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Abstract: Multiplication has long been an important part of any computer architec-
ture. It has usually been a common case for most computer architecture decisions
to include in any microarchitecture. However, the difficulty in creating hardware for
multiplication because of its inherent shifting of the radix point has been a cogent
reason for the need for floating-point hardware in scientific applications. The IEEE
754 floating-point standard was originally ratified in 1985 [1] and later amended in
2008 [2] to make floating-point multiplication easier for users to implement applica-
tions. Although floating-point arithmetic creates a mechanism to make things easier
for using multiplication, it is complicated both algorithmically and practically for
hardware implementations.

This dissertation discusses possible architectural improvements in IEEE-compliant
floating-point multiplication for Machine Learning/Deep Learning applications. First,
a combined IEEE half and single precision floating-point multipliers is proposed to
reduce power dissipation for Deep Learning applications. Second, a novel rounding
scheme is proposed that is simpler but comparable with the state-of-the-art rounding
schemes. Third, an optimized design is proposed that can handle both denormal and
normal numbers. Finally, a hybrid precision design is proposed, aiming to improve
the power consumption of Machine Learning/Deep Learning applications. Proposed
designs are targeted to Machine Learning/Deep Learning applications-specific pro-
cessors to improve the latency and power consumption. All designs are implemented
in RTL-level Verilog, verified for correctness against open-source TestFloat generated
test vectors, and synthesized using an ARM 32nm CMOS library for Global Foundries
(GF) cmos32soi technology for estimated power, area and delay analysis.
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CHAPTER 1

INTRODUCTION

In recent years, deep learning has grown tremendously in its popularity and use-

fulness [8]. However, deep learning is computationally intensive, power-hungry and

often limited by its hardware capability. Basically, deep learning is a deep neural

network, which consists in convolutions and matrix multiplications. In [9], authors

show that 90% computation of convolutional neural network (CNN), a typical deep

neural network, is due to convolution operations. Therefore, multipliers are the most

space- and power-hungry arithmetic operators of the digital implementation of CNN.

This is also true for other types of machine learning that heavily based on a matrix

multiplication.

In addition, multiplication has long been an important part of any computer

architecture. It has usually been a common case for most computer architecture

decisions to include in any microarchitecture. However, the difficulty in creating

hardware for multiplication because of its inherent shifting of the radix point has

been a cogent reason for the need for floating-point hardware in scientific applications.

The IEEE 754 floating-point standard was originally ratified in 1985 [1] and later

amended in 2008 [2] to make floating-point multiplication easier for users to implement

applications. Although floating-point arithmetic creates a mechanism to make things

easier for using multiplication, it is complicated both algorithmically and practically

for hardware implementations.

To account for these changes, specifically for rounding, key research was intro-

duced to help alleviate problems related to round-to-nearest-even [4]. Good hard-
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ware for rounding in IEEE-compliant floating-point arithmetic is key to expanding

algorithms, numerical methods, and applications that exploit techniques to control

validation in loss of precision (e.g., through interval arithmetic [10]). Although [4]

is paramount in determining good rounding for IEEE 754 arithmetic, it has the de-

ficiency of not supporting all four IEEE rounding modes. Additional work clarifies

designs for improving rounding as well as giving optimal hardware [5, 11]. Although

these papers give good designs, there are additional questions about verification and

possible improvements. Consequently, this dissertation shows modifications that can

be done to help optimize this process and efficiently correct for all four rounding

modes. This dissertation presents an improved implementation described using the

IEEE 754 double-precision floating-point format [1, 2] but it can be easily adapted to

all other IEEE-compliant formats with a small modification. Moreover, this disser-

tation verifies all designs and details whether the designs are specifically IEEE 754

compliant.

In addition, correct rounding of both normal and denormal results further exac-

erbates the growing complexity of an IEEE 754 multiplier. Due to the importance of

high precision in scientific applications [12], the precision must be preserved. Simply

truncating denormal results to zero is unacceptable [13], especially with half- and

single-precision floating-point numbers. Consequently, having floating-point units

that can handle normalized and denormalized numbers is essential, especially for

scientific computing [14]. Recently there have been several types of hardware imple-

mentations that handle floating-point denormalized IEEE-754 numbers [15, 16, 17].

This dissertation discusses methods of implementing both normalized and denor-

malized IEEE 754 numbers [2]. In particular, it combines the pre-normalizing and

post-normalizing steps in existing methods into a simpler and faster single step.

While most general-purpose CPU/GPU utilize double-precision floating point

units, single-precision floating-point is widely used in deep learning as the default

2



format because its advantage in a representable range that makes it suitable for a

wide range of applications [2]. Moreover, recent research [18] shows that, in many ap-

plications, single-precision floating-point multipliers can be replaced by half-precision

floating-point multipliers in training deep neural networks, which have little to no

impact on the network accuracy. Smaller multipliers also lead to a lower overall en-

ergy footprint even in systems that have multiple IEEE 754 formats implemented in

hardware. Therefore, there is a need for a new multipliers that can switch between

precision numbers in implementing deep learning.

This dissertation ultimately provides an IEEE 754 compliant floating-point multi-

plier that can handle half-, single-, and double-precision operations. Previous imple-

mentations [19, 20] only demonstrated methods for single- and double-precision oper-

ations, however, this design extends the ideas by specifically adapting the architecture

for half-precision IEEE 754 multiplication. Half-precision floating-point multipliers

are new additions to the 754 standard that are specifically useful for architectures

that use machine learning computations [2]. Most importantly, by utilizing smaller

amounts of precision, these multipliers can speed up computations for designs that

are well suited for neural networks and machine learning applications [21]. More-

over, extensions are added to the multiplier to also handle denormalized IEEE 754

floating-point numbers as well as half- and single-precision floating-point numbers.

The rest of this dissertation is organized as follows: Chapter 2 is the background

about IEEE floating-point formats and multiplication. Chapter 3 is a combined IEEE

half and single-precision multipliers for deep learning applications. Chapter 4 briefly

summarizes and clarify the key contribution in Santoro, Bewick and Horowitz [4]

(SBH) method, Quach, Takagi and Flynn [5] (QTF) method, and Even and Seidel [6]

(ES) method and then shows our proposed method that can support all rounding

modes. Chapter 5 is a novel design that support both normalized and denormalized

floating point numbers. Chapter 6 is a hybrid precision design that can switch preci-

3



sion mode easily. Chapter 7 presents how all designs are implemented, verified, and

simulated for delay, area, and power. Finally, Chapter 8 is the conclusions and future

work.
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CHAPTER 2

BACKGROUND

2.1 Floating-Point Formats

The IEEE 754 floating-point standard, originally ratified in 1985 [1] and later am-

mended in 2008 [2], defines the floating-point format that consists of three parts: sign

(S), exponent (E), fraction or mantissa (F) as shown in Figure 2.1. Table 2.1 shows

the operand structure for the current IEEE 754-2008 formats including half-precision,

single-precision, double-precision and quadruple-precision formats with the size and

bias values for each format.

With the IEEE 754 format, the exponent is adjusted so that the sum of the real

exponent and a constant (bias) are in a non-negative range. This is designed to avoid

using two’s complement encoding that can be difficult to handle for multiple fields as

well as simplifying implementations for comparison. The bias is given as:

bias = 2exponent size−1 − 1 (2.1)

where the value of the exponent is set according to the representation given in the

IEEE 754 standard (e.g., double-precision). This value represents the midway case

between the minimum and the maximum exponent values.

Normalized (or normal) IEEE floating-point numbers are assigned a mantissa

between the range of [1, 2) to create a packed representation of numbers in scientific

notation. The encoding assumes that the mantissa has a leading one so that its

representation exists between the range of [1, 2). In order to save space, the leading

5



(s) Exponent (e)

MSB

52  516263

LSB

0

Word 0

Fraction (f)

Word 1

Figure 2.1: Data formats for the floating point

Format Size Sign (S) Exponent (E) Bias Value (B) Fraction (F)
Half-Precision (binary16) 16 1 5 15 10
Single-Precision (binary32) 32 1 8 127 23
Double-Precision (binary64) 64 1 11 1023 52
Quad-Precision (binary128) 128 1 15 16383 112

Table 2.1: IEEE 754-2008 floating-point formats

1 is not stored, but hidden. This can be represented by the following equation for a

given normalized IEEE 754 floating-point number X:

X = (−1)S · 1.F · 2E−bias (2.2)

On the other hand, for denormalized (or denormal) numbers, the value of X is

given by:

X = (−1)S · 0.F · 21−bias (2.3)

where the leading hidden bit is now 0. Some texts refer to this as subnormal numbers.

A zero (0) exponent and non-zero mantissa indicates a denormalized number (i.e.,

XE = 0 and XF 6= 0). Denormal numbers fill the gap between smallest normal

numbers and zero by allowing numbers with reduced precision to exist. Ultimately,

denormalized numbers are designed to limit gradual underflow [22, 23].

In addition to normalized and denormalized numbers, IEEE 754 also defines spe-

cial values including zeros, infinity (Inf), quiet Not-a-Number (qNaN), and signaling

Not-A-Number (sNaN). A NaN is utilized to represent numbers not possible for typ-

6
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Figure 2.2: Normalized, denormalized, and special numbers (binary16)

ical floating-point representations. Figure 2.2 shows the definition for those special

values in half-precision (binary16) format.

2.2 Floating-Point Multiplication

Floating-point multiplication complicate accuracy and precision because of the move-

ment of the radix point during a multiplication [12]. That is, the final result must be

formatted in the IEEE 754 format before it is written back to a datapath/memory

unit as a result [1]. For this reason, floating-point computations can possibly pro-

duce unreliable computations due to rounding and exceptions within the IEEE 754

standard [24].

Given two floating point numbers X and Y represented by (SX , EX ,MX) and

(SY , EY ,MY ), respectively, the product Z represented by (SZ , EZ ,MZ) can be math-

7



ematically computed as follows:

Z = X ·Y

= (−1)SX · 2EX−B ·MX · (−1)SY · 2EY −B ·MY

= (−1)SX+SY · 2(EX+EY −B)−B · (MX ·MY ) (2.4)

Since MX ,MY are 53 bits number in the [1, 2) domain,the product MX ·MY results

in a 106 bit number in the [1, 4) range. Therefore, an additional round normalize

step is needed to round and then normalize this product to a 53 bit number in

the [1, 2) interval. Interestingly, if the product overflows (i.e., great than 2), the

exponent should also be updated (increased by 1) to compensate for the rounding

and normalization as shown in Equation 2.5.

SZ = SX + SY = SX ⊕ SY

MZ = round normalize(MX ·MY )

EZ =


EX + EY −B if MX ·MY ∈ [1, 2)

EX + EY −B + 1 if MX ·MY ∈ [2, 4)

(2.5)

Figure 2.3 shows a block diagram detailing the overall generalized IEEE 754 mul-

tiplication architecture. The design consists of several stages: unpack (hidden bit

and other exception and bit testing), sign, exponent and mantissa logic blocks and

final result packing. As per the IEEE 754 standard, five flags are produced Infinite

or Divide by 0 (I), Inexact (X), Invalid (V), Overflow (O) and Underflow (U). Some

flags, such as Divide by 0, are not appropriate for floating-point multiplication as it

is not possible. Regardless if a flag makes sense, correct IEEE 754 functional units

produce all five flags.

