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Abstract: Winter canola (Brassica napus L.) is an important rotational crop for wheat 

systems in the Southern Great Plains, which possess a wide range of acidic soils. 

However, unlike many other crops, most winter canola cultivars have not been evaluated 

for pH and Al3+ tolerance. Four field trials were established over two growing seasons to 

evaluate four winter canola cultivars on pre-adjusted pH gradients. Generally, canola 

yields were positively influenced by increasing soil pH, with high yields coming from 

more neutral pH. However, response of canola yields to pH differed by location and 

cultivar. Critical soil pH was only found at one site year, with critical pH values much 

lower than previous evaluations (pH 3.90). Environmental conditions at planting paired 

with fewer data points above could have contributed to this variable response. At the 

Chickasha location, soil pH and extractable Al had a limited relationship, with low levels 

of Al3+ found, indifferent of soil pH (r2= 0.03). Variation in yields at Chickasha were 

potentially better explained by other production factors, not changing pH. In addition, a 

greenhouse study was established to analyze the potential of poultry litter biochar to 

alleviate extractable Al3+ in soil systems. Four biochar treatments were analyzed: 2.24 

Mg ha-1, 5.6 Mg ha-1, and 11.21 Mg ha-1 as well as a control. In the greenhouse 

evaluation, 2.24 Mg ha-1 biochar application had a positive effect on alleviating 

extractable Al3+ from the soil. Higher application rates of biochar on soil also alleviated 

Al3+ concentration, but not at a significant amount to justify the necessity of higher 

application rates. Applications of 2.24 Mg ha-1 reduced Al3+ concentration by 28.23 mg 

kg-1 while at an application of 5.6 Mg ha-1 concentrations were only further reduced by 

10.07 mg kg-1. Results from these studies indicated canola grain yields were impacted by 

the factors associated with soil acidity. These results highlight the continual evaluation of 

currently and newly available winter canola cultivars for their tolerance of soil acidity.  

Furthermore, growers should be knowledgeable of canola cultivar, soil pH and 

exchangeable Al3+ when determining the feasibility of winter canola in their production 

systems.    
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CHAPTER I 
 

 

INTRODUCTION 

 

 

 

Hard red winter wheat (Triticum aestivum L.) is the primary crop grown in the United 

States Great Plains, with over 12 million hectares being grown across the region in 2017 (NASS, 

2017). Oklahoma is one of the primary wheat producing states, planting over 2 million hectares 

(NASS, 2017). While wheat will continue to be the dominant crop throughout the region, overall 

productivity has seen decreased seed quality, increased pest pressure, and a stagnation in yields 

(Patrignani et al., 2014). These issues are attributed to the lack of cropping diversity within these 

production systems, as wheat has been primarily grown in monoculture systems for decades. 

During this period, several rotational crops have been introduced to the region in an attempt to 

increase the diversity of the cropping systems. However, many of these other crops have not been 

successful due to challenging environmental conditions, particularly when integrating summer 

crops in these rotations. 

Winter canola (Brassica napus L.) was introduced to the region in the early 2000s as a 

potential rotational crop for winter wheat and has been able to overcome many of the challenges 

that other rotation crops have faced. Not only is canola a broadleaf, providing a break in weed,
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insect, and disease cycles, but canola also adds the advantages of having similar management and 

production practices to winter wheat (Edwards et al., 2006; Liebman and Dyck, 1993). 

 While the physiology of the crop and management similarities show promise in canola, 

several challenges exist that have limited widespread adoption of the crop within the region. 

These challenges are focused around the instability of canola yield in arid and semi-arid regions.  

The lack of yield stability has been associated with the increased sensitivity of winter canola to 

abiotic stresses. One of these stresses is soil pH. Winter wheat has the ability to sustain growth 

and yields at soil pH of 5.5 or lower (Zhang and Raun, 2006; Lollato et al., 2013). Initial 

evaluations of winter canola in Oklahoma documented that the critical soil pH levels were higher 

as well as had a lower critical soil Al3+ concentration compared to winter wheat (Lofton et al., 

2008). The challenges of winter canola compared to winter wheat increase as several winter 

wheat varieties have been identified as low pH tolerant. Integrating these less sensitive wheat 

varieties into production systems dissuades the application of lime to correct for a problematic 

pH, as variety selection is typically a cheaper option. As opposed to wheat, breeding for acid 

tolerance has not been a primary focus for winter canola breeding programs. This further 

increases the difficulty of integrating canola into traditional wheat production systems in 

Oklahoma and the southern Great Plains.   

Understanding the impacts that soil pH and available Al3+ have on winter canola 

productivity will continue to be a critical aspect needing to be addressed for increased adoption 

and management as a rotational crop for wheat production systems. Furthermore, documenting 

the potential response of common commercially available winter canola cultivars to soil pH and 

Al3+ will prove to be a valuable tool for managing soil pH in winter canola systems. Therefore, 

the objectives of this study were to 1) Document the impact of soil pH and Al3+ on winter canola 

productivity and yield, 2) Evaluate the response of four winter canola cultivars to varying soil pH, 

and 3) Determine the ability of biochar to alleviate extractable Al3+ concentrations in soils. 
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CHAPTER II 
 

 

LITERATURE REVIEW 

 

 

 

Soil pH and Classification 

Many soil scientists consider soil pH the most influential soil factor, with it frequently 

called the master soil variable (Brady and Weil, 2006). Soil pH is a scale that is the indirect 

measure of H+ concentration in the soil solution. The more H+ ions present, the more acidic the 

soil, while the lower the number of H+ ions, the more basic the soil. Soil pH is typically 

demonstrated on a logarithmic scale and determined by calculating the –log[H+].  

𝑝𝐻 = log
1

[𝐻+]
=  −log [𝐻+] 

Therefore, a solution with H+ = 10-6 M has a pH of 6.0. 

10−6 𝑀 →  − log[10−6] =  −[−6] = 6.0 

(Modified from Havlin et al., 2015) 

A soil pH value of 7.0 is considered neutral while solutions with values <7.0 are acidic and those 

>7.0 are basic or alkaline. Other nomenclature for soil pH is available that describes the amount 

of H+ in the soil and how the soil pH level will alter biologic growth. Table 1 gives common 

descriptive classes of soil pH. 
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Table 1 Common descriptive classes of soil pH and their ranges (Modified from Havlin et al., 

2015). 

Descriptive Term Soil pH range 

Extremely acidic < 4.5 

Very strongly acidic 4.6-5.0 

Strongly acidic 5.1-5.5 

Moderately acidic 5.6-6.0 

Slightly acidic to neutral 6.1-7.3 

Slightly alkaline 7.4-7.8 
 

Soil pH can be determined by diluting soil in deionized water or a dilute salt solution, 

usually CaCl2. This can be done in either a 1:1 or 1:2solution ratio. Soil pH measured using CaCl2 

is usually lower, but the salt solution displaces additional H+ from exchange sites, but also can be 

more stable due to being less susceptible to moisture and salt content variations. 

