
SINGLE VERSUS DUAL PESTICIDE APPLICATIONS FOR 

INCREASING OKLAHOMA WINTER WHEAT GRAIN 

YIELD AND PROFITABILITY 

 

 

By 

BRANDEN H. WATSON 

Bachelor of Science in Plant and Soil Sciences 

Oklahoma State University 

Stillwater, Oklahoma 

2016 

 

 

Submitted to the Faculty of the 

Graduate College of the 

Oklahoma State University 

in partial fulfillment of 

the requirements for 

the Degree of 

MASTER OF SCIENCE 

December, 2018 



ii 
 

SINGLE VERSUS DUAL PESTICIDE APPLICATIONS FOR 

INCREASING OKLAHOMA WINTER WHEAT GRAIN 

YIELD AND PROFITABILITY 

 

 

   Thesis Approved: 

 

   Dr. Jeff Edwards  

 Thesis Adviser 

Dr. Robert Hunger 

 

Dr. Tom Royer 

 

Dr. David Marburger 



iii 
Acknowledgements reflect the views of the author and are not endorsed by committee members or 
Oklahoma State University. 

ACKNOWLEDGEMENTS 

 

At this time, I would like to thank my advisor Dr. David Marburger for his guidance and 

for the sharing of knowledge over the course of my graduate career. The leadership and motivation 

he gave allowed for a greater learning experience. The grasp of statistical analysis and the writing 

process also allowed me to gain a better understanding of the mechanics of this research. I would 

also like to thank my committee members: Dr. Robert Hunger for his expertise and guidance in 

plant pathology, Dr. Tom Royer for his knowledge and expertise in insect management, and Dr. 

Jeff Edwards for his assistance filling in as my committee chair. 

 Thank you Robert Calhoun for your time and assistance getting my studies planted. I 

would like to extend my thanks to Christopher Gillespie for your help collecting my data. I would 

also like to thank fellow graduate students and staff for their friendship and assistance: Kyle Horn, 

Emily Landoll, Anna Zander, Gwen Wehmeyer, Ryan Bryant-Schlobohm, Bruno Morandin 

Figueiredo Victor Bodnar, Kody Leonard, Robert Lemings, and Liza Van der Laan. I would also 

like to thank Dr. William Raun and Dr. Brett Carver for their teaching and guidance.  

 Thanks to the Oklahoma Wheat Commission and Oklahoma State University Department 

of Plant and Soil Sciences for funding this research. 

 Finally, I would like to thank my family and friends, especially my parents Terry and Shari 

Watson, for their utmost support and encouragement in everything I have attempted, particularly for 

their support for this project and me.



iv 
 

Name:  BRANDEN HAMILTON WATSON   

 

Date of Degree:  DECEMBER, 2018 

  

Title of Study:  SINGLE VERSUS DUAL PESTICIDE APPLICATIONS FOR 

INCREASING OKLAHOMA WINTER WHEAT GRAIN YIELD AND 

PROFITABILITY 

 

Major Field:  PLANT AND SOIL SCIENCES  

 

Abstract:  

 

Foliar fungicides and insecticides can be useful tools in management decisions against 

fungal diseases and insect pests of winter wheat in Oklahoma, but little is known about multiple 

applications and tank-mixes of these pesticides. Two studies were conducted across three different 

locations during the 2016-2017 and 2017-2018 growing seasons, focusing on multiple fungicide 

treatments and fungicide + insecticide treatments at two different timings, Feekes 6 (jointing) and 

Feekes 9 (full flag leaf emergence). Two wheat varieties were used in each study, chosen based on 

susceptibility and resistance to fungal diseases. In the first study which assessed a dual fungicide 

application approach compared to a single application, results showed that a dual fungicide 

application can reduce disease levels, protect more yield potential, and provide greater marginal 

return than a single fungicide application. However, this management practice was highly 

dependent on variety and location. Due to the timing of disease occurrence in most cases during the 

course of the study, a single fungicide application was more often profitable than the dual 

application approach. The second study examined the effect of fungicide + insecticide tank-mix 

applications compared to each pesticide applied alone at both growth stages. Results for this study 

showed that a fungicide + insecticide application can provide greater yield than each pesticide 

applied alone. However, this result was highly dependent on the year, location, and timing when 

fungal diseases and/or insects were present, and it only occurred at the Feekes 6 application timing.  

Greater marginal return from a fungicide + insecticide application compared to each pesticide 

applied alone was also dependent on year and location. This greater marginal return from the 

fungicide + insecticide application was observed at both Feekes 6 and Feekes 9 but occurred at the 

Feekes 6 application timing the majority of the time. Based on the results of these two studies, 

scouting for fungal diseases and insects and understanding wheat variety susceptibility to fungal 

diseases should dictate whether multiple fungicide applications and/or fungicide + insecticide tank-

mixes should be used instead of making prophylactic applications in Oklahoma. 
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CHAPTER I 

 

INTRODUCTION 

 

Wheat (Triticum aestivum L.) ranks third among U.S. field crops behind corn and 

soybean in planted hectares, production, and gross farm receipts (USDA-NASS, 2018). 

In Oklahoma, winter wheat is the number one production crop. Winter wheat was planted 

on 1.8 million hectares across the state during 2017-2018, and 1.0 million hectares were 

harvested for grain during that production season (USDA-NASS, 2018). With Oklahoma 

producing 1.9 million Mg of grain during the last production season and the price for 

wheat in Oklahoma during June 2018 valued at $0.19 kg-1, this resulted in a 

$361,000,000 value for the Oklahoma economy (USDA-NASS, 2018). Due to its 

economic importance, there is considerable focus devoted to improving winter wheat 

management in order to keep input costs low and to maximize economic returns. 

Oklahoma wheat producers face a challenging task when it comes to management 

practices and the timing of implementing these practices. Properly timed foliar pesticide 

applications play a significant role in protecting the crop from pathogens and insects in 

order to maintain yield potential and quality of the crop, all while attempting to maximize 

profitability. Therefore, this research focused on single and dual foliar fungicide and 

insecticide applications at two wheat growth stages, Feekes 6 (jointing) and Feekes 9 

(ligule of flag leaf visible) (Large, 1954). The goal of this research is to determine 
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whether a dual foliar pesticide application approach results in increased winter wheat 

grain yield and profitability compard to a single application in Oklahoma.
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CHAPTER II 

 

REVIEW OF LITERATURE 

 

Dual-purpose Wheat Management  

Dual-purpose wheat is the grazing of the crop when it is in the vegetative state 

and then removing the livestock at the proper time to still produce grain for harvest. 

Dual-purpose wheat gives livestock access to forage that is available in late fall, winter, 

and early spring. If grazing is appropriately managed, it can provide producers with 

income derived from both the harvested grain and the weight gain to growing cattle that 

are pastured on winter wheat (Redmon et al., 1995). However, failing to remove livestock 

at the first hollow stem growth stage (i.e., between Feekes 5 and 6) can result in a grain 

yield loss of 1 to 5% per hectare per day that it is grazed past this growth stage (Edwards 

and Horn, 2016). 

Grazing winter wheat is a common practice across the U.S. southern Great Plains. 

It is also practiced in other countries such as Argentina, Australia, Morocco, Pakistan, 

Syria, and Uruguay (Rodríguez et al., 1990). Pinchak et al. (1996) estimated that 30-80% 

of the eight million hectares seeded annually to wheat in the U.S. southern Great Plains 

are grazed. Within the U.S. southern Great Plains, winter wheat as a dual-purpose crop is 

highly valued across southwestern Kansas, western Oklahoma, the Texas Panhandle, 

eastern New Mexico, and southeastern Colorado. 
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Wheat used for dual-purpose must be planted earlier, ranging from early to late 

September, and results in a lengthened time of exposure to the environment (Lollato et 

al., 2017). In a monoculture wheat cropping system, early planting can result in increased 

weed pressure (Epplin et al., 2000), can increase the risk of volunteer wheat that may 

facilitate the build-up and transfer of organisms and diseases from one wheat crop to the 

next (Epplin et al., 2000), and can increase the incidence of several diseases including 

Wheat streak mosaic (WSM), High Plains disease (HPD), barley yellow dwarf (BYD), 

eyespot, common root rot, and take-all root rot (Bowden, 1997).   

Fungi 

Diseases caused by plant pathogenic (i.e., disease-causing) organisms, including 

fungi, are a major source of crop damage. Fungal diseases are considered the number one 

cause of crop loss worldwide (McGrath, 2004), and there are approximately 20,000 

species of fungi which are plant pathogenic (Jibril et al., 2016). Fungi were once 

considered lower plants that lacked chlorophyll, but it is now known to constitute a group 

of organisms distinct from plants (Bockus et al., 2010). Most true fungi exist as 

filamentous, branched chains of cells called hyphae (known collectively as a mycelium) 

2-10 𝜇m in diameter with cell walls that contain chitin and well-differentiated organelles 

(Bockus et al., 2010).  

Fungi infect wheat by direct penetration of the epidermis or through wounds or 

natural openings. Infections are expressed as blights, wet or dry rots, deformations, 

mildews, smuts, spots, and rusts (Bockus et al., 2010). As part of their life cycle, most 

fungi produce spores, which can be the result of sexual or asexual reproduction. Sexual 

reproduction occurs by association of two harmonious nuclei produced by meiosis 
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(Schultz, 2007). For some phytopathogenic fungi, the sexual cycle happens just once 

amid each developing season. From these spores, ascospores, basidiospores, oospores, 

and zygospores can be produced only once each growing season. Asexual reproduction 

can create mitotic spores, mycelia fragmentation, division, and budding using mitosis. 

These cycles can be continuous throughout the growing season. Classifications of asexual 

spores are conidia (borne on edges or tips of specialized branches of hyphae), oidia 

(developed by division of hyphae), and sporangiospores (immotile spore born in a 

sporangium or case) (Schultz, 2007). Fungi cannot ingest food like animals or make their 

food as plants do. Fungi must grow within the substrate on which they are feeding and 

absorb the nutrients needed (Bockus et al., 2010). An understanding of the life cycle of 

any fungal pathogen allows for proper management of that pathogen. Several fungal 

pathogens of concern in Oklahoma include Pyrenophora tritici- repentis (tan spot), 

Zymoseptoria tritici (Septoria leaf blotch), Parastagonospra nodorum (Stagonospora 

glume blotch), Cochliobolus sativus (spot blotch), Blumeria graminis f. sp. graminis 

(powdery mildew), Puccinia triticina (leaf rust), and Puccinia striiformis f. sp. tritici 

(stripe rust).  

Insects 

Most insects that are present in cropping systems do not have an impact on plant 

growth or yield, but certain species can cause devastating damage (Bockus et al., 2010). 

Some of these destructive species include leaf beetles and grasshoppers. Others such as 

wireworms or Hessian fly may be concealed or hidden within the plant itself or the soil 

(Bockus et al., 2010). For many years, aphids were considered the most prominent insect 

pest of winter wheat (Chambers and Adams, 1986; Hasken and Poehling, 1994), and it is 
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one of the most yield-limiting insects of winter wheat in the southern Great Plains 

(Royer, 2007). The two most common aphids in Oklahoma are the bird cherry-oat aphid 

(Rhopalosiphum padi L.) and the greenbug (Schizaphis graminum Rondani) (Ismail et al., 

2003). These two aphids can limit wheat profitability significantly by transmitting a 

luteovirus or by direct feeding if infestations occur during early growth stages (Starks and 

Burton, 1977; Kieckhefer and Kantack 1986; Kieckhefer and Gellner 1992; Kieckhefer et 

al., 1994; Riedell and Kieckhefer 1995; Webster et al., 2000; Kindler et al., 2002). Bird 

cherry-oat aphid and greenbug both feed by inserting tube-like mouthparts into the 

vascular system of the plant and removing sap from the plant. Greenbugs also inject a 

toxin into the host plant that reduces shoot mass development and tillering in wheat 

(Burton, 1986; Burton and Burd, 1993; Riedell and Kieckhefer, 1995). Both aphid 

species are also capable of transmitting barley yellow dwarf virus (BYDV) when they 

feed (Chirumamilla, 2014). Aphids transmit this virus in a non-propagative way; the virus 

does not replicate in the vector but does circulate through the aphid’s body (Royer et al., 

2015). There are many different ways of controlling aphids, such as biological control, 

resistant or tolerant varieties, insecticide seed treatments, and foliar insecticides. Arnold 

(1981) reported that grazing reduced greenbug populations in winter wheat, and Ismail et 

al. (2003) also found that grazing significantly reduced aphid-days by nearly 87%. 

Eriophyidea Herbaceous Mites  

Wheat curl mite (Aceria tosichella Keifer) is an organism that is 0.25 𝜇m long, 

and is best seen under 20× magnification. They infest wheat, corn, barley, oats, and 

foxtail millet, as well as many other grass hosts (Webb, 2018). Wheat curl mites transmit 

diseases known as wheat streak mosaic (WSM), High Plains disease (HPD), and Triticum 
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mosaic (TriM). Wheat curl mites can increase rapidly on the plant when conditions are 

favorable, going from an egg through two nymphal stages to an adult in as little as eight 

to 10 days at 25℃ (Hein, 2007). In severe cases, WSMV causes yield losses of more than 

80% when susceptible cultivars are infected as seedlings. Cultivars with intermediate 

levels of resistance, while less damaged, may still experience up to 20% yield loss 

(Webb, 2018).   