8



Normalization
Round

Addition
Exponent

Packing/Exceptions

Unpack/Check Inputs

XOR

Multiplier

Exponent

Update

UOVXI

SX EX FX SY EY FY

1.FX 1.FYSX SY EX EY

SZ EZ MZ

MX MY

ovf

SZ EZ MZ

EX + EY − Bias

Figure 2.3: Block diagram of multiplier

The first step in floating-point multiplication unpacks the IEEE numbers by find-

ing the hidden bit as well as checking for any special cases (e.g., NaNs). Once this

step is completed, the normalized operands are separated into four sub-fields: spe-

cial values, sign, exponent, and mantissas. To compute the product sign, an XOR

gate combines the operand sign bits. Simultaneously, the exponents are added and

the bias subtracted to produce an intermediate exponent. Finally the intermediate

exponent must be adjusted if the intermediate product in mantissa multiplication

overflows into position [53] (since multiplication results in values greater than 2).

The mantissas are multiplied using a binary multiplier (as described in Section 2.3)

that includes three steps: partial product generation to generate the partial product

bits, partial production reduction to reduce the partial product bits to sum and carry

vectors, and a carry propagate addition to add the sum and vectors to produce the

product. The output of this stage is then fed into the rounding and normalization step.
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Figure 2.4: Partial products matrix of multiplication

Finally, the result is packed into the IEEE 754 format and exceptions are generated, if

necessary. The important and critical stage of rounding is required to correctly round

the final result according to its predefined rounding mode. Most general-purpose

processing units store the rounding mode in a separate states register [25].

2.3 Mantissa Multiplication

A key step in the FP floating-point multiplication is the mantissa multiplication.

Basically, given a m-bit multiplicand A and a n-bit multiplier B, the multiplication

produces a (m + n)-bit product (i.e.,P = A ·B. Figure 2.4 illustrates the multipli-

cation of 11-bit half-precision mantissa using a partial product matrix diagram. In

many cases when A, B, and P are large, the dot diagram, in which a dot represents

a partial product bit, is often used for the sake of simplification [3].

Generally, multiplication includes three separate stages as follows:

1. Partial Product Generation (PPG) - utilizes a collection of gates (e.g. AND

gates) to generate the partial product bits ai · bj.

2. Partial Product Reduction (PPR)- utilizes adders to reduce the partial products

to sum and carry vectors.
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Figure 2.5: Modified half adder and full adder (Adopted from [3])

3. Final Carry Propagate Addition (CPA) - adds the sum and carry vectors to

produce the final product.

High speed multipliers are typically classified into parallel multipliers and sequen-

tial multipliers. Since the mantissa multiplication is not the focus of this dissertation,

only key parallel multipliers will be discussed briefly. The parallel multipliers can be

classified further into array multipliers and tree multipliers.

2.3.1 Array Multipliers

Carry-Save Array Multipliers (CSAM) are a simple multiplier in which partial product

bits are added in the array topology, similar to the paper-and-pencil multiplication

process. The CSAM first generates partial product bits by utilizing AND gates and

then uses an array of Carry-Save Adders (CSAs) to perform partial product reduc-

tion [3].

To perform Carry-Save Array Multiplication, adders are modified so that they

can perform both partial product generation and addition. Two kind of modified

adders are being used and called the modified half adder (MHA) and the modified

full adder (MFA) as in Figure 2.5. The MHA consists of an AND gate to generate the

partial product bit, followed by one half adder (HA) to add this partial product bit
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Figure 2.6: Example of 8× 8-bit carry-save array multiplier [3]

and another one from the previous row. Similarly, the MFA consists of an AND gate

for generating partial product bit, followed by a full adder (FA) to add this partial

product bit with the sum and carry from previous row. Given these modified adders,

the CSAM can be implemented as in Figure 2.6.

12



PP Matrix

Re-organize dot matrix

PP Reduction

PP Reduction

Carry-Propagate Adder

Figure 2.7: Example of 4× 4-bit Wallace tree multiplier (Adopted from [3])

2.3.2 Tree Multipliers

Tree multipliers use the tree topology for the partial product reduction stage. In

particular, tree multipliers reduce the partial products down until their height is

equal to 2 then apply a high-speed CPA to get the final result.

The first type of tree multiplier is called a Wallace tree multiplier that was in-

troduced in 1964 [26]. Dadda multipliers [27] were later introduced one year after

Wallace method to enhance Wallace method by reducing the number of reduction

stages. Another tree multiplier to optimize the placement of adders called a column-

compression multiplier has a smaller area and delay compared with both Wallace

and Dadda methods [28]. Since the mantissa multiplication is not the focus of this

dissertation, only Wallace multiplier will be discussed to understand the process in
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tree multipliers as follows.

Basically, the Wallace method groups rows of partial product bits into sets of

three [26]. Within each three row set, full adders reduce columns with three bits and

half adders reduce columns with two bits. When used in multiplier trees, full adders

and half adders are often referred to as (3, 2) and (2, 2) counters, respectively [3].

Rows that are not part of a three row set are transferred to the next reduction stage

for subsequent reduction.

To visualize Wallace trees, a dot diagram of the multiplication matrix can be

be used as in Figure 2.7 [3]. A dot represents a partial product bit. In addition,

an uncrossed diagonal line represents the outputs of a FA (or (3, 2) counter) and a

crossed diagonal line represents the outputs of a HA (or (2, 2) counter). An oval is

also utilized to show the transition from reduction stages. As shown in Figure 2.7,

this multiplier takes 2 reduction stages with matrix heights of 3 and 2. In the final

stage, a fast CPA is utilized by adding these two arrays together to get final product.

The total delay is proportional to the logarithm of the operand word length, therefore,

tree multipliers are normally faster than array multipliers. However, they produce

more congestion than CSAMs.

2.4 Rounding for IEEE Floating Point Multiplication

The challenging part within IEEE 754 floating-point multiplication is the ability to

round the result after the multiplier prodces its output. Naive versions of rounding

are easily implemented in hardware; however, the resulting hardware results in a

long critical path due to the large carry chain lengths to produce an answer (i.e.

approximately two full carry-propagate additions). Even though it is not presented

in this dissertation, the IEEE 754-2008 standard has 128-bit (quad) support [2] that

demands efficient hardware designs, especially for rounding within IEEE 754 floating-

point multiplication. Consequently, the designs presented in this dissertation are
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round to nearest (x.sig, x.rem) //RN mode

if (x.rem > 0.5)

return (x.sig + 1)

else if (x.rem < 0.5)

return (x.sig)

else if (x.rem == 0.5)

if (x.sig is even) return x.sig

else if (x.sig is odd) return (x.sig + 1)

round toward zero(x.sig, x.rem) //RZ mode

return x.sig

round toward positive(x.sig, x.rem) //RP mode

if (x.rem > 0 and x positive)

return (x.sig + 1)

else return x.sig

round toward negative(x.sig, x.rem) //RM mode

if (x.rem > 0 and x negative)

return (x.sig + 1)

else return x.sig

round toward infinity(x.sig, x.rem) //RI mode

if (x.rem > 0)

return (x.sig + 1)

else return x.sig

Figure 2.8: Rounding modes definition

important in reducing the critical path delay and optimizing the hardware.

The IEEE 754 2008 standard requires four rounding modes: roundTiesToEven(RN),

roundTowardZero (RZ), roundTowardPositive (RP) and roundTowardNegative (RM) [1].

Figure 2.8 shows the pseudo-code for each rounding mode, given x.sig and x.rem are

the significant part and remaining part, respectively. However, these four rounding

modes can be reduced to three modes: RN, RZ and RI modes, in which RI is the
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roundTowardInfinity mode [6]. In particular, the RP mode can be implemented

as the RI mode for positive numbers and the RZ mode for negative numbers. Simi-

larly, the RM mode can be implemented as the RZ mode for positive numbers and as

the RI mode for negative numbers. Although the RN mode is default for the IEEE

754 standard, the other three rounding modes are important for methods for reliable

computing [10, 24].

For binary implementations, three rounding modes can be implemented by using

three bits named the least-significant bit l, guard bit g and sticky bit t [12]. Subse-

quently, the intermediate product (P) is defined as the product of Mx and MY , where

P is split into two sections, the mantissa (MP ) and remainder (REMP ). The last

bit l is defined as the least-significant bit of MP , while the guard bit g is defined as

the most significant bit of REMP . The guard bit is utilized to avoid loss of preci-

sion usually a result of two closely representable numbers. Finally the sticky bit t

is defined as the logical OR of all bits after g [12]. It is important to note that the

dividing line between MP and REMP depends on the range of P . If P overflows the

bits are all shifted to the left by 1 position. Together the three bits l, g and t can be

combined to check all comparisons required by all four rounding modes. Therefore,

all rounding modes can be combined by a single rounding decision bit r to be added

to the least significant bit of MP utilizing the following simplified logic:

r =


0 if RZ

g ∧ (l ∨ t) if RN

g ∨ t if RI

(2.6)

Based on this simple scheme, all IEEE rounding modes can be implemented as seen in

Figure 2.9. Assuming MX[52:0] and MY [52:0] are two 53-bit input-operand man-

tissas with hidden leading ones included (MX [52] = MY [52] = 1), a simple rounding
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Figure 2.9: An implementation of four IEEE rounding modes (Adopted from [4])

scheme includes four steps is described as follows:

• Multiplication: The mantissa multiplication generates the partial products

and then reduces to carry-save form that includes a 106-bit carry C[105:0] and

a 106-bit sum S[105:0] vectors.

• Carry-Propagate Adder (CPA): The sum and carry vectors are added using

a 106-bit carry-propagate adder (CPA) to generate the 106-bit exact product

P[105:0].

• Rounding: P must then be rounded to 53 significant bits. First, the rounding

decision bit r is computed based on (l, g, t) bits and rounding modes as in

Equation 2.6. Assuming v = P [105]. If v = 0 (no overflow), l = P [52], g = P [51]

and t is the logical OR of P[50:0]. if v = 1 (overflow), l = P [53], g = P [52]
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and t is the logical OR of P[51:0]. The rounding bit r is then added to the

LSB (which is P[52] if there is no overflow and is P[53] if overflow) by a 54-bit

carry-propagate adder (CPA).

• Normalization: Finally, the rounded product needs to be normalized (divided

by 2) for the mantissa domain [1, 2) by a right shift if it is equal to or larger

than 2. If normalization is needed, then the exponent must be updated to not

alter the final result.

This scheme is simple and straightforward. However, it requires one 106-bit CPA,

another 53-bit CPA and normalization shifters that are performed in series. As a

result, it is not optimal for high-performance designs.

2.5 Linear Delay Analysis

In this dissertation, several algorithms, including state-of-the-art algorithms and pro-

posed algorithms, are discussed. Therefore, an important point to the presented

algorithms is, how to characterize the algorithmic aspects of each implementation.

Since the actual delay report from synthesis tool is technology-dependent and not al-

ways fair, in this dissertation, the linear delay analysis is also used to initially evaluate

the delay of an algorithm.

