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CHAPTER 1 
 

 

THESIS OVERVIEW 

1. 1 Motivation 

 

The proliferation of hydrocarbon production from unconventional reservoirs has 

led to increased interest into the reservoir properties of shale. Proton nuclear magnetic 

resonance, NMR relaxation has been used to detect the presence of hydrogen nuclei in 

medical science for medical Magnetic Resonance Imaging (MRI), and in earth sciences 

to explore and appraise groundwater and petroleum resources. In earth science, NMR 

measurements can be obtained in the laboratory or in the field via well-logging as a 

valuable tool for determining pore-size distribution based on the distribution of relaxation 

times (Kenyon et al., 1995; Latour et al., 1995; Hürlimann et al., 2004), from which 

reservoir properties such as porosity, permeability, bound water content, free fluid 

content and total saturation can be derived (Kleinberg, 1994; Allen et al., 2000). The 

advantages of NMR over other wireline surveys are that it can yield a continuous log of 

permeability, can provide lithology-independent porosity, is non-invasive and does not 

require radioactive source (Kenyon et al., 1995; Daughney et al., 2000; Westphal et al., 

2005; Washburn, 2014).  
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Interpretation of NMR logs, which are used to assess fluid saturation and mobility, 

from microporous shale reservoirs is a challenge for unconventional oil and gas exploration 

because it was developed for the characterization of macroporous sandstone and carbonate 

reservoirs and is not always accurate in shale. The partitioning of transverse relaxation time 

(T2) distribution into irreducible and mobile fluids using a T2-cutoff value is standard 

practice. However, in shale this approach does not always yield accurate results due to high 

clay contents, differential compaction, and magnetic minerals that can strongly influence the 

NMR log response. 

In porous media, effects of internal gradient caused by magnetic susceptibility 

contrast between the matrix and infilling fluid shifts transverse relaxation (T2) to shorter time, 

resulting in imprecise classification of pore-sizes. In shale, details of the effects of 

paramagnetic and clay minerals that induce the internal gradients, are poorly understood.  

 

1.2 Problems, Hypothesis and Objectives 

 

The goal of this research was to interpret the effects of paramagnetic minerals on the 

determination of pore-size distribution in shale using NMR and the implications for 

estimating permeability.  

The hypotheses tested were:  

(1) The internal magnetic field gradients that occur due to the presence of magnetic and 

paramagnetic minerals common in shale.  

 (2) Incrementally compacting and increasing the concentrations of the mineral constituents 

of shale to identify the controlling mechanisms for NMR transverse relaxation.  



3	
	

(3) Application of the effects of internal magnetic field gradients and compaction on pore-

size distribution in the Woodford Shale core.  

 The objectives of this study were: 

(1) To determine the effects of magnetic minerals on pore-size distribution in shale.  

 (2) To determine the effect of incremental compaction of magnetic minerals common in 

shale, on NMR transverse relaxation time, T2.  

(3) To analyze the effects of internal magnetic field gradient and compaction on Woodford 

Shale reservoir properties. 

The hypotheses were tested and the project objectives met by using a granular form of 

minerals, including kaolinite, montmorillonite, glauconite, illite, pyrite, celadonite, 

chamosite, mixed with 125 g/L brine, to infer contributions of each to T2 relaxation in shale. 

The outcome of these studies was applied to enhance the petrophysical interpretation of the 

Woodford shale core. 

 

1.3 Significance 

 

The understanding of the effects of internal gradients in shale is important to quantify 

the shortening of T2ML, which leads to overestimation of bulk fluid volume (BFV) and, thus, 

underestimating NMR permeability when used as an input into permeability estimator 

equations. The workflow from this research can be integrated with traditional petrophysical 

methods, to gain useful insight into petrophysical interpretations of various unconventional 

reservoir rocks.  
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CHAPTER 2 
 

 

EFFECTS OF INTERNAL GRADIENTS ON PORE-SIZE DISTRIBUTION IN 

SHALE 

 

Obasi and Pashin 2018 

American Association of Petroleum Geologists Bulletin (DOI: 10.1306/02271816507) 

Boone Pickens School of Geology, Oklahoma State University, 105 Noble Research 

Center, Stillwater, OK 74078-3031. 

 

ABSTRACT: 

 

 In porous media, effects of internal gradient caused by magnetic susceptibility 

contrast between the matrix and infilling fluid shifts transverse relaxation (T2) to shorter 

time, resulting in imprecise classification of pore-sizes. In shale, details of the effects of 

paramagnetic and clay minerals that induce the internal gradients, are poorly understood. 

We measured a brine mixture with a granular form of minerals, including kaolinite, 

montmorillonite, glauconite, illite, pyrite, celadonite, and chamosite, to infer 

contributions of each to T2 relaxation in shale. Nuclear magnetic resonance (NMR
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response of these samples was used to calculate the total mean logarithm of T2 (T2ML) and 

volume of water in the samples. Additionally, physical properties such as magnetic 

susceptibility, specific surface area, and elemental composition were acquired. Pore 

geometry, magnitude of internal gradients, pore-size distributions, and secular regimes in 

which the media relaxed (based on their shortest characteristic time scales) were 

characterized from these properties. These time scales measure the behavior of the 

relaxation regimes such as longitudinal relaxation time-to-T2 ratio and dependence of 

relaxation rate on echo spacing (tE). Glauconite illite, pyrite, chamosite, and kaolinite 

grouped into a small-pore system, whereas montmorillonite and celadonite grouped into 

large-pores system. A free diffusion regime governed secular relaxation for kaolinite; a 

motional-averaging regime governed montmorillonite, celadonite and large tE chamosite; 

whereas a localization regime dominated the rest minerals. We conclude that 

understanding the effects of internal gradients in shale is important to quantify the 

shortening of T2ML, which leads to overestimation of bulk fluid volume (BFV) and, thus, 

underestimating NMR permeability when used as an input into permeability estimator 

equations. 

 

2.1 INTRODUCTION 

 

The proliferation of hydrocarbon production from unconventional reservoirs has 

led to increased interest into the reservoir properties of shale. Proton nuclear magnetic 

resonance (NMR) relaxation has been used to detect the presence of hydrogen nuclei in 

medical science for medical magnetic resonance imaging and in earth sciences to explore 
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and appraise groundwater and petroleum resources. In earth science, NMR measurements 

can be obtained in the laboratory or in the field via well-logging techniques to determine 

rock porosity, pore-size distribution, and permeability (Keating and Knight, 2007). The 

NMR measurement in shale is more problematic than in sandstone or carbonate because 

of small pore size, low permeability (nanodarcy-microdarcy), and paramagnetic mineral 

components (Loucks et al., 2009; Washburn, 2014).  

In petrophysical studies, the NMR relaxation measurement involves placing a 

fluid-saturated porous medium in the presence of static magnetic field. The magnetic 

moments of hydrogen nuclei (proton) in the fluid steadily precess or spin around the 

static magnetic field. An oscillating magnetic field is then applied to perturb the proton 

away from the static magnetic field. Once the oscillating field is removed, the NMR 

signal relaxes to equilibrium via two different simultaneous mechanisms. Insight into 

porous systems and saturating fluids can be gained by observing these two mechanisms 

(Washburn et al., 2013). The first is the time taken for the perturbed magnetization to 

relax to thermal equilibrium along the static magnetic field and is known as the 

longitudinal relaxation time (T1). The second mechanism refers to the time taken for spins 

to decay to a completely disordered state and reach equilibrium among themselves from a 

highly ordered state, and is known as transverse relaxation time (T2) (Levitt, 2008; 

Keating and Knight, 2010; Washburn et al., 2013). In principle, T1 and T2 relaxation rates 

(inverse of T1 and T2 times) experience bulk relaxation from dipole-dipole molecular 

interactions and surface relaxation because of interactions between paramagnetic sites at 

the pore surface and the pore-fluid protons. Transverse relaxation time alone is affected 

by diffusion relaxation, which is sensitive to variations in magnetic fields between the 
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rock matrix and the pore fluid (Bloembergen et al., 1948; Kenyon, 1997; Washburn and 

Birdwell, 2013 Washburn, 2014).  

The application of NMR to extract information about pore-size distribution, 

porosity, and permeability from porous media, such as sedimentary rocks, is strongly 

affected by the presence of paramagnetic materials (Hürlimann, 1998; Bryar et. al., 

2000). Paramagnetic materials complicate comparisons among materials with varying 

paramagnetic content and are a substantial source of error in pore size calculations (Bryar 

et. al., 2000). When a porous material is placed in a homogeneous magnetic field during 

NMR measurement, the magnetic susceptibility contrast between the solid matrix and the 

pore fluid induces magnetic field inhomogeneity in the pore space (Hürlimann, 1998). 

Inhomogeneity in the magnetic field increases the relaxation rate, creating additional 

transverse relaxation term, as a function of echo spacing (tE) (Anand and Hirasaki, 2008). 

For example, T2 is shortened when chlorite, a paramagnetic mineral is present in 

sandstone and shale, because of the large internal magnetic field gradient it creates, 

(Rueslåtten et al., 1998; G. Q. Zhang et al., 1998). The magnitude of the shortened T2 is 

defined as secular relaxation (Anand and Hirasaki, 2008), which is expressed as 

                        !
!!,!"#

= !
!!
− !

!!
,       (1)  

where T2,sec is secular relaxation time. The shortened T2 creates bias in pore-size 

distribution in shale that is proportional to 𝑇!,!"#. Estimating permeability with NMR 

relies on the ability to use T2 to calculate irreducible and mobile fluid saturations using a 

T2 cutoff value. Ultimately, this approach makes assumptions about the way that 

irreducible water resides in small pores and mobile fluid resides in large pores (Chen et 

al., 1998; Coates et al., 1998). So when bound fluid volume (BFV), free fluid volume, 
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and T2 logarithmic mean relaxation time are used as input into either of the two widely 

used permeability estimators; 1) Timur-Coates estimator, (Timur, 1968a, b, 1969 Coates 

and Dumanoir, 1973; Sezginer et al., 1999; Allen et al., 2001) and (2) the Schlumberger-

Doll Research (SDR) estimator (Kenyon et al., 1988; Sezginer et al., 1999; Allen et al., 

2001) which overestimate BFV and T2 logarithmic mean relaxation time while 

underestimating permeability (G. Q. Zhang et al., 1998; Hürlimann et al., 2004)  

This research is designed to interpret the effects of paramagnetic minerals on the 

determination of pore-size distribution in shale using NMR and the implications for 

estimating permeability. This research focuses on measuring the internal magnetic field 

gradients that occur as a result of the presence of magnetic and paramagnetic minerals 

common in shale. The working hypothesis is that the magnitude of internal magnetic field 

gradient in shale is caused by contributions from constituent minerals, and this creates 

secular relaxation, which introduces error in NMR-based estimation of pore-size 

distribution and permeability. This hypothesis was tested in an experiment designed to 

determine the magnitude of the internal magnetic field gradients in the pore spaces of 

mineral/brine mixtures using the methods of Kleinberg and Vinegar (1996), G. Q. Zhang 

et al. (1998), and Washburn (2014). Secular relaxation regimes that dominate the 

transverse T2 relaxation distribution in the mixtures was computed using the approach of 

Anand and Hirasaki (2008) to demonstrate the impact of internal magnetic field gradients 

on the T2 logarithmic mean relaxation and pore-size distribution. A recent study by 

Saidian et al. (2015) explored a methodology that correlated effects of paramagnetic clay 

content on surface relaxivity in organic-rich shales. However, our study’s uniqueness is 
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that it directly examines the effects of constituent minerals, including various 

paramagnetic minerals, on transverse relaxation time in shale. 

 

2.2 THEORY AND BACKGROUND  

 

2.2.1 NMR Relaxation Theory 

A summary of the governing principle of NMR theory is presented here; a 

comprehensive review of proton NMR relaxation theory is presented in Bloembergen et 

al. (1948); Kleinberg et al. (1994); Kenyon (1997); Coates et al., 1999, and Dunn et al. 

(2002). The mean relaxation rates, T1,2ML (second) distribution, assuming a case of fast 

diffusion limit for a single pore (Senturia and Robinson, 1970; Brownstein and Tarr, 

1979; Keating and Knight, 2007) are given by  

     𝑇!!"!! = 𝑇!!!!  +  𝜌!
𝑆
𝑉                                                                                                 (2) 

𝑇!!"!! = 𝑇!!!!  +  𝜌!
!
!
+  !

!"
 𝛾𝐺𝑡!  !                                                            (3)                         

Here, 𝑇!,!!!!  (s-1) is the relaxation rate of the bulk water, 𝜌!,! (micrometers per second) is 

the surface relaxivity, 𝛾 (42.58 MHz/Tesla) is the gyromagnetic ratio of the hydrogen 

proton, 𝐷 is the self-diffusion coefficient (D = 2.46 x 10-9 m2/s), !
! 

