# EXPLORING CRITICAL CONFORMATIONS: STATE SEARCHING AND SAMPLING IN BOTH GERMANIUM CHAINS AND ICE 

By<br>GENTRY H. SMITH<br>Bachelor of Science in Chemistry<br>Southern Nazarene University<br>Bethany, OK, USA<br>2016<br>Submitted to the Faculty of the<br>Graduate College of<br>Oklahoma State University<br>in partial fulfillment of the requirements for the Degree of<br>Master of Science<br>December 2018

# EXPLORING CRITICAL CONFORMATIONS: STATE SEARCHING AND SAMPLING IN BOTH GERMANIUM CHAINS AND ICE 

Thesis Approved:

Dr. Christopher J. Fennell
Thesis Advisor

Dr. Jindal K. Shah

Dr. Jimmie D. Weaver

## ACKNOWLEDGMENTS

To Oklahoma State University, for providing the environment in which I have been able to study, teach, and research.

To the HPCC and the individuals who manage it for providing a powerful cluster for computations and continuous support for technical issues.

To my advisor, who instructed and assisted me in research.
To my parents, by blood and marriage, who have always encouraged me toward higher goals.

To my wife, Miranda, who has supported me for over five years.

[^0]Name: GENTRY H SMITH
Date of Degree: December 2018
Title of Study: EXPLORING CRITICAL CONFORMATIONS
Major Field: CHEMISTRY
Abstract: Molecular conformation plays a critical role in the properties of systems in both the condensed or vapor states. The ensemble of conformations dictates structural properties, average energy, heat capacities, and other thermodynamic and dynamic quantities. Here, we explore the role of conformation in proton ordering and orientational defect formation in ice as well as strategies for exhaustive conformer searching for molecules using Group IV element backbones. In the ice systems, we show algorithmic strategies for seeking optimized proton disordered crystals that satisfy the Bernal-Fowler ice rules. In the Group IV molecule investigations, we develop an automated strategy for seeking the optimal low energy conformer and uncover previously unreported deficiencies in common computational software used in investigating Germanium complex energies.

## TABLE OF CONTENTS

Chapter Page
I Introduction ..... 1
I. 1 Computational Chemistry: Chemistry on the Computer ..... 1
I. 2 Relevant Computational Methods ..... 1
I.2.1 Quantum Mechanical Methods and Basis Sets ..... 2
I.2.1.1 Ab Initio Methods ..... 2
I.2.1.2 Density Functional Theory Methods ..... 3
I.2.1.3 Semi-Empirical Methods ..... 4
I.2.1.4 Basis Sets ..... 5
I.2.2 Monte Carlo Molecular Modeling ..... 6
I. 3 Hardware ..... 7
I. 4 Software ..... 8
I.4.1 Programs ..... 8
I.4.2 Programming Languages ..... 9
II On Algorithms for Building and Sampling Disordered Crystal States ..... 11
II. 1 States and Properties of Ice ..... 11
II.1.1 Bernal-Fowler Ice Rules ..... 11
II.1.2 Forms of Ice ..... 12
II.1.3 Ice $\mathrm{I}_{h}$ ..... 12
II.1.4 Comparison between Ice XI and Ice $\mathrm{I}_{h}$ ..... 13
II. 2 Method Design ..... 14
II.2.1 Method Tools and Information Management ..... 14
II.2.2 Pseudorandom Rearrangement of Water Molecules and Gener- ation of Bjerrum Defects ..... 17
II. 3 Results of Method ..... 19
II. 4 Comparison to Buch's Method ..... 20
II. 5 Comments on Limitations and Proposed Improvements ..... 21
III Germanium Compounds and QM Concerns ..... 23
III. 1 The Initial Problem: Germanium Study ..... 23
III.1.1 Computational Complexity of Germanium Compounds ..... 23
III.1.2 Parameters of Work and Previous Collaborator's Results ..... 24
III.1.3 Design and Approach to Solution ..... 26
III.1.3.1 Design 1: Occam's Smallest Razor ..... 26
III.1.3.2 Design 2: A Blunt Effort ..... 27
III.1.3.3 Design 3: Death by 1.59 Million Cuts ..... 31
III.1.4 Scale Reduction Efforts ..... 33
III.1.5 Efforts at Simplification ..... 34
III. 2 Discovery of a Consistent Inconsistency ..... 38
III. 3 Final Thoughts ..... 42
IV Sampling Conformation Landscapes by Rotatable Bond Degrees of Freedom ..... 43
IV. 1 A Brief History on Conformation Landscapes ..... 43
IV.1.1 Levinthal's Paradox ..... 43
IV.1.2 Levinthal Golf Courses ..... 43
IV. 2 Purpose of Project ..... 44
IV. 3 Design of System ..... 46
IV.3.1 Variation of Theory and Basis Set Usage by System Size and largest atom type ..... 46
IV.3.2 Computational Optimization by Varying Resolution ..... 46
IV.3.3 Inherent Complications ..... 48
IV. 4 Results ..... 48
IV.4.1 Difficulties and Anticipated Future Approaches ..... 51
References ..... 52
A Ice Ih to Ice XI Conversion ..... 55
A. 1 Brief Sample of Ice XI .PDB File ..... 55
A. 2 Code: Crystal Disorganizer Tool ..... 55
B Germanium Landscape ..... 67
B. 1 Sample Gaussian 09 Germanium File ..... 67
B. 2 Building Group 4 Chains ..... 70
B. 3 Collecting and Comparing Torsional Data ..... 72
C Conformation Landscapes ..... 79
C. 1 Code: hexagermane-transall.pdb ..... 79
C. 2 Code: ge4h.pdb ..... 84
C. 3 Progress on Torsion Minimizer System ..... 84

## LIST OF TABLES

Table Page
III. 1 Collaborator's Hexagermanium Energies by Conformation (unspecified DFT, $6-31 \mathrm{G}(\mathrm{d})$ basis set, energy in Hartrees and kJ/mol) . . . . . . . 24
III. 2 Data of B3LYP/STO-3G minimization of variations of pentagermane compound at various conformers. DNC denotes a failure to converge with the self-consistent field method. . . . . . . . . . . . . . . . . . . 29
III. 3 Data of B3LYP/STO-3G minimization of variations of hexagermane compound at various conformers. DNC denotes a failure to converge with the self-consistent field method. . . . . . . . . . . . . . . . . . . 30
III. 4 Energy comparison of HF theory with 6 -31G(d) basis set across multiple computational programs. The expected $\Delta \mathrm{E}$ should be positive. . 39

## LIST OF FIGURES

Figure Page
II. 1 Water phase diagram. Taken from Brini et al. ${ }^{1}$ ..... 12
II. 2 Example Tetrahedral positions of a water molecule. The two spheres represent potential proton positions roughly occupied by lone pairs. ..... 16
II. 3 "Before" image of Ice XI ..... 19
II. 4 "After" image of generated ice $\mathrm{I}_{h}$ ..... 20
III. 1 Fully trans configuration of pentagermanium-based compound. ..... 24
III. 2 Fully trans configuration of hexagermanium-based compound. ..... 25
III. 3 Sample Newman projection of cis-butane. ..... 26
III. 4 Visualization of rotatable bonds in hexagermane molecule colored by bonded atoms. Green: Ge-Ge, red: Ge-phenyl C, blue: Ge-isopropyl C. ..... 32
III. 5 Visualization of a trans-cis-trans hexagermane structure. ..... 34
III. 6 Sample torsion plot at reduced energy scale. ..... 35
III. 7 Visualization of a multiple pure group IV torsions at various theories and basis sets ..... 37
III. 8 A curious seemingly-inverted torsion plot of butagermane. ..... 39
III. 9 Hartree Fock energy minimization of butagermane torsion run at vary- ing basis sets. ..... 40
III.10Minimization of butagermane torsion run at varying theories and the6-31G(d) basis set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41III.11B3LYP energy minimization of butasilane torsion run at 6-31G(d) basisset41
IV. 1 Example Levinthal Golf Course taken from Dill et al. ${ }^{2}$. . . . . . . . . 44
IV. 2 Flow of method design for variable resolution conformation landscape search.
IV. 3 Example variable resolution search chart of two dihedrals with lowenergy blue to high-energy red.47
IV. 4 Highlighted torsions of the hexagermane molecule by type of bond, where green, red, and blue represent Ge-Ge, Ge-phenyl, and Ge-isopropyl torsion centers, respectively. . . . . . . . . . . . . . . . . . . . . . . . 49
IV. 5 Highest energy conformer of o-nitrophenol, ignoring any ring strain conformations. This structure was notably unable to rotate and form the expected hydrogen bond between the ortho nitro and hydroxyl. . 49
IV. 6 Lowest energy conformer of o-nitrophenol. Formed the expected hydrogen bond between the ortho nitro and hydroxyl. . . . . . . . . . . 50

## CHAPTER I

## Introduction

## I. 1 Computational Chemistry: Chemistry on the Computer

For nearly a century, computational methods have greatly assisted chemists in their efforts of research and discovery. Five computational chemists have been awarded the Nobel Prize in Chemistry. Laureates include Walter Kohn and John Pople in 1998 and Martin Karplus, Michael Levitt, and Arieh Warshel in 2013. Since the early 1960s, chemists have specialized in using computer systems to solve chemical problems.

Computational chemistry is now recognized as its own field rather than a subspecialty within physical chemistry as computational chemists continue to develop efficient methods to calculate large and complex simulations. These simulations typically rely on theoretical methods adapted to run highly efficiently on computers. While initial computational methods were designed to solve wave functions and atomic orbitals, the scope quickly expanded into multiple fields of chemistry as more methods were developed to confirm or predict properties of molecules and systems. ${ }^{3,4,5}$ This introduction serves to introduce necessary background information generally relevant to the methods developed and utilized in the following chapters.

## I. 2 Relevant Computational Methods

Analytical descriptions of molecular systems are ideal simulation goals as they provide a complete description of a process. However, it is often impossible to provide analytic solutions for complex systems. This complexity usually drives numer-
ical approaches to instead approximate chemical systems of interest. While not exact, these numerical approximations can produce values consistent with experimental data. Usually limited by the size of a system, multiple numerical methods exist to analytically solve or closely approximate a system by way of solving or approximating the quantum mechanical wave function. Methods relevant to this work include $a b$ initio, density functional, semi-empirical, and Monte Carlo methods. Many other methods exist but are not directly relevant to this work.

The first hurdle in any computational system is the likely impossibility of analytically solving the problem. In a system with more than two particles, this multi-body problem usually cannot be solved analytically, excepting cases like the dihydrogen cation, due to the electron-electron correlation term being situationally dependent. ${ }^{6}$ Here, we will focus on systems of such complexity that numerical approaches will be of greatest interest.

## I.2.1 Quantum Mechanical Methods and Basis Sets

In computational chemistry, quantum mechanical methods generally refer to computational methods that attempt to solve, or closely approximate, the electronic Schrödinger equation given nuclei and electron position information to determine properties of the system like energies or electron densities. Because the Schrödinger equation is impossible to solve exactly for many-body systems, different methods use different approximations to balance between accuracy of the approximation and efficiency of computation.

## I.2.1.1 Ab Initio Methods

Ab initio, or "from first principles," methods refer to calculation methods that rely solely on physical constants as external values. By design, ab initio methods avoid using any empirically-acquired data and rely on theoretically calculated values. The
development of these methods allowed computational chemists to solve a new class of problems and resulted in John Pople and Walter Kohn receiving the Nobel Prize in Chemistry in 1998 for their work. The ab initio method utilized in this work is the Hartree-Fock (HF) method used to determine the energy of a many-body system in a stationary state, which is to say time-independent. ${ }^{7}$ Known initially as the selfconsistent field method, the HF method utilizes approximations defined by the basis set to approximate the Schrödinger equation. The consistency of this self-consistent field method arose by the requirement that the final calculated field be self-consistent with the initial field. An additional property of HF is that electron-electron repulsion is not taken into account, requiring that a basis set account for this interaction. As larger basis sets are used, the overall energy of the wavefunction is decreased toward a value known as the Hartree-Fock limit. This limit is approached as the larger basis sets approach the exact solution of the non-relativistic Schrödinger equation without spin orbital terms. The calculation of relativistic and spin terms require a further method known as Post-Hartree-Fock, which is not used considered further in this work.

## I.2.1.2 Density Functional Theory Methods

Density Function Theory (DFT) Methods function very similarly to ab initio methods in how Slater-type orbitals are used to approximate the Schrödinger equation, but differ in that DFT utilizes some empirical data to speed up the calculation process. ${ }^{8}$ These simplifications are able to model exchange and correlation interactions very well, however the reliability of calculated properties, specifically intermolecular interactions, dispersion forces, and other internal properties are greatly reduced. Just as with ab initio methods, DFT methods require a basis set definition for the approximation calculations. DFT methods exist as pure DFT methods or as hybrid functional methods. Pure DFT methods excel in computing systems much more ef-
ficiently than with HF methods, but at the cost of accuracy. These pure functionals do not rely as much on HF terms and instead use a more general expression. Hybrid functional methods act as DFT methods but with the inclusion of HF terms that require additional computation. Both DFT and hybrid functional methods use an exchange and correlation part. ${ }^{8}$ The exchange part attempts to fix density problems from DFT approximations while the correlation parts fixes electron correlation problems including two electrons of identical spin occupying the same position.

One pure DFT method used in this work is BLYP, which utilizes the Becke exchange with the Lee-Yang-Parr correlation part. ${ }^{9}$ Some hybrid functional methods used are the B3LYP, M06L, and PBE methods. The B3LYP utilizes the BLYP but combined Becke's exchange with the exact energy from HF theory. M06L, known as the Minnesota functionals, depend on kinetic energy density values from databases. It specifically was designed to work well with transition metals, inorganics, and organometallics. ${ }^{10}$ The PBE method, developed by Perdew, Burke, and Ernzerhof, is another method with similar levels of accuracy to B3LYP that attempts to increase the number of HF-exchanged functionals. ${ }^{11}$

## I.2.1.3 Semi-Empirical Methods

Like DFT, semi-empirical methods also pull somewhat from Hartree-Fock methods, but rely even more on approximations and empirical data to nearly completely substitute out any proper calculation of the Schrödinger equation. These data can produce fairly accurate results to experimental data, but rely heavily on a similarity between the subject molecule and the database molecules. Due to its restrictive scope, semi-empirical methods excel in organic chemistry calculations where relatively few elements are used with systems with hundreds of atoms. ${ }^{12}$ Additionally, various semi-empirical methods have been designed to produce results with close accuracies to specific sets of experimental data. Two methods used in this work, AM1 ${ }^{13}$ and

PM3, ${ }^{14}$ reproduce well heats of formation, dipole moments, ionization potentials, and structural geometries. Unlike the other methods described so far, basis sets are not used at all in the calculation of energies and properties.

## I.2.1.4 Basis Sets

While running calculations, both $a b$ initio and DFT methods require basis sets to represent the electronic wave function as a system of algebraic equations that can be efficiently calculated. While basis sets can be designed with atomic orbitals or plane waves, this work focus primarily on basis sets designed with atomic orbitals. The two most often used types of orbitals are Gaussian-type and Slater-type orbitals. Slater-type orbitals (STOs), named after the physicist John Slater who introduced them in 1930, ${ }^{15}$ function as a linear combination of atomic orbitals (LCAO) adopted as a molecular orbital. STOs notably exhibit similar features as Schrödinger-based orbitals, excepting that STOs have no radial nodes.

Gaussian-type orbitals (GTOs), introduced by S. Francis Boys in 1950, ${ }^{4}$ also function as orbitals in the LCAO method. GTOs are similar to STOs in premise, but have further reduced realism when compared to Schrödinger-based orbitals. One example of this is the lack of accuracy of electron density near the nucleus. While exhibiting a lesser accuracy, GTOs excel in computational efficiency compared to STOs. This allows GTO-based calculations to compute more orbitals. Specifically, Boys designed GTOs as a method of approximating STOs.

Basis sets are often grouped by their sizes. The smallest sets, known as minimal basis sets, use a single basis function for each orbital. The most common minimal basis set, STO-nG where n is an integer usually between 2 and 6 , was first proposed by John Pople in 1969. ${ }^{3}$ This method describes that a Slater-type orbital can be approximated using n Gaussian orbitals. These STO-nG approximations end up fitting electron densities well at all radial distances except those close to the nucleus.

The STO-3G basis set used in this work is a popular basis set as the 3 Gaussian-type orbitals approximation works well for atoms in the [H-Xe] range.

The other basis sets used in the work fall under the category of split-valence basis sets. These basis sets represent valence electrons with more than one basis function, which allows for electron density to be more flexible in different molecular systems. The most common form of these basis sets was introduced by John Pople as the XYZg form and are commonly referred to as Pople basis sets. ${ }^{16}$ These follow the form that each orbital basis function is comprised of X Gaussians. The Y and Z represent an additional linear combination of Gaussian functions made of Y and Z Gaussians that compose the valence. These basis sets are not limited to two valence functions, referred to as a double-zeta, and can also be triple- or quadruple-zeta. Additional values, typically denoted by one or two stars, one or two plus signs, or explicitlydefined orbital combinations in parentheses can also be used to further expand the basis set as desired. The star notation defines a polarization function for heavy atoms to account for d and f polarizations. The plus signs denote diffuse functions that moreaccurately represent less common valence electrons like carbanions that may diffuse further out from the nucleus.

## I.2.2 Monte Carlo Molecular Modeling

Another method of simulating chemical systems is known as Monte Carlo methods, or MC. While not named until the 1950s, MC methods were first seen in the $18^{\text {th }}$ century thought experiment Buffon's needle. ${ }^{17}$ In his work, Buffon proposed dropping $n$ needles of length $l$ onto a plane with parallel lines spaced $t$ units apart. Buffon worked out that the probability, $P$, of a needle crossing one of the lines to be $P=\frac{2 l}{t \pi}$. Solving for $\pi$, the probability can be rearranged as $\pi=\frac{2 l}{t P}$ to approximate $\pi$. Since $P$ can also be approximated by dividing the number of needles crossing one the of the lines, $h$, by the $n$ needles as $P=\frac{h}{n}$, the approximation can be expressed as $\pi=\frac{2 l * n}{t h}$.

This method of randomness was improved upon by Stanislaw Ulam while working at Los Alamos National Laboratory in the late 1940s by introducing Markov chains to favor the probability of events occurring. Ulam shared this work with John von Neumann and together they created a program to run on the Electronic Numerical Integrator and Computer (ENIAC) capable of computing this favored version of random sampling. As the project was secretive due to being used as a part of the Manhattan Project, a collaborator named Nikolas Metropolis suggested the name Monte Carlo due to Ulam's uncle's propensity to gambling at a casino in Monaco of the same name. ${ }^{18}$ Later dubbed Markov Chain Monte Carlo (MCMC) sampling, this allowed for random sampling to instead become a virtual statistically-appropriate sampling method. At the most common level, MC methods apply probabilistic forces to a random interaction to generate a numeric approximation. Eventually published in 1949 by Metropolis and Ulam, this introduced MC methods to chemical simulation packages. ${ }^{19}$

## I. 3 Hardware

Since computation methods were developed slightly before and during the rise of modern computers, early calculations were performed by hand with minimal assistance by machines. Over time, these methods were increasingly assisted by early computers and further development eventually led to the first computational programs. These first computers, like the ENIAC and its successor Electronic Discrete Variable Automatic Computer (EDVAC) offered computation power in the order of a few dozen to a few thousand operations per second.

For this work, the majority of calculations were computed on the Oklahoma State University Cowboy Cluster. Available since 2012, this cluster collectively offers the computing power of 3048 cores and 8576 GB of RAM, totaling 48.8 trillion FLoating point Operations Per Second (Tera FLOPS or TFLOPS).

## I. 4 Software

If hardware denotes the realm of study of a computational chemist, software denotes the tools. By utilizing preexisting packages and developing new and more advanced tools, computational chemists are able to simulate a wide variety of chemical systems.

## I.4.1 Programs

While chemical computational programs have existed for nearly 50 years, additional programs have relatively recently developed to aid in the visualization and depiction of chemical systems. Gaussian, developed by John Pople and his team, was the first popular ab initio computation program. Released as Gaussian 70 in 1970, it has received regular updates and capability expansions, and is one of the most widely-used computational chemistry tools available in its latest iteration, Gaussian 16. Gaussian tends to carry a lot of influence in the computational community for being one of the oldest packages around.

In addition to Gaussian, many other chemical computational packages exist. Two additional packages used in this work are GAMESS, ${ }^{5}$ a package also in active development since the 1970s led by Mark Gordon, and NWChem, ${ }^{20}$ a popular open source package developed by Pacific Northwest National Laboratory since the late 2000s.

