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Abstract: Digital surface models (DSM), which are 3D representations of the Earth’s 
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directly through lidar acquisitions or indirectly through photogrammetric manipulation of 

aerial imagery. DSMs created using aerial imagery collected via unmanned aircraft 

systems are prone to having high elevation error in places with vegetation, because the 

photographs capture only the top-most surface and do not penetrate to the underlying 

topography. While many studies have acknowledged this error, few have quantified its 

magnitude and extent especially for areas involving wild grasses or areas of drastic 

elevation change. While a distinct correlation between grass height and DSM vertical 

accuracy was not found, this study assesses possible reasons for model inaccuracy and 

possible future improvement.   
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I. INTRODUCTION 
 

 

1.1. BACKGROUND 

The development of more affordable technology has expanded the horizons of 

what can be done with unmanned aircraft systems (UAS), allowing researchers to collect 

high resolution aerial images of individual study areas. Using Structure from Motion 

(SfM), a photogrammetric processing technique that matches objects from areas of 

overlap within aerial images to create accurate, three-dimensional (3D) models, 

researchers have been creating digital surface models (DSM). This UAS-SfM approach 

has been used to study a wide variety of applications, including archaeology (Jorayev et 

al., 2016), geomorphology (Lomolino et al., 2010), environmental monitoring (Turner et 

al., 2015; Ruzic, 2014), and agricultural modeling (Possoch et al., 2016). In some cases, 

the vertical accuracy of the DSMs created using the SfM method have been found to be 

comparable to light detection and ranging (lidar) data collected from a piloted aircraft (Bi 

et al., 2017; Fonstad et al., 2013), but UAS are able to be deployed more rapidly than 

manned aircraft, are relatively inexpensive to acquire, and are capable of low altitude 

data collection (Rango et al., 2009).  

Gathering aerial photos and generating topographic data using the UAS-SfM  

methodology is frequently employed in barren landscapes such as glaciers, cliffs, and 

landslides, as well as for building structure, but fewer studies have focused on the 
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topography of vegetated areas. Vegetation itself has been listed in many studies as a 

known source of error, but few studies have quantified the magnitude and extent of this 

error. This study seeks to contribute to current research by quantifying how much vertical 

error different types of grass communities contribute to UAS-SfM-derived models and 

investigating if this error is reliable enough to be used to predict ground measurements. 

In this work, the term vertical error or height uncertainty refers to the discrepancy 

between actual ground elevation and elevation estimated by SfM. The following literature 

review provides a conceptual foundation and framework for this thesis. 

1.1.2 UNMANNED AIRCRAFT SYSTEMS AND STRUCTURE FROM MOTION 

Photogrammetry has traditionally relied on images collected from piloted aircraft, 

with stereo pairs of photos allowing the direct measurement of elevation and feature 

heights. With increasing availability and development of technology, both the image 

collection and photogrammetric techniques have been automated, and high resolution 3D 

datasets are now being created with ease across the geosciences (Fonstad et al., 2013).  

SfM was initially developed to survey individual buildings or small objects 

(Snavely et al., 2008), although many studies have begun to use it to create 3D 

topographic datasets (Fonstad et al., 2013). SfM works by identifying corresponding 

features in different photographs using the Scale Invariant Feature Transform (SIFT) 

algorithm (Lowe, 2004), which uses computer vision techniques to detect and match local 

features in images. The Bundler tool then takes these matched features and adjusts them 

to identify their 3D position, orientation of the cameras, and the x,y,z location for each 

point located (Snavely et al., 2008). This information is used to create a sparse 3D point 
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cloud of features identified in the input photographs (Lucieer et al., 2014). A dense point 

cloud is then created using multi-view stereo (MVS) photogrammetry (e.g., PMVS 

[Furukawa and Ponce, 2009], CMVS [Furukawa et al., 2010])—i.e. SfM-MVS, simply 

referred to as SfM (Carrivick et al., 2016). The final model is often exported as a DSM 

raster, but this format simplifies points to fit a grid system and can be a source of error. 

Deriving accuracy by using point-to-point comparisons is more representative of true 

error (Wiseman et al., 2015).  