 (1/µm) is the surface-

area-to-volume ratio (inversely proportional to the pore radius 𝑟!"#$ ), tE is in 

milliseconds, and G (in gauss per centimeter or Tesla per meter) is the average gradient 

strength of static magnetic field. In general, T1 measurements are challenging with 

borehole or surface instruments because they have longer measurement times than T2, 

and are poorly repeatable when logging past bed boundaries (Kleinberg et al., 1993b; 
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LaTorraca et al., 1995; Kleinberg and Vinegar, 1996; Bachman et al., 2007; Grunewald 

and Knight, 2009). Therefore, T2 measurements are typically central to NMR field 

applications and will be the focus in this paper. 

In geologic materials with low magnetic susceptibility, surface relaxation 

dominates and the expression for T2
-1 (s-1) is reduced to (per Grunewald and Knight, 

2009), 

                𝑇!!! =  𝜌!
!
!
.          (4) 

 The diffusion relaxation rate, T2D
-1 (s-1) is determined when relaxing protons 

diffuse and dephase in nonuniform magnetic field (Keating and Knight, 2010). In the 

unrestricted diffusion regime, 𝑇!!!! is described by Carr and Purcell (1954), Kleinberg and 

Horsfield (1990), Anand and Hirasaki (2008), Keating and Knight (2010), and as 

              𝑇!!!! =
!
!"

 𝛾𝐺𝑡!  !           (5) 

The Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence was developed to refocus 

proton spins in a solid in the presence of internal gradients (Carr and Purcell, 1954; 

Meiboom and Gill, 1958; Keating and Knight, 2008, 2010). Rephasing of the spins in 

internal gradients, at the CPMG 𝑡! , is imperfect because the dephasing is irreversible and 

the molecular motion is random, thus enhancing relaxation (Kleinberg and Vinegar, 

1996).  

The NMR relaxation response in a single water filled pore is such that the 

transverse magnetization signal is expressed by an exponential decay: 

              𝑀 𝑡 = 𝐴 𝑒𝑥𝑝!!/!! ,         (6) 

Here A is the initial amplitude and is proportional to the number of hydrogen nuclei 

(related directly to the pore volume), and M is the bulk nuclear magnetization as a 
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function of time, t. In a sediment with different pore types, the conventional assumption 

is that the observed NMR signal is the sum of contributions from isolated individual 

pores, (each pore decaying independently) and the NMR signal is modeled as a 

multiexponential decay,  

             𝑀 𝑡 =  𝐴!! 𝑒𝑥𝑝 !!
!!!

,        (7) 

Here, 𝐴!  is proportional to the protons in ith size pores relaxing with 1/𝑇!!  relaxation 

rate. M(t) data are inverted to obtain a 𝑇!!  distribution, which, assuming simple pore 

geometry and uniform surface relaxivity, can be scaled according to estimate pore size 

distribution (e.g., S/V = 3/rpore for planar pores).  

Brownstein and Tarr (1979) proposed three ideal pore geometries for disordered 

porous media such as sedimentary rocks as spherical, cylindrical and planar. Likewise, 

they demonstrated that a single pore with an ideal pore shape, in fast diffusion regime, is 

Spor-i = α/ri where Spor-i and ri are the surface-area-to-volume ratio and characteristic 

radius of the ith pore respectively. α is a factor that accounts for the shape of the pore (α is 

3, 2, and 1 for spherical, cylindrical and planar pores respectively) (Brownstein and Tarr, 

1979; Costabel and Yaramanci, 2013; Keating, 2014). Keating and Knight (2008) 

determined pore surface-area-to-volume ratio, Spor by 

               𝑆!"# =
!
!

 =  !!!!
!!

         (8) 

where 𝑚! (grams) is the mass of the sample, Ss (square meters per gram) is the specific 

surface area normalized by the sample mass and 𝑉!  (milliliters) is the volume of water in 

the sample, which also represents the pore space volume V (Keating and Knight, 2010). 

 

 



13	
	

2.2.2 Longitudinal Relaxation Time to Transverse Relaxation Time Correlation 

 

The T1/T2 correlation is an important tool in the study of molecular relaxation 

mechanism (Kleinberg and Horsfield, 1990; Song et al., 2002; Anand and Hirasaki, 

2008). A T1/T2 ratio greater than one, for a nonviscous, single fluid system, may indicates 

the presence of magnetic field inhomogeneities in a porous media and the dependence of 

the relaxation on the tE (Kleinberg et al., 1993a, b; Foley et al., 1996; Anand and 

Hirasaki, 2008). The mean value of T1/T2 ratio for most sandstone and carbonate rocks is 

1.65 (Kleinberg et al., 1993a, b; Kleinberg and Vinegar, 1996). The technique for 

determining T1/T2 correlation map, which was applied in this study, has been described in 

Song et al. (2002).  

Echo-spacing dependence underscores the significance of molecular diffusion 

mechanism (Kleinberg et al., 1993a). The dependence of T2 on tE reflects the strength of 

the internal magnetic field gradient (G. Q. Zhang et al., 1998). Diffusion relaxation is 

important when the coefficient of diffusion is high, that is,. at high temperature for water, 

gas or light hydrocarbons, or when 𝑡!  is large (Kleinberg and Vinegar, 1996). A plot of 

𝑇!!"!!  versus 𝑡!! will generate a straight with a slope equal to ! !"  !

!"
; and if positive slope, 

indicates the presence of internal gradient (because of magnetic susceptibility contrasts) 

(i.e. G ≠ 0) (Anand and Hirasaki, 2008; Keating and Knight, 2008; Keating, 2014)  

 

2.2.3 Iron Content, Magnetic Susceptibilities and Paramagnetic Minerals 
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Sediments and sedimentary rocks have concentrations of iron ranging from less 

than 0.1% to greater than 10% (Cornell and Schwertmann, 2003).  

Volume magnetic susceptibility, χ, of materials such as minerals common in 

shale, including chamosite, glauconite, kaolinite, montmorillonite, celadonite, illite, and 

pyrite, describes how readily the materials develop magnetic moment when exposed to an 

external magnetic field. χ is dimensionless and if a rock possesses positive χ value, it is 

paramagnetic else; it is called diamagnetic if it possesses negative χ value (Levitt, 2008). 

Iron-free minerals can have negative magnetic susceptibility χ, values and are 

diamagnetic (G. Q. Zhang et al., 1998).  

 

2.2.4 External versus Internal Gradients  

 

The maximal effective internal magnetic field gradient, 𝐺!"# often referred to as 

“internal gradient” is the field inhomogeneity induced in the pore space because of the 

magnetic susceptibility contrast between the solid matrix and the pore fluid. The 

magnitude of internal magnetic field gradients can be expressed as follows (Kleinberg 

and Vinegar, 1996; G. Q. Zhang et al., 1998; Dunn et al., 2002; Washburn, 2014): 

   𝐺!"# =  ∆!!!
!

         (9) 

Here, ∆𝜒 is magnetic susceptibility contrast between the pore fluid and grain matrix, 𝐵! is 

the strength of the applied static magnetic field (𝐵! = 0.0470 𝑇𝑒𝑠𝑙𝑎 𝑜𝑟 470 𝑔𝑎𝑢𝑠𝑠) and 

𝐿 (centimeters) is the distance of variation of the magnetic field. 

Insight into typical sizes of internal gradients 𝐺!"#, (in gauss per centimeter) in 

clays and some sedimentary rocks has been obtained in recent studies. Hürlimann (1998) 
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obtained 𝐺!"# at 2 MHz in sandstones up to 1000 gauss/cm and as low as 0.5 gauss/cm 

in most carbonates (negligible compared to tool gradient). G. Q. Zhang et al. (1998) 

obtained approximately 711 and 1.8 gauss/cm for Chlorite-brine and kaolinite-brine 

slurries, respectively. However, the effects of these internal gradients are negligible if the 

static tool gradient (external gradient) of commercial logging tools dominates the total 

gradient in the pore space, when estimating the diffusion coefficient of the unknown 

fluids (Akkurt et al., 1995; Hürlimann, 1998). One of these commercial NMR logging 

tools presently available in the industry have peak external gradient of 20 gauss/cm over 

the sample volume and another has uniform external gradient of approximately 17 

gauss/cm (Kleinberg and Vinegar, 1996; Kenyon, 1997). The 2-MHz Magritek Rock 

Core Analyzer used in this research has a static gradient strength at greater than 10 

gauss/cm.  

 

2.2.5 Secular Relaxation, Relaxation Regimes, and Characteristic Time Scales 

 

The details of the governing principles of characteristic time scales, relaxation 

regimes and secular relaxations are in the referenced papers. Here we present a summary 

of equations and the approach relevant to our data preparation and analysis. Induced 

internal gradients caused by the magnetic susceptibility contrast within a system are 

known to create additional relaxation of transverse magnetization because of the 

dephasing of spin coherence.  

We focus on the relaxation in inhomogeneous field that are induced by paramagnetic 

particles in water-saturated pores, with simple cylindrical structure (Zhang et al., 2003). 
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In this space, de Swiet and Sen (1994); Hürlimann (1998); Anand and Hirasaki (2008) 

defined three relevant length scales: 

1. Diffusion length, 𝐿! micrometers =  √𝐷𝜏!,      (10) 

where 𝜏!  is half the tE used in the CPMG pulse sequence and D is the diffusivity 

of the fluid 

2. Pore structural length (micrometers), 𝐿!, and 

3. Dephasing length, 𝐿!(icrometersm) = ∛ !
!"

      (11) 

The smallest length-scale determines which of the three possible relaxation regimes 

(motional averaging, which is characterized by fast diffusion of protons such that the 

nuclear spin interaction caused by inhomogeneities in magnetic field are motionally 

average, free diffusion and localization), will dominant secular relaxation in a constant 

gradient. Similarly, Gillis and Koenig (1987), Brooks et al. (2001), Gillis et al. (2002), 

Anand and Hirasaki (2008) considered the equivalent of these three regimes in 

inhomogeneous fields as motional averaging, weak magnetization and strong 

magnetization, based on the dominant of these three characteristic time scales: 

1. 𝜏! =
!!
!

           (12) 

2. 𝜏!  =  !
!"
=  !!!

! !!! !!!
         (13) 

(time taken for substantial dephasing, 𝜏! and expressed as the inverse of the 

spread in Larmor frequency [𝛿𝜔 in radians/second] in the system and  

k = (1 + χgrains)/(1 + χfluid).         (14) 

The Larmor frequency, 𝜔 (radians per seconds), is the frequency at which 

magnetic moment precess around applied field, (Levitt, 2008).   
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3. 𝜏! =  !
!

!
           (15) 

(𝜏!  is the diffusional correlation time, expressed as the time taken to diffusionally 

average the inhomogeneities and L is the length of variation of the magnetic field 

in the system).  

These time scales will characterize secular relaxation in inhomogeneous fields, into 

relaxation regimes as follows (Gillis and Koenig, 1987; Jensen and Chandra, 2000; 

Brooks et al., 2001; Gillis et al., 2002; Anand and Hirasaki, 2008): 

I. Motional averaging regime: Here, inhomogeneities in magnetic field are 

motionally averaged because of fast diffusion of protons. Its governing conditions 

are defined as 𝜏!  ≪  𝜏!  and  𝜏!  ≪  𝜏! ; and 

!
!!,!"#

=  !"
!"#

Ф𝛿𝜔!𝜏!(Ф = !"## (!"# !"#$%&)
!"## !"#!!"#$%  !"#$% !"#$%!&'"(

    (16)  

is the volume fraction of the paramagnetic particles and it is dimensionless). 

II. Free diffusion regime (weak magnetization regime). Here spins dephase as if 

diffusing in a medium unaffected by large field inhomogeneities or restriction. The 

defining conditions are 𝜏! ≪  𝜏! and 𝜏!  ≪  𝜏!; and !
!!,!"#

=
!!!!!!
!!!

.                     (17)   

III. Localization regime (strong magnetization regime). In this situation, relaxation is 

in presence of superparamagnetic particles with strongly magnetized contrast 

agents 𝜏!  ≪ 𝜏! and𝜏!  ≪  𝜏!; and !
!!,!"#

=
!!!τ𝐸2
5!!

!"!!
𝑎+𝑏Ф!"!!

−53                      (18) 

(parameter values: a = 4.5 and b = 0.99). 

Further characterizing secular relaxation theory in terms of dimensionless quantities, 

which is unaffected by particular system parameter, is given by Anand and Hirasaki 

(2008):  
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                    !
!!,!"#! =  𝑡!  !

!!,!"#
          (19) 

where 1/𝑇!,!"#!  is the simulated dimensionless relaxation rate and 𝑡! = 3/Ф𝛿𝜔  is a 

characteristic time (seconds). 