Seed Treatments 

Seed treatments can contain a combination of insecticides and fungicides to 

provide initial protection from soil-borne pathogens and insects that may arise after 

planting. For example, a fungicide seed treatment can limit soil-borne pathogens such as 

Rhizoctonia solani and Fusarium spp., which are the leading cause of root rot diseases of 

cereals worldwide (Weller et al., 1986). Systemic fungicide seed treatments are also 

recommended to help protect against seed-borne bunts and smuts. Depending on the type 

of seed treatment, chemicals may be translocated to aboveground portions of the plant 

and protect against foliar fungal diseases and insects (Taylor and Harman, 1990). For 

example, applying insecticide to the seed can assist with controlling an early infestation 

of wireworms below-ground and aphids above-ground.  

Seed treatments can help protect against pathogens that overwintered from the 

previous crop, especially when planted into heavy residue. However, not all soil-borne 

diseases can be controlled by a fungicide seed treatment. Therefore, cultural practices are 

needed for control, and generally, the best practice includes rotating crops. For example, 

take-all, caused by soil-borne fungus, Gaeumannomyces graminis, is a severe root 

disease of wheat worldwide but cannot be controlled by a fungicide seed treatment 

(Hershman and Bachi, 2001). Rotating to another crop for one year can significantly 
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reduce the potential for take-all to damage subsequent wheat crops, but two to four-year 

crop rotations, with corn or soybean for example, are recommended for problem fields 

(Hershman and Bachi, 2001). In Oklahoma, rotating to canola for one growing season 

can help reduce take-all and other soil-borne diseases. 

Past investigation has indicated both fungicide and insecticide seed treatment 

successfully diminish grain yield losses. Gray et al. (1996) reported that imidacloprid 

seed treatment reduced BYD incidence but generally had no effect on wheat yield or test 

weight in New York. Imidacloprid seed treatment for hard red winter wheat in Oklahoma 

was found to reduce bird cherry-oat aphid (Rhopalosiphum padi L.) populations and 

prevalence of BYD (Royer et al., 2005). The results also showed aphid abundance and 

incidence of BYD were reduced as insecticide rates increased. All yield components and 

grain yield increased as insecticide rate increased, resulting in positive economic returns. 

The authors also indicated producers are more likely to obtain a positive economic return 

when seed treatment is used in a dual-purpose planting window, which makes up 40-60% 

of the planting acres in Oklahoma each year (Royer et al., 2005). Another study 

conducted in Oklahoma evaluated winter wheat seed treatments at seven locations over 

three years (2008, 2011, and 2012) (DeVuyst et al., 2014). Results indicated insecticide 

and fungicide seed treatment increased wheat grain yield by 144 kg ha-1. Overall, grain 

volume weight was unaffected due to seed treatment. While seed treatments in Oklahoma 

were shown to increase wheat grain yield, results indicated a significantly increased 

economic return only occurred when wheat sale prices were greater than $294 Mg-1 

(DeVuyst et al., 2014).   
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Foliar Fungicides 

Planting a disease-resistant variety is an efficient way to control disease-causing 

organisms that may occur, but wheat varieties today typically only provide protection 

against a few specific diseases. In addition to using seed treatment fungicides to help 

protect against pathogens to save a crop from economic loss, foliar fungicide applications 

can also be made. There are two broad categories for describing how foliar fungicides 

work. A contact fungicide sticks to the plant surface leaving a protective barrier on the 

leaf surface after application. It does not penetrate the tissue. In contrast, systemic 

fungicides are compounds that are absorbed by the plant and then translocated throughout 

the plant, thus protecting the plant by limiting already established infections or protecting 

the plant from the occurrence of attacking pathogenic fungi. Foliar fungicides can also 

help increase the activity of plant antioxidants which can slow down the degredation of 

chlorophyll and leaf proteins by fungi (Zhang et al., 2010). 

A properly timed foliar fungicide application can be economically profitable for a 

producer. A study in Europe examined single, double, and triple fungicide applications 

for their effect on yield and grain quality in winter wheat (Jarroudi et al., 2015). 

Experiments were conducted at two sites in Germany, Burmerange and Everlange, during 

2006-2009, and various fungal diseases were monitored. Results showed that yields from 

plots treated with fungicide were higher compared to the non-treated plot at both sites, 

except for when fungal disease pressure was low in 2008. Results were significant when 

comparing fungicide treatment effects for all grain quality parameters, including 

thousand grain weight (TGW), test weight, grain protein content (GPC), and Zeleny 

sedimentation volume (ZSV) analyzed at Burmerange. Plots receiveing one, two, or three 
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fungicide applications generally had greater TGW, GPC, and ZSV than those which did 

not receive fungicide, but results were mixed regarding differences among the fungicide-

treated plots. At Everlange, TGW and ZSV were the only quality parameters found to be 

influenced by fungicide use, and the trends were similar to those at Burmerange. This 

study showed grain quality after a single fungicide application was similar to the grain 

quality from plants receiving the double or triple applications, and it also showed that a 

single fungicide application led to grain yield and financial returns similar to those from a 

double or triple fungicide application (Jarroudi et al., 2015). Another study done by 

Edwards et al. (2012) addressed the agronomic and economic response of hard red winter 

wheat to foliar fungicide applied at Feekes 9-10 in Oklahoma. The experiments were 

conducted at Lahoma, OK and Apache, OK from 2005-2010. Results indicated that when 

wheat achieved greater yields, it was due to the application of foliar fungicides, which 

also resulted in increased thousand-kernel weight, harvest index, and grain volume 

weight. For the different parameters examined, the largest benefit observed from foliar 

fungicide application occurred with susceptible cultivars. The yield difference between 

treated and non-treated susceptible cultivars was 270 kg ha-1 (10%) at Apache and 810 kg 

ha-1 (24%) at Lahoma. For intermediate and resistant cultivars, there was no significant 

effect on grain yield due to fungicide application at Apache. At Lahoma though, average 

grain yield for intermediate and resistant cultivars treated with a foliar fungicide was 11 

and 10% greater, respectively, than the same cultivars non-treated. Response to foliar 

fungicide application in susceptible cultivars was anticipated, but a significant response 

to foliar fungicide application for intermediate and resistant cultivars at Lahoma was not 

as expected. This response was likely due to greater leaf rust incidence and severity at 
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Lahoma across all years except 2010. It was also noted that foliar fungicide applications 

to wheat represented a sound economic input, generating a high likelihood of positive 

returns when disease incidence and severity were high. An economic analysis examined 

three different scenarios of return based on wheat grain sale price, wheat cultivars 

(resistant, intermediate, and susceptible), and fungicide cost. Breakeven grain yield 

advantages needed from foliar fungicide use were based on $ kg-1 of wheat and $ ha-1 of 

fungicide cost and were calculated to be 84 kg ha-1, 168 kg ha-1, and 336 kg ha-1. Results 

indicated that nine of 36 foliar fungicide price scenarios at Apache, OK and 35 out of 45 

price scenarios at Lahoma had a greater than 80% likelihood that foliar fungicide use 

resulted in enough additional grain yield to offset the foliar fungicide cost (Edwards et 

al., 2012). Another study by Thompson et al. (2014) also found foliar fungicide treatment 

on hard red winter wheat applied at Feekes 9-10.5 in Oklahoma can be an economically 

sound management strategy under some conditions. Experiments were conducted in 

Apache, OK and Lahoma, OK during 2005-2012. Differences on average net returns 

between fungicide-treated and non-treated plots for resistant, intermediate, and 

susceptible varieties across years were -$28, -$19, and -$6 ha-1 at Apache, OK and $36, 

$36, and $116 ha-1 at Lahoma, OK. Despite the variable response, fungicide treatment did 

tend to protect producers from the downside risk of large yield losses in years of high 

disease incidence and severity, especially when growing wheat varieties susceptible to 

common foliar diseases (Thompson et al., 2014). 

Foliar Insecticides 

Foliar insecticides are beneficial in controlling the insects that might be present 

later in the growing season when the seed treatment is no longer active or when an 

infestation reaches economic threshold (ET). Pesticides should not be used as a substitute 



12 
 

for good agronomic practices or as “preventative insurance” as it can cause pest 

resurgence issues and are rarely economically or environmentally justifiable (Royer and 

Giles, 2015).  

A study was conducted to evaluate the effectiveness and timing of insecticidal 

seed treatment (thiamethoxam) and foliar insecticide (lambda-cyhalothrin) for managing 

wheat stem maggot [Meromyza Americana Fitch (Diptera: Chloropidae)] and wheat stem 

sawfly [Cephus cinctus Norton (Hymenoptera: Cephidae)] in spring wheat in North 

Dakota during 2008-2009 (Knodel et al., 2009). A foliar application at Feekes 3-5 and 

Feekes 9 reduced the number of whiteheads caused by wheat stem maggot. A 

combination of low rate seed treatment plus a foliar application of lambda-cyhalothrin at 

Feekes 3-5 also resulted in a significantly lower number of whiteheads caused by wheat 

steam maggot, but the different high and low rates of seed treatment alone showed to be 

ineffective at reducing the number of whiteheads. Peak adult emergence occurred around 

the timing of lambda-cyhalothrin Feekes 3-5 and at Feekes 9 potentially affecting the 

whitehead numbers. None of the treatments reduced the percentage of damaged stems 

from wheat stem sawfly. There were also no yield differences among the treatments for 

either wheat stem maggot or wheat stem sawfly (Knodel et al., 2009). Another study 

performed by Royer et al. (2011) evaluated the effect of temperature on the field efficacy 

of three classes of registered insecticides for greenbug control in winter wheat fields. The 

insecticides were selected to represent different modes of action (organophosphate, 

pyrethroid, and neonicotinoid) and offer systemic (imidacloprid: neonicotinoids), contact 

(chlorpyrifos and lambda-cyhalothrin: pyrethroid), or a combination of systemic and 

contact (dimethoate: organophosphate) activity. Results indicated any insecticide applied 



13 
 

during the winter provided up to 70 to 80% control of greenbug on average as long as 

temperatures exceeded 13℃ during the 14 days following application with no significant 

rainfall occurring (Royer et al., 2011).  

Objectives 

Previous work examining foliar fungicide and insecticide applications has focused 

on a single application. Little information exists, especially for the southern Great Plains, 

whether multiple applications and tank-mixes of fungicide and insecticide result in 

increased winter wheat grain yield and positive economic returns. The purpose of this 

research was to examine foliar fungicide and insecticide applications focused on timings 

at Feekes 6 (jointing) and Feekes 9 (full flag leaf emergence) to better understand the 

impact that these practices have on winter wheat grain yield and profitability in 

Oklahoma. The first objective of this research was to determine whether a dual foliar 

fungicide application approach results in increased winter wheat grain yield and 

profitability compared to a single application. The second objective was to determine 

whether a fungicide + insecticide application results in increased winter wheat grain yield 

and profitability compared to each pesticide applied alone in Oklahoma.
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CHAPTER III 
 

 

SINGLE VERSUS DUAL FUNGICIDE APPLICATIONS FOR PROTECTING 

WINTER WHEAT GRAIN YIELD AND INCREASING PROFITABILITY  

 

ABSTRACT 

 

Fungicide application timing on wheat can be a significant factor in protecting the 

crop from foliar diseases and maintaining yield potential. The objective of this study was 

to assess a dual fungicide application approach compared to a single application for 

increasing winter wheat grain yield and profitability in Oklahoma. A randomized 

complete block design with treatments arranged in a 2 × 4 factorial was implemented at 

two locations (Apache and Stillwater, OK) during the 2016-2017 and 2017-2018 growing 

seasons. Treatments consisted of two winter wheat varieties (Gallagher and Bentley) and 

four fungicide application treatments (non-treated control, Feekes 6, Feekes 9, and 

Feekes 6 + 9). At Stillwater during 2016-2017 where leaf rust was present after spring 

greenup through stem elongation, the Feekes 6 + 9 fungicide treatment resulted in the 

greatest yield and highest economic return for the variety Bentley (leaf rust susceptible). 

No differences among the fungicide-treated plots was observed for the variety Gallagher 

(leaf rust resistant), but all were significantly greater than the non-treated control. The 

Feekes 9 fungicide treatment resulted in the highest marginal economic return though
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for Gallagher. At Apache, the Feekes 6 + 9 and Feekes 9 treatments averaged across both 

varieties yielded 640 and 590 kg ha-1 greater than the non-treated control, but the greatest 

profitability occurred for the Feekes 9 treatment and was likely due to leaf rust which 

rapidly developed and increased from the end of stem elongation through grain-fill. 

Conditions during 2017-2018 were considerably dryer than normal which limited disease 

development overall and resulted in no significant fungicide treatment or interaction 

effects. However, a mixed result of positive marginal economic returns at both locations 

was found among the fungicide treatments for both varieties. These results showed that a 

dual fungicide application approach can be a sound management practice by reducing 

disease levels, protecting more yield potential, and providing greater economic return 

than a single fungicide application, but it was highly dependent on variety and location.  