All matched points are plotted in 3D space (i.e.  x,y,z coordiantes). These 

thousands to millions of points are referred to in their entirety as a point cloud (like lidar 

data). Digital Terrain Models (DTMs) represent the elevation of bare earth across a 

landscape, while DSMs model the elevation of the entire landscape, including objects 

such as buildings and trees. Because SfM products such as DTMs and DSMs are derived 

from photos, there is only a single height value (z) associated at each x,y location, which 

is in contrast to products such as lidar-derived DTMs where there can be multiple height 

returns for each location. Therefore, SfM-derived products will frequently measure the 

top of vegetation as if it were ground, and accuracy may be compromised. Despite the 

importance of knowing the exact amount of error due to different vegetation types in 

SfM-derived products, a thorough understanding of vegetation effects is lacking.  

The creation of a topographic model with the aerial photogrammetric method 

begins with the flight of a camera. There are multiple forms of aerial devices used to 

acquire imagery, including kites and helium blimps (Fonstad et al., 2013), but UAS are 

increasingly being used by researchers who cite the benefits of automated flight 

(Carbonneau and Dietrich, 2017). UAS can be programed to fly predetermined flight 
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paths over the study area capturing images with a mounted camera. The objective of 

these flights is to capture as much of the study area as possible, from many different 

angles. Photos taken from nadir, the angle directly above the study area, are the most 

common, but this orientation only captures the results in more occlusion and detail can be 

missed (Harwin and Lucieer, 2012). To get a more detailed and accurate model, 

researchers have found that including multiple passes flown from angles oblique to the 

study area increases the accuracy of the end model (Lucieer et al., 2014). Accuracy can 

also be increased by creating sufficient overlap of photographs, typically 70-80% forward 

and 60-70% sidelap (Singh and Frazier, 2018; Lucieer et al., 2014).   

1.1.3 ACCURACY 

Accuracy assessment is the best way to examine the quality of the topographic 

model (Bi et al., 2017). Unlike with traditional photogrammetry, SfM algorithms 

generate point locations arbitrarily, i.e. without the added use of ground control points 

(GCPs) to create a 3D model (Snavely et al., 2008).  However, georeferencing the model 

using GCPs increases the overall model accuracy (Turner et al., 2012; Aguera-Vega et 

al., 2016). There are two common methodologies for georeferencing. The first method 

uses the UAS onboard Global Navigation Satellite System (GNSS) receiver to geotag the 

coordinates for each image taken (Singh and Frazier, 2017). These location data are then 

used to assist in camera identification for model creation and for georeferencing the 

model to a real-world coordinate system. Using coordinates from the UAS is referred to 

as the ‘direct’ method, but due to the instability of the aircraft and quality of the onboard 

GNSS receiver, these measurements can be less accurate than desired especially for high 

detail studies (Turner et al., 2012). A more accurate method is the ‘indirect’ method (Bi 
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et al., 2017), where the coordinate system is georeferenced using GCPs. These point 

locations are measured in situ with a high accuracy GPS, and the coordinates are used 

during processing to reference the model to a real-world coordinate system and to 

increase accuracy. After processing, the model’s accuracy is measured using check points 

(CP). These are flat, usually bare ground points measured across the landscape, but unlike 

GCPS, CPs are not used in model creation. Bi et al. (2017) demonstrated that that use of 

GCPs can significantly increase the overall accuracy of the model. In this case, the direct 

method yielded an average error of 2-3m, while the indirect method yielded an average 

error of 0.4m. Carbonneau and Dietrich (2017) suggest the direct method is comparable 

to the indirect but that more research is needed on this front.  

Accuracy protocols, as provided by Federal Geographic Data Committee (FGDC) 

and the American Society for Photogrammetry and Remote Sensing (ASPRS), include 

having at least 20, but recommended 30, spatially distributed GCPs that are measured 

with at least three times more accuracy than the derived dataset. Accuracy protocols also 

recommend that tests be reported with a 95% confidence interval, and values should be 

tested for normality and skewness. If the error is normally distributed, vertical accuracy 

should be reported as 1.9600* vertical RMSE (Federal Geographic Data Committee, 

1998; Wiseman et al., 2015). Many individual studies agree that there is a threshold 

number of GCPs above which root mean square error (RMSE) does not increase (Singh 

and Frazier, 2017). For example, Aguera-Vega et al. (2016) suggest around 15 - 20 GCPs 

per km2, while Gindraux et al. (2017) suggest a wider range of 10 - 20 GCPs. Both 

studies were executed in areas with little to no vegetation or terrain change.  
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1.2. TERRAIN MAPPING 