 

Formation of Acidic Soils 

Soil acidity is classified into three “groups” of acidity, classified as active, exchangeable, 

and residual acidity (Brady and Weil, 2002). Active acidity is the H+ and Al3+ in the soil solution 

and actively interacts with plants and is involved in chemical reactions. Exchangeable acidity is 

the H+ and Al3+ that is found on the exchange sites in relation with soil particles. This group of 

soil acidity is not actively involved in chemical and biological processes in the soil system but 

can quickly be transferred into active acidity through exchange with other cations. Residual 

acidity is often the largest fraction of soil acidity within the soil system as well as has the slowest 

availability to interact within the soil system. This form of acidity is categorized as the non-

exchangeable Al3+ that is bound in the crystalline structure of clays and organic matter (Havlin et 

al., 2005). When evaluating and correcting soil acidity at a minimum active and exchangeable 

acidity must be evaluated. This is because the soil acts as a buffer against soil pH change.  When 

a neutralization agent is added to the soil, H+ molecules from the exchange sites are released, 

acidifying the soil system; therefore, buffering the soil against the pH change. The amount of 
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buffering and soil neutralization is highly dependent on how much pH is within the exchangeable 

category.   

The formation of acidic soils is largely due to soil additions and subtractions such as 

ammonia/ammonium fertilizers and nutrient uptake by crops, product removal during most 

agricultural processes, soil organic matter (OM), and leaching and precipitation (Miller et al., 

2009 and Havlin et al., 2015). The formation of acidic soils can also stem from many other 

factors pertaining to soil parent material or increase their potential to develop acidity naturally 

due to their inherently low cation exchange (Sumner and Noble, 2003).  

Nutrient uptake by crops and the addition of fertilizers are both factors that can lead to 

soil acidity in production systems. Addition of ammonia/ammonium N fertilizers in high amounts 

is a large factor in the acidification of many soils in more intense production areas (Brown et al., 

2008). As nitrification occurs, N from ammonia (NH3) and ammonium (NH4
+) fertilizers is 

converted into nitrates (NO3
—) and H+ ions are released into the soil, resulting in acidification 

(Brady and Weil, 2008). This can be altered based on the cation exchange capacity (CEC) of a 

given soil. The CEC determines how many exchangeable cations the soil can absorb (Brady and 

Weil, 2008).  As plants take up cations from the soil, they release protons (H+) to maintain 

electrical neutrality, while when plants uptake anions such as nitrates, hydroxyls (OH—) are 

released and neutralize any free protons (Miller et al., 2009). However, plants do not have the 

capacity to uptake all of the anions, so protons are allowed to collect and build, causing soil 

acidification due to high N inputs (Miller et al., 2009). When a plant uptakes more cations (K+, 

NH4
+, Ca2+

, etc.) than anions, an excess of H+ ions are released into the rhizosphere, causing the 

soil to be more acidic; while when a plant uptakes more anions (NO3
—, SO4

—, among others) than 

cations, an excess of OH— ions are released, causing a more basic or alkaline soil (Havlin et al., 

2013 and Brady and Weil, 2008). In a lower CEC soil, the anion exchange capacity is higher, 

resulting in a more acidic soil (Sparks, 2003). 



6 
 

Once a crop has taken up and exchanged nutrients from the soil, the biomass left in the 

field can also play a role in soil acidity. As  crop reside is left in the field, microbial degradation 

takes place to break down the biomass, causing an increase of CO2 in the soil which is tenfold the 

CO2 in the atmosphere, reacting with water to create H+ and HCO3
--. 

𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝐶 → 𝑅 − 𝐶𝑂𝑂𝐻 → 𝑅 − 𝐶𝑂𝑂− + 𝐻+ 

(Havlin et al., 2015). 

The amount of acidity produced through organic matter breakdown is highly dependent 

on the type of organic matter. Organic matter under particular vegetation types, such as 

coniferous forest, have the potential to produce more acidic soil conditions compared to 

grasslands (Havlin et al., 2015). Some soil organic materials can contain carboxylic or phenolic 

compounds that can release H+ into the soil solution, similar to that of weak acids (Havlin et al., 

2015). Although most mineral soils, such as those in Oklahoma, contain a much lower amount of 

organic matter, thus this type of soil acidification is minimal compared to other fractions.  

Rainfall and leaching play an important part in soil acidification as well. Acidification of 

the soil occurs when water containing nitrates (NO3
—) are leached below the rooting zone (Havlin 

et al., 2015). Rainfall increases this process by adding more acidic components and providing 

more moisture for nitrate transport. Rainfall itself is naturally acidic because of the relationship 

between water and atmospheric CO2, resulting in a pH of around 5.6; the H2O/CO2 relationship is 

as follows: 

   𝐻2𝑂 +  𝐶𝑂2  ↔  𝐻2𝐶𝑂3  ↔  𝐻+ +  𝐻𝐶𝑂3
− 

(Havlin et al., 2015). However, since the added acid is weak and in very low quantities, 

there can be little to no response on bulk soil pH depending on the amount of rainfall received 

and the beginning pH of soil (Havlin et al., 2015). 
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Impacts of Soil Acidity on Crops 

Soil pH can greatly influence plant growth and productivity alone; however, the greatest 

impact of soil pH is the influence it has on other soil chemistry components. Low soil pH causes 

an increase in availability and mobility of other micronutrients such as metals that are not readily 

available in a higher, above neutral soil pH. One of the more prominent of these is active 

Aluminum [Al3+] concentration (Bolan and Hedley, 2003). This becomes problematic in most 

cropping systems due to the increasing concentration of Al3+ as soil pH decreases. When soil pH 

drops below 5.0, organic and inorganic Al3+ become more soluble in response to the lower pH, 

causing higher mobility and plant response as Al3+ toxicity (Li and Johnson, 2016; Sumner and 

Noble, 2003).  

           𝐴𝑙3+ + 𝐻2𝑂 ↔ 𝐴𝑙(𝑂𝐻)2+ +  𝐻+ 

𝐴𝑙(𝑂𝐻)2+ +  𝐻2𝑂 ↔ 𝐴𝑙(𝑂𝐻)2
+

+  𝐻+ 

𝐴𝑙(𝑂𝐻)2
+ +  𝐻2𝑂 ↔ 𝐴𝑙(𝑂𝐻)3

0
+  𝐻+ 

𝐴𝑙(𝑂𝐻)3
0 +  𝐻2𝑂 ↔ 𝐴𝑙(𝑂𝐻)4

−
+  𝐻+ 

(Havlin et al., 2015) 

At each 1.0 decrease in soil pH, Al3+ concentration becomes 1000 times greater, also 

aiding in Al3+ toxicity (Raun and Zhang, 2006). Naturally high amounts of Al3+ in the soil system 

can result in significant declines in growth and nutrient uptake which can also lead to deficiencies 

(Zhang, 2017; Havlin et al., 2013). Due to the pH buffering processes in soil organic matter, 

systems with higher soil organic matter do not readily express signs of Al3+ toxicity compared to 

similarly acidic soils with lower soil organic matter (Godsey et al., 2007; Li and Johnson, 2016). 