Once a set of calculations has completed, investigators often report the calculated system graphically through visualization tools. These tools are also popular among any investigator wishing to represent a compound or system as more than its molecular formula. Two visualization tools used in this work are Avogadro and UCSF Chimera. Avogadro, in development since 2008, is a relatively simple molecular visualization tool designed to work across multiple operating systems. ${ }^{21}$ UCSF Chimera, developed by the Resource for Biocomputing, Visualization, and Informatics (RBVI) at the University of California, San Francisco, focuses on more advanced represen-
tations of compounds and systems. It allows for multi-structure files to generate videos of simulations and also provides a powerful Application Program Interface for programmatically creating or altering molecules and systems. ${ }^{22}$

## I.4.2 Programming Languages

A final note should be made about programming languages and their usage in general and in this work. Programming languages have existed for as long as computers. From original punch cards and bitwise commands to modern interpreted languages, programming languages allow investigators to control computers to enact explicit commands. In a way, the job command files in computational tools like those in Gaussian and GAMESS are programmatically used as a programming language to tell a system to enact a calculation of type X on system Y with Z parameters. Even these tools utilize code to enact their commands, usually in older and highly efficient languages like C and Fortran that are compiled into machine code. Because these tools directly interact with hardware to complete an immense number of calculations, efficiency is key.

One language almost exclusively used in this work is Python. ${ }^{23}$ The Python programming language has recently become one of the most used programming languages for scientific analysis. This is possibly due to Python's initial development focus of data analysis, support for extensions by the development team, and ease of use. As a scripted type language, Python is not compiled for specific hardware like code written in C and Fortran languages, but certain packages and extensions can take advantage of those efficiency boosts to improve Python's effectiveness. Math and science packages like NumPy ${ }^{24}$ and $\mathrm{SciPy}^{25}$ interface with C code to rapidly speed up complex mathematic evaluations like matrix manipulations while retaining the usability expected in Python. Additional packages like Cython ${ }^{26}$ will take a completed Python script and compile much of it in C code to greatly improve efficiency and reduce the
computational strain on the system.
As will be seen in this work, code can be used to generate and run these sets of code, effectively creating an automated function that can operate as a tool within a tool. One aspect of this is abstracting out methods and basis sets to that of a computational requirement and level of accuracy, which will be discussed in chapter IV.

## CHAPTER II

## On Algorithms for Building and Sampling Disordered Crystal States

## II. 1 States and Properties of Ice

## II.1.1 Bernal-Fowler Ice Rules

First described in John Desmond Bernal and Ralph H. Fowler's 1933 paper, the Bernal-Fowler Ice Rules are the foundational observations of how water molecules interact in an ice structure. ${ }^{27}$ Although a bent, divalent molecule, water possesses an electronic tetrahedral structure that allows for four interactions on each molecule. The two protons each allow for a hydrogen bond with a lone pair from a neighboring oxygen atom. Similarly, the oxygen atom's two lone pairs each allow for a hydrogen bond with a neighboring proton. While a hydrogen bond is typically defined as an attractive interaction between a proton and one lone pair of electrons on Nitrogen, Oxygen, or Fluorine, this work restricts the definition to a computational implication. Here, a hydrogen bond refers to the space between two oxygen atoms in a crystal where exactly one proton and lone pair are directed toward one another according to BernalFowler ice rules. Fortunately, this difference is sufficiently small for visualization programs like Avogadro to still recognize hydrogen bonds between a rotated hydrogen atom and corresponding neighboring lone pair. These rules are fairly rigid in the sense that every water molecule can interact with two oxygen atoms and two protons from four surrounding water molecules. These are also relatively relaxed in the sense that, once hydrogen bonded, each of the four attached water molecules can occupy one of three rotational positions. Including the 6 orientations of the central water, 486


Figure II.1: Water phase diagram. Taken from Brini et al. ${ }^{1}$
microstates exist from these five waters.

## II.1.2 Forms of Ice

While ubiquitous in the ' $\mathrm{I}_{h}$ ' form, ice water has many phases. As of the writing of this work, there are 18 experimentally established forms of ice. These forms usually occur in cubic, hexagonal, and orthorhombic crystal structures. As can be seen in figure II.1, the system pressure and temperature are primary characteristics of which phase will form. The subject of this work will be on the proton-ordered orthorhombic ice XI and its proton-disordered isomer, ice $\mathrm{I}_{h}$.

## II.1.3 Ice $\mathbf{I}_{h}$

Ice $\mathrm{I}_{h}$ naturally forms at temperatures below 273.15 K at pressures in the 1 Pa to 100 MPa range, ${ }^{28}$ with some temperature curving off into the vapour and liquid phases
at very high and very low pressures as seen in figure II.1. As the most commonly found form on earth, ice $\mathrm{I}_{h}$ is the most relevant form for computational studies involving ice systems.

As famously discussed by Linus Pauling, hexagonal ice water contains a residual entropy at very low temperatures. ${ }^{29}$ This residual entropy in ice goes according to Boltzmann's entropy equation $S=K_{B} L n W$ where $W=\left(\frac{3}{2}\right)^{N}$ for $N$ molecules in the crystal. At near absolute zero temperatures, the residual entropy will not reach zero as the disordered water could settle into one of many microstates that fit the "disordered" description. Pauling additionally predicted that an ice structure with perfectly ordered protons may exist at sufficiently low temperatures with zero residual entropy.

## II.1.4 Comparison between Ice XI and Ice $\mathrm{I}_{h}$

While ice $I_{h}$ is known as the most common form of ice found on the planet, it is much more difficult to computationally generate than an ice XI crystal. The ease of generation of an ice XI structure stems from the repetition of a unit cell with consistent layering and orientation throughout the crystal lattice.

With ice $\mathrm{I}_{h}$ crystals, the proton-disordered form introduces entropy by way of rotational disorder of water molecules. The disordered protons allow for a greater number of microstates in the organization of the crystal, increasing the multiplicity and, by its very definition, entropy. As the protons and lone pairs are no longer consistently ordered, hydrogen bonds may no longer form properly at all interaction sites. Fortunately, this difference is sufficiently small for visualization programs like Avogadro to still recognize hydrogen bonds between a rotated hydrogen atom and corresponding neighboring lone pair. The interaction of proton with proton or lone pair with lone pair are not hydrogen bonds and are considered defects in the lattice. These are known as Bjerrum defects and referred as D with two protons or L with
two lone pairs interacting. ${ }^{30}$ Conversely, hydrogen bonding does not occur if Bjerrum L or D defects occur between the oxygens. An ice structure of randomly oriented molecules without consideration of hydrogen bonds will likely produce defects at many interaction sites across the lattice and weaken the integrity of the crystal, leading to stability problems while running simulations. In generating the crystal, the cause of these defects must be considered and countered effectively. While other stable hydrogen bonding structures may exist, they would either break the Bernal-Fowler ice rules or alter the structure away from the specified form.

## II. 2 Method Design

## II.2.1 Method Tools and Information Management

The primary objective is to convert an easy-to-make ice XI crystal into an ice $\mathrm{I}_{h}$ crystal. Because the key difference in structure is the proton-orderedness, it might be possible to rearrange the water molecule orientations in a pseudorandom way to create an ice $\mathrm{I}_{h}$ crystal. This section walks through the method developed to convert ice XI into ice $\mathrm{I}_{h}$, the results of initial testing, and imperfections discovered in the design.

Python was chosen as the programming language of the tool due to its versatility and the ease of development due to the "pseudocode" written style and the availability of scientific packages including SciPy and NumPy. Python version 2.7 was specifically utilized. Crystal files where defined and saved as Protein Data Bank (.pdb) files as this format allows for defining multiple molecules within a larger structure with a simple X, Y, Z grid position format. An example of this is provided in Appendix A.

To create an ice XI .pdb file, an ice XI cell of eight water molecules can be tiled to create a sufficiently large crystal. The primarily used crystal consists of a $3 \times 3 \times$ 6 cell repetition totaling 432 water molecules.

It is important that the crystal be read and stored in an efficient method to keep
relevant information about each molecule easily accessible. As the file is read in, each molecule is stored as an entry in a multidimensional array where the first index is the molecule number. Further, the second index defines the molecule number where 0 is oxygen and 1 and 2 are the protons. The third, fourth, and fifth indices define the X, Y, and Z position coordinates. This is functionally identitical to the .pdb format data, but compresses the data across multidimensional arrays for iterative use.

Identifying the neighboring molecules proved computationally difficult. The most effective method is to find the closest four molecules by computing a distance between every two oxygen atoms. This ensures every molecule is considered, but also presents significant hurdles. First, a distance calculation utilizes a computationally-inefficient square root calculation. The inefficiency lies in the binary-based command for calculating a square root that often utilizes either a logarithmic solution or a Newtonian approximation that typically requires $16-64$ processor cycles. This square root computation can be entirely bypassed by instead comparing the squared-distance between molecules and finding the lowest values. These squared-distances scale identically to the square root value for all distances greater than one, which is true for the ice XI structures sampled in this work.

Second, molecules positioned along the sides will not have four neighbors in a non-periodic crystal. This is accounted for by shifting all six sides to make a pseudoperiodicity for these edge cases. Those periodically-neighboring molecules are flagged with a shifting value in the neighboring atom array by specifying a translation in the $\mathrm{x}, \mathrm{y}$, or z axis values.

Once these four neighboring oxygen atoms have been discovered for each water, the four hydrogen-bond interactions according for Bernal-Fowler ice rules with the neighbors describe an orientation defined by the location of each water's protons and lone pairs located at coordinates called tetrahedral positions.

An important aspect of pseudorandom selection is the existence of a bank of op-


Figure II.2: Example Tetrahedral positions of a water molecule. The two spheres represent potential proton positions roughly occupied by lone pairs.
tions. Utilizing the ingestion portion of the tool to calculate and store all orientational possibilities proves effective for tracking position options. In this work, tetrahedral positions are defined as the four positions that a proton may occupy about a water molecule as the four electron groups extend from the oxygen. For each water molecule, the first two tetrahedral positions are defined by the positions of the two hydrogen atoms. The other two positions are found by rotating one hydrogen atom $120^{\circ}$ twice about the vector from the oxygen atom through the other hydrogen atom and storing the resulting positions as tetrahedral positions three and four. Prior to rotation, the third and fourth positions are occupied by lone pairs. According to the .pdb file style, though, lone pairs are implied from the atom data and are not explicitly stated in the file data. This allows for passive relocation of the lone pairs by redefining the proton positions about the water. A visualization of these four tetrahedral positions, two read and two generated, are shown and labeled in figure II.2.

In a equally-repulsed tetrahedral molecule, electron group angles are 109.5 ${ }^{\circ}$. This method does not produce an exactly correct tetrahedral position of potential hy-
drogen atoms due to the slightly acute $104.5^{\circ} \mathrm{H}-\mathrm{O}-\mathrm{H}$ bond created by the variance in repulsive forces between the two lone pairs of electrons and two hydrogen atoms. Fortunately, this difference is sufficiently small for visualization programs like Avogadro to still recognize hydrogen bonds between a rotated hydrogen atom and corresponding neighboring lone pair. Currently, the method does not correct for these minor angle variations and relies on the user to anneal the crystal by way of simulation to fully adjust the angles. Future versions of this method may account for the variations.

## II.2.2 Pseudorandom Rearrangement of Water Molecules and Generation of Bjerrum Defects

Once the tetrahedral positions have been defined, each water molecule is ready to rotate. What may seem the most crucial step in this methods ends up being the most simple. The act of rotating each proton about the corresponding oxygen atom in a crystal is as simple as iterating through and pseudorandomly selecting two tetrahedral positions from each water for protons to occupy. The new position data is saved to a new crystal array file similar to the parent generated during the initial file read. These new positions are determined sequentially and "instantaneously" in the time-independent manipulation of the crystal. An important note is that this rearrangement does not consider the orientations of neighboring molecules and likely introduces Bjerrum defects. The likelihood of a defect-free interaction lattice forming is nearly zero and is presumed to have a large number of defects within the lattice. For example, the first molecule reoriented will have a $\frac{5}{6}$ chance of containing a defect.

After all water molecules have been rearranged, defects between incorrectly-interacting hydrogen bonds must be found and corrected. Discovering the defects relies on the detection of neighboring molecules and the appropriate interacting hydrogen atom or electron lone pair. As previously discussed, the initial data ingest records and detects the nearest water molecules and determines the tetrahedral position containing the
interacting space, be it electron lone pair or hydrogen atom. From that data, the detection of a valid hydrogen bond is as simple as checking both interacting tetrahedral positions between two neighboring waters and confirming that they do not both contain or lack a hydrogen atom. Each water maintains a count of how many defects are present among the four positions, which can be collectively averaged for a per-molecule defect average. Likewise, these defects can be summed and halved to produce a total number of defects in the crystal. Each molecule holding its own defect count allows for contextual changes during the correction step.

Once the hydrogen bond defects have been discovered and marked, each needs to be corrected. The most direct approach to this is to sequentially walk through each defect and repeat the pseudorandom rotation until the number of defective regions is zero or a user-specified value. The current implementation sorts the defect list by the number of defects and attempts to fix the most defective molecules first because of the highest-density entropy introduced into the system. These most defective molecules may include defects impossible to solve by simple rotation, specifically when neighboring molecules have collectively directed three or four hydrogen atoms or electron lone pairs at the target water. These can only be solved by adjusting one or more of the neighboring molecules until the number of hydrogen atoms and electron lone pairs have balanced. Unfortunately, this high-defect problem can quickly escalate if the neighboring molecules contain the same problem of unbalanced hydrogen atoms and electron lone pairs. The current solution is to recursively check for and fix these impossible interactions first, but has not yet yielded a defect-free crystal in testing.

The current design of the method allows for the user to specify a threshold of defects as an average per molecule. For example, a threshold of 2.5 will allow a maximum of 3 defects on any given molecule and will continue to correct defects until the average number of defects per molecule is equal to or below 2.5. Because each of these defects will be counted twice, once for each molecule, the total number of


Figure II.3: "Before" image of Ice XI
defects in a crystal can be determined by multiplying the average defect value by the number of molecules and dividing by two. As of the current implementation, the method cannot reliably produce a crystal with a threshold below 2 as it will continue to recursively search until the system runs out of available memory and crashes without finalizing the structure. The memory overflow is due to the infinite recursion instead of repeatedly storing new crystal data.

## II. 3 Results of Method

When supplied with an input ice XI crystal, an output structure with rotated water molecule orientations strictly consistent with ice $\mathrm{I}_{h}$ describes a success at the most basic level. An example before and after of the method is given in figures II. 3 and II.4. As can be seen, the "after" image has experienced rotation and can no longer be classified as ice XI. Instead, it can be considered a proton-disordered orthorhombic ice crystal similar to ice $\mathrm{I}_{h}$.

Unfortunately, the result is not without defect. When following the subsequent layers in the crystal, patterns emerge. Inconsistently, some rows of waters remain


Figure II.4: "After" image of generated ice $\mathrm{I}_{h}$
consistent. Some of these are a uniform rotation of both hydrogen atoms consistent across rows. These consistent rows can be observed in figure II. 4 toward the centerleft and center-right along the into-the-page axis. Multiple trials yield internally unique results, yet all contain these strange consistencies. This may be due to some accidental pattern in the method's implementation. A scoring function to analyze the "randomness" of the crystal would confirm whether this pattern is imagined or real.

## II. 4 Comparison to Buch's Method

In her 1998 paper, Victoria Buch proposed a MC-based system for converting ice XI to ice $\mathrm{I}_{h} \cdot{ }^{31}$ In that method, an ice XI crystal would have all protons dissociated from oxygens by moving them to halfway between corresponding oxygens. By placing protons in the middle of two oxygens, this allowed MC methods to pseudorandomly move the protons toward one or another oxygen. Once moved, the Bernal-Fowler rules are applied to increase the chance of a proton association switch being accepted for invalid waters.

As a comparison to this work, Buch's method is more likely to successfully produce a defect-free ice $\mathrm{I}_{h}$ crystal. In its current state, this work's method is not as efficient nor as effective as Buch's method. As a potential for future development, this method allows for defects to exist as a state value which could be used for annealing studies.

## II. 5 Comments on Limitations and Proposed Improvements

During the hydrogen bond defect correction step, a weakness in the design is that any clustering or regions of high defect density will not be treated uniquely. This allows the existence of a highly-defective region within the larger structure that could potentially cause problems when the crystal is used in simulations. The prevalence and occurrence of these defects have not been studied in this work, but seem a natural inevitability of statistics. A potential solution with partial development will score regions based on the number of defects as a weighted function expanding out from a central molecule for $N$ connections.

For example, consider a specific water defined as level 1. The neighboring four molecules are defined as level 2 , and continued onward excepting already-defined molecules out to an $N^{t h}$ level. No special considerations for waters with fewer than four neighbors are necessary as periodic generation would allow "edge" waters to interact with the periodic continuation waters. The number of defects in each level can be counted and averaged. Then a depressive factor along the lines of $\frac{1}{\text { level }}$ can be used to diminish the value of defects further away from the first-level molecule. This would create a value for each molecule that shows the relative density of defects centered about that specific molecule and could even be plotted as a gradient change within the crystal. The general approach to a scoring mechanism may take a form similar to equation II.1. If effective, a scoring function like below would build a better queue for the defect correction step in an MC fashion as it works toward identifying
and reducing the defect density.

$$
\begin{equation*}
\text { Value }=\sum_{l=1}^{N_{\text {levels }}}\left[\frac{1}{l} * \frac{1}{N_{\text {molecules }}} * \sum_{m=1}^{N_{\text {molecules }}}\left[N_{\text {defects }, m}\right]\right] \tag{II.1}
\end{equation*}
$$

## CHAPTER III

## Germanium Compounds and QM Concerns

## III. 1 The Initial Problem: Germanium Study

During Fall 2016, Dr. Christopher Fennell was approached by Dr. Charles Weinert of OSU to continue a collaborative effort in sampling conformation energies of two germanium-based compounds of interest to Dr. Weinert's work. Seen as an opportunity to train a new graduate student in conformational calculations, this project was delegated to me. The initial focus was to create the two compounds in a 3D modeling program, save a file of each, run a conformation optimization program on a supercomputer, and read the output to report the findings. As detailed below, this work led to impossibilities, curiosities, and inconsistencies that resulted in a general solution and a discovery of a flaw in a popular computational program.

## III.1.1 Computational Complexity of Germanium Compounds

Publications on germanium computational efforts are not as common as many other main group elements. Of those extant publications, the majority of final published data involve a Density Functional Theory (DFT) with either the 6-31G(d), $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$, or $6-311 \mathrm{G}(2 \mathrm{~d})$ basis set. ${ }^{32}$ As with most other lighter elements calculated with Pople basis sets, the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set is most commonly used for the final energy calculation. ${ }^{33,34}$


Figure III.1: Fully trans configuration of pentagermanium-based compound.

| Conformation | Energy $\left(E_{h}\right)$ | $\Delta$ Energy $\left(E_{h}\right)$ | $\Delta$ Energy $\left(\frac{\mathrm{kJ}}{\mathrm{mol}}\right)$ |
| :--- | :--- | :--- | :--- |
| Trans-coplanar | -15014.8403143 | 0.0066255 | 17.39525025 |
| Cis-Trans-Cis | -15014.7983311 | 0.0486087 | 127.6221418 |
| Trans-Cis-Trans | -15014.8469398 | 0.0000000 | 0.0000000 |
| Cis-Trans-Trans | -15014.8246918 | 0.0222480 | 58.412124 |

Table III.1: Collaborator's Hexagermanium Energies by Conformation (unspecified DFT, 6-31G(d) basis set, energy in Hartrees and kJ/mol)

## III.1.2 Parameters of Work and Previous Collaborator's Results

The two subject germanium-based compounds are very similar: a germanium backbone with terminal isopropyl groups and internal phenyl rings. One compound constituted a pentagermanium chain while the other a hexagermanium backbone. The molecular formula for both is $\operatorname{Pr}_{3}^{\mathrm{i}} \mathrm{Ge}\left(\mathrm{GePh}_{2}\right)_{\mathrm{n}} \mathrm{GePr}_{3}^{\mathrm{i}}$ where n equals 3 for the pentagermanium or 4 for the hexagermanium compounds, respectively. An example image of both compounds in their fully-trans configurations are provided in figures III. 1 and III.2.

Dr. Weinert had worked previously with a collaborator who provided conformation data supplied in table III.1. An unspecified DFT method with the 6-31G(d) basis set was used. Additionally, the cis and trans terms were not explicitly defined.


Figure III.2: Fully trans configuration of hexagermanium-based compound.
Unfortunately, the collaborator is no longer active in research and was inaccessible for clarification.

The approach of labeling the conformation shape of each compound, given the many points of torsion, focuses on the backbone structure. As the raw data from the collaborator was not available, the general dihedral angles of cis and trans proved a vexing focus for initial efforts at conformer design. Using Newman projections like in figure III. 3 as a visual guide, each Ge-Ge bond was defined as cis or trans based on the relative angle produced by the two adjacent bonded Ge atoms to each subject Ge. Specifically, the bonds are marked cis if the most acute angle is $90^{\circ}$ or fewer, and likewise trans if greater than $90^{\circ}$ up to the maximum $180^{\circ}$. Effectively the cis and trans angles coincide with gauche and anti-periplanar in organic structure nomenclature These cis and trans terms are preferred over gauche and anti as the dihedral angles are not necessarily restricted to eclipsed or staggered angles. Terminal germanium atoms are not considered as a part of the conformation nomenclature. This is partly due to the definition in labeling where the terminal germanium does not have an adjacent germanium for the measured relative angle, in addition to the


Figure III.3: Sample Newman projection of cis-butane.
assumed $\mathrm{C}_{3}$ symmetry of the terminal Ge with three isopropyl groups reducing the relative effects of terminal germanium rotation. Effectively, only dihedrals formed by four consecutive Ge are given a cis or trans label.