 

2.2.6 Pore size distribution, Bound Fluid Volume (BFV) and Permeability 

 

 In general, small pores shorten T2 relaxation and correspond to clay bound and 

capillary bound water (BFV), and separated by a cutoff (T2cutoff) from large pores, which 

allow long T2 relaxation and host producible fluids (Kenyon et al., 1995). Thus, 

relaxation time distribution is a measure of pore size distribution. Brownstein and Tarr 

(1979) classified pore sizes for a “fast diffusion” regime, indicating that relaxation rate is 

directly proportional to surface-to-volume ratio; for a “slow diffusion” regime, it is 

inversely proportional to the square of the pore size. In this research, we applied the 

classification by Hürlimann (1998) to differentiate between small and large pore subsets. 

Small pores are less than 𝐿! but large pores will be larger than 𝐿!. This classification 

estimates that the dephasing echo is governed by free diffusion in large pores and the 

Larmor Frequency value may encounter less uncertainty or spread whereas internal field 

inhomogeneities are motionally averaged in small pores. The expression for the apparent 

pore size classification is therefore given by 

                𝑙! = !
!!!∆!

!/!
         (20) 

We also assumed the pore structure for samples investigated to be cylindrical and 

calculated the average pore radius from: 𝑟 𝑜𝑟 𝑅 = 2 !"#$%&
!"#$%&'

= !
!"#$

    (21) 
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(Zhang et al., 2001). We expect field inhomogeneities to exist over the entire length 

(diameter) of the pore (Callaghan, 1995; Anand, 2007), so that the length of variation of 

field inhomogeneity in the system is, 𝐿 = 2𝑅. In this report, we present indices that will 

identify the anomalies encountered when determining 𝑇!!"!! or T2cutoff, the primary inputs 

into the two established permeability equations (SDR or Timur-Coates).  

 

2.3 MATERIALS AND METHODS 

 

2.3.1 Sample Preparation and Characterization  

 

The eight samples used in this study are all natural samples acquired from three 

mineral repository establishments. Most samples were either received as powder (particle 

size < 38 µm or 1.25 x 10-4 ft.) whereas the bulky ones were crushed and/or sieved using 

300µm (1.0 x 10-3 ft.) size mesh. Illite, glauconite, and pyrite were sourced from Wards 

Scientific; celadonite and chamosite were acquired from Excalibur Mineral Corporation; 

montmorillonite and kaolinite were obtained from Source Clays Repository. These 

minerals are shale-prone aggregates that can occur in diverse combinations. The 

mineralogy for all samples was verified using X-Ray diffraction (XRD; Bruker D8 

Advance X-Ray Diffractometer), and elemental analysis was performed using X-ray 

fluorescence (XRF; Thermo Scientific X-Ray Fluorescence). To determine the 

volumetric magnetic susceptibility (MS), dry samples were packed into 20 cm3 (1.2 in.3) 

cylindrical bottles, and measured at a low frequency of 0.465 kHz (Bartington MS2 

Magnetic Susceptibility System). The specific surface area Ss, defined as the surface area 
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normalized by the sample mass, was measured using the Brunauer-Emmett-Teller gas 

adsorption method with nitrogen gas N2 (g) as the adsorbate, for example in Lowell and 

Shield (2013) (ASAP 2020; Micromeritic Instrument Corp). A 125 g/L NaCl brine was 

used to saturate all samples.	NMR samples were made by creating a mineral-brine slurry 

and then centrifuging to compact the solid phase and decanting the fluid phase. All 

slurries were prepared using a mineral-to-brine ratio of 1:2 by mass except for celadonite, 

which was prepared using a ratio of 1:3 because of the quantity of celadonite available. 

Slurries were compacted by centrifuging at 600 psi (4.14 x 106 Pa) (Eppendorf Centrifuge 

5804) and residual air bubbles were removed at intervals during compaction with Vortex-

2 Gene.  

 

2.3.2 NMR Measurement Procedure 

 

NMR relaxation data were collected with 2-MHz Magritek Rock Core Analyzer 

using a CPMG (Carr- Purcell-Meiboom-Gill) pulse sequence. Data for each sample were 

collected at 10 echo times: 150, 200, 300, 400, 500, 600 800, 1000, 1200, 1500 µs, with 

delay time stacks being at least three times the relaxation time. The number of echoes 

collected was 30 for celadonite, 40 for montmorillonite, 50 chamosite and illite, 60 for 

glauconite, 150 for pyrite and 200 for kaolinite. Each measured magnetization decay 

signal for a T2 distribution was inverted using a regularized nonnegative least squares 

algorithm after Whittall et al. (1991). In this method, the data were fitted to a distribution 

of 160 logarithmically spaced T2 values, from 10-4 to 101 s and then the inverted model 

was regularized for smoothness, which limits inversion artifacts. A single value, the mean 
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log relaxation time, T2ML, was used to represent the NMR relaxation behavior of the 

samples and it is expressed as the sum of three relaxation rates (T2: bulk, surface and 

diffusion). Separate repeat measurements were conducted for each sample to determine 

experimental error. Longitudinal T1 measurement for each sample was performed using 

inversion recovery sequence. The Spor was determined using equation according to 

Keating and Knight (2010). T1-T2 measurement was performed on all the samples 

according to Song et al. (2002), at 2 MHz proton resonance frequency. 𝜏! 𝜏!   (22) 

varied logarithmically from a minimum of 0.2 ms to maximum of 1 s. Here, τ1 refers to 

the time period over which the spin magnetization decays along the ᵶ axis and during τ2, 

the decay is caused by T2. To improve the signal-to-noise ratio, data was stacked 256 

times, and the signal-to-noise ratio set to 200 for all T1, T2, and T1-T2 measurements. All 

measurements were made at 30°C to avoid changes in the NMR response because of 

variations in temperature. 

 

2.4 DATA AND RESULTS 

 

2.4.1 Physical Properties 

 

This study reviewed the bias that can be introduced because of internal magnetic 

field gradients created by constituent minerals, when classifying the pore-size distribution 

in shale. The weight percentages of Fe and Mn in each of the samples, measured with 

XRF elemental analysis, are presented along with elements in Table 2-1.Total iron 

concentrations in the samples measured from 0.3% in kaolinite, to approximately 42% in 
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pyrite. The manganese concentration was undetected in most samples except in illite, 

chamosite and glauconite, which measured approximately 0.05%, 0.5% and 0.1% 

respectively. As basic quality assurance measure, the weight percentages of Fe and Mn 

were determined to be consistent with what is reported in literature (Carmichael, 1982; 

Dearing, 1994; Dodge et al., 1995; Matteson et al., 1998; G. Q. Zhang et al., 1998; 

Keating and Knight, 2010) The XRD results confirmed the mineralogy of all the samples 

except for celadonite, which was observed to contain minor inclusion of glauconite. 

The T2 relaxation rate of pore fluids for any given iron mineral would be 

proportional to the concentration of iron on the solid phase of the pore surface (Foley et. 

al., 1996; Bryar et. al., 2000). G. Q. Zhang et al (1998) demonstrated in experiments that 

iron-rich clays with high magnetic susceptibility induce strong internal field gradients 

and shorten the T2 in a system. The volume magnetic susceptibility values for the samples 

are listed in Table 1-1. These values range from -9 X 10-6 (Hürlimann, 1998) to 438 X 10-

6 Standard International [SI] units. Whereas pyrite has the highest iron concentration (42 

wt. %), it is chamosite that contains the most manganese (0.5 weight percent), measuring 

the highest magnetic susceptibility at 438 X 10-6 [SI]. However, all the samples recorded 

positive magnetic susceptibility values except kaolinite (Table 1-1).  The values of Ss for 

each mineral sample ranged from 0.1 for pyrite to 91.5 m2/g for montmorillonite (Table 

1-1). Montmorillonite with the same grain size as kaolinite (<38 µm or 1.25 x 10-4 ft.), 

has the highest Ss (91.5 m2/g) and although glauconite, celadonite and illite have bigger 

grain size (<300 µm or 1.0 x 10-3 ft.) than kaolinite, they all have higher Ss at 53.0, 33.0 

and 19.0 m2/g respectively, compared to kaolinite at 12.0 m2/g (Table 2-1). 
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Table 2-1. Chemical and Physical Properties of Brine and Mineral Samples 

Abbreviations: — = not applicable; ∆χ = magnetic susceptibility contrast between the pore fluid and grain 
matrix; MS = magnetic susceptibility; SI = standard international units.  
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2.4.2 Nuclear Magnetic Resonance Relaxation 

 

The relaxation time distribution measured at 10 tE (150 – 1500 µs) was used to 

calculate 𝑇!!"  for each mineral/brine mixture compacted at 600 psi (4.14 x 106 Pa). The 

𝑇!!"  values used in this analysis were from long and short tE as well as computed 

average 𝑇!!"  values. Note that only a single T2 distribution peak was observed for each 

sample slurry. In decreasing order of average relaxation times, celadonite had the longest 

relaxation time; montmorillonite, kaolinite and pyrite peak positions were similar with 

their shorter relaxation times, whereas glauconite chamosite and illite measured the 

shortest relaxation times. The 𝑇!!"  value at long tE relaxed faster than the average, which 

relaxed faster than at short tE for glauconite, illite, kaolinite and pyrite. The 𝑇!!"  value at 

short tE relaxed faster than the average, which relaxed faster than the long tE for 

chamosite and montmorillonite. The 𝑇!!"  at short tE relaxed faster than the 𝑇!!"  at long 

tE, which was faster than the average 𝑇!!"  for celadonite. Although the pore size 

remained unchanged, the value of 𝑉!at the short tE was larger than the average, and the 

average 𝑉! value was greater than at long tE for montmorillonite, pyrite, illite, celadonite 

and chamosite. The 𝑉!  value at long tE was larger than the average which was larger than 

the 𝑉! at short tE for kaolinite. Observed variations in the values of 𝑉! and 𝑇!!"  for long 

and short tE, in unchanged pore system may indicate paramagnetism effects on the 

measurement.  

The T1/T2 map above the dashed 1:1 line in Figures 2-1 (A-F) indicates that 

relaxation in the pores might have occurred in the presence of an induced internal 

magnetic gradient. The small deviations away from the 1:1 line (for montmorillonite, 



25	
	

glauconite and illite) are caused by noise and the limitations imposed by the inversion 

algorithm. Inhomogeneities in the magnetic field result in diffusion relaxation, which 

speeds up relaxation and is a function of the tE (Song et al., 2002). For montmorillonite, 

glauconite and illite sample, T1/T2 maps plotted slightly above the 1:1 line (Figures 2-1A, 

D and E) but chamosite, pyrite and kaolinite (Figures 2-1B, C and F) plotted well above 

the 1.1 (unity) line. This suggests presence of marginal magnetic field inhomogeneities 

for the previous and strong magnetic field inhomogeneities for the latter samples. 

Celadonite plotted on the 1:1 (unity) line (Figure 2-1G). The T1/T2 ratio of unity for 

celadonite indicates a weak or absent magnetic field inhomogeneity effect on T2 

relaxation.  

To comprehend the magnitude of internal gradients on diffusion relaxation rate, 

the dependence of T2ML
-1 on tE was determined. Overall yield of positive slope from a plot 

of T2ML
-1 versus the square of the tE (tE

2) will indicate presence of internal gradient (i.e. G 

≠ 0). The T2ML
-1 linearly increased with tE

2 for small tE for at least the first two tE with all 

the samples except in montmorillonite (Figure 2-2). The general trend for celadonite and 

montmorillonite was negative 	

and this agrees with the plot of their T1/T2 ratio.  Kaolinite, which has a low magnetic 

susceptibility value, showed a weak but consistently positive slope. In general, the slope 

of glauconite, illite, and positive all showed positive trends. Chamosite T2ML
-1 values 

decreased for the last five tE measured. Based on the outcome of these plots, it is 

reasonable to expect that montmorillonite, celadonite or the last five echo spacing data 

from chamosite, which encounters weak dependence of relaxation rate on tE, may average 

out the internal gradient effects on their T2 relaxation.	
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Figure 2-1. (A-G): Longitudinal relaxation time to transverse relaxation time (T1/T2) 

correlation maps for mineral slurries. Points above the dashed line are positive and indicate 

the presence of magnetic field inhomogeneity. Maps for chamosite, kaolinite and pyrite are 

distinctly above the unity line. Montmorillonite and glauconite slurries plot close to the 

unity line. Celadonite plotted on the unity line. The T1/T2 ratio increases with the 

paramagnetic particle size (Anand, 2007). Dashed line is 1:1 (unity). 
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Samples were fit into different relaxation regimes based on their computed 

characteristic time scales and they indicate that relaxation of all the mineral slurries 

occurred in the localization regime except celadonite and montmorillonite, which fit into 

the motional averaging regime. In addition, as observed from the 𝑇!!"  dependence tE 

data, at long tE (1500 µs) the relaxation of chamosite changed from the localization to the 

motional averaging relaxation regime (Table 2-2). Pore size distribution was computed 

from the average NMR data of the samples based on the model by Hürlimann (1998). 