To make sure that each implementation is compared fairly, a given design will
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be measured based on the gate delay unit [3]. One gate delay (1G) is the delay of

AND, OR, and NOT gates. Other gates, such as XOR or MUX, will be derived from

three basic gates. Although one could argue that the proposed delay numbers are

not practical, these numbers give each implementation a specific cost that can allow

a good algorithmic comparison. Moreover, these delay number can also be altered so

that they are more practical and address circuit-level constraints.

Figure 2.10 shows an example of linear delay analysis for half adder. The delay is

annotated along the way from the inputs (ak, bk) to the outputs (ck, sk). Based on

the Figure 2.10, the half adder has the following critical paths:

ak, bk → ck = 1G

ak, bk → sk = 3G

2.6 Chapter Summary

This chapter first introduces about the IEEE 754-2008 floating-point formats, round-

ing modes, and an overview about floating-point multiplication. In summary, com-

pared to fixed-point multiplication, the IEEE 754 floating-point multiplication has a

much-better range and radix point handling. However, it is also much more compli-

cated and is the leading cause of round-off issues. In floating-point multiplication,

rounding is arguably the most complicated component. Although multiplication in

general and rounding in particular have been researched for many years, there are

still room for architectural improvements that are discussed in following remaining

chapters of this dissertation.
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CHAPTER 3

A COMBINED IEEE HALF- AND SINGLE-PRECISION FP

MULTIPLIERS FOR DEEP LEARNING

3.1 Floating-Point Multipliers for Deep Learning

In recent years, deep learning has grown tremendously in its popularity and use-

fulness [8]. However, deep learning is computationally intensive, power-hungry and

often limited by its hardware capability. Basically, deep learning is a deep neural

network, which consists in convolutions and matrix multiplications. A typical exam-

ple of deep learning is the convolutional neural network (CNN) that includes many

convolution and max-pooling layers connected in series to extract features from in-

put images/videos. In [9], authors show that 90% computation of CNN is due to

convolution operations. Therefore, multipliers are the most space and power-hungry

arithmetic operators of the digital implementation of a CNN. This is also true for

other types of deep learning that heavily based on matrix multiplication.

Deep learning applications often requires computations with real numbers and

therefore, requires fixed-point or floating-point representations. In comparison with

fixed-point numbers, floating-point numbers have an advantage in representable range,

which makes it suitable for a wider range of application [2]. Often, existing general-

purpose CPUs/GPUs, and software implementations use single-precision floating-

point (binary32) as the default format for these types of applications [29, 30, 31, 32].

However, recent research [18] shows that, in many applications, single-precision

floating-point multipliers can be replaced by half-precision floating-point multipliers

in training deep neural networks, which have little to no impact on the network accu-
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racy. Because half-precision floating-point is only one-half of single-precision floating-

point in terms of bit width, using half precision multipliers can save power, area, and

delay. Typically, however, single-precision multipliers are still preferred in many cases

when high accuracy are required or compatibility matters. Therefore, there is a need

for using both single-precision and half-precision multipliers in implementing deep

learning.

This chapter proposes a novel combined IEEE half-precision and single-precision

multipliers for deep learning [33]. The combined multipliers is basically an IEEE-

754 2008 compliant single-precision floating-point multipliers with additional logic

to perform IEEE-compliant half precision multiplications. Our design can be easily

configured to run in the half-precision mode for power saving or in the single-precision

mode for accuracy. Compared to conventional IEEE single-precision multipliers, the

combined multipliers require only a small amount of additional area and delay, while

offer a significant reduction in power dissipation.

In [34], authors proposed a quadruple-precision floating-point multipliers that can

perform one quadruple-precision multiplication, or two double-precision multiplica-

tion in parallel. In [35], authors proposed a double-precision floating-point multipli-

ers that can perform one double-precision or two parallel single-precision multipliers.

Here we propose a novel combined IEEE single and half-precision floating-point mul-

tipliers for deep learning applications.

3.2 A Combined IEEE binary16 and binary32 Multipliers

Generally, the proposed design is an IEEE-754 2008 compliant single-precision floating-

point multipliers with additional logic to perform IEEE-compliant half-precision mul-

tiplications. Our design can be easily configured to run in the half-precision mode

for power saving or in the single-precision mode for accuracy. Using standard IEEE

binary32 input operands, our combined multipliers include four inputs:
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1. A 32-bit multiplicand A

2. A 32-bit multiplier B

3. A 2-bit rm control signal to select a specific mode among four supported IEEE-

compliant rounding modes

4. A 1 bit op control logic is also enabled to switch between binary32 multipliers

and binary16 multipliers

The outputs include:

1. A 32-bit product Z

2. A 5-bit IEEE-compliant floating-point flags F

When running in binary32 mode, inputs A and B and output Z are normal binary32

numbers. When running in binary16 mode, the first half the input operands of A, B

and Z are binary16 numbers or word-aligned to the input operand. As described in

the previous section, the sign computation is exactly the same for both binary32 and

binary16 modes. Therefore, only exponent addition and mantissa multipliers need to

be modified to adapt to binary16 multipliers.

3.2.1 Exponent Addition

For this design, EA = A[30:23] and EB = B[30:23] are 8-bit input exponents. In

binary32 mode, the 8-bit output exponent EZ is basically the sum of EA and EB

subtracted by the bias value 127. However, if there is an overflow in mantissa mul-

tiplication, the output exponent should be updated by adding 1 ulp (unit at the

last place). This can be implemented effectively by using a 8-bit carry select adder

(CSA) that compute the sum of biased exponent EA and EB with both carry in 0

and 1 in parallel. The correct output will be selected by the signal that indicate the

normalization shift in the mantissa multiplication.
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Figure 3.1: Converting binary16 exponent (5-bits) to binary32 exponent (8-bits)

In binary16 mode, however, the exponents are only 5-bit width and the bias

value is 15. Clearly, a minimum adjustment to the 8-bit CSA that can perform 5-

bit exponent addition is desired. Therefore, a smart transformation is proposed to

convert forward and backward between a 5-bit binary16 exponent and 8-bit binary32

exponent.

It is assumed EF16 and EF32 are the representation of the exponent EF in the half-

precision and single-precision formats respectively. Recall from the previous section

that:

EF = EF32 − 127 = EF16 − 15

As a result, the half-precision exponent can be converted to the single-precision ex-

ponent by figuring out the difference in their bias as following:

EF32 = EF16 − 15 + 127 = EF16 + 112

To implement this equation, a simple 8-bit adder can be used to add 112 to the

half-precision exponent. However, there is a better solution. The difference of 112

(0111 00002 in binary representation) can be adjusted in logic as in Figure 6.1. It can

be seen that the last 4 significant bits of EF32 are the same as the last 4 significant

bits of EF16. The most 4 significant bits of EF32 can be either 0111 or 1000 when

the most significant bit Y of EF16 is 0 or 1 correspondingly. This is implemented by
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Figure 3.2: A combined IEEE half and single-precision exponent addition

simply using an inverter gate as seen in the Figure 3.1.

Based on this conversion method, the combined half and single precision exponent

addition design is shown in Figure 3.2. In the binary32 mode (op = 0), this design

utilizes a standard binary32 exponent addition. The biased exponent adder is the 8-

bit Carry-Select Adder that computes EA+EB−127 and EA+EB−127+1 in parallel.

If a normalization shift is required in the mantissa multiplication (norm shift = 1),

the output exponent EZ is EA + EB − 127 + 1. Otherwise, the output exponent EZ

is EA + EB − 127.

In binary16 mode (op = 1), the 5-bit half-precision exponents E_A[7:3] and

E_B[7:3] are first converted to 8-bit single precision exponents using the converters

as in Figure 6.1. The 8-bit output exponent E[7 : 0] is finally converted back to half-

precision exponent by taking only the most significant bit and the last 4 significant

bits. Clearly, by using this scheme, minimal overhead is required to perform both

single and half-precision exponent addition.
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3.2.2 Mantissa Multipliers

It is assumed that MA[23:0] and MB[23:0] are the two 24-bit input mantissas with

hidden leading one included (MA[23] = MB[23] = 1). In binary32 mode, the mantissa

multiplication basically includes a 24× 24 multipliers that compute the product P of

two input mantissas MA and MB, followed by a rounding and normalization logic to

round and normalize P to the 24-bit output mantissa MZ .

Recall that the IEEE 754 standard defines four rounding modes to be supported:

round-to-nearest (RN), round-toward-zero (RZ), round-toward +∞ (RP) and round-

toward −∞ (RM). Although RN is default for the IEEE 754 standard and most

implementations, the other three rounding modes are important for methods in reli-

able computing [10]. In binary implementation, this can be done by using four bits

named sign bit S, last bit L, guard bit G and sticky bit T [12]. Using (S, L,G, T )

bits, four rounding modes can be combined by a single rounding decision bit RV to

be added to the least significant bit:

RV =



0 if RZ

G ∧ (L ∨ T ) if RN

S ∧ (G ∨ T ) if RP

S ∧ (G ∨ T ) if RM

(3.1)

Using the rounding scheme above, the mantissa multiplication for binary32 can

be implemented as in Figure 3.3. This implementation includes four steps as follows:

1. Compute 48-bit exact product P using a 24× 24 multipliers

2. Normalize P to domain [1, 2) if needed. Since 1≤MA,MB<2, product P is in

[1, 4) range. If P≥2 (P [47]=1), overflow occurs. A normalization by shifting one

position to the right is needed to produce normalized product NP [47:0]∈[1, 2).
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Figure 3.3: Mantissa multipliers for single-precision

3. Round the normalized product (NP ) to a rounded product (RP ). The last bit

L and guard bit G are taken directly from NP as follows:

L = NP [23];G = NP [22]

The sticky bit T is computed in parallel with normalization as follows:

T =


OR(P [21 : 0]) if no overflow(P[47]=0)

OR(P [22 : 0]) if overflow(P[47]=1)

The rounding decision (RV ) is then computed based on rounding modes as in

Equation 3.1. The sign S in equation is the sign SZ of the output Z. A 24-bit

Carry-Propagate Adder (CPA) is then used to add RV to normalized product

NP to produce 24 -bit rounded product RP .
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4. Finally, the rounded product (RP ) needs to be normalized if overflow occurs

(RP [23] = 1) due to rounding. Hence, another conditional shifter is used to

right shift RP one bit to produce the final result MZ [23:0].

This implementation can be adjusted to perform both binary32 and binary16

mantissa multiplication, as in Figure 3.4. It is worth to notice that in binary16 mode,

the 11-bit mantissa is left-aligned in the 24-bit mantissas. This is commonly done

with most floating-point representations in most general-purpose processors [36]. In

comparison with the binary32 multipliers, the combined multipliers changes only in

the rounding step (step 3 in binary32 multipliers) as follows:

1. Sticky: The Sticky logic is modified to compute stick bit T for both modes. In
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binary16 mode (op = 1):

T =


OR(P [34 : 25]) if no overflow(P[47]=0)

OR(P [35 : 25]) if overflow(P[47]=1)

2. Compute RV: Use the last bit L0 and the guard bit G0 when op = 0 and

L1 and G1 when op = 1. L0 and G0 are the same as L and G in binary32

multipliers while L1 and G1 are computed as follows:

L1 = NP [36];G1 = NP [35]

3. Shifter: Once the rounding value RV available, it should be added to the least

significant bit that is NP [23] in binary32 mode and NP [36] in binary16 mode.

