
EXPLORING CRITICAL CONFORMATIONS:

STATE SEARCHING AND SAMPLING IN

BOTH GERMANIUM CHAINS AND ICE

By

GENTRY H. SMITH

Bachelor of Science in Chemistry

Southern Nazarene University

Bethany, OK, USA

2016

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
Master of Science
December 2018

EXPLORING CRITICAL CONFORMATIONS:

STATE SEARCHING AND SAMPLING IN

BOTH GERMANIUM CHAINS AND ICE

Thesis Approved:

Dr. Christopher J. Fennell

Thesis Advisor

Dr. Jindal K. Shah

Dr. Jimmie D. Weaver

ii

ACKNOWLEDGMENTS

To Oklahoma State University, for providing the environment in which I have

been able to study, teach, and research.

To the HPCC and the individuals who manage it for providing a powerful cluster

for computations and continuous support for technical issues.

To my advisor, who instructed and assisted me in research.

To my parents, by blood and marriage, who have always encouraged me toward

higher goals.

To my wife, Miranda, who has supported me for over five years.

Acknowledgments reflect the views of the author and are not endorsed by committee members
or Oklahoma State University.

iii

Name: GENTRY H SMITH

Date of Degree: December 2018

Title of Study: EXPLORING CRITICAL CONFORMATIONS

Major Field: CHEMISTRY

Abstract: Molecular conformation plays a critical role in the properties of sys-
tems in both the condensed or vapor states. The ensemble of conformations dictates
structural properties, average energy, heat capacities, and other thermodynamic and
dynamic quantities. Here, we explore the role of conformation in proton ordering and
orientational defect formation in ice as well as strategies for exhaustive conformer
searching for molecules using Group IV element backbones. In the ice systems, we
show algorithmic strategies for seeking optimized proton disordered crystals that sat-
isfy the Bernal-Fowler ice rules. In the Group IV molecule investigations, we develop
an automated strategy for seeking the optimal low energy conformer and uncover
previously unreported deficiencies in common computational software used in inves-
tigating Germanium complex energies.

iv

TABLE OF CONTENTS

Chapter Page

I Introduction 1
I.1 Computational Chemistry: Chemistry on the Computer 1
I.2 Relevant Computational Methods . 1

I.2.1 Quantum Mechanical Methods and Basis Sets 2
I.2.1.1 Ab Initio Methods 2
I.2.1.2 Density Functional Theory Methods 3
I.2.1.3 Semi-Empirical Methods 4
I.2.1.4 Basis Sets . 5

I.2.2 Monte Carlo Molecular Modeling 6
I.3 Hardware . 7
I.4 Software . 8

I.4.1 Programs . 8
I.4.2 Programming Languages . 9

II On Algorithms for Building and Sampling Disordered Crystal States 11
II.1 States and Properties of Ice . 11

II.1.1 Bernal-Fowler Ice Rules . 11
II.1.2 Forms of Ice . 12
II.1.3 Ice Ih . 12
II.1.4 Comparison between Ice XI and Ice Ih 13

II.2 Method Design . 14
II.2.1 Method Tools and Information Management 14
II.2.2 Pseudorandom Rearrangement of Water Molecules and Gener-

ation of Bjerrum Defects . 17
II.3 Results of Method . 19
II.4 Comparison to Buch’s Method . 20
II.5 Comments on Limitations and Proposed Improvements 21

IIIGermanium Compounds and QM Concerns 23
III.1 The Initial Problem: Germanium Study 23

III.1.1 Computational Complexity of Germanium Compounds 23
III.1.2 Parameters of Work and Previous Collaborator’s Results . . . 24
III.1.3 Design and Approach to Solution 26

III.1.3.1 Design 1: Occam’s Smallest Razor 26
III.1.3.2 Design 2: A Blunt Effort 27
III.1.3.3 Design 3: Death by 1.59 Million Cuts 31

v

III.1.4 Scale Reduction Efforts . 33
III.1.5 Efforts at Simplification . 34

III.2 Discovery of a Consistent Inconsistency 38
III.3 Final Thoughts . 42

IV Sampling Conformation Landscapes by Rotatable Bond Degrees of
Freedom 43
IV.1 A Brief History on Conformation Landscapes 43

IV.1.1 Levinthal’s Paradox . 43
IV.1.2 Levinthal Golf Courses . 43

IV.2 Purpose of Project . 44
IV.3 Design of System . 46

IV.3.1 Variation of Theory and Basis Set Usage by System Size and
largest atom type . 46

IV.3.2 Computational Optimization by Varying Resolution 46
IV.3.3 Inherent Complications . 48

IV.4 Results . 48
IV.4.1 Difficulties and Anticipated Future Approaches 51

References 52

A Ice Ih to Ice XI Conversion 55
A.1 Brief Sample of Ice XI .PDB File . 55
A.2 Code: Crystal Disorganizer Tool . 55

B Germanium Landscape 67
B.1 Sample Gaussian 09 Germanium File 67
B.2 Building Group 4 Chains . 70
B.3 Collecting and Comparing Torsional Data 72

C Conformation Landscapes 79
C.1 Code: hexagermane-transall.pdb . 79
C.2 Code: ge4h.pdb . 84
C.3 Progress on Torsion Minimizer System 84

vi

LIST OF TABLES

Table Page

III.1 Collaborator’s Hexagermanium Energies by Conformation (unspecified

DFT, 6-31G(d) basis set, energy in Hartrees and kJ/mol) 24

III.2 Data of B3LYP/STO-3G minimization of variations of pentagermane

compound at various conformers. DNC denotes a failure to converge

with the self-consistent field method. 29

III.3 Data of B3LYP/STO-3G minimization of variations of hexagermane

compound at various conformers. DNC denotes a failure to converge

with the self-consistent field method. 30

III.4 Energy comparison of HF theory with 6-31G(d) basis set across mul-

tiple computational programs. The expected ∆E should be positive. . 39

vii

LIST OF FIGURES

Figure Page

II.1 Water phase diagram. Taken from Brini et al.1 12

II.2 Example Tetrahedral positions of a water molecule. The two spheres

represent potential proton positions roughly occupied by lone pairs. . 16

II.3 “Before” image of Ice XI . 19

II.4 “After” image of generated ice Ih . 20

III.1 Fully trans configuration of pentagermanium-based compound. 24

III.2 Fully trans configuration of hexagermanium-based compound. 25

III.3 Sample Newman projection of cis-butane. 26

III.4 Visualization of rotatable bonds in hexagermane molecule colored by

bonded atoms. Green: Ge-Ge, red: Ge-phenyl C, blue: Ge-isopropyl C. 32

III.5 Visualization of a trans-cis-trans hexagermane structure. 34

III.6 Sample torsion plot at reduced energy scale. 35

III.7 Visualization of a multiple pure group IV torsions at various theories

and basis sets . 37

III.8 A curious seemingly-inverted torsion plot of butagermane. 39

III.9 Hartree Fock energy minimization of butagermane torsion run at vary-

ing basis sets. 40

III.10Minimization of butagermane torsion run at varying theories and the

6-31G(d) basis set. 41

III.11B3LYP energy minimization of butasilane torsion run at 6-31G(d) basis

set. 41

viii

IV.1 Example Levinthal Golf Course taken from Dill et al.2. 44

IV.2 Flow of method design for variable resolution conformation landscape

search. 45

IV.3 Example variable resolution search chart of two dihedrals with low-

energy blue to high-energy red. 47

IV.4 Highlighted torsions of the hexagermane molecule by type of bond,

where green, red, and blue represent Ge-Ge, Ge-phenyl, and Ge-isopropyl

torsion centers, respectively. 49

IV.5 Highest energy conformer of o-nitrophenol, ignoring any ring strain

conformations. This structure was notably unable to rotate and form

the expected hydrogen bond between the ortho nitro and hydroxyl. . 49

IV.6 Lowest energy conformer of o-nitrophenol. Formed the expected hy-

drogen bond between the ortho nitro and hydroxyl. 50

ix

CHAPTER I

Introduction

I.1 Computational Chemistry: Chemistry on the Computer

For nearly a century, computational methods have greatly assisted chemists in

their efforts of research and discovery. Five computational chemists have been awarded

the Nobel Prize in Chemistry. Laureates include Walter Kohn and John Pople in

1998 and Martin Karplus, Michael Levitt, and Arieh Warshel in 2013. Since the

early 1960s, chemists have specialized in using computer systems to solve chemical

problems.

Computational chemistry is now recognized as its own field rather than a sub-

specialty within physical chemistry as computational chemists continue to develop effi-

cient methods to calculate large and complex simulations. These simulations typically

rely on theoretical methods adapted to run highly efficiently on computers. While

initial computational methods were designed to solve wave functions and atomic or-

bitals, the scope quickly expanded into multiple fields of chemistry as more methods

were developed to confirm or predict properties of molecules and systems.3,4,5 This

introduction serves to introduce necessary background information generally relevant

to the methods developed and utilized in the following chapters.

I.2 Relevant Computational Methods

Analytical descriptions of molecular systems are ideal simulation goals as they

provide a complete description of a process. However, it is often impossible to pro-

vide analytic solutions for complex systems. This complexity usually drives numer-

1

ical approaches to instead approximate chemical systems of interest. While not ex-

act, these numerical approximations can produce values consistent with experimental

data. Usually limited by the size of a system, multiple numerical methods exist to

analytically solve or closely approximate a system by way of solving or approximat-

ing the quantum mechanical wave function. Methods relevant to this work include

ab initio, density functional, semi-empirical, and Monte Carlo methods. Many other

methods exist but are not directly relevant to this work.

The first hurdle in any computational system is the likely impossibility of analyti-

cally solving the problem. In a system with more than two particles, this multi-body

problem usually cannot be solved analytically, excepting cases like the dihydrogen

cation, due to the electron-electron correlation term being situationally dependent.6

Here, we will focus on systems of such complexity that numerical approaches will be

of greatest interest.

I.2.1 Quantum Mechanical Methods and Basis Sets

In computational chemistry, quantum mechanical methods generally refer to com-

putational methods that attempt to solve, or closely approximate, the electronic

Schrödinger equation given nuclei and electron position information to determine

properties of the system like energies or electron densities. Because the Schrödinger

equation is impossible to solve exactly for many-body systems, different methods

use different approximations to balance between accuracy of the approximation and

efficiency of computation.

I.2.1.1 Ab Initio Methods

Ab initio, or “from first principles,” methods refer to calculation methods that rely

solely on physical constants as external values. By design, ab initio methods avoid

using any empirically-acquired data and rely on theoretically calculated values. The

2

development of these methods allowed computational chemists to solve a new class

of problems and resulted in John Pople and Walter Kohn receiving the Nobel Prize

in Chemistry in 1998 for their work. The ab initio method utilized in this work is

the Hartree-Fock (HF) method used to determine the energy of a many-body system

in a stationary state, which is to say time-independent.7 Known initially as the self-

consistent field method, the HF method utilizes approximations defined by the basis

set to approximate the Schrödinger equation. The consistency of this self-consistent

field method arose by the requirement that the final calculated field be self-consistent

with the initial field. An additional property of HF is that electron-electron repulsion

is not taken into account, requiring that a basis set account for this interaction. As

larger basis sets are used, the overall energy of the wavefunction is decreased toward

a value known as the Hartree-Fock limit. This limit is approached as the larger basis

sets approach the exact solution of the non-relativistic Schrödinger equation without

spin orbital terms. The calculation of relativistic and spin terms require a further

method known as Post-Hartree-Fock, which is not used considered further in this

work.

I.2.1.2 Density Functional Theory Methods

Density Function Theory (DFT) Methods function very similarly to ab initio

methods in how Slater-type orbitals are used to approximate the Schrödinger equa-

tion, but differ in that DFT utilizes some empirical data to speed up the calculation

process.8 These simplifications are able to model exchange and correlation interac-

tions very well, however the reliability of calculated properties, specifically intermolec-

ular interactions, dispersion forces, and other internal properties are greatly reduced.

Just as with ab initio methods, DFT methods require a basis set definition for the

approximation calculations. DFT methods exist as pure DFT methods or as hybrid

functional methods. Pure DFT methods excel in computing systems much more ef-

3

ficiently than with HF methods, but at the cost of accuracy. These pure functionals

do not rely as much on HF terms and instead use a more general expression. Hy-

brid functional methods act as DFT methods but with the inclusion of HF terms

that require additional computation. Both DFT and hybrid functional methods use

an exchange and correlation part.8 The exchange part attempts to fix density prob-

lems from DFT approximations while the correlation parts fixes electron correlation

problems including two electrons of identical spin occupying the same position.

One pure DFT method used in this work is BLYP, which utilizes the Becke ex-

change with the Lee-Yang-Parr correlation part.9 Some hybrid functional methods

used are the B3LYP, M06L, and PBE methods. The B3LYP utilizes the BLYP but

combined Becke’s exchange with the exact energy from HF theory. M06L, known as

the Minnesota functionals, depend on kinetic energy density values from databases.

It specifically was designed to work well with transition metals, inorganics, and

organometallics.10 The PBE method, developed by Perdew, Burke, and Ernzerhof, is

another method with similar levels of accuracy to B3LYP that attempts to increase

the number of HF-exchanged functionals.11

I.2.1.3 Semi-Empirical Methods

Like DFT, semi-empirical methods also pull somewhat from Hartree-Fock meth-

ods, but rely even more on approximations and empirical data to nearly completely

substitute out any proper calculation of the Schrödinger equation. These data can

produce fairly accurate results to experimental data, but rely heavily on a similar-

ity between the subject molecule and the database molecules. Due to its restrictive

scope, semi-empirical methods excel in organic chemistry calculations where relatively

few elements are used with systems with hundreds of atoms.12 Additionally, various

semi-empirical methods have been designed to produce results with close accuracies

to specific sets of experimental data. Two methods used in this work, AM113 and

4

PM3,14 reproduce well heats of formation, dipole moments, ionization potentials, and

structural geometries. Unlike the other methods described so far, basis sets are not

used at all in the calculation of energies and properties.

I.2.1.4 Basis Sets

While running calculations, both ab initio and DFT methods require basis sets

to represent the electronic wave function as a system of algebraic equations that can

be efficiently calculated. While basis sets can be designed with atomic orbitals or

plane waves, this work focus primarily on basis sets designed with atomic orbitals.

The two most often used types of orbitals are Gaussian-type and Slater-type orbitals.

Slater-type orbitals (STOs), named after the physicist John Slater who introduced

them in 1930,15 function as a linear combination of atomic orbitals (LCAO) adopted

as a molecular orbital. STOs notably exhibit similar features as Schrödinger-based

orbitals, excepting that STOs have no radial nodes.

Gaussian-type orbitals (GTOs), introduced by S. Francis Boys in 1950,4 also func-

tion as orbitals in the LCAO method. GTOs are similar to STOs in premise, but have

further reduced realism when compared to Schrödinger-based orbitals. One example

of this is the lack of accuracy of electron density near the nucleus. While exhibiting

a lesser accuracy, GTOs excel in computational efficiency compared to STOs. This

allows GTO-based calculations to compute more orbitals. Specifically, Boys designed

GTOs as a method of approximating STOs.

Basis sets are often grouped by their sizes. The smallest sets, known as minimal

basis sets, use a single basis function for each orbital. The most common minimal

basis set, STO-nG where n is an integer usually between 2 and 6, was first proposed

by John Pople in 1969.3 This method describes that a Slater-type orbital can be

approximated using n Gaussian orbitals. These STO-nG approximations end up

fitting electron densities well at all radial distances except those close to the nucleus.

5

The STO-3G basis set used in this work is a popular basis set as the 3 Gaussian-type

orbitals approximation works well for atoms in the [H-Xe] range.

The other basis sets used in the work fall under the category of split-valence basis

sets. These basis sets represent valence electrons with more than one basis function,

which allows for electron density to be more flexible in different molecular systems.

The most common form of these basis sets was introduced by John Pople as the X-

YZg form and are commonly referred to as Pople basis sets.16 These follow the form

that each orbital basis function is comprised of X Gaussians. The Y and Z represent

an additional linear combination of Gaussian functions made of Y and Z Gaussians

that compose the valence. These basis sets are not limited to two valence functions,

referred to as a double-zeta, and can also be triple- or quadruple-zeta. Additional

values, typically denoted by one or two stars, one or two plus signs, or explicitly-

defined orbital combinations in parentheses can also be used to further expand the

basis set as desired. The star notation defines a polarization function for heavy atoms

to account for d and f polarizations. The plus signs denote diffuse functions that more-

accurately represent less common valence electrons like carbanions that may diffuse

further out from the nucleus.

I.2.2 Monte Carlo Molecular Modeling

Another method of simulating chemical systems is known as Monte Carlo methods,

or MC. While not named until the 1950s, MC methods were first seen in the 18th

century thought experiment Buffon’s needle.17 In his work, Buffon proposed dropping

n needles of length l onto a plane with parallel lines spaced t units apart. Buffon

worked out that the probability, P , of a needle crossing one of the lines to be P = 2l
tπ

.

Solving for π, the probability can be rearranged as π = 2l
tP

to approximate π. Since P

can also be approximated by dividing the number of needles crossing one the of the

lines, h, by the n needles as P = h
n
, the approximation can be expressed as π = 2l∗n

th
.

6

This method of randomness was improved upon by Stanislaw Ulam while working

at Los Alamos National Laboratory in the late 1940s by introducing Markov chains

to favor the probability of events occurring. Ulam shared this work with John von

Neumann and together they created a program to run on the Electronic Numeri-

cal Integrator and Computer (ENIAC) capable of computing this favored version of

random sampling. As the project was secretive due to being used as a part of the

Manhattan Project, a collaborator named Nikolas Metropolis suggested the name

Monte Carlo due to Ulam’s uncle’s propensity to gambling at a casino in Monaco

of the same name.18 Later dubbed Markov Chain Monte Carlo (MCMC) sampling,

this allowed for random sampling to instead become a virtual statistically-appropriate

sampling method. At the most common level, MC methods apply probabilistic forces

to a random interaction to generate a numeric approximation. Eventually published

in 1949 by Metropolis and Ulam, this introduced MC methods to chemical simulation

packages.19

I.3 Hardware

Since computation methods were developed slightly before and during the rise

of modern computers, early calculations were performed by hand with minimal as-

sistance by machines. Over time, these methods were increasingly assisted by early

computers and further development eventually led to the first computational pro-

grams. These first computers, like the ENIAC and its successor Electronic Discrete

Variable Automatic Computer (EDVAC) offered computation power in the order of

a few dozen to a few thousand operations per second.

For this work, the majority of calculations were computed on the Oklahoma State

University Cowboy Cluster. Available since 2012, this cluster collectively offers the

computing power of 3048 cores and 8576 GB of RAM, totaling 48.8 trillion FLoating

point Operations Per Second (Tera FLOPS or TFLOPS).

7

I.4 Software

If hardware denotes the realm of study of a computational chemist, software de-

notes the tools. By utilizing preexisting packages and developing new and more ad-

vanced tools, computational chemists are able to simulate a wide variety of chemical

systems.

I.4.1 Programs

While chemical computational programs have existed for nearly 50 years, addi-

tional programs have relatively recently developed to aid in the visualization and

depiction of chemical systems. Gaussian, developed by John Pople and his team, was

the first popular ab initio computation program. Released as Gaussian 70 in 1970,

it has received regular updates and capability expansions, and is one of the most

widely-used computational chemistry tools available in its latest iteration, Gaussian

16. Gaussian tends to carry a lot of influence in the computational community for

being one of the oldest packages around.

In addition to Gaussian, many other chemical computational packages exist. Two

additional packages used in this work are GAMESS,5 a package also in active devel-

opment since the 1970s led by Mark Gordon, and NWChem,20 a popular open source

package developed by Pacific Northwest National Laboratory since the late 2000s.

Once a set of calculations has completed, investigators often report the calculated

system graphically through visualization tools. These tools are also popular among

any investigator wishing to represent a compound or system as more than its molec-

ular formula. Two visualization tools used in this work are Avogadro and UCSF

Chimera. Avogadro, in development since 2008, is a relatively simple molecular visu-

alization tool designed to work across multiple operating systems.21 UCSF Chimera,

developed by the Resource for Biocomputing, Visualization, and Informatics (RBVI)

at the University of California, San Francisco, focuses on more advanced represen-

8

tations of compounds and systems. It allows for multi-structure files to generate

videos of simulations and also provides a powerful Application Program Interface for

programmatically creating or altering molecules and systems.22

I.4.2 Programming Languages

A final note should be made about programming languages and their usage in

general and in this work. Programming languages have existed for as long as com-

puters. From original punch cards and bitwise commands to modern interpreted

languages, programming languages allow investigators to control computers to enact

explicit commands. In a way, the job command files in computational tools like those

in Gaussian and GAMESS are programmatically used as a programming language to

tell a system to enact a calculation of type X on system Y with Z parameters. Even

these tools utilize code to enact their commands, usually in older and highly efficient

languages like C and Fortran that are compiled into machine code. Because these

tools directly interact with hardware to complete an immense number of calculations,

efficiency is key.

One language almost exclusively used in this work is Python.23 The Python pro-

gramming language has recently become one of the most used programming languages

for scientific analysis. This is possibly due to Python’s initial development focus of

data analysis, support for extensions by the development team, and ease of use. As a

scripted type language, Python is not compiled for specific hardware like code written

in C and Fortran languages, but certain packages and extensions can take advantage

of those efficiency boosts to improve Python’s effectiveness. Math and science pack-

ages like NumPy24 and SciPy25 interface with C code to rapidly speed up complex

mathematic evaluations like matrix manipulations while retaining the usability ex-

pected in Python. Additional packages like Cython26 will take a completed Python

script and compile much of it in C code to greatly improve efficiency and reduce the

9

computational strain on the system.