DTMs represent the height of the bare earth surface and are valuable tools for 

analysis. As such, they are used in a variety of disciplines including hydrological and 

erosion modeling (Wiseman et al., 2015). In multiple instances, SfM has been used to 

accurately create point clouds and DTMs of barren areas that are comparable in accuracy 

to lidar. Fonstad et al. (2013) mapped a stone riverbed with a handheld helium blimp. To 

calculate accuracy, the resulting SfM point cloud was compared to airborne lidar using 

point-to-point comparison (Carrivick et al., 2016). The average distance between SfM 

and lidar points was 27 cm, but the average distance just for the z direction was 60 cm. 

This study considered these results to be closer in accuracy to terrestrial laser scanning 

(TLS) but comparable to aerial lidar. A similar but more accurate method was put forth 

by Long et al. (2016), who created a DSM of tidal dunes in a lagoon inlet system. 

Accuracy was derived from CPs, and the authors found a 17 cm difference between the 

two datasets.  

The UAS-SfM method has been used to study a variety of different landforms, but 

most studies have focused on areas barren of vegetation (e.g., glaciers, sand dunes, river 

beds). Many of these studies have examined landslides to estimate soil movement. For 

instance, Niethammer et al. (2012), when studying a landslide with UAS 

photogrammetry, was able to create a model with a horizontal mean error of 5m. High 

error was attributed to the methods used when ortho-mosaicking photos using ArcMap. 

This error was avoided in the Turner et al. (2015) landslide study. Using SfM to create 

the point cloud directly from images, the authors found an accuracy of 4-5 cm in the 

horizontal and 3-4 cm in the vertical, which is comparable to airborne lidar. Accuracy 
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was derived from the non-active areas of the landslide. Similarly, Ruzic et al. (2014) 

found that SfM photogrammetry can define complex geomorphic structures, in this case 

cliff and undercuts. This study calculated an accuracy of 7 cm, which is within the limits 

of real-time kinematic (RTK) GPS precision (Ruzic et al., 2014). Another study 

completed in an area with similar structure to the study area assessed in this Thesis was 

by Uysal et al. (2015). UAS photogrammetry was performed using Agisoft PhotoScan to 

create DEM of small, rocky landform. Accuracy was calculated by comparing the point 

cloud against RTK mapped CPs, finding a vertical accuracy of 6.62 cm. The sources of 

error addressed were: weather, vibrations, lens distortions, and software limitations. 

While the UAS photogrammetric method is not free of errors even without vegetation, 

the amount of error in DSMs caused by the presence of vegetation has yet to be studied.   

1.2.1. VEGETATION MAPPING 

Due to photogrammetry being image-based, SfM data models are limited by 

visual line of sight. The creation of accurate DTMs can be difficult in areas where 

vegetation covers the ground, because SfM cannot penetrate vegetation to map the 

ground beneath as lidar can. While many studies have acknowledged vegetation sensing 

as a limitation of aerial photogrammetry (Bi et al., 2017; Johnson et al., 2014; Tonkin et 

al., 2014; Jorayev et al., 2016), few have assessed the impact of vegetation on DSM 

accuracy, specifically grasses. 

Even sparse vegetation can cause errors (Jorayev et al., 2016). Bi et al. (2017) and 

Johnson et al. (2014) listed object-based image analysis (OBIA) as a method of 

identifying vegetation for possible removal from the model. Rango et al. (2009) 
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quantified grasses in UAS imagery using OBIA, but this method only measures location 

and amount of land cover, not elevation beneath the vegetation, vegetation height, or 

plant density. Once identified, areas representing vegetation in the model can be 

removed, but this process isn’t necessarily practical. Jorayev et al. (2016) applied this 

method to a model of an archeological site but had to include some vegetation points in 

the final model to reduce the chance of smoothing actual topographic features. Even in 

areas where all vegetation points can be removed, the ground elevation values underneath 

the vegetation must be created based on an interpolation of the surrounding bare earth 

(Gillan et al., 2014) and are not necessarily accurate.  