## III.1.3 Design and Approach to Solution

The initial approach involved an attempt at basic replication of the collaborative results. As detailed below, the design gradually grew in complexity as a learning process. Eventually, curiosities in results and a desire to automate an objective search algorithm developed into two unique investigations.

## III.1.3.1 Design 1: Occam's Smallest Razor

With each non-terminal Ge-Ge dihedral initially labeled cis or trans for $0^{\circ}$ or $180^{\circ}$, about 3 unique pentagermanium and 6 unique hexagermanium structures were built visually on a 3D visualization program (Avogadro). These were rotated with-
out consideration for the phenyl rings populating the non-terminal Ge atoms. Each molecule was subjected to an energy minimization in Gaussian 09 with the B3LYP hybrid function and STO-3G basis set as a single particle in a vacuum.

Unsurprisingly, only the fully trans conformers successfully converged (a $22 \%$ success rate) into a stable form. These troubles were likely caused by the poor design of the initial conformers. With initial results, the conformer design was altered into a more systematic approach with some consideration for the phenyl rings.

## III.1.3.2 Design 2: A Blunt Effort

In the second iteration of the conformer design process, a greater number of backbone conformers were generated. Instead of the simple $180^{\circ}$ opposition between the cis and trans conformers, more intentional initial angles seen in Newman projections were selected. Specifically, the anti and both gauche angles were chosen for the natural local minima in a non-bulky molecule, with both gauche angles (60 and 300) labeled as cis and the anti angle (180) as trans. For initial conformer design, these backbone angles were limited to three positions: $60^{\circ}, 180^{\circ}$, or $300^{\circ}$. For the hexagermanium compound, these structures were sequentially labeled trans-trans-trans, trans-transcis, trans-cis-trans, et cetera until all major unique conformers were produced. For clarity, each conformer was identified by the dihedral angles (60-60-60, 60-60-180) in increasing order (Ge 1-2-3-4, Ge 2-3-4-5, Ge 3-4-5-6 dihedral). The phenyl rings on the non-terminal Ge atoms were left untouched from an initial steepest-descent minimization available from Avogadro initialized in the fully trans conformer.

To prevent potentially strong interactions between adjacent phenyl rings, an additional steepest-descent minimization from Avogadro was computed with the conformerdefining Ge-Ge dihedral angles locked in place. Additionally, a visual inspection of the phenyl rings and manual adjustments were utilized on Avogadro to reduce the chance of a relatively high energy local minima conformer. The phenyl rings usually
were settled in a form of $\pi$ stacking or some kind of perpendicular ring interaction, based on relative energy stability according to the immediate simple minimization available.

To further avoid backbone rotation restrictions, variations of the bulky molecules were also produced. These included versions where the phenyl rings were replaced by methyl groups and also where the isopropyl ends were additionally replaced by methyl groups. The intention in these designs were to observe the shift in relative energy between the sets of conformers to determine how significant of a role the phenyl rings and isopropyl groups played. These variations, along with the original form structures, were subject to the same calculations as in the first design: Gaussian 09, B3LYP hybrid functional, STO-3G basis set, no angle restrictions, single particle in a vacuum, otherwise default parameters. The results of these calculations are tabulated in tables III. 2 and III.3.

Immediately obvious in the table are the considerable number of nonconverged results. A bulkiness trend followed that a fully methylated variation of the structure was most likely to converge to a stable state, while the fully internal phenyl structures with methyl ends slightly reduced convergence and the original fully internal phenyl structures with isopropyl ends drastically reduced convergence. A deeper exploration into the change of stability is a promising avenue for future investigation, but was not further explored in this work. As can be seen in table III.3, the lowest energy conformer for each structure varied greatly, but never included the fully trans conformer and only once the collaborator-reported trans-cis-trans conformer as the most stable. Still, given the considerable amount of nonconverged conformers, a new design was necessary to further improve the scope of the lowest energy conformation search.

| Internal <br> Species | Terminal <br> Species | Conformer | Final Energy <br> (Hartrees) | $\Delta$ Energy <br> (Hartrees) | $\Delta$ Energy <br> $(\mathrm{kJ} / \mathrm{mol})$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| methyl | methyl | $60-60$ | -10738.91336 | 0.0000454 | 0.119 |
| methyl | methyl | $60-180$ | -10738.9134 | 0 | 0 |
| methyl | methyl | $60-300$ | -10738.91286 | 0.0005358 | 1.407 |
| methyl | methyl | $180-60$ | -10738.91325 | 0.0001533 | 0.402 |
| methyl | methyl | $180-180$ | -10738.91335 | 0.0000475 | 0.125 |
| methyl | methyl | $180-300$ | -10738.91336 | 0.0000451 | 0.118 |
| methyl | methyl | $300-60$ | -10738.91336 | 0.0000455 | 0.119 |
| methyl | methyl | $300-180$ | -10738.91287 | 0.0005357 | 1.406 |
| methyl | methyl | $300-300$ | -10738.9107 | 0.002703 | 7.097 |
| phenyl | methyl | $60-60$ | -11875.15183 | 0.0001451 | 0.381 |
| phenyl | methyl | $60-180$ | -11875.15144 | 0.0005304 | 1.393 |
| phenyl | methyl | $60-300$ | -11875.15197 | 0 | 0 |
| phenyl | methyl | $180-60$ | -11875.14282 | 0.0091505 | 24.025 |
| phenyl | methyl | $180-180$ | -11875.15004 | 0.0019354 | 5.081 |
| phenyl | methyl | $180-300$ | -11875.15064 | 0.0013353 | 3.506 |
| phenyl | methyl | $300-60$ | -11875.06665 | 0.0853257 | 224.023 |
| phenyl | methyl | $300-180$ | DNC | DNC | DNC |
| phenyl | methyl | $300-300$ | -11875.1497 | 0.0022723 | 5.966 |
| phenyl | isopropyl | $60-60$ | DNC | DNC | DNC |
| phenyl | isopropyl | $60-180$ | -12341.23176 | 0.0053028 | 13.923 |
| phenyl | isopropyl | $60-300$ | DNC | DNC | DNC |
| phenyl | isopropyl | $180-60$ | DNC | DNC | DNC |
| phenyl | isopropyl | $180-180$ | -12341.23513 | 0.001935 | 5.08 |
| phenyl | isopropyl | $180-300$ | DNC | DNC | DNC |
| phenyl | isopropyl | $300-60$ | DNC | DNC | DNC |
| phenyl | isopropyl | $300-180$ | -12341.23706 | 0 | 0 |
| phenyl | isopropyl | $300-300$ | DNC | DNC | DNC |

Table III.2: Data of B3LYP/STO-3G minimization of variations of pentagermane compound at various conformers. DNC denotes a failure to converge with the selfconsistent field method.

| Internal Species | Terminal Species | Conformer | Final Energy (Hartrees) | $\Delta$ Energy (Hartrees) | $\Delta$ Energy <br> (kJ/mol) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| methyl | methyl | 60-60-60 | -12870.91834 | 0.0009503 | 2.495 |
| methyl | methyl | 60-180-60 | -12870.91929 | 0.0000004 | 0.001 |
| methyl | methyl | 60-180-180 | -12870.91813 | 0.0011628 | 3.053 |
| methyl | methyl | 60-180-300 | -12870.91869 | 0.0005972 | 1.568 |
| methyl | methyl | 60-300-300 | DNC | DNC | DNC |
| methyl | methyl | 180-60-60 | -12870.91897 | 0.0003189 | 0.837 |
| methyl | methyl | 180-180-60 | -12870.91833 | 0.0009585 | 2.517 |
| methyl | methyl | 180-180-180 | -12870.91929 | 0.0000004 | 0.001 |
| methyl | methyl | 180-180-300 | -12870.91929 | 0.0000003 | 0.001 |
| methyl | methyl | 180-300-60 | -12870.91897 | 0.0003192 | 0.838 |
| methyl | methyl | 300-60-180 | DNC | DNC | DNC |
| methyl | methyl | 300-180-60 | -12870.91929 | 0 | 0 |
| methyl | methyl | 300-180-180 | DNC | DNC | DNC |
| methyl | methyl | 300-180-300 | -12870.91814 | 0.0011527 | 3.026 |
| phenyl | methyl | 60-60-60 | DNC | DNC | DNC |
| phenyl | methyl | 60-60-180 | -14385.89674 | 0.0052183 | 13.701 |
| phenyl | methyl | 60-60-300 | -14385.89487 | 0.0070829 | 18.596 |
| phenyl | methyl | 60-180-60 | DNC | DNC | DNC |
| phenyl | methyl | 180-60-60 | DNC | DNC | DNC |
| phenyl | methyl | 180-60-180 | -14385.90195 | 0 | 0 |
| phenyl | methyl | 180-60-300 | -14385.89855 | 0.0033998 | 8.926 |
| phenyl | methyl | 180-180-180 | -14385.83838 | 0.0635763 | 166.92 |
| phenyl | methyl | 180-300-180 | -14385.79233 | 0.1096251 | 287.821 |
| phenyl | methyl | 300-60-60 | DNC | DNC | DNC |
| phenyl | methyl | 300-60-180 | -14385.89836 | 0.003597 | 9.444 |
| phenyl | methyl | 300-60-300 | -14385.89836 | 0.0035979 | 9.446 |
| phenyl | methyl | 300-180-60 | DNC | DNC | DNC |
| phenyl | methyl | 300-300-300 | DNC | DNC | DNC |
| phenyl | isopropyl | 60-180-180 | -14851.9865 | 0 | 0 |
| phenyl | isopropyl | 60-300-60 | DNC | DNC | DNC |
| phenyl | isopropyl | 60-300-180 | DNC | DNC | DNC |
| phenyl | isopropyl | 180-300-60 | DNC | DNC | DNC |
| phenyl | isopropyl | 180-300-180 | DNC | DNC | DNC |
| phenyl | isopropyl | 180-300-300 | DNC | DNC | DNC |
| phenyl | isopropyl | 300-300-60 | DNC | DNC | DNC |
| phenyl | isopropyl | 300-300-180 | DNC | DNC | DNC |
| phenyl | isopropyl | 300-300-300 | DNC | DNC | DNC |

Table III.3: Data of B3LYP/STO-3G minimization of variations of hexagermane compound at various conformers. DNC denotes a failure to converge with the selfconsistent field method.

## III.1.3.3 Design 3: Death by 1.59 Million Cuts

In the final version of the conformer generation effort, additional creation efforts were focused on the individual phenyl rings. The unfavorable interactions between the phenyl rings were a considerable hurdle in the previous designs and a potential explanation for the large number of nonconverged structures, including the possibility that the terminal isopropyl hexagermanium structures contained particularly unfavorable interactions among the phenyl rings. This third design sought to remove the uncertainty in phenyl ring bulkiness by applying the same approach as the backbone generation: create unique conformers of every backbone torsion and phenyl ring, limiting each torsion to one of three rotational positions. Unfortunately, this task proved prohibitively large.

As an explanation for the insurmountability of the problem, consider the hexagermanium structure. The germanium dihedrals represent three rotatable bonds each with three initial positions. To include the phenyl rings would require the inclusion of eight new rotatable bonds each with three initial positions. Additionally, considering each terminal germanium's rotation while ignoring each isopropyl's rotatable bonds adds two initial positions each with three initial positions. Together, this creates a structure with 13 rotatable bonds each with three initial positions. A visual of these bonds are given in figure III.4. The number of conformers follows as $3^{13}=1,594,323$ initial conformers. Now we must consider the computational aspect of this many conformers. At 10 conformers rotated and generated per second and 16 KB per conformer, the initial conformers would require 44.3 hours and generate 25.49 GB of data just in the initial structures. At an average of 72 minutes per computation and 73.7 MB produced at B3LYP hybrid functional and STO-3G basis set and access to all 255 regular nodes of Oklahoma State University's Cowboy cluster running in parallel, the complete computation would generate 117.5 TB of data and require 312 days of continuous computation to determine a possible lowest energy conformer of this one


Figure III.4: Visualization of rotatable bonds in hexagermane molecule colored by bonded atoms. Green: Ge-Ge, red: Ge-phenyl C, blue: Ge-isopropyl C.
molecule at a relatively low level basis set and theory. A request to utilize $100 \%$ of university supercomputer resources for nearly a year for the sake of determining the lowest energy conformer of one molecule would likely be rejected, so this task would likely require a time scale of years or even decades to produce with shared access to university resources. While conventionally considered a small molecule, the scale of conformers and computational requirements pushes this problem into the realm of Levinthal's paradox.

While this third design would have likely revealed the lowest energy conformer, or at least one considerably close the the exactly lowest energy conformer, the effort ultimate fails under its own weight. Even with efforts to truncate duplicate forms, the problem of scale remains. A reduction by $50 \%$ still requires a computation effort in the timescale of years or decades for the calculation of a single molecule. For an effective computational outlook, this system needs to be reduced by at least two orders of magnitude.

## III.1.4 Scale Reduction Efforts

For a system with conformers on the millions scale and computations on the hour scale, a magnitude reduction in either aspect would improve the practicality of this design approach. For example, by simplifying the computational method from 72 minutes on average to 5 minutes on average, the overall computational requirement would be reduced by $92 \%$, a full order of magnitude. Unfortunately, reducing the complexity of the method sacrifices the reliability of data. A potential solution here would be to create rounds of calculations at different complexities, where each sequential round restricts the pool of potential conformers. Ideally, the balance of the increasing computational complexity and the decreasing pool size would maintain a consistent computational requirement. For example, a new round using a higher functional theory and basis set at 5x computational requirement would ideally be paired with a reduction in conformer pool size by a factor of 5 . This would produce a series of calculation sets with additive computational requirement instead of a magnitudinal expansion.

The natural next question lies within the reliability of basis sets and functional theories. It naturally follows that a less-accurate method should not be relied on while better methods exist. However, considering the scale of the conformer pool, it follows that a less accurate method would still produce energy values with a roughly similar internal consistency. For example, a 180-0-180 form of the hexagermanium compound with parallel phenyl rings as modeled in figure III. 5 will have intense syn interactions between some phenyl rings and will likely not yield a desirable energy value at any level of calculation while a fully trans form with perfect $\pi$ stacking phenyl rings will likely have a lower energy value at all levels of calculation. It follows that, at lower levels of accuracy, the extremely high energy conformers can be pruned from the pool early and drastically reduce overall computational requirements. A generic effort at producing a method in this style is detailed in chapter IV, while the remainder of this


Figure III.5: Visualization of a trans-cis-trans hexagermane structure.
chapter details additional efforts of calculating these germanium compounds.

## III.1.5 Efforts at Simplification

One potential avenue of simplifying the process is computing the energy minimizations of lower-period atoms (e.g. a carbon backbone instead of germanium) and then applying a correction factor for a net reduction in computation time. As a period 4 element, germanium exhibits computational qualities similar to but more complicated than both carbon and silicon. Using tested samples, an energy minimization of a carbon-backbone molecule instead of the germanium represented a $92 \%$ increase in computation speed. Assuming a nominal correction factor exists and can be applied, this represents an order of magnitude reduction in computation time with one simplification. Potentially, this would allow investigators to much more quickly eliminate high energy conformers and more rapidly reduce the scope of the search.

The approach to acquiring sufficient data for a possible correction factor involved running an extremely simplified form of the germanium compounds, specifically a butagermanium backbone with hydrogens occupying all terminal and internal bonds.


Figure III.6: Sample torsion plot at reduced energy scale.
This reduced the complication and complexity of bulkiness and allowed for quick full torsion rotations about the single Ge-Ge-Ge-Ge dihedral. By operating at intervals of $5^{\circ}$, a full torsion drive provides a glimpse at relative energies of the molecule at 72 discrete states.

An example plot of this torsion drive is shown in figure III. 6 Once multiple torsion drives had completed in multiple group four elements (butane, butasilane, and butagermane were all built and tested), the energies could be compared and analyzed for any relative or absolute scaling at the additive or multiplicative reference. Relative scaling involved two approaches. The first relative scaling approach involved subtracting each data point by the minimum energy. The second approach involved reducing the first approach to a scale from 0 to 1 . This allowed the data points to be considered as percentage energies for additive scaling. The script to collect and scale data points is detailed in Appendix B.

For a full comparative set, 3456 points of analyzed data were generated for each reference molecule's potential in comparison with the others. The script to accomplish each molcule-centric analysis is detailed in Appendix B. No simple correction factor
arose by method of a simple additive or multiplicative term applied toward all torsion points with either absolute or relative energy values. To expand on the comparative set, a set of butyl- group IV conformers were generated with every possible permutation of $\mathrm{C}, \mathrm{Si}$, and Ge , each then rotated about the torsion in $5^{\circ}$ increments to produce a total of 5832 conformers. These were then subject to the same data comparison method as before, again to no noticeable trend. A future avenue of research could be to further explore this with depressive or polynomial terms to discover whether a simple corrective function might exist with specific molecules.

While this approach likewise did not find any simple correction factor, a graphical representation of multiple functionals across the butyl $\mathrm{C}, \mathrm{Si}$, and Ge show an interesting trend, as visualized by a graph provided by Dr. Christopher Fennell and shown in figure III.7. A common theme of these graphs is that the relative energies follow the expected energetic barrier of a Newman projection, with local maxima at the $120^{\circ}$ and $240^{\circ}$ (or $-120^{\circ}$ ) angles and local minima at the $60^{\circ}$ and $300^{\circ}\left(\right.$ or $\left.-60^{\circ}\right)$. The global maximum and minimum were consistently at $0^{\circ}$ and $180^{\circ}$ angles, respectively. As expected by different types of calculations, the torsion graphs hold different internal relative energies. For carbon, all four functionals produced a clean curve. The AM1 and PM3 functionals produced unexpected results for both Si and Ge graphs. In each, the expected highest energy $0^{\circ}$ torsion angle was instead the most favorable of the three eclipsed angles. Additionally, the Si PM3 and the Ge AM1 and PM3 functionals showed strong spikes along the expectedly smooth curve, with the Ge PM3 being noticeably broken.

While the Si graphs smoothed out for the B3LYP and HF functionals at STO3G basis set, the Ge B3LYP showed significant spikes and only the HF STO-3G exhibited a smooth curve. Effectively, this discovery of spikes along torsion drives led to the realization that the validity of a basis set could possibly be determined by the smoothness of a torsion drive. For example, any calculation of a germanium-


Figure III.7: Visualization of a multiple pure group IV torsions at various theories and basis sets
containing molecule will likely not produce reliable results with a B3LYP hybrid functional and STO-3G basis set, while the Hartree Fock STO-3G calculation would at least be tentatively reliable for comparative energy levels at various conformations.

## III. 2 Discovery of a Consistent Inconsistency

The next natural step was to calculate and plot additional functional theories and basis sets with the butagermanium chain. While effectively a lightly guided meandering through the available calculation types, the first effort was to observe relative differences across multiple basis sets of the Hartree Fock theory and to examine the relative computational requirements of each. This plan was quickly redirected, however, when a curiosity within the data was revealed.

While running additional torsion drives of butagermane at differing basis sets and functional theories, an inverted energy was discovered. As can be seen in figure III.8, the B3LYP theory with $6-31 \mathrm{G}(\mathrm{d})$ basis set appears flipped upon a cursory glance. After a more careful observation, the minima and maxima are at the "wrong" angles and cannot be a simple flip of the minima and maxima. Instead, the data appears to be inconsistent with basis set trends.

Naturally, the focus shifted toward discovering the source of the bad data. A repeat of the trial yielded the same data. A repeat of the system with a freshly created butagermane yielded the same data. A trial with data from a butagermane trial with the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set yielded the same data. Each attempt at a $6-31 \mathrm{G}(\mathrm{d})$ basis set with the B3LYP theory yielded the same inverted data, while other basis sets within the theory produced expected data. Next, the butagermane torsions were run with an identical basis set group with the Hartree-Fock theory, the results of which are shown in figure III.9.