As will be seen in this work, code can be used to generate and run these sets of

code, effectively creating an automated function that can operate as a tool within

a tool. One aspect of this is abstracting out methods and basis sets to that of a

computational requirement and level of accuracy, which will be discussed in chapter

IV.

10

CHAPTER II

On Algorithms for Building and Sampling Disordered Crystal States

II.1 States and Properties of Ice

II.1.1 Bernal-Fowler Ice Rules

First described in John Desmond Bernal and Ralph H. Fowler’s 1933 paper, the

Bernal-Fowler Ice Rules are the foundational observations of how water molecules

interact in an ice structure.27 Although a bent, divalent molecule, water possesses

an electronic tetrahedral structure that allows for four interactions on each molecule.

The two protons each allow for a hydrogen bond with a lone pair from a neighboring

oxygen atom. Similarly, the oxygen atom’s two lone pairs each allow for a hydrogen

bond with a neighboring proton. While a hydrogen bond is typically defined as an

attractive interaction between a proton and one lone pair of electrons on Nitrogen,

Oxygen, or Fluorine, this work restricts the definition to a computational implication.

Here, a hydrogen bond refers to the space between two oxygen atoms in a crystal where

exactly one proton and lone pair are directed toward one another according to Bernal-

Fowler ice rules. Fortunately, this difference is sufficiently small for visualization

programs like Avogadro to still recognize hydrogen bonds between a rotated hydrogen

atom and corresponding neighboring lone pair. These rules are fairly rigid in the sense

that every water molecule can interact with two oxygen atoms and two protons from

four surrounding water molecules. These are also relatively relaxed in the sense that,

once hydrogen bonded, each of the four attached water molecules can occupy one

of three rotational positions. Including the 6 orientations of the central water, 486

11

Figure II.1: Water phase diagram. Taken from Brini et al.1

microstates exist from these five waters.

II.1.2 Forms of Ice

While ubiquitous in the ‘Ih’ form, ice water has many phases. As of the writing of

this work, there are 18 experimentally established forms of ice. These forms usually

occur in cubic, hexagonal, and orthorhombic crystal structures. As can be seen in

figure II.1, the system pressure and temperature are primary characteristics of which

phase will form. The subject of this work will be on the proton-ordered orthorhombic

ice XI and its proton-disordered isomer, ice Ih.

II.1.3 Ice Ih

Ice Ih naturally forms at temperatures below 273.15 K at pressures in the 1 Pa to

100 MPa range,28 with some temperature curving off into the vapour and liquid phases

12

at very high and very low pressures as seen in figure II.1. As the most commonly found

form on earth, ice Ih is the most relevant form for computational studies involving

ice systems.

As famously discussed by Linus Pauling, hexagonal ice water contains a residual

entropy at very low temperatures.29 This residual entropy in ice goes according to

Boltzmann’s entropy equation S = KBLnW where W = (3
2
)N for N molecules in

the crystal. At near absolute zero temperatures, the residual entropy will not reach

zero as the disordered water could settle into one of many microstates that fit the

“disordered” description. Pauling additionally predicted that an ice structure with

perfectly ordered protons may exist at sufficiently low temperatures with zero residual

entropy.

II.1.4 Comparison between Ice XI and Ice Ih

While ice Ih is known as the most common form of ice found on the planet, it

is much more difficult to computationally generate than an ice XI crystal. The ease

of generation of an ice XI structure stems from the repetition of a unit cell with

consistent layering and orientation throughout the crystal lattice.

With ice Ih crystals, the proton-disordered form introduces entropy by way of

rotational disorder of water molecules. The disordered protons allow for a greater

number of microstates in the organization of the crystal, increasing the multiplicity

and, by its very definition, entropy. As the protons and lone pairs are no longer

consistently ordered, hydrogen bonds may no longer form properly at all interaction

sites. Fortunately, this difference is sufficiently small for visualization programs like

Avogadro to still recognize hydrogen bonds between a rotated hydrogen atom and

corresponding neighboring lone pair. The interaction of proton with proton or lone

pair with lone pair are not hydrogen bonds and are considered defects in the lattice.

These are known as Bjerrum defects and referred as D with two protons or L with

13

two lone pairs interacting.30 Conversely, hydrogen bonding does not occur if Bjerrum

L or D defects occur between the oxygens. An ice structure of randomly oriented

molecules without consideration of hydrogen bonds will likely produce defects at many

interaction sites across the lattice and weaken the integrity of the crystal, leading to

stability problems while running simulations. In generating the crystal, the cause

of these defects must be considered and countered effectively. While other stable

hydrogen bonding structures may exist, they would either break the Bernal-Fowler

ice rules or alter the structure away from the specified form.

II.2 Method Design

II.2.1 Method Tools and Information Management

The primary objective is to convert an easy-to-make ice XI crystal into an ice Ih

crystal. Because the key difference in structure is the proton-orderedness, it might

be possible to rearrange the water molecule orientations in a pseudorandom way to

create an ice Ih crystal. This section walks through the method developed to convert

ice XI into ice Ih, the results of initial testing, and imperfections discovered in the

design.

Python was chosen as the programming language of the tool due to its versatility

and the ease of development due to the “pseudocode” written style and the availability

of scientific packages including SciPy and NumPy. Python version 2.7 was specifically

utilized. Crystal files where defined and saved as Protein Data Bank (.pdb) files as

this format allows for defining multiple molecules within a larger structure with a

simple X, Y, Z grid position format. An example of this is provided in Appendix A.

To create an ice XI .pdb file, an ice XI cell of eight water molecules can be tiled

to create a sufficiently large crystal. The primarily used crystal consists of a 3 x 3 x

6 cell repetition totaling 432 water molecules.

It is important that the crystal be read and stored in an efficient method to keep

14

relevant information about each molecule easily accessible. As the file is read in, each

molecule is stored as an entry in a multidimensional array where the first index is the

molecule number. Further, the second index defines the molecule number where 0 is

oxygen and 1 and 2 are the protons. The third, fourth, and fifth indices define the

X, Y, and Z position coordinates. This is functionally identitical to the .pdb format

data, but compresses the data across multidimensional arrays for iterative use.

Identifying the neighboring molecules proved computationally difficult. The most

effective method is to find the closest four molecules by computing a distance between

every two oxygen atoms. This ensures every molecule is considered, but also presents

significant hurdles. First, a distance calculation utilizes a computationally-inefficient

square root calculation. The inefficiency lies in the binary-based command for calcu-

lating a square root that often utilizes either a logarithmic solution or a Newtonian

approximation that typically requires 16-64 processor cycles. This square root com-

putation can be entirely bypassed by instead comparing the squared-distance between

molecules and finding the lowest values. These squared-distances scale identically to

the square root value for all distances greater than one, which is true for the ice XI

structures sampled in this work.

Second, molecules positioned along the sides will not have four neighbors in a

non-periodic crystal. This is accounted for by shifting all six sides to make a pseudo-

periodicity for these edge cases. Those periodically-neighboring molecules are flagged

with a shifting value in the neighboring atom array by specifying a translation in the

x, y, or z axis values.

Once these four neighboring oxygen atoms have been discovered for each water,

the four hydrogen-bond interactions according for Bernal-Fowler ice rules with the

neighbors describe an orientation defined by the location of each water’s protons and

lone pairs located at coordinates called tetrahedral positions.

An important aspect of pseudorandom selection is the existence of a bank of op-

15

Figure II.2: Example Tetrahedral positions of a water molecule. The two spheres
represent potential proton positions roughly occupied by lone pairs.

tions. Utilizing the ingestion portion of the tool to calculate and store all orientational

possibilities proves effective for tracking position options. In this work, tetrahedral

positions are defined as the four positions that a proton may occupy about a water

molecule as the four electron groups extend from the oxygen. For each water molecule,

the first two tetrahedral positions are defined by the positions of the two hydrogen

atoms. The other two positions are found by rotating one hydrogen atom 120◦ twice

about the vector from the oxygen atom through the other hydrogen atom and storing

the resulting positions as tetrahedral positions three and four. Prior to rotation, the

third and fourth positions are occupied by lone pairs. According to the .pdb file style,

though, lone pairs are implied from the atom data and are not explicitly stated in

the file data. This allows for passive relocation of the lone pairs by redefining the

proton positions about the water. A visualization of these four tetrahedral positions,

two read and two generated, are shown and labeled in figure II.2.

In a equally-repulsed tetrahedral molecule, electron group angles are 109.5◦. This

method does not produce an exactly correct tetrahedral position of potential hy-

16

drogen atoms due to the slightly acute104.5◦ H-O-H bond created by the variance in

repulsive forces between the two lone pairs of electrons and two hydrogen atoms. For-

tunately, this difference is sufficiently small for visualization programs like Avogadro

to still recognize hydrogen bonds between a rotated hydrogen atom and corresponding

neighboring lone pair. Currently, the method does not correct for these minor angle

variations and relies on the user to anneal the crystal by way of simulation to fully

adjust the angles. Future versions of this method may account for the variations.

II.2.2 Pseudorandom Rearrangement of Water Molecules and Genera-

tion of Bjerrum Defects

Once the tetrahedral positions have been defined, each water molecule is ready

to rotate. What may seem the most crucial step in this methods ends up being

the most simple. The act of rotating each proton about the corresponding oxygen

atom in a crystal is as simple as iterating through and pseudorandomly selecting two

tetrahedral positions from each water for protons to occupy. The new position data

is saved to a new crystal array file similar to the parent generated during the initial

file read. These new positions are determined sequentially and “instantaneously” in

the time-independent manipulation of the crystal. An important note is that this

rearrangement does not consider the orientations of neighboring molecules and likely

introduces Bjerrum defects. The likelihood of a defect-free interaction lattice forming

is nearly zero and is presumed to have a large number of defects within the lattice.

For example, the first molecule reoriented will have a 5
6

chance of containing a defect.

After all water molecules have been rearranged, defects between incorrectly-interacting

hydrogen bonds must be found and corrected. Discovering the defects relies on the

detection of neighboring molecules and the appropriate interacting hydrogen atom or

electron lone pair. As previously discussed, the initial data ingest records and detects

the nearest water molecules and determines the tetrahedral position containing the

17

interacting space, be it electron lone pair or hydrogen atom. From that data, the

detection of a valid hydrogen bond is as simple as checking both interacting tetra-

hedral positions between two neighboring waters and confirming that they do not

both contain or lack a hydrogen atom. Each water maintains a count of how many

defects are present among the four positions, which can be collectively averaged for

a per-molecule defect average. Likewise, these defects can be summed and halved

to produce a total number of defects in the crystal. Each molecule holding its own

defect count allows for contextual changes during the correction step.

Once the hydrogen bond defects have been discovered and marked, each needs to

be corrected. The most direct approach to this is to sequentially walk through each

defect and repeat the pseudorandom rotation until the number of defective regions

is zero or a user-specified value. The current implementation sorts the defect list by

the number of defects and attempts to fix the most defective molecules first because

of the highest-density entropy introduced into the system. These most defective

molecules may include defects impossible to solve by simple rotation, specifically

when neighboring molecules have collectively directed three or four hydrogen atoms

or electron lone pairs at the target water. These can only be solved by adjusting one

or more of the neighboring molecules until the number of hydrogen atoms and electron

lone pairs have balanced. Unfortunately, this high-defect problem can quickly escalate

if the neighboring molecules contain the same problem of unbalanced hydrogen atoms

and electron lone pairs. The current solution is to recursively check for and fix these

impossible interactions first, but has not yet yielded a defect-free crystal in testing.

The current design of the method allows for the user to specify a threshold of

defects as an average per molecule. For example, a threshold of 2.5 will allow a

maximum of 3 defects on any given molecule and will continue to correct defects until

the average number of defects per molecule is equal to or below 2.5. Because each

of these defects will be counted twice, once for each molecule, the total number of

18

Figure II.3: “Before” image of Ice XI

defects in a crystal can be determined by multiplying the average defect value by

the number of molecules and dividing by two. As of the current implementation,

the method cannot reliably produce a crystal with a threshold below 2 as it will

continue to recursively search until the system runs out of available memory and

crashes without finalizing the structure. The memory overflow is due to the infinite

recursion instead of repeatedly storing new crystal data.

II.3 Results of Method

When supplied with an input ice XI crystal, an output structure with rotated

water molecule orientations strictly consistent with ice Ih describes a success at the

most basic level. An example before and after of the method is given in figures

II.3 and II.4. As can be seen, the “after” image has experienced rotation and can

no longer be classified as ice XI. Instead, it can be considered a proton-disordered

orthorhombic ice crystal similar to ice Ih.

Unfortunately, the result is not without defect. When following the subsequent

layers in the crystal, patterns emerge. Inconsistently, some rows of waters remain

19

Figure II.4: “After” image of generated ice Ih

consistent. Some of these are a uniform rotation of both hydrogen atoms consistent

across rows. These consistent rows can be observed in figure II.4 toward the center-

left and center-right along the into-the-page axis. Multiple trials yield internally

unique results, yet all contain these strange consistencies. This may be due to some

accidental pattern in the method’s implementation. A scoring function to analyze

the “randomness” of the crystal would confirm whether this pattern is imagined or

real.

II.4 Comparison to Buch’s Method

In her 1998 paper, Victoria Buch proposed a MC-based system for converting ice

XI to ice Ih.
31 In that method, an ice XI crystal would have all protons dissociated

from oxygens by moving them to halfway between corresponding oxygens. By placing

protons in the middle of two oxygens, this allowed MC methods to pseudorandomly

move the protons toward one or another oxygen. Once moved, the Bernal-Fowler

rules are applied to increase the chance of a proton association switch being accepted

for invalid waters.

20

As a comparison to this work, Buch’s method is more likely to successfully produce

a defect-free ice Ih crystal. In its current state, this work’s method is not as efficient

nor as effective as Buch’s method. As a potential for future development, this method

allows for defects to exist as a state value which could be used for annealing studies.

II.5 Comments on Limitations and Proposed Improvements

During the hydrogen bond defect correction step, a weakness in the design is that

any clustering or regions of high defect density will not be treated uniquely. This

allows the existence of a highly-defective region within the larger structure that could

potentially cause problems when the crystal is used in simulations. The prevalence

and occurrence of these defects have not been studied in this work, but seem a natural

inevitability of statistics. A potential solution with partial development will score

regions based on the number of defects as a weighted function expanding out from a

central molecule for N connections.

For example, consider a specific water defined as level 1. The neighboring four

molecules are defined as level 2, and continued onward excepting already-defined

molecules out to an N th level. No special considerations for waters with fewer than

four neighbors are necessary as periodic generation would allow “edge” waters to

interact with the periodic continuation waters. The number of defects in each level

can be counted and averaged. Then a depressive factor along the lines of 1
level

can

be used to diminish the value of defects further away from the first-level molecule.

This would create a value for each molecule that shows the relative density of defects

centered about that specific molecule and could even be plotted as a gradient change

within the crystal. The general approach to a scoring mechanism may take a form

similar to equation II.1. If effective, a scoring function like below would build a better

queue for the defect correction step in an MC fashion as it works toward identifying

21

and reducing the defect density.

V alue =

Nlevels∑
l=1

[1

l
∗ 1

Nmolecules

∗
Nmolecules∑

m=1

[Ndefects,m]
]

(II.1)

22

CHAPTER III

Germanium Compounds and QM Concerns

III.1 The Initial Problem: Germanium Study

During Fall 2016, Dr. Christopher Fennell was approached by Dr. Charles Wein-

ert of OSU to continue a collaborative effort in sampling conformation energies of two

germanium-based compounds of interest to Dr. Weinert’s work. Seen as an oppor-

tunity to train a new graduate student in conformational calculations, this project

was delegated to me. The initial focus was to create the two compounds in a 3D

modeling program, save a file of each, run a conformation optimization program on

a supercomputer, and read the output to report the findings. As detailed below, this

work led to impossibilities, curiosities, and inconsistencies that resulted in a general

solution and a discovery of a flaw in a popular computational program.

III.1.1 Computational Complexity of Germanium Compounds

Publications on germanium computational efforts are not as common as many

other main group elements. Of those extant publications, the majority of final pub-

lished data involve a Density Functional Theory (DFT) with either the 6-31G(d),

6-31G(d,p), or 6-311G(2d) basis set.32 As with most other lighter elements calculated

with Pople basis sets, the 6-31G(d,p) basis set is most commonly used for the final

energy calculation.33,34

23

Figure III.1: Fully trans configuration of pentagermanium-based compound.

Conformation Energy (Eh) ∆ Energy (Eh) ∆ Energy (kJ
mol

)
Trans-coplanar -15014.8403143 0.0066255 17.39525025
Cis-Trans-Cis -15014.7983311 0.0486087 127.6221418
Trans-Cis-Trans -15014.8469398 0.0000000 0.0000000
Cis-Trans-Trans -15014.8246918 0.0222480 58.412124

Table III.1: Collaborator’s Hexagermanium Energies by Conformation
(unspecified DFT, 6-31G(d) basis set, energy in Hartrees and kJ/mol)

III.1.2 Parameters of Work and Previous Collaborator’s Results

The two subject germanium-based compounds are very similar: a germanium

backbone with terminal isopropyl groups and internal phenyl rings. One compound

constituted a pentagermanium chain while the other a hexagermanium backbone.

The molecular formula for both is Pri3Ge(GePh2)nGePri3 where n equals 3 for the

pentagermanium or 4 for the hexagermanium compounds, respectively. An example

image of both compounds in their fully-trans configurations are provided in figures

III.1 and III.2.

Dr. Weinert had worked previously with a collaborator who provided conforma-

tion data supplied in table III.1. An unspecified DFT method with the 6-31G(d)

basis set was used. Additionally, the cis and trans terms were not explicitly defined.

24

Figure III.2: Fully trans configuration of hexagermanium-based compound.

Unfortunately, the collaborator is no longer active in research and was inaccessible

for clarification.

The approach of labeling the conformation shape of each compound, given the

many points of torsion, focuses on the backbone structure. As the raw data from the

collaborator was not available, the general dihedral angles of cis and trans proved

a vexing focus for initial efforts at conformer design. Using Newman projections

like in figure III.3 as a visual guide, each Ge-Ge bond was defined as cis or trans

based on the relative angle produced by the two adjacent bonded Ge atoms to each

subject Ge. Specifically, the bonds are marked cis if the most acute angle is 90◦ or

fewer, and likewise trans if greater than 90◦ up to the maximum 180◦. Effectively the

cis and trans angles coincide with gauche and anti-periplanar in organic structure

nomenclature These cis and trans terms are preferred over gauche and anti as the

dihedral angles are not necessarily restricted to eclipsed or staggered angles. Terminal

germanium atoms are not considered as a part of the conformation nomenclature.

This is partly due to the definition in labeling where the terminal germanium does

not have an adjacent germanium for the measured relative angle, in addition to the

25

Figure III.3: Sample Newman projection of cis-butane.

assumed C3 symmetry of the terminal Ge with three isopropyl groups reducing the

relative effects of terminal germanium rotation. Effectively, only dihedrals formed by

four consecutive Ge are given a cis or trans label.

III.1.3 Design and Approach to Solution

The initial approach involved an attempt at basic replication of the collaborative

results. As detailed below, the design gradually grew in complexity as a learning

process. Eventually, curiosities in results and a desire to automate an objective search

algorithm developed into two unique investigations.

III.1.3.1 Design 1: Occam’s Smallest Razor

With each non-terminal Ge-Ge dihedral initially labeled cis or trans for 0◦ or

180◦, about 3 unique pentagermanium and 6 unique hexagermanium structures were

built visually on a 3D visualization program (Avogadro). These were rotated with-

26

out consideration for the phenyl rings populating the non-terminal Ge atoms. Each

molecule was subjected to an energy minimization in Gaussian 09 with the B3LYP

hybrid function and STO-3G basis set as a single particle in a vacuum.

Unsurprisingly, only the fully trans conformers successfully converged (a 22% suc-

cess rate) into a stable form. These troubles were likely caused by the poor design of

the initial conformers. With initial results, the conformer design was altered into a

more systematic approach with some consideration for the phenyl rings.

III.1.3.2 Design 2: A Blunt Effort

In the second iteration of the conformer design process, a greater number of back-

bone conformers were generated. Instead of the simple 180◦ opposition between the

cis and trans conformers, more intentional initial angles seen in Newman projections

were selected. Specifically, the anti and both gauche angles were chosen for the natural

local minima in a non-bulky molecule, with both gauche angles (60 and 300) labeled

as cis and the anti angle (180) as trans. For initial conformer design, these backbone

angles were limited to three positions: 60◦, 180◦, or 300◦. For the hexagermanium

compound, these structures were sequentially labeled trans-trans-trans, trans-trans-

cis, trans-cis-trans, et cetera until all major unique conformers were produced. For

clarity, each conformer was identified by the dihedral angles (60-60-60, 60-60-180)

in increasing order (Ge 1-2-3-4, Ge 2-3-4-5, Ge 3-4-5-6 dihedral). The phenyl rings

on the non-terminal Ge atoms were left untouched from an initial steepest-descent

minimization available from Avogadro initialized in the fully trans conformer.