The model expects that large pores will be governed by free diffusion whereas small 

pores are motionally averaged. Both montmorillonite and celadonite fit the large pore 

criteria but all the other samples matched the small pore criteria at long/short tE and 

average data. The internal gradient 𝑮𝒎𝒂𝒙 is larger in montmorillonite and celadonite than 

in all other slurry (Table 2-3). Although kaolinite relaxation occurred in the localization 

regime, it had the least measured internal gradient at 411 gauss/cm.  

The magnetic susceptibility contrast ∆χ, between the matrix and the fluids all 

recorded positive values. High magnetic susceptibility induces strong internal field 

gradients in systems such as clays that contain iron-rich materials, and shorten the T2 

relaxation (G. Q. Zhang et al., 1998). In all the measurements, the internal gradient in the 

slurries dominated the tool gradient (external gradient) in the Magritek analyzer.  
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Figure 2-2 (A-B): Plot of 1/T2ML (total mean logarithm transverse 

relaxation time) versus tE
2 (square of tE) showing the dependence of 

transverse relaxation time (T2 in seconds) on echo spacing (tE in 

milliseconds). (A) Show plot of chamosite, glauconite and illite (B) Show 

celadonite, kaolinite, montmorillonite and pyrite. 
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2.5 DISCUSSIONS 

 

Our initial inquiry focused on establishing the presence and magnitude of internal 

gradients on NMR relaxation of the samples. The magnitude of the computed internal 

gradients in the slurries dominated the external (tool) gradients from the NMR analyzer. 

We expected that the amount of iron in the minerals and the ∆χ values in the slurries 

would control the magnitude of internal gradients but no reasonable correlation was 

observed between these parameters. The T2 relaxation rate of the minerals can be affected 

by the presences of internal magnetic field gradients and the shortest time scales reflect 

their characteristics. These characteristic times will also determine the behavior of the 

relaxation regimes such as T1/T2 ratio and dependence on tE (Anand and Hirasaki, 2008). 

The T2 relaxation of pyrite, glauconite, illite, and kaolinite was determined to have 

occurred in the localization regime because the time taken for significant dephasing τω, 

was the shortest time scale (τω << τR and τω << τE) (Table 2-2). This regime indicates a 

situation with strongly magnetized contrast between particles and the medium, such as 

exists with superparamagnetic materials (δωτE > 1). For these minerals, the dependence 

of the relaxation rate on the tE and their T1/T2 ratio were both slightly to strongly positive 

(Figure 2-1, 2-2). The behavior of chamosite was a bit peculiar because it was governed 

by localization regime in the shorter tE, and dominated by motional averaging regime in 

the longer tE. Chamosite T1/T2 ratio was distinctly positive and the shorter tE indicated 

dependence of the relaxation rate on tE whereas the longer tE did not show such 

dependence. The T2 relaxation of montmorillonite and celadonite also occurred in the 
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motional averaging regime, because their shortest time scale was the diffusional 

correlation time τR, (τR << τE and τR << τω). Both samples had the largest internal 

gradients yet showed no dependence of the relaxation rate on the tE and their T1/T2 ratio 

was on or near the unity line (Figure 2-1, 2-2).  

 

Table 2-2. Characteristic Time Scales for Average Echo Spacing Data and Long Echo 

Spacing and Relaxation Regimes of Samples 	

  

Abbreviations: τω  = time taken for substantial dephasing; τE = half the echo spacing used in the Carr–
Purcell–Meiboom–Gill pulse sequence; τR = the diffusional correlation time; tE = echo spacing.  

 

Although the calculated pore size remained unchanged, in glauconite, pyrite, 

illite, celadonite, montmorillonite and chamosite, the internal gradients was higher at long 

tE than at short tE but reverse in kaolinite (Table 2-4). In addition, T2ML shortened for all 

the minerals except montmorillonite, chamosite and celadonite (Figure 2-3). Based on the 

criteria put forth in Hürlimann (1998), celadonite and montmorillonite pore systems were 
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computed as large pores but rather than being governed by the free diffusion as proposed, 

we determined that their relaxation was in the motional averaging regime. Similarly, the 

computed pore sizes of the rest of the samples were small pore systems and again 

contrary to the Hürlimann (1998) criteria, the internal field inhomogeneities were not all 

motionally averaged in these small pores, rather they were dominated by the localization 

regime. However, the long tE chamosite had relaxation in the motional-averaging regime 

and no dependence on tE (Table 2-2). 

 

Table 2-3. Maximal Effective Internal Magnetic Field Gradient, Dephasing Length, la, 

and Pore Sizes of Average Echo Spacing Data of the Samples 

 

 

Abbreviations: la = apparent size for classifying large and small pores; Gmax = maximal effective internal 
magnetic field gradient; Lg = dephasing length.  

 

So far, some aspects of our interpretation, and the classification of their relaxation 

regimes did not seem congruent with the physical properties of some of the samples. For 
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example, the computed data for kaolinite indicated relaxation in the localization regime. 

However, the kaolinite used in this study was diamagnetic with negligible iron 

concentrations and very low ∆χ value, and expected to have less diffusion effects (G. Q. 

Zhang et al., 1998). Hence, we generated dimensionless relaxation rates (1/𝑇!,!"#! ) as a 

function of normalized diffusion correlation time (δωτR) and normalized tE (δωτE) 

parameters according to Anand and Hirasaki (2008) (Figure 2-4). The outcome of the 

dimensionless quantities validated the secular relaxation regime for all the samples. It 

indicated that kaolinite is essentially governed by the free diffusion regime (δωτE << 1 

and δωτE << δωτR) whereas there was no change in rest of the classifications. 

Montmorillonite, celadonite and long tE chamosite were still governed by the motional 

averaging regime (δωτE >> 1 and δωτR << 1), and all other minerals still dominated by 

the localization regime (δωτE >> 1 and δωτR >> 1). Additionally, the effects of internal 

gradient on the samples were evidenced by increased 1/𝑇!,!"#!  from the short to long tE for 

all the samples except kaolinite, which showed negligible rate (Figure 2-5). 

 

 

 

 

 

 

 

 

 



33	
	

Table 2-4. The Internal Gradient at Short and Long Echo Spacing, Pore Size, and Total 
Mean Logarithm of Transverse Time Relaxation  

 

  

Abbreviations: la = apparent size for classifying large and small pores; Gmax = maximal effective 
internal magnetic field gradient; L = long; S = short; T2ML = total mean logarithm of transverse 
relaxation time.  

 

We observed that the volume fraction Ф, for celadonite and montmorillonite both 

in the motional averaging regime was ≤ 0.6 whereas the value was greater for the rest of 

the minerals. In addition, we expected celadonite with high iron content and high 

magnetic susceptibility value to be dominated by the localization regime but the low Ф 

value may have contributed to its internal field inhomogeneities being motionally 

averaging (Figure 2-4). Surface concentrations of paramagnetic species are directly 
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proportional to the relaxivity and low surface concentrations show no relaxation 

dependence on tE (Foley et al., 1996; Anand and Hirasaki, 2008; Washburn, 2014).	

 

 

 

Finally, the value of the secular relaxation rate may be the difference between the 

measured and the actual T2 relaxation rate caused by magnetic field inhomogeneities in a 

Figure 2-3.  Stacked bar graph of computed pore size (blue bar in micrometers) and the 

total mean logarithm of transverse relaxation time (T2ML; gray bar). The internal gradient 

increased from the short (S.) to long (L.) echo spacing (tE, in milliseconds) in all of the 

samples except in kaolinite.  
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porous media. This rate as determined in this research will influence the relaxation 

regimes of the pore and create error in the pore size distribution and classification of 

BFV. This effect occurs because of molecular diffusion in inhomogeneous fields. 

Although running CPMG pulse sequence with the shortest possible tE at low fields such 

as the 2-MHz analyzer used in this research can mitigate diffusion effects (Kleinberg and 

Vinegar, 1996; Hürlimann, 1998), the impact of the effects was observed to manifest as 

shortened relaxation time even at short range of tE. The extra relaxation time removed 

from T2ML consequently, may result in the overestimation of BFV and when used as input 

into any of the two permeability estimators (Timur-Coates or SDR) will result in the 

underestimation of permeability. 

 

2.6 CONCLUSIONS 

 

We set out first to determine presence and magnitude of internal gradients in shale 

by considering the effect on constituent minerals. Minerals with high iron content and the 

magnetic susceptibility will induce strong internal field gradients and shorten the T2 

inside a pore space. The T1/T2 ratio and dependence of relaxation rate on tE were applied 

in this study to validate the presence and magnitude of the internal gradients in 

brine/minerals slurry. Based on the models put forward by Kleinberg and Vinegar (1996), 

G. Q. Zhang et al. (1998, 2003), Hürlimann (1998), and Anand and Hirasaki (2008), we 

defined the pore geometry and magnitude of the internal gradients, characterized the pore 

size distributions, and categorized the secular relaxation regimes. The computed internal 

gradient was the dominant gradient and all of the minerals were computed as having 
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small pore except celadonite and montmorillonite. In addition, kaolinite was governed by 

free diffusion regime; montmorillonite, celadonite and long tE chamosite were dominated 

by motional averaging regime whereas localization regime dominated the relaxation of 

illite, glauconite, pyrite and short tE chamosite. The implication of these classifications is 

that T2ML shifts to faster time, resulting in the overestimation of BFV, which when used as 

input parameter into permeability equation, will lead to underestimation of NMR 

permeability. 
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We conclude that internal gradients, although induced by paramagnetic and clay 

minerals common in shale, will vary with tE, and the concentration or volume fraction of 

the paramagnetic particles in a porous media. Although the results of our study 

underscores the need to modify the approach of petrophysical interpretation of shale 

Figure 2-4.  Plot showing the classification of minerals under their dominant 

relaxation regimes based on two dimensionless parameters: normalized echo 

spacing (δωτE) and normalized diffusional correlation time δωτR. The 

boundaries that delineate the regimes are represented by the dashed lines, δωτE 

= 1 and δωτR = 1. Ce = celadonite; Ch = chamosite; G = glauconite; I = illite; K 

= kaolinite; M = montmorillonite; P = pyrite.  
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reservoirs using transverse T2 relaxation time, it is not expected to serve as a definitive 

guide. Further experimental and simulation work are required because of the wide range 

of heterogeneities associated with shale.  

 

 

 

 

 

 

Figure 2-5.  Plot of maximal effective internal magnetic field gradient 

(Gmax; blue line, in gauss per centimeter [G/cm]) and normalized secular 

simulated dimensionless relaxation rate (1/𝑇!,!"#! ; red line). Negligible values 

for kaolinite at long (L.), short (S.) echo spacing (tE, in milliseconds).  
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Obasi and Pashin 2018 

To be submitted to Petroleum Geoscience 

Boone Pickens School of Geology, Oklahoma State University, 105 Noble Research 

Center, Stillwater, OK 74078-3031. 

 

ABSTRACT 

 

Interpretation of nuclear magnetic resonance (NMR) logs, which are used to 

assess fluid saturation and mobility, from microporous shale reservoirs is a challenge for 

unconventional oil and gas exploration because it was developed for the characterization 

of macroporous sandstone and carbonate reservoirs and is not always accurate in shale. 

The partitioning of transverse relaxation time (T2) distribution into irreducible and mobile 

fluids using a T2-cutoff value is standard practice. However, in shale this approach does 

not always yield accurate results due to high clay contents, differential compaction, and 

magnetic minerals that can strongly influence the NMR log response. To effectively
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characterize the NMR response of shale, the effects of clay common in shale need 

to be considered.  

To begin addressing this issue, NMR experiments were designed to explore the 

effect of a range of clay minerals (illite, glauconite, chamosite, montmorillonite), on the 

NMR T2 relaxation. These experiments were performed using pure minerals, saturated 

with brine. Slurries of brine and sediment were compacted in a centrifuge at pressures of 

40 (2.75 x 105 Pa), 150 (1.03 x 106 Pa) and 600 pounds per square inch (psi), (4.14 x 106 

Pa). A standard CPMG pulse sequence was performed on all samples at ten echo 

spacings ranging from 0.15 to 1.50 milliseconds. Results of NMR analysis indicate that 

transverse relaxation time (T2) progressively shifted to shorter times as compaction 

increased, whereas surface area-volume-ratio increased for all mineral slurries 

investigated except montmorillonite, which exhibited significant reduction in water 

volume. 

 

 

3.1 INTRODUCTION 

 

Before now, NMR logging for evaluation of petrophysical properties such as 

porosity, pore size distribution, pore geometry, permeability, water saturation, clay-bound 

water fraction, and wettability conditions, has been used for of macroporous sandstone 

and carbonate formations which are generally described as conventional resource 

reservoirs (Bryar et al., 2000). Although ‘unconventional’ resource reservoirs have no 

generalized definition, they are typically reserved for reservoirs that lack one or more 

requirements of conventional reservoirs, which do not produce economic rates of 
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hydrocarbons without stimulation and they include: oil-shale formations, shale gas, gas 

hydrates, tight-gas sandstones and heavy-oil sandstones (Passey et al., 2010; Washburn 

and Birdwell, 2013). Recently, there has been increased development of unconventional 

petroleum resources, which reside in shale, due to the emerging energy demand globally. 