Vegetation height and density are good indicators of habitat quality for many 

types of wildlife, and many photogrammetric studies have been applied to measuring 

flora without measuring the underlying topography. SfM-UAS has been successfully 

used to measure the leaf area index (LAI) in vineyards (Mathews and Jensen, 2013). This 

ratio of leaf surface area to ground surface area describes canopy density (Johnson, 

2003), which can be used to estimate vegetation vitality, and biomass (Mathews and 

Jensen, 2013).  

Estimation of shrub height and crown size in a rangeland area using SfM is also a 

proven possibility. In a DSM created from UAV imagery, Gillan et al. (2014) identified 

shrubs with OBIA, removed these points from the data by hand, and then interpolated 

new bare ground points into the holes to create a DTM. Vegetation height was then 

measured by subtracting the DSM from the DTM to create a normalized DSM or nDSM 

with relative heights from ground-level. On the ground, shrub location, height, species, 

and amount of ground cover were measured in field plots. A Pearson’s correlation 
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analysis between the photogrammetric and in situ measurements yielded significantly low 

mean height estimates from SfM for all shrubs, as SfM underestimated the shrub heights. 

However, dense shrubs were easier to discern from the landscape and were frequently 

measured more accurately. Grasses were too short to be adequately measured (Gillan et 

al., 2014).   

1.2.1.1. APPLICATIONS IN GRASS DOMINATED VEGETATION 

Applying aerial photogrammetric approaches to estimating heights of small 

vegetation had not been common because of the high resolution data needed for accuracy. 

This limitation has been somewhat resolved with the development of affordable higher 

resolution cameras (Gillan et al., 2014). The technology has been commonly applied to 

studies on agricultural vegetation, but not many have focused on solely grasses and other 

vegetation types that are not planted in systematic patterns (i.e. agriculture; Possoch et 

al., 2016).  

Tonkin et al. (2014) measured vegetation error as a side study while mapping the 

topography of a landscape using SfM. They compared the RMSE of shrubs to the RMSE 

of combined grasses and bare ground. The final model was compared to a 7,000-point 

total station survey to calculate RMSE. Unlike Gillan et al. (2014), this study did not 

compare the RMSE values to ground measurements of vegetation. Both studies agreed 

that photogrammetric methods are more accurate in areas with dense vegetation 

compared to sparse vegetation. Tonkin et al. (2014) found that dense vegetation produces 

a higher RMSE value compared with areas of sparse vegetation, up to 0.434 m in some 
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areas. Specific grass height and density was not mentioned, but as they were grouped 

with areas of bedrock, it can be assumed they were shorter than the shrubs. 

Possoch et al. (2016) measured grass height in an agricultural setting using SfM 

and UAS. Fitting with previous studies, they discovered that short grasses were 

frequently underestimated, and tall grasses were overestimated. This study determined 

that plant height as estimated by UAS is a reliable indicator of biomass, but further 

research is needed for validation (Possoch et al., 2016). While this study addresses the 

ability for UASs to measure biomass and distinguish different grass heights when 

compared to a separate DTM, it does not address the impact of grass on DSM vertical 

accuracy. 
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1.3. A CALL FOR FURTHER RESEARCH 

A rigorous assessment of the impact of grasses on vertical accuracy of DSMs 

derived from UAS-SfM in areas with ample topographic relief is missing to date. This 

study contributes to these initiatives by comparing elevation measurements based on 

UAS collected SfM photogrammetry to various heights and densities of grasses to assess 

if there is a predictable pattern between RMSE and grass height and density. This study 

will answer the following questions:  

(1) Does grass height impact SfM-derived DSM accuracy?  

(2) Does grass density impact SfM-derived DSM accuracy?  

(3) Is there a predictable relationship between the accuracy of the DSM as 

measured by root mean square error (RMSE) and grass height/density?
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II. DATA AND METHODS 
 

 

 

2.1 STUDY SITE 

This study focused on the largest mesa at Gloss Mountain State Park located near 

Fairview, Oklahoma (36.3620836 W, -98.582022 N) (Figure 1). Gloss Mountain, 

typically pronounced ‘glass’, is named for the sparkling selenite crystals that top the 

mountain and are eroding down the sides. The landscape is a series of mesas and buttes 

remaining from the retreating Blaine Escarpment, with the highest point in the park 

standing about 60 m above the surrounding plains, 490 ft above sea level (McPhail and 