The most common and easily identified symptom of Al3+ toxicity is root growth inhibition in the 

form of clubbed roots with little to no lateral growth, which reduces or restricts water and nutrient 

uptake by the plant (Sumner and Noble, 2003; Tang et al., 2007). Aluminum toxicity can also 
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block pathways for the plant to uptake Calcium [Ca2+], a macronutrient that cannot be hindered 

due to its vitality to the plant’s overall structure and effect on crop yield (Raun et al., 2000).  

Low pH can also affect the availability of many other plant essential nutrients as well. At 

a lower pH, many nutrients are rendered unavailable to plants, being tied up by other elements in 

the soil, thereby increasing the availability of other nutrients in addition to the toxic elements 

(Plaster, 1997). For example, at a pH of 6.0, N, P, and K begin and continue to be exceedingly 

less available as pH decreases and elements like Al3+, which is toxic to plants, become 

exceedingly more available (Plaster, 1997; Jones, 2012). Plant responses to low pH can vary 

based on individual crop. Hard red winter wheat is grown in moderately to strongly acidic soils in 

Oklahoma and sensitivities to soil acidity and exchangeable Al3+ concentration have been found 

to be cultivar specific (Lollato et al., 2013; Kariuki et al., 2007).  However, winter canola is not as 

tolerant to low soil pH as winter wheat, indifferent of cultivar, and there is a breeding push for 

more acid-tolerant winter canola varieties to be able to withstand the same conditions as winter 

wheat. 

 

Effects of Soil pH on Winter Canola 

Winter canola cannot tolerate the same soil conditions as wheat, so even though it is a 

promising rotational crop from aspects of crop management, it can be difficult when considering 

crop management to individual soil properties. There have been very few efforts to determine 

how soil pH affects winter canola yield because soil acidity is not problematic in most traditional 

canola-producing areas and therefore is not a major concern in those breeding programs (Lofton 

et al., 2010). With continued adoption of winter canola within the region, several new cultivars 

have been established in the state that are drastically different from those documented by Lofton 

et al. (2008); however, they have not been evaluated for their pH sensitivities or tolerances. 

Currently, only conventional cultivars have been evaluated for their pH and Al3+ tolerances 

(Lofton et al., 2010). Lofton et al. (2010) documented pH sensitivities in conventional canola 
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cultivars, and found that canola yield began to decline at a pH of 5.8 with critical Al3+ 

concentration of 11.3 to 14.7 mg kg-1. 

Soil pH can affect many different plant growth processes as well as nutrient availabilities 

and disease presence and pressure pertaining to both winter and spring canola varieties. In 

addition to Al3+ toxicity, acidic soils can also cause Fe and Mn toxicities as well (Canola Council 

of Canada, 2017).  

In addition to plant growth processes and nutrient availabilities, soil pH can affect disease 

presence and pressure as well as other properties. Perera et al. (2016) found that pH can greatly 

affect structural properties of oil proteins cruciferin and napin found in canola. Cruciferin and 

napin proteins are the most abundant proteins, contributing 20% (napin) and 60% (cruciferin) to 

the accumulated proteins in the plant (Hoglund et al., 1992; Perera et al., 2016). Plasmodiophora 

brassicae (P. brassicae) is a plasmodiophoromycete that is expressed as clubroot disease in 

cruciferous plants, including canola (Niwa et al., 2007). Symptoms of clubroot disease are 

visually similar to Al3+ toxicity in canola and can cause the similar yield decreases. Soils with a 

lower pH can cause spores to germinate at a quicker rate and infect more plants more rapidly 

(Rashid et al., 2013). Soil moisture and growing seasons with higher precipitation cause higher 

infection rates due to increasing the mobility of the spores in the soil solution (Dixon, 2009). 

Application of lime and other Ca-rich organic materials can aid in suppressing spore germination 

due to its ability to raise soil pH, which is the driving factor in P. brassicae spore germination 

suppression (Niwa et al., 2007).  

 

Oklahoma Soils 

Oklahoma producers are very commonly challenged with low pH soils across the state, 

but they are generally easier and relatively inexpensive to manage (Raun and Zhang, 2006). 

While a majority of the soils in the prominent agricultural production regions of Oklahoma are 

more acidic, this is generally due to intensive management and production and not the natural 
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state of the soil (Raun and Zhang, 2006). Acidic soils in Oklahoma are found more often across 

the central and western part of the state where most farming practices take place, while acidic 

soils on the east side of the state are more sporadic (Raun and Zhang, 2006). From 2000 to 2003, 

half of the reported soil pH in Oklahoma fell below 5.9 and half above, resulting in a median soil 

pH of 5.9, with 35% of samples having a soil pH lower than 5.5, which is a very low and critical 

level for most cropping systems (Raun and Zhang, 2006). Figure 1 illustrates data from Raun and 

Zhang, (2006).  

More recent data has been published by Arnall and Phillips (2018), which indicated that 

the average soil pH across Oklahoma is 6.0-6.1 with up to 2.3 range in both directions. Figure 2 

illustrates the most recent data from Arnall and Phillips, (2018). Because of the acidic nature of 

Oklahoma soils in many farming operations, soil amendments are needed but due to the high cost 

of transportation of agricultural lime, producers are not always able to amend their soil (Lollato et 

al., 2013). 

 

 

Figure 1 Median soil pH for each county in Oklahoma (Raun and Zhang, 2006; Used with 

Consent). 
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Figure 2 Average soil pH for Oklahoma. First value indicates average pH in its respective region. 

Second value indicates average pH range from aforementioned average pH per region (Arnall and 

Phillips, 2018; Used with Consent). 

 

Correcting Acidic Soils 

 Liming and the addition of various soil amendments has been shown to alleviate issues 

with soil pH, including Al3+ toxicity (Tang et al., 2007). Several soil amendments have 

demonstrated the ability to aid in the neutralization of soil pH. Limestone or aglime is the most 

common liming agent utilized to neutralize acidic soils in agriculture production systems and has 

continuously been the most effective and most used due to lowest cost per ton of active ingredient 

(Lollato et al., 2013; Raun and Zhang, 2006). Most liming materials will contain oxides, 

hydroxides, or carbonates of base Ca or Mg forms of alkaline earth metals that form hydroxides 

in water such as MgO, CaO, CaCO3, etc. (Brady and Weil, 2008). For example, in water, CaO 

reacts with water forming Ca2+ and releasing OH— into soil solution, therefore raising soil pH:  

𝐶𝑎𝑂 + 𝐻2𝑂 → 𝐶𝑎(𝑂𝐻)2  →  𝐶𝑎2+ + 2𝑂𝐻− 

(Brady and Weil, 2008) 

The active ingredient in liming materials is known as the Calcium Carbonate Equivalent 

(CCE) and is described as a percentage of CaCO3 or its equivalent in the liming material (Zhang 
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et al., 2014).  The largest determining factor of the fineness needed is determined by the CEC of 

the soil (Haby and Leonard, 2002). For example, in lower CEC (acidic) soils, a lime with a 

smaller surface area is more desirable because it will have a slower release into the soil and the 

effects of the lime may last longer on the overall soil pH (Haby and Leonard, 2002).  The 

combination of the active ingredient (CCE) concentration and surface area (fineness) are key 

components in the selection of an appropriate liming source and are known as the Effective 

Calcium Carbonate Equivalent (ECCE) of the liming material (Haby and Leonard, 2002; Havlin 

et al., 2013; Zhang et al., 2014). Liming an acidic soil depends largely on the clay content and 

OM of the soil; also known as the soil’s buffer capacity. Soils with a higher clay content and OM 

require more lime to raise pH than those with a lower buffer capacity (Havlin et al., 2013). 