 

INTRODUCTION 

 

In Oklahoma, winter wheat (Triticum aestivum L.) is the number one production 

crop. During the 2017-2018 growing season, winter wheat was planted on 1.8 million 

hectares across the state, and 1.0 million hectares were harvested for grain (USDA-

NASS, 2018). With grain production at 1.9 million Mg during that season and the price 

for wheat in Oklahoma during June 2018 valued at $0.19 kg-1, this resulted in a 

$361,000,000 value for the Oklahoma economy (USDA-NASS, 2018). Due to its 

economic importance, there is considerable focus devoted to improving winter wheat 

management to keep input costs low and to maximize economic returns. A significant 

portion of its management includes protecting the crop from fungal pathogens. 
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Diseases caused by plant pathogenic (i.e., disease-causing) organisms, including 

fungi, represent a major source of potential crop damage which can reduce yields and 

economic returns. Fungal diseases are considered the number one cause of crop loss 

worldwide (McGrath, 2004), and there are approximately 20,000 species of fungi, which 

are plant pathogenic (Jibril et al., 2016). Several fungal pathogens of concern in 

Oklahoma include Pyrenophora tritici- repentis (tan spot), Zymoseptoria tritici (Septoria 

leaf blotch), Parastagonospra nodorum (Stagonospora glume blotch), Cochliobolus 

sativus (spot blotch), Blumeria graminis f. sp. graminis (powdery mildew), Puccinia 

triticina (leaf rust), and Puccinia striiformis f. sp. tritici (stripe rust). Understanding the 

life cycle of any fungal pathogen allows for proper management of that pathogen. 

Planting a resistant variety is an efficient way to control fungal diseases that may 

occur, but wheat varieties today can only provide protection against some specific 

diseases. A properly timed foliar fungicide application can also play a significant role in 

protecting the crop from fungal pathogens and in maintaining yield potential and quality 

of the crop. If a foliar fungicide is applied at the proper time, it can also be economically 

profitable for a producer. A study in Europe examined single, double, and triple fungicide 

applications for their effect on grain quality in winter wheat (Jarroudi et al., 2015). 

Experiments were conducted at two sites in Germany, Burmerange, and Everlange during 

2006-2009, and monitored various fungal diseases. Results showed that yields from plots 

treated with fungicide were higher overall compared to the non-treated plot at both sites, 

except for when fungal disease pressure was low in 2008. This study also showed that a 

single fungicide application led to grain yield and financial returns similar to those from a 

double or triple fungicide application (Jarroudi et al., 2015). Edwards et al. (2012) 
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addressed the agronomic and economic response of hard red winter wheat to foliar 

fungicide applied at Feekes 9-10 (Large, 1954) in the U.S. southern Great Plains. The 

experiments were conducted at Lahoma, OK, and Apache, OK from 2005-2010. Results 

indicated that when wheat achieved greater yields, it was due to the application of foliar 

fungicides, which also increased thousand-kernel weight, harvest index, and grain 

volume weight. For the different parameters examined, the largest difference observed as 

a result of the foliar fungicide application occurred for the susceptible cultivars. The yield 

difference between treated and non-treated susceptible cultivars, for example, was 270 kg 

ha-1 (10%) at Apache and 810 kg ha-1 (24%) at Lahoma. For intermediate and resistant 

cultivars, there was no effect on grain yield due to fungicide applications at Apache. At 

Lahoma though, average grain yield for intermediate and resistant cultivars treated with a 

foliar fungicide was 11 and 10% greater, respectively, than the same cultivars non-

treated. This response for intermediate and resistant cultivars at Lahoma was likely due to 

greater leaf rust incidence and severity at this location across all years except 2010. It was 

also noted that foliar fungicide applications to wheat represented a sound economic input, 

generating a high likelihood of positive returns when disease incidence and severity were 

high. An economic analysis examined three different scenarios of return based off wheat 

grain sale price, wheat cultivar (resistant, intermediate, and susceptible), and fungicide 

cost. The economic analysis found there was a greater than 80% likelihood that foliar 

fungicide use resulted in enough additional grain yield to offset the foliar fungicide cost 

in nine out of 36 price scenarios at Apache and 35 out of 45 price scenarios at Lahoma 

(Edwards et al., 2012). Another study by Thompson et al. (2014) also found foliar 

fungicide treatment on hard red winter wheat at Feekes 9-10.5 in the southern Great 
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Plains can be an economically sound management strategy under some conditions. 

Experiments conducted in Apache, OK and Lahoma, OK during 2005-2012 showed 

differences on average net returns between fungicide-treated plots and non-treated plots 

for resistant, intermediate, and susceptible varieties across years were -$28, -$19, and -$6 

ha-1 at Apache, OK and $36, $36, and $116 ha-1 at Lahoma, OK. Despite the variable 

response, fungicide treatment did tend to protect producers from the downside risk of 

large yield losses in years of high disease incidence and severity, especially when 

growing wheat varieties susceptible to common foliar diseases (Thompson et al., 2014). 

Research in the southern Great Plains has shown that foliar fungicide applications 

can protect against fungal pathogens and save winter wheat from economic loss, but there 

is little peer-reviewed information regarding the use of multiple fungicide applications on 

winter wheat grain yield and profitability. Therefore, the objective of this study was to 

determine whether a dual foliar fungicide application approach results in increased winter 

wheat grain yield and profitability compared to a single application in Oklahoma. 

 

METHODOLOGY 

 

Research trials were established at Stillwater, OK (36° 7'13.65" N, 97° 5'21.29" 

W) and Apache, OK (34°52'45.59" N, 98°22'34.23" W) during the 2016-2017 and 2017-

2018 growing seasons. The experimental design was a randomized complete block 

(RCB) with four replications of treatments arranged as a 2 × 4 factorial. Treatments 

consisted of two winter wheat varieties and four foliar fungicide treatments. The two non-

seed treated varieties were ‘Bentley’ and ‘Gallagher.’ Gallagher was chosen based on 



19 
 

susceptibility to leaf spotting diseases and resistance to leaf rust, while Bentley was 

chosen based on moderate resistance to leaf spotting diseases and moderate susceptibility 

to leaf rust. The four foliar fungicide treatments consisted of a non-treated control, a 

single application at Feekes 6 (jointing), a single application at Feekes 9 (ligule of flag 

leaf visible), and application at Feekes 6 and 9. Plots treated with fungicide at Feekes 6 

received Headline SC (pyraclostrobin) at a rate of 266 mL ha-1. Plots receiving fungicide 

at Feekes 9 were treated with Tebucure Fungicide 3.6 (tebuconazole) at a rate of 118 mL 

ha-1. Fungicide applications were applied with a CO2 backpack sprayer through a 1.5 m 

boom calibrated to deliver 187 L ha-1 spray solution using TT11003 nozzles (Teejet 

Technologies, Glendale Heights, Illinois). Fungicide treatments were applied during the 

first growing season on 16 Mar. 2017 and 21 Apr. 2017 at Apache and on 21 Mar. 2017 

and 19 Apr. 2017 at Stillwater. Application dates for the second growing season were 4 

Apr. 2018 and 1 May 2018 for Apache and 24 Mar. 2018 and 30 Apr. 2018 for Stillwater.  

Trials at Stillwater both seasons followed wheat under conventional tillage and 

were planted on 31 Oct. 2016 and 20 Oct. 2017 using a Hege 500 small-plot cone seeder 

(Wintersteiger, Salt Lake City, UT) which consisted of eight rows each spaced 15 cm 

apart. Trials at Apache were no-till following canola during 2016-2017 and no-till 

following soybean during 2017-2018 and were planted with a Great Plains no-till drill 

(Great Plains Ag, Salina, KS) which consisted of seven rows each spaced 19 cm apart. 

The planting date at this location was 10 Oct. 2016 and 19 Oct. 2017. All trials were 

planted to a length of 11.6 m and later shortened 9.3 m at harvest. The seeding rate was 

67 kg ha-1. Fertilizers and herbicides were applied according to Oklahoma State 

Universtity best management recommendations.  
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Disease ratings on all plots were collected immediately before each fungicide 

application as well as two weeks after each application. Disease incidence and severity 

ratings for each plot were scored from a 45 cm section within the middle of the plot. Data 

were collected on the incidence and severity of fungal diseases present at the time of each 

rating. Incidence was rated on a 0 to 100 % scale of plants expressing disease symptoms. 

Severity was rated based on symptoms expressed on a single plant using a 1 to 5 scale: 1 

= ≤15% resistant, 2 = 16-39% moderately resistant, 3 = 40-64% intermediate, 4 = 65-

80% moderately susceptible, and 5 = 81-100% susceptible. Disease incidence and 

severity numbers were combined to create an index number for each rating timing. The 

index number was created by multiplying the incidence and severity values and then 

dividing it by the product of the maximum incidence number of 100 and the maximum 

severity number of five. These index numbers were then used to calculate the area under 

the disease progress curve (AUDPC) (Madden et al., 2007). 

At plant maturity, wheat seed was mechanically harvested using a Wintersteiger 

Delta plot combine (Wintersteiger, Salt Lake City, UT). Seed weight and moisture were 

collected from each plot. Harvest dates for Apache were 1 June 2017 and 8 June 2018 

and 8 June 2017 and 5 June in 2018 for Stillwater. Seed samples also collected from each 

plot were non-destructively analyzed for protein content using a Perten Model DA7200 

diode array infrared instrument (Perten Instruments, Hagersten, Sweden). Grain yield and 

protein content values were adjusted to 12% moisture content.  

A partial budget economic analysis was conducted for the fungicide treatments at 

grain sale prices of $0.11 kg-1, $0.18 kg-1, and $0.26 kg-1. Treatment costs used were $0, 

$57.87, $15.83, and $73.70 ha-1 for the non-treated control, Feekes 6, Feekes 9, and 
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Feekes 6 +9 treatments, respectively. Treatment costs also included a $12.35 ha-1 

application fee for each time foliar fungicide was applied. The marginal economic return 

was calculated for each fungicide treatment by multiplying the yield and grain sale price 

and then subtracting the treatment cost. Values are reported as the difference in marginal 

return compared to the non-treated control.  

Statistical Methods 

Statistical analyses were performed in SAS v9.4 (SAS Institute Inc., Cary, NC). 

Analysis of variance (ANOVA) using PROC GLIMMIX was conducted for disease 

ratings, test weight, protein content, and grain yield. Data were analyzed separately by 

year and location due to the variability of disease pressure observed across years and 

locations. The square root transformation was used to analyze the AUDPC values. 

Variety, fungicide treatment, and their interaction were considered fixed effects, and 

replication was considered a random effect. Means were separated using Fisher’s 

Protected LSD at the 5% significance level. The SLICE option was used to compare 

means of significant interactions. 

 

FINDINGS 

 

Weather Conditions 

Monthly precipitation totals and average air temperature during the study period 

are presented in Table 1. Precipitation during the beginning of the 2016-2017 growing 

season was below the 20-year average entering the winter at both locations, while 

temperatures during much of that time were above normal. The rains returned during 
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January and continued throughout April with above average precipitation totals during 

that time. Extremely warm temperatures occurred in February, and this coaxed plants at 

both locations out of dormancy approximately two weeks earlier than normal at both 

locations. Temperatures remained above average until May when below average 

temperatures occurred during that time. 

The 2017-2018 growing season was characterized by season-long drought. Above 

average rainfall occurred at planting in both locations, but the next significant amount of 

rainfall did not occur until February. Rainfall remained below average from this point 

throughout the rest of the season at Stillwater. The same was observed at Apache except 

for the above average rainfall in May; however, this precipitation in May was untimely. 

Temperatures at both locations were near average during the fall and were cooler than 

average during the end of winter. This delayed spring green-up about ten days later than 

normal. Temperatures remained near average during March and dropped below normal 

during April, resulting in the second coldest April on record. This was followed by the 

hottest May on record. 

Fungal Diseases 

 Leaf rust was the primary disease present at both locations during the 2016-2017 

growing season. However, leaf rust levels and timing of disease development differed 

between locations, which may have been partially due to the previous crop. Under no-till 

following canola at Apache, leaf rust levels were minimal until Feekes 8 to Feekes 9 

when leaf rust levels strongly increased. Under conventional tillage following wheat at 

Stillwater, leaf rust was present early (i.e., prior to Feekes 6) and remained active 

throughout grain-fill.  
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The leaf rust AUDPC results from the 2016-2017 season showed a fungicide 

treatment × variety interaction at both Apache and Stillwater (Table 2). For the variety 

Bentley at Apache, all fungicide applications resulted in significantly less leaf rust 

compared to the non-treated control, with the Feekes 9 and Feekes 6 + 9 resulting in the 

lowest amounts (Figure 1). For the variety Gallagher, no difference in leaf rust AUDPC 

was observed among the treatments receiving fungicide, but treatments Feekes 9 and 

Feekes 6 + 9 had significantly less leaf rust compared to the non-treated control (Figure 

1). Results at Stillwater for the variety Bentley were similar to those observed at Apache 

(Figure 1). For the variety Gallagher, all fungicide-treated plots had significantly less leaf 

rust compared to the control, but no differences were found among the fungicide-treated 

plots (Figure 1). 

Drought conditions during the 2017-2018 growing season prompted little disease 

development overall at both locations. Powdery mildew was the predominant disease 

observed at both locations. Despite the low levels of disease development, the powdery 

mildew AUDPC results showed a significant fungicide treatment × variety interaction (P 

< 0.01) at Apache (Table 2). For the variety Bentley, the Feekes 6 and Feekes 6 + 9 

treatments resulted in significantly lower powdery mildew levels compared to the Feekes 

9 and control treatments, and no difference among fungicide treatments was found for the 

variety Gallagher (Figure 2). At Stillwater, there was no evidence of a fungicide 

treatment × variety interaction, but both main effects were significant (Table 2). For the 

fungicide main effect, the Feekes 6 and Feekes 6 + 9 treatments showed the lowest 

powdery mildew AUDPC values and were significantly different from the control (Table 
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3). No difference was found between the Feekes 6 and Feekes 9 treatments, and no 

difference was found between the Feekes 9 and control treatments (Table 3).  

