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Abstract:  

 

Previous literature indicates Bluegill (Lepomis macrochirus) sacrifice optimal foraging 

behavior for refuge in dense vegetation while under the threat of predation, resulting in 

reduced growth rates. The majority of these studies were performed in clear water, which 

is uncommon under typical field conditions, especially under increasing anthropogenic 

disturbances. I investigated the effects of turbidity on habitat use by Bluegill under the 

threat of predation in the laboratory, followed by a corresponding field study. Laboratory 

trials were conducted in 6.5-m diameter tanks with artificial vegetation on one side and 

open water on the other. Bluegill and Largemouth Bass (Micropterus salmoides; a common 

predator of Bluegill) were given 18 hours to interact at one of five turbidity levels (0, 5, 

10, 30, or 50 Nephelometric Turbidity Units [NTU]), after which a divider was dropped, 

allowing us to quantify the number of fish on the vegetated and open-water side of each 

tank. At all turbidity levels above 0 NTU, significantly fewer Bluegill were found on the 

vegetated side of the tank. However, vegetated habitat was always preferred to open water 

habitat, regardless of turbidity. In the field, pop nets were used to sample artificial 

vegetation in the spring of 2018 at Sooner Lake, Stillwater, Oklahoma, USA. 

Unfortunately, water of the field study was never turbid enough to test the results of the 

corresponding laboratory study, and no clear trends relating turbidity to the number of fish 

captured were observed. However, results from the laboratory experiment indicate 

vegetation manipulation and establishment efforts designed to provide juvenile fish refuge, 

and to provide fishing opportunities, may be useful for management in systems with 

turbidities as high as 50 NTU. Habitat additions may be more useful in clear systems, given 

Bluegill may not use vegetation as a refuge as frequently as when predated under higher 

turbidities.
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CHAPTER I 
 

 

THE EFFECTS OF TURBIDITY ON THE USE OF VEGETATION BY BLUEGILL UNDER 

THE THREAT OF PREDATION: LABORATORY STUDY 

 

Introduction 

Structurally-complex habitat is important to a healthy fishery. Habitats with increased 

physical structure have more microhabitats, leading to greater niche space (Crowder and Cooper, 

1982; Willis et al., 2005), which allows for the coexistence of both predators and prey (Crowley, 

1978). Structurally-complex habitats aid in primary production by providing attachment points 

for periphyton (Cattaneo et al., 1998; Dam et al., 2002), as well as allowing for colonization of 

macroinvertebrates (Cattaneo et al., 1998; Strayer et al. 2003). In addition, structurally-complex 

habitats provide both refuge and foraging opportunities for fish (Savino and Stein, 1982; 

Gotceitas and Colgan, 1989; Gotceitas, 1990; Gotceitas and Colgan, 1990). Thus, habitat 

enhancement and restoration efforts are often aimed towards establishing or enhancing 

structurally-complex habitats (e.g., planting macrophytes, sinking artificial structures or brush 

piles, removing invasive plant species that form less-complex monocultures, etc.).  

Fishery managers and restoration ecologists are often advised to provide an intermediate 

level of structured habitat to maximize growth rates while also allowing adequate survival of 

juvenile age classes (Crowder and Cooper, 1982; Dibble et al., 1996; Trebitz and Nibbelink, 

2011). Too much structural complexity can negatively affect foraging success of many fishes by 
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impeding swimming and obstructing sight (Werner et al., 1983a; Gotceitas and Colgan, 1987; 

Manatunge et al., 2000), resulting in decreased growth rates (Werner et al., 1983a, 1983b; 

Mittelbach, 1984; Maceina and Shireman, 1985). On the other hand, too little structural 

complexity can result in decreased recruitment (Dibble et al., 1996). As reservoirs often lack 

structured habitat (Miranda et al., 2010), considerable effort and capitol are invested to increase 

structural complexity (Bassett, 1994; Tugend et al., 2002) and to attract fish for anglers (Lynch 

and Johnson, 1989; Johnson and Lynch, 1992; Moring and Nicholson, 1994). Given the large 

amount of effort spent establishing proper habitat, it is vital to ensure this results in a positive 

impact on the target species. However, these actions are often based on studies conducted in clear 

water and have ignored that natural systems are typically turbid. The importance of habitat 

management may be lessened in turbid systems if turbidity reduces visibility in a way that alters 

the risk perceived by prey (as suggested by Miner and Stein, 1996; Shoup and Wahl, 2009). 

Increased turbidity can alter antipredator behavior exhibited by prey species (Miner and 

Stein, 1996; Shoup and Wahl, 2009). Turbidity typically reduces visual acuity (Abrahams and 

Kattenfeld, 1997; Robertis et al., 2003), and consequently, reaction distances of both predator and 

prey (Vinyard and O’Brien, 1976; Aksnes and Giske, 1993; Miner and Stein, 1996; Hansen et al., 

2013). Therefore, fish must rely more on non-visual senses in turbid environments (Vinyard and 

O’Brien, 1976; Rowe et al., 2003). For some fish, this results in an increased antipredator 

response (Hartman and Abrahams, 2000; Golub et al., 2005; Leahy et al., 2011) because they 

sense predators but cannot gauge the level of threat. Conversely, other species exhibit a decreased 

antipredator response because they are unable to see predators in the area (Gregory, 1993; 

Lehtiniemi et al. 2005). In clear water, many prey species utilize structured habitat when there is 

a risk of predation (Savino and Stein, 1982; Gotceitas and Colgan, 1989; Snickars et al., 2004; 

Stahr and Shoup, 2015). Because turbidity can alter the perceived risk of predation, it may also 

alter prey species’ use of structured habitat. 
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To date, there have been two studies addressing the influence of turbidity on the use of 

structurally complex habitats by a prey species under the threat of predation, both using Eurasian 

Perch (Perca fluviatilis) as prey and Northern Pike (Esox lucius) as predator (Snickars et al., 

2004; Skov et al., 2007). Snickars et al. (2004) found Eurasian Perch utilize structured habitat less 

in turbid conditions. However, Skov et al. (2007) found Eurasian Perch utilized structured habitat 

more often under turbid conditions. The clear discrepency that exists between these studies 

strongly indicates the need for futher investigation. Furthermore, different prey and predator 

species often exhibit different behaviors (i.e., Northern Pike are ambush predators whereas 

Largemouth Bass are roving predators; Savino and Stein, 1989). Also, it has been reported that 

effects of turbidty differs between fish species (Kemp et al., 2011). Consequently, applying 

results from only a few studies to other predator-prey pairings may be misleading, or lead to 

incorrect management decisions. 