To prevent potentially strong interactions between adjacent phenyl rings, an addi-

tional steepest-descent minimization from Avogadro was computed with the conformer-

defining Ge-Ge dihedral angles locked in place. Additionally, a visual inspection of

the phenyl rings and manual adjustments were utilized on Avogadro to reduce the

chance of a relatively high energy local minima conformer. The phenyl rings usually

27

were settled in a form of π stacking or some kind of perpendicular ring interaction,

based on relative energy stability according to the immediate simple minimization

available.

To further avoid backbone rotation restrictions, variations of the bulky molecules

were also produced. These included versions where the phenyl rings were replaced by

methyl groups and also where the isopropyl ends were additionally replaced by methyl

groups. The intention in these designs were to observe the shift in relative energy

between the sets of conformers to determine how significant of a role the phenyl

rings and isopropyl groups played. These variations, along with the original form

structures, were subject to the same calculations as in the first design: Gaussian 09,

B3LYP hybrid functional, STO-3G basis set, no angle restrictions, single particle in a

vacuum, otherwise default parameters. The results of these calculations are tabulated

in tables III.2 and III.3.

Immediately obvious in the table are the considerable number of nonconverged

results. A bulkiness trend followed that a fully methylated variation of the structure

was most likely to converge to a stable state, while the fully internal phenyl structures

with methyl ends slightly reduced convergence and the original fully internal phenyl

structures with isopropyl ends drastically reduced convergence. A deeper exploration

into the change of stability is a promising avenue for future investigation, but was not

further explored in this work. As can be seen in table III.3, the lowest energy con-

former for each structure varied greatly, but never included the fully trans conformer

and only once the collaborator-reported trans-cis-trans conformer as the most stable.

Still, given the considerable amount of nonconverged conformers, a new design was

necessary to further improve the scope of the lowest energy conformation search.

28

Internal
Species

Terminal
Species

Conformer
Final Energy
(Hartrees)

∆ Energy
(Hartrees)

∆ Energy
(kJ/mol)

methyl methyl 60-60 -10738.91336 0.0000454 0.119
methyl methyl 60-180 -10738.9134 0 0
methyl methyl 60-300 -10738.91286 0.0005358 1.407
methyl methyl 180-60 -10738.91325 0.0001533 0.402
methyl methyl 180-180 -10738.91335 0.0000475 0.125
methyl methyl 180-300 -10738.91336 0.0000451 0.118
methyl methyl 300-60 -10738.91336 0.0000455 0.119
methyl methyl 300-180 -10738.91287 0.0005357 1.406
methyl methyl 300-300 -10738.9107 0.002703 7.097
phenyl methyl 60-60 -11875.15183 0.0001451 0.381
phenyl methyl 60-180 -11875.15144 0.0005304 1.393
phenyl methyl 60-300 -11875.15197 0 0
phenyl methyl 180-60 -11875.14282 0.0091505 24.025
phenyl methyl 180-180 -11875.15004 0.0019354 5.081
phenyl methyl 180-300 -11875.15064 0.0013353 3.506
phenyl methyl 300-60 -11875.06665 0.0853257 224.023
phenyl methyl 300-180 DNC DNC DNC
phenyl methyl 300-300 -11875.1497 0.0022723 5.966
phenyl isopropyl 60-60 DNC DNC DNC
phenyl isopropyl 60-180 -12341.23176 0.0053028 13.923
phenyl isopropyl 60-300 DNC DNC DNC
phenyl isopropyl 180-60 DNC DNC DNC
phenyl isopropyl 180-180 -12341.23513 0.001935 5.08
phenyl isopropyl 180-300 DNC DNC DNC
phenyl isopropyl 300-60 DNC DNC DNC
phenyl isopropyl 300-180 -12341.23706 0 0
phenyl isopropyl 300-300 DNC DNC DNC

Table III.2: Data of B3LYP/STO-3G minimization of variations of pentagermane
compound at various conformers. DNC denotes a failure to converge with the self-
consistent field method.

29

Internal
Species

Terminal
Species

Conformer
Final Energy
(Hartrees)

∆ Energy
(Hartrees)

∆ Energy
(kJ/mol)

methyl methyl 60-60-60 -12870.91834 0.0009503 2.495
methyl methyl 60-180-60 -12870.91929 0.0000004 0.001
methyl methyl 60-180-180 -12870.91813 0.0011628 3.053
methyl methyl 60-180-300 -12870.91869 0.0005972 1.568
methyl methyl 60-300-300 DNC DNC DNC
methyl methyl 180-60-60 -12870.91897 0.0003189 0.837
methyl methyl 180-180-60 -12870.91833 0.0009585 2.517
methyl methyl 180-180-180 -12870.91929 0.0000004 0.001
methyl methyl 180-180-300 -12870.91929 0.0000003 0.001
methyl methyl 180-300-60 -12870.91897 0.0003192 0.838
methyl methyl 300-60-180 DNC DNC DNC
methyl methyl 300-180-60 -12870.91929 0 0
methyl methyl 300-180-180 DNC DNC DNC
methyl methyl 300-180-300 -12870.91814 0.0011527 3.026
phenyl methyl 60-60-60 DNC DNC DNC
phenyl methyl 60-60-180 -14385.89674 0.0052183 13.701
phenyl methyl 60-60-300 -14385.89487 0.0070829 18.596
phenyl methyl 60-180-60 DNC DNC DNC
phenyl methyl 180-60-60 DNC DNC DNC
phenyl methyl 180-60-180 -14385.90195 0 0
phenyl methyl 180-60-300 -14385.89855 0.0033998 8.926
phenyl methyl 180-180-180 -14385.83838 0.0635763 166.92
phenyl methyl 180-300-180 -14385.79233 0.1096251 287.821
phenyl methyl 300-60-60 DNC DNC DNC
phenyl methyl 300-60-180 -14385.89836 0.003597 9.444
phenyl methyl 300-60-300 -14385.89836 0.0035979 9.446
phenyl methyl 300-180-60 DNC DNC DNC
phenyl methyl 300-300-300 DNC DNC DNC
phenyl isopropyl 60-180-180 -14851.9865 0 0
phenyl isopropyl 60-300-60 DNC DNC DNC
phenyl isopropyl 60-300-180 DNC DNC DNC
phenyl isopropyl 180-300-60 DNC DNC DNC
phenyl isopropyl 180-300-180 DNC DNC DNC
phenyl isopropyl 180-300-300 DNC DNC DNC
phenyl isopropyl 300-300-60 DNC DNC DNC
phenyl isopropyl 300-300-180 DNC DNC DNC
phenyl isopropyl 300-300-300 DNC DNC DNC

Table III.3: Data of B3LYP/STO-3G minimization of variations of hexagermane
compound at various conformers. DNC denotes a failure to converge with the self-
consistent field method.

30

III.1.3.3 Design 3: Death by 1.59 Million Cuts

In the final version of the conformer generation effort, additional creation efforts

were focused on the individual phenyl rings. The unfavorable interactions between

the phenyl rings were a considerable hurdle in the previous designs and a potential

explanation for the large number of nonconverged structures, including the possibility

that the terminal isopropyl hexagermanium structures contained particularly unfa-

vorable interactions among the phenyl rings. This third design sought to remove the

uncertainty in phenyl ring bulkiness by applying the same approach as the backbone

generation: create unique conformers of every backbone torsion and phenyl ring, lim-

iting each torsion to one of three rotational positions. Unfortunately, this task proved

prohibitively large.

As an explanation for the insurmountability of the problem, consider the hexager-

manium structure. The germanium dihedrals represent three rotatable bonds each

with three initial positions. To include the phenyl rings would require the inclusion of

eight new rotatable bonds each with three initial positions. Additionally, considering

each terminal germanium’s rotation while ignoring each isopropyl’s rotatable bonds

adds two initial positions each with three initial positions. Together, this creates a

structure with 13 rotatable bonds each with three initial positions. A visual of these

bonds are given in figure III.4. The number of conformers follows as 313 = 1, 594, 323

initial conformers. Now we must consider the computational aspect of this many

conformers. At 10 conformers rotated and generated per second and 16 KB per con-

former, the initial conformers would require 44.3 hours and generate 25.49 GB of data

just in the initial structures. At an average of 72 minutes per computation and 73.7

MB produced at B3LYP hybrid functional and STO-3G basis set and access to all

255 regular nodes of Oklahoma State University’s Cowboy cluster running in parallel,

the complete computation would generate 117.5 TB of data and require 312 days of

continuous computation to determine a possible lowest energy conformer of this one

31

Figure III.4: Visualization of rotatable bonds in hexagermane molecule colored by
bonded atoms. Green: Ge-Ge, red: Ge-phenyl C, blue: Ge-isopropyl C.

molecule at a relatively low level basis set and theory. A request to utilize 100% of

university supercomputer resources for nearly a year for the sake of determining the

lowest energy conformer of one molecule would likely be rejected, so this task would

likely require a time scale of years or even decades to produce with shared access to

university resources. While conventionally considered a small molecule, the scale of

conformers and computational requirements pushes this problem into the realm of

Levinthal’s paradox.

While this third design would have likely revealed the lowest energy conformer,

or at least one considerably close the the exactly lowest energy conformer, the effort

ultimate fails under its own weight. Even with efforts to truncate duplicate forms,

the problem of scale remains. A reduction by 50% still requires a computation effort

in the timescale of years or decades for the calculation of a single molecule. For

an effective computational outlook, this system needs to be reduced by at least two

orders of magnitude.

32

III.1.4 Scale Reduction Efforts

For a system with conformers on the millions scale and computations on the hour

scale, a magnitude reduction in either aspect would improve the practicality of this

design approach. For example, by simplifying the computational method from 72

minutes on average to 5 minutes on average, the overall computational requirement

would be reduced by 92%, a full order of magnitude. Unfortunately, reducing the

complexity of the method sacrifices the reliability of data. A potential solution here

would be to create rounds of calculations at different complexities, where each se-

quential round restricts the pool of potential conformers. Ideally, the balance of the

increasing computational complexity and the decreasing pool size would maintain a

consistent computational requirement. For example, a new round using a higher func-

tional theory and basis set at 5x computational requirement would ideally be paired

with a reduction in conformer pool size by a factor of 5. This would produce a series

of calculation sets with additive computational requirement instead of a magnitudinal

expansion.

The natural next question lies within the reliability of basis sets and functional

theories. It naturally follows that a less-accurate method should not be relied on while

better methods exist. However, considering the scale of the conformer pool, it follows

that a less accurate method would still produce energy values with a roughly similar

internal consistency. For example, a 180-0-180 form of the hexagermanium compound

with parallel phenyl rings as modeled in figure III.5 will have intense syn interactions

between some phenyl rings and will likely not yield a desirable energy value at any

level of calculation while a fully trans form with perfect π stacking phenyl rings will

likely have a lower energy value at all levels of calculation. It follows that, at lower

levels of accuracy, the extremely high energy conformers can be pruned from the pool

early and drastically reduce overall computational requirements. A generic effort at

producing a method in this style is detailed in chapter IV, while the remainder of this

33

Figure III.5: Visualization of a trans-cis-trans hexagermane structure.

chapter details additional efforts of calculating these germanium compounds.

III.1.5 Efforts at Simplification

One potential avenue of simplifying the process is computing the energy minimiza-

tions of lower-period atoms (e.g. a carbon backbone instead of germanium) and then

applying a correction factor for a net reduction in computation time. As a period

4 element, germanium exhibits computational qualities similar to but more compli-

cated than both carbon and silicon. Using tested samples, an energy minimization of

a carbon-backbone molecule instead of the germanium represented a 92% increase in

computation speed. Assuming a nominal correction factor exists and can be applied,

this represents an order of magnitude reduction in computation time with one simpli-

fication. Potentially, this would allow investigators to much more quickly eliminate

high energy conformers and more rapidly reduce the scope of the search.

The approach to acquiring sufficient data for a possible correction factor involved

running an extremely simplified form of the germanium compounds, specifically a

butagermanium backbone with hydrogens occupying all terminal and internal bonds.

34

Figure III.6: Sample torsion plot at reduced energy scale.

This reduced the complication and complexity of bulkiness and allowed for quick full

torsion rotations about the single Ge-Ge-Ge-Ge dihedral. By operating at intervals

of 5◦, a full torsion drive provides a glimpse at relative energies of the molecule at 72

discrete states.

An example plot of this torsion drive is shown in figure III.6 Once multiple tor-

sion drives had completed in multiple group four elements (butane, butasilane, and

butagermane were all built and tested), the energies could be compared and analyzed

for any relative or absolute scaling at the additive or multiplicative reference. Rel-

ative scaling involved two approaches. The first relative scaling approach involved

subtracting each data point by the minimum energy. The second approach involved

reducing the first approach to a scale from 0 to 1. This allowed the data points to be

considered as percentage energies for additive scaling. The script to collect and scale

data points is detailed in Appendix B.

For a full comparative set, 3456 points of analyzed data were generated for each

reference molecule’s potential in comparison with the others. The script to accomplish

each molcule-centric analysis is detailed in Appendix B. No simple correction factor

35

arose by method of a simple additive or multiplicative term applied toward all torsion

points with either absolute or relative energy values. To expand on the comparative

set, a set of butyl- group IV conformers were generated with every possible permuta-

tion of C, Si, and Ge, each then rotated about the torsion in 5◦ increments to produce

a total of 5832 conformers. These were then subject to the same data comparison

method as before, again to no noticeable trend. A future avenue of research could

be to further explore this with depressive or polynomial terms to discover whether a

simple corrective function might exist with specific molecules.

While this approach likewise did not find any simple correction factor, a graphical

representation of multiple functionals across the butyl C, Si, and Ge show an interest-

ing trend, as visualized by a graph provided by Dr. Christopher Fennell and shown in

figure III.7. A common theme of these graphs is that the relative energies follow the

expected energetic barrier of a Newman projection, with local maxima at the 120◦

and 240◦ (or -120◦) angles and local minima at the 60◦ and 300◦ (or -60◦). The global

maximum and minimum were consistently at 0◦ and 180◦ angles, respectively. As

expected by different types of calculations, the torsion graphs hold different internal

relative energies. For carbon, all four functionals produced a clean curve. The AM1

and PM3 functionals produced unexpected results for both Si and Ge graphs. In

each, the expected highest energy 0◦ torsion angle was instead the most favorable of

the three eclipsed angles. Additionally, the Si PM3 and the Ge AM1 and PM3 func-

tionals showed strong spikes along the expectedly smooth curve, with the Ge PM3

being noticeably broken.

While the Si graphs smoothed out for the B3LYP and HF functionals at STO-

3G basis set, the Ge B3LYP showed significant spikes and only the HF STO-3G

exhibited a smooth curve. Effectively, this discovery of spikes along torsion drives

led to the realization that the validity of a basis set could possibly be determined

by the smoothness of a torsion drive. For example, any calculation of a germanium-

36

Figure III.7: Visualization of a multiple pure group IV torsions at various theories
and basis sets

37

containing molecule will likely not produce reliable results with a B3LYP hybrid

functional and STO-3G basis set, while the Hartree Fock STO-3G calculation would

at least be tentatively reliable for comparative energy levels at various conformations.

III.2 Discovery of a Consistent Inconsistency

The next natural step was to calculate and plot additional functional theories and

basis sets with the butagermanium chain. While effectively a lightly guided mean-

dering through the available calculation types, the first effort was to observe relative

differences across multiple basis sets of the Hartree Fock theory and to examine the

relative computational requirements of each. This plan was quickly redirected, how-

ever, when a curiosity within the data was revealed.

While running additional torsion drives of butagermane at differing basis sets and

functional theories, an inverted energy was discovered. As can be seen in figure III.8,

the B3LYP theory with 6-31G(d) basis set appears flipped upon a cursory glance.

After a more careful observation, the minima and maxima are at the “wrong” angles

and cannot be a simple flip of the minima and maxima. Instead, the data appears to

be inconsistent with basis set trends.

Naturally, the focus shifted toward discovering the source of the bad data. A

repeat of the trial yielded the same data. A repeat of the system with a freshly

created butagermane yielded the same data. A trial with data from a butagermane

trial with the 6-31G(d,p) basis set yielded the same data. Each attempt at a 6-31G(d)

basis set with the B3LYP theory yielded the same inverted data, while other basis

sets within the theory produced expected data. Next, the butagermane torsions were

run with an identical basis set group with the Hartree-Fock theory, the results of

which are shown in figure III.9.

Surprisingly, the 6-31G(d) result was also strangely inverted. This process was

repeated for several more theories, with the 6-31G(d) basis set results plotted in figure

38

Figure III.8: A curious seemingly-inverted torsion plot of butagermane.

Program
Trans Energy
(Hartree)

Cis Energy
(Hartree)

∆ Energy
trans - cis
(Hartree)

∆ Energy
trans - cis
(kJ / mol)

Gaussian -8298.8259 -8298.8268 -0.0009 -2.4163
GAMESS -8306.1290 -8306.1250 0.0040 10.4495
NWChem -8306.1290 -8306.1250 0.0040 10.4495

Table III.4: Energy comparison of HF theory with 6-31G(d) basis set across multiple
computational programs. The expected ∆E should be positive.

III.10. Curious to see if the germanium atom’s basis set data or if the entire basis

set method was the source, a similar run with butasilane was made and graphed in

figure III.11, to expected results. A quick run confirmed the problem to also exist on

Gaussian 03 as well as Gaussian 09. The final effort was to check whether this error

was isolated to Gaussian 09 or to all QM programs. A simplified test to calculate

the energy of the expected global minimum (180◦) and maximum (0◦) of a Hartree

Fock theory with the suspect 6-31G(d) basis set was prepared and executed, with the

results tabulated in III.4. As can be seen, critical energetic difference was negative

for Gaussian 09 and positive for both GAMESS5 and NWChem.20 Since the expected

conformations should yield a positive difference, it was concluded that both Gaussian

03 and 09 contain bad 6-31G(d) basis set data for germanium.

39

Figure III.9: Hartree Fock energy minimization of butagermane torsion run at varying
basis sets.

40

Figure III.10: Minimization of butagermane torsion run at varying theories and the
6-31G(d) basis set.

Figure III.11: B3LYP energy minimization of butasilane torsion run at 6-31G(d) basis
set.

41

III.3 Final Thoughts

Unfortunately, a trend for simplifying the computation requirements of germanium

was not discovered. While it may exist among the data as a more involved function

or as some other representation, there also may very well be no simple trend for

switching between germanium and another group IV element.

On a much more interesting note, the results of the torsion drives revealed that

Gaussian 03 and 09 contain some mistake within the 6-31G(d) basis set data for ger-

manium. Considering the popularity of Gaussian software in computational chem-

istry, there are concerning implications about reliability of data for any germanium

energy data with the 6-31G(d) basis set. Given that the torsion tests produced ex-

pected data for 6-31G(d) data subsequently run through a higher or lower basis set,

only reported data with 6-31G(d) as the final calculated energy need be considered.

It is recommended that any investigator conducting computational studies of germa-

nium either replace the 6-31G(d) basis set data, use another basis set, or instead use

a program like GAMESS or NWChem for that final computation.

42

CHAPTER IV

Sampling Conformation Landscapes by Rotatable Bond Degrees of

Freedom

IV.1 A Brief History on Conformation Landscapes

IV.1.1 Levinthal’s Paradox

In 1969, a molecular biologist by the name of Cyrus Levinthal proposed a thought

experiment regarding protein formation35:

Consider a relatively small 150-residue peptide chain completely unfolded. This

protein will have 149 peptide bonds and therefore 149 phi angles and 149 psi angles.

Assuming three possible angle positions each, the number of possible folds of this

protein follows as 3298. How does this peptide chain fold into the appropriate sec-

ondary and tertiary structures? Even at attosecond rates of rotating and folding, this

peptide chain would likely not fold into the correct structure for many times the age

of the universe! Obviously, this is not the case, since proteins fold on the timescale of

microseconds to milliseconds.36 How, then, do proteins fold so quickly and efficiently?

The answer lies in energy cascades through a visualization tool called a golf course.

IV.1.2 Levinthal Golf Courses

If one imagines the energy landscape of a peptide chain like a golf course, inter-

esting similarities arise. For example, the lowest point could be considered “the hole”

of the course with the lowest energy conformer. When starting at the “tee off” point,

there may not be a clean pathway of energetic difference for the ball to roll toward

43

Figure IV.1: Example Levinthal Golf Course taken from Dill et al.2.

the global minima. Therefore, the ball must be “struck” toward the hole in a series of

motions where the ball is removed from one local minima and placed in another hope-

fully closer to the hole. Like the image shown in figure IV.1, the course is not always

an easy, natural cascade toward the global minima. Most often, investigators will

initiate several searches in several locations of this conformation landscape in hopes

that one will discover a clear minimum that is hopefully the true global minimum.

IV.2 Purpose of Project

As introduced in chapter III, there may be a generic solution toward determining

the lowest energy conformer by roughly sampling the full “golf course” and proce-

durally focusing in on hot spots using automated methods. Ideally, the tool would

work through the seemingly infinite possibilities and quickly remove the impossible

or duplicate conformers. The tool would roughly take shape though a design flow

44

Figure IV.2: Flow of method design for variable resolution conformation landscape
search.

detailed below.