Therefore, a 13-bit left shifter is used to shift RV to the right position for each

mode.

3.3 Experimental Results

The proposed multipliers are implemented in RTL- compliant Verilog and then syn-

thesized in an ARM 32nm CMOS library in IBM/GF cmos32soi technology. The

ARM standard-cell library utilizes multiple values of VT to aid in synthesis (i.e., MTC-

MOS). Synthesis was optimized for delay utilizing Synopsys R© Design Compiler
TM

(DC) in topographical mode and loaded by ARM-based flip-flops using a PVT process

Table 3.1: Post-synthesis results for the proposed design in cmos32soi 32nm IBM/GF
technology

Multipliers
Power [uW]

Area [um2] Delay [ps]
Dynamic Static Total

DW fp mult (binary32) 778.582 1,029.175 1,808.757 5,162.742 484.179
Combined Mulipliers (binary32) 558.654 680.775 1,239.429 3,309.228 454.004
Combined Mulipliers (binary16) 151.501 666.142 817.643 3,309.228 454.004
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at 25◦ C using TT corners. The average power estimation was achieved by running

the simulation on 50,000 random test vectors generated by TestFloat-3b [37]. Be-

cause there are no existing similar designs, this chapter compares the results versus a

Synopsys R© DesignWare
TM

(DW) binary32 multiplier implementation. The Synopsys

DW unit only contains a IEEE- compliant single-precision unit and this implementa-

tion has advantages in providing both operations configurable by input control bits.

The area, delay, and power dissipation of each of these multipliers are found in Ta-

ble 3.1. As shown in the Table3.1, the binary16 mode can save 44% power compared

to binary32 mode and save 55% power compared to Synopsys DesignWare multipli-

ers. Technically, the RTL-level implementations also employ DesignWare elements as

they are coded to take ad- vantage of DesignWare, but at a lower level of hierarchy

and an with some additional ancillary logic discussed in this chapter.

3.4 Chapter Summary

In summary, a combined IEEE binary32 and binary16 multipliers is presented for

many deep learning implementations in which binary16 can be safely used to train

and run a network. With a configurable control signal, our proposed multipliers can

be easily configured to switch between single and half-precision IEEE floating-point

modes. This design is completely verified with Hauser’s SoftFloat scheme for the

correctness. Compared to the IEEE standard binary32 multipliers, the proposed

multipliers has a small overhead while provide a significant savings of 44% in power

dissipation when running in binary16 mode.
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CHAPTER 4

A NOVEL ROUNDING SCHEME FOR IEEE-COMPLIANT FP

MULTIPLICATION

This chapter first introduces the state-of-the-art in rounding for IEEE 754 Float-

ing Point Multiplication. The previously-used methods described in Section 4.1 all

optimize on the most delay-intensive portion of the computation: rounding. Conse-

quently, most of the methods for optimizing here are optimizing rounding for the out-

put of the multiplier unit, usually produced in carry-save notation (i.e., carry/sum).

Any of these method can be utilized with different multiplier algorithms and con-

sequently impact other areas related to use of floating-point multiplication such as

energy and power dissipation. However, the major contribution of this dissertation is

improving the rounding unit for delay optimization [19, 38].

4.1 Previous Work

4.1.1 Santoro, Bewick and Horowitz (SBH) Method

An early optimization for floating-point multiplication architectures, Santoro, Bewick

and Horowitz [4] (SBH) demonstrate a method that reduces the hardware require-

ments to a single compound adder (CA) and small amount of support logic. The

most significant contribution of their work demonstrates how to perform most of

the rounding and post-normalization in parallel, thereby, removing a carry propagate

adder from the critical path. Compound adders take advantage of utilizing redundant

hardware and its use is critical in optimizing hardware for any implementation [39].

Normally, compound adders use the same hardware except for critical components,
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Figure 4.1: SBH [4] implementation of RZ mode

such as the carry-chain logic [4].

As with most floating-point units, designs can optimize the critical path by com-

puting the carry and save portions of the multiplier [12]. Consequently, SBH’s method

utilizes the upper 54 most significant bits for SH, CH (PH = SH + CH) and the the

52 least significant bits for SL, CL (PL = SL+CL), respectively. Additional bits are

utilized to help optimize the final result, such as the MSB (v), LSB (l), guard bit (g)

and the sticky bit (t) of the exact product P .

4.1.1.1 RZ mode

For RZ mode, since the rounding bit r = 0, the rounded product is simply the

exact product truncated to the 52 least-significant bits. To speed up performance,

it is desirable to perform the computation of significant part SH, CH and remaining

part SL, CL in parallel. Since c is only available after the addition of SL and CL, a

compound adder (CA) can be used to pre-compute both PH and PH+1 in parallel as

shown in Figure 4.1. Subsequently, two right shifters are used to normalize PH and

PH+1, respectively, if they overflow. The carry-in c can then be used to select the

correct output from the two normalized products.
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4.1.1.2 RN mode

The RN mode is arguably the most complicated mode compared to RZ and RI

modes. The method within SBH smartly designs for round-to-nearest/up (RNU)

mode (roundTiesToAway mode in IEEE 754-2008 standard) and then modifies the

design to produce RN mode. The RNU mode is RN mode except in case of tie

(x.rem = 0.5) where RNU mode always rounds up. In terms of implementation,

RNU can be implemented by simply adding 1 to the guard bit position. The imple-

mentation in Figure 2.9 can be modified to perform RNU mode as shown in Figure 4.2.

Although simpler than RN, RNU mode is still far more complicated than RZ

mode. To compute SH, CH in parallel with SL, CL, the total value INC is required to

add to the ulp of SH, CH. This INC is the sum of carry c from SL, CL and the rounding

value to be added to the exact product as illustrated in Claim 1.
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Claim 1. In RNU mode,

INC =


c+ g if no overflow v = 0

c+ 1 if overflow v = 1

(4.1)

Proof. If there is no overflow, RNU rounds up (i.e., adds 1 to the LSB of SH, CH)

if and only if g = 1. Therefore, INC = c + g. If overflow occurs, rounding then

adds 1 to the guard bit position, which is now the LSB of SH and CH. Therefore,

INC = c+ 1.

From Equation 4.1, INC can be 0, 1, or 2. The naive solution pre-computes all

three possible outputs PH, PH+1 and PH+2 using INC to select the correct rounded

product. However, based on Claim 2 below, the standard CA can be used as in RZ

mode.

Claim 2. Assuming rs, rc is the MSB of SL, CL, respectively, the prediction bit

p = rs ∨ rc produces:

INC ∈


{0, 1} if p = 0

{1, 2} if p = 1

(4.2)

Proof. If p = 0, then rs = rc = 0. As a result, the sum of SL and CL produces no

carry out. In other words, c = 0. Therefore, INC is INC = g or INC = 1 and

in both cases, INC ∈ 0, 1. If p = 1, it is obvious for the overflow case to compute

INC ∈ 1, 2. In the no overflow case, because rs + rc ≥ 1, c and g cannot be both

zeros. As a result, INC ∈ 1, 2.

Based on this observation, SBH’s method uses the 2 outputs of a CA as shown in

Figure 4.3. A row of 54 half-adders (HAs) is used to make room for a prediction bit

p before the CA. If p = 0, the outputs P0, P1 of the CA are (PH, PH+1). If p = 1,
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the outputs of CA are effectively (PH+1, PH+2).

Once all possible rounded products P0 and P1 have been computed, the correct

result can be selected. As explained in [4], the correct rounded product depends on

INC, which in turn depends on c, g and the overflow bit v, as in Equation 4.1. At

this point, both g, c bits should be available from the Compute Carry Guard

module. However, a designer still needs to identify the correct overflow bit v, which

is the MSB of the exact product P. The original SBH method requires additional logic

to select the correct overflow bit v between two MSBs v0, v1 of P0 and P1. However,

based on the Claim 3 below, this logic can be removed safely for optimization.

Claim 3. To select the correct output, v0 = P0[53] can be treated as v in

Equation 4.1.

Proof. Recall that v is the MSB of the exact product P (PH+c) while v0 is the MSB
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Table 4.1: Compound adder output selection for RNU modes

p INC Correct Output sel

0 0 PH 0

0 1 PH + 1 1

1 1 PH + 1 0

1 2 PH + 2 1

of PH + p. Therefore, the claim is obvious if p = c and p and c need to be examined

whether they are different. This happens only when p = 1 and c = 0. However, in

this case, g = 1 because rs+ rc = 1. Therefore, according to Equation 4.1, INC = 1

regardless of the value of v.

Based on this observation, Table 4.1 shows the value of sel to select the CA

output correctly. Interestingly, if p = 0 then sel equals INC, whereas, if p = 1,

because a prediction bit 1 is pre-added, the sel should be equal to INC − 1. This

can be implemented by using an XOR gate. Moreover, post-normalization can be

performed before the final selection to speed up the performance.

4.1.1.3 RI mode

For designs based on RNU mode instead of the original RN mode, SBH’s method

requires only a single CA that can produce 2 rounded products (PH, PH+1) or (PH+1,

PH+2) in parallel. However, this design does not work for RI mode.

Claim 4. In RI mode:

INC =


c+ (g ∨ t) if no overflow v = 0

c+ 2 · (l ∨ g ∨ t) if overflow v = 1

(4.3)

Proof. If no overflow occurs, from Equation 2.6, a rounding decision is added r =

(g ∨ t) to last bit position 52. Therefore, in this case, INC = c+ (g ∨ t). If overflow

occurs, because of a normalization shift, the last bit position now is 53. Therefore,
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the rounding decision r = (l ∨ g ∨ t) is added to bit 53. This is equivalent to adding

2 · (l ∨ g ∨ t) to INC.

From Equation 4.3, it can be seen that the total carry INC can be 0, 1, 2 or 3. As

a result, the significant part logic has to be able to pre-compute all 4 outputs from

PH to PH+3 to implement the RI mode. However, as described in the previous section,

SBH’s method only determines 3 outputs from PH to PH+2 and, therefore, it does not

work for RI mode.

4.1.2 Quach, Takagi and Flynn (QTF) Method

The limitation of SBH’s method in implementing RI mode comes from the limitation

of the original 2 outputs from the CA (Sum, Sum+1). To solve this problem, QTF’s

method proposes a special CA that is able to pre-compute 3 outputs (Sum, Sum+1,

Sum+2) in parallel [5]. In general, this special compound adder computes only (Sum,
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Figure 4.5: Two examles illustrating how third sum is obtained with only two carry
chains

Sum+2) in parallel and includes a small amount of additional logic to generate (Sum+1)

from Sum and Sum+2. Given l is the LSB of output Sum, it is easy to see that l is

also the LSB of output Sum+2. When l = 0, Sum+1 can be generated by selecting

Sum that changes the last bit from 0 to 1. When l = 1,Sum+1 can be generated by

selecting Sum+2 that changes the last bit from 1 to 0. This trick is useful in that it

can be utilized instead of using another adder (e.g., carry-select/increment adder) by

inverting the least-significant bit of the calculated sums. It also has the advantage of

consuming a small amount of additional logic (i.e., an inverter) and no impact upon

the critical path. This is shown in Figure 4.5 where the LSB is used to determine if

the LSB is inverted or not depending on whether the LSB is even or odd.