Surprisingly, the $6-31 \mathrm{G}(\mathrm{d})$ result was also strangely inverted. This process was repeated for several more theories, with the $6-31 G(d)$ basis set results plotted in figure


Figure III.8: A curious seemingly-inverted torsion plot of butagermane.

| Program | Trans Energy <br> (Hartree) | Cis Energy <br> (Hartree) | $\Delta$ Energy <br> trans - cis <br> (Hartree) | $\Delta$ Energy <br> trans - cis <br> $(\mathrm{kJ} \mathrm{/} \mathrm{~mol})$ |
| :--- | :--- | :--- | :--- | :--- |
| Gaussian | -8298.8259 | -8298.8268 | -0.0009 | -2.4163 |
| GAMESS | -8306.1290 | -8306.1250 | 0.0040 | 10.4495 |
| NWChem | -8306.1290 | -8306.1250 | 0.0040 | 10.4495 |

Table III.4: Energy comparison of HF theory with $6-31 \mathrm{G}(\mathrm{d})$ basis set across multiple computational programs. The expected $\Delta \mathrm{E}$ should be positive.
III.10. Curious to see if the germanium atom's basis set data or if the entire basis set method was the source, a similar run with butasilane was made and graphed in figure III.11, to expected results. A quick run confirmed the problem to also exist on Gaussian 03 as well as Gaussian 09. The final effort was to check whether this error was isolated to Gaussian 09 or to all QM programs. A simplified test to calculate the energy of the expected global minimum $\left(180^{\circ}\right)$ and maximum $\left(0^{\circ}\right)$ of a Hartree Fock theory with the suspect $6-31 \mathrm{G}(\mathrm{d})$ basis set was prepared and executed, with the results tabulated in III.4. As can be seen, critical energetic difference was negative for Gaussian 09 and positive for both GAMESS ${ }^{5}$ and NWChem. ${ }^{20}$ Since the expected conformations should yield a positive difference, it was concluded that both Gaussian 03 and 09 contain bad $6-31 G(d)$ basis set data for germanium.


Figure III.9: Hartree Fock energy minimization of butagermane torsion run at varying basis sets.


Figure III.10: Minimization of butagermane torsion run at varying theories and the 6-31G(d) basis set.


Figure III.11: B3LYP energy minimization of butasilane torsion run at $6-31 \mathrm{G}(\mathrm{d})$ basis set.

## III. 3 Final Thoughts

Unfortunately, a trend for simplifying the computation requirements of germanium was not discovered. While it may exist among the data as a more involved function or as some other representation, there also may very well be no simple trend for switching between germanium and another group IV element.

On a much more interesting note, the results of the torsion drives revealed that Gaussian 03 and 09 contain some mistake within the 6 -31G(d) basis set data for germanium. Considering the popularity of Gaussian software in computational chemistry, there are concerning implications about reliability of data for any germanium energy data with the $6-31 \mathrm{G}(\mathrm{d})$ basis set. Given that the torsion tests produced expected data for $6-31 \mathrm{G}(\mathrm{d})$ data subsequently run through a higher or lower basis set, only reported data with $6-31 \mathrm{G}(\mathrm{d})$ as the final calculated energy need be considered. It is recommended that any investigator conducting computational studies of germanium either replace the $6-31 \mathrm{G}(\mathrm{d})$ basis set data, use another basis set, or instead use a program like GAMESS or NWChem for that final computation.

## CHAPTER IV

# Sampling Conformation Landscapes by Rotatable Bond Degrees of Freedom 

## IV. 1 A Brief History on Conformation Landscapes

## IV.1.1 Levinthal's Paradox

In 1969, a molecular biologist by the name of Cyrus Levinthal proposed a thought experiment regarding protein formation ${ }^{35}$ :

Consider a relatively small 150 -residue peptide chain completely unfolded. This protein will have 149 peptide bonds and therefore 149 phi angles and 149 psi angles. Assuming three possible angle positions each, the number of possible folds of this protein follows as $3^{298}$. How does this peptide chain fold into the appropriate secondary and tertiary structures? Even at attosecond rates of rotating and folding, this peptide chain would likely not fold into the correct structure for many times the age of the universe! Obviously, this is not the case, since proteins fold on the timescale of microseconds to milliseconds. ${ }^{36}$ How, then, do proteins fold so quickly and efficiently? The answer lies in energy cascades through a visualization tool called a golf course.

## IV.1.2 Levinthal Golf Courses

If one imagines the energy landscape of a peptide chain like a golf course, interesting similarities arise. For example, the lowest point could be considered "the hole" of the course with the lowest energy conformer. When starting at the "tee off" point, there may not be a clean pathway of energetic difference for the ball to roll toward


Figure IV.1: Example Levinthal Golf Course taken from Dill et al. ${ }^{2}$.
the global minima. Therefore, the ball must be "struck" toward the hole in a series of motions where the ball is removed from one local minima and placed in another hopefully closer to the hole. Like the image shown in figure IV.1, the course is not always an easy, natural cascade toward the global minima. Most often, investigators will initiate several searches in several locations of this conformation landscape in hopes that one will discover a clear minimum that is hopefully the true global minimum.

## IV. 2 Purpose of Project

As introduced in chapter III, there may be a generic solution toward determining the lowest energy conformer by roughly sampling the full "golf course" and procedurally focusing in on hot spots using automated methods. Ideally, the tool would work through the seemingly infinite possibilities and quickly remove the impossible or duplicate conformers. The tool would roughly take shape though a design flow


Figure IV.2: Flow of method design for variable resolution conformation landscape search.
detailed below.
First, the system takes an input molecule and generates a number of conformers based on rotatable dihedrals. Second, a time-effective geometry optimization theory and basis set if necessary is selected and run files are generated and submitted to a cluster to compute. Third, the results are collected and analyzed; low-energy dihedral values are passed back through the system while high-energy dihedrals are logged and discarded. This restricts the conformation space to reduce the overall number of conformers generated and allows for more accurate and computationally-expensive theories and methods to calculate more reliable energies.

An overview of system flow given in figure IV.2. This method produces an in-
teresting multilayered visual plot with a zooming effect toward the lowest energy conformer. An example of how this might look for a two-dihedral molecule is given in figure IV.3. The outlined black boxes represent found regions of interest for future iterations of the method. This would repeat as necessary until regions converge to one energy.

## IV. 3 Design of System

This system designed in Python for ease of development and compiled via Cython for computational efficiency. While it currently utilizes Gaussian 09 for energy minimization and UCSF Chimera for conformer generation, it can be redesigned for any computational programs that accomplish the desired tasks.

## IV.3.1 Variation of Theory and Basis Set Usage by System Size and largest atom type

Given that computational requirements increase with the number of atoms in a molecule and both the accuracy of the theory and basis set used, an initial focus on a manageable amount of conformers with a sufficiently simple theory and basis set is essential to success. The system should estimate quantity and cost of calculations based on physcal computational constraints for various theory-basis set pairings. The system optimizes calculation types for the scope of the landscape. Effectively, it balances between running the first broad-scope search at relatively low accuracy and a final near-final conformation space with relatively high accuracy methods.

## IV.3.2 Computational Optimization by Varying Resolution

A common problem in all works on this topic is that the scale of truly searching the conformation landscape is expansive in even the most restrictive designs. The manual efforts in the design of this tool are to build checkers for impossible conformations,


Figure IV.3: Example variable resolution search chart of two dihedrals with lowenergy blue to high-energy red.
including overlapping atom spaces. Additional considerations are that only the most bare, three conformations per rotatable bond angle, be considered initially. After the first round of calculations, the scope of candidates should be reduced by several orders of magnitude by refining the search about lower energy regions in the landscape.

## IV.3.3 Inherent Complications

The single greatest complication of this and any energy landscape tool is the number of rotatable bonds in the target molecule and, to a lesser extent, the elements contained. Consider the hexagermane molecule of interest in chapter III and the general focus of this work. One can focus on the number of torsions available to be adjusted in the energy landscape, as shown in figure IV.4. Even with the minimal three rotations per bond, these 19 rotatable bonds produce $3^{19}=1,162,261,467$ conformers, which is realistically impossible to explore even with a computational method requiring five seconds to compute. 184 years of computation time would be required. This is where the balance between recognizing impossible conformations comes in. Especially with bulky molecules like this hexagermane, many conformations could be eliminated by way of checking for overlapping atoms.

## IV. 4 Results

Due to the scale of the hexagermane molecule, a clear answer has not yet been discovered. However, a much more simple run with o-nitrophenol, with only two rotatable bonds, was successful in finding the known highest and lowest energy conformer shown in figures IV. 5 and IV.6, respectively.

While these would have ideally been produced through a self-perpetuating system at increasing precisions and computation accuracy, the automated tool remains to be realized.


Figure IV.4: Highlighted torsions of the hexagermane molecule by type of bond, where green, red, and blue represent Ge-Ge, Ge-phenyl, and Ge-isopropyl torsion centers, respectively.


Figure IV.5: Highest energy conformer of o-nitrophenol, ignoring any ring strain conformations. This structure was notably unable to rotate and form the expected hydrogen bond between the ortho nitro and hydroxyl.


Figure IV.6: Lowest energy conformer of o-nitrophenol. Formed the expected hydrogen bond between the ortho nitro and hydroxyl.

## IV.4.1 Difficulties and Anticipated Future Approaches

A key difficulty in automation of this tool is defining an abstract computation level based on arbitrary hardware limitations. While currently limited to the Cowboy cluster at Oklahoma State University, the goal is that this tool be made available for chemists everywhere one day. A potential solution for this abstract definition would be a small series of test runs to determine computational cost and general resource availability.

Additionally, the number of rotatable bonds yields the single largest barrier to searching the full conformation space. With continued investigation and the inclusiveness with other works, it seems feasible that the insurmountable barrier to entry may yet be simplified in an objective way that does not prevent the system from finding the lowest energy conformer in any reasonably small molecule.

## References

[1] Brini, E.; Fennell, C. J.; Fernandez-Serra, M.; Hribar-Lee, B.; Lukšič, M.; Dill, K. A. Chemical Reviews 2017, 117, 12385-12414.
[2] Dill, K. A.; Chan, H. S. Nature Structural Biology 1997, 4, 10-19.
[3] Hehre, W. J.; Stewart, R. F.; Pople, J. A. Journal of Computational Chemistry 1969, 51, 2657-2664.
[4] Boys, S. F. Proceedings of the Royal Society of London Series A 1950, 200, 542-554.
[5] Schmidt, M.; Baldridge, K.; Boatz, J.; Elbert, S.; Gordon, M.; Jensen, J.; Koseki, S.; Matsunaga, N.; Nguyen, K.; Su, S.; Windus, T.; Dupuis, M.; Montgomery, J. Journal of Computational Chemistry 1993, 14, 1347-1363.
[6] Thouless, D. The quantum mechanics of many-body systems; Pure and applied physics; Academic Press, 1972.
[7] Hartree, D. R. Mathematical Proceedings of the Cambridge Philosophical Society 1928, 24, 111-132.
[8] Kohn, W.; Sham, L. J. Physical Review 1965, 140, A1133-A1138.
[9] Lee, C.; Yang, W.; Parr, R. G. Physical Review B 1988, 37, 785-789.
[10] Zhao, Y.; Truhlar, D. G. Journal of Computational Chemistry 2006, 125, 194101.
[11] Perdew, J. P.; Burke, K.; Ernzerhof, M. Physical Review Letters 1996, 77, 38653868.
[12] Hückel, E. Zeitschrift für Physik 1933, 83, 632-668.
[13] Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. Journal of the American Chemical Society 1985, 107, 3902-3909.
[14] Stewart, J. J. P. Journal of Computational Chemistry 1989, 10, 209-220.
[15] Slater, J. C. Physical Review 1930, 36, 57-64.
[16] Ditchfield, R.; Hehre, W. J.; Pople, J. A. Journal of Computational Chemistry 1971, 54, 724-728.
[17] Buffon, G. Histoire naturelle, générale et particulière, servant de suite à la Théorie de la Terre et d'introduction à l'Histoire des Minéraux...Supplément Tome premier [septième]; Histoire naturelle, générale et particulière, servant de suite à la Théorie de la Terre et d'introduction à l'Histoire des Minéraux...Supplément Tome premier [septième]; de l'imprimerie royale, 1777.
[18] Metropolis, N. Los Alamos Science 1987, 15, 125-130.
[19] Metropolis, N.; Ulam, S. Journal of the American Statistical Association 1949, 44, 335-341.
[20] Valiev, M.; Bylaska, E.; Govind, N.; Kowalski, K.; Straatsma, T.; Dam, H. V.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T.; de Jong, W. Computer Physics Communications 2010, 181, 1477-1489.
[21] Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Journal of Cheminformatics 2012, 4, 17.
[22] Pettersen, E.; Goddard, T.; Huang, C.; Couch, G.; Greenblatt, D.; Meng, E. Journal of Computational Chemistry 2004, 25, 1605-1612.
[23] van Rossum, G. Python tutorial, Technical Report CS-R9526; 1995.
[24] Oliphant, T. Guide to NumPy; Trelgol Publishing, 2006.
[25] Jones, E.; Oliphant, T.; Peterson, P. SciPy: Open source scientific tools for Python. 2001; http://www.scipy.org/.
[26] Behnel, S.; Bradshaw, R.; Citro, C.; Dalcin, L.; Seljebotn, D.; Smith, K. Computing in Science Engineering 2011, 13, 31-39.
[27] Bernal, J. D.; Fowler, R. H. The Journal of Chemical Physics 1933, 1, 515-548.
[28] Yen, F.; Chi, Z. Physical Chemistry Chemical Physics 2015, 17, 12458-12461.
[29] Pauling, L. Journal of the American Chemical Society 1935, 57, 2680-2684.
[30] Bjerrum, N. Science 1952, 115, 385-390.
[31] Buch, V.; Sandler, P.; Sadlej, J. The Journal of Physical Chemistry B 1998, 102, 8641-8653.
[32] Brown, Z. D.; Guo, J.-D.; Nagase, S.; Power, P. P. Organometallics 2012, 31, 3768-3772.
[33] Roewe, K. D.; Rheingold, A. L.; Weinert, C. S. Chemical Communications 2013, 49, 8380-8382.
[34] Komanduri, S. P.; Shumaker, F. A.; Roewe, K. D.; Wolf, M.; Uhlig, F.; Moore, C. E.; Rheingold, A. L.; Weinert, C. S. Organometallics 2016, 35, 32403247.
[35] Levinthal, C. How to Fold Graciously. Mossbauer Spectroscopy in Biological Systems: Proceedings of a meeting held at Allerton House. 1969; pp 22-24.
[36] Zwanzig, R.; Szabo, A.; Bagchi, B. Proceedings of the National Academy of Sciences 1992, 89, 20-22.

## APPENDIX A

## Ice Ih to Ice XI Conversion

Listed below is the source code utilized in the conversion of a .pdb Ice Ice $\mathrm{I}_{\mathrm{h}}$ structure into an Ice XI structure. This code is functional in a Python 2.7 environment with the included packages: NumPy version 1.14.3 and SciPy version 1.1.0.

## A. 1 Brief Sample of Ice XI .PDB File

| ${ }^{1}$ HETATM | 1 | O | O | 1 | -10.483 | -5.440 | 10.189 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 HETATM | 2 | 1H1 | H | 1 | -10.473 | -4.440 | 10.185 |
| 3 HETATM | 3 | 2H1 | H | 1 | -10.015 | -5.781 | 9.374 |
| ${ }_{4}$ HETATM | 4 | O | O | 2 | -9.186 | -6.385 | 7.933 |
| 5 HETATM | 5 | 1H2 | H | 2 | -9.655 | -6.049 | 7.115 |
| 6 HETATM | 6 | 2 H 2 | H | 2 | -8.241 | -6.059 | 7.931 |
| 7 HETATM | 7 | O | O | 3 | -6.569 | -5.486 | 7.929 |
| 8 HETATM | 8 | 1H3 | H | 3 | -6.559 | -4.486 | 7.925 |
| 9 HETATM | 9 | 2 H 3 | H | 3 | -6.101 | -5.827 | 7.114 |
| 10 HETATM | 10 | O | O | 4 | -5.274 | -6.412 | 10.193 |
| 11 HETATM | 11 | 1H4 | H | 4 | -5.741 | -6.077 | 9.375 |
| 12 HETATM | 12 | 2 H 4 | H | 4 | -4.327 | -6.087 | 10.191 |
| 13 HETATM | 13 | O | O | 5 | -6.569 | -5.468 | 12.449 |
| 14 HETATM | 14 | 1H5 | H | 5 | -6.559 | -4.468 | 12.445 |
| 15 HETATM | 15 | 2H5 | H | 5 | -6.101 | -5.809 | 11.633 |
| 16 HETATM | 16 | O | O | 6 | -9.186 | -6.366 | 12.453 |
| 17 HETATM | 17 | 1H6 | H | 6 | -9.655 | -6.031 | 11.634 |
| 18 HETATM | 18 | 2H6 | H | 6 | -8.241 | -6.041 | 12.451 |
| 19 HETATM | 19 | O | O | 7 | -10.526 | -10.053 | 10.207 |
| 20 HETATM | 20 | 1H1 | H | 7 | -11.466 | -9.710 | 10.206 |
| 21 HETATM | 21 | 2 H 1 | H | 7 | -10.052 | -9.720 | 11.022 |
| 22 HETATM | 22 | O | O | 8 | -9.212 | -9.151 | 7.944 |
| ${ }_{23}$ HETATM | 23 | 1H2 | H | 8 | -9.203 | -8.151 | 7.940 |
| 24 HETATM | 24 | 2 H 2 | H | 8 | -9.688 | -9.477 | 8.762 |
| 25 HETATM | 25 | O | O | 9 | -6.612 | -10.099 | 7.947 |
| ${ }_{26}$ HETATM | 26 | 1H3 | H | 9 | -7.552 | -9.756 | 7.946 |
| ${ }_{27}$ HETATM | 27 | 2 H 3 | H | 9 | -6.138 | -9.766 | 8.763 |
| 28 HETATM | 28 | O | O | 10 | -5.300 | -9.179 | 10.204 |
| ${ }_{29}$ HETATM | 29 | 1H4 | H | 10 | -5.290 | -8.179 | 10.200 |
| \% HETATM | 30 | 2 H 4 | H | 10 | -5.774 | -9. | 11.021 |