Test Weight 

 Results showed a fungicide treatment × variety interaction (P < 0.01) at Stillwater 

during 2016-2017 (Table 2). For the variety Bentley, the fungicide treatment Feekes 6 + 9 

had significantly greater test weight compared to the Feekes 6 treatment, but there were 

no differences among the Feekes 6 + 9, Feekes 9, and control treatments (Table 4). No 

differences among the fungicide treatments were observed for the variety Gallagher 

(Table 4). At Apache during the same growing season, there was no evidence of a 

fungicide treatment × variety interaction, but both main effects were significant (Table 2). 

All plots treated with fungicide had higher test weight compared to the control, but no 

differences were observed among the fungicide-treated plots (Table 3).  

None of the fungicide treatment main effects or interactions with variety were 

significant at either location during the 2017-2018 growing season (Table 2).  

Bentley had significantly lower test weight than Gallagher at both locations (Table 3). 

Test weight in Bentley is often below average compared to other varieties in the 

Oklahoma small grains variety performance testing (Marburger et al., 2018). 

Protein  

The main effect of variety (P < 0.01) and the fungicide treatment × variety 

interaction (P = 0.0229) at Apache in 2016-2017 were the only significant effects 

observed across both locations during the two years of this study (Table 2). For the 

fungicide treatment × variety interaction, protein content in Bentley was significantly 

greater for the Feekes 6 + 9 treatment compared to the control, but no differences among 
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the fungicide-treated plots were found (Table 5). However, Gallagher showed the 

opposite results. The non-treated control had significantly greater protein content 

compared to the Feekes 6 + 9 treatment, and no differences among the fungicide-treated 

plots were found (Table 5). The inconsistencies in the results for these two varieties may 

be due to their leaf rust resistance (Gallagher) and susceptibility (Bentley) and to the 

timing in which leaf rust development rapidly increased at this site. 

Grain Yield 

 A fungicide treatment × variety interaction (P < 0.01) was found at Stillwater 

during the 2016-2017 growing season (Table 2). For the variety Bentley, all of the 

fungicide treated plots yielded significantly greater than the control by an average of 

1,250 kg ha-1 (Table 4). Of the fungicide treated-plots, the Feekes 6 + 9 fungicide 

treatment was the highest yielding at 3,190 kg ha-1 and was 570 kg ha-1 greater than the 

Feekes 6 treatment. The Feekes 6 treatment was also was significantly greater than the 

Feekes 9 treatment by 330 kg ha-1. No differences among the fungicide-treated plots were 

observed for the variety Gallagher, but all were significantly greater than the non-treated 

control by an average of 970 kg ha-1 (Table 4). At Apache during the same growing 

season, there was no evidence of a fungicide treatment × variety, but both main effects 

were significant (Table 2). Due to the later onset of leaf rust at this location, there was 

significantly higher yield for the Feekes 6 + 9 and Feekes 9 treatments compared to the 

Feekes 6 and control treatments, but no difference was observed between the Feekes 6 + 

9 and Feekes 9 treatments. The yield difference compared to the control was 640 and 590 

kg ha-1 for the Feekes 6 + 9 and Feekes 9 treatments, respectively. 
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None of the fungicide treatment main effects or interactions with variety were 

significant at either location during the 2017-2018 growing season (Table 2). The variety 

main effect at Apache was the only significant effect observed during that season with 

Bentley having a greater yield than Gallagher (Table 3). 

Economics  

 Marginal economic return ($ ha-1) using a partial budget analysis was examined 

under multiple scenarios using wheat market sale prices at $0.11 kg-1, $0.18 kg-1, and 

$0.26 kg-1 (Table 6). Fungicide treatment cost, which was comprised of product and 

application costs, are also included in Table 6. During the 2016-2017 growing season 

which had the highest disease levels during the study period, positive marginal economic 

returns at the three different grain sale prices were dependent on the fungicide treatment 

for both varieties at Apache (Table 6). Negative returns were found for both varieties at 

all three grain sale prices with the Feekes 6 fungicide treatment. For the variety Bentley, 

positive returns were found at all three grain sale prices for the Feekes 9 and Feekes 6 + 9 

fungicide treatments, and at each sale price, the Feekes 9 treatment had the higher 

marginal return compared to the Feekes 6 + 9 treatment. For the variety Gallagher, the 

Feekes 9 fungicide treatment had a positive return at all three grain sale prices. Returns 

for Feekes 6 + 9 treatment were negative at the $0.11 kg-1 and $0.18 kg-1 sale prices. 

While the return was positive at the $0.26 kg-1 sale price, it was still less than that for the 

Feekes 9 treatment. At Stillwater during that same growing season, positive returns were 

found for all fungicide treatments for both varieties at all three grain sale prices. At this 

location for the variety Bentley, the highest return was observed with the Feekes 6 + 9 

treatment at all three sale prices. For the variety Gallagher, the highest return was found 
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with the Feekes 9 treatment at all three sale prices, followed by the Feekes 6 + 9 

fungicide treatment (Table 6). 

Although no significant yield effects due to fungicide use were found at either 

location during the 2017-2018 growing season, some positive returns compared to the 

non-treated control were still observed. For the variety Bentley at Apache, positive 

returns were only found for the Feekes 9 fungicide application, and this was consistent 

across all three grain sale prices. Similar results were observed for the variety Gallagher, 

but it took a minimum sale price $0.18 kg-1 before the marginal return became positive. 

At Stillwater, positive returns for the variety Bentley were observed under all scenarios 

except for the Feekes 6 treatment at the $0.11 kg-1 sale price, with the highest return 

occurring with Feekes 6 + 9 treatment at all three grain sale prices. Negative returns were 

mostly observed with the variety Gallagher at this location, except for the Feekes 6 

treatment at the $0.18 and $0.26 kg-1 sale prices. 

Positive marginal economic returns during the study period were still achieved 

based on the costs of the fungicides used. Since Headline SC (pyraclostrobin) was used at 

Feekes 6 and Tebucure Fungicide 3.6 (tebuconazole) was used at Feekes 9, the cost for 

the Feekes 6 application was higher. There was the potential of the Feekes 6 application 

being more profitable if a cheaper fungicide was used, but these fungicides were partly 

chosen to take into account the different modes of action used. 
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CONCLUSIONS 

 

 Results from this study showed that a dual foliar fungicide application approach 

can be a sound management practice by reducing disease levels, protecting more yield 

potential, and providing greater economic return than a single fungicide application. 

However, this management practice was highly dependent on variety and location. Due to 

the timing of disease occurrence in most cases during the course of this study, a single 

fungicide application was more profitable than the dual application approach overall. 

Fungicide use in general was often a good management practice, resulting in greater 

economic returns than by not using this practice at all. Based on the results of this study, 

understanding the susceptibility of the variety used to certain fungal diseases and 

scouting for those diseases should dictate fungicide use, including the dual application 

approach, instead of using multiple prophylactic applications in Oklahoma.  
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Table 1. Monthly cumulative precipitation (mm) and mean air temperature (°C) during 

the 2016-2017 and 2017-2018 growing seasons. Deviation from the past 20-year 

average is in parentheses.†  

  Apache Stillwater  

Season Month Precipitation  Temperature  Precipitation Temperature 

  mm °C mm °C  

2016-2017   

 Oct. 13 (-77) 18.9 (+2.3) 98 (+22) 19.6 (+3.4) 

 Nov.  33 (-5) 12.6 (+2.1) 22 (-26) 12.6 (+2.6) 

 Dec. 27 (-4) 3.8 (-0.4) 10 (-23) 3.1 (-0.7) 

 Jan. 47 (+14) 4.7 (+1.0) 65 (+33) 4.7 (+1.7) 

 Feb. 109 (+76) 9.9 (+4.1) 56 (+18) 10.0 (+4.8) 

 Mar. 79 (+25) 13.7 (+2.8) 49 (-20) 13.2 (+2.5) 

 Apr. 136 (+50) 15.7 (+0.1) 253 (+151) 16.2 (+2.9) 

 May 43 (-64) 19.8 (-0.8) 66 (-45) 19.9 (-0.8) 

 June 73 (-33) 24.8 (-0.7) 73 (-38) 25.6 (-0.0) 

2017-2018   

 Oct. 115 (+24) 16.5 (+0.0) 162 (+86) 16.4 (+0.3) 

 Nov. 4 (-35) 11.3 (+0.7) 8 (-40) 11.1 (+1.0) 

 Dec. 9 (-23) 4.2 (+0.1) 24 (-10) 4.2 (+0.4) 

 Jan. 5 (-28) 2.8 (-0.9) 6 (-26) 2.4 (-0.6) 

 Feb. 56 (+23) 4.5 (-1.3) 63 (+25) 3.9 (-1.3) 

 Mar. 18 (-36) 12.1 (+1.2) 29 (-39) 11.1 (+0.4) 

 Apr. 33 (-53) 12.9 (-2.8) 52 (-49) 12.3 (-1.0) 

 May 110 (+3) 23.6 (+3.0) 98 (-13) 24.1 (+3.4) 

 June 4 (-102) 29.1 (+3.6) 5 (-106) 29.0 (+3.4) 

† All data retrieved from the Oklahoma Mesonet. 
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Table 2. Analysis of variance (ANOVA) results for leaf rust disease ratings, powdery 

mildew disease ratings, test weight, protein content, and grain yield at Apache, OK and 

Stillwater, OK during the 2016-2017 and 2017-2018 growing seasons. 

 Apache  Stillwater 

Source of variation 2016-2017 2017-2018  2016-2017 2017-2018 

 ------------------ Leaf rust (AUDPC) ------------------ 

Fungicide treatment <0.0001 -  <0.0001 - 

Variety 0.0191 -  0.0014 - 

Fungicide × Variety 0.0042 -  0.0020 - 

 ------------- Powdery mildew (AUDPC) ------------- 

Fungicide treatment - <0.0001  - 0.0010 

Variety - 0.0301  - <0.0001 

Fungicide × Variety - 0.0032  - 0.2354 

 ----------------- Test weight (kg hL-1) ----------------- 

Fungicide treatment 0.0043 0.2317  <0.0001 0.6810 

Variety <0.0001 <0.0001  <0.0001 <0.0001 

Fungicide × Variety 0.2530 0.8356  0.0004 0.1182 

 ------------------ Protein content (%) ------------------ 

Fungicide treatment 0.8787 0.9146  0.9648 0.8878 

Variety 0.0002 0.2269  0.7578 0.5030 

Fungicide × Variety 0.0229 0.1876  0.3400 0.4668 

 ----------------- Grain yield (kg ha-1) ----------------- 

Fungicide treatment 0.0258 0.3311  <0.0001 0.0879 

Variety 0.0283 <0.0001  <0.0001 0.9469 

Fungicide × Variety 0.1046 0.3645  0.0039 0.1130 
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Table 3. Main effect results for leaf rust disease ratings, powdery mildew disease 

ratings, test weight, protein content, and grain yield at Apache, OK and Stillwater, OK 

during the 2016-2017 and 2017-2018 growing seasons. 

 Apache  Stillwater 

Main effect 2016-2017 2017-2018  2016-2017 2017-2018 

 ------------------ Leaf rust (AUDPC) ------------------ 

Fungicide treatment      

Control 20.3 A -  30.2 A - 

Feekes 6 15.3 B -  16.2 B - 

Feekes 9 7.9 C -  12.2 BC - 

Feekes 6 + 9 7.1 C -  10.1 C - 

Variety      

Bentley 17.2 A -  26.8 A - 

Gallagher 8.1 B -  7.6 B - 

 ------------- Powdery mildew (AUDPC) ------------- 

Fungicide treatment      

Control - 6.0 A  - 14.6 A 

Feekes 6 - 2.4 B  - 7.9 BC 

Feekes 9 - 5.5 A  - 12.0 AB 

Feekes 6 + 9 - 3.9 AB  - 3.9 C 

Variety      

Bentley - 8.0 A  - 14.6 A 

Gallagher - 0.9 B  - 4.6 B 

 ----------------- Test weight (kg hL-1) ----------------- 

Fungicide treatment      

Control 73.1 B 73.4 A  70.9 D 68.7 A 

Feekes 6 74.0 AB 74.0 A  73.3 C 68.0 A 

Feekes 9 74.2 A 74.0 A  74.3 B 68.4 A 

Feekes 6 + 9 74.6 A 73.5 A  75.1 A 68.8 A 

Variety      

Bentley 72.3 B 74.3 A  71.2 B 67.1 B 

Gallagher 75.6 A 73.1 B  75.6 A 69.8 A 

 ------------------ Protein content (%) ------------------ 

Fungicide treatment      

Control 10.4 A 14.3 A  10.8 A 11.6 A 

Feekes 6 10.5 A 14.4 A  10.9 A 11.9 A 

Feekes 9 10.3 A 14.4 A  10.8 A  11.8 A 

Feekes 6 + 9 10.4 A 14.4 A  10.9 A 11.7 A 

Variety      

Bentley 9.9 B 14.5 A  10.9 A 11.6 A 

Gallagher 10.8 A 14.3 A  10.8 A 11.9 A 

 ----------------- Grain yield (kg ha-1) ----------------- 

Fungicide treatment      

Control 4120 B 2150 A  2050 C 3030 B 

Feekes 6 4190 B 2260 A  3030 B 3430 A 

Feekes 9 4710 A 2290 A  2990 B 3150 AB 
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Feekes 6 + 9 4760 A 2160 A  3460 A 3400 A 

Variety      

Bentley 4650 A 2690 A  2390 B 3260 A 

Gallagher 4240 B 1740 B  3373 A 3250 A 
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Table 4. Grain yield and test weight fungicide treatment × variety interaction results for 

Stillwater, OK during the 2016-2017 growing season. 