The method by Quach, Takagi and Flynn (QTF) replaces the LSB of the half

adder row in the SBH method by a full adder (FA) [5]. The inputs to this FA are

CH[0], SH[0] and the prediction bit p. The carry out cp of the FA feeds into the

LSB of the CA while the sum of the FA serves as the lp bit. The 54-bit CA in the

SBH method is subsequently reduced to a 53-bit compound adder (CA). The input

to this CA comes from a 53-bit half adder row. This arrangement allows the CA to

effectively compute PH and PH+2 directly and generate PH+1 from PH and PH+2. A

3:1 multiplexor (mux) is used to select the correct LSB by keeping the lp or setting

it to 0 or 1. The fix0, fix1 signals determine when lp should be not changed or set
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to 0 and 1, respectively.

4.1.2.1 Errors in Quach, Takagi and Flynn Hardware

To produce the correct result, a final-selection 4:1 mux selects from the high order

53 bits of P0 and P1 (if overflow occurs) and the lower order 53 bits of P0 and P1 (if

no overflow occurs). It is worth noticing that the LSB of the lower order values are

from the 3:1 mux as shown in Figure 4.4. Four control signals Sns0, Sns1, Srs0,

Srs1 are used to select the correct output. For Sns0 = 1 and Sns1 = 0, the lower

order bits of P0 and P1 are selected if there is no overflow. Similarly, Srs0 = 1 and

Srs1 = 1 select the higher order bits of P0, P1, respectively, if an overflow occurs.

To examine the no overflow/overflow condition, QTF’s method uses two bits m0, m1

that are selected as the MSB of P0 and P1, respectively. Two bits n0, n1 are the

second-to-least significant bits of P0 and P1 and serve as the last bit in an overflow

case. However, QTF’s assertion is false with m0 = 0 and m1 = 1 as shown as shown

in Claim 5 below:

Claim 5. The QTF method utilizes control signals in RN mode as follows (also,

38



given in [5] and verified/corrected as discussed later):

p = 0

l = lp

Sns0 = m0 ∧ c ∧ (g ∨ l) ∨m1 ∧ c ∧ g ∧ l

Sns1 = m0 ∧ c ∧ g ∧ l ∨m1 ∧ c ∧ (g ∨ l)

Srs0 = m0 ∧ c ∧ (l ∨ g ∧ n0 ∧ t)

∨m1 ∧ c ∧ g ∧ n1 ∧ l ∧ t

Srs1 = m0 ∧ l ∧ c ∧ (n0 ∨ t ∨ g) ∨

m1 ∧ c ∧ (n1 ∨ l ∨ t ∨ g)

fix0 = m0 ∧ l ∧ c ∧ g ∨m1 ∧ l ∧ c ∧ (g ∨ t)

fix1 = m0 ∧ l ∧ c ∧ g ∧ t ∨m1 ∧ l ∧ c ∧ g (4.4)

Unfortunately, QTF’s method produces false assertions when t = 1, g = 0, lp = 0,

c = 1, m0 = 0 and m1 = 1.

Proof. When t = 1, g = 0, lp = 0, c = 1, m0 = 0 and m1 = 1, the correct output

should be PH+1 because c = 1 and g = 0. Since lp = 0, PH+1 should be selected from

PH (then assert lp = 1). In other words, Sns0 = 1 and fix1 = 1. However, according

to the equations above, when the control signals Sns0 = 0, fix1 = 0 Srs1 = 1,

results in selecting the wrong output PH+2.

The main reason for this is that with the special CA, the MSB of P1 can not be

selected as m1 (i.e., defined as the MSB of PH+1). Recall that with a special CA,

the output PH+1 can be selected from either PH or PH+2. Therefore, if lp = 0 (which

means m1 should be the MSB of P0 instead), the equation will take the wrong m1 and

then the wrong output. To fix this issue, additional logic is required to generate the
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true m1 from the MSB of P0 and P1 as follows:

m1 = (lp ∧ P1[53]) ∨ (lp ∧ P0[53]) (4.5)

This can introduce some delay and complicate the Boolean equation for this control

signal but only minimally.

4.1.2.2 Linear Delay Analysis

Since the actual delay is technology-dependent and not always fair and intuitive, in

this section, we perform the linear delay analysis that based on the gate delay unit.

One gate delay (1G) is the delay of AND, OR and NOT gates. The Carry and Sum

vector bits are assumed available at the same time 0G

• MUX and XOR gates take 3 gate delay (3G)

• The 53-bit Compound Adder is implemented using parallel prefix adder. The

output Sum is valid after 4 + 2 · log2(53) = 16 gate delay. The output Sum+ 1

is valid after 5 + 2 · log2(53) = 17 gate delay.

• Similarly, Carry c and Guard g are also generated using 52 -bit parallel prefix

adder. The Guard g is valid after 4 + 2 · log2(52) = 16 gate delay. The Carry c

is valid after 1 + 2 · log2(52) = 13 gate delay.

• Sticky t is generated using the trick as in [40]. The delay is 7 + log2(52) = 13

gate delay.

Based on these assumptions, the timing estimation of QTF method is annotated

in Figure 4.4. Since prediction bit p is valid after 2 gate delay and CH[0], SH[0] is

valid after 0 gate delay, the FA carry out cp is valid after 4 gate delay make XC vector

valid after 4 gate delay. The Compound Adder will provide P0 and P1 after 16 and
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17 gate delay respectively. As a result, m0 is valid after 20 gate delay and m1 is valid

after 23 gate delay based on Equation 4.5.

Carry c, Guard g and Sticky t are ready after 13, 16, 13 gate delay respectively.

Because fix0, fix1 are computed using m0,m1, which adds 2 more gate delay, they

are valid after 26 logic levels. Similarly, Sns0, Sns1, Srs0, Srs1 are valid after 26

logic levels.

fix0 and fix1 are used to select correct l that is only valid after 28 gate delay.

Finally, the 4:1 mux will output MZ after 31 gate delay.

4.1.3 Even and Seidel (ES) Method

An efficient method called the Even/Seidel rounding algorithm (ES) works by reduc-

ing all rounding modes to a single truncation operation [41, 6]. The ES method adds

an injection constant, depending only on the rounding mode, to the intermediate

product such that all modes reduce to truncation at the rounding bit position. The

injection constant (INJ) is defined as:

INJ =


2−53 if RN

2−52 − 2−104 if RI

0 if RZ

(4.6)

The ES algorithm provides little advice about implementing injection bits as well

as computing the sticky t, guard g and carry c bits. For convenience, a block diagram

of the injection hardware has been included in Figure 4.6. The vector INJ[51:0],

whose value is assigned depending on each rounding mode, as in Equation 4.6, is

injected into the lower part of the vector through a Carry-Save Adder. The carry out

cinj of this adder then feeds into a FA together with two LSBs of CH and SH, similar

to the QTF method. The row of 53 HAs makes room for injecting the carry out of
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Figure 4.6: ES [6] Method Implementation for Rounding

this FA. Finding g and c requires computing the carry propagate chain through all

bits in the lower path (51:0), however, only the sum bit needs be generated at bit

51. Using the technique from [40], the sticky bit can be computed directly from its

carry-save format as shown in Figure 4.6.

4.1.3.1 Optimization of Even-Seidel Rounding

To account for c carrying into the upper datapath and the overflow, the ES paper

utilizes a special increment decision, Tinc (INC in [6]). The equation definition in the

ES paper is correct; however, there is a small change in the implementation logic that
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is needed within [6]. Tinc should increment when the majority of g, c, and lx are

high, and the mantissa has overflowed P0[52] = 1 , and the rounding mode is RN. In

the case of lx = 1, g = 1, and c = 0 the logic incorrectly sets Tinc = 0. The following

equation correctly implements Tinc:

Tinc =



(c ∧ g ∧RN) ∨ (lx ∧ g ∧RN)

∨ (c ∧ l ∧ (RZ ∨RN))

∨ ((lx ∨ c) ∧RI) if P0[52] = 0

lx ∧ c if P0[52] = 1

(4.7)

In the case when the rounding mode is RN, the LSB needs to be corrected in a tie

case (x.rem = 0.5 or g = 1, t = 0) and the LSB of exact product l = 1. This LSB is

pulled down to 0 (even) by AND-ing it with a bit that equals to 0 only for a tie-case

of RN. Two blocks fixL(v=1) and fixL(v=0) generate f1 and f0 to fix the LSB in

case of overflow and no overflow, respectively.

f0 = g ∨ t ∨RN

f1 = lx⊕ c ∨ g ∨ t ∨RN (4.8)

4.1.3.2 Linear Delay Analysis

Based on the same delay assumptions as in 4.1, the timing estimation of ES rounding

is annotated in Figure 4.6. The Carry-Save Adder is used to add the injection c_inj

first and account for 5 gate delay. On the left side, the FA adds 2 more gate delay

before Compound Adder. Therefore, the overflow bit v0=P0[52] and v1=P1[52] are

valid after 23 gate delay and 24 gate delay respectively. Tinc in Equation 4.7 is valid

after 27 gate delay. As a result, the MZ [52 : 1] is ready after 30 logic levels since

MUX will add 3 gate delay.
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On the right part, the Carry c, Guard g and Sticky t will be valid after 19, 22and19

gate delay levels in that order. The control logic f1 and f0 are both valid after 24

gate delay. The row of 3 AND gates and two MUXes levels will add 6 gate delay,

making the final Z[0] valid after 30 gate delay. Combined with the left part delay, ES

method is 30 gate delay.

4.2 Proposed Method

Although the SBH method is smart, intuitive and simple to implement, it does not

work optimally for RI mode. As an improved solution to SBH’s method, QTF’s

method introduces a special compound adder (CA) that can produce 3 outputs in

parallel. Using this special CA, QTF method works for all rounding modes. However,

to perform rounded product selection, QTF’s method utilizes a rounding table which

includes 6 control signals in total that can be simplified. This architecture utlimately

utilizes the best parts of [6] and combines with the advancements in [5].

Therefore, it is desirable for a method that is as simple and elegant as SBH’s

method but also works for all rounding modes as QTF and ES methods. In this

section, an improved design is introduced that also based on the special CA as QTF’s

method but uses a simple formula to build selection logic as SBH’s method without

using injection bits.

4.2.1 A Simplified Special Compound Adder

First, a 3:1 mux in QTF’s special CA is replaced by a smaller 2:1 mux as in Fig-

ure 4.7. Given m-bit inputs A and B, the CA first computes in parallel Y 0 = A + B

and Y 2 = A + B + 2. Because the increment is 2, Y0 and Y2 are both odd or both

even (i.e., Y 0[0] = Y 1[0]). Therefore, the m− 1 most-significant bits of both Y0 and

Y2 are passed through a m-bit mux controlled by sel1. The LSB of Y0 (named L)

and its inverted value are passed through another 1-bit mux controlled by sel0.
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Figure 4.7: The simplified special compound adder (CA)

Table 4.2: Decoder for special (Sum, Sum+ 1, Sum+ 2) CA

Z L = Y 0[0] sel1 sel0

Sum Don’t Care 0 0

Sum+2 Don’t Care 1 0

Sum+1 0 0 1

Sum+1 1 1 1

The value of sel1 and sel0 to select the expected Z is shown in Table 4.2. To

select (Sum+1), Sum can be increased (when Y 0[0] = 0) or decreased (Sum+2) (when

Y 0[0] = 1). In terms of implementation, in both case, L is inverted and selects the

corresponding Sum or Sum+2.