First, the system takes an input molecule and generates a number of conformers

based on rotatable dihedrals. Second, a time-effective geometry optimization theory

and basis set if necessary is selected and run files are generated and submitted to a

cluster to compute. Third, the results are collected and analyzed; low-energy dihedral

values are passed back through the system while high-energy dihedrals are logged

and discarded. This restricts the conformation space to reduce the overall number

of conformers generated and allows for more accurate and computationally-expensive

theories and methods to calculate more reliable energies.

An overview of system flow given in figure IV.2. This method produces an in-

45

teresting multilayered visual plot with a zooming effect toward the lowest energy

conformer. An example of how this might look for a two-dihedral molecule is given

in figure IV.3. The outlined black boxes represent found regions of interest for future

iterations of the method. This would repeat as necessary until regions converge to

one energy.

IV.3 Design of System

This system designed in Python for ease of development and compiled via Cython

for computational efficiency. While it currently utilizes Gaussian 09 for energy mini-

mization and UCSF Chimera for conformer generation, it can be redesigned for any

computational programs that accomplish the desired tasks.

IV.3.1 Variation of Theory and Basis Set Usage by System Size and

largest atom type

Given that computational requirements increase with the number of atoms in a

molecule and both the accuracy of the theory and basis set used, an initial focus on

a manageable amount of conformers with a sufficiently simple theory and basis set

is essential to success. The system should estimate quantity and cost of calculations

based on physcal computational constraints for various theory-basis set pairings. The

system optimizes calculation types for the scope of the landscape. Effectively, it

balances between running the first broad-scope search at relatively low accuracy and

a final near-final conformation space with relatively high accuracy methods.

IV.3.2 Computational Optimization by Varying Resolution

A common problem in all works on this topic is that the scale of truly searching the

conformation landscape is expansive in even the most restrictive designs. The manual

efforts in the design of this tool are to build checkers for impossible conformations,

46

Figure IV.3: Example variable resolution search chart of two dihedrals with low-
energy blue to high-energy red.

47

including overlapping atom spaces. Additional considerations are that only the most

bare, three conformations per rotatable bond angle, be considered initially. After the

first round of calculations, the scope of candidates should be reduced by several orders

of magnitude by refining the search about lower energy regions in the landscape.

IV.3.3 Inherent Complications

The single greatest complication of this and any energy landscape tool is the

number of rotatable bonds in the target molecule and, to a lesser extent, the elements

contained. Consider the hexagermane molecule of interest in chapter III and the

general focus of this work. One can focus on the number of torsions available to be

adjusted in the energy landscape, as shown in figure IV.4. Even with the minimal

three rotations per bond, these 19 rotatable bonds produce 319 = 1, 162, 261, 467

conformers, which is realistically impossible to explore even with a computational

method requiring five seconds to compute. 184 years of computation time would

be required. This is where the balance between recognizing impossible conformations

comes in. Especially with bulky molecules like this hexagermane, many conformations

could be eliminated by way of checking for overlapping atoms.

IV.4 Results

Due to the scale of the hexagermane molecule, a clear answer has not yet been

discovered. However, a much more simple run with o-nitrophenol, with only two

rotatable bonds, was successful in finding the known highest and lowest energy con-

former shown in figures IV.5 and IV.6, respectively.

While these would have ideally been produced through a self-perpetuating system

at increasing precisions and computation accuracy, the automated tool remains to be

realized.

48

Figure IV.4: Highlighted torsions of the hexagermane molecule by type of bond, where
green, red, and blue represent Ge-Ge, Ge-phenyl, and Ge-isopropyl torsion centers,
respectively.

Figure IV.5: Highest energy conformer of o-nitrophenol, ignoring any ring strain
conformations. This structure was notably unable to rotate and form the expected
hydrogen bond between the ortho nitro and hydroxyl.

49

Figure IV.6: Lowest energy conformer of o-nitrophenol. Formed the expected hydro-
gen bond between the ortho nitro and hydroxyl.

50

IV.4.1 Difficulties and Anticipated Future Approaches

A key difficulty in automation of this tool is defining an abstract computation

level based on arbitrary hardware limitations. While currently limited to the Cowboy

cluster at Oklahoma State University, the goal is that this tool be made available for

chemists everywhere one day. A potential solution for this abstract definition would

be a small series of test runs to determine computational cost and general resource

availability.

Additionally, the number of rotatable bonds yields the single largest barrier to

searching the full conformation space. With continued investigation and the inclu-

siveness with other works, it seems feasible that the insurmountable barrier to entry

may yet be simplified in an objective way that does not prevent the system from

finding the lowest energy conformer in any reasonably small molecule.

51

References

[1] Brini, E.; Fennell, C. J.; Fernandez-Serra, M.; Hribar-Lee, B.; Lukšič, M.;

Dill, K. A. Chemical Reviews 2017, 117, 12385–12414.

[2] Dill, K. A.; Chan, H. S. Nature Structural Biology 1997, 4, 10–19.

[3] Hehre, W. J.; Stewart, R. F.; Pople, J. A. Journal of Computational Chemistry

1969, 51, 2657–2664.

[4] Boys, S. F. Proceedings of the Royal Society of London Series A 1950, 200,

542–554.

[5] Schmidt, M.; Baldridge, K.; Boatz, J.; Elbert, S.; Gordon, M.; Jensen, J.;

Koseki, S.; Matsunaga, N.; Nguyen, K.; Su, S.; Windus, T.; Dupuis, M.; Mont-

gomery, J. Journal of Computational Chemistry 1993, 14, 1347–1363.

[6] Thouless, D. The quantum mechanics of many-body systems ; Pure and applied

physics; Academic Press, 1972.

[7] Hartree, D. R. Mathematical Proceedings of the Cambridge Philosophical Society

1928, 24, 111–132.

[8] Kohn, W.; Sham, L. J. Physical Review 1965, 140, A1133–A1138.

[9] Lee, C.; Yang, W.; Parr, R. G. Physical Review B 1988, 37, 785–789.

[10] Zhao, Y.; Truhlar, D. G. Journal of Computational Chemistry 2006, 125, 194101.

[11] Perdew, J. P.; Burke, K.; Ernzerhof, M. Physical Review Letters 1996, 77, 3865–

3868.

52

[12] Hückel, E. Zeitschrift für Physik 1933, 83, 632–668.

[13] Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. Journal of the

American Chemical Society 1985, 107, 3902–3909.

[14] Stewart, J. J. P. Journal of Computational Chemistry 1989, 10, 209–220.

[15] Slater, J. C. Physical Review 1930, 36, 57–64.

[16] Ditchfield, R.; Hehre, W. J.; Pople, J. A. Journal of Computational Chemistry

1971, 54, 724–728.

[17] Buffon, G. Histoire naturelle, générale et particulière, servant de suite à la

Théorie de la Terre et d’introduction à l’Histoire des Minéraux...Supplément

Tome premier [septième] ; Histoire naturelle, générale et particulière, ser-

vant de suite à la Théorie de la Terre et d’introduction à l’Histoire des

Minéraux...Supplément Tome premier [septième]; de l’imprimerie royale, 1777.

[18] Metropolis, N. Los Alamos Science 1987, 15, 125–130.

[19] Metropolis, N.; Ulam, S. Journal of the American Statistical Association 1949,

44, 335–341.

[20] Valiev, M.; Bylaska, E.; Govind, N.; Kowalski, K.; Straatsma, T.; Dam, H. V.;

Wang, D.; Nieplocha, J.; Apra, E.; Windus, T.; de Jong, W. Computer Physics

Communications 2010, 181, 1477–1489.

[21] Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.;

Hutchison, G. R. Journal of Cheminformatics 2012, 4, 17.

[22] Pettersen, E.; Goddard, T.; Huang, C.; Couch, G.; Greenblatt, D.; Meng, E.

Journal of Computational Chemistry 2004, 25, 1605–1612.

[23] van Rossum, G. Python tutorial, Technical Report CS-R9526 ; 1995.

53

[24] Oliphant, T. Guide to NumPy ; Trelgol Publishing, 2006.

[25] Jones, E.; Oliphant, T.; Peterson, P. SciPy: Open source scientific tools for

Python. 2001; http://www.scipy.org/.

[26] Behnel, S.; Bradshaw, R.; Citro, C.; Dalcin, L.; Seljebotn, D.; Smith, K. Com-

puting in Science Engineering 2011, 13, 31–39.

[27] Bernal, J. D.; Fowler, R. H. The Journal of Chemical Physics 1933, 1, 515–548.

[28] Yen, F.; Chi, Z. Physical Chemistry Chemical Physics 2015, 17, 12458–12461.

[29] Pauling, L. Journal of the American Chemical Society 1935, 57, 2680–2684.

[30] Bjerrum, N. Science 1952, 115, 385–390.

[31] Buch, V.; Sandler, P.; Sadlej, J. The Journal of Physical Chemistry B 1998,

102, 8641–8653.

[32] Brown, Z. D.; Guo, J.-D.; Nagase, S.; Power, P. P. Organometallics 2012, 31,

3768–3772.

[33] Roewe, K. D.; Rheingold, A. L.; Weinert, C. S. Chemical Communications 2013,

49, 8380–8382.

[34] Komanduri, S. P.; Shumaker, F. A.; Roewe, K. D.; Wolf, M.; Uhlig, F.;

Moore, C. E.; Rheingold, A. L.; Weinert, C. S. Organometallics 2016, 35, 3240–

3247.

[35] Levinthal, C. How to Fold Graciously. Mossbauer Spectroscopy in Biological

Systems: Proceedings of a meeting held at Allerton House. 1969; pp 22–24.

[36] Zwanzig, R.; Szabo, A.; Bagchi, B. Proceedings of the National Academy of Sci-

ences 1992, 89, 20–22.

54

http://www.scipy.org/

APPENDIX A

Ice Ih to Ice XI Conversion

Listed below is the source code utilized in the conversion of a .pdb Ice Ice Ih
structure into an Ice XI structure. This code is functional in a Python 2.7 environment
with the included packages: NumPy version 1.14.3 and SciPy version 1.1.0.

A.1 Brief Sample of Ice XI .PDB File

1 HETATM 1 O O 1 −10.483 −5.440 10 .189
2 HETATM 2 1H1 H 1 −10.473 −4.440 10 .185
3 HETATM 3 2H1 H 1 −10.015 −5.781 9 .374
4 HETATM 4 O O 2 −9.186 −6.385 7 .933
5 HETATM 5 1H2 H 2 −9.655 −6.049 7 .115
6 HETATM 6 2H2 H 2 −8.241 −6.059 7 .931
7 HETATM 7 O O 3 −6.569 −5.486 7 .929
8 HETATM 8 1H3 H 3 −6.559 −4.486 7 .925
9 HETATM 9 2H3 H 3 −6.101 −5.827 7 .114

10 HETATM 10 O O 4 −5.274 −6.412 10 .193
11 HETATM 11 1H4 H 4 −5.741 −6.077 9 .375
12 HETATM 12 2H4 H 4 −4.327 −6.087 10 .191
13 HETATM 13 O O 5 −6.569 −5.468 12 .449
14 HETATM 14 1H5 H 5 −6.559 −4.468 12 .445
15 HETATM 15 2H5 H 5 −6.101 −5.809 11 .633
16 HETATM 16 O O 6 −9.186 −6.366 12 .453
17 HETATM 17 1H6 H 6 −9.655 −6.031 11 .634
18 HETATM 18 2H6 H 6 −8.241 −6.041 12 .451
19 HETATM 19 O O 7 −10.526 −10.053 10 .207
20 HETATM 20 1H1 H 7 −11.466 −9.710 10 .206
21 HETATM 21 2H1 H 7 −10.052 −9.720 11 .022
22 HETATM 22 O O 8 −9.212 −9.151 7 .944
23 HETATM 23 1H2 H 8 −9.203 −8.151 7 .940
24 HETATM 24 2H2 H 8 −9.688 −9.477 8 .762
25 HETATM 25 O O 9 −6.612 −10.099 7 .947
26 HETATM 26 1H3 H 9 −7.552 −9.756 7 .946
27 HETATM 27 2H3 H 9 −6.138 −9.766 8 .763
28 HETATM 28 O O 10 −5.300 −9.179 10 .204
29 HETATM 29 1H4 H 10 −5.290 −8.179 10 .200
30 HETATM 30 2H4 H 10 −5.774 −9.504 11 .021

A.2 Code: Crystal Disorganizer Tool

1

2 #! / usr / bin /python
3

4 # Author = Gentry Smith

55

5 # Copyright 2016 , a l l r i g h t s r e s e rved
6

7 # t h i s reads in a .PDB f i l e , takes an argument f o r d e f o r m i t i e s per
molecules , and randomly o r g a n i z e s the c r y s t a l

8 # s t r u c t u r e in to a d i s o rde r ed proton format ion
9

10 # import sample : python PDBDisorganize . py arg1 arg2 arg3
11 # where :
12 # arg1 = source pdb f i l e to be read (ex : acetone . pdb or acetone)
13 # arg2 = number o f d e f e c t s per molecule (in H20 , num of non−hydrogen−

bonds . from 0 to 4)
14 # arg3 = d e s i r e d output pdb f i l e name
15

16 import sys
17 pr in t sys . path
18 import s t r i n g
19 import numpy as np
20 import math
21 import random
22

23 sys . s e t r e c u r s i o n l i m i t (10000000) # maximum r e c u r s i v e depth . Set to
(10 ,000 ,000) as under maximum

24

25

26 pdbIN = f i l e (sys . argv [1]) # source PDB f i l e
27 maxErr = i n t (sys . argv [2]) # max e r r o r s a l lowed
28 pdbOUT = s t r (sys . argv [3]) # output f i l e name
29 f i na lData = [[[0 f o r i in range (3)] f o r j in range (3)] f o r k in

range (300)]
30

31 # looks at args v a l i d i t y
32 de f checkArgs (arg1 , arg2 , arg3) :
33 returnBool = False
34 i f type (arg1) != f i l e : # check arg1
35 pr in t ”Bad arg ” , arg1 , ” must be a f i l e ”
36 returnBool = True
37 i f type (arg3) != s t r : # check arg3
38 pr in t ”Bad arg ” , arg3 , ” , must be a f i l e name”
39 checkPDBSuffix (arg3)
40 pr in t arg3
41 returnBool = True
42 i f type (arg2) != i n t : # check arg2 type
43 pr in t ”Bad arg2 : ” , arg2 , ” i s not an i n t . ”
44 returnBool = True
45 e l i f type (arg2) == i n t :
46 i f arg2 < 0 or arg2 > 4 : # check arg2 range
47 pr in t ” arg2 i s not in a v a l i d range 0 <= arg2 <= 4”
48 returnBool = True
49 re turn returnBool
50

51 de f checkPDBSuffix (pdbFi le) :
52 i f s t r i n g . f i n d (pdbFile , ’ . pdb ’ , 0 , l en (pdbFi le)) == −1:
53 pr in t (” did not f i n d ’ pdb ’ in ” , pdbFile , ” . Appending . . . ”)
54 pdbFi le += ’ . pdb ’

56

55

56

57

58 # reads in f i l e ,
59 de f r e a d F i l e (f i leName) :
60 pr in t ”Reading f i l e . . . ”
61 # get s number o f atoms
62 atoms = 0
63 f o r l i n e in f i leName :
64 data = l i n e . s p l i t ()
65 i f l en (data) > 0 :
66 i f data [0] != ”CONECT” and data [0] != ”END” :
67 atoms += 1
68 # pr in t ”atoms : ” , atoms
69 numMol = atoms / 3 # assumes 3−atom water molecule
70 dataTable = [[[0 f o r i in range (3)] f o r j in range (3)] f o r k in

range (numMol)]
71 f i leName . seek (0)
72 i t e r 0 = 0
73 i t e r 1 = 0
74 pdbType = −1
75 f o r l i n e in f i leName :
76 data = l i n e . s p l i t ()
77 i f pdbType == −1:
78 i f data [0] == ”ATOM” :
79 pdbType = 0
80 e l i f data [0] == ”HETATM” :
81 pdbType = 1
82 # pr in t ” LineTuple= ” , data
83 i f l en (data) > 1 and (data [0] == ”ATOM” or data [0] == ”HETATM”

) :
84 i f data [0] == ”ATOM” :
85 newData = getDataATOM(data)
86 f o r i in range (3) :
87 #data [molecule] [atom] [X/Y/Z]
88 dataTable [i t e r 0] [i t e r 1 % 3] [i] = newData [i]
89 e l i f data [0] == ”HETATM” :
90 dataTable [i t e r 0] [i t e r 1 % 3] = getDataHETATM(data)
91 i f i t e r 1 == 2 :
92 i t e r 0 += 1
93 i t e r 1 = 0
94 e l i f i t e r 1 != 2 :
95 i t e r 1 += 1
96 # pr in t ”DataTable : ” , dataTable
97 pr in t ” F i l e read ”
98 re turn dataTable , pdbType
99

100

101 # S p l i t by index
102 # i f having a problem with read ing data , check . pdb to see i f data

has a space between each value
103

104 # reads XYZ coord inate data from ATOM−type pdb
105 de f getDataATOM(s t r L i n e) :

57

106 # pr in t ” Gett ing ATOM Data . . . ”
107 dataLine = s t r L i n e [5 : 8]
108 # pr in t ” d a t a l i n e : ” , dataLine
109 i = 0
110 whi le i < 3 :
111 # pr in t ” d a t a l i n e [” , i , ”] : ” , dataLine [i]
112 dataLine [i] = f l o a t (dataLine [i])
113 # pr in t ” d a t a l i n e [” , i , ”] type : ” , type (dataLine [i])
114 i += 1
115 re turn dataLine
116

117

118 # reads XYZ coord inate data from HETATM−type pdb
119 de f getDataHETATM(s t r L i n e) :
120 # pr in t ” Gett ing HETATM Data . . . ”
121 dataLine = s t r L i n e [5 : 8]
122 # pr in t ” d a t a l i n e : ” , dataLine
123 i = 0
124 whi le i < 3 :
125 # pr in t ” d a t a l i n e [” , i , ”] : ” , dataLine [i]
126 dataLine [i] = f l o a t (dataLine [i])
127 # pr in t ” d a t a l i n e [” , i , ”] type : ” , type (dataLine [i])
128 i += 1
129 re turn dataLine
130

131

132 # get s a l l f our p o s i t i o n ve c t o r s o f hydrogen/ lone pa i r as o f f s e t o f
oxygen molecule

133 de f g e tO r i e n ta t i on s (molecule) :
134 # 120 degree s = (2 ∗ pi) / 3 rad ians
135 theta = ((2 ∗ math . p i) / 3)
136 newMol = ze roOr i en ta t i on (molecule)
137 r e tu rn In t1 = rotateMolecu l e (newMol [1] , newMol [2] , theta)
138 r e tu rn In t2 = rotateMolecu l e (newMol [1] , newMol [2] , (−1 ∗ theta))
139 re turn [re turnInt1 , r e tu rn In t2]
140

141

142 # randomly s e l e c t s new o r i e n t a t i o n , r e tu rn s two unique in t s , from 0 to 3
i n c l u s i v e l y

143 de f newRandOrientation (p o s i t i o n s) :
144 # pr in t ”Changing o r i e n t a t i o n ”
145 randVal1 = random . randint (0 , 3)
146 randVal2 = random . randint (0 , 3)
147 whi le randVal1 == randVal2 :
148 randVal2 = random . randint (0 , 3)
149 newMol = [[0 , 0 , 0] ,
150 p o s i t i o n s [randVal1] ,
151 p o s i t i o n s [randVal2]]
152 re turn newMol
153

154 # s e l e c t s new o r i e n t a t i o n from l i s t . Reduces computat ional overhead in
re−o r i e n t a t i o n opt ion t r a v e r s a l

155 de f newSetOrientat ion (p o s i t i o n s , pos1 , pos2) :
156 newMol = [[0 , 0 , 0] ,

58

157 p o s i t i o n s [pos1] ,
158 p o s i t i o n s [pos2]]
159 re turn newMol
160

161

162 # s e t s molecule coo rd ina t e s so that oxygen i s the o r i g i n
163 de f z e roOr i en ta t i on (source) :
164 # pr in t ” Zero ing Molecule . . . ”
165

166 oxy = source [0]
167 hyd1 = source [1]
168 hyd2 = source [2]
169

170 # pr in t ”Oxygen pos : ” , oxy
171 # pr in t ”Hydrogen 1 : ” , hyd1
172 # pr in t ”Hydrogen 2 : ” , hyd2
173

174 ze roedOr ig in = [0 , 0 , 0]
175 zeroedHyd1 = [0 , 0 , 0]
176 zeroedHyd2 = [0 , 0 , 0]
177 f o r i in range (3) :
178 zeroedHyd1 [i] = hyd1 [i] − oxy [i]
179 zeroedHyd2 [i] = hyd2 [i] − oxy [i]
180

181 # pr in t ” Zeroed Hydrogen 1 : ” , zeroedHyd1
182 # pr in t ” Zeroed Hydrogen 2 : ” , zeroedHyd2
183

184 # return new molecule p o s i t i o n
185 newMol = [zeroedOrig in , zeroedHyd1 , zeroedHyd2]
186 re turn newMol
187

188 # r e s e t s the zeroed molecule to the o r i g i n a l oxygen p o s i t i o n
189 de f r e s e t O r i e n t a t i o n (oxygenPos , molecule) :
190 # pr in t ” Rese t t ing molecule . . . ”
191 rO = oxygenPos
192 rH1 =[0 ,0 ,0]
193 rH2 =[0 ,0 ,0]
194 newMol = []
195 f o r i in range (3) :
196 rH1 [i] = molecule [1] [i] + rO [i]
197 rH2 [i] = molecule [2] [i] + rO [i]
198 newMol = [rO , rH1 , rH2]
199 # pr in t ” Rebui l t Molecule : ” , newMol
200 re turn newMol
201