## A. 2 Code: Crystal Disorganizer Tool

```
2 #!/ usr / bin/python
# Author = Gentry Smith
```

```
# Copyright 2016, all rights reserved
# this reads in a .PDB file, takes an argument for deformities per
    molecules, and randomly organizes the crystal
# structure into a disordered proton formation
# import sample: python PDBDisorganize.py arg1 arg2 arg3
# where:
# arg1 = source pdb file to be read (ex: acetone.pdb or acetone)
# arg2 = number of defects per molecule (in H20, num of non-hydrogen-
    bonds. from 0 to 4)
# arg3 = desired output pdb file name
import sys
print sys.path
import string
import numpy as np
import math
import random
sys.setrecursionlimit(10000000) # maximum recursive depth. Set to
    (10,000,000) as under maximum
pdbIN = file(sys.argv[1]) # source PDB file
maxErr = int(sys.argv[2]) # max errors allowed
pdbOUT = str(sys.argv[3]) # output file name
finalData = [ [ [ for i in range(3) ] for j in range(3) ] for k in
    range(300) ]
# looks at args validity
def checkArgs(arg1, arg2, arg3):
    returnBool = False
    if type(arg1) != file: # check arg1
        print"Bad arg", arg1, " must be a file "
        returnBool = True
    if type(arg3) != str: # check arg3
        print"Bad arg", arg3, ", must be a file name"
        checkPDBSuffix(arg3)
        print arg3
        returnBool = True
    if type(arg2) != int: # check arg2 type
        print "Bad arg2: ", arg2, " is not an int."
        returnBool = True
    elif type(arg2)= int:
        if arg2< 0 or arg2 > 4: # check arg2 range
                print "arg2 is not in a valid range 0 <= arg2 <= 4"
                returnBool = True
    return returnBool
def checkPDBSuffix(pdbFile):
    if string.find(pdbFile, ', pdb', 0, len(pdbFile)) = - 1:
        print("did not find 'pdb' in ", pdbFile, ". Appending...")
        pdbFile += '.pdb'
```




```
# reads in file,
def readFile(fileName):
    print "Reading file..."
    # gets number of atoms
    atoms = 0
    for line in fileName:
        data = line.split()
        if len(data) > 0:
            if data[0] != "CONECT" and data[0] != "END":
                atoms += 1
    # print "atoms: ", atoms
    numMol = atoms / 3 # assumes 3-atom water molecule
    dataTable = [ [ [ 0 for i in range(3) ] for j in range(3) ] for k in
    range(numMol) ]
    fileName.seek(0)
    iter0=0
    iter1 = 0
    pdbType = -1
    for line in fileName:
        data = line.split()
        if pdbType = - 1:
                if data[0] = "ATOM":
                pdbType = 0
            elif data[0] = "HETATM":
                pdbType = 1
        # print "LineTuple=", data
        if len(data) > 1 and ( data [0] = "ATOM" or data [0] = "HETATM"
    ):
                if data[0] = "ATOM":
                    newData = getDataATOM(data)
                        for i in range(3):
                            #data[molecule][atom][X/Y/Z]
                            dataTable[iter0][iter1 % 3][i] = newData[i]
                elif data[0] = "HETATM":
                dataTable[iter0][iter1 % 3] = getDataHETATM(data)
            if iter1 = 2:
                iter0 += 1
                iter1=0
            elif iter1 != 2:
                iter1 += 1
    # print "DataTable: ", dataTable
    print "File read"
    return dataTable, pdbType
    # Split by index
    # if having a problem with reading data, check .pdb to see if data
    has a space between each value
# reads XYZ coordinate data from ATOM-type pdb
def getDataATOM(strLine):
```

```
    # print " Getting ATOM Data..."
    dataLine = strLine[5:8]
    # print "dataline: ", dataLine
    i = 0
    while i < 3:
        # print "dataline[", i, "]: ", dataLine[i]
        dataLine[i] = float(dataLine[i])
        # print "dataline[", i, "] type: ", type(dataLine[i])
        i += 1
    return dataLine
# reads XYZ coordinate data from HETATM-type pdb
def getDataHETATM(strLine):
    # print "Getting HETATM Data..."
    dataLine = strLine[5:8]
    # print "dataline: ", dataLine
    i = 0
    while i < 3:
            # print "dataline[", i, "]: ", dataLine[i]
            dataLine[i] = float(dataLine[i])
            # print "dataline[", i, "] type: ", type(dataLine[i])
            i += 1
    return dataLine
# gets all four position vectors of hydrogen/lone pair as offset of
    oxygen molecule
def getOrientations( molecule ):
    # 120 degrees = ( 2 * pi ) / 3 radians
    theta}=((2* math.pi ) / 3)
    newMol = zeroOrientation(molecule)
    returnInt1 = rotateMolecule(newMol[1], newMol[2], theta)
    returnInt2 = rotateMolecule(newMol[1], newMol[2], (-1 * theta) )
    return [returnInt1, returnInt2]
# randomly selects new orientation, returns two unique ints, from 0 to 3
        inclusively
def newRandOrientation( positions ):
    # print "Changing orientation"
    randVal1 = random.randint (0,3)
    randVal2 = random.randint (0,3)
    while randVal1 = randVal2:
            randVal2 = random.randint (0, 3)
    newMol = [ [ 0, 0, 0 ] ,
                    positions[ randVal1 ]
                    positions[ randVal2 ] ]
    return newMol
# selects new orientation from list. Reduces computational overhead in
    re-orientation option traversal
def newSetOrientation( positions, pos1, pos2 ):
    newMol = [ [ 0, 0, 0 ] ,
```

```
                        positions[ pos1 ],
            positions[ pos2 ] ]
    return newMol
# sets molecule coordinates so that oxygen is the origin
def zeroOrientation(source):
    # print "Zeroing Molecule..."
    oxy = source[0]
    hyd1 = source[1]
    hyd2 = source[2]
    # print "Oxygen pos: ", oxy
    # print "Hydrogen 1: ", hyd1
    # print "Hydrogen 2: ", hyd2
    zeroedOrigin = [0, 0, 0]
    zeroedHyd1 = [0, 0, 0]
    zeroedHyd2 = [0, 0, 0}
    for i in range(3):
            zeroedHyd1[i] = hyd1[i] - oxy[i]
            zeroedHyd2[i] = hyd2[i] - oxy[i]
    # print "Zeroed Hydrogen 1: ", zeroedHyd1
    # print "Zeroed Hydrogen 2: ", zeroedHyd2
    # return new molecule position
    newMol = [zeroedOrigin, zeroedHyd1, zeroedHyd2]
    return newMol
# resets the zeroed molecule to the original oxygen position
def resetOrientation(oxygenPos, molecule):
    # print "Resetting molecule..."
    rO = oxygenPos
    rH1 = [0,0,0]
    rH2 = [0,0,0]
    newMol = []
    for i in range(3):
            rH1[i] = molecule[1][i] + rO[i]
            rH2[i] = molecule[2][i] + rO[i]
            newMol = [rO, rH1, rH2]
    # print "Rebuilt Molecule: ", newMol
    return newMol
# rotates vector about axis for theta degrees
# Handler for rotationMatrix function below
def rotateMolecule(vector, axis, theta):
    rotMatx = rotationMatrix(axis, theta)
    return np.dot(rotMatx, vector)
# Creates Rotation matrix for a given axis and theta
# # from stackoverflow user unutbu
```

```
# page: http:// stackoverflow.com/questions/6802577/python-rotation-of-3d
        -vector
```



```
        """
        :type axis: list
        :type theta: union
        """
        axis = np.asarray(axis)
        theta = np.asarray(theta)
        axis /= math.sqrt(np.dot(axis, axis))
        a = math.cos( theta/2.0 )
        b, c, d = -axis*math.sin(theta/2.0)
        aa, bb, cc, dd = (a * a), (b * b), (c * c), (d * d)
        bc, ad, ac, ab, bd, cd = (b * c), (a * d), (a * c), (a * b), (b * d)
        , (c * d)
        return np.array( [ [ (aa + bb - cc - dd), ( 2 * ( bc + ad ) ), ( 2 *
        ( bd - ac ) ) ],
        [( 2 * ( bc - ad ) ), (aa + cc - bb - dd), ( 2 *
        ( cd + ab ) ) ],
                                [( 2 * ( bd + ac ) ), ( 2 * ( cd - ab ) ), (aa +
        dd - bb - cc) ] ] )
# gets results from rotateAboutAxis plus two Hydrogens to get the
    tetrahedron positions
def getTetrahedronPositions(molecule):
        positions = [ [ 0 for i in range(3) ] for j in range(4) ]
        newMol = zeroOrientation(molecule) # zero molecule
        positions[0] = newMol[1]
        positions[1] = newMol[2]
        newPos = getOrientations(molecule) # get final two positions
        positions[2] = list(newPos[0])
        positions[3] = list(newPos[1])
        return positions # return all four positions
# checks distance of new positions from zero
def checkDist(posArray):
    distance = [0 for i in range(len(posArray))]
        for i in range(len(posArray)):
            distance[i] = ( (posArray[i][0] * posArray[i][0]) +
                                    (posArray[i][1] * posArray[i][1]) +
                                    (posArray[i][2] * posArray[i][2]) )
            # print "Distance", i, ": ", distance[i]
        avg = 0
        for i in range(len(posArray)):
            avg += distance[i]
        averageDistance = ( avg / len(posArray) )
        # print "Average Distance: ", averageDistance
        return averageDistance
# prints data given a 3D table of water molecules
```

```
def printData(data):
    print "Data: "
    strData = [" O", "H1", "H2"]
    dimData = ["X", "Y", "Z"]
    bigAvg = 0
    numAtoms = 0
    for mol in range(len(data)):
        for atom in range(len(data[mol])):
            printStr = str(mol) + ": " + strData[atom] + ": "
            for dimension in range(3):
                printStr += dimData[atom] + ":" + "{:7.3 f}".format(data[
    mol][atom][dimension]) + "\t"
            print printStr
            bigAvg += checkDist(zeroOrientation(data[mol])[1:])
            numAtoms += 1
            print ""
    print "total average distance: ", bigAvg / numAtoms
# checks validity of molecule
def isDefectiveCheck(err, neighborData, posData, index):
    # find nearby molecules (avg oxygen distance???)
    print "checking for defects at index", index, "..."
    print "neighbor indices: ", neighborData[index]
    returnBool = False
    neighbors = 4
    for i in range(4): # count real neighbors
            if neighborData[index][1][i] =-1:
                    neighbors -= 1
    if neighbors <= err: # de facto good if num(neighbors) <
    maxErrAllowed
    # print "Fewer neighbors than allowed errors. de facto Good
    Orientation"
            returnBool = True
    elif neighbors > err: # enough neighbors to require check
            # print "More neighbors than error threshold"
            defectCount = 0
            for neighbor in range(4): # check each neighbor
                    if neighborData[index][1][neighbor] != -1: # skip over non-
    existant neighbors
                    molA = posData[index]
                    molB = posData[ neighborData[index][1][neighbor] ]
                    oxyDist = getDistBetweenAtoms(molA[0], molB[0])
                        if minHydrogenDistance(molA, molB) > oxyDist: # check
    for facing lone pairs
                        print "Double Lone Pair defect"
                        defectCount += 1
                        break
                else: # check for facing protons
                    smallerHydrogenDistanceCount =0
                        isDefective = False
                        for first in range(2):
                            if not isDefective:
```

```
                        for second in range(2):
                        newDist = getDistBetweenAtoms(molA[first
    + 1], molB[second + 1])
                        if newDist < oxyDist:
                    smallerHydrogenDistanceCount += 1
                        if smallerHydrogenDistanceCount > 1:
                            print "Double Hydrogen defect"
                            defectCount += 1
                            isDefective = True
        # print "Defects found:", defectCount
        if defectCount > 4:
            print "IMPOSSIBLE AMOUNT OF DEFECTS DETECTED!!!!
    АННННННННННННННННННННННННННННННННННННННННННННННННННННННННН"
        if defectCount > err:
            # print "Found a bad molecule!"
            returnBool = False
        else:
            # print "Molecule is within parameters."
            returnBool = True
    return returnBool
# randomly re-reorients molecule and neighbors, rechecks all
def rerunMolAndNeighbors(err, neighborData, posData, index):
    # print "Re-reordering molecule at", index
    # err - max errors allowed
    # neighborData - int[4] of neighbor indices
    # posData - array of all molecule position vectors
    # index - location of focus molecule in posData
    isGood = False
    timeCount = 0
    while not isGood:
        # re-rotate molecule through all positions (iterated through all
    orientations)
        positions = getTetrahedronPositions(posData[index])
        zeroedMol = newRandOrientation(positions)
        # print "isGood CHECK", isGood
        isGood, posData = iterThroughRotations(err, neighborData,
    posData, index)
        posData[index] = resetOrientation(posData[index][0], zeroedMol)
        if timeCount >= 13:# {(1-1/6)^n<0.05} says n = 17
            # BROKEN - need to rebuild
            # 0. evaluated molecule has too many defects
            # 1. reorient molecule statistically probable amount of
    times to cover all orientations
        # 2. Repeat 1. with neighbor 1
        # 2a repeat 1. with original molecule
        # 3. Repeat 2. with neighbor 2, 3, 4, as/if necessary
        for neighborIndex in range(4):
                    if neighborData[index][1][neighborIndex] != -1:
                        positions = getTetrahedronPositions(posData[
    neighborIndex])
                zeroedMol = newRandOrientation(positions)
```

```
56
357
358
359
360
361
362
363
364
365
366
367
368
369
```

                        posData[neighborIndex] = resetOrientation(posData[
    ```
                        posData[neighborIndex] = resetOrientation(posData[
        neighborIndex][0], zeroedMol)
        neighborIndex][0], zeroedMol)
                        # isGood = isDefectiveCheck(err, neighborData,
                        # isGood = isDefectiveCheck(err, neighborData,
    posData, neighborIndex)
    posData, neighborIndex)
            isGood = isDefectiveCheck(err, neighborData, posData, index)
            isGood = isDefectiveCheck(err, neighborData, posData, index)
            if not isGood:
            if not isGood:
                isGood, posData = rerunMolAndNeighbors(err, neighborData
                isGood, posData = rerunMolAndNeighbors(err, neighborData
    , posData, neighborData[index][1][neighborIndex])
    , posData, neighborData[index][1][neighborIndex])
    finalData = posData
    finalData = posData
    return True, finalData
    return True, finalData
# iterates molecule through all possible rotations
# iterates molecule through all possible rotations
def iterThroughRotations(err, neighborData, posData, index):
def iterThroughRotations(err, neighborData, posData, index):
    isGood = False
    isGood = False
    pos1 = 0 # tetrahedral position for H1
    pos1 = 0 # tetrahedral position for H1
    pos2 = 0 # tetrahedral position for H2
    pos2 = 0 # tetrahedral position for H2
    while not isGood or (pos1 != 3 and pos2 != 3): # iterates through
    while not isGood or (pos1 != 3 and pos2 != 3): # iterates through
    all orientations, stops if good orientation
    all orientations, stops if good orientation
            if pos1 != pos2:
            if pos1 != pos2:
                    posData[index] = newSetOrientation(posData[index][0], pos1,
                    posData[index] = newSetOrientation(posData[index][0], pos1,
    pos2)
    pos2)
                isGood = isDefectiveCheck(err, neighborData, posData, index)
                isGood = isDefectiveCheck(err, neighborData, posData, index)
            if pos2< 3:
            if pos2< 3:
                pos2 += 1
                pos2 += 1
            elif pos2=3:
            elif pos2=3:
                if pos1< 3:
                if pos1< 3:
                    pos1 += 1
                    pos1 += 1
                    pos2=0
                    pos2=0
    return isGood, posData
    return isGood, posData
# determines minimum hydrogen distance between two atoms
# determines minimum hydrogen distance between two atoms
def minHydrogenDistance(mol1, mol2):
def minHydrogenDistance(mol1, mol2):
    minDist = 100
    minDist = 100
    for first in range(2):
    for first in range(2):
        for second in range(2):
        for second in range(2):
            newDist = getDistBetweenAtoms(mol1[first +1], mol2[second +1])
            newDist = getDistBetweenAtoms(mol1[first +1], mol2[second +1])
            if newDist < minDist:
            if newDist < minDist:
                minDist = newDist
                minDist = newDist
    return minDist
    return minDist
# finds neighboring molecules of each molecule
# finds neighboring molecules of each molecule
def getNeighbors(data):
def getNeighbors(data):
    returnData = [ [ [ 0 for i in range(4) ] for j in range(2) ] for k
    returnData = [ [ [ 0 for i in range(4) ] for j in range(2) ] for k
    in range(len(data)) ] # data[molecule][distance, index][four values]
    in range(len(data)) ] # data[molecule][distance, index][four values]
    for mol1 in range(len(data)):
    for mol1 in range(len(data)):
        minDist = [100, 100, 100, 100]
        minDist = [100, 100, 100, 100]
        minIndex = [0, 0, 0, 0]
        minIndex = [0, 0, 0, 0]
        for mol2 in range(len(data)):
        for mol2 in range(len(data)):
            if mol1 != mol2:
            if mol1 != mol2:
                newMin = getDistBetweenAtoms(data[mol1][0], data[mol2
                newMin = getDistBetweenAtoms(data[mol1][0], data[mol2
    ][0])
```

    ][0])
    ```
```

            bigIndex = indexOfBiggest(minDist)
            if newMin < minDist[bigIndex]:
                        minDist[bigIndex] = newMin
                    minIndex[bigIndex] = mol2
        for i in range(4):
            if minDist[i] >= 9:
                minDist[i] = -1
                minIndex[i] = -1
        # print "Four smallest Distances of", mol1, ": ", minDist
        # print "Four smallest Indices of", mol1, ": ", minIndex
        returnData[mol1] = [minDist, minIndex]
    return returnData
    
# finds distance between oxygen atoms

def getDistBetweenAtoms( mol1, mol2 ):
distance =( ( ( mol1[0] - mol2[0] ) * ( mol1[0] - mol2[0] ) ) +
( ( mol1[1] - mol2[1] ) * ( mol1[1] - mol2[1] ) ) +
( ( mol1[2] - mol2[2] ) * ( mol1[2] - mol2[2] ) ) )
return distance

# gets index of largest item from a list

def indexOfBiggest(check):
bigIndex = 0
for i in range(len(check)):
if check[i] > check[bigIndex]:
bigIndex = i
return bigIndex

# writes data to PDB file

def writeDataPDB(data, pdbType):
print "Writing Data to", str(pdbOUT)
fileName = str(pdbOUT)
output = open(fileName, 'w')
if pdbType = 0:
writeDataPDBATOM(data, output)
elif pdbType = 1:
writeDataPDBHETATM(data, output)
output.close()

# Writes data to PDB file style = ATOM

def writeDataPDBATOM(data, inFile):
iterator = 0
for molecule in range(len(data)):
for atom in range(3):
iterator += 1
outStr = "ATOM "
outStr += str(iterator)
while len(outStr) < 11:
outStr = outStr[:6] +" "+ outStr[6:]
outStr += " "

```
```

    if atom = 0:
                outStr += " O " + "WAT"
    elif atom = 1:
        outStr += "H1 "+ "WAT"
        elif atom = 2:
            outStr += " H2 " + "WAT"
        outStr += str(molecule)
        while len(outStr) < 26:
            outStr = outStr[:20]+" "+ outStr[20:]
    outStr += "
    outStr += "{:8.3f}".format(data[molecule][atom][0])
    outStr +="{:8.3f}".format(data[molecule][atom][1])
    outStr += "{:8.3f}".format(data[molecule][atom][2])
    outStr +=" 1.00" + " 0.00"
    outStr +="
    if atom=0:
        outStr += "O "
        elif atom = 1:
            outStr += "H "
        elif atom = 2:
            outStr += "H "
        outStr += "\n"
        inFile.write(outStr)
    
# Writes data to PDB file style = HETATOM

def writeDataPDBHETATM(data, inFile):
iterator = 0
for molecule in range(len(data)):
for atom in range(3):
iterator += 1
outStr = "HETATM"
outStr += str(iterator)
while len(outStr) < 11:
outStr = outStr[:6] +" " + outStr[6:]
outStr += " "
if atom = 0:
outStr += "O " + "WAT"
elif atom = 1:
outStr += " H1 " + "WAT"
elif atom = 2:
outStr += " H2 "+"WAT"
outStr += str(molecule)
while len(outStr) < 26:
outStr = outStr[:20] + " "+ outStr[20:]
outStr += "
outStr += "{:8.3 f }".format(data[molecule][atom][0])
outStr += "{:8.3f}".format(data[molecule][atom][1])
outStr += "{:8.3f}".format(data[molecule][atom][2])
outStr +=" 1.00"+" 0.00"
outStr +="
if atom=0:
outStr += "O "
elif atom=1:

```
```

            outStr +=" H "
            elif atom = 2:
            outStr += "H "
            outStr += "\n"
            inFile.write(outStr)
    
# runs program

def testRun(inFile, err, outFile):
print "Running Test Version of Program..."

# this is the parent runner for the program

def runPgm(inFile, err):
print "Running Program..."
data, pdbType = readFile(inFile)
newData = [ [ [ 0 for i in range(3) ] for j in range(3) ] for k in
range(len(data)) ]
print "Reordering Molecules..."
for i in range(len(data)):
positions = getTetrahedronPositions(data[i])
zeroedMol = newRandOrientation(positions)
newMol = resetOrientation( data[i][0], zeroedMol )
newData[i] = newMol
print "Molecules Reordered"
connectedMolecules = getNeighbors(newData) \# - 1 index = not
neighboring
finalData = newData
for i in range(len(connectedMolecules)):
\# print "check defects"
isFine = isDefectiveCheck(err, connectedMolecules, finalData, i)
\# print "isFINE CHECK", isFine
if not isFine:
\# print "fixing defects"
while not isFine:
\# print "RerunMol"
isFine, finalData = rerunMolAndNeighbors(err,
connectedMolecules, finalData, i)
\# print "rerunDone"
writeDataPDB(finalData, pdbType)
\# printData(newData)
badArgs = checkArgs(pdbIN, maxErr, pdbOUT) \# stop in case of bad
argument

# check input args

if not badArgs: \# stop in case of bad argument
print "Good Arguments, Initializing Reorientiation with", maxErr, "
maximum defects"
\# testRun(pdbIN, maxErr, pdbOUT)
runPgm(pdbIN, maxErr)
elif badArgs:
print "Bad Arguments, Quitting..."

```

\section*{APPENDIX B}

\section*{Germanium Landscape}

\section*{B. 1 Sample Gaussian 09 Germanium File}

Command files like the one below were built using Dr. Fennell's Gaussian 09 run builder script and proved very effective in producing command files.
```