Marston, ND.). Abrupt changes in elevation make this area a great candidate to study 

error within UAS photogrammetry models, as most accuracy studies have been carried 

out on relatively flat areas, and findings may not be generalizable to areas with different 

elevation types (Singh and Frazier, 2018). The park itself is almost one square mile and 

contains three main topographic features, but this study focuses only on the main mesa in 

the middle and the immediate surrounding land (Figure 1). A gravel road winds around 

the north side of the mesa to numerous oil well pads, providing flat bare ground for 

quality checkpoints. Vegetation typical of the mixed grass prairie covers much of the 

sides and base of the mesa including big bluestem (Andropogon gerardii), little bluestem 
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(Schizachyrium scoparium), Cattail (Typha angustifolia), Saltgrass (Distichlis spicata), 

silver stem grasses (Botriochloa spp.), Chenopodiaceae and other forbs, accompanied by 

scattered Juniperous virginia (Figure 2). 

 

2.2 UAS SURVEYS 

Data for all steps of this research were gathered with permission from the 

Oklahoma State Parks. Aerial imagery was collected within two hours of solar noon on a 

sunny day with minimal clouds in November 2017. Two automated flights were 

performed using a DJI Phantom 4 Pro with the standard camera attachment: 1/2.3” 

CMOS camera sensor with 12.4 M effective pixels. The aircraft was flown 122 m above 

the ground along parallel, approximately east-west flight paths with 80/60% forward/side 

overlap. The first flight path captured the entire mountain from a nadir perspective 

(Figure 3), and the second flight captured half the mountain with obliques at a 45° angle 

from the ground (Figure 4). Both flights were completed in several segments to permit 

battery changes whereby the UAS landed, the battery was changed, and the platform 

 

 

Figure 1. Gloss Mountain State Park 

with USA Topo Map basemap. 

Figure 2: Oblique photo of the northernmost 

point of the mountain covered by grasses and 

juniper. 
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automatically resumed its flight where it had left off. In total, the flights captured 1,427 

photos with a 3.8 cm resolution, which is high enough to differentiate species (Lu and 

He, 2017).     

 

2.3 FIELD DATA 

Prior to image acquisition, 31 GCPs were placed across the landscape, marked 

with paper plate targets (0.25 m diameter) (Figure 6) staked into the ground, with a black 

duct tape ‘X’ marking the center. Locations were randomly generated across the study 

site using the random point placement tool in ArcGIS, and the GCPs were placed as close 

to their assigned location as physically possible, given the terrain limitations. The GCPs 

were then mapped with a RTK GNSS unit (Figure 6) with a reported accuracy of 2 cm. 

  

Figure 3: UAS-collected nadir-

facing images 

Figure 4: Oblique images captured for the 

southern half of the study area.   
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The corresponding base station tripod for the RTK unit was placed on top on the 

mountain in the southwest corner overlooking much of the study area (Figure 7). 

 

Due to the sensitivity of collecting data within a State Park, permissions were 

granted in January 2018 to collect grass height and density measurements across the 

study area. The time lag between the flights in late November and these measurements in 

early January is not expected to impact results as the grasses were still dormant during 

the period (Figure 9). During the January data collection event, 30 2-m2 grass plots were 

chosen to represent a variety of elevations and vegetation heights across the study area, 

with 10 points on top of the mountain and 20 around the edges and base (Figure 8). At 

each plot, five measurements of minimum and maximum grass heights were recorded, 

one at each corner and one in the center (Figure 9), using the direct method as described 

by Stewart et al. (2001). Photos and notes were taken to record species and a visual 

approximation of vegetation structure. To measure ground cover, average leaf area index 
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(LAI) readings were taken with an AccuPAR LP-80 (Decagon Devices) across each plot 

from the North/South, and East/West orientations. Each plot center was located with the 

RTK unit. Twenty CPs were collected with the RTK unit on areas of bare ground near the 

grass plots. 

 

2.4 MODEL CREATION 

Prior to image processing, all coordinate data were manually removed from the 

photos to ensure an indirect georeferencing unbiased from the UAS metadata. The clean 

aerial images were then processed using SfM in Agisoft PhotoScan.  