202 # r o t a t e s vec to r about a x i s f o r theta degree s
203 # Handler f o r ro tat ionMatr ix func t i on below
204 de f ro ta teMolecu l e (vector , ax i s , theta) :
205 rotMatx = rotat ionMatr ix (ax i s , theta)
206 re turn np . dot (rotMatx , vec to r)
207

208

209 # Creates Rotation matrix f o r a g iven a x i s and theta
210 # from stackove r f l ow user unutbu

59

211 # page : http :// s tackove r f l ow . com/ que s t i on s /6802577/ python−ro ta t i on−of−3d
−vec to r

212 de f ro tat ionMatr ix (ax i s , theta) :
213 ”””
214

215 : type a x i s : l i s t
216 : type theta : union
217 ”””
218 a x i s = np . asar ray (a x i s)
219 theta = np . asar ray (theta)
220 a x i s /= math . s q r t (np . dot (ax is , a x i s))
221 a = math . cos (theta /2 .0)
222 b , c , d = −a x i s ∗math . s i n (theta /2 . 0)
223 aa , bb , cc , dd = (a ∗ a) , (b ∗ b) , (c ∗ c) , (d ∗ d)
224 bc , ad , ac , ab , bd , cd = (b ∗ c) , (a ∗ d) , (a ∗ c) , (a ∗ b) , (b ∗ d)

, (c ∗ d)
225 re turn np . array ([[(aa + bb − cc − dd) , (2 ∗ (bc + ad)) , (2 ∗

(bd − ac))] ,
226 [(2 ∗ (bc − ad)) , (aa + cc − bb − dd) , (2 ∗

(cd + ab))] ,
227 [(2 ∗ (bd + ac)) , (2 ∗ (cd − ab)) , (aa +

dd − bb − cc)]])
228

229

230 # get s r e s u l t s from rotateAboutAxis p lus two Hydrogens to get the
tet rahedron p o s i t i o n s

231 de f ge tTet rahedronPos i t i ons (molecule) :
232 p o s i t i o n s = [[0 f o r i in range (3)] f o r j in range (4)]
233 newMol = ze roOr i en ta t i on (molecule) # zero molecule
234 p o s i t i o n s [0] = newMol [1]
235 p o s i t i o n s [1] = newMol [2]
236 newPos = g e tO r i e n ta t i on s (molecule) # get f i n a l two p o s i t i o n s
237 p o s i t i o n s [2] = l i s t (newPos [0])
238 p o s i t i o n s [3] = l i s t (newPos [1])
239 re turn p o s i t i o n s # return a l l f our p o s i t i o n s
240

241

242 # checks d i s t anc e o f new p o s i t i o n s from zero
243 de f checkDist (posArray) :
244 d i s t anc e = [0 f o r i in range (l en (posArray))]
245 f o r i in range (l en (posArray)) :
246 d i s t anc e [i] = ((posArray [i] [0] ∗ posArray [i] [0]) +
247 (posArray [i] [1] ∗ posArray [i] [1]) +
248 (posArray [i] [2] ∗ posArray [i] [2]))
249 # pr in t ” Distance ” , i , ” : ” , d i s t anc e [i]
250 avg = 0
251 f o r i in range (l en (posArray)) :
252 avg += d i s t anc e [i]
253 averageDistance = (avg / l en (posArray))
254 # pr in t ”Average Distance : ” , averageDistance
255 re turn averageDistance
256

257

258 # p r i n t s data g iven a 3D t a b l e o f water molecu le s

60

259 de f pr intData (data) :
260 pr in t ”Data : ”
261 strData = [” O” , ”H1” , ”H2”]
262 dimData = [”X” , ”Y” , ”Z”]
263 bigAvg = 0
264 numAtoms = 0
265 f o r mol in range (l en (data)) :
266 f o r atom in range (l en (data [mol])) :
267 p r i n t S t r = s t r (mol) + ” : ” + strData [atom] + ” : ”
268 f o r dimension in range (3) :
269 p r i n t S t r += dimData [atom] + ” : ” + ” { : 7 . 3 f }” . format (data [

mol] [atom] [dimension]) + ”\ t ”
270 pr in t p r i n t S t r
271 bigAvg += checkDist (z e roOr i en ta t i on (data [mol]) [1 :])
272 numAtoms += 1
273 pr in t ””
274 pr in t ” t o t a l average d i s t ance : ” , bigAvg / numAtoms
275

276

277 # checks v a l i d i t y o f molecule
278 de f i sDe f ec t iveCheck (err , neighborData , posData , index) :
279 # f i n d nearby molecu le s (avg oxygen d i s t anc e ???)
280 pr in t ” check ing f o r d e f e c t s at index ” , index , ” . . . ”
281 pr in t ” neighbor i n d i c e s : ” , neighborData [index]
282 returnBool = False
283 ne ighbors = 4
284 f o r i in range (4) : # count r e a l ne ighbors
285 i f neighborData [index] [1] [i] == −1:
286 ne ighbors −= 1
287 i f ne ighbors <= e r r : # de f a c t o good i f num(ne ighbors) <

maxErrAllowed
288 # pr in t ”Fewer ne ighbors than al lowed e r r o r s . de f a c t o Good

Or i entat ion ”
289 returnBool = True
290 e l i f ne ighbors > e r r : # enough ne ighbors to r e q u i r e check
291 # pr in t ”More ne ighbors than e r r o r th r e sho ld ”
292 defectCount = 0
293 f o r ne ighbor in range (4) : # check each neighbor
294 i f neighborData [index] [1] [ne ighbor] != −1: # sk ip over non−

e x i s t a n t ne ighbors
295 molA = posData [index]
296 molB = posData [neighborData [index] [1] [ne ighbor]]
297 oxyDist = getDistBetweenAtoms (molA [0] , molB [0])
298

299 i f minHydrogenDistance (molA , molB) > oxyDist : # check
f o r f a c i n g lone p a i r s

300 pr in t ”Double Lone Pair d e f e c t ”
301 defectCount += 1
302 break
303 e l s e : # check f o r f a c i n g protons
304 smallerHydrogenDistanceCount = 0
305 i s D e f e c t i v e = False
306 f o r f i r s t in range (2) :
307 i f not i s D e f e c t i v e :

61

308 f o r second in range (2) :
309 newDist = getDistBetweenAtoms (molA [f i r s t

+ 1] , molB [second + 1])
310 i f newDist < oxyDist :
311 smallerHydrogenDistanceCount += 1
312 i f smallerHydrogenDistanceCount > 1 :
313 pr in t ”Double Hydrogen d e f e c t ”
314 defectCount += 1
315 i s D e f e c t i v e = True
316 # pr in t ” De fec t s found : ” , defectCount
317 i f defectCount > 4 :
318 pr in t ”IMPOSSIBLE AMOUNT OF DEFECTS DETECTED ! ! ! !

AHHH”
319 i f defectCount > e r r :
320 # pr in t ”Found a bad molecule ! ”
321 returnBool = False
322 e l s e :
323 # pr in t ” Molecule i s with in parameters . ”
324 returnBool = True
325

326 re turn returnBool
327

328

329 # randomly re−r e o r i e n t s molecule and neighbors , r e checks a l l
330 de f rerunMolAndNeighbors (err , neighborData , posData , index) :
331 # pr in t ”Re−r e o r d e r i n g molecule at ” , index
332 # e r r − max e r r o r s a l lowed
333 # neighborData − i n t [4] o f ne ighbor i n d i c e s
334 # posData − array o f a l l molecule p o s i t i o n ve c to r s
335 # index − l o c a t i o n o f f o cus molecule in posData
336 isGood = False
337 timeCount = 0
338 whi le not isGood :
339 # re−r o t a t e molecule through a l l p o s i t i o n s (i t e r a t e d through a l l

o r i e n t a t i o n s)
340 p o s i t i o n s = getTet rahedronPos i t i ons (posData [index])
341 zeroedMol = newRandOrientation (p o s i t i o n s)
342 # pr in t ” isGood CHECK” , isGood
343 isGood , posData = iterThroughRotat ions (err , neighborData ,

posData , index)
344 posData [index] = r e s e t O r i e n t a t i o n (posData [index] [0] , zeroedMol)
345 i f timeCount >= 13 : # { (1 − 1/6) ˆn < 0 .05 } says n = 17
346 # BROKEN − need to r e b u i l d
347 # 0 . eva luated molecule has too many d e f e c t s
348 # 1 . r e o r i e n t molecule s t a t i s t i c a l l y probable amount o f

t imes to cover a l l o r i e n t a t i o n s
349 # 2 . Repeat 1 . with neighbor 1
350 # 2a repeat 1 . with o r i g i n a l molecule
351 # 3 . Repeat 2 . with neighbor 2 , 3 , 4 , as / i f nece s sa ry
352 f o r ne ighborIndex in range (4) :
353 i f neighborData [index] [1] [ne ighborIndex] != −1:
354 p o s i t i o n s = getTet rahedronPos i t i ons (posData [

ne ighborIndex])
355 zeroedMol = newRandOrientation (p o s i t i o n s)

62

356 posData [ne ighborIndex] = r e s e t O r i e n t a t i o n (posData [
ne ighborIndex] [0] , zeroedMol)

357 # isGood = isDe f ec t iveCheck (err , neighborData ,
posData , ne ighborIndex)

358 isGood = isDe fec t iveCheck (err , neighborData , posData , index)
359 i f not isGood :
360 isGood , posData = rerunMolAndNeighbors (err , neighborData

, posData , neighborData [index] [1] [ne ighborIndex])
361 f i na lData = posData
362 re turn True , f i na lData
363

364 # i t e r a t e s molecule through a l l p o s s i b l e r o t a t i o n s
365 de f i terThroughRotat ions (err , neighborData , posData , index) :
366 isGood = False
367 pos1 = 0 # t e t r a h e d r a l p o s i t i o n f o r H1
368 pos2 = 0 # t e t r a h e d r a l p o s i t i o n f o r H2
369 whi le not isGood or (pos1 != 3 and pos2 != 3) : # i t e r a t e s through

a l l o r i e n t a t i o n s , s tops i f good o r i e n t a t i o n
370 i f pos1 != pos2 :
371 posData [index] = newSetOrientat ion (posData [index] [0] , pos1 ,

pos2)
372 isGood = isDe fec t iveCheck (err , neighborData , posData , index)
373 i f pos2 < 3 :
374 pos2 += 1
375 e l i f pos2 == 3 :
376 i f pos1 < 3 :
377 pos1 += 1
378 pos2 = 0
379 re turn isGood , posData
380 # determines minimum hydrogen d i s t anc e between two atoms
381 de f minHydrogenDistance (mol1 , mol2) :
382 minDist = 100
383 f o r f i r s t in range (2) :
384 f o r second in range (2) :
385 newDist = getDistBetweenAtoms (mol1 [f i r s t +1] , mol2 [second +1])
386 i f newDist < minDist :
387 minDist = newDist
388 re turn minDist
389

390

391

392

393

394 # f i n d s ne ighbor ing molecu le s o f each molecule
395 de f getNeighbors (data) :
396 returnData = [[[0 f o r i in range (4)] f o r j in range (2)] f o r k

in range (l en (data))] # data [molecule] [d i s tance , index] [f our va lue s]
397 f o r mol1 in range (l en (data)) :
398 minDist = [100 , 100 , 100 , 100]
399 minIndex = [0 , 0 , 0 , 0]
400 f o r mol2 in range (l en (data)) :
401 i f mol1 != mol2 :
402 newMin = getDistBetweenAtoms (data [mol1] [0] , data [mol2

] [0])

63

403

404 bigIndex = indexOfBiggest (minDist)
405 i f newMin < minDist [b igIndex] :
406 minDist [b igIndex] = newMin
407 minIndex [b igIndex] = mol2
408 f o r i in range (4) :
409 i f minDist [i] >= 9 :
410 minDist [i] = −1
411 minIndex [i] = −1
412 # pr in t ”Four s m a l l e s t Di s tances o f ” , mol1 , ” : ” , minDist
413 # pr in t ”Four s m a l l e s t I n d i c e s o f ” , mol1 , ” : ” , minIndex
414 returnData [mol1] = [minDist , minIndex]
415 re turn returnData
416

417

418 # f i n d s d i s t anc e between oxygen atoms
419 de f getDistBetweenAtoms (mol1 , mol2) :
420 d i s t anc e = (((mol1 [0] − mol2 [0]) ∗ (mol1 [0] − mol2 [0])) +
421 ((mol1 [1] − mol2 [1]) ∗ (mol1 [1] − mol2 [1])) +
422 ((mol1 [2] − mol2 [2]) ∗ (mol1 [2] − mol2 [2])))
423 re turn d i s t anc e
424

425 # get s index o f l a r g e s t item from a l i s t
426 de f indexOfBiggest (check) :
427 bigIndex = 0
428 f o r i in range (l en (check)) :
429 i f check [i] > check [b igIndex] :
430 bigIndex = i
431 re turn bigIndex
432

433

434 # w r i t e s data to PDB f i l e
435 de f writeDataPDB (data , pdbType) :
436 pr in t ” Writing Data to ” , s t r (pdbOUT)
437 f i leName = s t r (pdbOUT)
438 output = open (fi leName , ’w ’)
439 i f pdbType == 0 :
440 writeDataPDBATOM(data , output)
441 e l i f pdbType == 1 :
442 writeDataPDBHETATM(data , output)
443 output . c l o s e ()
444

445

446 # Writes data to PDB f i l e s t y l e = ATOM
447 de f writeDataPDBATOM(data , i n F i l e) :
448 i t e r a t o r = 0
449 f o r molecule in range (l en (data)) :
450 f o r atom in range (3) :
451 i t e r a t o r += 1
452 outStr = ”ATOM ”
453 outStr += s t r (i t e r a t o r)
454 whi le l en (outStr) < 11 :
455 outStr = outStr [: 6] + ” ” + outStr [6 :]
456 outStr += ” ”

64

457 i f atom == 0 :
458 outStr += ” O ” + ” WAT”
459 e l i f atom == 1 :
460 outStr += ” H1 ” + ” WAT”
461 e l i f atom == 2 :
462 outStr += ” H2 ” + ” WAT”
463 outStr += s t r (molecule)
464 whi le l en (outStr) < 26 :
465 outStr = outStr [: 2 0] + ” ” + outStr [2 0 :]
466 outStr += ” ”
467 outStr += ” { : 8 . 3 f }” . format (data [molecule] [atom] [0])
468 outStr += ” { : 8 . 3 f }” . format (data [molecule] [atom] [1])
469 outStr += ” { : 8 . 3 f }” . format (data [molecule] [atom] [2])
470 outStr += ” 1 .00 ” + ” 0 .00 ”
471 outStr += ” ”
472 i f atom == 0 :
473 outStr += ” O ”
474 e l i f atom == 1 :
475 outStr += ” H ”
476 e l i f atom == 2 :
477 outStr += ” H ”
478 outStr += ”\n”
479 i n F i l e . wr i t e (outStr)
480

481

482 # Writes data to PDB f i l e s t y l e = HETATOM
483 de f writeDataPDBHETATM(data , i n F i l e) :
484 i t e r a t o r = 0
485 f o r molecule in range (l en (data)) :
486 f o r atom in range (3) :
487 i t e r a t o r += 1
488 outStr = ”HETATM”
489 outStr += s t r (i t e r a t o r)
490 whi le l en (outStr) < 11 :
491 outStr = outStr [: 6] + ” ” + outStr [6 :]
492 outStr += ” ”
493 i f atom == 0 :
494 outStr += ” O ” + ” WAT”
495 e l i f atom == 1 :
496 outStr += ” H1 ” + ” WAT”
497 e l i f atom == 2 :
498 outStr += ” H2 ” + ” WAT”
499 outStr += s t r (molecule)
500 whi le l en (outStr) < 26 :
501 outStr = outStr [: 2 0] + ” ” + outStr [2 0 :]
502 outStr += ” ”
503 outStr += ” { : 8 . 3 f }” . format (data [molecule] [atom] [0])
504 outStr += ” { : 8 . 3 f }” . format (data [molecule] [atom] [1])
505 outStr += ” { : 8 . 3 f }” . format (data [molecule] [atom] [2])
506 outStr += ” 1 .00 ” + ” 0 .00 ”
507 outStr += ” ”
508 i f atom == 0 :
509 outStr += ” O ”
510 e l i f atom == 1 :

65

511 outStr += ” H ”
512 e l i f atom == 2 :
513 outStr += ” H ”
514 outStr += ”\n”
515 i n F i l e . wr i t e (outStr)
516

517

518 # runs program
519 de f testRun (i n F i l e , err , ou tF i l e) :
520 pr in t ”Running Test Vers ion o f Program . . . ”
521

522

523 # t h i s i s the parent runner f o r the program
524 de f runPgm(i n F i l e , e r r) :
525 pr in t ”Running Program . . . ”
526 data , pdbType = r e a d F i l e (i n F i l e)
527 newData = [[[0 f o r i in range (3)] f o r j in range (3)] f o r k in

range (l en (data))]
528 pr in t ” Reorder ing Molecules . . . ”
529 f o r i in range (l en (data)) :
530 p o s i t i o n s = getTet rahedronPos i t i ons (data [i])
531 zeroedMol = newRandOrientation (p o s i t i o n s)
532 newMol = r e s e t O r i e n t a t i o n (data [i] [0] , zeroedMol)
533 newData [i] = newMol
534 pr in t ” Molecules Reordered ”
535 connectedMolecu les = getNeighbors (newData) # −1 index = not

ne ighbor ing
536 f i na lData = newData
537 f o r i in range (l en (connectedMolecu les)) :
538 # pr in t ” check d e f e c t s ”
539 i s F i n e = i sDe f ec t iveCheck (err , connectedMolecules , f ina lData , i)
540 # pr in t ” isFINE CHECK” , i s F i n e
541 i f not i s F i n e :
542 # pr in t ” f i x i n g d e f e c t s ”
543 whi le not i s F i n e :
544 # pr in t ”RerunMol”
545 i sF ine , f i na lData = rerunMolAndNeighbors (err ,

connectedMolecules , f ina lData , i)
546 # pr in t ” rerunDone”
547 writeDataPDB (f ina lData , pdbType)
548 # printData (newData)
549

550

551 badArgs = checkArgs (pdbIN , maxErr , pdbOUT) # stop in case o f bad
argument

552

553 # check input args
554 i f not badArgs : # stop in case o f bad argument
555 pr in t ”Good Arguments , I n i t i a l i z i n g R e o r i e n t i a t i o n with ” , maxErr , ”

maximum d e f e c t s ”
556 # testRun (pdbIN , maxErr , pdbOUT)
557 runPgm(pdbIN , maxErr)
558 e l i f badArgs :
559 pr in t ”Bad Arguments , Quit t ing . . . ”

66

APPENDIX B

Germanium Landscape

B.1 Sample Gaussian 09 Germanium File

Command files like the one below were built using Dr. Fennell’s Gaussian 09 run
builder script and proved very effective in producing command files.