Table 2 Different liming materials, their chemical composition, and percent calcium carbonate 

equivalent (Modified from Havlin et al., 2013 and Jones, 2012). 

Liming 
Material 

Chemical 
Composition CCE % 

Calcium carbonate CaCO3 (pure) 100 

Calcium limestone (aglime) CaCO3 80-100 

Suspension or fluid lime CaCO3 95-100 

Dolomitic limestone CaMg(CO3)2 95-100 

Dolomite CaMg(CO3)2 100-120 

Marl (Selma chalk) CaCO3 70-90 

Burned lime CaO 150-175 

Calcium hydroxide (Hydrated or slaked lime) Ca(OH)2 120-135 

Calcium silicate CaSiO3 80-90 

Slag CaO 60-90 

Wood ash Ca, Mg, K oxides 30-70 

Power plant ash Ca, Mg, K oxides 25-50 

Ground oyster shells CaCO3 Up to 95 

Cement kiln dusts Ca oxides 40-100 

Biosolids and by-products CaO, Ca(OH)2 Variable 
 

Ultimately, the addition of liming materials on an acidic soil raises the pH and decreases the 

exchangeable Al3+ in the soil solution, reducing risk of toxicity (Havlin et al., 2013).  
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Table 3 The approximate amount of finely ground lime needed to raise the pH of 7-inch layer of 

soil (Modified from Jones, 2012) 

 Lime Requirement (Mg ha-1) 

Soil Texture From pH 4.5 to 5.8 From pH 5.5 to 6.5 

Sand and loamy sand 1.11 1.35 

Sandy loam 1.78 2.88 

Loam 2.64 3.75 

Silt loam 3.32 4.42 

Clay loam 4.18 5.09 

Clay 8.36 5.14 
 

Alternative Liming Sources 

As an alternative to liming, adding P fertilizer to acidic soils has been shown to reduce 

Al3+ toxicity around plant roots (Lollato et al., 2013). Banding phosphorus can be helpful at the 

beginning of a growing season at planting and can help short term as the plant begins growing to 

tolerate low pH better at emergence and critical growing stages (Lollato et al., 2013). However, 

since P is immobile in the soil, banding P fertilizer creates temporary acidic pockets at the site of 

application after dissolving, but have a short term effect on soil pH as a whole (Havlin et al., 

2015).  

 

Biochar 

Biochar is a solid organic material created by burning organic materials in an oxygen-

limited environment through thermochemical conversion (IBI, 2018; Sandhu et al., 2017). This 

process is known as pyrolysis or charring and is done at temperatures above 250˚C (Lehmann and 

Joseph, 2015). This results in a potential fertilizer and liming source that could also increase C 

sequestration in the soil and improve natural soil fertility dynamics (Sandhu et al., 2017). Biochar 

and other organic materials have been used as fertilizer in many production systems around the 

world for many years, however, their effect on soil chemical properties has sparked more interest 

into their potential as a soil amendment (Mierzwa-Hersztek et al., 2016).  
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Biochar made from numerous different organic materials such as plant biomass, animal 

wastes, and sewage sludge have been used as soil additions to aid in many soil chemical 

processes (Mierzwa-Hersztek et al., 2016). Wang and Liu, (2017) found that animal waste, 

specifically yak manure, resulted in higher yields of biochar than many other plant materials. 

However, plant derived (cottonseed hull) biochar was more effective in the removal of heavy 

metals from soil (Wang and Liu, 2017). Biochar derived from manure has been found to 

influence and increase the accessibility of plants to essential nutrients than biochar rendered from 

plants (Brantley et al., 2016). Biochar has been known to absorb nutrients in the soil and can 

either render them immobile or increase their availability to the plant (Brantley et al., 2016). This 

can be helpful when attempting to alleviate a toxic nutrient from the soil to allow the plant to 

thrive in an otherwise harmful soil. Normally, this has been done by adding and incorporating 

biochar into the soil and then activating by moisture from rainfall.  

The effects of biochar addition on soil can vary greatly depending on the type of biochar, 

application rate, and pyrolysis technique (Mierzwa-Hersztek et al., 2016; Lehman and Joseph, 

2015). Biochar pH are generally alkaline and can increase as pyrolysis temperatures increase 

(Mierzwa-Hersztek et al., 2016). Because it’s neutralizing properties, both increasing and 

decreasing soil pH, biochar is continuously compared to agriculture lime (Lehmann and Joseph, 

2015; Yuan and Xu, 2010). Also similar to most liming sources, biochar is added to the soil on a 

tonnage basis. 
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CHAPTER III 
 

 

METHODOLOGY 

 

 

 

Research trials were established during the 2015 growing season at EFAW in Stillwater, 

OK (EFAW) and the South Central Research Station in Chickasha, OK (Chickasha). Additional 

locations were established in 2016 at North 40 in Stillwater, Oklahoma (N40) and the Cimarron 

Research Station in Perkins, Oklahoma (Perkins). Trials could not be located in the same 

locations between years as a means to minimize in-season disease and insect pressure. Treatments 

were arranged in a split plot design with soil pH as the main plot and winter canola cultivar as the 

sub-plot. Soil pH treatments were targeted soil pH values. Each location had a different pH 

gradient (Table 5). pH gradients were pre-existing at Chickasha, EFAW, and Perkins. EFAW and 

Chickasha pH gradients were established during the 2012-2013 growing season (Lollato and 

Edwards, 2015). Perkins pH gradients were established during the 2009-2010 growing season 

(Butchee et al., 2012; Sutradhar et al., 2014). pH gradients at N40 were established ahead of 

planting in 2016. At all locations, hydrated lime (Ca(OH)2) was used to increase the actual soil 

pH to the target pH and ammonium sulfate (Al2(SO4)3) was used to lower the actual soil pH to the 

target pH as detailed by Butchee et al. (2012) (Lollato and Edwards, 2015; Sutradhar et al., 2014). 
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Table 4 Coordinates, soil series, and soil taxonomic classes for trial locations. 