A basic model was created using built-in processes within PhotoScan. First, 

images were aligned based on matching features between images. Because the photos had 

no location data, PhotoScan automatically calculated camera orientations and positions 

based on the images. From the aligned photos, a dense point cloud was generated on 

highest possible quality. Depth information was calculated based on the estimated camera 

positions (Agisoft, 2016). Once the process completed, noise and obvious outliers were 

manually removed from the point cloud.  
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The model was then georeferenced with the GCPs identified in each photo and 

tagged with their corresponding RTK-GPS coordinates. Before georeferencing, all RTK 

points were converted to a vertical orthometric with WGS 1984 projection using 

NOAA’s Vdatum tool to increase accuracy. A first draft model included all 31 GCPs, but 

a heat map of error values discovered a GCP with coordinates measuring over 3 m from 

its marker. It was determined that this GCP was erroneous, and removal of this outlier 

improved local model accuracy. The final georeferenced point cloud was created and 

exported to ArcMap as a point cloud and a DSM raster. 

2.5 VERTICAL ERROR CALCULATION 

To assess the model’s overall accuracy, the RMSE of height values was 

calculated against the bare ground CPs. The lowest RMSE values came from the DSM 

rasters because larger resolution DSMs smooth out small features likely to cause error 

(Gindraux et al., 2017). Although an unaggregated point cloud is the most accurate 

representation of a landscape (Wiseman et al., 2015), the 2 m DSM was chosen to match 

the relative accuracy of the averaged data from the 2 m grass plots. Computationally, 

processing the dense point cloud using ArcMap was intensive, making it difficult to 

create a 2 m plot with the grass point as the center, so the DSM was generated in SfM 

without reference to grass plot locations.   

 Point layers and DEMs were all projected to NAD1983 UTM Oklahoma North 

2011 (m) in Arcmap. Height values were paired using the Extract Values to Points tool, 

and the resulting layer was exported to Excel for calculation.  
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2.6 GRASS ERROR CALCULATION 

  A variety of linear least squares regressions were calculated using Statistical 

Package for the Social Sciences (SPSS) software to assess possible causes of error and 

determine any relationship between variables. Independent variables included max grass 

height, average grass height, grass density as represented by mean LAI collected by the 

ceptometer, and grass species. The dependent variable was model error. Four variables 

presented skewness in a normality check. Maximum grass height and average grass 

height were transformed logarithmically, and LAI and plot error with transformed with 

square root.   
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III. RESULTS AND DISCUSSION 

 

 

 

 

 
 

Multiple models were created in effort to test the most accurate SfM methodology 

for this data set, and the most successful model yielded an RMSE of 2.29 m. While the 

accuracy of this model is lacking, the final point cloud is evenly made, colorful, devoid of 

holes, and all around visually stunning (Figure 10).  The method that improved this  

 

model above the others was increasing the “quality” setting during dense cloud creation. 

SfM sets the default setting to “lowest” to reduce processing time, but increasing the 

quality obtains more detailed and accurate geometry because the processing is done with 

original photos, instead of downsizing them to save time (Agisoft PhotoScan User 
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Manual, 2016). Despite differences in computational efficiency (this highest accuracy 

model required 8.5 days longer to process), the vertical RMSE results are relatively 

similar to the low setting: 2.49 m vs. 2.29 m, for the lowest and highest respectively. 

Overall, model vertical error measured by the control points ranges from -0.96 to 

5.43, and the grass plot error ranges from -1.2 to 4.7. While there is variation among the 

grass plot error, it seems to be more related to spatial location than to any of the grass 

variables. The tallest grass plot was dominated by a cattail species (44.88 cm) located on 

the northwest side of the mesa with a vertical error of 2.92 m. The shortest grass plot 

(1.65 cm) also on the northwest side of the mountain has a similar error of 2.13 m. The 

full table of these grass values can be found in Appendix A, and Table 1 shows species 

averages and standard deviations. If grass height was the main cause of error in this 

model, we would expect these tallest and shortest grass measurements to mirror the range 

of the overall error, instead of their location as they do now. Measuring grass height 

through height uncertainty requires that there be minimal uncertainty from other factors, 

and that does not appear to be the case in this model. 

Table 1: Plot averages by dominant species. 
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Regression results found neither correlation nor significance in prediction 

capability for any of the variables tested. Forward and backward stepwise regressions 

were performed, but no variables were found to be significant enough to be included. 