4.2.2 RI Mode

Based on the proposed special CA, a novel hybrid design is introduced that works for

RI mode as well as a design that can be extended for RN and RZ modes as shown

here:

INC =


c+ (g ∨ t) if no overflow

c+ 2 · (l ∨ g ∨ t) if overflow

(4.9)

45



Based solely on this equation, the INC can be 0, 1, 2 or 3. As a result, the imple-

mentation should be able to compute four outputs PH, PH+1, PH+2 and PH+3 while the

special CA is able to compute only three outputs Sum, Sum+1 and Sum+2. However,

there is a simple way to solve this problem by using the same prediction bit p as with

RN mode for SBH’s method as illustrated within Claim 7.

Claim 7. In the RI mode, given p = rs ∨ rc:

INC ∈


{0, 1, 2} if p=0

{1, 2, 3} if p=1

(4.10)

Proof. If p = 0, means both rs and rc are zeros. Therefore, c = 0 and INC will be

g∨ t or 2 · (l∨g∨ t). In both cases, INC ∈ {0, 1, 2}. If p = 1, because c and g cannot

be both 0 so INC > 0 in this case.

Based on this observation and our proposed special CA, an improved design that

works for RI mode is shown in Figure 4.8. Similar to QTF’s method, a row of 53 HAs

is utilized to add SH and CH (except the LSBs) and one FA to add the prediction bit

p and two LSBs of SH, CH. The sum bit lp is used to compute the correct LSB of final

product on the right while the carry bit cp is injected into the LSB of carry vector

XC on the left. A 53 bit compound adder is then used to pre-compute two possible

outputs P0, P1. Both P0 and P1 are normalized before the final selection logic. On the

right side of Figure 4.8, the carry c, guard g, and sticky t bits are computed based

on SL and CL bits. Based on the last bit of lp and c, g, t bits and the overflow bit

v0 = P0[52], the Select Result module generates sel1 and sel0 signals to select the

correct output from the CA based on the correct value of INC only as shown within

Claim 8.

Claim 8. In RI mode, v0 = P0[52] and lp can be used as v and l in Equation 4.3
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to select the correct output:

INC =


c+ (g ∨ t) if v0 = 0

c+ 2 · (lp ∨ g ∨ t) if v0 = 1

(4.11)

Proof. Since v0 (lp) is the MSB (LSB) of PH + p while v (l) is the MSB (LSB) of

PH+c, p=c needs to be checked. Therefore, only p = 1 and c = 0 should be checked.

In this case, g = 1 and, therefore, (lp∨ g ∨ t) will be the same as (l ∨ g ∨ t) (both 1).

For an overflow, the correct v is the MSB of PH (since c = 0) but we falsely selected

MSB of PH+1. If they are different, this means that the MSB of PH is 0 and the MSB

of PH+1 is 1, and PH must be all 1 leading by 0. Specifically, it is 01.11...11 with 52
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Table 4.3: Generate sel1, sel0 from INC, p, lp

p INC Z sel1 sel0

0 0 Sum 0 0

0 1 Sum + 1 lp 1

0 2 Sum + 2 1 0

1 1 Sum 0 0

1 2 Sum + 1 lp 1

1 3 Sum + 2 1 0

bits of 1 after the radix point. Because p = 1 and c = 0, the guard bit is g = 1, which

means the correct product is 10.00..00 and after normalization, the final product is

1.00..00. In this design, v is selected as the MSB of (PH+1), which is 1. Therefore, the

INC signal is 2, which means the output selected is PH+2. Clearly, with PH is 01.11..11,

PH + 2 is 10.00..01 and after normalization, the final product is 1.00..00, which is

exactly the same as the correct value.

Given p,INC, lp the value of control signals sel1, sel0 can be found in Ta-

ble 4.3. The Boolean equations for sel1,sel0 can be found in Claim 9. Notice that

because v0 will arrive late, the sel1 and sel0 are computed for both cases (overflow

and no overflow) in parallel and once v0 is ready, it will select the correct sel1 and

sel0.

Claim 9. The Boolean equations for sel1,sel0 are:

sel0 =


(g ∨ t) ∧ (p ∨ c) if v0 = 0

c ∧ p if v0 = 1

sel1 =


lp ∧ (g ∨ t) ∧ (p ∨ c) if v0 = 0

lp ∨ (g ∨ t) ∧ (p ∨ c) if v0 = 1

(4.12)

Proof. If v0 = 0 (no overflow), then INC = c+ (g ∨ t):
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• From Table 4.3, sel0 = 1 when INC − p = 1. If p = 0, then c = 0, so

sel0 = (g ∨ t). If p = 1, c = 0, then g = 1, so sel0 = 0. Otherwise, if

p = 1, c = 1, then sel0 = g ∨ t. In summary, sel0 = (g ∨ t) ∧ (p ∨ c)

• From Table 4.3, sel1 = lp when sel0 = 1, and sel1 = 1 when INC − p = 2.

However, INC − p = c+ (g ∨ t)− p ≤ 1, therefore sel1 = lp ∧ sel0.

If v0 = 1 (overflow), then INC = c+ 2 · (lp ∨ g ∨ t):

• Similarly, sel0 = 1 iff INC − p = 1. This happens only if c = 0, p = 1.

Therefore, sel0 = c ∧ p.

• If lp = 1 then INC = c+ 2 ≥ 2. Hence, from Table 4.3, sel1 = 1. Otherwise, if

lp = 0, then INC = c+ 2 · (g ∨ t) and sel1 = 1 iff INC − p = 2. This happens

only if g∨ t = 1 and p = c. Since if p = 0 then c = 0, condition p = c is reduced

to p ∨ c.

Since the LSB has to be fixed only in RN mode, the two signals f1 and f0 are

both 1 for RI mode. In addition, sel0novf is used to select between lp and its invert

logic, instead of sel0, to save one MUX. This is because if overflow occurs (v0 = 1),

the later MUX will select P0[0] or P1[0], regardless value of the output of this MUX.

All Boolean equations for the control signals in RI mode can be found in Table 4.4.

4.2.3 RN Mode

Since the special CA can output all Sum, Sum+1, Sum+2 in parallel, the prediction bit

is not necessary in RN mode as for the QTF method. However, to avoid complicated

logic in selecting the overflow bit v, as seen in QTF method, we propose that predic-

tion bit p = rs ∨ rc should be used for the RN mode similar to the RI mode. With

the prediction bit p, the correct overflow bit v can be safely selected from v0 =P0[52]
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Table 4.4: Boolean equations for RI mode

Mode Equations

RI

p = rs ∨ rc
sel0novf = (g ∨ t) ∧ (p ∨ c)
sel0ovf = c ∧ p
sel1novf = lp ∧ (g ∨ t) ∧ (p ∨ c)
sel1ovf = lp ∨ (g ∨ t) ∧ (p ∨ c)
f1 = 1

f0 = 1

as proven in previous section. The Boolean equation for RN mode is shown in Claim

10 as follows:

Claim 10. The Boolean equations for sel1,sel0 are:

sel0 =


g ∧ (p ∨ c) if v0 = 0

p ∨ c if v0 = 1

sel1 =


lp ∧ g ∧ (p ∨ c) if v0 = 0

lp ∧ (p ∨ c) if v0 = 1

(4.13)

Table 4.5: Boolean equations for RN mode

Mode Equations

RN

p = rs ∨ rc
sel0novf = g ∧ (p ∨ c)
sel0ovf = p ∨ c
sel1novf = lp ∧ g ∧ (p ∨ c)
sel1ovf = lp ∧ (p ∨ c)
f1 = lp ∨ g ∨ t
f0 = g ∨ t
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Proof. If v0 = 0 (no overflow), then INC = c+ g:

• From Table 4.3, sel0 = 1 when INC − p = 1. If p = 0, then c = 0, so sel0 = g.

If p = 1, c = 0, then g = 1, so sel0 = 0. Otherwise, if p = 1, c = 1, then

sel0 = g. In summary, sel0 = g ∧ (p ∨ c)

• From Table 4.3, sel1 = lp when sel0 = 1, and sel1 = 1 when INC − p = 2.

However, INC − p = c+ g − p ≤ 1, therefore sel1 = lp ∧ sel0.

If v0 = 1 (overflow), then INC = c+ 1:

• Similarly, sel0 = 1 when INC−p = 1. This happens only if p = c (i.e. p∨c = 1)

• Since INC − p = c + 1 − p ≤ 1, sel1 = 1 when sel0 = 1, lp = 1. Therefore,

sel1 = lp ∧ sel0 (i.e. sel1 = lp ∧ (p ∨ c).

Similar to ES’s method, additional logic is utilized to fix the LSB in the tie-case

of RN mode. However, since no injection bits are added, the equations for f1 and f0

are simpler than ES’s method.

f0 = g ∨ t

f1 = lp ∨ g ∨ t (4.14)

Interestingly, lp is utilized instead of l in the formula for f0. Similar to Claim 8,

if p = c then lp = l, however, if p = 1, c = 0, lp and l are different. Fortunately,

since g = 1 the result will not change. All Boolean equations for control signals in

RN mode can be found in Table 4.5.

4.2.4 RZ Mode

In RZ mode, because no rounding bits are added, INC = c. Since no prediction bit

is pre-added, the INC correctly select the CA output. Given INC and lp, two select
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bits sel1, sel0 can be easily computed similarly to RI and RN modes. In addition,

similar to RI mode, in RZ mode, f1 and f0 are all asserted (i.e., 1). The Boolean

equations for RZ mode is shown in Table 4.6.

4.2.5 Linear Delay Analysis

The delay annotation is shown in Figure 4.8. In the left side, the prediction logic will

add 2 gate delay to the row of HA and the FA will add 2 more gate delay before the

compound adder. Therefore, the Sum and Sum+1 outputs of compound adder will

be available after 20 and 21 gate delay respectively. Control sel1 is valid after 24

gate delay. As a result, the final MZ [52 : 1] is valid after 27 gate delay.

In the right side, since the Carry c, Guard g and Sticky t are valid after 13, 16, 13

gate delay respectively, two control logic f0, f1 are valid after 18 and 17 gate delay

respectively. The row of AND gates adds 1 more gate delay. Because sel0novf is

valid after 19 gate delay, Z[0] is valid after 27 gate delay. Combined with the left

side, the critical path of proposed rounding design is 26 logic levels, given the input

Carry/Sum. As seen in Table 4.7, comparing to ES and QTF methods, the proposed

method is 3 and 4 gate delay faster respectively.

Table 4.6: Boolean equations for RZ mode

Mode Equations

RZ

p = 0

sel0 = c

sel1 = lp ∧ c
f1 = 1

f0 = 1
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Table 4.7: Theoretical delay (logic levels) comparison

Method Figure Delay

QTF 4.4 31

ES 4.6 30

Proposed 4.8 27

4.3 Chapter Summary

In this chapter, we propose a clarification and optimization on rounding for IEEE 754-

compliant floating-point multiplication. SBH’s method is first clarified and provied

that it is not applicable for RI mode. Then, QTF’s method is summarized and clarified

on how it solved the limitations of SBH’s method using a special CA. However, QTF’s

method is based on a rounding table and its design is not optimized and produces

inaccurate results. It uses 6 control signals and a 3:1 mux for the LSB and a 4:1 mux

for the final result selection. Based on a formula similar to the ES method, a hybrid

QTF/ES design is presented that uses only 2 control signals and a standard 2:1mux.