\#!/bin / bash
g09<<<EOF > B3LYP_STO-3G_1_hexagermane_transall_first_reorder.out
%Chk=B3LYP_STO-3G_1_hexagermane_transall_first_reorder
%NProcShared=12
\#B3LYP/STO-3G OPT
Title: hexagermane_transall_first_reorder system
0}
Ge
-4.774000000000
-5.549000000000
-5.371000000000
-1.311000000000
-0.754000000000
-1.340000000000
1.675000000000
-1.186000000000
1.925000000000
2.315000000000
3.126000000000
2.522000000000
5.558000000000
2.938000000000
6.648000000000
6.362000000000
5.463000000000
-5.157000000000
-2.780000000000
-2.522000000000
-0.572000000000
-0.757000000000
< 2.974000000000
-0.777000000000 2.525000000000
0.508000000000 3.335000000000
-1.114000000000 4.066000000000
-2.829000000000 1.564000000000
-3.048000000000 3.107000000000
-2.841000000000 1.555000000000
-2.187000000000 -0.668000000000
-0.705000000000 -2.186000000000
C - -5.199000000000 -7.061000000000 - -1.057000000000 -0.533000000000

```
\begin{tabular}{|c|c|c|c|c|}
\hline 41 & H & -4.126000000000 & -0.879000000000 & -2.361000000000 \\
\hline 42 & H & -5.433000000000 & 0.356000000000 & -2.385000000000 \\
\hline 43 & H & -5.754000000000 & -1.331000000000 & -2.917000000000 \\
\hline 44 & H & -7.327000000000 & -1.462000000000 & 0.459000000000 \\
\hline 45 & H & -7.588000000000 & \(-1.677000000000\) & -1.290000000000 \\
\hline 46 & H & -7.438000000000 & -0.019000000000 & -0.608000000000 \\
\hline 47 & C & 5.171000000000 & \(-1.286000000000\) & 3.108000000000 \\
\hline 48 & C & 6.703000000000 & -3.142000000000 & 3.823000000000 \\
\hline 49 & H & 4.612000000000 & -3.336000000000 & 3.456000000000 \\
\hline 50 & H & 7.617000000000 & -2.660000000000 & 3.425000000000 \\
\hline 51 & H & 6.834000000000 & -4.242000000000 & 3.835000000000 \\
\hline 52 & H & 6.569000000000 & -2.820000000000 & 4.877000000000 \\
\hline 53 & H & 6.003000000000 & -0.673000000000 & 2.715000000000 \\
\hline 54 & H & 4.988000000000 & -0.995000000000 & 4.164000000000 \\
\hline 55 & H & 4.281000000000 & -1.055000000000 & 2.511000000000 \\
\hline 56 & C & 6.881000000000 & \(-2.491000000000\) & \(-1.386000000000\) \\
\hline 57 & C & 8.000000000000 & \(-1.692000000000\) & 0.695000000000 \\
\hline 58 & H & 6.093000000000 & -1.084000000000 & 0.027000000000 \\
\hline 59 & H & 8.663000000000 & \(-2.569000000000\) & 0.776000000000 \\
\hline 60 & H & 7.871000000000 & -1.257000000000 & 1.700000000000 \\
\hline 61 & H & 8.527000000000 & -0.927000000000 & 0.085000000000 \\
\hline 62 & H & 7.531000000000 & \(-3.384000000000\) & -1.416000000000 \\
\hline 63 & H & 7.387000000000 & -1.690000000000 & \(-1.966000000000\) \\
\hline 64 & H & 5.929000000000 & \(-2.720000000000\) & -1.888000000000 \\
\hline 65 & C & 6.042000000000 & -5.844000000000 & \(-0.340000000000\) \\
\hline 66 & H & 5.912000000000 & \(-5.747000000000\) & 1.817000000000 \\
\hline 67 & C & 7.882000000000 & -5.177000000000 & 1.193000000000 \\
\hline 68 & H & 8.397000000000 & -4.688000000000 & 0.346000000000 \\
\hline 69 & H & 8.240000000000 & \(-6.228000000000\) & 1.229000000000 \\
\hline 70 & H & 8.189000000000 & -4.690000000000 & 2.134000000000 \\
\hline 71 & H & 4.959000000000 & -5.905000000000 & -0.514000000000 \\
\hline 72 & H & 6.436000000000 & -6.883000000000 & -0.337000000000 \\
\hline 73 & H & 6.487000000000 & \(-5.311000000000\) & -1.199000000000 \\
\hline 74 & H & -6.362000000000 & 1.563000000000 & 1.303000000000 \\
\hline 75 & C & -5.646000000000 & 2.456000000000 & -0.483000000000 \\
\hline 76 & C & -4.523000000000 & 2.590000000000 & 1.756000000000 \\
\hline 77 & H & -4.349000000000 & 2.080000000000 & 2.725000000000 \\
\hline 78 & H & -5.042000000000 & 3.550000000000 & 1.960000000000 \\
\hline 79 & H & -3.548000000000 & 2.821000000000 & 1.285000000000 \\
\hline 80 & H & \(-6.358000000000\) & 1.894000000000 & -1.110000000000 \\
\hline 81 & H & -4.725000000000 & 2.629000000000 & \(-1.057000000000\) \\
\hline 82 & H & -6.117000000000 & 3.440000000000 & -0.273000000000 \\
\hline 83 & C & -0.532000000000 & 2.421000000000 & 0.817000000000 \\
\hline 84 & C & -1.529000000000 & 1.258000000000 & 2.684000000000 \\
\hline 85 & H & -2.129000000000 & 0.469000000000 & 3.088000000000 \\
\hline 86 & C & -0.996000000000 & 2.206000000000 & 3.561000000000 \\
\hline 87 & C & -0.001000000000 & 3.371000000000 & 1.694000000000 \\
\hline 88 & C & -0.237000000000 & 3.267000000000 & 3.066000000000 \\
\hline 89 & H & 0.596000000000 & 4.188000000000 & 1.310000000000 \\
\hline 90 & H & -1.180000000000 & 2.122000000000 & 4.624000000000 \\
\hline 91 & H & 0.174000000000 & 4.002000000000 & 3.745000000000 \\
\hline 92 & C & -1.777000000000 & -4.322000000000 & 1.725000000000 \\
\hline 93 & C & -0.217000000000 & -3.392000000000 & -2.175000000000 \\
\hline 94 & C & -2.232000000000 & -5.037000000000 & 2.838000000000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 95 & H & \(-1.775000000000\) & -4.812000000000 & 0.763000000000 \\
\hline 96 & C & -1.348000000000 & -2.404000000000 & 3.134000000000 \\
\hline 97 & C & -0.568000000000 & -4.133000000000 & -3.309000000000 \\
\hline 98 & H & 0.799000000000 & -3.079000000000 & -2.038000000000 \\
\hline 99 & C & -2.513000000000 & -3.435000000000 & \(-1.440000000000\) \\
\hline 100 & C & -2.250000000000 & -4.433000000000 & 4.097000000000 \\
\hline 101 & H & -2.571000000000 & -6.058000000000 & 2.723000000000 \\
\hline 102 & C & \(-1.802000000000\) & -3.118000000000 & 4.246000000000 \\
\hline 103 & H & -1.007000000000 & \(-1.394000000000\) & 3.262000000000 \\
\hline 104 & C & -2.868000000000 & -4.180000000000 & -2.567000000000 \\
\hline 105 & H & -3.268000000000 & -3.168000000000 & -0.721000000000 \\
\hline 106 & C & -1.893000000000 & -4.529000000000 & -3.504000000000 \\
\hline 107 & H & 0.183000000000 & -4.395000000000 & -4.040000000000 \\
\hline 108 & H & -3.896000000000 & -4.482000000000 & -2.715000000000 \\
\hline 109 & H & -2.164000000000 & -5.101000000000 & \(-4.381000000000\) \\
\hline 110 & H & -2.602000000000 & -4.985000000000 & 4.958000000000 \\
\hline 111 & H & -1.809000000000 & -2.651000000000 & 5.222000000000 \\
\hline 112 & C & 3.101000000000 & -6.123000000000 & 1.997000000000 \\
\hline 113 & C & 2.378000000000 & -5.604000000000 & \(-1.315000000000\) \\
\hline 114 & C & 3.370000000000 & -3.619000000000 & -2.281000000000 \\
\hline 115 & H & 2.025000000000 & -6.170000000000 & -0.467000000000 \\
\hline 116 & C & 2.272000000000 & -6.169000000000 & -2.590000000000 \\
\hline 117 & C & 1.513000000000 & -4.525000000000 & 2.832000000000 \\
\hline 118 & C & 2.686000000000 & -7.047000000000 & 2.960000000000 \\
\hline 119 & H & 3.865000000000 & -6.421000000000 & 1.310000000000 \\
\hline 120 & C & 1.687000000000 & -6.704000000000 & 3.869000000000 \\
\hline 121 & H & 3.142000000000 & -8.028000000000 & 3.002000000000 \\
\hline 122 & C & 1.100000000000 & -5.441000000000 & 3.804000000000 \\
\hline 123 & H & 1.054000000000 & -3.568000000000 & 2.784000000000 \\
\hline 124 & C & 2.720000000000 & -5.462000000000 & -3.708000000000 \\
\hline 125 & H & 1.844000000000 & -7.156000000000 & -2.710000000000 \\
\hline 126 & C & 3.263000000000 & -4.184000000000 & -3.554000000000 \\
\hline 127 & H & 3.780000000000 & -2.628000000000 & -2.178000000000 \\
\hline 128 & H & 3.599000000000 & -3.631000000000 & -4.421000000000 \\
\hline 129 & H & 2.636000000000 & -5.900000000000 & -4.694000000000 \\
\hline 130 & H & 1.366000000000 & -7.414000000000 & 4.620000000000 \\
\hline 131 & H & 0.327000000000 & -5.175000000000 & 4.510000000000 \\
\hline 132 & C & 1.504000000000 & -0.326000000000 & -2.095000000000 \\
\hline 133 & C & 1.670000000000 & -0.714000000000 & 3.412000000000 \\
\hline 134 & C & 3.620000000000 & -0.040000000000 & -0.992000000000 \\
\hline 135 & C & 1.987000000000 & 0.362000000000 & -3.212000000000 \\
\hline 136 & H & 0.510000000000 & -0.709000000000 & -2.093000000000 \\
\hline 137 & C & 2.402000000000 & 1.008000000000 & 1.889000000000 \\
\hline 138 & C & 1.890000000000 & 0.147000000000 & 4.490000000000 \\
\hline 139 & H & 1.314000000000 & -1.696000000000 & 3.632000000000 \\
\hline 140 & C & 4.114000000000 & 0.652000000000 & -2.102000000000 \\
\hline 141 & H & 4.233000000000 & -0.179000000000 & -0.124000000000 \\
\hline 142 & C & 3.296000000000 & 0.851000000000 & -3.216000000000 \\
\hline 143 & H & 1.348000000000 & 0.514000000000 & -4.073000000000 \\
\hline 144 & H & 5.127000000000 & 1.034000000000 & -2.095000000000 \\
\hline 145 & H & 3.673000000000 & 1.385000000000 & -4.079000000000 \\
\hline 146 & C & 2.374000000000 & 1.435000000000 & 4.270000000000 \\
\hline 147 & H & 1.691000000000 & -0.189000000000 & 5.500000000000 \\
\hline 148 & C & 2.630000000000 & 1.865000000000 & 2.969000000000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 149 & H & 2.603000000000 & 1.384000000000 & 0.900000000000 \\
\hline 150 & H & 3.001000000000 & 2.867000000000 & 2.795000000000 \\
\hline 151 & H & 2.548000000000 & 2.101000000000 & 5.105000000000 \\
\hline 152 & C & -2.041000000000 & 0.841000000000 & -1.709000000000 \\
\hline 153 & C & -1.767000000000 & 0.059000000000 & -2.841000000000 \\
\hline 154 & C & \(-2.300000000000\) & 2.209000000000 & -1.888000000000 \\
\hline 155 & C & -1.732000000000 & 0.632000000000 & -4.115000000000 \\
\hline 156 & H & -1.595000000000 & -0.996000000000 & -2.753000000000 \\
\hline 157 & C & -2.263000000000 & 2.785000000000 & -3.160000000000 \\
\hline 158 & H & -2.521000000000 & 2.839000000000 & -1.039000000000 \\
\hline 159 & C & -1.977000000000 & 1.997000000000 & -4.275000000000 \\
\hline 160 & H & -1.519000000000 & 0.016000000000 & -4.979000000000 \\
\hline 161 & H & \(-2.458000000000\) & 3.843000000000 & -3.281000000000 \\
\hline 162 & H & -1.950000000000 & 2.441000000000 & -5.262000000000 \\
\hline 163 & H & -0.322000000000 & 2.526000000000 & -0.236000000000 \\
\hline 164 & & & & \\
\hline \multicolumn{5}{|l|}{165 EOF} \\
\hline \multicolumn{5}{|l|}{166 formchk B3LYP_STO-3G_1_hexagermane_transall_first_reorder.chk} \\
\hline \multirow[t]{3}{*}{167} & \multicolumn{4}{|l|}{newzmat -ichk -opdb -step 999 B3LYP_STO-3} \\
\hline & \multicolumn{4}{|r|}{G_1_hexagermane_transall_first_reorder.chk final_B3LYP_STO-3} \\
\hline & \multicolumn{4}{|c|}{G_1_hexagermane_transall_first_reorder.pdb} \\
\hline \multicolumn{5}{|c|}{echo} \\
\hline & & done" & & \\
\hline
\end{tabular}

\section*{B. 2 Building Group 4 Chains}

While briefly mentioned and the subject of research for some time, the butyl-IV chain builder is detailed below. Ultimately unsuccessful in the initial trials, these scripts may serve a purpose in further work.

This first script builds a parent set of all possible C, Si, and Ge butylalkyl chains.
```

\#!/ usr / bin / python
import sys
import subprocess

# argument: sys.argv [num]

# Replacement: sed -i -e 's/IN/OUT/g' FILE > NEWFLLE

inFile = file(sys.argv[1])
def DoIT():
for first in {' C', 'Si', 'Ge'}:
name1 = "%s" % (first.lstrip(' '))
out1 = open(name1, "w")
cmdStr = "sed -e 's/1 GE/1 %s/g'./%s >> ./%s.pdb" % (first,
inFile, name1)
\# subprocess.call(cmdStr, shell=True, stdout=out1)
subprocess.Popen(cmdStr, shell=True, executable='/bin/bash')
out1.close()
for second in {' C', 'Si', 'Ge'}:
name2 = name1 + " _%s" % (second.lstrip (','))
out2 = open(name2, "w")

```
```

cmdStr = "sed -e 's/2 GE/2 %s/g'./%s.pdb >> ./%s.pdb" % (
second, name1, name2)
\# subprocess.call(cmdStr, shell=True, stdout=out2)
subprocess.Popen(cmdStr, shell=True, executable='/bin/bash')
out2.close()
for third in {' C', 'Si', 'Ge'}:
name3 = name2 + "_%s" % (third.lstrip (','))
out3 = open(name3, "w")
cmdStr = "sed -e 's/3 GE/3 %s/g'./%s.pdb >> ./%s.pdb" %
(third, name2, name3)
\# subprocess.call(cmdStr, shell=True, stdout=out3)
subprocess.Popen(cmdStr, shell=True, executable='/bin/
bash ')
out3.close()
for fourth in {' C', 'Si', 'Ge'}:
name4 = name3 + " _%s" % (fourth.lstrip (','))
out4 = open(name4, "w")
cmdStr = "sed -e 's/4 GE/4 %s/g', /%s.pdb >> ./%s.
pdb" % (fourth, name3, name4)
\# subprocess.call(cmdStr, shell=True, stdout=out4)
subprocess.Popen(cmdStr, shell=True, executable='/
bin/bash ')
out4.close()
DoIT ()

```

This second script takes the original trans-all butyl chain and enumerates 72 torsional rotations into a folder.
```

from chimera import runCommand as rc
from chimera import replyobj
import sys
import os
\#standard sys.argv[] for script args?

# sys.argv [0] = directory

os.chdir(sys.argv[0])
file_names = [fn for fn in os.listdir(".") if fn.endswith(".pdb")]
fn = file_names [0]

# inPDB = chimera.openModels.open('/ Users/gentry/Desktop/test/testmol.

    pdb', type="PDB")
    rc("open "+fn)
rc("rotation 1 reverse \#0:1.HET@/serialNumber=2 \#0:1.HET@/serialNumber=3
")
for i in range(72):
\#replyobj.status("Processing " + fn)
\#rc("open " + fn)
\#rc("rotation 1 reverse \#0:1.HET@/serialNumber=2 \#0:1.HET@/
serialNumber=3")
rc("rotation 1 5")
newName = (fn[:-3] + str (( i *5)) +".pdb")

```
```

rc("write format pdb 0 " + newName)
\#rc(" close ")

# chimera.runCommand("rotation 2 3 5")

# newName =( inPDB[: - 3] + i *5 + ".pdb")

# chimera.runCommand("write format pdb " + newName)

```

\section*{B. 3 Collecting and Comparing Torsional Data}

These two scripts were utilized to reduce the output data into an energy value with normalized intensity from 0 to 1 . The third script compares two of these files and looks for any additive or multiplicative trend.

This first file reads energy data and creates a list of absolute energy values per torsion degree.
```

\#!/ usr / bin / python

### Author: Gentry Smith, Oklahoma State University

### Created: August 7, 2017, 3PM

### Last Edited: August 7, 2017

### Takes a stationary_points.txt file and will copy .pdb files of the

    same name from a split_conformers.pdb/ folder
    
### into a new folder "stationary_conformers"

# This does not use any args and instead relies on the stationary points

    file being "stationary_points.txt" and the
    
# conformrs residing in a "split_conformers.pdb/" directory on the same

    level. It will create the new folder "stationary_conformers"
    import os
def IOValidator():
returnBool = [False, False]
try:
file1 = open('stationary_points.txt', 'r')
file1.close()
returnBool[0] = True
except IOError:
print("Did not find 'stationary_points.txt' file. Quitting...")
quit()
try:
wkdir = os.getcwd()
file2 = os.chdir('split_conformers.pdb')
os.chdir(wkdir)
returnBool[1] = True
except OSError:
print("Did not find 'split_conformers.pdb' folder. Quitting...")
quit()
if returnBool[0] \& returnBool[1]:
return True
else:

```
```

        return False
    def GetPDBs():
pdbNames = []
inFile = open('stationary_points.txt', 'r')
for line in inFile:
pdbNames.append(line.split()[1])
return pdbNames
def CopyPDBs(pdbList):
wkdir = os.getcwd()
for i in range(len(pdbList)):
pstring = ( 'cp ' + 'split_conformers.pdb/' + str(pdbList[i]) +
' stationary_conformers/' )
os.popen(pstring)
def Runner():
if IOValidator():
print('Valid Args. Running...')
pdbList = GetPDBs()
try:
os.mkdir('stationary_conformers')
CopyPDBs(pdbList)
except OSError:
print("'stationary_conformers' directory already exists.
Erase directory and run again. Quitting...")
quit()
Runner ()

```

This second file converts the first file into a relative scale from 0 to 1.
```

\#!/ usr/bin/python

### Author: Gentry Smith, Oklahoma State University

### Created: July 31, 2017, 12PM

#### Last Edited: July 31, 2017

### takes file arg with format [ [energy] [pdb_name] ], alters to [ [

    energy] [torsion] ], and creates copy with
    
### [ [relative energy] [torsion] ].

import sys
def IOValidator():
isValid = False
try:
inFile = sys.argv[1]
isValid = True
except IOError:

```
```

        print("Input arg is not a file.\nQuitting...")
        exit()
    return isValid
    def GetFileData():
inData = []
inFile = open(sys.argv[1], 'r')
iter = 0
for line in inFile:
inLine = line.split()
inData.append(float(inLine[0]))
iter = iter + 1
inFile.close()
return inData
def Relativize(energies):
minimum = min(energies)
\# print("Relativize: minimum="+str(minimum))
newEnergies = []
for i in range(len(energies)):
\# print("Relativize: index="+str(i))
\# print(" Relativize: energy="+str(energies[i]))
newMin = (float(energies[i]) - float(minimum))
\# print(" Relativize: newMin="+str(newMin))
newEnergies.append ((newMin))
\# print("Relativize: newEnergies="+str(newEnergies))
return newEnergies
def UnifiedScale(energies):
\# print("unifying scale...")
maxi = max(energies)
\# print("Unify: max=" + str(maxi))
newEnergies = []
for i in range(len(energies)):
\# print("Unify: energy=" + str(energies[i]))
newEner = (float(energies[i]) / maxi)
\# print("Unify: scaled energy=" + str(newEner))
newEnergies.append (newEner)
return newEnergies
def CriticalHit(energies, torsions):
isIncreasing = True
crits = []
tors = []
prev = 0
for i in range(len(energies)):
if ( energies[i] =0 ):
crits.append(energies[i])
tors.append(torsions[i])
if ( (isIncreasing) \& (energies[i] < prev) ) or ( (not

```
```

        isIncreasing) & (energies[i] > prev) ):
                crits.append(energies[i-1])
                        tors.append(torsions[i - 1])
        isIncreasing = not isIncreasing
        prev = float(energies[i])
    returnThing = [crits, tors]
    return returnThing
    def MakeFile(energies, torsions, fileName):
outFile = open(fileName, 'w')
for i in range(len(energies)):
strOut = ('{:.11e}'.format(energies[i]) +"" + str(torsions[i])
+"\n")
outFile.write(strOut)
outFile.close()
def Runner ():
if IOValidator():
energies = GetFileData()
torsions = [180]
i = 185
while i != 180:
if i = 360:
i = 0
torsions.append(i)
i}=\textrm{i}+
MakeFile(energies, torsions, 'abs_energ.txt')
relativeEnergies = Relativize(energies)
MakeFile(relativeEnergies, torsions, 'rel_energ.txt')
MakeFile(UnifiedScale(relativeEnergies), torsions, 'uni_energ.
txt')
crits = CriticalHit(relativeEnergies, torsions)
MakeFile(crits[0], crits[1], 'crit_pts.txt')
Runner ()

```

This third script compares two generated files using the prior scripts. It can compare the generated absolute energy with the relative energy files. It was often run as a loop through every permutation of the group 4 builder.
```