Location Coordinates Soil Series Taxonomic Class 

Chickasha 35.045953, -97.910845 

Dale silt loam 
Fine-silty, mixed, superactive, thermic 

Pachic Haplustolls 

McLain silty clay loam 
Fine, mixed, superactive, thermic Pachic 

Argiustolls 

EFAW 36.134768, -97.013399 Easpur loam 
Fine-loamy, mixed, superactive, thermic 

Fluventic Haplustolls 

N40 36.137125, -97.079503 

Renfrow loam 
Fine, mixed, superactive, thermic Udertic 

Paleustolls 

Kirkland silt loam 
Fine, mixed, superactive, thermic Udertic 

Paleustolls 

Perkins 35.999280, -97.039092 

Dougherty loamy fine 
sand 

Loamy, mixed, active, thermic Arenic 
Haplustalfs 

Konawa fine sandy loam 
Fine-loamy, mixed, active, thermic Ultic 

Haplustalfs 

 

 

Table 5 pH gradients for each location after adjustment and trials. 

Location 
pH Gradient 

Low Median High 

Chickasha 3.88 4.97 6.06 

EFAW 3.63 5.24 6.85 

N40 3.84 5.31 6.78 

Perkins 3.18 4.46 5.73 

 

Sub-plots consisted of four commonly grown winter canola cultivars, including: DKW 

41-10, 44-10, 45-25, and 46-15. These cultivars were selected not only to provide additional 

information on commonly grown cultivars in the southern Great Plains but to build on the 

existing data in winter canola production as previous work had only evaluated non-glyphosate 

tolerant cultivars (Lofton et al., 2010). For both main and sub-plots, treatments were arranged in a 

randomized complete block design. Plot dimensions were 6.67 meters wide and 6.67 meters long 

for each main plot. These were further divided into four subplots with 1.67 meter width, while 

maintaining the same length. In 2015-16 locations in EFAW and Chickasha, treatments were 

replicated four times. However, due to space limitations, treatments were only replicated three 

times in Perkins and N40 in 2016-17. Composite soil samples were collected prior to 
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establishment each year to determine soil N, P, and K concentrations to aid in soil fertility 

applications.   

  All plots for both years were planted using a 6200 Monosem vacuum planter (Monosem 

Inc., Edwardsville, KS).  Plots were planted at the rate of 790,000 seeds ha-1. All plots were 

planted on 38 cm spacing. All weeds, insects, and diseases were controlled using commercially 

available pesticides as needed based on current winter canola recommendations through 

Oklahoma State University.   

Winter canola growth measurements were collected for all locations in 2015-16 and 

2016-17. Final emergence and winter survival ratings were collected in-season and final yields 

were determined at maturity. Plant counts were taken from the middle two rows of each treatment 

four weeks following planting to determine final emergence values. Additional plant stands were 

collected at spring green-up. The difference between final emergence and spring stand counts 

were used to determine winter survival. At maturity, all plots were swathed, windrowed, and 

allowed to dry-down for seven days. Following dry-down, plots were mechanically harvested 

using a small-plot combine with a custom built pick-up attachment to the grain header. Plot 

weights were used to determine yield on a per hectare basis and adjusted to 10% moisture 

concentrations. From each plot, subsamples were collected. These subsamples were used to 

analyze oil and protein concentration with a Near-InfraRed Reflectance (NIR) spectrometer 

(Perten Instruments, Hägersten, Sweden).   

 

Field Study Soil Analysis 

Following harvest, soils were collected from every subplot at all locations and 

replications. A minimum of 15 soils to the depth of 15cm were collected from each plot and 

homogenized. Samples were placed in drying overs, dried at 67°C for 72 hours, and ground to 

pass a 2-mm sieve. Soil pH was determined using a 1:1 soil:water ratio (10g of soil to 10mL of 

deionized water) and measured using a glass electron probe (Mettler-Toledo, LLC, Columbus, 
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OH). Soil Al3+ was extracted using a 1:10 soil to 1M KCl solution, where soil and solution were 

mixed in 100 mL plastic cups, shaken using an orbital shaker for 30 minutes, and extracts filtered 

using a Q2 quantitative filter paper. Extracts were analyzed using a coupled plasma atomic 

emission spectroscopy (ICP-AES) (Spectro Arcos, Kleve, Germany).   

 

Field Study Statistical Analysis 

Data were analyzed with SAS version 9.4. Regression analysis was conducted between 

soil pH and soil aluminum concentration to canola grain yields using Procedure Reg. Procedure 

NLIN was used to create linear plateaus to show the critical pH level at which yield was no 

longer affected by soil pH. Locations and/or varieties that did not fit a linear plateau were fit to a 

linear regression line using PROC REG, all at α = 0.05. Location, cultivar, pH, and Al3+ were 

analyzed separately. Comparisons were made between pH and grain yield, Al3+ and grain yield, 

and pH and Al3+, for each cultivar at each location. 

 

Greenhouse Study 

In addition to field studies, a greenhouse study was established in late spring of 2017 to 

determine the ability of utilizing biochar to alleviate Al3+ concentrations in the soil. Greenhouse 

trials were arranged in a randomized complete block design with biochar type as the main plot 

and a complete factorial of biochar rate and Al3+ concentration in the subplot. Finally, three 

different biochar rates were evaluated: 2.24 Mg ha-1 (1 T acre-1), 5.6 Mg ha-1 (2.5 T acre-1), and 

11.21 Mg ha-1 (5 T acre-1) as well as a replicated check with no added biochar. The biochar type 

that was used was from poultry litter. Soils for the greenhouse trial were collected from the North 

Central Research Station location in Lahoma and Al3+concentration evaluated for each. Biochar 

was incorporated into the soil by hand and scheduled watering dates and times mimicked rainfall 

events as closely as possible and aided in biochar activation. The greenhouse study took place 

over a three-week period. 
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Greenhouse Soil Analysis 

At the end of the greenhouse trial, subsamples were taken from each pot for analysis. 

Samples were placed in drying overs, dried at 67°C for 72 hours, and ground to pass a 2-mm 

sieve. Soil Al3+ was determined in the same manner as described for the field study. 

 

Greenhouse Statistical Analysis 

Data were analyzed with SAS version 9.4. Analysis of variance was conducted through 

Procedure Mixed. In this analysis, biochar application rate was considered a fixed effect while 

replications was considered random. An LSD means separation test was conducted with a Tukey 

modifier to determine significant differences between treatment means, at α = 0.05. 
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CHAPTER IV 
 

 

RESULTS AND DISCUSSION 

 

 

 

Weather 

 Ideal conditions at planting greatly influenced the EFAW site and helped the crop to 

establish itself well in order to thrive in the upcoming growing season. Above average 

temperatures and frequent precipitation events around planting and seedling development helped 

in root development and elongation and allowed the crop to establish a root system well into the 

soil profile. This aided in the plant to establish enough vegetative growth in order to avoid low 

temperatures and winter kill early in the season.  

Conditions at planting for N40 in the 2016 growing season were not as ideal as the 

previous season at EFAW although they are close in proximity. While there were rain events and 

more moisture present, they were very low and infrequent and paired with higher temperatures 

that could affect the success of the plant from a very early stage.  