1 #!/ bin /bash
2 g09 <<EOF > B3LYP STO−3G 1 h e x a g e r m a n e t r a n s a l l f i r s t r e o r d e r . out
3 %Chk=B3LYP STO−3G 1 h e x a g e r m a n e t r a n s a l l f i r s t r e o r d e r
4 %NProcShared=12
5 #B3LYP/STO−3G OPT
6

7 T i t l e : h e x a g e r m a n e t r a n s a l l f i r s t r e o r d e r system
8

9 0 1
10 Ge −4.543000000000 −0.076000000000 0.598000000000
11 Ge −2.121000000000 0.068000000000 0.086000000000
12 C −4.774000000000 −1.010000000000 2.336000000000
13 C −5.549000000000 −1.127000000000 −0.760000000000
14 C −5.371000000000 1.719000000000 0.829000000000
15 C −1.311000000000 1.357000000000 1.303000000000
16 Ge −0.754000000000 −1.978000000000 0.323000000000
17 C −1.340000000000 −2.994000000000 1.865000000000
18 Ge 1.675000000000 −1.503000000000 0.567000000000
19 C −1.186000000000 −3.039000000000 −1.235000000000
20 C 1.925000000000 −0.300000000000 2.094000000000
21 C 2.315000000000 −0.535000000000 −0.983000000000
22 Ge 3.126000000000 −3.539000000000 0.606000000000
23 C 2.522000000000 −4.845000000000 1.926000000000
24 Ge 5.558000000000 −3.333000000000 1.109000000000
25 C 2.938000000000 −4.327000000000 −1.151000000000
26 C 6.648000000000 −2.029000000000 0.052000000000
27 C 6.362000000000 −5.157000000000 0.995000000000
28 C 5.463000000000 −2.780000000000 3.007000000000
29 C −4.808000000000 −2.522000000000 2.129000000000
30 C −6.030000000000 −0.572000000000 3.098000000000
31 H −3.909000000000 −0.757000000000 2.974000000000
32 H −6.954000000000 −0.777000000000 2.525000000000
33 H −5.990000000000 0.508000000000 3.335000000000
34 H −6.094000000000 −1.114000000000 4.066000000000
35 H −5.710000000000 −2.829000000000 1.564000000000
36 H −4.817000000000 −3.048000000000 3.107000000000
37 H −3.927000000000 −2.841000000000 1.555000000000
38 H −5.250000000000 −2.187000000000 −0.668000000000
39 C −5.199000000000 −0.705000000000 −2.186000000000
40 C −7.061000000000 −1.057000000000 −0.533000000000

67

41 H −4.126000000000 −0.879000000000 −2.361000000000
42 H −5.433000000000 0.356000000000 −2.385000000000
43 H −5.754000000000 −1.331000000000 −2.917000000000
44 H −7.327000000000 −1.462000000000 0.459000000000
45 H −7.588000000000 −1.677000000000 −1.290000000000
46 H −7.438000000000 −0.019000000000 −0.608000000000
47 C 5.171000000000 −1.286000000000 3.108000000000
48 C 6.703000000000 −3.142000000000 3.823000000000
49 H 4.612000000000 −3.336000000000 3.456000000000
50 H 7.617000000000 −2.660000000000 3.425000000000
51 H 6.834000000000 −4.242000000000 3.835000000000
52 H 6.569000000000 −2.820000000000 4.877000000000
53 H 6.003000000000 −0.673000000000 2.715000000000
54 H 4.988000000000 −0.995000000000 4.164000000000
55 H 4.281000000000 −1.055000000000 2.511000000000
56 C 6.881000000000 −2.491000000000 −1.386000000000
57 C 8.000000000000 −1.692000000000 0.695000000000
58 H 6.093000000000 −1.084000000000 0.027000000000
59 H 8.663000000000 −2.569000000000 0.776000000000
60 H 7.871000000000 −1.257000000000 1.700000000000
61 H 8.527000000000 −0.927000000000 0.085000000000
62 H 7.531000000000 −3.384000000000 −1.416000000000
63 H 7.387000000000 −1.690000000000 −1.966000000000
64 H 5.929000000000 −2.720000000000 −1.888000000000
65 C 6.042000000000 −5.844000000000 −0.340000000000
66 H 5.912000000000 −5.747000000000 1.817000000000
67 C 7.882000000000 −5.177000000000 1.193000000000
68 H 8.397000000000 −4.688000000000 0.346000000000
69 H 8.240000000000 −6.228000000000 1.229000000000
70 H 8.189000000000 −4.690000000000 2.134000000000
71 H 4.959000000000 −5.905000000000 −0.514000000000
72 H 6.436000000000 −6.883000000000 −0.337000000000
73 H 6.487000000000 −5.311000000000 −1.199000000000
74 H −6.362000000000 1.563000000000 1.303000000000
75 C −5.646000000000 2.456000000000 −0.483000000000
76 C −4.523000000000 2.590000000000 1.756000000000
77 H −4.349000000000 2.080000000000 2.725000000000
78 H −5.042000000000 3.550000000000 1.960000000000
79 H −3.548000000000 2.821000000000 1.285000000000
80 H −6.358000000000 1.894000000000 −1.110000000000
81 H −4.725000000000 2.629000000000 −1.057000000000
82 H −6.117000000000 3.440000000000 −0.273000000000
83 C −0.532000000000 2.421000000000 0.817000000000
84 C −1.529000000000 1.258000000000 2.684000000000
85 H −2.129000000000 0.469000000000 3.088000000000
86 C −0.996000000000 2.206000000000 3.561000000000
87 C −0.001000000000 3.371000000000 1.694000000000
88 C −0.237000000000 3.267000000000 3.066000000000
89 H 0.596000000000 4.188000000000 1.310000000000
90 H −1.180000000000 2.122000000000 4.624000000000
91 H 0.174000000000 4.002000000000 3.745000000000
92 C −1.777000000000 −4.322000000000 1.725000000000
93 C −0.217000000000 −3.392000000000 −2.175000000000
94 C −2.232000000000 −5.037000000000 2.838000000000

68

95 H −1.775000000000 −4.812000000000 0.763000000000
96 C −1.348000000000 −2.404000000000 3.134000000000
97 C −0.568000000000 −4.133000000000 −3.309000000000
98 H 0.799000000000 −3.079000000000 −2.038000000000
99 C −2.513000000000 −3.435000000000 −1.440000000000

100 C −2.250000000000 −4.433000000000 4.097000000000
101 H −2.571000000000 −6.058000000000 2.723000000000
102 C −1.802000000000 −3.118000000000 4.246000000000
103 H −1.007000000000 −1.394000000000 3.262000000000
104 C −2.868000000000 −4.180000000000 −2.567000000000
105 H −3.268000000000 −3.168000000000 −0.721000000000
106 C −1.893000000000 −4.529000000000 −3.504000000000
107 H 0.183000000000 −4.395000000000 −4.040000000000
108 H −3.896000000000 −4.482000000000 −2.715000000000
109 H −2.164000000000 −5.101000000000 −4.381000000000
110 H −2.602000000000 −4.985000000000 4.958000000000
111 H −1.809000000000 −2.651000000000 5.222000000000
112 C 3.101000000000 −6.123000000000 1.997000000000
113 C 2.378000000000 −5.604000000000 −1.315000000000
114 C 3.370000000000 −3.619000000000 −2.281000000000
115 H 2.025000000000 −6.170000000000 −0.467000000000
116 C 2.272000000000 −6.169000000000 −2.590000000000
117 C 1.513000000000 −4.525000000000 2.832000000000
118 C 2.686000000000 −7.047000000000 2.960000000000
119 H 3.865000000000 −6.421000000000 1.310000000000
120 C 1.687000000000 −6.704000000000 3.869000000000
121 H 3.142000000000 −8.028000000000 3.002000000000
122 C 1.100000000000 −5.441000000000 3.804000000000
123 H 1.054000000000 −3.568000000000 2.784000000000
124 C 2.720000000000 −5.462000000000 −3.708000000000
125 H 1.844000000000 −7.156000000000 −2.710000000000
126 C 3.263000000000 −4.184000000000 −3.554000000000
127 H 3.780000000000 −2.628000000000 −2.178000000000
128 H 3.599000000000 −3.631000000000 −4.421000000000
129 H 2.636000000000 −5.900000000000 −4.694000000000
130 H 1.366000000000 −7.414000000000 4.620000000000
131 H 0.327000000000 −5.175000000000 4.510000000000
132 C 1.504000000000 −0.326000000000 −2.095000000000
133 C 1.670000000000 −0.714000000000 3.412000000000
134 C 3.620000000000 −0.040000000000 −0.992000000000
135 C 1.987000000000 0.362000000000 −3.212000000000
136 H 0.510000000000 −0.709000000000 −2.093000000000
137 C 2.402000000000 1.008000000000 1.889000000000
138 C 1.890000000000 0.147000000000 4.490000000000
139 H 1.314000000000 −1.696000000000 3.632000000000
140 C 4.114000000000 0.652000000000 −2.102000000000
141 H 4.233000000000 −0.179000000000 −0.124000000000
142 C 3.296000000000 0.851000000000 −3.216000000000
143 H 1.348000000000 0.514000000000 −4.073000000000
144 H 5.127000000000 1.034000000000 −2.095000000000
145 H 3.673000000000 1.385000000000 −4.079000000000
146 C 2.374000000000 1.435000000000 4.270000000000
147 H 1.691000000000 −0.189000000000 5.500000000000
148 C 2.630000000000 1.865000000000 2.969000000000

69

149 H 2.603000000000 1.384000000000 0.900000000000
150 H 3.001000000000 2.867000000000 2.795000000000
151 H 2.548000000000 2.101000000000 5.105000000000
152 C −2.041000000000 0.841000000000 −1.709000000000
153 C −1.767000000000 0.059000000000 −2.841000000000
154 C −2.300000000000 2.209000000000 −1.888000000000
155 C −1.732000000000 0.632000000000 −4.115000000000
156 H −1.595000000000 −0.996000000000 −2.753000000000
157 C −2.263000000000 2.785000000000 −3.160000000000
158 H −2.521000000000 2.839000000000 −1.039000000000
159 C −1.977000000000 1.997000000000 −4.275000000000
160 H −1.519000000000 0.016000000000 −4.979000000000
161 H −2.458000000000 3.843000000000 −3.281000000000
162 H −1.950000000000 2.441000000000 −5.262000000000
163 H −0.322000000000 2.526000000000 −0.236000000000
164

165 EOF
166 formchk B3LYP STO−3G 1 h e x a g e r m a n e t r a n s a l l f i r s t r e o r d e r . chk
167 newzmat −i chk −opdb −s tep 999 B3LYP STO−3

G 1 h e x a g e r m a n e t r a n s a l l f i r s t r e o r d e r . chk final B3LYP STO−3
G 1 h e x a g e r m a n e t r a n s a l l f i r s t r e o r d e r . pdb

168 echo
169 echo ”Job done”

B.2 Building Group 4 Chains

While briefly mentioned and the subject of research for some time, the butyl-IV
chain builder is detailed below. Ultimately unsuccessful in the initial trials, these
scripts may serve a purpose in further work.

This first script builds a parent set of all possible C, Si, and Ge butylalkyl chains.

1 #! / usr / bin /python
2

3 import sys
4 import subproces s
5

6 # argument : sys . argv [num]
7 # Replacement : sed − i −e ’ s /IN/OUT/g ’ FILE > NEWFILE
8

9 i n F i l e = f i l e (sys . argv [1])
10

11 de f DoIT () :
12 f o r f i r s t in { ’ C ’ , ’ S i ’ , ’Ge ’ } :
13 name1 = ”%s ” % (f i r s t . l s t r i p (’ ’))
14 out1 = open (name1 , ”w”)
15 cmdStr = ” sed −e ’ s /1 GE/1 %s /g ’ ./% s >> ./% s . pdb” % (f i r s t ,

i n F i l e , name1)
16 # subproces s . c a l l (cmdStr , s h e l l=True , s tdout=out1)
17 subproces s . Popen (cmdStr , s h e l l=True , executab l e=’ / bin /bash ’)
18 out1 . c l o s e ()
19 f o r second in { ’ C ’ , ’ S i ’ , ’Ge ’ } :
20 name2 = name1 + ” %s ” % (second . l s t r i p (’ ’))
21 out2 = open (name2 , ”w”)

70

22 cmdStr = ” sed −e ’ s /2 GE/2 %s /g ’ ./% s . pdb >> ./% s . pdb” % (
second , name1 , name2)

23 # subproces s . c a l l (cmdStr , s h e l l=True , s tdout=out2)
24 subproces s . Popen (cmdStr , s h e l l=True , executab l e=’ / bin /bash ’)
25 out2 . c l o s e ()
26 f o r t h i rd in { ’ C ’ , ’ S i ’ , ’Ge ’ } :
27 name3 = name2 + ” %s ” % (t h i r d . l s t r i p (’ ’))
28 out3 = open (name3 , ”w”)
29 cmdStr = ” sed −e ’ s /3 GE/3 %s /g ’ ./% s . pdb >> ./% s . pdb” %

(th i rd , name2 , name3)
30 # subproces s . c a l l (cmdStr , s h e l l=True , s tdout=out3)
31 subproces s . Popen (cmdStr , s h e l l=True , executab l e=’ / bin /

bash ’)
32 out3 . c l o s e ()
33 f o r f our th in { ’ C ’ , ’ S i ’ , ’Ge ’ } :
34 name4 = name3 + ” %s ” % (four th . l s t r i p (’ ’))
35 out4 = open (name4 , ”w”)
36 cmdStr = ” sed −e ’ s /4 GE/4 %s /g ’ ./% s . pdb >> ./% s .

pdb” % (fourth , name3 , name4)
37 # subproces s . c a l l (cmdStr , s h e l l=True , s tdout=out4)
38 subproces s . Popen (cmdStr , s h e l l=True , executab l e=’ /

bin /bash ’)
39 out4 . c l o s e ()
40

41 DoIT ()

This second script takes the original trans-all butyl chain and enumerates 72
torsional rotations into a folder.

1 from chimera import runCommand as rc
2 from chimera import r ep l yob j
3 import sys
4 import os
5

6 #standard sys . argv [] f o r s c r i p t args ?
7 # sys . argv [0] = d i r e c t o r y
8 os . chd i r (sys . argv [0])
9

10 f i l e n a m e s = [fn f o r fn in os . l i s t d i r (” . ”) i f fn . endswith (” . pdb”)]
11 fn = f i l e n a m e s [0]
12 # inPDB = chimera . openModels . open (’/ Users / gentry /Desktop/ t e s t / tes tmol .

pdb ’ , type=”PDB”)
13

14 rc (”open ” + fn)
15

16 rc (” r o t a t i o n 1 r e v e r s e #0:1.HET@/ ser ia lNumber=2 #0:1.HET@/ ser ia lNumber=3
”)

17

18 f o r i in range (72) :
19 #rep lyob j . s t a t u s (” Proce s s ing ” + fn)
20 #rc (” open ” + fn)
21 #rc (” r o t a t i o n 1 r e v e r s e #0:1.HET@/ seria lNumber=2 #0:1.HET@/

seria lNumber =3”)
22 rc (” r o t a t i o n 1 5”)
23 newName = (fn [: −3] + s t r ((i ∗5)) + ” . pdb”)

71

24 rc (” wr i t e format pdb 0 ” + newName)
25 #rc (” c l o s e ”)
26

27

28 # chimera . runCommand(” r o t a t i o n 2 3 5”)
29 # newName = (inPDB[: −3] + i ∗5 + ” . pdb”)
30 # chimera . runCommand(” wr i t e format pdb ” + newName)

B.3 Collecting and Comparing Torsional Data

These two scripts were utilized to reduce the output data into an energy value
with normalized intensity from 0 to 1. The third script compares two of these files
and looks for any additive or multiplicative trend.

This first file reads energy data and creates a list of absolute energy values per
torsion degree.

1 #! / usr / bin /python
2

3 ### Author : Gentry Smith , Oklahoma State Un ive r s i ty
4 ### Created : August 7 , 2017 , 3PM
5 ### Last Edited : August 7 , 2017
6

7 ### Takes a s t a t i o n a r y p o i n t s . txt f i l e and w i l l copy . pdb f i l e s o f the
same name from a s p l i t c o n f o r m e r s . pdb/ f o l d e r

8 ### into a new f o l d e r ” s t a t i o n a ry c o n f o r m e r s ”
9

10 # This does not use any args and in s t ead r e l i e s on the s t a t i o n a r y po in t s
f i l e be ing ” s t a t i o n a r y p o i n t s . txt ” and the

11 # conformrs r e s i d i n g in a ” s p l i t c o n f o r m e r s . pdb/” d i r e c t o r y on the same
l e v e l . I t w i l l c r e a t e the new f o l d e r ” s t a t i o n a r y c o n f o r m e r s ”

12

13 import os
14

15 de f IOVal idator () :
16 returnBool = [False , Fa l se]
17 t ry :
18 f i l e 1 = open (’ s t a t i o n a r y p o i n t s . txt ’ , ’ r ’)
19 f i l e 1 . c l o s e ()
20 returnBool [0] = True
21 except IOError :
22 pr in t (”Did not f i n d ’ s t a t i o n a r y p o i n t s . txt ’ f i l e . Quit t ing . . . ”)
23 qu i t ()
24 t ry :
25 wkdir = os . getcwd ()
26 f i l e 2 = os . chd i r (’ s p l i t c o n f o r m e r s . pdb ’)
27 os . chd i r (wkdir)
28 returnBool [1] = True
29 except OSError :
30 pr in t (”Did not f i n d ’ s p l i t c o n f o r m e r s . pdb ’ f o l d e r . Quit t ing . . . ”)
31 qu i t ()
32 i f returnBool [0] & returnBool [1] :
33 re turn True
34 e l s e :

72

35 re turn Fal se
36

37

38 de f GetPDBs () :
39 pdbNames = []
40 i n F i l e = open (’ s t a t i o n a r y p o i n t s . txt ’ , ’ r ’)
41 f o r l i n e in i n F i l e :
42 pdbNames . append (l i n e . s p l i t () [1])
43 re turn pdbNames
44

45

46 de f CopyPDBs(pdbList) :
47 wkdir = os . getcwd ()
48 f o r i in range (l en (pdbList)) :
49 p s t r i n g = (’ cp ’ + ’ s p l i t c o n f o r m e r s . pdb/ ’ + s t r (pdbList [i]) +

’ s t a t i o n a r y c o n f o r m e r s / ’)
50 os . popen (p s t r i n g)
51

52

53 de f Runner () :
54 i f IOVal idator () :
55 pr in t (’ Val id Args . Running . . . ’)
56 pdbList = GetPDBs ()
57 t ry :
58 os . mkdir (’ s t a t i o n a ry c o n f o r m e r s ’)
59 CopyPDBs(pdbList)
60 except OSError :
61 pr in t (” ’ s t a t i o n a ry c o n f o r m e r s ’ d i r e c t o r y a l r eady e x i s t s .

Erase d i r e c t o r y and run again . Quit t ing . . . ”)
62 qu i t ()
63

64

65 Runner ()

This second file converts the first file into a relative scale from 0 to 1.

1 #! / usr / bin /python
2

3 ### Author : Gentry Smith , Oklahoma State Un ive r s i ty
4 ### Created : July 31 , 2017 , 12PM
5 ### Last Edited : July 31 , 2017
6

7 ### takes f i l e arg with format [[energy] [pdb name]] , a l t e r s to [[
energy] [t o r s i o n]] , and c r e a t e s copy with

8 ### [[r e l a t i v e energy] [t o r s i o n]] .
9

10 import sys
11

12

13 de f IOVal idator () :
14 i s V a l i d = False
15 t ry :
16 i n F i l e = sys . argv [1]
17 i s V a l i d = True
18 except IOError :

73

19 pr in t (” Input arg i s not a f i l e .\ nQuitt ing . . . ”)
20 e x i t ()
21 re turn i s V a l i d
22

23

24 de f GetFileData () :
25 inData = []
26 i n F i l e = open (sys . argv [1] , ’ r ’)
27 i t e r = 0
28 f o r l i n e in i n F i l e :
29 inL ine = l i n e . s p l i t ()
30 inData . append (f l o a t (inL ine [0]))
31 i t e r = i t e r + 1
32 i n F i l e . c l o s e ()
33 re turn inData
34

35

36 de f R e l a t i v i z e (e n e r g i e s) :
37 minimum = min (e n e r g i e s)
38 # pr in t (” R e l a t i v i z e : minimum=”+s t r (minimum))
39 newEnergies = []
40 f o r i in range (l en (e n e r g i e s)) :
41 # pr in t (” R e l a t i v i z e : index=”+s t r (i))
42 # pr in t (” R e l a t i v i z e : energy=”+s t r (e n e r g i e s [i]))
43 newMin = (f l o a t (e n e r g i e s [i]) − f l o a t (minimum))
44 # pr in t (” R e l a t i v i z e : newMin=”+s t r (newMin))
45 newEnergies . append ((newMin))
46 # pr in t (” R e l a t i v i z e : newEnergies=”+s t r (newEnergies))
47 re turn newEnergies
48

49

50 de f U n i f i e d S c a l e (e n e r g i e s) :
51 # pr in t (” un i f y i ng s c a l e . . . ”)
52 maxi = max(e n e r g i e s)
53 # pr in t (” Unify : max=” + s t r (maxi))
54 newEnergies = []
55 f o r i in range (l en (e n e r g i e s)) :
56 # pr in t (” Unify : energy=” + s t r (e n e r g i e s [i]))
57 newEner = (f l o a t (e n e r g i e s [i]) / maxi)
58 # pr in t (” Unify : s c a l e d energy=” + s t r (newEner))
59 newEnergies . append (newEner)
60 re turn newEnergies
61

62

63 de f C r i t i c a l H i t (ene rg i e s , t o r s i o n s) :
64 i s I n c r e a s i n g = True
65 c r i t s = []
66 t o r s = []
67 prev = 0
68 f o r i in range (l en (e n e r g i e s)) :
69 i f (e n e r g i e s [i] == 0) :
70 c r i t s . append (e n e r g i e s [i])
71 t o r s . append (t o r s i o n s [i])
72 i f ((i s I n c r e a s i n g) & (e n e r g i e s [i] < prev)) or ((not

74

i s I n c r e a s i n g) & (e n e r g i e s [i] > prev)) :
73 c r i t s . append (e n e r g i e s [i −1])
74 t o r s . append (t o r s i o n s [i −1])
75 i s I n c r e a s i n g = not i s I n c r e a s i n g
76 prev = f l o a t (e n e r g i e s [i])
77 returnThing = [c r i t s , t o r s]
78 re turn returnThing
79

80

81 de f MakeFile (ene rg i e s , t o r s i o n s , f i leName) :
82 ou tF i l e = open (fi leName , ’w ’)
83 f o r i in range (l en (e n e r g i e s)) :
84 strOut = (’ { : . 1 1 e} ’ . format (e n e r g i e s [i]) + ” ” + s t r (t o r s i o n s [i])

+ ”\n”)
85 ou tF i l e . wr i t e (strOut)
86 ou tF i l e . c l o s e ()
87

88

89 de f Runner () :
90 i f IOVal idator () :
91 e n e r g i e s = GetFileData ()
92 t o r s i o n s = [1 8 0]
93 i = 185
94 whi le i != 180 :
95 i f i == 360 :
96 i = 0
97 t o r s i o n s . append (i)
98 i = i + 5
99 MakeFile (ene rg i e s , t o r s i o n s , ’ abs energ . txt ’)

100 r e l a t i v e E n e r g i e s = R e l a t i v i z e (e n e r g i e s)
101 MakeFile (r e l a t i v e E n e r g i e s , t o r s i o n s , ’ r e l e n e r g . txt ’)
102 MakeFile (U n i f i e d S c a l e (r e l a t i v e E n e r g i e s) , t o r s i o n s , ’ un i ene rg .

txt ’)
103 c r i t s = C r i t i c a l H i t (r e l a t i v e E n e r g i e s , t o r s i o n s)
104 MakeFile (c r i t s [0] , c r i t s [1] , ’ c r i t p t s . txt ’)
105

106

107 Runner ()

This third script compares two generated files using the prior scripts. It can
compare the generated absolute energy with the relative energy files. It was often
run as a loop through every permutation of the group 4 builder.