Therefore, a practical understanding of the role of clays in rapid NMR signal relaxation 

will help to effectively interpret NMR logs in shale.  

NMR T2 distribution estimates clay bound water, which is used in determining 

water saturation from resistivity, based on a cutoff, at less than 3 milliseconds (Straley et 

al., 1987). The study by Matteson et al. (2000) of clay/brine mixtures of kaolinite, illite, 

smectite and glauconite, did not yield any significant different between the clay types 

studied, with shifting peak positions depending on compaction. However, Fleury et al. 

(2013), observed small relaxation time in clays, with these being close to the value for 

quartz surfaces, and not as a result of high surface relaxivity (explained later) induced by 

paramagnetic impurities, but rather are due to high specific surface area. Additionally, 

Slijkerman and Hofman (1998) demonstrated that diffusion of water protons in a porous 

material, is not dependent on surface relaxivity, but is restricted by the size of the pore.  

For a water-saturated porous medium, the NMR relaxation experiment consists of 

observing hydrogen nuclei (protons) in pore water align with the static magnetic field, 

then are perturbed by the application of a radio frequency (RF), emitting a measurable 

signals as they relax back to equilibrium, after the RF is removed (Keating, 2014). The 

surface-area-to-volume ratio of water wet pore system is related to the measured T2 

relaxation rate, and has a proportionality constant called surface relaxivity. This 

aforementioned relationship provides the link to use NMR data to estimate permeability 
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(e.g., Vogeley and Moses, 1992; Legchenko et al., 2002; Keating and Knight, 2006) and 

(e.g., Timur, 1969; Yaramanci et al., 2002; Keating and Knight 2006) pore size 

distribution. In a single pore, the mean NMR T2 relaxation time of water is the sum of 

three relaxation times (Brownstein and Tarr, 1979; Keating and Knight, 2006): 

 T2ML = T2B + T2S + T2D          (23) 

 Where T2 relaxation time is the transverse relaxation time, usually higher than bulk 

relaxation (T2B), being enhanced by surface (T2S) and diffusion (T2S) relaxation time 

mechanisms. The interaction that occurs between water and paramagnetic sites on pore 

solid surface (i.e., atoms with unpaired electrons) (e.g. surface relaxivity, ρ2), and 

magnetic minerals with high values of magnetic susceptibility are the two factors that can 

affect the relationship between NMR relaxation rate and S/V. (Keating and Knight, 

2010). The NMR T2 relaxation time expressed above is valid for samples in fast diffusion 

regimes where the travel to and relaxation at solid surface by protons within the time 

interval NMR experiment is assumed (Senturia and Robinson, 1970; Brownstein and 

Tarr, 1979, Keating and Keating, 2006). 

The objective of this study is to determine the effects of compaction on T2 

relaxation of clays and apply the result toward enhancing reservoir petrophysical 

comprehension. In order to accomplish this goal, we designed a set of experiments that 

examined the NMR T2 relaxation of clay/brine mixtures at various compaction states. The 

monomineralic samples used ensured that NMR T2 relaxation behavior was evaluated, 

and through compaction, volume-to-surface ratio was easily varied. We chose to study 

four clays commonly found in oil-bearing sedimentary environments: chamosite, illite, 

glauconite and montmorillonite. 
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3.2 MATERIALS AND METHODS 

 

3.2.1 Sample Preparation and Characterization  

All four samples used in this study were acquired from three mineral repositories. 

The samples include illite, glauconite, chamosite and montmorillonite. Illite (from Wards 

Scientific) and montmorillonite (from Source Clays Repository) were received as powder 

(particle size < 38 µm or 1.25 x 10-4 ft.), whereas glauconite (from Wards Scientific) and 

chamosite (from Excalibur Mineral Corporation) received as bulky samples were crushed 

and/or sieved with a 300µm (1.0x10-3) size mesh. Bruker D8 Advance X-Ray 

Diffractometer was used to verify mineralogy and their elemental composition was 

obtained using Thermo Scientific X-Ray Fluorescence instrument. The volumetric 

magnetic susceptibility (MS) for all the samples was measured at a low frequency of 

0.465 kHz (Bartington MS2 Magnetic Susceptibility System). The specific surface area 

Ss, which is defined as the surface area normalized by the sample mass, was estimated 

with the Brunauer-Emmett-Teller pore filling model using N2 as an adsorbate (e.g., 

Lowell and Shield, 2013). A 125-g/L NaCl brine was used to saturate all samples and the 

mineral/brine slurry was centrifuged to compact the solid phase but the liquid phased was 

decanted. A 1:2 ratio by mass was used to prepare all mineral-brine slurries. The slurries 

were compacted using Eppendorf Centrifuge 5804 at 40 (2.75 x 105 Pa), 150 (1.03 x 106 

Pa) and 600 pounds per square inch (4.14 x 106 Pa) respectively, order to simulate 

variable subsurface pressures conditions in a similar method as performed in (Matteson et 

al., 1998). Residual air bubbles were expelled during compaction intervals with a Vortex-

2 Gene vibrating instrument.  
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3.2.2 Nuclear Magnetic Resonance Measurement  

2 MHz Magritek Rock Core Analyzer was used to collect NMR relaxation data 

running a CPMG (Carr- Purcell-Meiboom-Gill) pulse sequence. Data for each sample 

was collected at 10 echo times: 150, 200, 300, 400, 500, 600, 800, 1000, 1200, and 1500 

micro-seconds (µs) for each of the compacted states of the samples, with delay stacks 

being minimum three times the relaxation time. Number of echoes collected was 40 for 

montmorillonite, 50 for chamosite and illite whereas 60 was collected for glauconite. 

Each raw signal for a T2 relaxation time distribution was inverted using a regularized 

least square algorithm based on Whittall et al. (1991). Measurements were repeated 

multiple times for consistency of data. Spor was computed from an equation according to 

Keating and Knight (2010). Signal to noise ratio was enhanced by stacking the data 256 

times. A constant temperature of 300C was maintained for all measurements during the 

entire measurement in order to eliminate temperature variations and avoid changes in the 

NMR response. 

 

3.3 RESULTS & DISCUSSION 

 

This study examined the contributions of incremental compaction of mineral 

samples common in shale on relaxation. The concentration of Fe and Mn in each of the 

samples, obtained with XRF elemental analysis, are listed along with the oxides is 

presented in Table 3-1. The total iron concentration measured from 7% in illite to 23.5% 

in glauconite. The concentration of manganese measured 0.05%, 0.5% and 0.1% in illite, 

chamosite and glauconite but was undetected in montmorillonite. The weight percentages 
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of Fe and Mn were determined, as a basic quality assurance measure, to be consistent 

with what literature reported (Carmichael, 1982; Dearing, 1994; Dodge et al., 1995; 

Matteson et al., 1998, G.Q. Zhang et al., 1998; Keating and Knight, 2010). The XRD 

results confirmed the mineralogy of the entire sample. Volumetric magnetic susceptibility 

values also are listed in Table 3-1. The values range from -9 X 10-6 (Hurlimann, 1998) to 

438 X 10-6 [SI] standard international (SI) units. High weight percent iron in minerals did 

not necessarily render high magnetic susceptibility values in minerals studied (Figure 3-

1). Chamosite did not have the highest iron concentration; it has the highest manganese 

concentration (0.5 wt. %), and highest magnetic susceptibility 438 X 10-6 [SI]. The values 

of specific surface area for each sample ranges from 0.2 m2/g for chamosite to 92 m2/g 

for montmorillonite, and are reported in Table 3-1. 
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Table 3-1: Chemical and physical properties of minerals.  

 
Abbreviations: MS = magnetic susceptibility; SI = standard international units. LOD = Limit of 
Detection 

 

 

Figure 3-1: Relationship between magnetic susceptibility and weight percent iron in 

mineral samples. 
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The T2 relaxation distributions of incrementally compacted samples are presented 

in Figure 3-2. Evidence of continued reduction in T2ML relaxation time was observed as 

compaction of the slurries increased. The number of protons in the measured sample, 

which is proportional to the initial signal amplitude and can be used to estimate water 

volume, and porosity in a saturated sample (Keating, 2014). The T2ML distributions 

shown in Figure 3-2 indicate a reduction in water volume or porosity as sample 

compaction increased. Compacting the samples from 150 (1.03 x 106 Pa) to 600 psi (4.14 

x 106 Pa), the magnitude of water volume reduction was less significant in chamosite and 

but drastic for montmorillonite (Figure 3-2). T2ML relaxation time versus incremental 

compaction and the computed surface area-volume ratio Spor, is shown in the plot on 

Figure 3-3. The T2ML relaxation time decreases with increasing compaction for all 

samples except montmorillonite (Figure 3-3). The plot of surface area-volume ratio 

versus compaction indicates that surface area-volume ratio increases with increasing 

compaction, hence accounting for the decrease of T2 relaxation time (Figure 3-3). 

Incrementally compacting the samples at different pressures establishes a negative 

correlation between the log-mean T2ML relaxation time versus pressure whereas the 

correlation between surface area-volume-ratio versus pressure was positive. Transverse 

relaxation time (T2) progressively shifted to shorter times as pressure increased, whereas 

surface area-volume-ratio increased for all minerals except montmorillonite (Figure 3-3). 

These observations demonstrate that pore volume-to-surface ratio is proportional to the 

relaxation time. Matteson et al. (1998), stated that iron content correlates with the surface 

relaxivity of clays, however, there was no evidence from clays studied, to validate that 

statement. In our study, the T2 peak positions are, from shortest to longest relaxation time, 
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chamosite, illite and glauconite (not variation between the two), then montmorillonite, 

with weight percent iron from 21, 7, 23.5 and 8 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-2: Transverse T2 relaxation distribution plots 

showing relaxation times at different levels of compaction. 
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Figure 3-3: (a) A graph of T2ML versus incremental compaction pressure. 

(b) A graph of computed Spor versus incremental compaction pressure. 
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3.4 CONCLUSION 

 

This paper presented NMR measurement of brine mixture of four common clay 

minerals, including montmorillonite, glauconite, illite and chamosite as a function of 

compaction. The NMR signal progressively decayed at a faster relaxation rate, to shorter 

times as compaction, and pore volume-to-surface-ratio, increased. Although earlier work 

suggested that the T2 relaxation rate of the hydrogen proton in the mixture might correlate 

with the iron content, no distinct evidence was found from this study to strongly validate 

their assertion.  

 

 

 

 

 

 

 

 

 

 

 

 

 



56	
	

 

 

 

REFERENCES CITED 

 

Brownstein, K. R., and C. Tarr, 1979, Importance of classical diffusion in NMR studies 
of water in biological cells: Physical review A, v. 19, p. 2446. 

Bryar, T. R., C. J. Daughney, and R. J. Knight, 2000, Paramagnetic effects of iron (III) 
species on nuclear magnetic relaxation of fluid protons in porous media: Journal 
of magnetic resonance, v. 142, p. 74-85. 

Carmichael, R. S., ed.,, CRC handbook of physical properties of rocks: Boca Raton,     
            Florida, CRC Press, v.2, 360 p.  
Dearing, J., 1994, Environmental magnetic susceptibility: Using the Bartington MS2 

system. Kenilworth, Chi Publ. 
Dodge, W., J. L. Shafer, and A. O. Guzman-Garcia, 1995, Core and log NMR 

measurements of an iron-rich, glauconitic sandstone reservoir: SPWLA 36th 
Annual Logging Symposium. 

Fleury, M., E. Kohler, F. Norrant, S. Gautier, J. M’Hamdi, and L. Barré, 2013, 
Characterization and quantification of water in smectites with low-field NMR: 
The Journal of Physical Chemistry C, v. 117, p. 4551-4560. 

Hürlimann, M. D., 1998, Effective gradients in porous media due to susceptibility 
differences: Journal of Magnetic Resonance, v. 131, p. 232-240. 

Keating, K., 2014, A laboratory study to determine the effect of surface area and bead 
diameter on NMR relaxation rates of glass bead packs: Near Surface Geophysics, 
v. 12, p. 243-254. 

Keating, K., and R. Knight, 2006, A laboratory study to determine the effect of iron 
oxides on proton NMR measurements: Geophysics, v. 72, p. E27-E32. 

Keating, K., and R. Knight, 2010, A laboratory study of the effect of Fe (II)-bearing 
minerals on nuclear magnetic resonance (NMR) relaxation measurements: 
Geophysics, v. 75, p. F71-F82. 

Legchenko, A., J.-M. Baltassat, A. Beauce, and J. Bernard, 2002, Nuclear magnetic 
resonance as a geophysical tool for hydrogeologists: Journal of Applied 
Geophysics, v. 50, p. 21-46. 