Rain events for Perkins were more infrequent and collected precipitation was low at each 

event while temperatures generally remained high. Due to the sandy soil properties at Perkins, 

moisture was not able to accumulate and be conserved in the soil profile as well. This 
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caused issues in the establishment and success of the crop due to the low and infrequent 

precipitation and the inability of the soil to provide sufficient water holding capabilities of the 

little amount of water applied.  

Precipitation was ideal but temperatures were high at planting for Chickasha. While there 

was adequate moisture for germination and seedling growth, persistent warm temperatures could 

be a contributor to excessive growth before winter and can cause lower winter survivability. 

Although precipitation was ideal at planting, it was lower following planting. However, the silty 

soil could contribute to the moisture conservation for use by the plant. 

 
Figure 3 Rainfall and Temperature for Stillwater (EFAW) for the 2015-2016 growing season. 
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Figure 4 Rainfall and Temperature for Stillwater (N40) for the 2016-2017 growing season. 

 

 
Figure 5 Rainfall and Temperature for Perkins for the 2016-2017 growing season. 
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Figure 6 Rainfall and Temperature for Chickasha for the 2015-2016 growing season. 

 

Crop Yield 

Canola grain yields ranged greatly across both years and all locations evaluated in this 

project.  Highest and lowest yields were found at the EFAW location in Stillwater, Oklahoma 

during the 2015-2016 season. Yields at this location ranged from 14 through 3037 kg ha-1 with an 

average of 1939 kg ha-1.  Interestingly, no zero yielding plots were apparent. This opposes 

previous literature that suggested a critical soil pH where canola cannot grow (Lofton et al., 

2010). While this could indicate better establishment and growing conditions, it also could 

indicate lower susceptibility of the evaluated cultivars to soil acidity.    

 

Soil pH and Yield 

Overall, there was a general positive trend between soil pH and winter canola yields, 

indicating that as soil pH was increased, canola yields increased similarly (Figure 7).  However, 

there is some variability in the model.  This variability not only encompasses the variability in 

yield potential at the individual locations but also the individual locations evaluated appear to be 

separate. This indicated that the response of winter canola to soil pH differed by location.   
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Figure 7 Relationship between soil pH and winter canola yield. 

When evaluating the response of soil pH and canola yields individually between 

locations, a strong linear relationship was noted at the N40 location (r2 = 0.59; p-value = <0.001), 

with a 12.2 kg ha-1 increase in yields associated with a 0.1 increase in soil pH.  A significant 

linear relationship was also found at the EFAW location in 2016 but the relationship was weaker 

(r2 = 0.21; p-value = 0.035). However, there was a greater response to increasing pH with a 46.7 

kg ha-1 increase in canola grain yield at 0.1 increase in soil pH. Figure 7 highlights the 

relationship between soil pH and winter canola yield at Chickasha, N40, and Perkins locations 

when averaged across canola cultivars. EFAW was omitted from figure 7 because it did not 

follow the same trend as the other locations; pH and crop yield relationships at EFAW were fit to 

linear plateau models. No significant relationship was found between soil pH and crop yield for 

both the Chickasha and Perkins locations. However, it should be noted that the significance value 

at the Perkins location was close to significant (p-value = 0.0547), where if alpha values were 

increased to 0.10 a significant relationship could have been measured.   
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Table 7 Relationships between soil pH and yield, averaged across locations. 

Year Site Equation Adjusted r2 p-value 

2016 Chickasha 159x+714 0.03 0.297 

2016 EFAW 467x-162 0.21 0.035 

2017 N40 122x+352 0.59 <0.001 

2017 Perkins 139x-245 0.17 0.0547 

 

Impact of Soil pH on Individual Cultivars 

 While there has not been a dedicated effort to breed soil acidity tolerance into current 

winter canola germplasm, differences in winter canola cultivars have been documented. Table 8 

lists each Dekalb winter canola variety with its respective color displayed in each of the following 

figures and tables for ease of organization and identification. These colors will be used to 

consistently refer to the individual cultivars throughout the remainder of the document. Table 9 

documents the response of the tested winter canola cultivars on soil pH.   

Table 8 Dekalb winter canola cultivars analyzed, listed with their corresponding color for 

identification in following figures and tables. 

Cultivar Color   

41-10 Blue   

44-10 Orange   

45-25 Green   

46-15 Yellow   
 

 

 

 

 

 

 

 



26 
 

 

Table 9 Relationships between soil pH and yield across all locations in 2015-16 and 2016-17 

season. (NS= Not Significant; S= Significant) 

Year Site Cultivar Equation Joint Adjusted r2 P-value 

2016 Chickasha 41-10 213 x+311 NS -0.01 0.38 NS 

  44-10 243x+266 NS 0.13 0.09 NS 

  45-25 321x+17 NS 0.11 0.07 NS 

    46-15 60x+1278 NS -0.04 0.78 NS 

2016 EFAW 41-10 2978x-10271 4.15  0.02 S 

  44-10 5533x-20560 4.07  <0.01 S 

  45-25 9011x-32601 NS  0.11 NS 

    46-15 4203x-14653 4.10  0.04 S 

2017 N40 41-10 41x+772 NS 0.30 0.17 NS 

  44-10 133x+312 NS 0.78 <0.01 S 

  45-25 151x+232 NS 0.58 <0.01 S 

    46-15 100x+450 NS 0.62 <0.01 S 

2017 Perkins 41-10 158x-372 NS 0.30 0.02 S 

  44-10 99x-7 NS 0.01 0.30 NS 

  45-25 129x-58 NS 0.01 0.29 NS 

    46-15 164x-346 NS 0.29 0.01 S 

 

Both EFAW and N40 locations were found to have a significant relationship when 

averaged across cultivar, and fairly consistent positive relationships were found between yield 

and soil pH among cultivars. In fact, significant linear plateaus could be found at the EFAW 

locations for three of the four cultivars evaluated. Critical values for these cultivars were found to 

range from 3.9 through 4.2. Beyond these soil pH values, winter canola yields did not 

significantly vary with continually increasing soil pH. These critical values are much lower than 

that previously documented by Lofton et al. (2010), which was found to be around 5.8. This was 

due to the amount of useful data points after the joint that illustrated a clear plateau in yield after 

the critical pH value was reached. No other significant critical soil pH were found. This means 

that winter canola yields continued to increase with increasing pH for the specific range tested. 

The EFAW site was most likely the only site to exhibit a critical pH value over all sites 

due to its inclination to success early on in the growing season. EFAW experienced the most ideal 

environmental conditions at planting and winter canola was able to quickly establish itself in that 
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site. Since management in this study was only done in the top 10-15cm and canola taproots can 

quickly reach through those depths early on in its lifecycle, it is possible that the success of the 

crop. This could allow the plant to grow through the pH management layers quickly and before 

soil pH is a major defining factor in reproductive development, thereby not allowing for a true 

critical soil pH to be determined. Prompt plant establishment in the beginning of the growing 

season also aided in battling winter kill and more plants were able to survive to harvest. 