I am unaware of any studies which examine the effects of turbidity on the use of 

structurally-complex habitat of fishes in North America; however, anecdotal evidence suggests 

that increases in turbidity may reduce the use of structurally-complex habitats by some prey 

species. Bluegill (Lepomis macrochirus) and Largemouth Bass (Micropterus salmoides) are two 

of North America’s most popular sport fish (USDI 2017), and they often inhabit turbid systems. 

In clear water, Bluegill are confined to shallow-water habitat in tanks lacking structurally-

complex habitat when Largemouth Bass are present, but they will venture into deeper water when 

turbidity increases above 10 Nephelometric Turbidity Units (NTU) (Miner and Stein, 1996; 

Shoup and Wahl 2009). This observed change in antipredator behavior by Bluegill suggests they 

may also use cover less frequently in turbid conditions, similar to the results of Snickars et al. 

(2004) with Eurasian Perch. If this hypothesis is correct, habitat establishment efforts intended to 

benefit Bluegill survival may prove futile in turbid environments. However, the effects of 

turbidity on the selection of structurally complex habitat by Bluegill has not been tested. 

Therefore, my study assessed the effects of turbidity on the use of structurally complex habitat by 
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Bluegill while under the threat of predation by Largemouth Bass in a laboratory setting. This 

information is needed to determine if implementation of complex habitats to management 

practices in turbid systems will be used by Bluegill. 

 

Methods 

Bluegill (50-75 mm total length [TL]) were seined from Sanborn and Boomer lakes, OK; 

fish in these lengths utilize vegetated habitat under predation pressure in relatively clear-water 

systems (Hall and Werner, 1977; Mittelbach, 1981; Mittelbach, 1984). Largemouth Bass (250-

350mm TL) were collected by boat electrofishing from Lake Carl Blackwell and Boomer Lake, 

OK. Largemouth Bass of these sizes can easily capture Bluegill in the 50-75 mm size range 

(Lawrence, 1957). Collected fish were transported to the Oklahoma State University Fisheries 

and Aquatic Ecology Wet Laboratory where they were transferred into holding tanks and allowed 

to acclimate for at least 48 hours.  

Trials were conducted indoor in five round polyethylene tanks (2-m diameter, 1-m deep) 

with artificial vegetation on one side and open water on the other. Tanks were filled to 46-cm in 

depth with filtered tap water, kept at ambient temperature  (22-24C), and illuminated by natural 

light from skylights. On the vegetated side of the tank, I simulated vegetation using 0.6-m long 

pieces of 3-mm diameter yellow polypropylene rope attached to 1.27-cm square hardware cloth in 

30cm x 30cm mats. Ropes were attached to hardware cloth mats in a uniform arrangement at a 

stem density of 1000 stems/m2. Bluegill select vegetation densities between 500-1000 stems/m2 

when under the threat of predation (Savino and Stein, 1982; Gotceitas, 1990; Gotceitas and 

Colgan, 1987), and these are densities commonly found in natural beds of aquatic vegetation 

(Sheldon and Boylen, 1977). Artificial vegetation patches were anchored with a 10x20x5-cm 

brick on each mat. To simulate a more natural habitat, vegetated mats were arranged in a uniform 

pattern that covered 50% of the area on the vegetated side of the tank (i.e. checkerboard 

arrangement of vegetated patches and open water), generating an overall stem density of 500 
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stems/m2 from the combination of 1,000 stem/m2 patches and interstitial spaces (30 cm x 30 cm) 

without vegetation between vegetation mats (Figure 1). 

 We used bentonite clay to produce turbidity levels of 0, 5, 10, 30, and 50 NTU (+ 10%), 

which are typical levels found in North American lakes (Weiss and Kuenzler, 1976; Shoup and 

Lane, 2015). Due to significant variation in turbidity readings across nepholometers (Duchrow 

and Everhart, 1971; Austin, 1973), we developed a secchi depth-NTU regression to provide 

cross-study comparisons: 5 NTU ≈ 40 cm, 10 NTU ≈ 27 cm, 30 NTU ≈ 15 cm, 50 NTU ≈ 12 cm 

Secchi depths (Figure 2). The 0 NTU treatment used dechlorinated tap water and was too clear to 

receive a secchi depth. Clay was kept in suspension by a 150-cm air stone placed near the middle 

of each tank, just inside the vegetated side.  Turbidity was measured at the beginning and end of 

each trial with a LaMotte® model 2020 tungsten-lamp nephelometric turbidity meter calibrated 

with a 40-NTU formazine standard.  

Prior to starting a trial, each tank was stocked with 20 Bluegill and 1 Largemouth Bass, 

which produced natural densities for both species (Hackney, 1979). Both Bluegill and 

Largemouth Bass were free to move about the tank as confining a predator could have resulted in 

skewed prey behavior (Skov et al., 2007). Each trial lasted 18 hours, at which time a plywood 

divider was dropped to separate fish on the vegetated and open water sides of the tank. The 

divider was nested in a 2.81 cm diameter PVC pipe with a vertical slit cut lengthwise in the pipe 

that allowed the divider to fall quickly and precisely to completely isolate fish on each side of the 

tank. Trials were always started such that they ended in the early afternoon (11am-1pm) and 

encompassed one dusk and dawn cycle. Once dividers were dropped, Largemouth Bass were 

quickly removed by seining to prevent further predation losses and tanks were partially drained to 

recover prey. The number of Bluegill on each side of the tank and the position of the Largemouth 

Bass were recorded. Bluegill were then transferred back into a common holding tank to re-mix 

with all Bluegill (approximately 200 individuals) and Largemouth Bass were moved to the next 

randomly-assigned tank for the next trial. Bluegill were fed in the holding tank between trials, but 
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Largemouth Bass were not fed outside the experiment to ensure they would try to feed during 

trials. Any dead fish that were recovered were not counted as present on either side. Bluegill 

habitat use was quantified as the percentage of surviving Bluegill in open water habitat to account 

for uneven numbers of fish, as some fish were consumed by Largemouth Bass during trials.  