\#!/ usr / bin / python

### Author: Gentry Smith, Oklahoma State University

### Created: July 31, 2017, 3PM

#### Last Edited: August 1, 2017

### Takes data created by teatAbsEnergies and compares values via

    additive and multiplicative comparison
    
### with abs or rel data. Math in terms of File 2 sub/div File 1.

# sys.argv[1] = file 1, working directory here.

# sys.argv[2] = file 2, compared with file 1.

```
```

import sys
import numpy
import math
def IOValidator():
isValid1 = False
isValid2 = False
try:
inFile1 = open(sys.argv[1])
isValid1 = True
except IOError:
print("Arg File 1 is invalid.")
isValid1 = False
try:
inFile1 =open(sys.argv[2])
isValid2 = True
except IOError:
print("Arg File 2 is invalid.")
isValid2 = False
if (isValid1 \& isValid2 \& (sys.argv[1] != sys.argv[2]) ):
print('Valid Args. Running...')
return True
else:
if (sys.argv[1] = sys.argv[2]):
print ('args are indentical. Skipping...')
else:
print("Invalid args. Quitting...")
exit()
def ExtractData(data):
inFile = open(data, 'r')
inData = []
inTorsions = []
\# print('Extracting Data...')
for line in inFile:
\# print('line=' + str(line))
\# print('line.split() =' + str(line.split()))
\# print('line.split()[1]=', + str(line.split()[1]))
inData.append(float (line.split ()[0]))
inTorsions.append(int(line.split ()[1]))
\# print(str(inTorsions))
\# print('Done.')
return [inData, inTorsions]
def Comparator(data1, data2, func):
\# func: 0=add, 1=mult
newData = []
if func=0:
for i in range(len(data2)):
newData.append(float(data2[i] - data1[i]))

```
```

    elif func == 1:
        for i in range(len(data2)):
            try:
                    newData.append(float(data2[i] / data1[i]))
            except ZeroDivisionError:
                    newData.append (0.0)
    return newData
    def WriteFile(data1, data2, tors, compData, comp, sigs):
\# writes data of comparison. Format:
\# File1 = {file1}
\# File2 = {file2}
\# Source: {absolute, relative}
\# Comparison: {additive, multiplicative}
\# comp: {min/max/avg/stdev of all comp values}
\# Raw Data: {includes header of File1, File2, Torsions, Comp
defining each column}
\# print("Writing file...")
\# print('File2='+ str((sys.argv[2]).split("/")))
source = ""
if str(sys.argv[1])[:3]= "abs":
source = "absolute"
elif str(sys.argv[1])[:3]== "rel":
source = "relative"
elif str(sys.argv[1])[:3] == "uni":
source = "unified relative scale"
else:
print(str(sys.argv[1]) [:2])
comparison = ""
if comp = 0:
comparison = "additive"
elif comp = 1:
comparison = "multiplicative"
headerLines = [0]*10
headerLines [0] = ('File1 =' + sys.argv[1] +'\n')
headerLines [1] = ('File2 =' + sys.argv[2] + '\n')
headerLines [2] = ('Source: ' + source + '\n')
headerLines[3] = ('Comparison: ' + comparison + '\n')
headerLines [4] = ('Comparison min: ' + str(sigs [0]) + '\n')
headerLines[5] = ('Comparison max: ' + str(sigs[1]) +'\n')
headerLines[6] = ('Comparison avg: ' + str(sigs [2]) +'\n')
headerLines[7] = ('Comparison stdev: ' + str(sigs[3]) + '\n')
headerLines[8] = ('Raw Data:' + '\n')
f1ColSize = len(str(data1[0]))
f2ColSize = len(str (data2[0]))
headerLines[9] = ('File1'.ljust(18) + 'File2'.ljust(18) + 'Tors'.
ljust(5) + 'Comp'.ljust(18) + '\n')
fileName = (str ((sys.argv[2]).split("/")[-2]) + " -" + str(sys.argv
[1])[:3] + "_" + comparison + '.txt')
outFile = open(fileName, 'w')
for i in range(len(headerLines)):
outFile.write(str(headerLines[i]))
for i in range(len(data1)):

```
```

        # print('str(tors[i]).ljust(5) =' + str(tors[i]).ljust(5))
        string = (str(data1[i]) [:17].ljust(18) +', ' + str(data2[i])
    [:17].ljust(18) + str(tors[i]).ljust(5) + str(compData[i])[:17].
    ljust(18) + '\n')
        outFile.write(string)
    def GetCompSigs(data):
sigs = []
sigs.append(min(data))
sigs.append(max(data))
sigs.append((float (sum(data)) / float(len(data))))
sigs.append(numpy.std(data, axis=0))
return sigs
def Runner():
if IOValidator():
[data1, torsions1] = ExtractData(sys.argv[1])
[data2, torsions2] = ExtractData(sys.argv[2])
if (len(data1) = len(data2)) \& (len(torsions1) = len(torsions2
)) :
aData = Comparator(data1, data2, 0)
aSigs = GetCompSigs(aData)
WriteFile(data1, data2, torsions1, aData, 0, aSigs)
mData = Comparator(data1, data2, 1)
mSigs = GetCompSigs(mData)
WriteFile(data1, data2, torsions1, mData, 1, mSigs)
print('Complete.')
Runner ()

```

\section*{APPENDIX C}

\section*{Conformation Landscapes}

Listed below are two example Germanium PDB files. The first is for the endgoal hexagermane in the trans-trans-trans conformation with isopropyl groups on the terminal Ge atoms. The second is for the simplified butagermane with fully protonated Germanium atoms.

\section*{C. 1 Code: hexagermane-transall.pdb}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline HEADER & & & & & & & & & \\
\hline 2 REMARK & \multicolumn{9}{|l|}{Title: hexagermane_transall system} \\
\hline 3 HETATM & 1 & Ge & 1 & -4.399 & 0.008 & 0.355 & 0.00 & 0.00 & Ge \\
\hline 4 HETATM & 2 & Ge & 1 & -1.965 & 0.138 & -0.022 & 0.00 & 0.00 & Ge \\
\hline 5 HETATM & 3 & C & 1 & -4.822 & 1.886 & 0.961 & 0.00 & 0.00 & C \\
\hline 6 HETATM & 4 & C & 1 & -5.008 & -1.297 & 1.715 & 0.00 & 0.00 & C \\
\hline 7 HETATM & 5 & C & 1 & -5.256 & -0.261 & -1.445 & 0.00 & 0.00 & C \\
\hline 8 HETATM & 6 & C & 1 & -1.213 & 1.435 & 1.157 & 0.00 & 0.00 & C \\
\hline 9 HETATM & 7 & Ge & 1 & -0.756 & -1.988 & 0.223 & 0.00 & 0.00 & Ge \\
\hline 10 HETATM & 8 & C & 1 & \(-1.297\) & -2.917 & 1.805 & 0.00 & 0.00 & C \\
\hline 11 HETATM & 9 & Ge & 1 & 1.647 & -1.496 & 0.371 & 0.00 & 0.00 & Ge \\
\hline 12 HETATM & 10 & C & 1 & \(-1.182\) & -3.010 & -1.339 & 0.00 & 0.00 & C \\
\hline 13 HETATM & 11 & C & 1 & 2.131 & -0.425 & 1.877 & 0.00 & 0.00 & C \\
\hline 14 HETATM & 12 & C & 1 & 2.111 & -0.634 & \(-1.269\) & 0.00 & 0.00 & C \\
\hline 15 HETATM & 13 & Ge & 1 & 2.889 & -3.585 & 0.738 & 0.00 & 0.00 & Ge \\
\hline 16 HETATM & 14 & C & 1 & 2.287 & -4.358 & 2.378 & 0.00 & 0.00 & C \\
\hline 17 HETATM & 15 & Ge & 1 & 5.327 & -3.386 & 1.080 & 0.00 & 0.00 & Ge \\
\hline 18 HETATM & 16 & C & 1 & 2.766 & -4.685 & -0.813 & 0.00 & 0.00 & C \\
\hline 19 HETATM & 17 & C & 1 & 5.688 & -2.615 & 2.887 & 0.00 & 0.00 & C \\
\hline 20 HETATM & 18 & C & 1 & 6.239 & -2.415 & \(-0.417\) & 0.00 & 0.00 & C \\
\hline 21 HETATM & 19 & C & 1 & 5.893 & -5.324 & 0.888 & 0.00 & 0.00 & C \\
\hline 22 HETATM & 20 & C & 1 & -3.527 & 2.543 & 1.328 & 0.00 & 0.00 & C \\
\hline 23 HETATM & 21 & C & 1 & -5.754 & 1.844 & 2.133 & 0.00 & 0.00 & C \\
\hline 24 HETATM & 22 & H & 1 & -5.303 & 2.355 & 0.072 & 0.00 & 0.00 & H \\
\hline 25 HETATM & 23 & H & 1 & -5.269 & 1.358 & 2.999 & 0.00 & 0.00 & H \\
\hline 26 HETATM & 24 & H & 1 & -6.679 & 1.287 & 1.913 & 0.00 & 0.00 & H \\
\hline 27 HETATM & 25 & H & 1 & -6.047 & 2.856 & 2.449 & 0.00 & 0.00 & H \\
\hline 28 HETATM & 26 & H & 1 & -3.043 & 2.019 & 2.171 & 0.00 & 0.00 & H \\
\hline 29 HETATM & 27 & H & 1 & -3.683 & 3.585 & 1.642 & 0.00 & 0.00 & H \\
\hline 30 HETATM & 28 & H & 1 & -2.818 & 2.559 & 0.490 & 0.00 & 0.00 & H \\
\hline 31 HETATM & 29 & H & 1 & -4.336 & -1.167 & 2.589 & 0.00 & 0.00 & H \\
\hline 32 HETATM & 30 & C & 1 & -4.907 & -2.680 & 1.154 & 0.00 & 0.00 & C \\
\hline 33 HETATM & 31 & C & 1 & -6.417 & -0.909 & 2.051 & 0.00 & 0.00 & C \\
\hline 34 HETATM & 32 & H & 1 & -3.858 & -2.985 & 0.982 & 0.00 & 0.00 & H \\
\hline 35 HETATM & 33 & H & 1 & -5.433 & -2.773 & 0.187 & 0.00 & 0.00 & H \\
\hline 36 HETATM & 34 & H & 1 & -5.349 & -3.420 & 1.836 & 0.00 & 0.00 & H \\
\hline 37 HETATM & 35 & H & 1 & -6.488 & 0.167 & 2.302 & 0.00 & 0.00 & H \\
\hline 38 HETATM & 36 & H & 1 & -6.802 & \(-1.477\) & 2.909 & 0.00 & 0.00 & H \\
\hline 39 HETATM & 37 & H & 1 & -7.103 & -1.094 & 1.205 & 0.00 & 0.00 & H \\
\hline 40 HETATM & 38 & C & 1 & 5.200 & -6.127 & 1.944 & 0.00 & 0.00 & C \\
\hline 41 HETATM & 39 & C & 1 & 7.384 & -5.453 & 0.966 & 0.00 & 0.00 & C \\
\hline 42 HETATM & 40 & H & 1 & 5.523 & -5.590 & -0.126 & 0.00 & 0.00 & H \\
\hline 43 HETATM & 41 & H & 1 & 7.790 & -4.974 & 1.874 & 0.00 & 0.00 & H \\
\hline 44 HETATM & 42 & H & 1 & 7.885 & -4.994 & 0.099 & 0.00 & 0.00 & H \\
\hline 45 HETATM & 43 & H & 1 & 7.691 & -6.509 & 0.992 & 0.00 & 0.00 & H \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 46 HETATM & 44 & H & 1 & 5.502 & -5.821 & 2.960 & 0.00 & 0.00 & H \\
\hline 47 HETATM & 45 & H & 1 & 5.436 & -7.197 & 1.849 & 0.00 & 0.00 & H \\
\hline 48 HETATM & 46 & H & 1 & 4.106 & -6.027 & 1.879 & 0.00 & 0.00 & H \\
\hline 49 HETATM & 47 & C & 1 & 6.243 & -1.232 & 2.746 & 0.00 & 0.00 & C \\
\hline 50 HETATM & 48 & C & 1 & 6.612 & -3.524 & 3.636 & 0.00 & 0.00 & C \\
\hline 51 HETATM & 49 & H & 1 & 4.684 & -2.582 & 3.376 & 0.00 & 0.00 & H \\
\hline 52 HETATM & 50 & H & 1 & 7.535 & -3.731 & 3.068 & 0.00 & 0.00 & H \\
\hline 53 HETATM & 51 & H & 1 & 6.139 & -4.497 & 3.853 & 0.00 & 0.00 & H \\
\hline 54 HETATM & 52 & H & 1 & 6.913 & -3.088 & 4.599 & 0.00 & 0.00 & H \\
\hline 55 HETATM & 53 & H & 1 & 7.243 & -1.234 & 2.279 & 0.00 & 0.00 & H \\
\hline 56 HETATM & 54 & H & 1 & 6.347 & -0.742 & 3.725 & 0.00 & 0.00 & H \\
\hline 57 HETATM & 55 & H & 1 & 5.589 & -0.589 & 2.128 & 0.00 & 0.00 & H \\
\hline 58 HETATM & 56 & C & 1 & 5.630 & -1.055 & -0.555 & 0.00 & 0.00 & C \\
\hline 59 HETATM & 57 & H & 1 & 6.024 & -3.039 & -1.315 & 0.00 & 0.00 & H \\
\hline 60 HETATM & 58 & C & 1 & 7.712 & -2.342 & -0.145 & 0.00 & 0.00 & C \\
\hline 61 HETATM & 59 & H & 1 & 7.923 & -1.890 & 0.839 & 0.00 & 0.00 & H \\
\hline 62 HETATM & 60 & H & 1 & 8.227 & -1.728 & -0.898 & 0.00 & 0.00 & H \\
\hline 63 HETATM & 61 & H & 1 & 8.188 & -3.335 & -0.163 & 0.00 & 0.00 & H \\
\hline 64 HETATM & 62 & H & 1 & 4.573 & -1.106 & -0.861 & 0.00 & 0.00 & H \\
\hline 65 HETATM & 63 & H & 1 & 6.155 & -0.455 & -1.314 & 0.00 & 0.00 & H \\
\hline 66 HETATM & 64 & H & 1 & 5.675 & -0.486 & 0.391 & 0.00 & 0.00 & H \\
\hline 67 HETATM & 65 & H & 1 & -5.890 & -1.163 & -1.302 & 0.00 & 0.00 & H \\
\hline 68 HETATM & 66 & C & 1 & -4.220 & -0.487 & -2.505 & 0.00 & 0.00 & C \\
\hline 69 HETATM & 67 & C & 1 & -6.093 & 0.945 & -1.729 & 0.00 & 0.00 & C \\
\hline 70 HETATM & 68 & H & 1 & -6.841 & 1.122 & -0.939 & 0.00 & 0.00 & H \\
\hline 71 HETATM & 69 & H & 1 & -6.644 & 0.838 & -2.676 & 0.00 & 0.00 & H \\
\hline 72 HETATM & 70 & H & 1 & -5.478 & 1.858 & -1.818 & 0.00 & 0.00 & H \\
\hline 73 HETATM & 71 & H & 1 & -3.754 & -1.481 & -2.414 & 0.00 & 0.00 & H \\
\hline 74 HETATM & 72 & H & 1 & -3.411 & 0.262 & -2.459 & 0.00 & 0.00 & H \\
\hline 75 HETATM & 73 & H & 1 & -4.659 & -0.429 & -3.512 & 0.00 & 0.00 & H \\
\hline 76 HETATM & 74 & C & 1 & -1.706 & 1.681 & 2.429 & 0.00 & 0.00 & C \\
\hline 77 HETATM & 75 & C & 1 & -0.128 & 2.155 & 0.679 & 0.00 & 0.00 & C \\
\hline 78 HETATM & 76 & H & 1 & 0.268 & 1.941 & -0.323 & 0.00 & 0.00 & H \\
\hline 79 HETATM & 77 & C & 1 & 0.451 & 3.147 & 1.465 & 0.00 & 0.00 & C \\
\hline 80 HETATM & 78 & C & 1 & -1.134 & 2.678 & 3.216 & 0.00 & 0.00 & C \\
\hline 81 HETATM & 79 & C & 1 & -0.058 & 3.415 & 2.731 & 0.00 & 0.00 & C \\
\hline 82 HETATM & 80 & H & 1 & -1.525 & 2.873 & 4.219 & 0.00 & 0.00 & H \\
\hline 83 HETATM & 81 & H & 1 & 1.306 & 3.716 & 1.086 & 0.00 & 0.00 & H \\
\hline 84 HETATM & 82 & H & 1 & 0.391 & 4.199 & 3.349 & 0.00 & 0.00 & H \\
\hline 85 HETATM & 83 & C & 1 & -1.557 & -4.274 & 1.694 & 0.00 & 0.00 & C \\
\hline 86 HETATM & 84 & C & 1 & -0.365 & -3.088 & -2.455 & 0.00 & 0.00 & C \\
\hline 87 HETATM & 85 & C & 1 & -2.027 & -4.985 & 2.796 & 0.00 & 0.00 & C \\
\hline 88 HETATM & 86 & H & 1 & -1.378 & -4.792 & 0.742 & 0.00 & 0.00 & H \\
\hline 89 HETATM & 87 & C & 1 & -1.446 & -2.277 & 3.025 & 0.00 & 0.00 & C \\
\hline 90 HETATM & 88 & C & 1 & -0.752 & -3.866 & -3.544 & 0.00 & 0.00 & C \\
\hline 91 HETATM & 89 & H & 1 & 0.592 & -2.548 & -2.482 & 0.00 & 0.00 & H \\
\hline 92 HETATM & 90 & C & 1 & -2.386 & -3.699 & -1.304 & 0.00 & 0.00 & C \\
\hline 93 HETATM & 91 & C & 1 & -2.219 & -4.336 & 4.011 & 0.00 & 0.00 & C \\
\hline 94 HETATM & 92 & H & 1 & -2.237 & -6.056 & 2.707 & 0.00 & 0.00 & H \\
\hline 95 HETATM & 93 & C & 1 & -1.915 & -2.983 & 4.130 & 0.00 & 0.00 & C \\
\hline 96 HETATM & 94 & H & 1 & -1.159 & -1.217 & 3.132 & 0.00 & 0.00 & H \\
\hline 97 HETATM & 95 & C & 1 & -2.771 & -4.484 & -2.388 & 0.00 & 0.00 & C \\
\hline 98 HETATM & 96 & H & 1 & -3.043 & -3.610 & -0.422 & 0.00 & 0.00 & H \\
\hline 99 HETATM & 97 & C & 1 & -1.952 & -4.568 & -3.509 & 0.00 & 0.00 & C \\
\hline 100 HETATM & 98 & H & 1 & -0.105 & -3.928 & -4.425 & 0.00 & 0.00 & H \\
\hline 101 HETATM & 99 & H & 1 & -3.721 & -5.027 & -2.358 & 0.00 & 0.00 & H \\
\hline 102 HETATM & 100 & H & 1 & -2.253 & -5.182 & -4.364 & 0.00 & 0.00 & H \\
\hline 103 HETATM & 101 & H & 1 & -2.596 & -4.891 & 4.876 & 0.00 & 0.00 & H \\
\hline 104 HETATM & 102 & H & 1 & -2.041 & -2.474 & 5.091 & 0.00 & 0.00 & H \\
\hline 105 HETATM & 103 & C & 1 & 2.487 & -3.679 & 3.571 & 0.00 & 0.00 & C \\
\hline 106 HETATM & 104 & C & 1 & 1.701 & -5.563 & -0.935 & 0.00 & 0.00 & C \\
\hline 107 HETATM & 105 & C & 1 & 3.733 & -4.618 & \(-1.807\) & 0.00 & 0.00 & C \\
\hline 108 HETATM & 106 & H & 1 & 0.940 & -5.615 & -0.140 & 0.00 & 0.00 & H \\
\hline 109 HETATM & 107 & C & 1 & 1.598 & -6.382 & -2.057 & 0.00 & 0.00 & C \\
\hline 110 HETATM & 108 & C & 1 & 1.690 & -5.609 & 2.382 & 0.00 & 0.00 & C \\
\hline 111 HETATM & 109 & C & 1 & 2.102 & -4.259 & 4.776 & 0.00 & 0.00 & C \\
\hline 112 HETATM & 110 & H & 1 & 2.956 & -2.680 & 3.567 & 0.00 & 0.00 & H \\
\hline 113 HETATM & 111 & C & 1 & 1.520 & -5.523 & 4.784 & 0.00 & 0.00 & C \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 114 & HETATM & 112 & H & & 1 & 2.260 & -3.721 & 5.716 & 0.00 & 0.00 & H \\
\hline 115 & HETATM & 113 & C & & 1 & 1.311 & -6.197 & 3.585 & 0.00 & 0.00 & C \\
\hline 116 & HETATM & 114 & H & & 1 & 1.504 & -6.131 & 1.431 & 0.00 & 0.00 & H \\
\hline 117 & HETATM & 115 & C & & 1 & 2.562 & -6.313 & -3.057 & 0.00 & 0.00 & C \\
\hline 118 & HETATM & 116 & H & & 1 & 0.754 & -7.074 & -2.153 & 0.00 & 0.00 & H \\
\hline 119 & HETATM & 117 & C & & 1 & 3.630 & -5.430 & -2.933 & 0.00 & 0.00 & C \\
\hline 120 & HETATM & 118 & H & & 1 & 4.590 & -3.931 & -1.700 & 0.00 & 0.00 & H \\
\hline 121 & HETATM & 119 & H & & 1 & 4.391 & -5.376 & -3.718 & 0.00 & 0.00 & H \\
\hline 122 & HETATM & 120 & H & & 1 & 2.481 & -6.954 & -3.941 & 0.00 & 0.00 & H \\
\hline 123 & HETATM & 121 & H & & 1 & 1.223 & -5.984 & 5.731 & 0.00 & 0.00 & H \\
\hline 124 & HETATM & 122 & H & & 1 & 0.844 & \(-7.187\) & 3.587 & 0.00 & 0.00 & H \\
\hline 125 & HETATM & 123 & C & & 1 & 1.878 & 0.732 & -1.306 & 0.00 & 0.00 & C \\
\hline 126 & HETATM & 124 & C & & 1 & 1.530 & -0.534 & 3.120 & 0.00 & 0.00 & C \\
\hline 127 & HETATM & 125 & C & & 1 & 2.642 & -1.289 & -2.370 & 0.00 & 0.00 & C \\
\hline 128 & HETATM & 126 & C & & 1 & 2.179 & 1.455 & -2.458 & 0.00 & 0.00 & C \\
\hline 129 & HETATM & 127 & H & & 1 & 1.444 & 1.239 & -0.432 & 0.00 & 0.00 & H \\
\hline 130 & HETATM & 128 & C & & 1 & 3.179 & 0.461 & 1.679 & 0.00 & 0.00 & C \\
\hline 131 & HETATM & 129 & C & & 1 & 2.005 & 0.227 & 4.186 & 0.00 & 0.00 & C \\
\hline 132 & HETATM & 130 & H & & 1 & 0.661 & -1.197 & 3.265 & 0.00 & 0.00 & H \\
\hline 133 & HETATM & 131 & C & & 1 & 2.940 & -0.568 & -3.524 & 0.00 & 0.00 & C \\
\hline 134 & HETATM & 132 & H & & 1 & 2.840 & -2.370 & -2.334 & 0.00 & 0.00 & H \\
\hline 135 & HETATM & 133 & C & & 1 & 2.710 & 0.804 & -3.567 & 0.00 & 0.00 & C \\
\hline 136 & HETATM & 134 & H & & 1 & 1.989 & 2.533 & -2.491 & 0.00 & 0.00 & H \\
\hline 137 & HETATM & 135 & H & & 1 & 3.358 & -1.081 & -4.396 & 0.00 & 0.00 & H \\
\hline 138 & HETATM & 136 & H & & 1 & 2.944 & 1.370 & -4.475 & 0.00 & 0.00 & H \\
\hline 139 & HETATM & 137 & C & & 1 & 3.067 & 1.105 & 3.998 & 0.00 & 0.00 & C \\
\hline 140 & HETATM & 138 & H & & 1 & 1.534 & 0.140 & 5.170 & 0.00 & 0.00 & H \\
\hline 141 & HETATM & 139 & C & & 1 & 3.650 & 1.229 & 2.740 & 0.00 & 0.00 & C \\
\hline 142 & HETATM & 140 & H & & 1 & 3.633 & 0.553 & 0.682 & 0.00 & 0.00 & H \\
\hline 143 & HETATM & 141 & H & & 1 & 4.480 & 1.926 & 2.585 & 0.00 & 0.00 & H \\
\hline 144 & HETATM & 142 & H & & 1 & 3.439 & 1.703 & 4.836 & 0.00 & 0.00 & H \\
\hline 145 & HETATM & 143 & C & & 1 & -2.039 & 0.838 & -1.804 & 0.00 & 0.00 & C \\
\hline 146 & HETATM & 144 & C & & 1 & -1.525 & 0.195 & -2.916 & 0.00 & 0.00 & C \\
\hline 147 & HETATM & 145 & C & & 1 & -2.655 & 2.077 & -1.927 & 0.00 & 0.00 & C \\
\hline 148 & HETATM & 146 & C & & 1 & -1.618 & 0.802 & -4.168 & 0.00 & 0.00 & C \\
\hline 149 & HETATM & 147 & H & & 1 & -1.048 & -0.789 & -2.818 & 0.00 & 0.00 & H \\
\hline 150 & HETATM & 148 & C & & 1 & -2.746 & 2.686 & -3.175 & 0.00 & 0.00 & C \\
\hline 151 & HETATM & 149 & H & & 1 & -3.084 & 2.566 & -1.036 & 0.00 & 0.00 & H \\
\hline 152 & HETATM & 150 & C & & 1 & -2.223 & 2.047 & -4.296 & 0.00 & 0.00 & C \\
\hline 153 & HETATM & 151 & H & & 1 & -1.210 & 0.296 & -5.049 & 0.00 & 0.00 & H \\
\hline 154 & HETATM & 152 & H & & 1 & -3.229 & 3.663 & -3.275 & 0.00 & 0.00 & H \\
\hline 155 & HETATM & 153 & H & & 1 & -2.292 & 2.524 & -5.279 & 0.00 & 0.00 & H \\
\hline 156 & HETATM & 154 & H & & 1 & -2.539 & 1.081 & 2.827 & 0.00 & 0.00 & H \\
\hline 157 & CONECT & 3 & 1 & 20 & 21 & 22 & & & & & \\
\hline 158 & CONECT & 4 & 1 & 29 & 30 & 31 & & & & & \\
\hline 159 & CONECT & 5 & 1 & 65 & 66 & 67 & & & & & \\
\hline 160 & CONECT & 6 & 74 & 75 & 2 & & & & & & \\
\hline 161 & CONECT & 8 & 83 & 87 & 7 & & & & & & \\
\hline 162 & CONECT & 10 & 84 & 90 & 7 & & & & & & \\
\hline 163 & CONECT & 11 & 124 & 128 & 9 & & & & & & \\
\hline 164 & CONECT & 12 & 123 & 125 & 9 & & & & & & \\
\hline 165 & CONECT & 14 & 103 & 108 & 13 & & & & & & \\
\hline 166 & CONECT & 16 & 104 & 105 & 13 & & & & & & \\
\hline 167 & CONECT & 17 & 15 & 47 & 48 & 49 & & & & & \\
\hline 168 & CONECT & 18 & 56 & 57 & 58 & 15 & & & & & \\
\hline 169 & CONECT & 19 & 15 & 38 & 39 & 40 & & & & & \\
\hline 170 & CONECT & 20 & 3 & 26 & 27 & 28 & & & & & \\
\hline 171 & CONECT & 21 & 3 & 23 & 24 & 25 & & & & & \\
\hline 172 & CONECT & 30 & 4 & 34 & 32 & 33 & & & & & \\
\hline 173 & CONECT & 31 & 4 & 35 & 36 & 37 & & & & & \\
\hline 174 & CONECT & 38 & 19 & 44 & 45 & 46 & & & & & \\
\hline 175 & CONECT & 39 & 19 & 41 & 42 & 43 & & & & & \\
\hline 176 & CONECT & 47 & 54 & 55 & 17 & 53 & & & & & \\
\hline 177 & CONECT & 48 & 17 & 50 & 51 & 52 & & & & & \\
\hline 178 & CONECT & 56 & 62 & 63 & 64 & 18 & & & & & \\
\hline 179 & CONECT & 58 & 59 & 60 & 61 & 18 & & & & & \\
\hline 180 & CONECT & 66 & 71 & 72 & 73 & 5 & & & & & \\
\hline 181 & CONECT & 67 & 68 & 69 & 70 & 5 & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 250 & CONECT & 49 & 17 \\
\hline 251 & CONECT & 50 & 48 \\
\hline 252 & CONECT & 51 & 48 \\
\hline 253 & CONECT & 52 & 48 \\
\hline 254 & CONECT & 53 & 47 \\
\hline 255 & CONECT & 54 & 47 \\
\hline 256 & CONECT & 55 & 47 \\
\hline 257 & CONECT & 57 & 18 \\
\hline 258 & CONECT & 59 & 58 \\
\hline 259 & CONECT & 60 & 58 \\
\hline 260 & CONECT & 61 & 58 \\
\hline 261 & CONECT & 62 & 56 \\
\hline 262 & CONECT & 63 & 56 \\
\hline 263 & CONECT & 64 & 56 \\
\hline 264 & CONECT & 65 & 5 \\
\hline 265 & CONECT & 68 & 67 \\
\hline 266 & CONECT & 69 & 67 \\
\hline 267 & CONECT & 70 & 67 \\
\hline 268 & CONECT & 71 & 66 \\
\hline 269 & CONECT & 72 & 66 \\
\hline 270 & CONECT & 73 & 66 \\
\hline 271 & CONECT & 76 & 75 \\
\hline 272 & CONECT & 80 & 78 \\
\hline 273 & CONECT & 81 & 77 \\
\hline 274 & CONECT & 82 & 79 \\
\hline 275 & CONECT & 86 & 83 \\
\hline 276 & CONECT & 89 & 84 \\
\hline 277 & CONECT & 92 & 85 \\
\hline 278 & CONECT & 94 & 87 \\
\hline 279 & CONECT & 96 & 90 \\
\hline 280 & CONECT & 98 & 88 \\
\hline 281 & CONECT & 99 & 95 \\
\hline 282 & CONECT & 100 & 97 \\
\hline 283 & CONECT & 101 & 91 \\
\hline 284 & CONECT & 102 & 93 \\
\hline 285 & CONECT & 106 & 104 \\
\hline 286 & CONECT & 110 & 103 \\
\hline 287 & CONECT & 112 & 109 \\
\hline 288 & CONECT & 114 & 108 \\
\hline 289 & CONECT & 116 & 107 \\
\hline 290 & CONECT & 118 & 105 \\
\hline 291 & CONECT & 119 & 117 \\
\hline 292 & CONECT & 120 & 115 \\
\hline 293 & CONECT & 121 & 111 \\
\hline 294 & CONECT & 122 & 113 \\
\hline 295 & CONECT & 127 & 123 \\
\hline 296 & CONECT & 130 & 124 \\
\hline 297 & CONECT & 132 & 125 \\
\hline 298 & CONECT & 134 & 126 \\
\hline 299 & CONECT & 135 & 131 \\
\hline 300 & CONECT & 136 & 133 \\
\hline 301 & CONECT & 138 & 129 \\
\hline 302 & CONECT & 140 & 128 \\
\hline 303 & CONECT & 141 & 139 \\
\hline 304 & CONECT & 142 & 137 \\
\hline 305 & CONECT & 147 & 144 \\
\hline 306 & CONECT & 149 & 145 \\
\hline 307 & CONECT & 151 & 146 \\
\hline 308 & CONECT & 152 & 148 \\
\hline 309 & CONECT & 153 & 150 \\
\hline 310 & CONECT & 154 & 74 \\
\hline 311 & END & & \\
\hline
\end{tabular}

The above molecule contains 154 atoms and 153 bonds, making it extremely computationally expensive for regular QM calculations. This made utilizing the large molecule as a trial system unreasonable due to the prohibitively long computation time for each conformation, assuming the conformation calculation would complete
at all.
The below PDB file is the simplified butagermane with fully protonated Germanium atoms. As a significantly smaller system with only 14 atoms and 13 bonds, the relatively short computation time allowed the trial system to move with relative ease.

\section*{C. 2 Code: ge4h.pdb}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 OOMPND & \multicolumn{13}{|l|}{UNNAMED} \\
\hline 2 AUTHOR & \multicolumn{13}{|l|}{GENERATED BY OPEN BABEL 2.3.90} \\
\hline 3 HETATM & 1 & GE & UNL & 1 & & \(-3.520\) & & 1.842 & -0.078 & 1.00 & 0.00 & & Ge3- \\
\hline 4 HETATM & 2 & GE & UNL & 1 & & -1.368 & & 2.888 & -0.034 & 1.00 & 0.00 & & Ge2- \\
\hline 5 HETATM & 3 & GE & UNL & 1 & & 0.324 & & 1.200 & 0.059 & 1.00 & 0.00 & & Ge3- \\
\hline 6 HETATM & 4 & GE & UNL & 1 & & 2.475 & & 2.248 & 0.099 & 1.00 & 0.00 & & Ge \\
\hline 7 HETATM & 5 & H & UNL & 1 & & -4.622 & & 2.930 & -0.135 & 1.00 & 0.00 & & H \\
\hline 8 HETATM & 6 & H & UNL & 1 & & -3.699 & & 0.985 & 1.202 & 1.00 & 0.00 & & H \\
\hline 9 HETATM & 7 & H & UNL & 1 & & -3.621 & & 0.932 & -1.328 & 1.00 & 0.00 & & H \\
\hline 10 HETATM & 8 & H & UNL & 1 & & -1.258 & & 3.797 & 1.217 & 1.00 & 0.00 & & H \\
\hline 11 HETATM & 9 & H & UNL & 1 & & -1.178 & & 3.740 & -1.314 & 1.00 & 0.00 & & H \\
\hline 12 HETATM & 10 & H & UNL & 1 & & 0.213 & & 0.288 & -1.189 & 1.00 & 0.00 & & H \\
\hline 13 HETATM & 11 & H & UNL & 1 & & 0.135 & & 0.352 & 1.342 & 1.00 & 0.00 & & H \\
\hline 14 HETATM & 12 & H & UNL & 1 & & 2.655 & & 3.095 & \(-1.186\) & 1.00 & 0.00 & & H \\
\hline 15 HETATM & 13 & H & UNL & 1 & & 3.578 & & 1.161 & 0.165 & 1.00 & 0.00 & & H \\
\hline 16 HETATM & 14 & H & UNL & 1 & & 2.574 & & 3.167 & 1.343 & 1.00 & 0.00 & & H \\
\hline 17 CONECT & 1 & 2 & 5 & 6 & 7 & & & & & & & & \\
\hline 18 CONECT & 2 & 1 & 3 & 8 & 9 & & & & & & & & \\
\hline 19 CONECT & 3 & 2 & 4 & 10 & 11 & & & & & & & & \\
\hline 20 CONECT & 4 & 3 & 12 & 13 & 14 & & & & & & & & \\
\hline 21 CONECT & 5 & 1 & & & & & & & & & & & \\
\hline 22 CONECT & 6 & 1 & & & & & & & & & & & \\
\hline 23 CONECT & 7 & 1 & & & & & & & & & & & \\
\hline 24 CONECT & 8 & 2 & & & & & & & & & & & \\
\hline 25 CONECT & 9 & 2 & & & & & & & & & & & \\
\hline 26 CONECT & 10 & 3 & & & & & & & & & & & \\
\hline 27 CONECT & 11 & 3 & & & & & & & & & & & \\
\hline 28 CONECT & 12 & 4 & & & & & & & & & & & \\
\hline 29 CONECT & 13 & 4 & & & & & & & & & & & \\
\hline 30 CONECT & 14 & 4 & & & & & & & & & & & \\
\hline 31 MASTER & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \(0 \quad 14\) & 0 & 14 & 0 & \\
\hline 32 END & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{C. 3 Progress on Torsion Minimizer System}

While incomplete and largely nonfunctioning, this code is the current progress toward the implementation of the torsion minimizer system as outlined in IV.2.
```