1 #! / usr / bin /python
2

3 ### Author : Gentry Smith , Oklahoma State Un ive r s i ty
4 ### Created : July 31 , 2017 , 3PM
5 ### Last Edited : August 1 , 2017
6

7 ### Takes data c rea ted by teatAbsEnerg ies and compares va lue s v ia
a d d i t i v e and m u l t i p l i c a t i v e comparison

8 ### with abs or r e l data . Math in terms o f F i l e 2 sub/ div F i l e 1 .
9

10 # sys . argv [1] = f i l e 1 , working d i r e c t o r y here .
11 # sys . argv [2] = f i l e 2 , compared with f i l e 1 .

75

12

13

14 import sys
15 import numpy
16 import math
17

18 de f IOVal idator () :
19 i s V a l i d 1 = False
20 i s V a l i d 2 = False
21 t ry :
22 i n F i l e 1 = open (sys . argv [1])
23 i s V a l i d 1 = True
24 except IOError :
25 pr in t (”Arg F i l e 1 i s i n v a l i d . ”)
26 i s V a l i d 1 = False
27 t ry :
28 i n F i l e 1 = open (sys . argv [2])
29 i s V a l i d 2 = True
30 except IOError :
31 pr in t (”Arg F i l e 2 i s i n v a l i d . ”)
32 i s V a l i d 2 = False
33 i f (i s V a l i d 1 & i s V a l i d 2 & (sys . argv [1] != sys . argv [2])) :
34 pr in t (’ Val id Args . Running . . . ’)
35 re turn True
36 e l s e :
37 i f (sys . argv [1] == sys . argv [2]) :
38 pr in t (’ a rgs are i n d e n t i c a l . Skipping . . . ’)
39 e l s e :
40 pr in t (” I n v a l i d args . Quit t ing . . . ”)
41 e x i t ()
42

43

44 de f ExtractData (data) :
45 i n F i l e = open (data , ’ r ’)
46 inData = []
47 i nTor s i ons = []
48 # pr in t (’ Extract ing Data . . . ’)
49 f o r l i n e in i n F i l e :
50 # pr in t (’ l i n e =’ + s t r (l i n e))
51 # pr in t (’ l i n e . s p l i t () =’ + s t r (l i n e . s p l i t ()))
52 # pr in t (’ l i n e . s p l i t () [1]= ’ + s t r (l i n e . s p l i t () [1]))
53 inData . append (f l o a t (l i n e . s p l i t () [0]))
54 i nTor s i ons . append (i n t (l i n e . s p l i t () [1]))
55 # pr in t (s t r (inTor s i ons))
56 # pr in t (’ Done . ’)
57 re turn [inData , inTor s i ons]
58

59

60 de f Comparator (data1 , data2 , func) :
61 # func : 0=add , 1=mult
62 newData = []
63 i f func == 0 :
64 f o r i in range (l en (data2)) :
65 newData . append (f l o a t (data2 [i] − data1 [i]))

76

66 e l i f func == 1 :
67 f o r i in range (l en (data2)) :
68 t ry :
69 newData . append (f l o a t (data2 [i] / data1 [i]))
70 except ZeroDiv i s i onError :
71 newData . append (0 . 0)
72 re turn newData
73

74

75 de f Wri teFi l e (data1 , data2 , tors , compData , comp , s i g s) :
76 # w r i t e s data o f comparison . Format :
77 # F i l e 1 = { f i l e 1 }
78 # F i l e 2 = { f i l e 2 }
79 # Source : { abso lute , r e l a t i v e }
80 # Comparison : { add i t ive , m u l t i p l i c a t i v e }
81 # comp : {min/max/avg/ stdev o f a l l comp va lue s }
82 # Raw Data : { i n c l u d e s header o f F i l e1 , F i l e2 , Tors ions , Comp

d e f i n i n g each column}
83 # pr in t (” Writing f i l e . . . ”)
84 # pr in t (’ F i l e 2 =’ + s t r ((sys . argv [2]) . s p l i t (”/”)))
85 source = ””
86 i f s t r (sys . argv [1]) [: 3] == ”abs” :
87 source = ” abso lu t e ”
88 e l i f s t r (sys . argv [1]) [: 3] == ” r e l ” :
89 source = ” r e l a t i v e ”
90 e l i f s t r (sys . argv [1]) [: 3] == ” uni ” :
91 source = ” u n i f i e d r e l a t i v e s c a l e ”
92 e l s e :
93 pr in t (s t r (sys . argv [1]) [: 2])
94 comparison = ””
95 i f comp == 0 :
96 comparison = ” a d d i t i v e ”
97 e l i f comp == 1 :
98 comparison = ” m u l t i p l i c a t i v e ”
99 headerLines = [0]∗1 0

100 headerLines [0] = (’ F i l e 1 = ’ + sys . argv [1] + ’ \n ’)
101 headerLines [1] = (’ F i l e 2 = ’ + sys . argv [2] + ’ \n ’)
102 headerLines [2] = (’ Source : ’ + source + ’ \n ’)
103 headerLines [3] = (’ Comparison : ’ + comparison + ’ \n ’)
104 headerLines [4] = (’ Comparison min : ’ + s t r (s i g s [0]) + ’ \n ’)
105 headerLines [5] = (’ Comparison max : ’ + s t r (s i g s [1]) + ’ \n ’)
106 headerLines [6] = (’ Comparison avg : ’ + s t r (s i g s [2]) + ’ \n ’)
107 headerLines [7] = (’ Comparison stdev : ’ + s t r (s i g s [3]) + ’ \n ’)
108 headerLines [8] = (’Raw Data : ’ + ’ \n ’)
109 f 1Co lS i z e = len (s t r (data1 [0]))
110 f 2Co lS i z e = len (s t r (data2 [0]))
111 headerLines [9] = (’ F i l e 1 ’ . l j u s t (18) + ’ F i l e 2 ’ . l j u s t (18) + ’ Tors ’ .

l j u s t (5) + ’Comp ’ . l j u s t (18) + ’ \n ’)
112 f i leName = (s t r ((sys . argv [2]) . s p l i t (”/”) [−2]) + ” ” + s t r (sys . argv

[1]) [: 3] + ” ” + comparison + ’ . txt ’)
113 ou tF i l e = open (fi leName , ’w ’)
114 f o r i in range (l en (headerLines)) :
115 ou tF i l e . wr i t e (s t r (headerLines [i]))
116 f o r i in range (l en (data1)) :

77

117 # pr in t (’ s t r (t o r s [i]) . l j u s t (5) =’ + s t r (t o r s [i]) . l j u s t (5))
118 s t r i n g = (s t r (data1 [i]) [: 1 7] . l j u s t (18) + ’ ’ + s t r (data2 [i])

[: 1 7] . l j u s t (18) + s t r (t o r s [i]) . l j u s t (5) + s t r (compData [i]) [: 1 7] .
l j u s t (18) + ’ \n ’)

119 ou tF i l e . wr i t e (s t r i n g)
120

121

122 de f GetCompSigs (data) :
123 s i g s = []
124 s i g s . append (min (data))
125 s i g s . append (max(data))
126 s i g s . append ((f l o a t (sum(data)) / f l o a t (l en (data))))
127 s i g s . append (numpy . std (data , a x i s =0))
128 re turn s i g s
129

130

131 de f Runner () :
132 i f IOVal idator () :
133 [data1 , t o r s i o n s 1] = ExtractData (sys . argv [1])
134 [data2 , t o r s i o n s 2] = ExtractData (sys . argv [2])
135 i f (l en (data1) == len (data2)) & (l en (t o r s i o n s 1) == len (t o r s i o n s 2

)) :
136 aData = Comparator (data1 , data2 , 0)
137 aS ig s = GetCompSigs (aData)
138 WriteFi l e (data1 , data2 , t o r s i on s1 , aData , 0 , aS ig s)
139 mData = Comparator (data1 , data2 , 1)
140 mSigs = GetCompSigs (mData)
141 WriteFi l e (data1 , data2 , t o r s i on s1 , mData , 1 , mSigs)
142 pr in t (’ Complete . ’)
143 Runner ()

78

APPENDIX C

Conformation Landscapes

Listed below are two example Germanium PDB files. The first is for the end-
goal hexagermane in the trans-trans-trans conformation with isopropyl groups on
the terminal Ge atoms. The second is for the simplified butagermane with fully
protonated Germanium atoms.

C.1 Code: hexagermane-transall.pdb

1 HEADER
2 REMARK Ti t l e : hexagermane t ransa l l system
3 HETATM 1 Ge 1 −4.399 0 .008 0 .355 0 .00 0 .00 Ge
4 HETATM 2 Ge 1 −1.965 0 .138 −0.022 0 .00 0 .00 Ge
5 HETATM 3 C 1 −4.822 1 .886 0 .961 0 .00 0 .00 C
6 HETATM 4 C 1 −5.008 −1.297 1 .715 0 .00 0 .00 C
7 HETATM 5 C 1 −5.256 −0.261 −1.445 0 .00 0 .00 C
8 HETATM 6 C 1 −1.213 1 .435 1 .157 0 .00 0 .00 C
9 HETATM 7 Ge 1 −0.756 −1.988 0 .223 0 .00 0 .00 Ge

10 HETATM 8 C 1 −1.297 −2.917 1 .805 0 .00 0 .00 C
11 HETATM 9 Ge 1 1 .647 −1.496 0 .371 0 .00 0 .00 Ge
12 HETATM 10 C 1 −1.182 −3.010 −1.339 0 .00 0 .00 C
13 HETATM 11 C 1 2.131 −0.425 1 .877 0 .00 0 .00 C
14 HETATM 12 C 1 2.111 −0.634 −1.269 0 .00 0 .00 C
15 HETATM 13 Ge 1 2 .889 −3.585 0 .738 0 .00 0 .00 Ge
16 HETATM 14 C 1 2.287 −4.358 2 .378 0 .00 0 .00 C
17 HETATM 15 Ge 1 5 .327 −3.386 1 .080 0 .00 0 .00 Ge
18 HETATM 16 C 1 2.766 −4.685 −0.813 0 .00 0 .00 C
19 HETATM 17 C 1 5.688 −2.615 2 .887 0 .00 0 .00 C
20 HETATM 18 C 1 6.239 −2.415 −0.417 0 .00 0 .00 C
21 HETATM 19 C 1 5.893 −5.324 0 .888 0 .00 0 .00 C
22 HETATM 20 C 1 −3.527 2 .543 1 .328 0 .00 0 .00 C
23 HETATM 21 C 1 −5.754 1 .844 2 .133 0 .00 0 .00 C
24 HETATM 22 H 1 −5.303 2 .355 0 .072 0 .00 0 .00 H
25 HETATM 23 H 1 −5.269 1 .358 2 .999 0 .00 0 .00 H
26 HETATM 24 H 1 −6.679 1 .287 1 .913 0 .00 0 .00 H
27 HETATM 25 H 1 −6.047 2 .856 2 .449 0 .00 0 .00 H
28 HETATM 26 H 1 −3.043 2 .019 2 .171 0 .00 0 .00 H
29 HETATM 27 H 1 −3.683 3 .585 1 .642 0 .00 0 .00 H
30 HETATM 28 H 1 −2.818 2 .559 0 .490 0 .00 0 .00 H
31 HETATM 29 H 1 −4.336 −1.167 2 .589 0 .00 0 .00 H
32 HETATM 30 C 1 −4.907 −2.680 1 .154 0 .00 0 .00 C
33 HETATM 31 C 1 −6.417 −0.909 2 .051 0 .00 0 .00 C
34 HETATM 32 H 1 −3.858 −2.985 0 .982 0 .00 0 .00 H
35 HETATM 33 H 1 −5.433 −2.773 0 .187 0 .00 0 .00 H
36 HETATM 34 H 1 −5.349 −3.420 1 .836 0 .00 0 .00 H
37 HETATM 35 H 1 −6.488 0 .167 2 .302 0 .00 0 .00 H
38 HETATM 36 H 1 −6.802 −1.477 2 .909 0 .00 0 .00 H
39 HETATM 37 H 1 −7.103 −1.094 1 .205 0 .00 0 .00 H
40 HETATM 38 C 1 5.200 −6.127 1 .944 0 .00 0 .00 C
41 HETATM 39 C 1 7.384 −5.453 0 .966 0 .00 0 .00 C
42 HETATM 40 H 1 5.523 −5.590 −0.126 0 .00 0 .00 H
43 HETATM 41 H 1 7.790 −4.974 1 .874 0 .00 0 .00 H
44 HETATM 42 H 1 7.885 −4.994 0 .099 0 .00 0 .00 H
45 HETATM 43 H 1 7.691 −6.509 0 .992 0 .00 0 .00 H

79

46 HETATM 44 H 1 5.502 −5.821 2 .960 0 .00 0 .00 H
47 HETATM 45 H 1 5.436 −7.197 1 .849 0 .00 0 .00 H
48 HETATM 46 H 1 4.106 −6.027 1 .879 0 .00 0 .00 H
49 HETATM 47 C 1 6.243 −1.232 2 .746 0 .00 0 .00 C
50 HETATM 48 C 1 6.612 −3.524 3 .636 0 .00 0 .00 C
51 HETATM 49 H 1 4.684 −2.582 3 .376 0 .00 0 .00 H
52 HETATM 50 H 1 7.535 −3.731 3 .068 0 .00 0 .00 H
53 HETATM 51 H 1 6.139 −4.497 3 .853 0 .00 0 .00 H
54 HETATM 52 H 1 6.913 −3.088 4 .599 0 .00 0 .00 H
55 HETATM 53 H 1 7.243 −1.234 2 .279 0 .00 0 .00 H
56 HETATM 54 H 1 6.347 −0.742 3 .725 0 .00 0 .00 H
57 HETATM 55 H 1 5.589 −0.589 2 .128 0 .00 0 .00 H
58 HETATM 56 C 1 5.630 −1.055 −0.555 0 .00 0 .00 C
59 HETATM 57 H 1 6.024 −3.039 −1.315 0 .00 0 .00 H
60 HETATM 58 C 1 7.712 −2.342 −0.145 0 .00 0 .00 C
61 HETATM 59 H 1 7.923 −1.890 0 .839 0 .00 0 .00 H
62 HETATM 60 H 1 8.227 −1.728 −0.898 0 .00 0 .00 H
63 HETATM 61 H 1 8.188 −3.335 −0.163 0 .00 0 .00 H
64 HETATM 62 H 1 4.573 −1.106 −0.861 0 .00 0 .00 H
65 HETATM 63 H 1 6.155 −0.455 −1.314 0 .00 0 .00 H
66 HETATM 64 H 1 5.675 −0.486 0 .391 0 .00 0 .00 H
67 HETATM 65 H 1 −5.890 −1.163 −1.302 0 .00 0 .00 H
68 HETATM 66 C 1 −4.220 −0.487 −2.505 0 .00 0 .00 C
69 HETATM 67 C 1 −6.093 0 .945 −1.729 0 .00 0 .00 C
70 HETATM 68 H 1 −6.841 1 .122 −0.939 0 .00 0 .00 H
71 HETATM 69 H 1 −6.644 0 .838 −2.676 0 .00 0 .00 H
72 HETATM 70 H 1 −5.478 1 .858 −1.818 0 .00 0 .00 H
73 HETATM 71 H 1 −3.754 −1.481 −2.414 0 .00 0 .00 H
74 HETATM 72 H 1 −3.411 0 .262 −2.459 0 .00 0 .00 H
75 HETATM 73 H 1 −4.659 −0.429 −3.512 0 .00 0 .00 H
76 HETATM 74 C 1 −1.706 1 .681 2 .429 0 .00 0 .00 C
77 HETATM 75 C 1 −0.128 2 .155 0 .679 0 .00 0 .00 C
78 HETATM 76 H 1 0.268 1 .941 −0.323 0 .00 0 .00 H
79 HETATM 77 C 1 0.451 3 .147 1 .465 0 .00 0 .00 C
80 HETATM 78 C 1 −1.134 2 .678 3 .216 0 .00 0 .00 C
81 HETATM 79 C 1 −0.058 3 .415 2 .731 0 .00 0 .00 C
82 HETATM 80 H 1 −1.525 2 .873 4 .219 0 .00 0 .00 H
83 HETATM 81 H 1 1.306 3 .716 1 .086 0 .00 0 .00 H
84 HETATM 82 H 1 0.391 4 .199 3 .349 0 .00 0 .00 H
85 HETATM 83 C 1 −1.557 −4.274 1 .694 0 .00 0 .00 C
86 HETATM 84 C 1 −0.365 −3.088 −2.455 0 .00 0 .00 C
87 HETATM 85 C 1 −2.027 −4.985 2 .796 0 .00 0 .00 C
88 HETATM 86 H 1 −1.378 −4.792 0 .742 0 .00 0 .00 H
89 HETATM 87 C 1 −1.446 −2.277 3 .025 0 .00 0 .00 C
90 HETATM 88 C 1 −0.752 −3.866 −3.544 0 .00 0 .00 C
91 HETATM 89 H 1 0.592 −2.548 −2.482 0 .00 0 .00 H
92 HETATM 90 C 1 −2.386 −3.699 −1.304 0 .00 0 .00 C
93 HETATM 91 C 1 −2.219 −4.336 4 .011 0 .00 0 .00 C
94 HETATM 92 H 1 −2.237 −6.056 2 .707 0 .00 0 .00 H
95 HETATM 93 C 1 −1.915 −2.983 4 .130 0 .00 0 .00 C
96 HETATM 94 H 1 −1.159 −1.217 3 .132 0 .00 0 .00 H
97 HETATM 95 C 1 −2.771 −4.484 −2.388 0 .00 0 .00 C
98 HETATM 96 H 1 −3.043 −3.610 −0.422 0 .00 0 .00 H
99 HETATM 97 C 1 −1.952 −4.568 −3.509 0 .00 0 .00 C

100 HETATM 98 H 1 −0.105 −3.928 −4.425 0 .00 0 .00 H
101 HETATM 99 H 1 −3.721 −5.027 −2.358 0 .00 0 .00 H
102 HETATM 100 H 1 −2.253 −5.182 −4.364 0 .00 0 .00 H
103 HETATM 101 H 1 −2.596 −4.891 4 .876 0 .00 0 .00 H
104 HETATM 102 H 1 −2.041 −2.474 5 .091 0 .00 0 .00 H
105 HETATM 103 C 1 2.487 −3.679 3 .571 0 .00 0 .00 C
106 HETATM 104 C 1 1.701 −5.563 −0.935 0 .00 0 .00 C
107 HETATM 105 C 1 3.733 −4.618 −1.807 0 .00 0 .00 C
108 HETATM 106 H 1 0.940 −5.615 −0.140 0 .00 0 .00 H
109 HETATM 107 C 1 1.598 −6.382 −2.057 0 .00 0 .00 C
110 HETATM 108 C 1 1.690 −5.609 2 .382 0 .00 0 .00 C
111 HETATM 109 C 1 2.102 −4.259 4 .776 0 .00 0 .00 C
112 HETATM 110 H 1 2.956 −2.680 3 .567 0 .00 0 .00 H
113 HETATM 111 C 1 1.520 −5.523 4 .784 0 .00 0 .00 C