Error regressions were performed with a variety of different data combinations, without 

species data, abnormally distributed variables were transformed, yet no significant results 

arose (Table 2). While it is reasonable to assume based on previous research that some of 

the model error was caused by grasses (Possoch et al., 2016), there appears to be too 

much error from other sources (see Section 3.1) to draw any firm conclusions from these 

data. The following section will assess other possible sources of error based on the spatial 

distribution. 

 

 

 

Table 2: Results of the enter regression with all original variables 
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3.1. OVERALL MODEL ERROR 

RMSE of the GCPs was 1.12 m. as calculated by SfM. Adjusting the GCP pins to 

match the computer suggested points (as marked by blue flags) did decrease RMSE to 

almost 0, but the flags were often several meters away from the paper plate markers. 

While it’s unclear exactly how this is calculated, it might indicate that at least part of the 

model’s overall vertical error must originate in the construction of the point cloud and is 

not necessarily introduced by just grasses. 

The overall model has issues common in studies concerning topography and 

vegetation. To decrease the chance of grass pixels getting filtered out as noise, when 

creating the dense cloud, the depth filtering option was changed from the SfM default 

aggressive, to moderate. This step created a very noisy and inaccurate point cloud, so it is 

thought this setting is possibly designed to be effective with higher resolution imagery. In 

a future study, decreasing the flying height could increase resolution and therefore 

increase overall model accuracy (Santise et al., 2014), but it would also increase the time 

required for image capture along with the number of photos and time needed for 

processing. Time is important especially when working with a study area of this size, 

because the passing of the sun increases the change in shadows between nadir and 

oblique photo collections. Shadows are an issue because they introduce a change in visual 

pattern on the landscape that can be interpreted by SfM as an individual surface. While 

none of the grass plots lay in the shadow of the mesa itself and collecting near solar noon 

minimized the length of shadows, there are still shadows within the grasses that could 

have caused misreadings with SfM (Figure 11). In another study by Mortensson et al. 

(2017), the appearance of shadows in 4 cm grass on flat ground increased height 
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uncertainty (RMSE) in a DEM produced with Agisoft PhotoScan by a factor of four. The 

authors suggested that flying under total cloud cover could further minimize shadows, 

although this could decrease reflectance and contrast, leading to a less accurate DSM.  

Error also could have been caused by the difference in color between nadir and 

oblique photos. Oblique photos captured the region’s bright red soil more vibrantly than 

the nadir (Figure 11), which could have been difficult for the feature-matching algorithm 

in SfM to interpret. If this were the dominant cause of error, there would be a north/south 

spatial pattern in the distribution of error matching the half of the mesa covered by the 

oblique photos, instead of the existing east/west distribution. Even though it is not the 

dominant cause of error, this still may have introduced some error when measuring depth. 

  

Figure 11: Difference in color between the oblique (left) and nadir (right) images 

 

The output from SfM with the least amount of vertical error is the 2 m 

resolution DSM. Although point clouds are known to be more accurate (Wiseman 

et al., 2015), there were technical issues with managing such a large file across 

software platforms. Exporting the full point cloud provided too much data for 

ArcMap to process, yet only exporting the areas of concern caused an error with 

the .laz to .las convertor, assumedly due to the lack of spatial continuity of that 
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data. The optimal situation would create each cell in the DSM to overlap centroids 

with the grass plots. It is unclear exactly how SfM calculates DSM rasters, but as 

it is unlikely that each cell perfectly overlaps the grass plots, this inclusion of 

points bordering the grass plots is worth considering as a source of error.  

 

Figure 11. An example nadir photo captured along the edge of the 

mesa showing small shadows within the grasses.  
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3.2 SPATIAL DISTRIBUTION OF MODEL ERROR 

 

 

 

The most distinct result for all of the models created with this dataset is 

the spatial distribution of vertical height error across the mesa. The point cloud 

shows a general pattern of west to east decrease in error (Figure 12). This model 

has a distinct east/west pattern to the errors, where points on the west side of the 

mesa are generally overestimated, while the points on the east are underestimated 

(Figure 12). This error distribution was not likely caused by the flightlines, as 

those ran east and west. The pattern also doesn’t follow the route the RTK took 

when measuring plot points. Error distributions also appear to be spatially 

independent of average LAI and average grass height per plot. Although there are 

Figure 12: Error distribution in the model has an east/west pattern. 
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many more plots dominated by Botriochloa species on the east side, the error 

underestimation pattern isn't limited to those plots, indicating that this error is also 

independent of dominant grass type. Maps of these three variables can be found in 

Appendix B. An additional regression was attempted for this model with the 

addition of elevation values, but results did not change. There does not appear to 

be any large shadows in the model, except for around the immediate edges of the 

mesa away from any check or grass points. During collection, the sun angle was 

primarily from the south, and rose to the south west during image capture (starting 

altitude of 32.5, Azimuth E of N was 167.5 (Astronomical Applications Dept., 

2018). There is a chance that this error pattern was caused by a camera angle 

issue, difference in shadows, or a change in lens glare, which has been known to 

cause error in models (Uysal, 2015). 