The experimental results illustrate an efficient, fast and low-power implementation

using a 32nm library.
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CHAPTER 5

AN OPTIMIZED IEEE MULTIPLIER SUPPORTING DENORMAL

NUMBERS

Denormal numbers fill the gap between the smallest normal and zero by allowing

numbers with reduced precision. As the value decreases so does the precision in

what is called gradual underflow [22, 42]. In several applications graudal underflow

can preserve expected program behavior, where as truncation maybe erratic. No

situation better demonstrates the value of denormals than the difference of two small

numbers A and B. If A and B are nearly equal but different, A−B may result in a

number smaller than the minimum normal. Without gradual underflow A − B may

yield 0 which misleads applications (for example if((A − B) == 0){...}). The same

applies to other floating point operations. Consequently, there is a need for hardware

which handles both normal and denormal numbers [17].

5.1 A Simple Design for Denormal Numbers

To begin, this dissertation builds a straightforward adaptation of the presented archi-

tectures as a means to explain denormal support. Then a second design dramatically

improves performance by coalescing several shifters [38]. With the first approach,

support of denormals is achieved by converting denormals into normals in a process

known as unpacking. Unpacking explicitly defines the value of the hidden bit and

normalizes the mantissa prior to multiplication. This simplifies the rounding logic

by ensuring the rounding position is located in one or two digits. While the nor-

malization adds considerably to the critical path, the second design optimizes the
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Figure 5.1: Converts an IEEE 754 double precision number into the normalized rep-
resentation.

delay.

Figure 5.1 shows the hardware needed to generate the hidden bit and normalize the

mantissa. Computing the hidden bit depends entirely on the value of the exponent.

If the exponent is 0 then the number is denormal and the hidden bit is 0. Otherwise

the hidden bit is 1. This can be implemented by OR-ing all the exponent bits and

then inserting the result bit to the bit 52 of mantissa. In addition, the exponent must

be adjusted when it is a denormal as the numerical value of the exponent is 1 rather

than zero. This is implemented by a simple AND to set the LSB of the exponent

when the output of the OR logic is 0 (denormal).

After unpacking, a leading-zero counter (LZC) finds the number of prefix zeros

in the mantissa. This number then adjusts the exponent with an extended range to

produce 12-bit exponents. The exponent is now in the range −53 to 2046 with an bias

of 1023. In parallel, a left shifter normalizes the mantissa. The LZC uses the design

from [43], while the shifter is a standard left barrel shifter. Converting denormal to

normal format introduces a large delay as both the LZC and barrel shifter are in the

critical path and both take around 6 levels of logic each.
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5.1.1 Exponent addition and adjustment

Figure 5.2 shows an optimized implementation of bias exponent and adjustment. To

compute the output exponent a bias (1023) is subtracted from the sum of the two

exponents, EX and EY . However, if overflow occurs in mantissa multiplication, the

result exponent is increased by 1. An efficient solution uses a compound adder to

compute in parallel EX + EY − bias and EX + EY − bias + 1. Two muxes are then

used to select the right output. The first mux will select the right overflow bit from

P0[52] and P1[52] using sel1 control signal (see Figure 4.8). This overflow bit will

ultimately indicate if the exponent should be increased by 1.

It is important to note that the format of the exponent values as this dictates

further computations of the mantissa. As explained previously, the exponent is in

the range of [−53, 2046], and when two are added and the bias of 1023 subtracted

the range increases to [−1129, 3069]. Therefore, two input exponents and bias are all
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sign extended to a 13 bit two’s complement number.

5.1.2 Rounding and packing

Given the normalized mantissas after unpacking, all three rounding schemes can be

used for the mantissa multiplication. However, it is worth noticing that the result

exponent EZ can be less than emin = 1 − bias (0 in biased representation), even in

the case both inputs are normal numbers. In this case, the output is no longer a valid

IEEE 754 number.

To correct this problem, the mantissa is right shifted so that the exponent is

increased to emin . The shift amount needs to computed by finding how far the

exponent is below the minimum value emin. This is accomplished by computing

shift = min(max(0,−EZ + 1), 54). The max function finds the exact amount below

emin, which is (1− bias)− (EZ − bias) = −EZ + 1. However, it is possible to produce

values larger than the number of bits in the mantissa (53). The min function limits

the shift to no more than 54-bit.

0 1
Underflow

6 6

6

6

6

6

shift[5:0]

54

54

denormal

MSB2

EZ [10 : 0] EZ [12] EZ [5 : 0] EZ [12 : 0]

AdderInverterOR

Adder

AND

Figure 5.3: Compute shift amount to denormalize the mantissa if exponent < emin
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Figure 5.3 shows the hardware used to generate the shift amount along with

adjusting the exponent. The denormal logic detects when the exponent is below emin

by asserting a high value if the MSB are 1 or every bit (i.e., [10:0]) is zero. The lower

6-bit of the exponent are then inverted and incremented by 2, effectively computing

the two’s complement operation and increasing it by 1. This value is the inverted shift

amount when the resulting number is denormal. Finally the bottom path computes

the extreme underflow EZ < −53; when this value is high the multiplexor limits the

shift to 54.

Given the shift amount, a barrel shifter is used to right shift the mantissa. Inter-

estingly, an additional rounding step must be added to round the shifted mantissa

to a 52-bit standard mantissa [20]. This ultimately requires an additional sticky bit

logic and an extra +1 adder.

5.2 Proposed Multipliers

It can be seen that the simple design for denormal numbers using multistep gradual

rounding as described above is not optimal. It costs a high price in terms of delay and

area as two shifting stages are required (left shifting in unpacking and right shifting

in packing), the sticky bit must be computed twice and an extra +1 adder is needed

after rounding.

The first optimization can be made by moving the right shifter from the pack-

ing circuit and inserting it between the partial production reduction and rounding

logic [20, 38]. Two right shifters are needed, one for the carry vector and the other for

sum vector. Shifting the carry/sum vectors effectively denormalizes the mantissa in

the event of an exponent below emin and aligns the carry/sum vectors to the correct

rounding position. This will remove the need for an additional re-rounding step as in

previous method.

Because the shift now occurs prior to overflow detection (i.e., the mantissa can be
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in the [2, 4) interval) the shifter will need a maximum shift of 55 instead of 54 as in

the simple design. Therefore, the shift amount needs to be modified to handle the

increased range (i.e., shift = min(max(0,−EZ + 1), 55))). It is important to note

that the trailing bits shifted right must be preserved to compute the sticky bit, which

necessitates increasing the shifter width from 106 bit to 161 bit (+55).

An additional optimization can be made to remove two left shifters in the unpack-

ing logic [38]. In the simple design, the mantissas need to be normalized (left shifted)

before rounding to ensure the rounding position was predictable. However, these two

left shifters can be removed if the carry-save right shifters are modified to shift in

both directions. Doing so dramatically reduces the unpacking delay by eliminating a

shifter and removing the leading-zero detection from the critical path.

Computing the shift amount must now account for the sum of the leading zeros

detected in both operand mantissas. This should be subtracted from the shift amount
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such that

shift[7:0] = min(max(−EZ + 1, 0), 55)−

(Xlz + Ylz) , (5.1)

where Xlz and Ylz are leading-zero counts for the unpacking logic of X and Y , re-

spectively. Figure 5.4 shows the required changes to the shift amount computation.

Figure 5.5 shows the mantissa portion of the block diagram. It is worth to note

that, although the mantissa outputs from unpacking logic are no longer a normal-

ized mantissa, no modification to the rounding algorithm is required as the left/shift

shifters will ensure the carry-save intermediate products are right aligned in both

normal and denormal cases. It can be seen that with the optimized design, only a

small change in the result selection logic (in bit-width) is needed. This is also the

reason the proposed method is preferred to the injection based rounding since the

injection rounding requires a wide additional carry-save adder to add the injection

amount.

5.3 Linear Delay Analysis

Since the mantissa computation is always on the critical path, its estimated linear

delay is provided in this section. For the sake of simplicity, the Sum and Carry

vectors are assumed arriving at 0 gate delay. In addition, since shift[7:0] should

arrive sooner than Sum/Carry, it can be assumed valid at 0 gate delay, too.

The delay estimation of the proposed design is shown in Figure 5.5. The left/right

shifter is simply a right barrel shifter with 6 logic levels (each logic level is a 2-1 mux)

with 2 more mux level for left shift. As a result, the shifted CH,SH vectors are valid

after 24 gate delay. Given SH, CH, the rounding logic is the same as the proposed
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rounding scheme in previous section that takes 27 gate delay. Therefore, the total

delay of the proposed design is 51 gate delay.

5.4 Chapter Summary

In summary, correct rounding of both normal and denormal results further exacer-

bates the growing complexity of an IEEE 754 multiplier. Due to the importance of
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high precision in scientific applications [12], the precision must be preserved. Sim-

ply truncating denormal results to zero is unacceptable [13]. Consequently, having

floating-point units that can handle normalized and denormalized numbers is es-

sential, especially for scientific computing [14]. Recently there have been several

types of hardware implementations that handle floating-point denormalized IEEE-

754 numbers [15, 16, 17]. This chapter discusses methods of implementing both

normalized and denormalized IEEE 754 numbers [2]. In particular, it combines the

pre-normalizing and post-normalizing steps in existing methods into a simpler and

faster single step.
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CHAPTER 6

A HYBRID IEEE PRECISION MULTIPLIERS SUPPORTING

DENORMAL NUMBERS

In this chapter, we extend the multiplier to handle half-word operations within the

IEEE-754 2008 standard with small overhead logic to perform the IEEE-compliant

half and single precision multiplications [38]. Single precision floating-point is the

default format for many deep learning frameworks while half-precision floating-point

multipliers are new additions to the 754 standard [2] that are specifically useful for

architectures that use machine learning computations. By utilizing smaller amounts of

precision, these multipliers can speed up computations for designs that are well suited

for neural networks and machine-learning applications [21]. Moreover, extensions are

added to the multiplier to also handle denormalized IEEE 754 floating-point numbers

as specified in previous chapter. Finally, the multiplier architecture is also updated

to handle rounding within the IEEE 754-2008 standard [2].

The proposed hybrid precision multiplier is designed to be easily configured to run

in different precision modes using an additional control signal fm[2:0]. When running

in binary64 mode, inputs A and B and output Z are normal binary64 numbers.

When running in binary32 or binary16 modes, the first half the input operands of

A, B and Z are binary32/binary16 numbers or word-aligned to the input operand.

As described in previous section, the sign computation is exactly the same for all

operations. Therefore, only exponent addition and mantissa multipliers need to be

modified to adapt to binary32 and binary16 formats.
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Figure 6.1: Converting binary16 exponent (5-bits) to binary64 exponent (11-bits)

6.1 Exponent addition

In binary64 mode, the exponent is 11-bit and the bias value is 1023. However, in

binary32 mode, the exponents are 8-bit width and the bias value is 127 and in binary

16 mode, the exponents are 5-bit and the bias value is 15. Using a simple conversion

technique, a small modification can be applied to the 11-bit exponent addition to

easily perform 8 and 5-bit exponent addition [38].

