination of elegant nanomaterials was useful for detection signal amplification, increasing 

surface functional groups as well as highly oriented bioreceptor immobilization, and minimization 

of the non-specific interactions of molecules other than the biomarker of interest present in the 

sample matrices (e.g., serum, urine). The research field on electrochemical and SPRi biosensors is 

exponentially growing and many more novel discoveries are anticipated in the near future. 
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The second chapter reported an amperometric nano-bioelectrode design that uniquely combined 1-

pyrenebutyric acid units pi-pi stacked with carboxylated multiwalled carbon nanotubes on the 

surface of gold screen printed electrodes for covalent attachment of NAD+ dependent formaldehyde 

dehydrogenase (FDH). The designed enzyme bioelectrode offered 6 ppb formaldehyde detection 

in 10-times diluted urine with a wide dynamic range of 10 ppb to 10 ppm. Fourier transform 

infrared, Raman, and electrochemical impedance spectroscopic characterizations confirmed the 

successful design of the FDH bioelectrode. Flow injection analysis provided lower detection limit 

and greater affinity for formaldehyde (apparent KM 9.6 ± 1.2 ppm) when compared with stirred 

solution method (apparent KM 19.9 ± 4.6 ppm). Selectivity assays revealed that the bioelectrode 

was selective toward formaldehyde with a moderate cross-reactivity for acetaldehyde (~ 25%) and 

negligible cross-reactivity toward propanaldehyde, acetone, methanol, and ethanol. This 

methodology can be broadly applied for measuring other small molecule biomarkers by tuning 

marker specific enzymes.  

The next study focused on correlating picomolar affinities between surface plasmon and 

electrochemical immunoassays for the binding of serum glutamic acid decarboxylase-65 

autoantibody (GADA), a biomarker of type 1 diabetes, to its antigen GAD-65. Carboxylated (~ 

5.0%) graphene modified immunoassembly on a gold surface plasmon chip or on an 

electrochemical array provided significantly greater binding affinity, sensitivity, and lower 

detection limits than a self-assembled monolayer surface of mercaptopropionic acid (MPA). 

Estimation of the relative surface–COOH groups by covalent tagging of an electroactive 

aminoferrocene showed that the graphenyl surface displayed greater number of –COOH groups 

than the MPA surface. Additionally, the binding constant values obtained for the GADA-GAD65 

binding through real-time SPRi studies can be useful as a quality control checkpoint for 

reproducible and reliable production of large-scale biosensors for clinical bioassays. 

The fourth chapter focused on comparing detection performances of a quartz crystal microbalance 

(QCM), which is a mass sensor, with that of a surface plasmon resonance (SPR) microarray for an 
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oligonucleotide mimic of microRNA-21 biomarker. Surface immobilized capture oligonucleotide 

probe was used to hybridize with the target oligonucleotide (i.e., the microRNA-21 mimic) to 

facilitate selective detection. To obtain ultra-low femtomolar (fM) detection sensitivity, gold 

nanoparticles (50 nm) were conjugated with the target oligonucleotide. Detection limits of 28 and 

47 fM were achieved for the target oligonucleotide by the QCM and SPRi microarray, respectively. 

Additionally, sample recovery study and matrix effect analysis was performed for the target 

oligonucleotide. Although the QCM had a lower detection limit, the microarray approach offered 

better throughput for analysis of up to 16 samples. We confirmed that the designed assay was 

selective for the target oligonucleotide and did not show signals for the control oligonucleotide 

with five mismatch sites relative to the target sequence. Combination of the QCM and microarray 

methods that utilize the same assay chemistry on gold are useful for overcoming clinical sample 

matrix effects and achieving ultra-low detection of small nucleotide biomarkers with quantitative 

insights. 

In the final chapter, a surface plasmon resonance imager (SPRi) microarray employing citrate-

stabilized Fe3O4@Au core/shell nanoparticles (NPs) as the plasmon signal amplification label was 

presented. A 4-channel microfluidic system was designed to demonstrate the feasibility for 

multiplexed assaying of two serum protein markers, interleukin-6 (IL-6) and interleukin-8 (IL-8) 

by a sandwich immunoassay, and two serum microRNA markers (miRNA-21 and miRNA -155) 

by a double hybridization assay. The Fe3O4@Au (105 nm) NPs exhibited 13-times higher plasmon 

signal intensities than that of only Fe3O4 (100 nm) and 6-times greater signals than Au only NPs 

(100 nm). The detection limits achieved for the markers were in the pM to sub-pM concentrations. 

The dynamic range of detection for the proteins was from pM to nM concentration in 10% serum, 

and for the miRNAs the dynamic range was from fM to nM in 10% serum. Additionally, the 

strength of selective binding interaction between the analyte biomarkers and their surface 

bioreceptors was assessed by the Langmuir-type binding kinetics. The binding constants estimated 

for IL-6, IL-8, miRNA -21 and miRNA -155 were 2.50 (±0.17) x 107 M-1, 8.10 (±1.08) x 107 M-1, 
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7.00 (±0.76) x 108 M-1 and 7.47 (±1.10) x 108 M-1, respectively. The synergistic multiplexed 

biosensing and kinetic assessment features associated with SPRi can be useful to measure potential 

disease biomarkers and make decisions on the surface biorecognition elements on their suitability 

for the assay. 

In summary, the studies discussed in the dissertation suggest that highly sensitive, selective, and 

wide dynamic range analytical methods are of paramount significance for assaying biomarkers, 

which are typically present at very low levels in complex clinical matrices (e.g., whole blood, 

serum, saliva, tissues, and urine). The presented electrochemical biosensor methodologies offered 

highly sensitive electrochemical detection of biomarkers with minimum background effects as a 

result of the functionalization strategies employed. Also, similar nanobio-modifications can be 

adopted to expand the current electrode systems into multi-array formats for multiple biomarkers 

measurement and validation studies. With the recently growing attention on SPRi in clinical 

chemistry, this dissertation adds further significance for applications in biomarker identification 

and validation assays offering both binding insights and ‘3D’ image based assay results. 
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