Each turbidity was tested 30 times (6 times in each of the 5 tanks). A stratified 

randomized block design was used such that on each trial date, one replicate of each turbidity 

level was used, but the actual turbidity order in each tank was randomized. Additionally, the side 

of the tank containing vegetation was randomly stratified such that each tank had an even number 

of trials with vegetation on each side. Using a generalized linear mixed model, difference in 

percentages (arcsine(√x) transformed) of Bluegill in the open water side of tanks were compared 

among turbidity levels (proc glimmix in SAS; SAS Institute, 2013). Day and vegetation side were 

not significantly related with Bluegill distribution, therefore, these variables were not included in 

the final model. Tank ID was used as a random effect in the statistical analyses to account for 

repeated measurements made in tanks. The group option was used to account for different 

variances among groups. Tukey’s HSD test was used to make pair-wise comparisons when main 

effects were significant. In addition, I tested if turbidity had an effect on which side the predator 

(Largemouth Bass) chose using a binomial logistic regression model with tank ID as a random 

effect, using the glm function in program R (R Development Team). 

 

Results 

Bluegill used open water habitat less in clear water trials (mean = 4.8%) than in all other 

turbidities (5, 10, 30, 50 NTU; mean = 24.1%; F4,16 = 11.29, P < 0.01; Figure 3). Bluegill were 

found in open water with similar frequency (mean across treatments = 24.1%) across the 5 NTU, 

10 NTU, 30 NTU, and 50 NTU treatments (all Tukey P > 0.45). However, no treatment had 

>50% of Bluegill found in the open water, indicating structurally complex habitat was preferred 

over open water at all turbidities. Largemouth Bass were found on the vegetated side of the tank 
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in the majority of the trials (93.6% of all trials [141 times out of 150 trials]), with no difference 

among turbidity levels (X2 2.45, df = 1, N = 150, p = 0.12).  

 

Discussion 

Bluegill increased their use of open water as turbidity increased, but structurally complex 

habitat was still used more than open water at all turbidities tested. Thus, the practice of providing 

structure (e.g., planting vegetation, sinking brush piles, etc.) to concentrate fish and provide 

refuge from predation for juveniles should still be useful even in turbid systems, although its 

effects will likely be more pronounced in clearer systems. This is consistent with the findings of 

Baumann et al. (2016), who found fish still concentrated around artificial structures in turbid 

lakes. Therefore, my results support the use of structurally complex habitats to aid in fishery 

health in systems with turbidities ranging from 0 NTU to 50 NTU (approximately 12 cm 

visibility). 

In my study, 24% of Bluegill utilized open water habitat in turbid treatments, which was 

greater than the percent observed in clear water (about 5%), but was not as pronounced as the 

shift from shallow to deep water described by Miner and Stein (1996). Miner and Stein (1996) 

reported fewer than 10% of Bluegill used deep-water habitat in clear water, but when exposed to 

turbidity levels ≥ 10 NTU, 60-90% of Bluegill used deep-water habitat. No secchi depths were 

given by Miner and Stein (1996), but Bluegill reaction distances to Largemouth Bass in that 

experiment were about 25 cm at their 10 NTU turbidity treatment, suggesting this studies’ 10 

NTU measurement was similar to or just slightly more turbid than mine (27 cm secchi depth). My 

study differed from Miner and Stein (1996) in that I provided Bluegill artificial vegetation as a 

predation refuge instead of shallow water. The differences observed between my study and Miner 

and Stein (1996) may indicate a differential preference for habitat by Bluegill; structural 

complexity may be preferred over shallow water. Alternatively, greater use of refuge habitat in 

my study could have been driven by factors other than antipredator behavior as natural structured 
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habitat provides foraging opportunities in addition to refuge from predators (Savino and Stein, 

1982), whereas shallow water simply provides a refuge from predators (DeVries, 1990; Miner 

and Stein, 1996). Future research should investigate how turbidity effects the interactive effects 

of depth and structural complexity, as shallow water and structured habitat often co-occur in the 

littoral zone. 

Several mechanisms could explain why Bluegill utilized open water habitat with greater 

frequency in turbid conditions. First, Bluegill have decreased visual acuity at high turbidity 

(Miner and Stein, 1996; Hansen et al., 2013). Therefore, at increased turbidities they may lose 

sight of cover and therefore venture further from it. Second, Bluegill may not perceive that there 

is a threat of predation if they cannot see the predator, leading them to discontinue exhibiting 

antipredator behavior (e.g., selecting vegetation) (Miner and Stein, 1996). In addition, 

Largemouth Bass foraging efficiency decreases as turbidity increases (Shoup and Wahl, 2009; 

Huenemann et al., 2012; Shoup and Lane 2015). Therefore, Bluegill may venture into open water 

more often in turbid conditions to take advantage of increased foraging return associated with 

open-water habitat (Mittelbach, 1981), given their predation risk is reduced. My experiment did 

not include availability of food, and therefore no difference in foraging return between habitats, 

however fish may still express this behavior. Finally, natural increases in turbidity are often 

caused by storm and flooding events (Chou and Wu, 2010), resulting in sharp increases in 

nutrient availability (Vanni et al., 2006; Drupp et al., 2011) that occur as turbidity increases. 