Legchenko, A., J. M. Baltassat, A. Bobachev, C. Martin, H. Robain, and J. M. 
Vouillamoz, 2004, Magnetic resonance sounding applied to aquifer 
characterization: Groundwater, v. 42, p. 363-373. 

Lowell, S., and J. E. Shields, 2013, Powder surface area and porosity, v. 2, Springer 
Science & Business Media. 

Matteson, A., J. Tomanic, M. Herron, D. Allen, and W. Kenyon, 1998, NMR relaxation 
of clay-brine mixtures: SPE Annual Technical Conference and Exhibition. 



57	
	

Passey, Q. R., K. Bohacs, W. L. Esch, R. Klimentidis, and S. Sinha, 2010, From oil-
prone source rock to gas-producing shale reservoir-geologic and petrophysical 
characterization of unconventional shale gas reservoirs: International oil and gas 
conference and exhibition in China. 

Senturia, S. D., and J. Robinson, 1970, Nuclear spin-lattice relaxation of liquids confined 
in porous solids: Society of Petroleum Engineers Journal, v. 10, p. 237-244. 

Slijkerman, W., and J. Hofman, 1998, Determination of surface relaxivity from NMR 
diffusion measurements: Magnetic resonance imaging, v. 16, p. 541-544. 

Straley, C., A. Matteson, S. Feng, L. M. Schwartz, W. E. Kenyon, and J. R. Banavar, 
1987, Magnetic resonance, digital image analysis, and permeability of porous 
media: Applied Physics Letters, v. 51, p. 1146-1148. 

Timur, A., 1969, Pulsed nuclear magnetic resonance studies of porosity, movable fluid, 
and permeability of sandstones: Journal of Petroleum Technology, v. 21, p. 775-
786. 

Vogeley, J. R., 1992, 1HNMR relaxation and rock permeability: Geochimica et 
Cosmochimica Acta, v. 56, p. 2947-2953. 

Washburn, K. E., and J. E. Birdwell, 2013, Updated methodology for nuclear magnetic 
resonance characterization of shales: Journal of Magnetic Resonance, v. 233, p. 
17-28. 

Whittall, K. P., M. J. Bronskill, and R. M. Henkelman, 1991, Investigation of analysis 
techniques for complicated NMR relaxation data: Journal of Magnetic Resonance 
(1969), v. 95, p. 221-234. 

Yaramanci, U., G. Lange, and M. Hertrich, 2002, Aquifer characterisation using Surface 
NMR jointly with other geophysical techniques at the Nauen/Berlin test site: 
Journal of Applied Geophysics, v. 50, p. 47-65. 

Zhang, G. Q., G. J. Hirasaki, and W. V. House, 1998, Diffusion in internal field 
gradients: International Symposium of the Society of Core Analysts, Paper. 

 



58	
	

CHAPTER 4 
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Boone Pickens School of Geology, Oklahoma State University, 105 Noble Research 

Center, Stillwater, OK 74078-3031. 

 

ABSTRACT: 

 

The Devonian shale Woodford Shale is source to vast global oil and gas	reserves. 

Signature petrophysical response of the Woodford comprises high resistivity, low bulk 

density, elevated gamma response, and low photoelectric absorption factor. NMR 

measurement is a non-invasive tool for obtaining lithology-independent porosity and 

characterizing other reservoir properties in conventional sandstone or carbonate 

reservoirs, but is problematic in unconventional shale reservoirs due to its small pore 

size, low permeability, and the presence more paramagnetic impurities than with the 

conventional reservoirs. 
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In this study, we measured NMR relaxation and obtained magnetic susceptibility, 

specific surface area and elemental composition measurements in the Woodford. 

Furthermore, we compared NMR based approach of evaluating the Woodford to that 

obtained with traditional petrophysical data including bulk and grain density, neutron 

porosity, resistivity, photoelectric absorption factor and gamma-ray activity provided by 

Weatherford Laboratories. We conclude that integrating NMR data into traditional 

petrophysical data, will provide better insight into unconventional resource evaluation. 

 

4.1 INTRODUCTION 

 

The Woodford Shale is a significant petroleum reservoir and is recognized as the 

primary source rock in the southern Midcontinent of North America (Kirkland et al., 

1992). The Woodford Shale and coeval Devonian shale formations, such as the Marcellus 

(Pennsylvania, West Virginia), Ohio (Ohio, Kentucky), Chattanooga (Tennessee, 

Kentucky), and Bakken (North Dakota), are thought to have sourced nearly 8% of the 

world’s oil and gas	 reserves (Ulmishek and Klemme, 1990). The Woodford Shale in 

Oklahoma and Kansas is well studied for its source rock potential (Kirkland et al., 1992) 

and has been drilled for oil and gas production for more than a decade (Cardott, 2012). 

Typical petrophysical response of the Woodford comprises low bulk density, low 

photoelectric absorption factor, high resistivity, and elevated gamma response (Lewis et 

al., 2004). While the Woodford Shale is the focus of exploration, the petrophysical 

characteristics of the formation are incompletely known. 
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Nuclear magnetic resonance (NMR) is a valuable tool for determining pore-size 

distribution based on the distribution of relaxation times (Kenyon et al., 1995; Latour et 

al., 1995; Hürlimann et al., 2004), from which reservoir properties such as porosity, 

permeability, bound water content, free fluid content and total saturation can be derived 

(Kleinberg, 1994; Allen et al., 2000). The advantages of NMR over other wireline 

surveys are that it can yield a continuous log of permeability, can provide lithology-

independent porosity, is non-invasive and does not require radioactive source (Kenyon et 

al., 1995; Daughney et al., 2000; Westphal et al., 2005; Washburn, 2014). Although 

NMR measurement is a superior tool for characterizing reservoir properties in 

conventional reservoirs like sandstone or carbonate, it is more problematic in 

unconventional shale reservoirs because of small pore size, low permeability (nanodarcy-

microdarcy), and the presence paramagnetic mineral components (Loucks et. al., 2009; 

Washburn, 2014). Shale often contains framboidal pyrite that is capable of hosting 

approximately 20-30% intracrystalline porosity (Kleinberg et al., 1994; Washburn, 2014). 

Much of the iron in shale is associated with framboidal pyrite, whereas very little is 

contained in the organic matter (Acholla and Orr, 1993; Mercer et al., 1993). Whether 

present in aqueous states or mineralogical forms, iron will affect NMR relaxation rates 

(Keating and Knight, 2010), hence the motivation to better comprehend NMR behavior 

of organic-rich Woodford Shale. 

NMR relaxation measurement, as employed in petrophysical studies, entails 

placing a fluid-saturated porous medium in the presence of static magnetic field. The 

magnetic moments of hydrogen nuclei (proton) in the fluid steadily precess around the 

applied magnetic field. A radiofrequency pulse is then applied to perturb magnetic spin 



61	
	

away from the applied magnetic field. Once the radiofrequency pulse is removed, the 

NMR signal returns to equilibrium (i.e., relaxes) via two simultaneous relaxation 

mechanisms. The first refers to the time taken for the perturbed magnetization to relax to 

thermal equilibrium, known as the longitudinal T1 relaxation. The second is the time it 

takes for spins to return from the ordered state induced by an external magnetic field to 

the natural, disordered state known as transverse T2 relaxation time (Levitt, 2001; Keating 

and Knight, 2010; Washburn et al., 2013). NMR surface relaxivity, which relates NMR 

T1,2 to pore size, can also be evaluated through digital image analysis (Straley et al., 

1987), or acquired from digitized thin sections (Howard et al., 1993). Whereas pore size 

distribution obtained by estimating average pore radius from the surface area measured 

by the Brunauer-Emmett-Teller adsorption method (Keating and Knight, 2010), can be 

used to substantiate NMR-based measurements, they are unavailable for downhole 

logging and are prone to the often ignored limitations of measurement scale that are 

encountered in general usage (e.g., Gallegos et al., 1987). 

This research is designed to measure the NMR attributes across 36-ft of the 

Woodford Shale in a core from Barber County, Kansas. The focus of this research is to 

better understand the depositional and diagenetic properties of the Woodford Shale using 

NMR petrophysical data obtained in the Woodford Shale core from Barber County 

Kansas. By comparing selected conventional methods (e.g. neutron porosity, density, 

gamma ray, and resistivity measurements) of petrophysical analysis to the NMR 

approach, drawn inferences will be applied to improve on existing methods of 

petrophysical evaluation of the Woodford hydrocarbon resource.  
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4.2 THEORY AND BACKGROUND    

 

4.2.1 Woodford Shale 

 

The Woodford Shale has a distinct signature in geophysical well logs because of 

elevated gamma count. This is the result of high concentrations of uranium, which causes 

gamma count to exceed 150 API units (Paxton et al., 2006). In general, the environmental 

and depositional conditions that facilitate concentrating uranium in sediments, slow 

diffusion rates of uranium out of seawater under anoxic conditions, also favor the 

preservation of organic matter, confirming the conditions during deposition (Lüning and 

Kolonic, 2003). 

The Woodford Shale contains abundant silica in the forms of amorphous silica 

cement, silt particles, and siliceous microfossils, including radiolaria (Kirkland et al., 

1992; Roberts and Mitterer, 1992; Schieber et al., 2000). The Woodford is rich in pyrite 

and marcasite pyritized burrows which, based on Lobza and Schieber (1999), supports 

the premise that life was able to exist at least episodically within this normally anoxic 

environment. Horizontal pyrite laminae also occur, which could indicate shallow erosion 

surfaces, change in organic material, or an interruption of primary sedimentary fabric due 

to bioturbation (Droser and Bottjer, 1986; Schieber, 1998). 

Magnetic susceptibility (χ) is a measure of how rocks such as shale develop 

magnetic moment when exposed to an external magnetic field. A rock having a positive χ 

value is paramagnetic, whereas one with a negative χ value is diamagnetic (Levitt, 2008). 

Iron-bearing minerals are typically paramagnetic, whereas those lacking iron are typically 
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diamagnetic (G. Q. Zhang et al., 1998). Wedepohl (1971) determined the chemical 

composition of most shale and clay, and observed that they contain 3% Fe2O3 and 4% 

FeO on average. By contrast, sandstone typically has low iron content on the order of 1% 

(Kleinberg and Vinegar, 1996). G. Q. Zhang et al (1998) demonstrated that iron-rich clay 

with high magnetic susceptibility can induce strong internal field gradients, which 

shorten T2 relaxation time. Foley et al. (1996) and Bryar et al. (2000) demonstrated that, 

for any given mineral, iron concentration on the surface of a solid is proportional to its 

rate of relaxation. 

 

4.2.2 Nuclear Magnetic Resonance Relaxation Theory 

 

A summary of NMR theory is presented here; comprehensive reviews are 

available in several publications (Bloembergen et al., 1948; Kleinberg et al., 1994; 

Kenyon, 1997; Coates et al., 1999; Dunn et al., 2002). In this study, the arithmetic mean 

of log T1,2 (T1,2ML), used to represent the relaxation behavior of the rock samples, was 

calculated from the distribution of relaxation times, assuming a case of fast diffusion 

limit for each single pore (Senturia and Robinson, 1970; Brownstein and Tarr, 1979; 

Keating and Knight, 2006) and are given by  

     𝑇!!"!! = 𝑇!!!!  +  𝜌!
!
!

         (24) 

𝑇!!"!! = 𝑇!!!!  +  𝜌!
!
!
+  !

!"
 𝛾𝐺𝑡!  !                                                            (25) 

Here, 𝑇!,!!!!  is the relaxation rate of the bulk water, 𝜌!,! is the surface relaxivity, 𝛾 is the 

gyromagnetic ratio of the hydrogen proton, 𝐷 is the self diffusion coefficient, !
! 

 is the 



64	
	

surface-area-to-volume ratio (inversely proportional to the pore radius 𝑟!"#$), and 𝐺 is the 

average gradient strength. In general, T1 measurements are challenging with borehole or 

surface instruments because they have longer measurement times than T2, and are not 

readily repeated when logging across bedding interfaces (Kleinberg et al., 1993b; 

LaTorraca et al., 1995; Kleinberg and Vinegar, 1996; Bachman et al., 2007; Grunewald 

and Knight, 2009). Therefore, T2 is typically the basis for NMR downhole field 

applications and are the focus of this article. 

According to Grunewald and Knight (2009), in most geologic materials with low 

magnetic susceptibility, surface relaxation dominates, so that the expression for T2
-1 is 

reduced to, 

               𝑇!!! =  𝜌!
!
!
.         (26) 

Whereas, in Keating and Knight (2008) (S/V) or (Spor) is described by 

               𝑆!"# =
!
!

 =  !!!!
!!

         (27) 

where 𝑚! is the mass of the sample, Ss is the specific surface area normalized by the 

sample mass and 𝑉!  is the volume of water in the sample, which also represents the pore 

space volume V (Keating and Knight, 2010). 