 Bentley  Gallagher 

Fungicide treatment Grain yield Test weight  Grain yield Test weight 

 -- kg ha-1 -- -- kg hL-1 --  -- kg ha-1 -- -- kg hL-1 -- 

Control 1450 D 67.2 AB  2650 B 70.1 A 

Feekes 6 2620 B 65.8 B  3440 A 70.2 A 

Feekes 9 2290 C 67.2 AB  3680 A 69.7 A 

Feekes 6 + 9 3190 A 68.4 A  3730 A 69.2 A 
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Table 5. Protein content fungicide treatment × variety interaction results for Apache, 

OK during the 2016-2017 growing season. 

 Variety 

Fungicide treatment Bentley Gallagher 

 ---------- % ---------- 

Control 9.5 B 11.3 A 

Feekes 6 10.1 AB 10.9 AB 

Feekes 9 9.9 AB 10.6 AB 

Feekes 6 + 9 10.4 A 10.4 B 
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Table 6. Marginal economic return ($ ha-1) for the fungicide treatments by year, location, and variety at grain sale prices of $0.11, $0.18, and 

$0.26 kg-1. 

  2016-2017  2017-2018 

  Apache  Stillwater  Apache  Stillwater 

Fungicide treatment Treatment cost† Bentley Gallagher  Bentley Gallagher  Bentley Gallagher  Bentley Gallagher 

 --- $ ha-1 --- ----------------------------------- $0.11 kg-1 ----------------------------------- 

Control 0 - -  - -  - -  - - 

Feekes 6 $57.87 -65.81‡ -34.21  +72.74 +29.95  -53.14 -37.97  -15.89 -8.88 

Feekes 9 $15.83 +95.06 +5.56  +78.08 +98.77  +5.45 -5.74  +5.18 -9.71 

Feekes 6 + 9 $73.70 +37.18 -41.00  +120.75 +47.16  -83.91 -60.98  +10.20 -74.02 

  ----------------------------------- $0.18 kg-1 ----------------------------------- 

Control 0 - -  - -  - -  - - 

Feekes 6 $57.87 -71.11 -18.44  +98.65 +88.50  -49.98 -24.69  +12.10 +23.78 

Feekes 9 $15.83 +168.99 +19.82  +140.69 +175.16  +19.64 +0.98  +19.19 -5.63 

Feekes 6 + 9 $73.70 +111.11 -19.20  +250.39 +127.73  -90.71 -52.49  +66.14 -74.23 

  ----------------------------------- $0.26 kg-1 ----------------------------------- 

Control 0 - -  - -  - -  - - 

Feekes 6 $57.87 -76.40 -2.66  +246.90 +147.06  -46.82 -11.42  +40.09 +56.45 

Feekes 9 $15.83 +242.92 +34.08  +203.31 +251.56  +33.82 +7.70  +33.20 -1.55 

Feekes 6 + 9 $73.70 +185.04 +2.60  +380.01 +208.30  -97.52 -44.01  +122.08 -74.44 

† Treatment cost includes a $12.35 ha-1 application fee for each time fungicide was applied. 

‡ Values represent the difference in marginal return compared to the non-treated control fungicide treatment. 
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Figure 1. Leaf rust area under the disease progress curve (AUDPC) results for the 

fungicide treatment × variety interaction for Apache, OK (top) and Stillwater, OK 

(bottom) during the 2016-2017 growing season.
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Figure 2. Powdery mildew area under the disease progress curve (AUDPC) results for the 

fungicide treatment × variety interaction for Apache, OK during the 2017-2018 growing 

season. 
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CHAPTER IV 
 

 

FUNGICIDE + INSECTICIDE APPLICATIONS FOR PROTECTING WINTER 

WHEAT GRAIN YIELD AND INCREASING PROFITABILITY 

  

ABSTRACT 

 

Winter wheat producers in Oklahoma often tank-mix an insecticide when making 

foliar fungicide applications, but little is known about this practice. Trials were 

established at two locations (Chickasha and Lahoma) during two seasons from 2016-

2018 using a randomized complete block design in a split-plot arrangement with four 

replications. The main plot factor was two varieties, one susceptible to leaf and stripe rust 

(Ruby Lee) and the other resistant (Gallagher at Chickasha 2016-2017 and Doublestop 

CL Plus at Lahoma 2016-2018). The subplot factor consisted of 16 different fungicide 

and insecticide treatment combinations applied at Feekes 6, Feekes 9, and Feekes 6 + 9. 

Results showed that a fungicide + insecticide application can provide greater yield than 

each pesticide applied alone. However, this was highly dependent on the year and 

location due to the timing of fungal disease and/or insect pressure, and higher yield from 

the fungicide + insecticide treatments only occurred at the Feekes 6 timing. Greater 

marginal economic return from using a fungicide + insecticide compared to each 

pesticide applied alone was also year and location dependent. This greater marginal 

return for the fungicide + insecticide treatments was observerd at both Feekes 6 and 



39 
 

Feekes 9 but occurred at the Feekes 6 application timing the majority of the time. 

Pesticide use in general was often a good management practice and resulted in greater 

yield and marginal economic returns than by not using this practice at all. Based on the 

results of this study, scouting for fungal diseases and insects should dictate whether 

fungicide + insecticide tank-mixes should be used intead of making prophylactic 

applications in Oklahoma.  

 

INTRODUCTION 

 

Winter wheat (Triticum aestivum L.) is the number one production crop in 

Oklahoma. During 2017-2018, winter wheat was planted on 1.8 million hectares across 

the state, and 1.0 million hectares were harvested for grain (USDA-NASS, 2018). Total 

grain production that season was 1.9 million Mg which resulted in a $361,000,000 value 

for the Oklahoma economy (USDA-NASS, 2018). As a result of its economic impact, 

there is considerable focus devoted to improving winter wheat management in order to 

keep input costs low and to maximize economic returns. A significant portion of its 

management includes protecting the crop from fungal pathogens and insect pests. 

Diseases caused by plant pathogenic (i.e., disease-causing) organisms, including 

fungi, are a major source of crop damage. Fungal diseases are considered the number one 

cause of crop loss worldwide (McGrath, 2004), and in the southern Great Plains, hard red 

winter wheat yield losses are estimated at 3 to 10% annually (Edwards et al., 2012). 

Several fungal pathogens of concern in Oklahoma include Pyrenophora tritici- repentis 

(tan spot), Zymoseptoria tritici (Septoria leaf blotch), Parastagonospra nodorum 
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(Stagonospora glume blotch), Cochliobolus sativus (spot blotch), Blumeria graminis f. 

sp. graminis (powdery mildew), Puccinia triticina (leaf rust), and Puccinia striiformis f. 

sp. tritici (stripe rust).  

In additional to fungal diseases, insects can cause devastating damage (Bockus et 

al., 2010). Some of these species that have destructive tendencies include leaf beetles and 

grasshoppers. Others such as wireworms or Hessian fly may be concealed or hidden 

within the plant itself or the soil (Bockus et al., 2010). Aphids were considered the most 

prominent insect pest of winter wheat for many years (Chambers and Adams, 1986; 

Hasken and Poehling, 1994), and are one of the most yield-limiting insects of winter 

wheat in the southern Great Plains (Royer, 2007). The two most common aphids in 

Oklahoma are the bird cherry-oat aphid (Rhopalosiphum padi L.) and the greenbug 

(Schizaphis graminum Rondani) (Ismail et al., 2003). These species specifically can limit 

wheat profitability significantly if infestations occur during early growth stages by 

transmitting a luteovirus or by direct feeding (Starks and Burton, 1977; Kieckhefer and 

Kantack 1986; Kieckhefer and Gellner 1992; Kieckhefer et al., 1994; Riedell and 

Kieckhefer 1995; Webster et al., 2000; Kindler et al., 2002). 

  Oklahoma wheat producers face a challenging task when it comes to controlling 

these pests and the timing of implementing appropriate management practices. Properly 

timed foliar pesticide applications can play a significant role in protecting the crop from 

these pests, maintaining yield potential and quality, and attempting to maximize 

profitability. Edwards et al. (2012) addressed the agronomic and economic response of 

hard red winter wheat to foliar fungicide applied at Feekes 9-10 in the southern Great 

Plains at two locations (Lahoma and Apache, OK) from 2005-2010. Susceptible cultivars 
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at Apache treated with a fungicide had 10% higher yield compared to the same cultivars 

non-treated, but no difference between the fungicide treatments was observed for the 

intermediate and resistant cultivars. At Lahoma, response to the foliar fungicide 

application was 10, 11, and 24% greater for the resistant, intermediate, and susceptible 

cultivars, respectively. Response to foliar fungicide application in susceptible cultivars 

was not unexpected, but a significant response to foliar fungicide application for the 

resistant and intermediate cultivars was likely due to greater leaf rust incidence and 

severity at Lahoma across all years except 2010. An economic analysis also showed that 

there was greater than 80% likelihood that foliar fungicide use produced enough 

additional grain yield to offset the foliar fungicide cost in nine out of 36 price scenarios at 

Apache, OK and 35 out of 45 price scenarios at Lahoma (Edwards et al., 2012). Another 

study by Thompson et al. (2014) also found foliar fungicide treatment at Feekes 9-10.5 

on hard red winter wheat in the southern Great Plains can be an economically sound 

management strategy under some conditions. Experiments conducted at Apache, OK and 

Lahoma, OK during 2005-2012 found differences on average net returns between 

fungicide-treated plots and non-treated plots for resistant, intermediate, and susceptible 

varieties across years were -$28, -$19, and -$6 ha-1 at Apache, OK and $36, $36, and 

$116 ha-1 at Lahoma, OK . Despite the variable response, fungicide treatment tended to 

protect producers from the downside risk of large yield losses in years of high disease 

incidence and severity, especially when growing wheat varieties susceptible to common 

foliar diseases (Thompson et al., 2014).  

Regarding control of insects, a study was conducted to evaluate the effectiveness 

and timing of insecticidal seed treatment (thiamethoxam) and foliar insecticide (lambda-
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cyhalothrin) for managing wheat stem maggot [Meromyza Americana Fitch (Diptera: 

Chloropidae)] and wheat stem sawfly [Cephus cinctus Norton (Hymenoptera: Cephidae)] 

in spring wheat in North Dakota during 2008-2009 (Knodel et al., 2009). A foliar 

application at Feekes 3-5 and Feekes 9 reduced the number of whiteheads caused by 

wheat stem maggot. A combination of the low rate seed treatment plus a foliar 

application of lambda-cyhalothrin at Feekes 3-5 also resulted in a significantly lower 

number of whiteheads caused by wheat steam maggot, but the different rates of seed 

treatment alone was shown to be ineffective at reducing the number of whiteheads. None 

of the treatments reduced the percentage of damaged stems from wheat stem sawfly. 

There were also no yield differences among the treatments (Kodel et al., 2009). Another 

study performed by Royer et al. (2011) evaluated the effect of temperature on the field 

efficacy of three classes of registered insecticides for greenbug control in winter wheat 

fields. The insecticides were selected to represent different modes of action 

(organophosphate, pyrethroid, and neonicotinoid) and offer systemic (imidacloprid: 

neonicotinoids), contact (chlorpyrifos and lambda-cyhalothrin: pyrethroid) or a 

combination of systemic and contact (dimethoate: organophosphate). Results indicated 

any insecticide applied during the winter provided up to 70 to 80% control of greenbug 

on average as long as temperatures exceed 13℃ during the 14 days following application 

with no significant rainfall occurred (Royer et al., 2011). 

Although foliar fungicide and insecticide efficacy have been examined 

individually in the southern Great Plains, little is known about the impact of a tank-mix 

of these two pesticides on winter wheat. Because wheat producers in Oklahoma are 

implementing this practice, there is a need for research on this subject to help guide 
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recommendations. Therefore, the objective of this study was to determine whether a 

fungicide + insecticide application results in increased winter wheat grain yield and 

profitability compared to each pesticide applied alone in Oklahoma. 

 

METHODOLOGY 

 

Research trials were established at Lahoma, OK (36°23'2.57" N, 98° 6'21.73" W) 

and Chickasha, OK (35° 2'44.96" N, 97°54'28.37" W) during the 2016-2017 and 2017-

2018 growing seasons. The experimental design was a randomized complete block in a 

split-plot arrangement with four replications. The main plot factor consisted of two wheat 

varieties (‘Ruby Lee’ and ‘Doublestop CL Plus’). In 2016-2017, ‘Gallagher’ was used at 

Chickasha, OK due to seed availability. Ruby Lee was chosen based on its susceptibility 

to rust diseases, while Gallagher and Doublestop CL Plus were chosen based on their 

resistance to those same diseases. The subplot factor consisted of 16 different pesticide 

treatments applied at Feekes 6, Feekes 9, or a combination of both timings (Table 1). 

Fungicide treatment consisted of Headline SC (pyraclostrobin) at a rate of 266 mL ha-1 

for the Feekes 6 application and Tebucure Fungicide 3.6 (tebuconazole) at a rate of 118 

mL ha-1 for the Feekes 9 application. Insecticide treatments at Feekes 6 and Feekes 9 

consisted of Silencer (lambda-cyhalothrin) at a rate of 114 mL ha-1. All pesticide 

applications were made using a CO2 backpack sprayer with a 1.5 m boom calibrated to 

deliver 187 L ha-1 spray solution using TT11003 nozzles (Teejet Technologies, Glendale 

Heights, Illinois). Due to space limitations at Chickasha during 2016-2017, only eight 

pesticide treatments were used (Table 1). Pesticide treatments were applied during the 
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first growing season on 7 Mar. 2017 and 15 Apr. 2017 at Chickasha and on 8 Mar. 2017 

and 20 Apr. 2017 at Lahoma. Application dates for the second growing season were 24 

Mar. 2018 and 30 Apr. 2018 for Chickasha and 30 Mar. 2018 and 23 Apr. 2018 for 

Lahoma. 