 
Figure 8 Relationships between soil pH and yield for each cultivar, including plateaus at EFAW 

Previously mentioned, a significant relationship between winter canola and soil pH were 

not found at the Perkins locations but critical values were close. Part of the explanation for this is 

the differing response of the cultivars evaluated. Figure 9 indicates that DKW 41-10 and 46-15 

had a significantly positive relationship between canola yields and soil pH, while both 44-10 and 

45-25 did not. These relationships showed that canola yields increased 15.8 and 16.4 kg ha-1 for 

every 0.1 increase in soil pH for DKW 41-10 and 46-15, respectively.   
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Figure 9 Relationships between soil pH and yield for each cultivar at Perkins 

The Chickasha location was not found to have a significant relationship among cultivars 

individually or when averaged. There was also no significant relationships between canola yields 

and soil pH for any cultivars evaluated. This could indicate some other factor limiting or 

influencing yields, which will be discussed in the following sections.   

 

Soil pH and Al 

Generally, soil pH and extractable Al3+concentration were negatively related, fitting a 

non-linear relationship (r2=0.27).  However, multiple distinct groupings within the model can be 

noted. Figure 10 shows the relationship between soil pH and extractable Al3+ at the different site 

years.  When evaluated independently, all locations had a strong significant inverse relationship 

between soil pH and extractable aluminum concentration. The difference in site years could be 

explained by the temporal and spatial variability of the sites. Not only are sites different, resulting 

in varied soils and soil classification, differences in sampling conditions at time of collection 
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could also alter the relationship between soil pH and extractable Al3+ as well (Ferguson et al., 

2007).   

 
Figure 10 Relationship between soil pH and extractable Al3+ at each location 

 

Al and Crop Yield 

When averaged across site-years, crop yields were not significantly related to extractable 

Al3+ concentrations.  This is due to the high amount of variability noted in the model.  This 

should be expected as both soil pH and crop yield as well as soil pH and extractable Al3+ 

concentrations varied between locations analyzed.   

When analyzed separately, crop yield was negatively related to extractable Al3+ content 

in all locations, with the exception of Chickasha. Both N40 and Perkins location fit best into a 

linear relationship, with a relationship of 0.29 and 0.47 for N40 and Perkins, respectively. The 

EFAW location best fit into a non-linear regression (r2= 0.43) with a limited decrease in yield at 

low level Al3+ levels with a greater decrease following 50 mg kg-1 of Al3+. While a critical pH 

value cannot be accurately determined, a notable relationship between pH and yield, Al3+ and 

yield, and pH and Al3+ can be seen in all locations except Chickasha. Explanations for the lack of 
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yield at Chickasha could include different environmental conditions or other soil chemical 

properties. Results suggest soil Al3+ is naturally low at Chickasha because the change in pH did 

not affect the Al3+ availability in solution. Lofton et al. (2010) found a critical Al3+ concentration 

between 11.3 to 14.7 mg kg-1 at which canola yield began to decline. Since many yield responses 

were variable below the previously documented critical Al3+ concentration, regardless of pH, it is 

assumed that other factors are influencing yield not associated with soil acidity or Al3+ 

concentration.  

 
Figure 11 Al and crop yield for each location. Chickasha: A, EFAW: B, N40: C, and Perkins: D. 

 

Greenhouse Results 

 Analysis of poultry litter biochar was done after pyrolysis and before application to the 

soil in the greenhouse trial. Three samples were taken and analyzed from the batch and 

measurements were averaged. Table 10 lists the factors analyzed and the average of the batch. 
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Table 10 Analysis of poultry litter biochar used in greenhouse trial. 

Factor Average Units of Measure 

pH 10.3 - 

P 3.49 % 

Ca 10.56 % 

K 5.83 % 

Mg 2.29 % 

Na 2.67 % 

S 1.42 % 

Fe 32822.57 mg kg-1 

Zn 1817.07 mg kg-1 

Cu 295.64 mg kg-1 

Mn 7874.24 mg kg-1 

B 138.30 mg kg-1 

Ni 38.43 mg kg-1 

Mo 29.67 mg kg-1 

Co 13.41 mg kg-1 

Se 32.77 mg kg-1 

W 52.82 mg kg-1 

TN 1.50 % 

TC 19.56 % 

 

Applications of biochar greatly decreased the KCl-extractable Al3+ concentration in the 

soil (Figure 11).  A significant decrease in extractable Al3+ concentrations was found with the 

application of the lowest rate of biochar, 2.24 Mg ha-1 (1 T ac-1). A difference of 28.23 mg kg-1 

was observed from 0 Mg ha-1 to 2.24 Mg ha-1 (p-value of 0.0038). In the following applications, 

the decrease in Al3+ concentration was not significant, although concentration continued to 

decrease as more biochar was applied. While the application of 2.24 Mg ha-1 (1 T ac-1) did result 

in significant declines in extractable Al3+, following the application of 5.56 Mg ha-1 (2 T ac-1), 

virtually no extractable Al3+ was noted.   

These results can be compared to other research where biochar was used as a liming 

source in order to render toxic elements unavailable as well as those where biochar was used as a 

means of alleviation. Hass et al. (2012) found that although biochar increased pH and caused 
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other essential plant micronutrients like Mg, Cu, and Zn to be more available, it also decreased 

the availability of some plant essential macronutrients that depend on lower soil pH, such as P, K, 

and S. In addition to altering the availability of elements in the soil solution, other research has 

documented the toxic element alleviation capabilities of biochar. Lin et al. (2018) documented the 

alleviation of Al3+ from the soil solution by analyzing the Al3+ uptake by cabbage plants. Al3+ 

content in the cabbage plants fell at least 12% from each of the three biochar treatment types (Lin 

et al., 2018). Therefore, while biochar can hinder other plant metabolic processes due to the 

decreased availability of those macronutrients caused by biochar application, it can also be 

beneficial in alleviating toxic elements from the soil as well. 

 

Figure 12 Biochar application replication averages with statistical significances. 
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CHAPTER V 
 

 

CONCLUSION 

 

 

 

Field Study 

Overall, pH is very influential to winter canola yield. Although critical soil pH levels 

were not found for a majority of the locations evaluated, this does not mean one does not exist.  

In a majority of locations, fewer data points than desired were observed above 6.0 soil pH. This 

might not allow for a critical pH to be determined. However, with adequate data points at and 

below 5.8, there is an indication that critical pH would be above these values.   

In soils where available/exchangeable Al3+ concentration exists naturally in the soil 

system, both soil pH and exchangeable Al3+ influenced canola grain yields. In these systems, soil 

pH and Al3+ were well related and soil pH was a good indicator of canola yield potential. Where 

Al3+ concentrations were low and the relationship between Al3+ and soil pH were not significant, 

canola yields were not directly related to soil pH. When soils are naturally low in Al3+, there is 

little to no yield response associated with low pH affecting present concentration. This resulted in 

fluctuating soil pH but only minor changes in canola grain yields. This would indicate that, in 

these conditions, soil pH analysis would have little indication on canola grain potential. Pairing
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soil pH analysis with an evaluation of exchangeable Al3+ would provide a better indication on the 

impact low soil pH would have on canola grain yields. Where Al3+ concentration is naturally low 

in the soil solution, indifferent of soil pH, yield response is due to other environmental factors. 