These nutrient increases can, in turn, lead to increases in phytoplankton (Bum and Pick, 1996; 

Basu and Pick, 1997) and zooplankton (McCauley and Kalff, 1981; Basu and Pick, 1997), a 

valuable food source for juvenile fishes (Mittelbach, 1981; Bass et al., 1997). Furthermore, 

following flood pulses, there is an increase in macroinvertebrates in newly inundated water 

(Bayley, 1988; O’Leary and Wantzen, 2012), providing another valuable foraging opportunity for 

fish. Consequently, turbidity may be an innate cue that triggers fish to leave structurally complex 

habitats due to the increased foraging return associated with storm events, with concomitant 
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increases in turbidity. All of these mechanisms likely co-occur, and the use of open water is 

therefore expected to increase even more if turbidity changes are accompanied by increased food 

availability in open water. 

My data suggest a threshold turbidity level exists between 0 and 5 NTUs (clear to 40cm 

secchi depths, respectively) where Bluegill increase their use of open water habitat. Similar 

turbidity thresholds have been observed in habitat use of Eurasian Perch (Snickars et al., 2014), 

and reaction distances (Hansen et al, 2013) and foraging rates (Gregory and Northcote, 1993) of 

juvenile Chinook Salmon (Oncorhychus tshawytscha). Both increases in turbidity and vegetation 

density result in decreased visual acuity for fish (Abrahams and Kattenfeld, 1997; Manatunge et 

al., 2000). Thus, fish may perceive turbidity similarly to vegetation density in terms of its value as 

a predation refuge, given both produce threshold responses in fish behavior. For example, 

Bluegill do not utilize vegetation while under threat of predation unless stem densities are above 

516 stems/m2 (Gotceitas and Colgan, 1989). This is similar to my observation that Bluegill only 

increased use of open water when turbidity was ≥5 NTU. Therefore, turbidity may be perceived 

as a predation refuge, providing a valuable opportunity to forage more in the open water without 

undue risk of predation (Gregory and Northcote, 1993). 

Although high turbidity levels decrease foraging rates of Bluegill (Gardner, 1981), 

moderate increases in turbidity may increase growth rates if this allows Bluegill to forage in open 

water. Bluegill foraging efficiency is greater in open water than in dense vegetation (Mittelbach, 

1984), so it is possible the energetic benefits of foraging in the open water may outweigh the 

decrease in foraging rates caused by increased turbidity. Furthermore, the increased contrast 

turbidity provides could actually increase prey detectability in open water (Utne-Palm, 2002), at 

least from low to moderate turbidity levels (i.e., Gardner (1981) did not test any turbidity levels 

between 0 NTU and 60 NTU when he concluded foraging return was negatively correlated with 

turbidity). Therefore, it is possible that periodic increases in turbidity may support increased 
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Bluegill growth, especially fisheries that contain dense vegetation where stunted Bluegill 

populations can develop (Olson et al., 1998). However, this hypothesis still needs to be tested. 

Prior to my study, only two studies had addressed the effect of turbidity on the use of 

structurally complex habitats, both using Eurasian Perch and Northern Pike (Snickars et al., 2004; 

Skov et al., 2007). Differing conclusions by these previous studies may be explained by 

differences in how predators were presented to the prey species. Snickars et al. (2004) caged the 

predator in open water so it is logical that prey chose the vegetated habitat to avoid the predator in 

clear water. Conversely, Skov et al. (2007) allowed the predator to choose its location in the 

experimental arena, and it consistently chose the vegetated side causing the Eurasian Perch to 

avoid the structured side. In both studies, the predator avoidance behavior of the Eurasian Perch 

weakened as turbidity increased. In my study, the predator (Largemouth Bass) was also free to 

choose its location, and was usually found in the vegetated habitat. Therefore, one might expect 

results of my study to be similar to that of Skov et al. (2007), yet I found Bluegill continued to 

use vegetated habitat despite the presence of a predator. Largemouth Bass typically use edge 

habitat between vegetation and open water to forage (Trebitz et al., 1997); so it is possible the 

Largemouth Bass resided on the edge of the structured habitat, and only darted into the structured 

habitat when the divider dropped. Unfortunately, observations of Largemouth Bass location prior 

to dropping the divider were not possible, so this cannot be definitively determined. However, 

other studies have found prey select vegetation even in when Largemouth Bass were more 

abundant in that habitat (Stahr and Shoup, 2015), suggesting that vegetation may still provide 

effective protection when predators are present within vegetated habitats. Regardless, my study 

adds to management decisions by determining turbidity can alter habitat choice by prey under the 

threat of predation, suggesting benefits of vegetated habitat as a predation refuge in clear water 

(Crowder and Cooper, 1982; Savino and Stein, 1982; Hayse and Wissing, 1996) are not as 

important under turbid conditions. 
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My study indicates Bluegill prefer structured habitat over open water when predation risk 

exists, regardless of turbidity, although this preference is weakened at all turbidities >5 NTU. 

Therefore, my data supports the practice of adding/establishing structurally complex habitat to 

provide nursery habitat and/or attract sportfish, regardless of turbidity. However, clear (<5 NTU) 

systems may receive additional benefit from these manipulations compared to turbid systems. 

Because multiple factors typically change as turbidity is altered in natural systems, further 

research is needed to test these results under field conditions. It is possible that changes in food 

abundance that co-occur with changes in turbidity make structured habitat less desirable than 

suggested by this study. 
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Figure 1: Tank design used to test the effects of turbidity on 

the use of structurally-complex habitat by Bluegill under 

the threat of predation. Squares represent artificial 

vegetation matts (1000 stems/m2 with 50% of the area 

covered by vegetated matts resulting in overall vegetation 

density of 500 stems/m2 on the vegetated side of the tank) 

and the dark line represents the middle of the tank where a 

divider was dropped to end trials and determine which tank 

side fish used most. 
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Figure 2: Relationship between nephelometric readings (NTU) and secchi 

depth readings in cm. 
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Figure 3: Percentage of Bluegill in the Open Water across selected levels of turbidity (NTU). 