All trials were established using conventional tillage following winter wheat. 

Planting dates for Chickasha were 21 Oct. 2016 and 30 Oct. 2017. For Lahoma, planting 

dates were 19 Oct. 2016 and 11 Oct. 2017. All plots were planted with a Hege 500 small-

plot cone seeder (Wintersteiger, Salt Lake City, UT) which consisted of eight rows each 

spaced 15 cm apart. Seed was planted at a rate of 67 kg ha-1, and all seed was treated with 

Sativa IMF Max (imidacloprid, metalaxyl, tebuconazole, and fludioxonil) at a rate of 148 

mL kg-1. Plots were planted to a length of 11.6 m and later shortened 9.3 m at harvest. At 

Lahoma during 2016-2017, plots were planted to a 9.3 m length due to the lack of space 

and later trimmed to 7.0 m at harvest. Fertilizers and herbicides were applied according to 

Oklahoma State Universtity best management recommendations. 

Disease and insect ratings were collected on all plots immediately before each 

fungicide and insecticide application as well as two weeks after each application. Aphid 

counts were taken at 30 cm sections in the front and back of the plots and combined to 

get a total insect count for the whole plot. Disease incidence and severity ratings for each 

plot were a collection of all fungal diseases present at the time of each rating and were 

scored from a 45 cm section within the middle of the plot. Incidence was rated on a 0 to 

100 % scale of plants expressing disease symptoms. Severity was rated based on 

symptoms expressed on the entire plant using a 1 to 5 scale: 1 = <15% resistant, 2 = 16-

39% moderately resistant, 3 = 40-64% intermediate, 4 = 65-80% moderately susceptible, 
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and 5 = 81-100% susceptible. Disease incidence and severity numbers were combined to 

create an index number for each rating timing. The index number was created by 

multiplying the incidence and severity values and then dividing it by the product of the 

maximum incidence number of 100 and the maximum severity number of five. These 

index numbers were then used to calculate the area under the disease progress curve 

(AUDPC) (Madden et al., 2007). 

At plant maturity, wheat seed was mechanically harvested using a Hege 140 plot 

combine (Wintersteiger, Salt Lake City, UT). Seed weight and moisture were collected 

from each plot. Harvest dates were 5 June 2017 and 6 June 2018 for Chickasha and 12 

June 2017 and 11 June 2018 for Lahoma. Seed samples also collected from each plot 

were non-destructively analyzed for protein content using a Perten Model DA7200 diode 

array infrared instrument (Perten Instruments, Hagersten, Sweden). Grain yield and 

protein content values were adjusted to 12% moisture content.  

A partial budget economic analysis was conducted for the pesticide treatments at 

grain sale prices of $0.11 kg-1, $0.18 kg-1, and $0.26 kg-1. Treatment costs are reported in 

Table 1. Treatment costs also included a $12.35 ha-1 application fee for each time a 

pesticde was applied (i.e, Feekes 6 and/or Feekes 9). The marginal economic return was 

calculated for each pesticide treatment by multiplying the yield and grain sale price and 

then subtracting the treatment cost. Values are reported as the difference in marginal 

return compared to the non-treated control.   

Statistical methods 

Statistical analyses were performed in SAS v9.4 (SAS Institute Inc., Cary, NC). 

Analysis of variance (ANOVA) using PROC GLIMMIX was conducted for test weight, 
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protein contetn, and grain yield. Data were analyzed separately by year and location. 

Variety, pesticide treatment, and their interaction were considered fixed effects. 

Replication and replication × variety were considered random effects. Means were 

separated using Fisher’s Protected LSD at the 5% significance level. 

 

FINDINGS 

 

 Weather  

Monthly precipitation total and average air temperature during the study period 

are presented in Table 2. Precipitation amounts during the 2016-2017 growing season 

were below the 20-year average for both locations at the beginning of the season heading 

into the winter months, but precipitation returned during the winter leading to above 

average precipitation during that time. Temperatures at Chickasha were primarily above 

the 20-year average during the beginning of the season throughout the winter. 

Temperatures at Lahoma were primarily average during this same time. Above average 

precipitation and temperatures were experienced at both locations during February and 

continued throughout April. In fact, the extremely warm temperatures in February coaxed 

plants out of winter dormancy approximately two weeks earlier than normal at both 

locations. Even though precipitation was slightly below average during grain-fill (i.e., 

May), temperatures were also below normal during this time. 

The 2017-2018 growing season began with very dry conditions and below 

average precipitation across both locations from October throughout December. January 

throughout April at Chickasha resulted in precipitation above the 20-year average with 
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Lahoma experiencing the opposite. Temperatures during this same time were fairly cool 

at both locations. The cooler temperatures coming out of winter delayed spring green-up 

about 10 days later than normal. In fact, April ended up being one of the coldest on 

record. This was followed by the hottest May on record. Spring precipitation (i.e., March 

through May) at both locations was slightly above average overall for Chickasha but 

below normal at Lahoma. 

Diseases 

 Leaf rust was the primary disease present throughout both locations during the 

2016-2017 growing season. Levels of leaf rust incidence and severity were slightly 

higher at Chickasha then at Lahoma even though leaf rust at Lahoma was more active 

earlier in the season compared to Chickasha. The disease steadily increased during 

Feekes 9 to Feekes 11.1 at both locations. While the number of treatments was limited at 

Chickasha due to space limitations, the plots treated with fungicide on average had lower 

disease levels than those that did not (Table 3). At Lahoma, where leaf rust persisted 

longer over the season than at Chickasha, plots which received fungicide at both Feekes 6 

and Feekes 9 (i.e., treatments 8, 10, 14, and 16) generally had lower levels of disease than 

those plots which received only one application. Additionally, Ruby Lee exhibited more 

disease symptoms than the resistant variety at both locations as expected (Table 3).  

Powdery mildew and stripe rust were the predominant diseases observered at 

Chickasha during 2017-2018; whereas, powdery mildew was the predominant disease 

observed at Lahoma that same growing season. At Chickasha, powdery mildew was 

fairly aggressive at Feekes 6 and persisted until Feekes 9. With some precipitation that 

fell around that time, stripe rust appeared close to Feekes 9 and persisted through Feekes 
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11.1. Similar to observations at Lahoma in the previous season, plots at Chickasha which 

received fungicide at both Feekes 6 and Feekes 9 (i.e., treatments 8, 10, 14, and 16) 

generally had lower levels of disease than those plots which received only one 

application (i.e., treatments 2, 4, 5, 7, 9, 11, 13, 15) (Table 3). The drought conditions 

experienced at Lahoma across the growing season limited disease development overall, 

with little difference in powdery mildew levels among the pesticide treatments. Again, 

Ruby Lee showed more disease susceptibility across both locations as expected (Table 3).  

Insects  

 Insect density was uniformly low across both locations during both years of this 

study. Bird cherry-oat aphids and greenbugs were the predominate insect present but 

were never above thresholds levels at any time during the study (Kindler et al., 2003). In 

2016-2017 at Chickasha, the highest aphid populations were found around Feekes 5 to 

Feekes 7. At Lahoma during the same growing season, aphid numbers were lower than 

those at Chickasha but were consistent with their presence around Feekes 5 to Feekes 7. 

However, a consistent reduction in aphid numbers with the Feekes 6 insecticide 

application (i.e., treatments 3, 4, 9, 10, 12, 13, 15, and 16) was not apparent at either 

location that year (Table 4.) 

At Chickasha during, 2017-2018, aphid numbers and observation timing were 

comparable to the previous year; however, noticeable differences in aphid numbers 

among the pesticide treatments showed lower aphid numbers when insecticide was 

applied at Feekes 6 (i.e., treatments 3, 4, 9, 10, 12, 13, 15, and 16) (Table 4). At Lahoma, 

aphids were present at Feekes 5 to Feekes 6 but were not found again throughout the rest 
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of the growing season. No noticeable differences in aphid numbers due to the pesticide 

treatments were found for this location.  

Test weight  

No variety × pesticide treatment interaction was observed during this study (Table 

5). The pesticide treatment main effect was significant at both locations but only during 

the 2016-2017 growing season (Table 5). At Chickasha, results showed that fungicide 

applied alone at Feekes 9 (treatment 5) had higher test weight than all treatments applied 

only at Feekes 6 (treatments 2, 3, and 4) and the insecticide-only treatment at Feekes 9 

(treatment 6) (Table 6). None of the treatments that received fungicide + insecticide at 

Feekes 9 (treatments 7, 14, 15, and 16) had significantly greater test weight than the 

fungicide applied alone at Feekes 9 (Table 6). At Lahoma, the fungicide only applied at 

Feekes 9 (treatment 5) was among the treatments exhibiting the highest test weight 

(Table 6). The test weight for treatments containing multiple fungicide applications 

(treatments 8, 10, 14, and 16) was also among the highest. None of the treatments with 

fungicide + insecticide had significantly higher test weight compared to the treatments 

with fungicide-only at any application timing (Table 6).   

The variety main effect at Chickasha during 2017-2018 showed Doublestop CL 

Plus having higher test weight than Ruby Lee (Table 6). This may have been due to the 

stripe rust observed on Ruby Lee from Feekes 9 through Feekes 11.1 that was not 

observed on Doublestop CL Plus.  

Protein  

 No variety × pesticide treatment interaction was observed during this study (Table 

5). The pesticide treatment main effect was significant at Lahoma during the 2016-2017 
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growing season but not at Chickasha. At Lahoma, all but one treatment containing two 

fungicide applications (treatments 8, 10, 14, and 15) were among those with the highest 

protein content. However, none of the treatments with fungicide + insecticide were 

significantly greater than those with fungicide-only at any application timing (Table 7). 

A pesticide treatment main effect was also observed at Chickasha during 2017-

2018 (P < 0.01) but not at Lahoma (Table 5). The fungicide alone applied at both Feekes 

6 and Feekes 9 (treatment 8) was among the treatments with the highest protein content, 

but treatments with fungicide applied only at Feekes 6 or Feekes 9 alone (treatments 2 

and 5, respectively) were not (Table 7). This was likely due to the aggressive powdery 

mildew levels around Feekes 6 and the stripe rust development from Feekes 9 to Feekes 

11.1. The treatment with insecticde applied at Feekes 6 followed by fungicide + 

insecticide at Feekes 9 (treatment 15) was the only instance where the tank-mix resulted 

in significantly higher protein content compared to the pesticides applied alone (i.e., 

treatments 9 and 12). 

Grain Yield  

 No variety × pesticide treatment interaction was observed during this study, but 

the pesticide main effect was significant for all site-years (Table 5). At Chickasha during 

2016-2017, results indicated that fungicide treatment alone at either application timing 

(i.e., treatment 5) provided no benefit compared to the non-treated control (Table 8). 

However, having the fungicide + insecticide at Feekes 9 only (treatment 7), the 

insecticide applied at Feekes 6 followed by a fungicide at Feekes 9 (treatment 9), or 

insecticide applied at Feekes 6 followed by fungicide + insecticide at Feekes 9 (treatment 

15) resulted in increased yield compared to the non-treated control. None of the 
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treatments with fungicide + insecticide provided significant additional grain yield. At 

Lahoma that same season, the fungicide + insecticide applied at Feekes 6 (treatment 4) 

had significantly greater yield than either pesticide applied alone at that application 

timing (Table 8). However, this treatment did not have significantly greater yield 

compared the fungicide-only application at Feekes 9 (treatment 5). Additionally, 

treatment 13 (fungicide + insecticide applied at Feekes 6 followed by insecticide at 

Feekes 9) compared to treatments 11 and 12 was the only other instance where the tank-

mix resulted in significantly greater yield. Other than the fungicide + insecticide applied 

at Feekes 6 (treatment 4) and fungicide applied at Feekes 9 (treatment 10), a two-pass 

program containing any combination of the pesticides was needed in order to have 

significantly greater yield than the non-treated control (Table 8). 

Similar to Lahoma the previous season, the fungicide + insecticide applied at 

Feekes 6 (treatment 4) at Chickasha had significantly greater yield than either pesticide 

applied alone at that application timing (treatments 2 and 3) (Table 8). However, this 

treatment did not have significantly greater yield compared the fungicide-only application 

at Feekes 9 (treatment 5). Both the fungicide + insecticide at Feekes 6 and the fungicide 

at Feekes 9 were significantly greater than the control. When these two treatments were 

put together (i.e., treatment 10), it was the only other treatment that was statistically 

greater than the non-treated control, and it was the only other instance where the tank-

mix resulted in significantly greater yield than when the pesticides were applied alone 

(Table 8). At Lahoma, the only treatments which yielded significantly greater than the 

control were those which had insecticide applied at Feekes 6 (treatments 3, 4, 12, and 
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15). None of the treatments containing fungicide + insecticide at any application timing 

yielded significantly greater then either pesticide applied alone at those timings (Table 8).   