While there were no other samples taken or tests run to determine other factors influencing yield 

loss, it can be speculated that other elemental toxicities or environmental conditions had an 

influence on observed results. In specific cases like Chickasha where responses were scattered 

indifferent of the soil pH and Al3+ concentration, weather and other soil factors could be 

considered to provide further explanation of observed outcome.  

 

Greenhouse Study 

 Data suggests that biochar is an effective source of Al3+ alleviation from the soil. Overall, 

as biochar applications increased, Al3+ concentration decreased. While continued application of 

biochar decreased Al3+ concentration in the soil, no significant difference was made after 2.24 Mg 

ha-1 (1 T ac-1).  However, following initial applications, low concentrations of Al3+ remained in 

the soil.  Higher initial concentrations of Al3+ in the soil could result in further alleviation at the 

higher application rates. It should be noted these higher applications should not be harmful to the 

soil system but would have little impact on the goal of alleviating Al3+ in the soil system.  

When converting organic matter into biochar and applying it from a waste management 

standpoint, biochar will act as a binding agent to alleviate Al3+ as well as an organic matter 

addition to the soil without harm to the soil. This is helpful in waste management because the 

conversion from waste to biochar results in a much smaller volume of material compared to the 

raw organic material used in the conversion process. Therefore, excessive amounts of organic 

material can be converted into less than half the original volume and can be land applied as 

means of disposal. 
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 After an examination of the differences in biochar types and comparison to lime 

applications on soil properties, further research would be beneficial to provide more data on 

biochar and its effectiveness. 
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Figure 1A Chickasha plot map from 2015-2016 growing season. 

Chickasha

N

W + E

S

Rep 1 Rep 2 Rep 3 Rep4

41-10 4.0 44-10 5.5 45-25 4.5 45-25 6.0

44-10 46-15 46-15 46-15

45-25 45-25 44-10 44-10

46-15 41-10 41-10 41-10

41-10 4.5 46-15 4.5 45-25 7.0 45-25 5.5

44-10 44-10 44-10 46-15

45-25 41-10 41-10 41-10

46-15 45-25 46-15 44-10

41-10 5.0 46-15 7.0 46-15 6.0 45-25 4.5

44-10 45-25 44-10 46-15

45-25 41-10 45-25 44-10

46-15 44-10 41-10 41-10

41-10 5.5 44-10 5.0 45-25 4.0 44-10 5.5

44-10 41-10 44-10 45-25

45-25 46-15 41-10 41-10

46-15 45-25 46-15 46-15

41-10 6.0 46-15 6.0 44-10 5.0 46-15 4.0

44-10 41-10 41-10 44-10

45-25 44-10 45-25 41-10

46-15 45-25 46-15 45-25

41-10 7.0 41-10 4.0 41-10 5.5 46-15 7.0

44-10 44-10 46-15 41-10

45-25 45-25 45-25 44-10

46-15 46-15 44-10 45-25

Rep 1 Rep 2 Rep 3 Rep 4
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Figure 2A EFAW plot map from 2015-2016 growing season.  

Figure 3A North 40 plot map from 2016-2017 growing season. 

 

EFAW

N

W + E

S

Rep 1 Rep 2 Rep 3 Rep4

41-10 4.0 44-10 4.0 46-15 5.5 44-10 5.0

44-10 46-15 44-10 45-25

45-25 45-25 41-10 41-10

46-15 41-10 45-25 46-15

41-10 4.5 46-15 5.5 45-25 5.0 41-10 6.0

44-10 41-10 44-10 46-15

45-25 45-25 46-15 45-25

46-15 44-10 41-10 44-10

41-10 5.0 45-25 5.0 44-10 4.5 44-10 5.5

44-10 41-10 46-15 46-15

45-25 44-10 41-10 45-25

46-15 46-15 45-25 41-10

41-10 5.5 41-10 4.5 45-25 6.0 46-15 7.0

44-10 44-10 41-10 41-10

45-25 46-15 44-10 44-10

46-15 45-25 46-15 45-25

41-10 6.0 41-10 7.0 44-10 4.0 44-10 4.0

44-10 46-15 46-15 45-25

45-25 44-10 41-10 46-15

46-15 45-25 45-25 41-10

41-10 7.0 46-15 6.0 41-10 7.0 46-15 4.5

44-10 44-10 45-25 44-10

45-25 45-25 46-15 41-10

46-15 41-10 44-10 45-25

Rep 1 Rep 2 Rep 3 Rep 4

N40 2017

W

S + N

E

Range 1 Range 2 Range 3 Range 4 Range 5 Range 6 Range 7 Range 8

41-10 6.5 4.5 7.0 5.5 6.0 4.0 5.0 8.0 41-10

44-10 44-10

45-25 45-25

46-15 46-15

41-10 4.0 6.0 5.0 4.5 8.0 6.5 5.5 7.0 41-10

44-10 44-10

45-25 45-25
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41-10 5.5 8.0 4.0 7.0 5.0 6.0 4.5 6.5 41-10

44-10 44-10

45-25 45-25

46-15 46-15

Range 1 Range 2 Range 3 Range 4 Range 5 Range 6 Range 7 Range 8
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Figure 4A Perkins plot map from 2016-2017 growing season. 

Table 1A Crop yield from each location      

 

Perkins 2017

E

N + S

W

Rep 1 Rep 2 Rep 3

41-10 7.0 4.5 5.0 41-10

44-10 44-10

41-10 6.0 6.0 5.5 41-10

44-10 44-10

41-10 5.5 5.5 7.0 41-10

44-10 44-10

41-10 5.0 4.0 6.0 41-10

44-10 44-10

41-10 4.5 5.0 4.5 41-10

44-10 44-10

41-10 4.0 7.0 4.0 41-10

44-10 44-10

45-25 4.0 4.5 7.0 45-25

46-15 46-15

45-25 4.5 7.0 5.0 45-25

46-15 46-15

45-25 5.0 4.0 6.0 45-25

46-15 46-15

45-25 5.5 6.0 5.5 45-25

46-15 46-15

45-25 6.0 5.5 4.0 45-25

46-15 46-15

45-25 7.0 5.0 4.5 45-25

46-15 46-15

Rep 1 Rep 2 Rep 3

Location High Average Low

Chickasha 1977 1401 94

EFAW 3038 1939 15

N40 1279 1025 739

Perkins 672 341 19

Yield (kg ha
-1

)



44 
 

    
Figure 5A Relationships between soil pH and crop yield at individual locations 

Figure 5A Relationships between soil pH and yield for each cultivar at Chickasha 
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Figure 6A Relationships between soil pH and yield for each cultivar at N40 

       
Figure 7A Al3+ concentrations for each pot after application 

Figure 8A Canola seedlings in each pH gradient block at EFAW 
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Figure 9A Canola seedlings in each pH gradient block at Perkins 

 
Figure 10A Canola seedlings in each pH gradient block at N40 
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