### Author: Gentry Smith

### Date: April 22, 2017

### Description: This is the runner file that is the primary executable

    for the torsion minimizer. Currently is the
    
### only file utilized.

# Inputs:

# Arg1: the molecule file to be minimized (currently only accepts a pdb

    file)
    import sys
import subprocess
import math

# IO Validator: validates user-submitted molecule.

def IOValidator():

```
```

    isValid = False
    # Check for valid length of args (2)
    if len(sys.argv) == 2:
        # Check arg to make sure it's a file.
        argFile = sys.argv[1]
        try:
            inputFile = open(argFile)
            # Finally, make sure the file is a .pdb
            if inputFile[-4:] == ".pdb":
                isValid = True
            else:
                print("This is not a .pdb file. Please try again with a
    pdb file.\n")
            inputFile.close()
        except IOError:
            print("System was not able to open '", str(argFile), ",.")
    # too long
    elif len(sys.argv) > 2:
            print("You have too many arguments. Call the file as 'Runner.py
    [molecule file]' and try again.\n")
    # too short
    else:
            print("You do not have enough arguments. Start the program as '
    Runner.py [molecule file]' and try again.\n")
    # return validity boolean
    return isValid
    
# Get Torsions: initiates function to get user-specified torsion bonds.

    Returns bonds as int[[a,b],[a,b]] list
    def getTorsions():
torsions = [[0, 0]]
newTorsion = "first"
firstTime = True
doneCheck = ""
badIn = False
\# loop for all torsions until user types "done"
while newTorsion != "":
if firstTime:
print("It's time to define the torsions of the molecule and
declare which bonds you would like to rotate.\n")
print("Before going any further, it's important to note at
this time that version 0.2 (current) will assume the torsions you
enter are completely correct. You'll see a bunch of error messages
soon if it isn't correct.\n")
print("Open the .pdb file and identify the numbers of the
atoms on the .pdb that will make the bond (the first number on the
line of each atom)\n\n")
print("Now it's time to enter in the numbers of the two
atoms. We'll do it one at a time.")
firstTor = raw_input("Type in the number of the first atom
in the bond and hit enter. \nEx: type 3 and then hit enter.\n")

```
```

        try:
            confFirstTor = int(firstTor)
        except ValueError:
            print("You typed in '", firstTor, ",, which is not a
    number. Let's start again.")
            badIn = True
        secondTor = raw_input("Type in the number of the second atom
    in the bond and hit enter. \nEx: type 3 and then hit enter.\n")
        try:
    confSecondTor = int(secondTor)
        except ValueError:
            print("You typed in '", secondTor, "', which is not a
    number. Let's start again.")
badIn = True
firstTime = False
else:
print("Open the .pdb file and identify the numbers of the
atoms on the .pdb that will make the bond (the first number on the
line of each atom)\n\n")
firstTor = raw_input("Type in the number of the first atom
in the bond and hit enter. \nEx: type 3 and then hit enter.\n")
try:
confFirstTor = int(firstTor)
except ValueError:
print("You typed in '", firstTor, ",, which is not a
number. Let's start again.")
badIn = True
secondTor = raw_input("Type in the number of the second atom
in the bond and hit enter. \nEx: type 3 and then hit enter.\n")
try:
confSecondTor = int(secondTor)
except ValueError:
print("You typed in '", secondTor, "', which is not a
number. Let's start again.")
badIn = True
firstTime = False
if badIn == False:
newTorsion = [confFirstTor, confSecondTor]
if torsions = [[0, 0]]:
print("You added a new torsion: ", newTorsion, "\n")
torsions = newTorsion
else:
torsions.append(newTorsion)
print("The current torsions you have created are:\n")
for each in torsions:
print(each, "\n")

```
```

                                    doneCheck = raw_input("If you would like to add another
    torsion, press enter. If you are finished adding torsions, type '
    done' and press enter\n")
            if str(doneCheck) = "done":
                        print("Finished entering torsions. Begining the work.\n"
    )
            else:
                        newTorsion = "first"
        if badIn =}\mathrm{ True:
            firstTime = True
            badIn = False
            newTorsion = "first"
    return torsions
    
# Get Conformation Count: determines conformations needed. Returns list

    in form: [#conf, rotDeg, rotRng]
    def getConformationInfo(depth, torsions):
\# rotates 60 degrees on the first search, then logarithmic decrease
from 10 for each subsequent search.
rotDeg = [60, 10]
\# full torsion range for first search, logarithmic decrease from 50
for each subsequent search
rotRng = [360, 50]
\# number of conformations needed
numConf = 0
\# degrees per rotation
deg}=
\# rotation range
rng = 0
\# number of rotations per torsion
rotTick = 0
\# determine counts from depth
if depth >= 2:
deg = math.pow(10, (2-depth))
rng}=\operatorname{deg}*
elif depth <2:
deg = rotDeg[depth]
rng = rotRng[depth]
if depth = 1:
rotTick = 6
elif depth >= 1:
rotTick = 11
numConf = math.pow(torsions, rotTick)
return [numConf, deg, rng]
def Launcher():

```
```

    valid = IOValidator()
    if valid:
        # do everything
        depth = 0
        InitWD ()
        else:
        print("There was a problem while reading in the molecule file.
        Please try again.\n")
        exit()
    
# Initiates proper working directory.

def InitWD():

# Recursive search through molecule torsions

def RecursiveSearch(depth):
torsions = getTorsions()
Launcher()

```

VITA
Gentry H. Smith
Candidate for the Degree of
Master of Science

\section*{Thesis: EXPLORING CRITICAL CONFORMATIONS}

Major Field: Chemistry

\section*{Biographical:}

Personal Information: Born in Olathe, KS in November 1993.
Education:
Completed the requirements for the degree of Master of Science with a major in Chemistry at Oklahoma State University in December 2018.

Received a Bachelors of Science in Chemistry at Southern Nazarene University in May 2016.

Experience:
Teaching Assistant, various undergraduate chemistry courses, Southern Nazarene University, Aug. 2014 - May 2016
Graduate Teaching Assistant, CHEM 1314 \& 1414 at Oklahoma State University, Aug. 2016 - Dec. 2018

Professional Affiliations:
American Chemical Society
Awards
Colonel Andre Whitely Scholarship in Chemistry```


[^0]:    Acknowledgments reflect the views of the author and are not endorsed by committee members or Oklahoma State University.