80

114 HETATM 112 H 1 2.260 −3.721 5 .716 0 .00 0 .00 H
115 HETATM 113 C 1 1.311 −6.197 3 .585 0 .00 0 .00 C
116 HETATM 114 H 1 1.504 −6.131 1 .431 0 .00 0 .00 H
117 HETATM 115 C 1 2.562 −6.313 −3.057 0 .00 0 .00 C
118 HETATM 116 H 1 0.754 −7.074 −2.153 0 .00 0 .00 H
119 HETATM 117 C 1 3.630 −5.430 −2.933 0 .00 0 .00 C
120 HETATM 118 H 1 4.590 −3.931 −1.700 0 .00 0 .00 H
121 HETATM 119 H 1 4.391 −5.376 −3.718 0 .00 0 .00 H
122 HETATM 120 H 1 2.481 −6.954 −3.941 0 .00 0 .00 H
123 HETATM 121 H 1 1.223 −5.984 5 .731 0 .00 0 .00 H
124 HETATM 122 H 1 0.844 −7.187 3 .587 0 .00 0 .00 H
125 HETATM 123 C 1 1.878 0 .732 −1.306 0 .00 0 .00 C
126 HETATM 124 C 1 1.530 −0.534 3 .120 0 .00 0 .00 C
127 HETATM 125 C 1 2.642 −1.289 −2.370 0 .00 0 .00 C
128 HETATM 126 C 1 2.179 1 .455 −2.458 0 .00 0 .00 C
129 HETATM 127 H 1 1.444 1 .239 −0.432 0 .00 0 .00 H
130 HETATM 128 C 1 3.179 0 .461 1 .679 0 .00 0 .00 C
131 HETATM 129 C 1 2.005 0 .227 4 .186 0 .00 0 .00 C
132 HETATM 130 H 1 0.661 −1.197 3 .265 0 .00 0 .00 H
133 HETATM 131 C 1 2.940 −0.568 −3.524 0 .00 0 .00 C
134 HETATM 132 H 1 2.840 −2.370 −2.334 0 .00 0 .00 H
135 HETATM 133 C 1 2.710 0 .804 −3.567 0 .00 0 .00 C
136 HETATM 134 H 1 1.989 2 .533 −2.491 0 .00 0 .00 H
137 HETATM 135 H 1 3.358 −1.081 −4.396 0 .00 0 .00 H
138 HETATM 136 H 1 2.944 1 .370 −4.475 0 .00 0 .00 H
139 HETATM 137 C 1 3.067 1 .105 3 .998 0 .00 0 .00 C
140 HETATM 138 H 1 1.534 0 .140 5 .170 0 .00 0 .00 H
141 HETATM 139 C 1 3.650 1 .229 2 .740 0 .00 0 .00 C
142 HETATM 140 H 1 3.633 0 .553 0 .682 0 .00 0 .00 H
143 HETATM 141 H 1 4.480 1 .926 2 .585 0 .00 0 .00 H
144 HETATM 142 H 1 3.439 1 .703 4 .836 0 .00 0 .00 H
145 HETATM 143 C 1 −2.039 0 .838 −1.804 0 .00 0 .00 C
146 HETATM 144 C 1 −1.525 0 .195 −2.916 0 .00 0 .00 C
147 HETATM 145 C 1 −2.655 2 .077 −1.927 0 .00 0 .00 C
148 HETATM 146 C 1 −1.618 0 .802 −4.168 0 .00 0 .00 C
149 HETATM 147 H 1 −1.048 −0.789 −2.818 0 .00 0 .00 H
150 HETATM 148 C 1 −2.746 2 .686 −3.175 0 .00 0 .00 C
151 HETATM 149 H 1 −3.084 2 .566 −1.036 0 .00 0 .00 H
152 HETATM 150 C 1 −2.223 2 .047 −4.296 0 .00 0 .00 C
153 HETATM 151 H 1 −1.210 0 .296 −5.049 0 .00 0 .00 H
154 HETATM 152 H 1 −3.229 3 .663 −3.275 0 .00 0 .00 H
155 HETATM 153 H 1 −2.292 2 .524 −5.279 0 .00 0 .00 H
156 HETATM 154 H 1 −2.539 1 .081 2 .827 0 .00 0 .00 H
157 CONECT 3 1 20 21 22
158 CONECT 4 1 29 30 31
159 CONECT 5 1 65 66 67
160 CONECT 6 74 75 2
161 CONECT 8 83 87 7
162 CONECT 10 84 90 7
163 CONECT 11 124 128 9
164 CONECT 12 123 125 9
165 CONECT 14 103 108 13
166 CONECT 16 104 105 13
167 CONECT 17 15 47 48 49
168 CONECT 18 56 57 58 15
169 CONECT 19 15 38 39 40
170 CONECT 20 3 26 27 28
171 CONECT 21 3 23 24 25
172 CONECT 30 4 34 32 33
173 CONECT 31 4 35 36 37
174 CONECT 38 19 44 45 46
175 CONECT 39 19 41 42 43
176 CONECT 47 54 55 17 53
177 CONECT 48 17 50 51 52
178 CONECT 56 62 63 64 18
179 CONECT 58 59 60 61 18
180 CONECT 66 71 72 73 5
181 CONECT 67 68 69 70 5

81

182 CONECT 74 78 154 6
183 CONECT 75 76 77 6
184 CONECT 77 75 79 81
185 CONECT 78 74 79 80
186 CONECT 79 77 78 82
187 CONECT 83 85 86 8
188 CONECT 84 88 89 10
189 CONECT 85 83 91 92
190 CONECT 87 93 94 8
191 CONECT 88 84 97 98
192 CONECT 90 95 96 10
193 CONECT 91 85 93 101
194 CONECT 93 87 91 102
195 CONECT 95 90 97 99
196 CONECT 97 88 95 100
197 CONECT 103 109 110 14
198 CONECT 104 106 107 16
199 CONECT 105 117 118 16
200 CONECT 107 104 115 116
201 CONECT 108 113 114 14
202 CONECT 109 103 111 112
203 CONECT 111 109 113 121
204 CONECT 113 108 111 122
205 CONECT 115 107 117 120
206 CONECT 117 105 115 119
207 CONECT 123 126 127 12
208 CONECT 124 129 130 11
209 CONECT 125 131 132 12
210 CONECT 126 123 133 134
211 CONECT 128 139 140 11
212 CONECT 129 124 137 138
213 CONECT 131 125 133 135
214 CONECT 133 126 131 136
215 CONECT 137 129 139 142
216 CONECT 139 128 137 141
217 CONECT 143 144 145 2
218 CONECT 144 143 146 147
219 CONECT 145 143 148 149
220 CONECT 146 144 150 151
221 CONECT 148 145 150 152
222 CONECT 150 146 148 153
223 CONECT 1 2 3 4 5
224 CONECT 2 1 143 6 7
225 CONECT 7 2 8 9 10
226 CONECT 9 7 11 12 13
227 CONECT 13 9 14 15 16
228 CONECT 15 13 17 18 19
229 CONECT 22 3
230 CONECT 23 21
231 CONECT 24 21
232 CONECT 25 21
233 CONECT 26 20
234 CONECT 27 20
235 CONECT 28 20
236 CONECT 29 4
237 CONECT 32 30
238 CONECT 33 30
239 CONECT 34 30
240 CONECT 35 31
241 CONECT 36 31
242 CONECT 37 31
243 CONECT 40 19
244 CONECT 41 39
245 CONECT 42 39
246 CONECT 43 39
247 CONECT 44 38
248 CONECT 45 38
249 CONECT 46 38

82

250 CONECT 49 17
251 CONECT 50 48
252 CONECT 51 48
253 CONECT 52 48
254 CONECT 53 47
255 CONECT 54 47
256 CONECT 55 47
257 CONECT 57 18
258 CONECT 59 58
259 CONECT 60 58
260 CONECT 61 58
261 CONECT 62 56
262 CONECT 63 56
263 CONECT 64 56
264 CONECT 65 5
265 CONECT 68 67
266 CONECT 69 67
267 CONECT 70 67
268 CONECT 71 66
269 CONECT 72 66
270 CONECT 73 66
271 CONECT 76 75
272 CONECT 80 78
273 CONECT 81 77
274 CONECT 82 79
275 CONECT 86 83
276 CONECT 89 84
277 CONECT 92 85
278 CONECT 94 87
279 CONECT 96 90
280 CONECT 98 88
281 CONECT 99 95
282 CONECT 100 97
283 CONECT 101 91
284 CONECT 102 93
285 CONECT 106 104
286 CONECT 110 103
287 CONECT 112 109
288 CONECT 114 108
289 CONECT 116 107
290 CONECT 118 105
291 CONECT 119 117
292 CONECT 120 115
293 CONECT 121 111
294 CONECT 122 113
295 CONECT 127 123
296 CONECT 130 124
297 CONECT 132 125
298 CONECT 134 126
299 CONECT 135 131
300 CONECT 136 133
301 CONECT 138 129
302 CONECT 140 128
303 CONECT 141 139
304 CONECT 142 137
305 CONECT 147 144
306 CONECT 149 145
307 CONECT 151 146
308 CONECT 152 148
309 CONECT 153 150
310 CONECT 154 74
311 END

The above molecule contains 154 atoms and 153 bonds, making it extremely com-
putationally expensive for regular QM calculations. This made utilizing the large
molecule as a trial system unreasonable due to the prohibitively long computation
time for each conformation, assuming the conformation calculation would complete

83

at all.
The below PDB file is the simplified butagermane with fully protonated Germa-

nium atoms. As a significantly smaller system with only 14 atoms and 13 bonds, the
relatively short computation time allowed the trial system to move with relative ease.

C.2 Code: ge4h.pdb

1 COMPND UNNAMED
2 AUTHOR GENERATED BY OPEN BABEL 2 . 3 . 9 0
3 HETATM 1 GE UNL 1 −3.520 1 .842 −0.078 1 .00 0 .00 Ge3−
4 HETATM 2 GE UNL 1 −1.368 2 .888 −0.034 1 .00 0 .00 Ge2−
5 HETATM 3 GE UNL 1 0.324 1 .200 0 .059 1 .00 0 .00 Ge3−
6 HETATM 4 GE UNL 1 2.475 2 .248 0 .099 1 .00 0 .00 Ge
7 HETATM 5 H UNL 1 −4.622 2 .930 −0.135 1 .00 0 .00 H
8 HETATM 6 H UNL 1 −3.699 0 .985 1 .202 1 .00 0 .00 H
9 HETATM 7 H UNL 1 −3.621 0 .932 −1.328 1 .00 0 .00 H

10 HETATM 8 H UNL 1 −1.258 3 .797 1 .217 1 .00 0 .00 H
11 HETATM 9 H UNL 1 −1.178 3 .740 −1.314 1 .00 0 .00 H
12 HETATM 10 H UNL 1 0.213 0 .288 −1.189 1 .00 0 .00 H
13 HETATM 11 H UNL 1 0.135 0 .352 1 .342 1 .00 0 .00 H
14 HETATM 12 H UNL 1 2.655 3 .095 −1.186 1 .00 0 .00 H
15 HETATM 13 H UNL 1 3.578 1 .161 0 .165 1 .00 0 .00 H
16 HETATM 14 H UNL 1 2.574 3 .167 1 .343 1 .00 0 .00 H
17 CONECT 1 2 5 6 7
18 CONECT 2 1 3 8 9
19 CONECT 3 2 4 10 11
20 CONECT 4 3 12 13 14
21 CONECT 5 1
22 CONECT 6 1
23 CONECT 7 1
24 CONECT 8 2
25 CONECT 9 2
26 CONECT 10 3
27 CONECT 11 3
28 CONECT 12 4
29 CONECT 13 4
30 CONECT 14 4
31 MASTER 0 0 0 0 0 0 0 0 14 0 14 0
32 END

C.3 Progress on Torsion Minimizer System

While incomplete and largely nonfunctioning, this code is the current progress
toward the implementation of the torsion minimizer system as outlined in IV.2.

1 ### Author : Gentry Smith
2 ### Date : Apr i l 22 , 2017
3 ### Desc r ip t i on : This i s the runner f i l e that i s the primary executab l e

f o r the t o r s i o n minimizer . Current ly i s the
4 ### only f i l e u t i l i z e d .
5

6 # Inputs :
7 # Arg1 : the molecule f i l e to be minimized (c u r r e n t l y only accept s a pdb

f i l e)
8

9 import sys
10 import subproces s
11 import math
12

13 # IO Val idator : v a l i d a t e s user−submitted molecule .
14 de f IOVal idator () :

84

15 i s V a l i d = False
16 # Check f o r v a l i d l ength o f args (2)
17 i f l en (sys . argv) == 2 :
18 # Check arg to make sure i t ’ s a f i l e .
19 a r g F i l e = sys . argv [1]
20 t ry :
21 i n p u t F i l e = open (a r g F i l e)
22 # Fina l ly , make sure the f i l e i s a . pdb
23 i f i n p u t F i l e [−4 :] == ” . pdb” :
24 i s V a l i d = True
25 e l s e :
26 pr in t (” This i s not a . pdb f i l e . P lease t ry again with a

. pdb f i l e .\n”)
27 i n p u t F i l e . c l o s e ()
28 except IOError :
29 pr in t (”System was not ab le to open ’ ” , s t r (a r g F i l e) , ” ’ . ”)
30 # too long
31 e l i f l en (sys . argv) > 2 :
32 pr in t (”You have too many arguments . Ca l l the f i l e as ’ Runner . py

[molecule f i l e] ’ and try again .\n”)
33 # too shor t
34 e l s e :
35 pr in t (”You do not have enough arguments . S ta r t the program as ’

Runner . py [molecule f i l e] ’ and try again .\n”)
36 # return v a l i d i t y boolean
37 re turn i s V a l i d
38

39 # Get Tors ions : i n i t i a t e s func t i on to get user−s p e c i f i e d t o r s i o n bonds .
Returns bonds as i n t [[a , b] , [a , b]] l i s t

40 de f ge tTors ions () :
41 t o r s i o n s = [[0 , 0]]
42 newTorsion = ” f i r s t ”
43 f i r s tT ime = True
44 doneCheck = ””
45 badIn = False
46

47 # loop f o r a l l t o r s i o n s u n t i l user types ”done”
48 whi le newTorsion != ”” :
49 i f f i r s tT ime :
50 pr in t (” I t ’ s time to d e f i n e the t o r s i o n s o f the molecule and

d e c l a r e which bonds you would l i k e to r o t a t e .\n”)
51 pr in t (” Before going any fur the r , i t ’ s important to note at

t h i s time that ve r s i o n 0 .2 (cur rent) w i l l assume the t o r s i o n s you
ente r are complete ly c o r r e c t . You ’ l l s e e a bunch o f e r r o r messages
soon i f i t i s n ’ t c o r r e c t .\n”)

52 pr in t (”Open the . pdb f i l e and i d e n t i f y the numbers o f the
atoms on the . pdb that w i l l make the bond (the f i r s t number on the
l i n e o f each atom) \n\n”)

53 pr in t (”Now i t ’ s time to ente r in the numbers o f the two
atoms . We’ l l do i t one at a time . ”)

54

55 f i r s t T o r = raw input (”Type in the number o f the f i r s t atom
in the bond and h i t ente r . \nEx : type 3 and then h i t ente r .\n”)

56

85

57 t ry :
58 con fF i r s tTor = i n t (f i r s t T o r)
59 except ValueError :
60 pr in t (”You typed in ’ ” , f i r s t T o r , ” ’ , which i s not a

number . Let ’ s s t a r t again . ”)
61 badIn = True
62

63 secondTor = raw input (”Type in the number o f the second atom
in the bond and h i t ente r . \nEx : type 3 and then h i t ente r .\n”)

64

65 t ry :
66 confSecondTor = i n t (secondTor)
67 except ValueError :
68 pr in t (”You typed in ’ ” , secondTor , ” ’ , which i s not a

number . Let ’ s s t a r t again . ”)
69 badIn = True
70 f i r s tT ime = False
71

72 e l s e :
73 pr in t (”Open the . pdb f i l e and i d e n t i f y the numbers o f the

atoms on the . pdb that w i l l make the bond (the f i r s t number on the
l i n e o f each atom) \n\n”)

74

75 f i r s t T o r = raw input (”Type in the number o f the f i r s t atom
in the bond and h i t ente r . \nEx : type 3 and then h i t ente r .\n”)

76

77 t ry :
78 con fF i r s tTor = i n t (f i r s t T o r)
79 except ValueError :
80 pr in t (”You typed in ’ ” , f i r s t T o r , ” ’ , which i s not a

number . Let ’ s s t a r t again . ”)
81 badIn = True
82

83 secondTor = raw input (”Type in the number o f the second atom
in the bond and h i t ente r . \nEx : type 3 and then h i t ente r .\n”)

84

85 t ry :
86 confSecondTor = i n t (secondTor)
87 except ValueError :
88 pr in t (”You typed in ’ ” , secondTor , ” ’ , which i s not a

number . Let ’ s s t a r t again . ”)
89 badIn = True
90 f i r s tT ime = False
91

92 i f badIn == False :
93 newTorsion = [confFi r s tTor , confSecondTor]
94 i f t o r s i o n s == [[0 , 0]] :
95 pr in t (”You added a new t o r s i o n : ” , newTorsion , ”\n”)
96 t o r s i o n s = newTorsion
97 e l s e :
98 t o r s i o n s . append (newTorsion)
99 pr in t (”The cur rent t o r s i o n s you have c rea ted are :\n”)

100 f o r each in t o r s i o n s :
101 pr in t (each , ”\n”)

86

102 doneCheck = raw input (” I f you would l i k e to add another
to r s i on , p r e s s ente r . I f you are f i n i s h e d adding t o r s i o n s , type ’
done ’ and pre s s ente r \n”)

103

104 i f s t r (doneCheck) == ”done” :
105 pr in t (” Fin i shed en t e r i ng t o r s i o n s . Begining the work .\n”

)
106 e l s e :
107 newTorsion = ” f i r s t ”
108

109 i f badIn == True :
110 f i r s tT ime = True
111 badIn = False
112 newTorsion = ” f i r s t ”
113

114 re turn t o r s i o n s
115

116 # Get Conformation Count : determines conformat ions needed . Returns l i s t
in form : [#conf , rotDeg , rotRng]

117 de f getConformat ionInfo (depth , t o r s i o n s) :
118 # r o t a t e s 60 degree s on the f i r s t search , then l oga r i thmi c dec r ea se

from 10 f o r each subsequent search .
119 rotDeg = [6 0 , 10]
120 # f u l l t o r s i o n range f o r f i r s t search , l o ga r i thmi c dec r ea se from 50

f o r each subsequent search
121 rotRng = [360 , 50]
122 # number o f conformat ions needed
123 numConf = 0
124 # degree s per r o t a t i o n
125 deg = 0
126 # r o t a t i o n range
127 rng = 0
128 # number o f r o t a t i o n s per t o r s i o n
129 rotTick = 0
130

131 # determine counts from depth
132 i f depth >= 2 :
133 deg = math . pow(10 , (2−depth))
134 rng = deg∗5
135 e l i f depth <2:
136 deg = rotDeg [depth]
137 rng = rotRng [depth]
138 i f depth == 1 :
139 rotTick = 6
140 e l i f depth >= 1 :
141 rotTick = 11
142

143 numConf = math . pow(t o r s i o n s , rotTick)
144

145 re turn [numConf , deg , rng]
146

147

148

149 de f Launcher () :

87

150 v a l i d = IOVal idator ()
151 i f v a l i d :
152 # do everyth ing
153 depth = 0
154

155 InitWD ()
156

157

158 e l s e :
159 pr in t (”There was a problem whi l e read ing in the molecule f i l e .

P lease t ry again .\n”)
160 e x i t ()
161

162

163 # I n i t i a t e s proper working d i r e c t o r y .
164 de f InitWD () :
165

166

167 # Recurs ive search through molecule t o r s i o n s
168 de f Recurs iveSearch (depth) :
169

170 t o r s i o n s = getTors ions ()
171

172

173 Launcher ()

88

VITA

Gentry H. Smith

Candidate for the Degree of

Master of Science

Thesis: EXPLORING CRITICAL CONFORMATIONS

Major Field: Chemistry

Biographical:

Personal Information: Born in Olathe, KS in November 1993.

Education:
Completed the requirements for the degree of Master of Science with a
major in Chemistry at Oklahoma State University in December 2018.

Received a Bachelors of Science in Chemistry at Southern Nazarene Uni-
versity in May 2016.

Experience:
Teaching Assistant, various undergraduate chemistry courses, Southern
Nazarene University, Aug. 2014 - May 2016
Graduate Teaching Assistant, CHEM 1314 & 1414 at Oklahoma State Uni-
versity, Aug. 2016 - Dec. 2018

Professional Affiliations:
American Chemical Society

Awards
Colonel Andre Whitely Scholarship in Chemistry

	Introduction
	Computational Chemistry: Chemistry on the Computer
	Relevant Computational Methods
	Quantum Mechanical Methods and Basis Sets
	Ab Initio Methods
	Density Functional Theory Methods
	Semi-Empirical Methods
	Basis Sets

	Monte Carlo Molecular Modeling

	Hardware
	Software
	Programs
	Programming Languages

	On Algorithms for Building and Sampling Disordered Crystal States
	States and Properties of Ice
	Bernal-Fowler Ice Rules
	Forms of Ice
	Ice Ih
	Comparison between Ice XI and Ice Ih

	Method Design
	Method Tools and Information Management
	Pseudorandom Rearrangement of Water Molecules and Generation of Bjerrum Defects

	Results of Method
	Comparison to Buch's Method
	Comments on Limitations and Proposed Improvements

	Germanium Compounds and QM Concerns
	The Initial Problem: Germanium Study
	Computational Complexity of Germanium Compounds
	Parameters of Work and Previous Collaborator's Results
	Design and Approach to Solution
	Design 1: Occam's Smallest Razor
	Design 2: A Blunt Effort
	Design 3: Death by 1.59 Million Cuts

	Scale Reduction Efforts
	Efforts at Simplification

	Discovery of a Consistent Inconsistency
	Final Thoughts

	Sampling Conformation Landscapes by Rotatable Bond Degrees of Freedom
	A Brief History on Conformation Landscapes
	Levinthal's Paradox
	Levinthal Golf Courses

	Purpose of Project
	Design of System
	Variation of Theory and Basis Set Usage by System Size and largest atom type
	Computational Optimization by Varying Resolution
	Inherent Complications

	Results
	Difficulties and Anticipated Future Approaches

	References
	Ice Ih to Ice XI Conversion
	Brief Sample of Ice XI .PDB File
	Code: Crystal Disorganizer Tool

	Germanium Landscape
	Sample Gaussian 09 Germanium File
	Building Group 4 Chains
	Collecting and Comparing Torsional Data

	Conformation Landscapes
	Code: hexagermane-transall.pdb
	Code: ge4h.pdb
	Progress on Torsion Minimizer System