 

4.2.3 Longitudinal Relaxation Time to Transverse Relaxation Time Correlation  

 

The T1/T2 correlation plot is an important tool in the study of the molecular relaxation 

(Kleinberg and Horsfield, 1990; Song et al., 2002; Anand and Hirasaki, 2008). A T1/T2 

plot greater than unity for a single, non-viscous fluid system, may suggest the presence of 

magnetic field inhomogeneities in a porous medium and the dependence of the relaxation 
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rate (𝑇!!!) on the 𝑡!! (Kleinberg et al., 1993a, b; Foley et al., 1996; Anand and Hirasaki, 

2008). A plot of 𝑇!!"!!  versus 𝑡!!  may generate a straight line with a slope equal to 

! !"  !

!"
; and if positive slope, indicates the presence of internal gradient effect on 

diffusion relaxation (i.e. G ≠ 0) (Anand and Hirasaki, 2008; Keating and Knight, 2008; 

Keating, 2014). In this study, it is suspected that high amounts of internal magnetic field 

gradients (i.e. its length scale larger than the molecular diffusion length), may affect T2 

relaxation rate and shorten 𝑇!!"  (G. Q. Zhang et al., 1998; Anand and Hirasaki, 2008).  

 

4.3 MATERIALS AND METHODS 

 

4.3.1 Sample Preparation and Characterization  

 

A core of the Woodford Shale was acquired from Tug Hill Operating, 

Incorporated. The core has a length of 11 m (36 ft.) and it was retrieved from the 

Matthews 2-8H well in Barber County Kansas. Thirteen samples were obtained from the 

core at approximately 1.0- to 1.2- m (3- to 4- ft.) intervals in the Woodford Shale to 

conduct primary petrophysical measurements (Figure 3-1). In this study, the 

mineralogical composition of the Woodford was verified by XRD and was plotted on 

ternary modified after Loucks et al. (2012). The reservoir properties such as porosity and 

permeability, fluid saturation, grain density, bulk density, spectral gamma ray, and total 

organic carbon (TOC), were all determined in a laboratory. The brittleness index, which 

is a measure of the volumetric fraction of rigid grains as part of the entire volume of the 

rock matrix (Herwanger et al., 2015), was also determined. All the aforementioned 
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physical and petrophysical parameters were determined and provided by Weatherford 

Laboratories.  

The Woodford core was described using standard stratigraphic and 

sedimentologic procedures; key variables such as rock type, color, and texture, as well as 

physical, biological, and diagenetic structures. The elemental composition of the samples 

were measured using a Niton ™ XL 3t GOLDD hand-held x-ray fluorescence (XRF) 

device and test stand, in order to ascertain the amount of Fe or other paramagnetic 

impurities in the samples. The volumetric magnetic susceptibility (MS), for all the 

samples was measured using a Bartington MS2 Magnetic Susceptibility System. These 

measurements were made at 0.465 kHz frequency. The specific surface area Ss, defined 

as the surface area normalized by the sample mass, was measured using the Brunauer-

Emmett-Teller pore filling model with N2 as an adsorbate (e.g., Lowell and Shield, 2013).  

The effective hydraulic radius R, of the reservoir’s pore system was calculated, and it is 

defined as the ratio of the pore volume Vp to the grain fluid interfacial area S, and serves 

as a critical parameter for permeability estimation equations i.e., R = Vp/S (Goode and 

Sen, 1988). 

 

4.3.2 Nuclear Magnetic Resonance Measurement Procedure 

 

To investigate the NMR response of the Woodford, NMR relaxation data were 

collected with 2-MHz Magritek Rock Core Analyzer using a Carr-Purcell-Meiboom-Gill 

(CPMG) pulse sequence. Data for each sample were collected at 10 echo times, 

specifically 150, 200, 300, 400, 500, 600 800, 1000, 1200, and 1500 µs; with the delay 
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time between stacks exceeding 3 times the relaxation time. For each sample, 50 echoes 

were collected. The 𝑇!!"  for short and long echo time (tE = 150 and 1500 µs) relaxation 

distributions were calculated for each sample. The surface-area-to-volume ratio (Spor) was 

however, determined using the equation from Keating and Knight (2010). Average T2ML
-1 

data and specific surface area were used to calculate the surface relaxivity of the lower 

Woodford zone. Each measured magnetization decay signal used to develop a T2 

relaxation time distribution was inverted using a regularized non-negative least squares 

algorithm after Whittall et al. (1991). Using this method, the data were fitted to a 

distribution of 160 logarithmically spaced T2 values ranging from 10-4 to 101 s. Next, the 

inverted model was regularized for smoothness and minimization of inversion artifacts. 

The mean log relaxation time, 𝑇!!" , was used to represent the NMR relaxation behavior 

of the samples. This variable is expressed as the sum of the bulk, surface, and diffusion 

T2 relaxation rates. The Longitudinal T1 measurement for each sample was performed 

using an inversion recovery sequence.  

In order to verify the presence of magnetic field inhomogeneities, T1/T2 ratio was 

measured according to Kleinberg and Horsfield (1990); Song and others (2002; Anand 

and Hirasaki (2008). The tau ratio 𝜏! 𝜏!varied logarithmically from a minimum of 0.2 to 

1000 ms. τ1 refers to the time period over which the spin magnetization decays along the 

ᵶ axis. During τ2, the decay is due to T2. A plot of the T2 logarithmic mean relaxation 

(𝑇!!"!! ) versus square of echo spacing (𝑡!!) was used to validate the presence of internal 

gradient (due to magnetic susceptibility contrasts) (i.e. G ≠ 0) if positive slope (Anand 

and Hirasaki, 2008; Keating and Knight, 2008; Keating, 2014;). All the data were stacked 

256 times, and a signal-to-noise ratio of 200 was achieved for all T1, T2, and T1-T2 
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measurements. Also, all measurements were made at 30°C to avoid changes in the NMR 

response due to variations in temperature. Replicate measurements were made for each 

sample in order to verify repeatability and control experimental error. 

 

4.4 RESULTS  

 

4.4.1 Core Description 

 

 Foltz (2015) subdivided the Woodford in this core into the lower section from 

4876 to 4860 ft. as the lower pyrite-rich (LPR) zone or Lower Woodford and the upper 

pyrite-rich (UPR) zone or Upper Woodford from 4859-4838 ft. based on the Woodford 

Shale in the Matthews core visual description. The lower pyrite-rich (LPR) zone is 

assessed to be of superior reservoir quality and Weatherford Laboratories conducted 

additional petrophysical measurements from the zone (between 4874-4862 ft.). This LPR 

zone contains pyrite laminae, pyrite nodules, disseminated silt-sized pyrite, and a few 

pyrite bands at 4860‒4867 ft. (Figure 4-1). Horizontal zones of concentrated silt-sized 

pyrite occur at 4874 and 4863 ft., but the pyrite is not abundant enough to be defined as a 

layer. A large pyrite nodule occurs at 4872 ft. that is 1 x 2 cm, but all other nodules are 

less than 1-cm. Pyrite laminae are usually less than 0.1 cm and the defining characteristic 

of this interval. Also in the LPR zone at 4867 ft. are a few anomalous pyrite features 

shaped like two semi-circles that are <1 cm in length. The contact of the LPR zone with 

the next interval was placed along a 1 cm thick pyrite band. The upper Woodford section 

(4859‒4838 ft.) is identified here as the upper pyrite-rich (UPR) zone. This zone contains 
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disseminated silt to sand-sized pyrite and pyrite nodules, but lacks the pyrite laminae 

evident in the LPR. Pyrite bands are not common in the UPR, but do occur at 4844, 4851, 

and 4855 ft. (Figure 4-1). The pyrite nodules are spherical, less than 1 cm in diameter, 

and occur singularly or in groups. Color changes from black to dark gray, was noticeable 

when the core is wet, and occurs at 4846 and 4848 feet (Figure 4-1).  

 

4.4.2 Physical Properties 

 

Results of the analyses performed by Weatherford laboratories are presented in 

Table 4-1. Clay content in the Woodford Shale samples ranges from 44 to 66% (Table 4-

1). Quartz content averages 24%, pyrite content ranges from 1 to 6% whereas feldspar 

content averages 10%. The concentration of carbonate minerals ranges from 0 to 10%. 

Total organic carbon (TOC) content ranges from 1.5 to 8.5 percent (Table 4-1). The 

brittleness index, which is a measure of the volumetric fraction of rigid grains as part of 

the entire volume of the rock matrix (Herwanger et al., 2015), averages 29 (Table 4-2).  

The lower Woodford zone has bulk density averaging 2.48 g/cc and grain density 

between 2.68 and 2.72 g/cc. Magnetic susceptibility is between 6 and 12 m2/g, specific 

surface area is between 151 x 10-6 and 186 x 10-6, and total iron ranges from 4 to 5 

percent of the total rock mass. Water, oil and gas saturations range from 67-74%, 22-28% 

and 3-9%, respectively. 

Well logs were run by Weatherford, and relevant curves include gamma ray, 

spectral gamma ray, resistivity, neutron porosity, and density porosity. Spectral gamma-

ray logs (Figure 4-2) indicate that the elevated gamma count of the Woodford section is 
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due to high Uranium content. The lower part of the Woodford core has consistently high 

resistivity averaging 12 ohmm relative to the upper part averaging 7 ohmm. Neutron and 

density porosity values are highest between 4845 and 4857 ft., which is also where 

gamma count and TOC content are highest. Bounding this interval, for comparison, are 

strata with the lowest neutron-density porosity, gamma, and TOC values. 

 

4.4.3 Nuclear Magnetic Resonance Relaxation 

 

Only a single T2 peak was observed for each echo time in all the samples. The 

𝑇!!"  value at long tE relaxed slower than both the short and average tE. The values of the 

short tE range from 0.7 to 1.2 ms, whereas the values for the long tE range from 1.7 to 6.0 

milliseconds. The presence of more than one fluid in a pore can cause overlapping 

signals, which may result in varying T2 values at different tE. For all the samples, T1/T2 

maps plotted marginally above the 1:1 line and some of the plots are presented in Figures 

4-3.  

A positive slope in a plot of T2ML
-1 vs. the square of the echo spacing (tE

2) may 

suggest the presence of an internal magnetic field gradient (i.e. G ≠ 0) (Anand and 

Hirasaki, 2008; Keating and Knight, 2008; Keating, 2014). A general negative trend for 

all thirteen samples is indicative of relaxation in the absence of an internal magnetic field 

gradient (Figure 4-4), and this agrees with the plot of the T1/T2 ratio.  
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Figure 4-1. Schematic description of lithology and depositional, biogenic, and 

authigenic features in the Woodford core. 
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Table 4-1: XRD data of major mineral components from Woodford core in Barber 

County, Kansas 

 

 

 

 

 

 

 

 

 

 

 

Core 
Depth 

(ft.) 

CLAY 
MINERALS 

(wt.%) 

QUARTZ 
(wt.%) 

CARBONATE 
(wt.%) 

PYRITE 
(wt.%) 

FELDSPAR 
(wt.%) 

TOC  
(%) 

4838 60 26 1 1 11 1.46 

4841 61 23 2 2 11 1.55 

4844 51 26 8 3 11 2.87 

4847 46 28 10 3 11 4.92 

4850 66 20 0 1 12 5.31 

4853 62 20 1 2 14 6.25 

4856 63 17 2 6 12 8.5 

4859 44 31 10 3 11 3.54 

4862 51 28 8  6 7 3.11 

4866 58 24 6 3 8 3.27 

4870 55 23 9 4 8 3.14 

4871 58 21 6 5 9 3.39 

4874 54 21 9  2 9 4.52 
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Table 4-2: T2ML at long & short tE, TOC and brittleness index from Woodford core in 

Barber County Kansas 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-3: Reservoir properties and percentage iron from Woodford core in Barber 

County, Kansas	

 

Core Depth 
(ft.) 

T2ML: Short 
(msec.) 

T2ML: Long 
(msec.) 

Brittleness Index 
(BI) 

 

4838 1.0 1.8 26.7  

4841 0.8 1.8 25.7  

4844 0.8 2.0 33.9  

4847 0.7 1.9 36.5  

4850 0.7 6.0 22.1  

4853 0.8 1.7 24.5  

4856 1.1 2.4 21.0  

4859 1.2 2.4 40.0  

4862 1.1 2.5 32.2  

4866 1.0 2.1 27.9  

4870 1.0 3.2 29.7  

4871 0.8 3.0 26.3  

4874 1.2 2.5 29.1  

Core Depth 
(ft.) 

Bulk Density 
(g/cc) 

Grain 
Density 
(g/cc) 

Specific 
Surface Area 

(m2/g) 

MS (x 10-6 SI)  

(∆χ) 
 Fe (wt.%) 

4862 2.48 2.72 6.0 161  4 

4866 2.48 2.71 10.4 181  4 

4870 2.48 2.71 12.0 186  4 

4874 2.47 2.68 12.0 151  5 
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Table 4-4: Petrophysical and more reservoir properties from Woodford core in Barber 

County, Kansas 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Core Depth 
(ft.) 