Bars represent means with standard error bars. Trials with turbidities of 5, 10, 30, and 50 

NTU were all significantly different than the 0 NTU trials, but were not significantly different 

from one another.  
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CHAPTER II 
 

 

THE EFFECTS OF TURBIDITY ON THE USE OF STRUCTURALLY COMPLEX HABITAT 

BY FISHES IN RESERVOIRS: FIELD STUDY 

 

Introduction 

 

Turbidity increases from a variety of sources, is common in aquatic systems, and has the 

ability to drive fish community structure (Wood and Armitage, 1997; Henley et al., 2000; Kemp 

et al., 2011). Generally, suspended sediment is the major source of turbidity (Kirk, 1985; Daphne 

et al., 2011; Teixeira et al., 2016), although phytoplankton can also contribute to turbidity (Ali 

and Cagauan, 2007; Sánchez et al., 2017). Turbidity is influenced by both natural events (Chou 

and Wu, 2010), and anthropogenic activity (Anderson and Potts, 1987; Cornish, 2001). Therefore, 

it is important to understand turbidity’s effects on local ecosystems, especially given increased 

anthropogenic activity can result in greater sediment loads entering nearby watersheds (Anderson 

and Potts, 1987; Mallin et al., 2009). 

Turbidity affects aquatic systems primarily through scattering and attenuating light (Kirk, 

1985; Lloyd et al., 1987; Benfield and Minello, 1996; Grecay and Targett, 1996; Cloern, 1996), 

resulting in decreased primary production (Cloern, 1987; Guenther and Bozelli, 2004; Sobolev et 

al., 2009). This effect ripples through the food chain, altering abundance of zooplankton 

(Moghraby, 1977; Carvalho, 1984), macroinvertebrate (Lloyd, 1987; Meutter et al., 2005), and 

fish species (Lloyd et al., 1987; Kemp et al., 2011). Fish are particularly sensitive to changes in 
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turbidity (Kemp et al., 2011), and in some instances, chronic increases in turbidity can lead to 

major declines in fish populations (Greig et al., 2005). Thus, sediment management techniques, 

such as riparian buffer zones, are recommended to minimize anthropogenic sediment input into 

local watersheds (Henley et al., 2000; Anbumozhi et al., 2005), and dampen negative effects on 

fish populations (Henley et al, 2000; Kemp et al., 2011).  

Increased turbidity generally decreases visual acuity of fish (Abrahams and Kattenfeld, 

1997; Robertis et al., 2003), resulting in decreased reaction distances of both predator and prey 

(Vinyard and O’Brien, 1976; Aksnes and Giske, 1993; Miner and Stein, 1996; Hansen et al., 

2013). This can lead to decreased feeding rates (Gardner, 1981; Eccles, 1986; Gregory and 

Northcote, 1993; Lehtiniemi et al., 2005; Shoup and Wahl, 2009; Carter et al., 2010; Huenemann 

et al., 2012) and subsequent declines in growth rates (Sigler et al., 1984). Furthermore, turbidity 

can alter both the perceived risk of predation (Hartman and Abrahams, 2000; Leahy et al., 2011) 

and the antipredator behavior exhibited by prey fish species (Miner and Stein, 1996), ultimately 

leading to reduced use of structured habitat for some fish species (e.g., vegetation, brush, etc.) in 

response to elevated turbidity (Miner and Stein, 1996; Snickars et al, 2004; Skov et al. 2007; 

Mosle, 2018). 

Changes in turbidity are often accompanied by other environmental changes, which can 

also elicit shifts in habitat use. Storm-induced changes in turbidity (Chou and Wu, 2010) are 

regularly accompanied by sharp increases in nutrients (Vanni et al., 2006; Drupp et al., 2011) and 

food (O’Leary and Wantzen, 2012), which can alter habitat use by fish (Hugie and Dill, 1994). In 

addition, flooding events alter water temperature (Tockner et al., 2000) and dissolved oxygen 

concentrations (Junk et al., 1989), which also can result in habitat shifts by fish (Kramer, 1987; 

Huey, 1991; Hari et al., 2006). Furthermore, flood pulses into reservoirs can result in thermocline 

erosion (Wei et al., 2011), further altering habitat use by fish (Crowder and Magnuson, 1982). 

Thus, turbidity is only one piece of an ecological puzzle that explains fish habitat use. Therefore, 

to understand the complete role of turbidity on habitat use, alteration in turbidity should be 
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studied with the full suite of other environmental changes. While laboratory-based studies 

investigating the effects of turbidity on fish habitat selection are useful as baseline predictions, 

these studies cannot incorporate all environmental factors; thus, field studies are necessary to 

further our understanding of turbidity-specific habitat selection by fish. 

To date, no study has investigated how turbidity alters the use of structured habitat by 

fish in the field. Structured habitat provides juvenile fish critical refuge from predation (Mills and 

Mann, 1985; Langler and Smith, 2001; Strakosh et al., 2009). Thus, fisheries managers expend 

both money and time establishing structured habitat (Bassett, 1994; Tugend et al., 2002). From 

laboratory studies, we know that fish use cover less frequently in turbid water (Miner and Stein, 

1996; Snickars et al, 2004; Mosle, 2018-chapter 1), yet much effort still goes into increasing 

habitat complexity in turbid lakes. This may be a waste of resources if structured habitat is not 

important in turbid systems. Thus, it is essential that managers understand how fish alter their use 

of habitat in turbid conditions to maximize management efforts. The goal of my study is to test 

the findings of Mosle (2018-chapter 1) that fish use structured habitat less frequently under turbid 

conditions, as compared to clear water, using a field based study. This information will determine 

if habitat enhancement is useful at high turbidity levels.  

 

Methods 

Pop nets with artificial macrophytes were used to quantify the use of structured habitat by 

fishes at different turbidity levels in Sooner Lake, OK. Sooner Lake has abundant Bluegill 

(Lepomis macrochirus) and Largemouth Bass (Micropterus salmoides), and typically has secchi 

depths ranging 39-74cm (Shoup and Lane, 2015), which is ideal for testing the findings of Mosle 

(2018-chapter 1). Sampling was conducted from mid-May 2018 through June 2018 because of the 

high frequency of storms that typically produce changes in turbidity during this time of the year. 