Economics 

Marginal economic return ($ ha-1) was examined under multiple scenarios using 

wheat grain sale prices at $0.11 kg-1, $0.18 kg-1, and $0.26 kg-1 (Table 9). Pesticide 

treatment costs, which comprised of product and application costs, are included in Table 

1 and also in Table 9. Since there was no evidence of a variety × pesticide treatment for 

any site-year for grain yield, the marginal economic return was averaged over both 

varieties. At Chickasha during 2016-2017, the highest marginal return at all three sale 

prices was found with the treatment of fungicide + insecticide applied at Feekes 9 

(treatment 7). The treatment that provided the next closest return was the one with an 

insecticide applied alone at Feekes 6 and fungicide applied alone at Feekes 9 (i.e., 

treatment 9), but it took a higher grain sale price to do so. At Lahoma during the same 

growing season, the treatment with fungicide applied alone at Feekes 9 (treatment 5) had 

the highest return overall at the $0.11 kg-1 sale price. As the grain sale price increased to 

$0.18 kg-1 and higher, the fungicide + insecticide at Feekes 6 in combination with an 

insecticide applied at Feekes 9 (treatment 13) resulted in the highest return. Total, there 

were four treatments (4, 13, 14, and 15) at the $0.11 kg-1 sale price and five treatments (4, 

10, 13, 14, and 15) at the $0.18 and $0.26 kg-1 sale prices that contained a fungicide + 

insecticide tank-mix which resulted in a higher marginal return than when each pesticide 

was applied alone at those timings (Table 9). 

During 2017-2018 at Chickasha, a positive marginal return at $0.11 kg-1 was only 

observed for the single fungicide application at Feekes 9 (treatment 5) and the fungicide 
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+ insecticide at Feekes 6 (treatment 4), with the fungicide at Feekes 9 having the highest 

return (Table 9). As the grain sale price increased to $0.18 kg-1, the fungicide treatment at 

Feekes 9 still had the highest return, but the fungicide + insecticide applied at Feekes 6 

overtook it as providing the highest return at the $0.26 kg-1 sale price. Additionally, 

treatments 10 and 16 were the only other treatments containing a tank-mix which resulted 

in a higher marginal return than when each pesticide was applied alone at those timings. 

At Lahoma, the insecticide applied alone at Feekes 6 (treatment 3) was the only treatment 

to provide a positive marginal return at the $0.11 kg-1 sale price, and it also remained as 

the treatment with the highest return by a significant amount when the price was 

increased to the $0.18 kg-1. At the $0.26 kg-1 sale price, the insecticide applied alone at 

Feekes 6 (treatment 3) narrowly edged the insecticide applied at Feekes 6 followed by 

insecticide + fungicide applied at Feekes 9 (treatment 15) as having the highest return. 

Treatment 15 was the only instance where the fungicide + insecticide tank-mix had a 

greater marginal return than each pesticide applied alone at that timing (Table 9). The 

lack of seeing greater marginal returns with the treatments containing fungicide was 

likely explained by the low amount of disease present at Lahoma that year. 

Positive marginal returns during the study period were achieved based on the 

costs of the fungicides and insecticide used. Since Headline SC (pyraclostrobin) was used 

at Feekes 6 and Tebucure Fungicide 3.6 (tebuconazole) was used at Feekes 9, the cost for 

the Feekes 6 application was higher. There was the potential for treatments containing 

fungicide applied at Feekes 6 being more profitable if a cheaper fungicide was used, but 

these fungicides were partly chosen to take into account the different modes of action 
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used. Additionally, less increase in grain yield was needed for insecticide use to be 

profitable since it was much cheaper than the fungicides. 

 

CONCLUSIONS 

 

Results from this study showed that a fungicide + insecticide application can be a 

sound management practice by providing a greater yield than each pesticide applied 

alone. However, this management practice was highly dependent on the year and location 

due to the timing which fungal pathogens and/or insects that were present, and it only 

occurred at the Feekes 6 timing. Greater marginal economic return of using a fungicide + 

insecticide compared each pesticide applied alone was observed at both application 

timings, especially as the grain sale price increased, but it occurred with the Feekes 6 

application timing the majority of the time. Pesticide use, in general, was often a good 

management practice and resulted in greater yields and marginal economic returns than 

by not using this practice at all. Based on the results of this study, scouting for diseases 

and insects should dictate whether fungicide + insecticide tank-mixes should be used 

instead of making prophylactic applications in Oklahoma.
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Table 1. Pesticide treatments used at Chickasha, OK and Lahoma, OK during the 2016-2017 and 2017-2018 growing seasons. 

 Treatment 

cost  

($ ha-1)‡ 

Chickasha  Lahoma 

Pesticide treatment† 2016-2017§ 2017-2018  2016-2017 2017-2018 

1. Non-treated control  0 x x  x x 

2. Fungicide (Feekes 6) 57.87  x  x x 

3. Insecticide (Feekes 6) 16.58 x x  x x 

4. Fung. + Insect. (F6) 62.10  x  x x 

5. Fungicide (Feekes 9) 15.83 x x  x x 

6. Insecticide (Feekes 9) 16.58 x x  x x 

7. Fung. + Insect. (F9)  20.05 x x  x x 

8. Fung. (F6) & Fung. (F9) 73.70  x  x x 

9. Insect. (F6) & Fung. (F9)  32.41 x x  x x 

10. Fung. + Insect. (F6) & Fung. (F9) 77.93  x  x x 

11. Fung. (F6) & Insect. (F9) 74.45  x  x x 

12. Insect. (F6) & Insect. (F9) 33.16  x  x x 

13. Fung. + Insect. (F6) & Insect. (F9) 78.68  x  x x 

14. Fung. (F6) & Fung. + Insect. (F9)  77.93  x  x x 

15. Insect. (F6) & Fung. + Insect. (F9)  36.64 x x  x x 

16. Fung. + Insect. (F6) & Fung. + Insect. (F9) 82.15  x  x x 

† Fungicide applied at Feekes 6 consisted of Headline SC (pyraclostrobin) at a rate of 266 mL ha-1. Fungicide applied at 

Feekes 9 consisted of Tebucure Fungicide 3.6 (tebuconazole) at a rate of 118 mL ha-1. Insecticide applied at Feekes 6 and 

Feekes 9 consisted of Silencer (lambda-cyhalothrin) at a rate of 114 mL ha-1.  

‡ Treatment cost includes a $12.35 ha-1 application fee for each time fungicide was applied. 

§ All treatments were not included due to space limitations. 
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Table 2. Monthly cumulative precipitation (mm) and mean air temperature (°C) for 

Chickasha, OK and Lahoma, OK during the 2016-2017 and 2017-2018 growing 

seasons. Deviation from the past 20-year average is in parentheses.† 

  Chickasha  Lahoma 

Growing 

season Month Precipitation Temperature  Precipitation Temperature 

  mm °C  mm °C 

2016-2017 Oct. 43 (-7) 19.6 (+3.1)  64 (-7) 15.6 (+0.0) 

 Nov. 28 (-6) 12.7 (+2.5)  9 (-27) 8.9 (+0.0) 

 Dec. 21 (-6) 3.7 (-0.4)  10 (-17) 2.4 (+0.0) 

 Jan. 29 (+3) 4.5 (+1.1)  60 (+38) 3.1 (+1.2) 

 Feb. 51 (+6) 10 (+4.2)  53 (+21) 8 (+4.1) 

 Mar. 70 (+16) 13.8 (+2.7)  80 (+23) 11.5 (+2.3) 

 Apr. 82 (+9) 16.1 (+0.2)  148 (+73) 14.6 (+ 0.3) 

 May 94 (-2) 20.1 (-0.4)  82 (-7) 19.1 (-0.9) 

 June 50 (-14) 25.4 (-0.4)  65 (-38) 25.6 (-0.0) 

       
2017-2018 Oct. 43 (-7) 16.6 (+0.2)  58 (-14) 16 (+0.4) 

 Nov. 27 (-10) 11.4 (+1.2)  4 (-32) 9.8 (+0.9) 

 Dec. 23 (-4) 4.1 (+0.0)  2 (-25) 3.0 (+0.5) 

 Jan. 30 (+4) 2.6 (-0.9)  .2 (-21) 1.7 (-0.3) 

 Feb. 53 (+7) 4.6 (-1.3)  34 (+2) 2.8 (1.2) 

 Mar. 72 (+17) 11.9 (+0.9)  24 (-33) 10.3 (+ 1.0) 

 Apr. 79 (+6) 12.9 (-2.9)  55 (-21) 11.5 (-2.9) 

 May 96 (-2) 23.6 (+2.6)  80 (-10) 23.9 (+3.9) 

 June 49 (-15) 29.3 (+3.4)  4 (-99) 29.6 (+4.0) 

†All data retrieved from the Oklahoma Mesonet. 
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Table 3. Area under the disease progress curve (AUDPC) mean results by variety and pesticide treatment for 

Chickasha, OK and Lahoma, OK during the 2016-2017 and 2017-2018 growing seasons. 

 Chickasha  Lahoma 

Variable 2016-2017 2017-2018  2016-2017 2017-2018 

 -------------------- AUDPC -------------------- 

Variety      

Gallagher/Doublestop CL Plus† 6.6 7.3  8.7 0.08 

Ruby Lee 9.0 7.8  9.9 0.61 

Pesticide treatment      

1. Non-treated control 10.4 8.9  15.2 0.03 

2. Fungicide (Feekes 6) - 7.1  10.9 0.03 

3. Insecticide (Feekes 6) 9.8 8.8  13.1 0.03 

4. Fung. + Insect. (F6) - 7.5  9.9 2.05 

5. Fungicide (Feekes 9) 5.2 8.2  8.8 0.03 

6. Insecticide (Feekes 9) 9.0 9.1  15.2 0.03 

7. Fung. + Insect. (F9)  6.9 7.9  8.0 0.64 

8. Fung. (F6) & Fung. (F9) - 6.6  5.9 0.64 

9. Insect. (F6) & Fung. (F9)  6.2 8.3  9.9 2.05 

10. Fung. + Insect. (F6) & Fung. (F9) - 6.0  5.6 0.64 

11. Fung. (F6) & Insect. (F9) - 7.6  8.2 0.03 

12. Insect. (F6) & Insect. (F9) 8.9 8.3  14.6 0.03 

13. Fung. + Insect. (F6) & Insect. (F9) - 7.1  7.9 0.03 

14. Fung. (F6) & Fung. + Insect. (F9)  - 6.1  6.8 0.64 

15. Insect. (F6) & Fung. + Insect. (F9)  6.5 7.8  9.2 0.64 

16. Fung. + Insect. (F6) & Fung. + Insect.  (F9) - 6.2  6.5 0.03 

† Gallagher was used at Chickasha during 2016-2017. Doublestop CL Plus was used at all other site-years. 
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Table 4. Aphid count mean results for Chickasha, OK and Lahoma, OK during the 2016-2017 and 2017-2018 

growing seasons. 

 Chickasha  Lahoma 

Variable 2016-2017 2017-2018  2016-2017 2017-2018 

 -------------------- Number of aphids‡ -------------------- 

Variety      

Gallagher/Doublestop CL Plus† 10.9 6.4  7.6 1.1 

Ruby Lee 12.7 2.0  5.7 10.7 

Pesticide treatment      

1. Non-treated control 14.9 10.3  5.8 7.6 

2. Fungicide (Feekes 6) - 7.6  4.5 7.4 

3. Insecticide (Feekes 6) 12.1 0.0  5.8 5.0 

4. Fung. + Insect. (F6) - 0.0  8.3 4.8 

5. Fungicide (Feekes 9) 9.6 4.6  11.5 7.6 

6. Insecticide (Feekes 9) 12.8 2.0  5.0 6.6 

7. Fung. + Insect. (F9)  13.6 10.1  8.1 6.9 

8. Fung. (F6) & Fung. (F9) - 10.1  6.6 6.6 

9. Insect. (F6) & Fung. (F9)  7.8 2.1  7.6 5.3 

10. Fung. + Insect. (F6) & Fung. (F9) - 5.5  5.9 6.3 

11. Fung. (F6) & Insect. (F9) - 9.1  7.9 7.3 

12. Insect. (F6) & Insect. (F9) 9.0 0.1  4.3 4.3 

13. Fung. + Insect. (F6) & Insect. (F9) - 0.5  8.1 4.1 

14. Fung. (F6) & Fung. + Insect. (F9)  - 4.8  6.3 5.8 

15. Insect. (F6) & Fung. + Insect. (F9)  14.9 0.1  6.5 3.6 

16. Fung. + Insect. (F6) & Fung. + Insect.  (F9) - 0.0  4.1 5.0 

† Gallagher was used at Chickasha during 2016-2017. Doublestop CL Plus was used at all other site-years. 

‡ This number respresents the average number of insects across four ratings at both locations in 2016-2017 and 

five ratings at both locations in 2017-2018. 
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Table 5. Analysis of variance (ANOVA) results for test weight, protein content, and 

grain yield at Chickasha, OK and Lahoma, OK during the 2016-2017 and 2017-2018 

growing seasons. 

 Chickasha  Lahoma 

Source of variation 2016-2017 2017-2018  2016-2017 2017-2018 

 ----------------- Test weight (kg hL-1) ----------------- 

Variety 0.1651 0.0004  0.0651 0.0872 

Pesticide treatment <0.0001 0.8585  0.0004 0.3540 

Variety × Pesticide 0.0930 0.3268  0.3592 0.8624 

 ------------------ Protein content (%) ------------------ 

Variety 0.9802 0.0090  0.0001 0.0029 

Pesticide treatment 0.7509 0.0003  0.0169 0.1200 

Variety × Pesticide 0.4044 0.4247  0.4916 0.4735 

 ----------------- Grain yield (kg ha-1) ----------------- 

Variety 0.2094 0.0754  0.0044 0.0198 

Pesticide treatment <0.0001 0.0021  <0.0001 0.0397 

Variety × Pesticide 0.2552 0.8518  0.3203 0.7294 
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Table 6. Variety and pesticide treatment main effect test weight results for Chickasha, OK and Lahoma, OK 

during the 2016-2017 and 2017-2018 growing seasons. 