3.3 CONCLUSION 

  This project created a DSM using UAS collected aerial imagery of Gloss 

Mountain State Park to measure the impacts of grass height and significant topography 

on DSM accuracy. Average grass height for the study area was 0.79m, which was stifled 

by the extra error from the rest of the model’s RMSE of 2.29 m. There are many probable 

factors that led to the model’s high RMSE value including a difference in color between 

nadir and oblique images and possible lens glare from the sun. Regressions attempting to 

predict grass height, density, and species found neither correlation nor significance. In 

sum, there appears to be too much noise from the additional model error to determine 

exactly how much error originated from the grasses. Other studies have been successful 

at creating models with Agisoft PhotoScan SfM of topography (Ruzic et al., 2014), of 
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vegetation (Possoch et al., 2016), and identifying species (Lu and He, 2017), therefore in 

the future with more accurate data, it is reasonable to assume species identification in 

areas with topography using UAS derived data can be completed. 
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APPENDICES 

 

Appendix A. Grass plot results  

 

Plot Error(m) AvgMaxGrass AvgGrass LAI Dom.Species 
Co-

Dom.Species 

1 1.748139014 11.57 5.04 3.39 Big Bluestem  Little Bluestem 

2 0.723674951 18.50 8.98 2.99 Big Bluestem    

3 1.645825879 7.17 1.73   Beardgrass sp   

4 1.342040527 11.18 1.97 0.27 Forb Little Bluestem 

5 2.71799375 7.64 2.05 1.02 Forb Beardgrass sp 

6 2.787755176 13.94 7.56 3.59 Big Bluestem  Little Bluestem 

7 1.051235986 10.55 3.39 0.87 Little Bluestem   

8 4.19681875 9.37 2.83 2.11 Little Bluestem   

9 4.570113428 22.60 12.76 3.45 Little Bluestem   

10 4.6763104 9.06 4.65 2.2 Chenopodiaceae Big Bluestem  

11 2.924664307 44.88 21.26 1.8 Cattail   

12 3.437651611 7.01 5.28 2.12 Saltgrass   

13 3.057850098 10.39 3.94 1.99 Saltgrass Little Bluestem 

14 3.092077051 12.20 5.67 4.13 Beardgrass sp Sideoats grama 

15 2.496416357 15.20 7.87 2.37 Beardgrass sp   

16 2.139457324 4.02 1.65 0.45 Beardgrass sp Saltgrass 

17 0.699309424 10.71 5.28 2.54 Beardgrass sp   

18 -0.504390283 10.24 5.75 4.95 Beardgrass sp Little Bluestem 

19 -0.53540332 9.61 4.80 1.401 Beardgrass sp Little Bluestem 

20 -0.979993359 11.57 5.20 5.94 Beardgrass sp   

21 0.490702637 7.09 4.72 0.71 Beardgrass sp Little Bluestem 

22 -0.204660059 12.99 7.40 3.4 Little Bluestem Botriochloa sp 

23 0.935110596 7.72 1.81 0.92 Beardgrass sp Big Bluestem  

24 0.40054707 12.05 5.43 1.89 Beardgrass sp Big Bluestem  

25 -0.520347607 13.62 5.67 2.47 Beardgrass sp Big Bluestem  

26 -0.692211426 9.53 3.70 1.76 Little Bluestem Switchgrass 

27 2.725210645 23.70 11.18 1.81 Big Bluestem    

28 3.642492187 15.67 5.35 1.42 Beardgrass sp Little Bluestem 

29 -0.840986133 2.99 1.77 0.33 Saltgrass   

30 -1.203753516 6.38 3.15 1.72 Beardgrass sp   
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Appendix B. Maps of dominant species, average grass height, and average LAI per plot: 
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