Water 
Saturation 
% of PV  

Oil 
Saturation 
% of PV   

Gas 
Saturation    
% of PV 

Porosity  

% BV 

Permeability 
(nanoDarcy) 

4862 67.2 28.1 4.7  8.6 341 

4866 67.0 24.4 8.6  8.6 317 

4870 74.0 23.2 2.8  8.6 104 

4874 70.4 22.4 7.2  8.0 1700 
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Figure 4-2: Open hole log signatures of the Woodford in south central Kansas. Orange 

dots in track one indicate the sample points. The solid green curve is the total gamma-ray 

curve with scale from 0 to 700 GAPI. The solid pink, red and blue curves are for 

Thorium from 0 to 20 parts per million (ppm), Uranium from 0 to 35 ppm, and 

Potassium from 0 to 5% in tracks two, three and four respectively. Resistivity log is the 

solid red curve in track five while the neutron and density logs are in last track in dash 

blue and solid red curves, respectively. The Light grey highlight delineates the Upper 

from Lower Woodford zone in the study locality.	
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4.5 DISSCUSSION 

 

 Variation of the mineralogical composition of shale implies that chemical and 

mechanical properties will vary. Most producing shale reservoirs tend contain less than 

50% clay (Passey et al., 2010; Loucks et al., 2012). Clay minerals, are relatively ductile 

and stress-sensitive, may influence the Spor of pores. And under stress, clay can distort 

and reduce the volume pore spaces. By contrast, quartz, pyrite, feldspar, and carbonate 

form rigid particles that support the rock framework. High concentration of these rigid 

grains may be associated with cluster of larger pores (Loucks et al., 2012). Within the 

Figure 4-3: T1/T2 correlation map for the Woodford. Plots marginally above the 1:1 

line indicate absence of magnetic field inhomogeneity in the system. The plots at 4866, 

4853, 4847 and 4841 ft. bear similar characteristics to the entire Woodford Shale in the 

Matthews core and plotted marginally above the 1:1 line. Dashed line is 1:1(unity). 
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Woodford study interval, most of the shale contains more than 50% clay. Exceptions are 

at depths of 4859 and 4847 ft. (Figure 4-5). These clay-dominated intervals are expected 

to have undergone more compaction and are more chemically and mechanically unstable 

than the non-clay dominated intervals. On the other hand, shale containing less than 50% 

clay has mixed mineralogy of carbonates, feldspars and pyrite, may be more brittle 

(Figure 4-5B). While carbonate minerals may enhance brittleness of rocks, they may 

typically reduce pores when they are present as cementation materials (Loucks et al., 

2012). Both intervals (4859 and 4847 ft.) correspond to the zones with highest brittleness 

index in the core (Figure 4-5A). In addition, the ratio of thorium-to-potassium (Th/K) 

(Figure 4-6), which gives insight into the geochemical maturity and degree of compaction 

of sediments (Hassan et al., 1976), plotted from spectral gamma ray open hole logs 

indicate no significant variation in geochemical maturity or compaction throughout the 

core. The plot of brittleness index vs. total clay gives further insight into the 

mineralogical variation across depth (Figure 4-5A). The interval from 4847 to 4838 ft. 

contains clay content and brittleness index similar to that observed between 4874 and 

4859 ft. These two zones have a more brittle character that may facilitate effective 

hydraulic fracturing. 

 

4.5.1 Nuclear Magnetic Resonance Characterization 

 

The T1/T2 map plots marginally above the 1:1 line is indicative of absence of extra 

transverse relaxation induced by internal magnetic field gradient. However, the small 

deviations from the 1:1 line may be due to noise and the limitations of the inversion 
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algorithm. The absent extra relaxation is probably due to low to negligible magnetic 

susceptibility contrast between the pore fluids and grains (Table 4-1). This assertion is 

corroborated by the plot of T2ML
-1 vs. (tE

2) which resulted in a negative slope (i.e. G = 0) 

and is indicative of the absence of diffusion relaxation, which if present, may speed up 

relaxation with increasing tE (Song et al., 2002). This is not the case as the T2ML measured 

in the Woodford is larger at long tE than at short tE. The values of T2ML
-1 are determined 

by the equation T2ML
-1 = T2S

-1 + T2B
-1 + T2D

-1, but T2D
-1 = 0 and the magnetic susceptibility 

contrast between the pore fluid and grains is negligible. Surface relaxation will be the 

dominant relaxation mechanism in a geologic material with negligible magnetic 

susceptibility (Grunewald and Knight, 2009), which in our case, the expression for T2ML
-1 

is reduced to 

              𝑇!!"!! = 𝑇!!!! = 𝜌!
𝑆
𝑉 .                                                                                           (28) 

Paramagnetic impurities on pore surfaces are capable of enhancing the surface relaxivity 

𝜌!  (Foley et al., 1996; Bryar et al., 2000). However, this effect is expected to be 

insignificant based on the reasons stated above. 
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Figure 4-4: Plot showing the dependence of T2 relaxation on echo spacing tE, 

for the Woodford core from Barber County, Kansas.	
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Figure 4-5: (A) Comparative plot between total clay and brittleness index across the 

Woodford Shale core from Barber County, Kansas. (B) Mineral compositional 

diagram showing stability relationships between end member minerals in the 

Woodford core from Barber County, Kansas (modified from Loucks et. al. (2012). 
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The T2ML
-1 values were plotted at short and long tE and the general observation 

was increase in both values in the lower Woodford zone than in the upper zone. T2 relates 

to the total number of hydrogen nuclei present within the pore which is used for porosity 

estimation (Kenyon et al., 1995; Keating and Knight, 2006), whereas the T2ML
-1 = 𝜌! 

(S/V) relationship links NMR relaxation rate to permeability (Timur, 1969). A lower T2 

value typically reflects the relative size of smaller pores while higher T2 values 

corresponds directly to larger pore signals (Grunewald and Knight, 2009). At 4850 ft., the 

T2ML
-1 value at long tE was significantly larger than for the entire interval. This sample 

also has the highest quantity of total clay in the interval. All clays have hydroxyl groups 

(OH-) in their crystal structure that affect measurements of neutron porosity (Passey et 

Figure 4-6: Geochemical maturity plot of Th/K ratio in the Woodford Shale core. 
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al., 2010). In addition, large amounts of clay-bound water (i.e., capillary bound water or 

clay adsorbed water), can lead to erroneous estimation of water saturation (Sw) (Eslinger 

and Pevear, 1988; Passey et al., 2010). The significantly high T2ML
-1 value at long tE may 

be due to the clay effect so described above which is not expected to be part of 

producible porosity. This contention again raises the argument in favor of either T2ML
-1 or 

T2 cut-off value in determining producible or moveable porosity and as input parameter 

in the two permeability estimator equations, Timur-Coates or SDR (Timur, 1968a, b; 

Timur, 1969; Coates and Dumanoir, 1973; Kenyon et al., 1988; Kleinberg and Boyd, 

1997; Sezginer et al., 1999; Allen et al., 2001).  

In many geologic materials, where ρ2 varies with mineralogy, it is logical to 

assume that pore surfaces are compositionally or morphologically heterogeneous 

(Keating and Knight, 2010). The ρ2 within the lower Woodford zone, although low, 

showed minimal variations, which may favor the presence of a more Fe2+ over Fe3+ rich 

mineralogy. The spin number for Fe2+ is less than that for Fe3+ and will result in lower ρ2 

for Fe2+-bearing minerals than for Fe3+-bearing minerals (Keating and Knight, 2010). 

This supports the description of the Woodford as being deposited under oxygen-deficient 

conditions, that favored organic matter preservation and allowed iron to be present in 

reduced state as Fe2+ (Cardott and Lambert, 1985; Arthur and Sageman, 1994). This 

contention is supported by visible iron sulfide (pyrite) in core samples (Figure 4-1) and 

XRD data shown in Table 4-1. 
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Figure 4-7: The comparative plot of T2ML at long (red curve) & short (blue 

curve) tE across the Woodford core from Barber County, Kansas.  
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Table 4-5: Surface Relaxivity ρ, and Pore Volume to Surface Vp/S, values at average 

Echo Spacing across Lower Woodford core from Barber County, Kansas 

 

 

 

 

 

 

The effective hydraulic radius R, of the reservoir’s pore system, which is defined 

as the ratio of the pore volume Vp to the grain fluid interfacial area S, which is an input 

parameter for permeability estimation equations i.e., R = Vp/S (Goode and Sen, 1988) 

(Table 4-5). These hydraulic radii are a measure of the distance a proton has to travel to 

reach a paramagnetic site (Keating and Knight, 2010). The small hydraulic radius or short 

distance to paramagnetic site indicated by the value of Vp/S in supports the fast T2 

relaxation measured in the Woodford as well as the low porosity and nanoDarcy 

permeability typical of the lower Woodford zone. 

 

4.6 CONCLUSIONS 

 

 This research reviewed petrophysical data provided by Weatherford Laboratories 

for a Woodford Shale core from Barber County, Kansas. The data described a potential 

reservoir rock, which was partitioned into upper and lower zones based on chemical, 

trace element concentrations, clay mineral concentrations mechanical stability, the 

Core Depth (ft.) ρ (µm s-1) Vp/S (nm)  

4862 0.50 8.0  

4866 0.35 4.6  

4870 0.10 1.3  

4874 0.15 2.3  
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brittleness index, and reservoir quality exhibited by the zone labeled as the Lower 

Woodford than the Upper zone. 

 NMR measurements obtained from the core to provide a superior approach to 

characterizing reservoir, showed no evidence of relaxation in the presence of an internal 

magnetic field gradient. Although surface relaxation was determined to be the dominant 

relaxation mechanism, the low value and minimal variation in the surface relaxivity is 

validated by the presence, and quantity of a more Fe2+ rich mineralogy in the Woodford 

zone. 

 Finally, values of T2ML
-1 (at both long and short tE), which are indexed to porosity, 

generally increased in the zone described as the Lower Woodford compared to the Upper 

Woodford. The small hydraulic radii or short travel distance of protons to paramagnetic 

sites were determined to be reasonable given the observed enhanced relaxation of the T2 

time, and measured low porosity and permeability values obtained for the Lower 

Woodford.  

All observations summarized above provide a new insight into the Woodford 

Shale in Barber County Kansas as a good candidate for further resource evaluation. 
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CHAPTER 5 
 

 

SUMMARY OF RESEARCH AND FUTURE WORK 

 

This thesis is designed to interpret the effects of paramagnetic minerals on the 

determination of pore-size distribution in shale using NMR and the implications for 

estimating permeability.  

In chapter 2, based on the models put forward by Kleinberg and Vinegar (1996), 

G. Q. Zhang et al. (1998, 2003), Hürlimann (1998), and Anand and Hirasaki (2008), the 

pore geometry was defined as well as the magnitude of the internal gradients, pore size 

distribution was characterized, and secular relaxation regimes were categorized. Internal 

magnetic field gradient was determined to dominate the tool gradient, whereas all of the 

minerals were computed as having small pore except celadonite and montmorillonite. 

The implication of these classifications is that T2ML shifted to faster time, which may 

result in the overestimation of BFV, which when used as input parameter into 

permeability equation, and thus, will lead to underestimation of NMR permeability. 

In chapter 3, the effects on compaction on NMR T2 relaxation was determined by 

considering four common clay minerals, including montmorillonite, glauconite, illite and 

chamosite mixed with brine and compacted to simulate reservoir conditions. NMR signal 



92	
	

was observed to progressively decay at a faster relaxation rate, to shorter times as 

compaction, and pore volume-to-surface-ratio, increased.  

In chapter 4, the outcome of the analyses carried out in chapters 2 and 3 were 

applied in order to improve on petrophysical interpretation of the Woodford Shale core 

from Barber County, Kansas. NMR measurements obtained from the core showed no 

evidence of relaxation in the presence of an internal magnetic field gradient, and although 

surface relaxation was determined to be the dominant relaxation mechanism, the low 

value and minimal variation in the surface relaxivity is validated by the presence, and 

quantity of a more Fe2+ rich mineralogy in the Woodford zone. 

 The results of our study underscores the need to modify the approach of 

petrophysical interpretation of shale reservoirs using transverse T2 relaxation time, 

however, it should not serve as a definitive guide. Further experimental and simulation 

work are required because of the wide range of heterogeneities associated with shale. It is 

recommended that the workflow from this research be ran on multiple unconventional 

reservoir rocks in order to quantify the internal gradients and determine the critical point 

and magnetic mineral concentration at which internal gradients become problematic. 

Secondly, it is recommended that several compaction stages be measured and quantified 

so as to determine the critical point where compaction diminishes the reservoir quality, 

and finally, open-hole NMR logging is recommended for integrated reservoir appraisal. 
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