Artificial vegetation (1000 stems/m2) was constructed by attaching 1-m long pieces of 4-

mm diameter yellow polypropylene rope to 1.27-cm square hardware cloth in 30-cm x 30-cm 
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tiles. For each pop net, a total of 18 vegetation tiles (1.7m2) were arranged in a checkerboard 

pattern that alternated vegetated and empty space so that only half of the total sampling area (total 

area = 3.4m2) was covered. This resulted in a patchy distribution with an overall stem density of 

500 stems/m2, a common density (Sheldon and Boylen, 1977) selected by juvenile Bluegill 

(Savino and Stein, 1982; Gotceitas and Colgan, 1987; Gotceitas, 1990) and juvenile Largemouth 

Bass (Strakosh et al., 2009; Stahr and Shoup, 2015) under the threat of predation. Vegetation tiles 

were set in the field one month prior to data collection to allow time for periphyton growth 

(Villanueva et al., 2011) and fish attraction. 

Five square pop nets (Larson et al., 1986) with artificial vegetation mats were used for 

the experiment. Pop nets were fabricated using 4.9-cm diameter PVC frame and 0.6-cm knotless 

ace netting with a total base area of 3.4m2 (1.8-m x 1.8-m). Nets were constructed with a closed 

bottom. The artificial vegetation was placed on the bottom panel of each pop net so that when 

deployed, the pop net would encompass the artificial vegetation and capture any inhabiting fish.  

Pop nets were set at two different sites which were both located in the same cove on the 

Eastern side of Sooner Lake (two nets at site 1, and three at site 2). Sites were selected based on 

similar substrate size and type, depth (approx. 1.0 - 1.3 m), water temperature, and proximity to 

existing structured habitat (primarily downed timber and large rocks), although sites with 

extensive existing structured habitat were avoided to allow artificial structure to be perceived as 

quality refuge habitat relative to surrounding options. In addition, sites that had high macrophyte 

growth were avoided. Preliminary sampling also indicated abundant Bluegill densities at both 

sites, ensuring results would be comparable to Mosle (2018-chapter 1).   

Prior to pop net deployment, water temperature and dissolved oxygen were measured 

using a YSI meter (YSI 55A Handheld Dissolved Oxygen Meter), and turbidity was measured 

using a 30-cm secchi disk. To quantify natural vegetation growth, a 10-cm x 10-cm area of 

vegetation adjacent to each pop net site was sampled by clipping all vegetation (primarily sago 

pondweed and American pondweed) at sediment level. Vegetation was placed in a mesh bag, 
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swung around 20 times to remove excess water, and weighed to assess a plant biomass index. All 

pop nets were triggered at roughly the same time (between 9:00am and 11:00am) by pulling a 10-

m leaded rope attached to the trigger mechanism (Larson et al., 1986). Once all nets were 

triggered, artificial vegetation was removed and each pop net was taken to shore where fish were 

identified, measured (total length [TL]), and released. Each of the five pop nets was sampled 

between 11 and 14 times (for a total of 61 replicates) during the experiment with at least 18h 

between samples. 

To include trials using live vegetation, additional sampling was conducted with paired 

(vegetated and open water samples) 9.1-m bag seine samples taken at three sites in dense 

macrophyte growth, adjacent to open-water habitat. At each site, seine hauls through vegetation 

and open water were collected with equal effort (i.e., similar area seined, typically 100-m2). Prior 

to seining at each site, a secchi depth measurement was recorded. 

Results were analyzed using a linear mixed-effects model (lmer) to test the effect of 

turbidity on the number of fish captured in pop nets using the lmer function of the lme4 package 

(Ben Bolker) in program R (R Development Team). All fish <100mm TL were included in the 

analysis as they were small enough for piscivores to easily consume (Dennerline and Van Den 

Avyle, 2000; Vatland and Budy, 2007) and, as such, would have high predation risk. In addition, 

Bluegill in this size range are known to utilize cover when under predation risk (Mittelbach, 

1981), and were one of the most common fish collected in my study sites. Natural vegetation 

density, date, and pop net number were treated as random factors in the model. In addition, pop 

nets were nested in site, which was also treated as a random factor in the model. For the seine 

data, a lmer model was also used to test the effect of turbidity on the percentage of fish in the 

open (calculated as the number of fish in the open water seine haul divided by the number of fish 

in the open and vegetated seine haul) with site and date as blocking factors.  
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Results 

There was no significant effect of turbidity on the number of fish caught in pop nets 

(F1,41.3=0.45, p=0.51; Marginal R2=0.01), nor was there a significant effect of turbidity on the 

percentage of fish found in the open water in the paired seine pulls (F1,12.7=0.37, p=0.55; Marginal 

R2=0.01; Figure 4). Fish species caught in seine pulls included: Bluegill, Largemouth Bass, 

Longear Sunfish (Lepomis megalotis), Orangespotted Sunfish (Lepomis humilis), White Perch 

(Morone americana), Atlantic Silverside (Menidia menidia), Gizzard Shad (Dorosoma 

cepedianum), Saugeye (Sander canadensis), Green Sunfish (Lepomis cyanellus), Common Carp 

(Cyprinus carpio), and Bluntnose Minnow (Pimephales notatus). The number of fish captured per 

pop net ranged from 1 to 32 fish for each sampling event, with an average of 11.39 fish per net set 

(3.35 fish/m2), which is on the lower end of the average catch rates reported in previous studies 

(3-7fish/m2; Dewey et al., 1989; Dewey, 1992). Bluegill and Largemouth Bass were the most 

commonly captured species in the pop net samples (Table 1), although there were other fish 

species caught in lower numbers. Other fish species caught in pop nets included: Longear 

Sunfish, Orangespotted Sunfish, White Perch, Atlantic Silverside, and Gizzard Shad. 