 Chickasha  Lahoma 

Main effect 2016-2017 2017-2018  2016-2017 2017-2018 

 ----------------- kg hL-1 ----------------- 

Variety      

Gallagher/Doublestop CL Plus† 69.3 A 78.4 A  74.3 A 73.5 A 

Ruby Lee 68.5 A 75.9 B  73.7 A 72.3 A 

Pesticide treatment      

1. Non-treated control 67.9 BC 77.0 A  72.7 F 73.2 AB 

2. Fungicide (Feekes 6) - 77.2 A  73.4 DEF 72.9 AB 

3. Insecticide (Feekes 6) 67.5 C 77.0 A  73.6 C-F 73.1 AB 

4. Fung. + Insect. (F6) - 77.0 A  74.5 ABC 72.4 B 

5. Fungicide (Feekes 9) 69.6 A 77.0 A  74.0 A-E 72.5 AB 

6. Insecticide (Feekes 9) 68.7 B 77.2 A  73.2 EF 72.8 AB 

7. Fung. + Insect. (F9)  69.9 A 76.9 A  73.7 B-F 72.9 AB 

8. Fung. (F6) & Fung. (F9) - 77.1 A  74 A-E 72.4 B 

9. Insect. (F6) & Fung. (F9)  70.1 A 77.6 A  74.7 AB 72.8 AB 

10. Fung. + Insect. (F6) & Fung. (F9) - 77.3 A  74.6 AB 72.4 B 

11. Fung. (F6) & Insect. (F9) - 77.0 A  73.2 EF 73.4 A 

12. Insect. (F6) & Insect. (F9) 68.0 BC 77.1 A  74.3 A-D 73.3 AB 

13. Fung. + Insect. (F6) & Insect. (F9) - 77.2 A  74.5 ABC 73.2 AB 

14. Fung. (F6) & Fung. + Insect. (F9)  - 77.1 A  74.8 A 73.4 A 

15. Insect. (F6) & Fung. + Insect. (F9)  69.8 A 77.3 A  74.7 AB 72.8 AB 

16. Fung. + Insect. (F6) & Fung. + Insect.  (F9) - 77.6 A  74.1 A-E 72.9 AB 

† Gallagher was used at Chickasha during 2016-2017. Doublestop CL Plus was used at all other site-years. 
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Table 7. Variety and pesticide treatment main effect protein content results for Chickasha, OK and Lahoma, 

OK during the 2016-2017 and 2017-2018 growing seasons. 

 Chickasha  Lahoma 

Variable 2016-2017 2017-2018  2016-2017 2017-2018 

 ----------------- % ----------------- 

Variety      

Doublestop CL Plus 10.5 A 12.7 A  12.3 A 15.9 A 

Ruby Lee 10.5 A 11.6 B  10.6 B 15.1 B 

Pesticide treatment†      

1. Non-treated control 10.3 A 11.9 F  11.4 B-E 15.5 A-D 

2. Fungicide (Feekes 6) - 12.1 B-F  11.5 B-E 15.6 ABC 

3. Insecticide (Feekes 6) 10.6 A 12.0 DEF  11.3 CDE 15.4 BCD 

4. Fung. + Insect. (F6) - 12.1 B-F  11.3 DE 15.5 BCD 

5. Fungicide (Feekes 9) 10.6 A 12.0 DEF  11.5 B-E 15.7 ABC 

6. Insecticide (Feekes 9) 10.4 A 12.0 EF  11.3 CDE 15.3 CD 

7. Fung. + Insect. (F9)  10.5 A 12.2 B-E  11.4 B-E 15.5 A-D 

8. Fung. (F6) & Fung. (F9) - 12.3 ABC  12.0 A 15.8 AB 

9. Insect. (F6) & Fung. (F9)  10.4 A 12.0 C-F  11.6 A-D 15.6 A-D 

10. Fung. + Insect. (F6) & Fung. (F9) - 12.2 A-D  11.7 AB 15.6 A-D 

11. Fung. (F6) & Insect. (F9) - 12.2 B-E  11.4 B-E 15.6 ABC 

12. Insect. (F6) & Insect. (F9) 10.4 A 11.9 F  11.2 E 15.5 BCD 

13. Fung. + Insect. (F6) & Insect. (F9) - 12.3 ABC  11.6 A-E 15.5 BCD 

14. Fung. (F6) & Fung. + Insect. (F9)  - 12.6 A  11.6 ABC 15.8 A 

15. Insect. (F6) & Fung. + Insect. (F9)  10.6 A 12.4 AB‡  11.6 ABC 15.2 D 

16. Fung. + Insect. (F6) & Fung. + Insect.  (F9) - 12.2 BCD  11.4 B-E 15.7 AB 

† Gallagher was used at Chickasha during 2016-2017. Doublestop CL Plus was used at all other site-years. 

‡ Bolded values represent the Fung. + Insect. treatments which have significantly greater yield than both 

pesticides applied alone at that application timing. 
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Table 8. Variety and pesticide treatment main effect grain yield results for Chickasha, OK and Lahoma, OK 

during the 2016-2017 and 2017-2018 growing seasons. 

 Chickasha  Lahoma 

Variable 2016-2017 2017-2018  2016-2017 2017-2018 

 -------------------- kg ha-1 -------------------- 

Variety      

Gallagher/Doublestop CL Plus† 2650 A 3840 A  4770 B 2720 B 

Ruby Lee 2500 A 4220 A  5530 A 2940 A 

Pesticide treatment      

1. Non-treated control 2440 DE 3790 D  4740 GH 2720 E 

2. Fungicide (Feekes 6) - 4000 CD  4840 E-H 2760 B-E 

3. Insecticide (Feekes 6) 2290 E 3850 CD  4950 D-G 2920 ABC 

4. Fung. + Insect. (F6) - 4360 AB‡  5460 ABC 2880 A-D 

5. Fungicide (Feekes 9) 2540 CD 4180 ABC  5210 B-E 2760 B-E 

6. Insecticide (Feekes 9) 2590 BCD 3910 CD  4530 H 2790 B-E 

7. Fung. + Insect. (F9)  2770 AB 3920 CD  4790 F-H 2760 B-E 

8. Fung. (F6) & Fung. (F9) - 3900 CD  5160 C-F 2740 DE 

9. Insect. (F6) & Fung. (F9)  2810 A 4030 BCD  5220 B-E 2880 A-E 

10. Fung. + Insect. (F6) & Fung. (F9) - 4380 A  5620 AB 2780 B-E 

11. Fung. (F6) & Insect. (F9) - 4090 A-D  5170 C-F 2760 CDE 

12. Insect. (F6) & Insect. (F9) 2470 DE 3860 CD  5030 D-G 2920 AB 

13. Fung. + Insect. (F6) & Insect. (F9) - 3990 CD  5760 A 2870 A-E 

14. Fung. (F6) & Fung. + Insect. (F9)  - 3980 CD  5490 ABC 2870 A-E 

15. Insect. (F6) & Fung. + Insect. (F9)  2710 ABC 3870 CD  5270 BCD 2980 A 

16. Fung. + Insect. (F6) & Fung. + Insect.  (F9) - 4420 A  5230 B-E 2860 A-E 

† Gallagher was used at Chickasha during 2016-2017. Doublestop CL Plus was used at all other site-years. 

‡ Bolded values represent the Fung. + Insect. treatments which have significantly greater yield than both 

pesticides applied alone at that application timing. 
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Table 9. Marginal economic return ($ ha-1) for the pesticide treatments by year and location at grain sale prices of $0.11, 

$0.18, and $0.26 kg-1. Values represent the difference in marginal return compared to the non-treated control. 

  Chickasha  Lahoma 

Pesticide treatment 

Treatment 

cost† 2016-2017 2017-2018  2016-2017 2017-2018 

 --- $ ha-1 --- ------------------------- $0.11 kg-1 ------------------------- 

1. Non-treated control 0 - -  - - 

2. Fungicide (Feekes 6) 57.87 - -34.77  -45.77 -53.47 

3. Insecticide (Feekes 6) 16.58 -33.08 -9.98  +6.52 +5.42§ 

4. Fung. + Insect. (F6) 62.10 - +1.70‡  +18.20 -43.40 

5. Fungicide (Feekes 9) 15.83 -4.83 +27.07  +36.97 -11.43 

6. Insecticide (Feekes 9) 16.58 -0.08 -2.28  -39.68 -7.78 

7. Fung. + Insect. (F9)  20.05 +16.25 -4.65  -14.55 -14.55 

8. Fung. (F6) & Fung. (F9) 73.70 - -61.60  -26.40 -71.50 

9. Insect. (F6) & Fung. (F9)  32.41 +8.29 -4.91  +21.49 -14.81 

10. Fung. + Insect. (F6) & Fung. (F9) 77.93 - -11.93  +21.07 -71.33 

11. Fung. (F6) & Insect. (F9) 74.45 - -41.45  -26.05 -70.05 

12. Insect. (F6) & Insect. (F9) 33.16 -29.86 -25.46  -0.16 -11.16 

13. Fung. + Insect. (F6) & Insect. (F9) 78.68 - -55.58  +35.72 -61.08 

14. Fung. (F6) & Fung. + Insect. (F9)  77.93 - -55.93  +5.67 -61.43 

15. Insect. (F6) & Fung. + Insect. (F9)  36.64 -6.94 -27.84  +22.76 -6.94 

16. Fung. + Insect. (F6) & Fung. + Insect. (F9) 82.15 - -11.75  -27.15 -66.75 

 ------------------------- $0.18 kg-1 ------------------------- 

1. Non-treated control 0 - -  - - 

2. Fungicide (Feekes 6) 57.87 - -20.07  -38.07 -50.67 

3. Insecticide (Feekes 6) 16.58 -43.58 -5.78  +21.22 +19.42 

4. Fung. + Insect. (F6) 62.10 - +42.30  +69.30 -31.50 

5. Fungicide (Feekes 9) 15.83 +2.17 +54.37  +70.57 -8.63 

6. Insecticide (Feekes 9) 16.58 +10.42 +6.82  -54.38 -2.18 

7. Fung. + Insect. (F9)  20.05 +39.35 +5.15  -11.05 -11.05 
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8. Fung. (F6) & Fung. (F9) 73.70 - -53.90  +3.70 -70.10 

9. Insect. (F6) & Fung. (F9)  32.41 +34.19 +12.59  +55.79 -3.61 

10. Fung. + Insect. (F6) & Fung. (F9) 77.93 - +30.07  +84.07 -67.13 

11. Fung. (F6) & Insect. (F9) 74.45 - -20.45  +4.75 -67.25 

12. Insect. (F6) & Insect. (F9) 33.16 -27.76 -20.56  +20.84 +2.84 

13. Fung. + Insect. (F6) & Insect. (F9) 78.68 - -40.88  +108.52 -49.88 

14. Fung. (F6) & Fung. + Insect. (F9)  77.93 - -41.93  +58.87 -50.93 

15. Insect. (F6) & Fung. + Insect. (F9)  36.64 +11.96 -22.24  +60.56 +11.96 

16. Fung. + Insect. (F6) & Fung. + Insect. (F9) 82.15 - +33.05  +7.85 -56.95 

 ------------------------- $0.26 kg-1 ------------------------- 

1. Non-treated control 0 - -  - - 

2. Fungicide (Feekes 6) 57.87 - -3.27  -29.27 -47.47 

3. Insecticide (Feekes 6) 16.58 -55.58 -0.98  +38.02 +35.42 

4. Fung. + Insect. (F6) 62.10 - +88.70  +127.70 -17.90 

5. Fungicide (Feekes 9) 15.83 +10.17 +85.57  +108.97 -5.43 

6. Insecticide (Feekes 9) 16.58 +22.42 +17.22  -71.18 +4.22 

7. Fung. + Insect. (F9)  20.05 +65.75 +16.35  -7.05 -7.05 

8. Fung. (F6) & Fung. (F9) 73.70 - -45.10  +38.10 -68.50 

9. Insect. (F6) & Fung. (F9)  32.41 +63.79 +32.59  +94.99 +9.19 

10. Fung. + Insect. (F6) & Fung. (F9) 77.93 - +78.07  +156.07 -62.33 

11. Fung. (F6) & Insect. (F9) 74.45 - +3.55  +39.95 -64.05 

12. Insect. (F6) & Insect. (F9) 33.16 -25.36 -14.96  +44.84 +18.84 

13. Fung. + Insect. (F6) & Insect. (F9) 78.68 - -24.08  +191.72 -37.08 

14. Fung. (F6) & Fung. + Insect. (F9)  77.93 - -25.93  +119.67 -38.93 

15. Insect. (F6) & Fung. + Insect. (F9)  36.64 +33.56 -15.84  +103.76 +33.56 

16. Fung. + Insect. (F6) & Fung. + Insect. (F9) 82.15 - +84.25  +47.85 -45.75 

† Treatment cost includes a $12.35 ha-1 application fee for each application timing where applicable. 

‡ Bolded values represent the Fung. + Insect. treatments which have significantly greater yield than both pesticides applied 

alone at that application timing. 

§ Green values represent the pesticide treatment with the highest economic return. 
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