 

Discussion 

I did not find a correlation between the number of fish captured in complex habitats and 

turbidity, likely because the range of turbidities observed throughout the study were all at the 

clear-water end of the turbidity spectrum (91cm-488cm, secchi depth). The most turbid water 

observed in my study (secchi depth: 91cm), equates to approximately 1 Nephelometric Turbidity 

Unit (NTU) based on the NTU-secchi disc curve generated by Mosle (2018-chapter 1).  Mosle 

(2018-chapter 1) found fish change their use of habitat somewhere between 0 and 5 NTU. Thus, 

without any field data from ≥ 5 NTU, I am unable to confirm if the shift observed by my 

corresponding laboratory study occurs under field conditions. 
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I observed shifts in fish communities that were not associated with turbidity. Bluegill 

were frequently caught early in the season when natural vegetation was absent but were caught 

less frequently as the vegetation grew throughout the season, suggesting that natural vegetation 

may have been more attractive than the artificial vegetation. Although this has not been explicitly 

investigated with regards to Bluegill, van Dam et al. (2002) discovered natural materials (i.e., 

brush piles) provided a better attachment point for periphyton growth than synthetic material (i.e., 

PVC), potentially leading to greater fish attraction by natural habitats (Bolding et al., 2004). Early 

in my study, there were large numbers of fry Largemouth Bass (investigator observation). When 

these Largemouth Bass increased to a fingerling size (approximately 36mm), they were large 

enough to be caught in the pop nets and were frequently sampled during the middle dates of my 

study (dates: 6/10-6/16). The number of fingerlings in my samples quickly reduced as they were 

likely making an ontogenetic shift to piscivory (Olson, 1996), and therefore feeding in open 

water. A second pulse of Largemouth Bass fingerlings were also caught near the end of my 

sampling (dates: 6/30-7/1), suggesting there was a second cohort spawned this year, similar to the 

findings of Waters and Noble (2004). Therefore, most changes in fish abundance are likely to be 

explained by vegetation abundance or recruitment of young-of-year fish, so these are factors that 

should be accounted for in future studies of prey fish habitat selection. 

Pop nets were selected because they are effective in sampling fish in both dense 

macrophytes (Killgore et al., 1989; Dibble et al., 1996) and artificial structures (Larson et al., 

1986; Johnson and Lynch, 1992). However, I found that pop nets are easily fouled by wave 

action. Storm events often caused the netting of the pop nets to get caught around the trigger 

mechanism or the PVC frame. This resulted in a 73% success rate when attempting to trigger the 

nets, which is similar to the success rate Larson et al. (1986) observed in the field (79%). 

However, the failures I observed were caused strictly by rough water, where Larson et al. 

(1986)’s failures were caused by fisherman interaction. Luckily, this was not a problem in my 

study. The failures I experienced can be minimized in future studies by shortening the time 
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between setting and releasing the pop nets; in my study I left the nets set for at least 18 hours, 

where other studies only left them for approximately 1 hour prior to “popping” them (Dewey et 

al, 1989; Kovalenko et al., 2009; Collingsworth and Kohler, 2010). Thus, pop nets should be 

triggered fairly quickly after they are set (allowing at least one hour of soaking [Slade et al., 

2005]), especially in the field when turbulent water is expected. If setting for longer periods of 

time or in areas that commonly experience turbulent water, it is best to seek other sampling 

methods. In particular, sonar imaging is efficient in sampling structured habitat in turbid water 

(Baumann et al., 2016).  

The major turbidity swings I observed were either due to wind action or phytoplankton 

blooms rather than storm runoff. This was in part because we experienced few storm events 

during my study period, but also because Sooner Lake is not a main-stem impoundment. If 

turbidities did reach levels to test the results of Mosle (2018-chapter 1), this may have resulted in 

a different response by fish in comparison to turbidity swings produced by storm runoff. 

Although not explicitly investigated, wind-induced turbidity likely does not have the same influx 

of nutrients and food resources as runoff-induced turbidity (Vanni et al., 2006; Drupp et al., 2011; 

O’Leary and Wantzen, 2012). Furthermore, the interaction of phytoplankton turbidity vs sediment 

turbidity would be interesting to investigate as different types of turbidity may result in 

differential behavior by fish. For example, phytoplankton-generated turbidity only affects the 

euphotic zone (i.e., where phytoplankton grow) whereas sediment-induced turbidity is more 

uniform throughout the water column. Studies investigating turbidity changes from different 

sources (e.g., natural vs anthropogenic, wind vs flood, phytoplankton vs sediment) would add 

considerably to our current understanding of fish response to turbidity.  

The presence of structured habitat can alter turbidity levels. Aquatic vegetation can 

decrease water velocity (Sand-Jensen and Mebus, 1996), allowing for sediment to fall out of 

suspension (Petticrew and Kalff, 1992). This results in clearer water within a patch of vegetation 

relative to open water (Vermaat et al., 2000; Madsen et al., 2001). Thus, fish residing in 
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vegetation may not perceive an increase in turbidity until it reaches a threshold level, as described 

by Mosle (2018-chapter 1), within the vegetation patch itself. This level of turbidity likely would 

not be reached until open water turbidity is at much higher levels than the threshold level. Thus, 

future studies should focus on both in-vegetation and open-water turbidities to determine which 

turbidity measurement fish respond to more strongly. 

Many anthropogenic activities, including logging, agricultural practices, road building, 

and grazing, increase turbidity of streams and lakes (Anderson and Potts, 1987; Mander et al., 

1997; Cornish, 2001; Anbumozhi et al., 2005; Klein et al., 2012). In addition, poor management 

of urban storm-water runoff can lead to large sediment loads in nearby watersheds, resulting in 

increased turbidity (Mallin et al., 2009). Thus, it is important to understand how increased 

turbidity affects organisms living in local ecosystems, especially because sediment is one of the 

most detrimental pollutants to aquatic ecosystems (Ritchie, 1972; Lemly, 1982; Izagirre et al., 

2009) and often negatively affects fish (Kemp et al., 2011). Unfortunately, the needed range of 

turbidities did not occur during my current field study, so I was unable to test the predictions of 

Mosle (2018-chapter 1). However, the observations of my study can be used to help create proper 

framework to successfully further investigate the effects of turbidity on the use of structured 

habitat by fish in field conditions.  
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Table 1: Average number of fish captured per pop net on different sampling days. Bluegill and Largemouth Bass were 

the two most commonly caught species. Also included is the mean turbidity among both sites as well as natural 

vegetation biomass adjacent to sampling sites.  

 

 

 

 

 

 

 

 

 

 

 

     Bluegill   Largemouth Bass 

Date 

Mean 

Turbidity 

(±SE) (cm) 

Mean 

Vegetation 

Biomass 

(g) 

Mean 

Total Fish   

Mean 

Species 

Count 

(±SE) 

Mean Size 

(mm) 

(±SE)   

Mean 

Species 

Count 

(±SE) 

Mean Size 

(mm) 

(±SE) 

5/24/2018 195.6(±0.0) 0.0(±0.0) 8.0(±0.0)  8.0(±0.0) 57.8(±5.2)  0 0 

5/27/2018 147.3(±0.0) 0.0(±0.0) 14.0(±0.0)  14.0(±0.0) 55.6(±3.8)  0 0 

5/29/2018 312.4(±0.0) 2.0(±0.0) 10.0(±0.0)  10.0(±0.0) 56.2(±6.2)  0 0 

5/31/2018 96.5(±0.0) 12.0(±0.0) 2.5(±0.5)  1.5(±0.5) 45.7(±4.6)  1.0(±0.0) 44.0(±3.0) 

6/3/2018 162.6(±7.3) 23.0(±0.6) 3.3(±1.3)  2.7(±0.3) 64.5(±4.7)  1.0(±0.7) 46.0(±0.9) 

6/5/2018 179.7(±18.4) 23.3(±3.3) 13.0(±5.8)  0.8(±0.3) 73.0(±12.1)  12.3(±6.0) 45.0(±1.0) 

6/9/2018 146.5(±13.6) 28.7(±5.7) 11.0(±1.7)  1.0(±0.6) 71.3(±5.2)  9.7(±1.9) 52.7(±0.9) 

6/10/2018 161.0(±11.8) 32.4(±3.9) 18.0(±3.9)  2.2(±1.7) 65.1(±4.1)  15.6(±4.0) 52.4(±0.6) 

6/13/2018 184.4(±10.0) 36.2(±5.6) 23.4(±2.4)  2.0(±1.1) 58.3(±3.7)  20.4(±2.4) 57.0(±0.6) 

6/14/2018 170.8(±17.2) 42.0(±4.0) 13.5(±2.7)  2.0(±0.4) 61.0(±3.1)  11.3(±2.3) 59.2(±0.9) 

6/16/2018 176.3(±2.5) 49.6(±2.2) 19.8(±2.5)  3.2(±0.8) 61.9(±1.7)  16.0(±1.7) 59.4(±0.9) 

6/19/2018 176.5(±14.0) 61.5(±1.5) 13.0(±4.0)  3.0(±1.0) 62.4(±1.7)  9.5(±4.2) 64.2(±1.4) 

6/21/2018 149.0(±8.5) 64.0(±10.0) 8.0(±1.2)  2.0(±0.6) 92.0(±17.2)  5.0(±1.5) 64.7(±3.3) 

6/22/2018 153.7(±3.8) 56.5(±16.5) 7.0(±1.0)  2.0(±0.0) 64.3(±5.5)  3.5(±0.5) 63.1(±6.0) 

6/23/2018 104.1(±0.0) 80.0(±0.0) 5.0(±0.0)  0 0  5.0(±0.0) 48.8(±2.3) 

6/27/2018 133.4(±8.1) 68.5(±4.9) 5.0(±0.8)  1.5(±1.0) 60.3(±3.7)  2.3(±0.5) 59.3(±5.4) 

6/28/2018 158.8(±9.5) 102.5(±7.2) 5.5(±1.2)  1.0(±0.7) 60.0(±3.5)  2.3(±0.9) 58.4(±4.9) 

6/29/2018 137.2(±8.8) 75.0(±2.9) 3.0(±0.0)  1.8(±0.6) 67.1(±3.2)  0.8(±0.5) 49.7(±9.8) 

6/30/2018 166.0(±11.9) 79.0(±2.0) 11.7(±0.9)  0.7(±0.7) 69.5(±5.5)  8.7(±0.3) 60.3(±2.8) 

7/1/2018 309.9(±0.0) 75.0(±0.0) 15.0(±0.0)   0 0   13.0(±0.0) 74.2(±3.7) 
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Figure 4: Percent fish captured in the open water in relation to turbidity using paired seine pulls. One seine pull was 

through dense macrophytes and the other was through open water. Percent fish numbers were generated by dividing 

the number of fish caught in the open water seine by the total fish caught by both seine pulls.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0%

10%

20%

30%

40%

50%

60%

0 100 200 300 400 500 600

P
er

ce
n
t 

F
is

h
 i

n
 O

p
en

 W
at

er

Secchi Depth (mm)



 

 
 

VITA 

Samuel Walter Mosle 

Candidate for the Degree of 

Master of Science 

 

Thesis: THE EFFECTS OF TURBIDITY ON HABITAT SELECTION BY FISHES 

UNDER THE THREAT OF PREDATION 

 

Major Field: Natural Resource, Ecology and Management (NREM) 

Biographical: 

 Education: 

Completed the requirements for the Master of Science in Natural Resource, Ecology and 

Management at Oklahoma State University, Stillwater, Oklahoma in December 2018.  

Completed the requirements for the Bachelor of Science in Wildlife, Fish, and 

Conservation biology and Environmental Toxicology at University of Davis, Davis, 

California, USA, in June 2014.  

Experience: 

 January 2017-December 2018, Graduate Research Assistant/Graduate 

Teaching Assistant, Natural Resource Ecology and Management, 

Oklahoma State University 

 Fall 2016, Environmental Scientist, Ecosystem Research Group, 

Missoula, Montana 

 Summer 2016, Experimental Biological Aid, Oregon Department of Fish 

and Wildlife, Corvallis, Oregon 

 Fall 2015-Summer 2016, Scientific Aid, California Department of Fish 

and Wildlife, Chico, California 

 Summer 2015, Restoration Aid, Integrated Resource Management, 

Philomath, Oregon 

 Summer 2014-Fall 2014, Scientific Aid, UC Davis Fisheries Dept., 

Davis, California 