Assuming EF16, EF32 and EF64 be the representation of the exponent EF in the

half precision, single precision and double precision formats respectively.

EF = E64 − (2(10−1) − 1)

= EF32 − (2(8−1) − 1) = EF16 − (2(5−1) − 1) . (6.1)

As a result, the half-precision or single-precision exponents can be easily converted

to double precision exponent by figuring out the difference in their bias as following:

EF64 = EF16 − 15 + 1023 = EF16 + 1008

EF64 = EF32 − 127 + 1023 = EF32 + 896 . (6.2)

To implement these equation, a simple 11-bit adder can be used to add 1008 to

the half precision exponent. However, there is a better solution. The difference of
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Figure 6.2: Converting sign-extended binary64 exponent to sign-extended binary16
exponent

1008 (011 1111 00002 in binary representation) can be adjusted in logic as in Figure

6.1. It can be seen that the last 4 significant bits of EF64 are the same as the last 4

significant bits of EF16. The most 7 significant bits of EF64 can be either 011 1111 or

100 0000 when the most significant bit Y of EF16 is 0 or 1 correspondingly. This is

implemented by simply using an inverter gate as seen in the Figure 6.1 and previously

presented in Chapter 3.

The same technique can be used for binary32 exponent numbers, except the dif-

ference is 896 (011 1000 00002 in binary) instead of 1008. It is easy to see the last

7 significant bits of EF64 are the same as last 7 significant bits of EF32. The most 4

significant bits of EF64 can be either 0111 or 1000 when the most significant bit Y of

EF32 is 0 or 1 correspondingly. It can be implemented by simply using an inverter

gate to invert the MSB of EF32 to 3-bit [9:7] of EF63[10:0].

Subsequently, the 13-bit output exponent E64Z has to be converted back to its

right format EZ . Because the result exponent is sign extended to 13-bit and can

be negative, a simply conversion that take the MSB of E64Z and the LSBs as in the

forward-converters does not work. The naive implementation use an adder to add the

result exponent with the 13-bit 2’s complement of the difference in exponent (1008 in

binary16 and 896 in binary32). However, here we propose a better way as shown in

Figure 6.2. Given a 5-bits binary16 exponent, when converting it to 11-bits binary64
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Figure 6.3: A combined IEEE precision exponent addition

format, its range is from 011 1110 0000 to 100 0001 1111. In other word, its format

will be:

X6X5X5X5X5X5X4X3X2X1X0 with X6 = X5.

Adding negative two’s complement of the difference in exponent (e.g. 1008 in bi-

nary16) can be implemented by using one inverter, one XOR, and one AND gate

as in Figure 6.2. Using the converters as described, the original binary64 exponent

addition can be slightly modified to adapt for binary16 and binary32 exponent as

66



1 052 51 1 052 51

S

105 104 103 53 52 51 50 0

C

C

S

105 104 103 94 84 83 0

0 0

00 C

S

105 104 103 81 58 57 0

0 0

00

C

S

105 104 103 52 051

>> 42 >> 29

Multipier

roudning rounding

HALF-PRECISION SINGLE-PRECISION

fm[2:0]

0 2 4 0 2 4

0 4 2

fm[2:0]

X[57 : 48] X[51 : 0]X[54 : 32] Y [57 : 48] Y [54 : 32] Y [51 : 0]

MX MY

rounding

Figure 6.4: Aligning rounding position for half precision and single precision modes

in Figure 6.3. E16X[5:0], E32X[7:0] and E64X[10:0] are unpacked exponents of

binary16, binary32 and binary64 numbers, respectively. First, E16X and E32X are

converted to binary64 exponents using techniques above. The control signal fm will

then select the right exponent format to feed into the biased addition. Similar logic

is applied to E16Y , E32Y and E64Y exponents as well as the bias selection. In order

to handle the possibility of overflow within the exponent, the bias numbers utilize a

13-bit two’s complement representation.

6.2 Mantissa multiplication

Since the mantissa is left-aligned, the only difference between precision modes are the

rounding position. In particular, given the Sum[105:0] and Carry[105:0] shown
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in Figure 5.5, the rounding position for binary64 is at position 52, position 81 for

binary32 and 94 for binary16. Based on this observation, to minimize the overhead,

the binary16 and binary32 mantissas should be right shifted such that they are aligned

with the binary64 mantissa at the same rounding position (52 position). The shift

amount for binary16 mantissa is 42 while the shift amount for binary32 mantissa is

29 [38].

In the original binary64 design, the shift[7:0] value is used to left/right the

mantissas to the correct rounding position. Therefore, it is optimal to adjust this

value to the binary16 and binary32 modes as in Figure 6.5. In comparison with the

original design in Figure 5.4, the proposed design introduces a mux to select the

correct rounding difference with binary64 (42 for binary16 and 29 for binary32) and

adds this value to the final shift amount. In addition, another mux is also inserted

to account for the difference in the maximum length to be considered underflow (55

for binary64, 26 for binary32 and 13 for binary16).

Given the same rounding position, the compound adders and select result logic are

exactly the same for all modes. However, because the mantissa is righted shifted to

align with binary64 mantissa, the overflow bits is also moved along. The overflow bit

for binary16 now is v0 = P0[10] and v1 = P1[10] while the overflow bit for binary32

is v0 = P0[23] and v1 = P1[23]. Similarly, a simple mux can be used to select the

right overflow bit position for each mode.

Finally, the final result must be left-aligned to pack into the right format. If

binary16 mode, the mantissa needs to be shifted 42-bit to the left while in binary32

mode, the shift amount is 29. The control signal fm will select the final left-aligned

mantissa to pack.
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into account the difference between rounding positions

6.3 Linear Delay Analysis

Since the mantissa computation is always on the critical path, its estimated linear

delay is provided in this section. For the sake of simplicity, the Sum and Carry

vectors are assumed arriving at 0G. In addition, since shift[7:0] should arrive

sooner than Sum/Carry, it can be assumed valid at 0G,too.

The left/right shifter is simply a barrel shifter similar to the denormal design that

takes 24 gate delay. Since the overflow bit v0,v1 depending on the control signal fm,

they are valid after 47 and 48 respectively. Finally, the result should be left shifted,

which is nothing but a mux, if in binary32/binary16 modes. Therefore, the total

delay of the proposed design is 54 gate delay as shown in Figure 6.6.
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6.4 Chapter Summary

In summary, this chapter is an extension to [19] by demonstrating an IEEE 754

compliant floating-point multiplier that can handle half, single, and double precision
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operations. The previous implementations [20, 19] only demonstrated new methods

for single and double precision operations, however, this design extends the ideas

by specifically adapting the architecture for half-precision IEEE 754 multiplication.

Half-precision floating-point multipliers are new additions to the 754 standard [2]

that are specifically useful for architectures that use machine learning computations.

By utilizing smaller amounts of precision, these multipliers can speed up compu-

tations for designs that are well suited for neural networks and machine-learning

applications [21]. Moreover, extensions are added to the multiplier to also handle

denormalized IEEE 754 floating-point numbers as well as half and single-precision

floating-point numbers [2].
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CHAPTER 7

EXPERIMENTAL RESULTS

This chapter first introduces briefly about the design methodology including Appli-

cation Specific Integrated Circuits (ASIC) design flow, Register Transfer Level (RTL)

coding, verification, and topographical synthesis in Section 7.1. The experimental

results for each proposed design are discussed in details and compared with existing

designs in Section 7.2.

7.1 Methodology

All designs in this dissertation are implemented using the general design flow shown

in Figure 7.1 [7]. Design starts with the product requirement that will be translated

into behavioral/functional specification, then proceeds to the structural level (gates

and registers). This step is called Register Transfer Level (RTL) synthesis since

the designs are captured at the memory and logic level in an Hardware Description

Language (HDL). The HDL is then transformed to a physical description that are

ready for the chip fabrication (physical synthesis or layout generation). Generally,

the synthesis steps (both logic and physical synthesis) are automated.

In Figure 7.1, design steps has been divided into the front end stage (behavioral

level) and back end stage (structural and physical levels). This partition is used to

build Application Specific Integrated Circuits (ASICs). In an ASIC flow, the design

can be developed at the RTL-level and then passed to a different team that completes

the rest of the flow to build an actual chip. In other words, only a behavioral HDL

needs to be designed and simulated at the behavioral level. In this dissertation, all
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Figure 7.1: Generalized design flow (Adopted from [7])

designs are implemented and simulated using an ASIC design flow.

7.1.1 ASIC Design Flow

The behavioral synthesis normally transform a behavioral RTL description to a struc-

tural gate-level netlist. A typical behavioral synthesis design flow for an ASIC (shortly

ASIC design flow) is shown in Figure 7.2 [7]. RTL-level descriptions are typically bet-

ter for synthesis in that they are easier for flows to translate their final netlist into

realizable hardware.
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7.1.2 Logic Design and Hardware Description Languages

The flow starts with a specification, in this dissertation the IEEE 754-2008 floating-

point standard and multiplication algorithm descriptions, which is described in details

in previous chapters. The next step is to translate the algorithms into a circuit. Ba-

sically, translating algorithms into circuit schematics is a time-consuming and prone-

to-error task, while designers normally require quick feedback on whether a logic

design is reasonable. HDLs provide an effective way to specify or describe the de-

sign at a high level of abstraction to increase the productivity and accuracy. Verilog,

SystemVerilog, and VHDL are the most popular form of HDLs in use today.

In this dissertation, all proposed designs are implemented in RTL-compliant Ver-

ilog. In addition, although designs are described in double precision format, all imple-

mentations in this dissertation are developed using parameters to work on all IEEE

754-2008 formats.
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7.1.3 Design Verification

Before a design can be synthesized, it has to be verified for correctness. Verification

is an very important task of design flow and requires designing good test cases using

theories related to Boolean simplification and Design for Testability [3].

Floating-point has long-been hampered by verification as it is difficult to verify

completely. Exhausted test (or brute force test) is really a mission impossible for

most of the IEEE 754-2008 floating-point formats. For example, one 32-bit single

precision floating-point number (binary32) requires 232 or 4 billion test vectors. For

multiplication, since there are two operands, it requires 264 test vectors to cover all

possible inputs, which is practically impossible to implement. As a result, several

methods have been proposed along with Bill Kahan’s popular 1980s paranoia test.

John Hauser, one of Bill Kahan’s student, made a great new version including all

floating-point formats called SoftFloat/TestFloat [37].

In this dissertation, to verify the correctness of proposed designs, we first generate

random test vectors using a modified form of Hauser’s TestFloat program [37]. A set

of SystemVerilog testbenches are then developed to simulate designs (in Verilog code)

using ModelSim to verify the correctness based on comparing the actual outputs of

designs and the outputs of TestFloat-3c given the same input test vectors.

7.1.4 Topographical Synthesis

The modern integrated circuits is characterized by small feature sizes and complicated

layout. In old design flows without topographical synthesis, the wire loads are used

to characterize delays between gates. Unfortunately, wire loads model (WLM) are

simplistic and only use simple first-order approximation techniques [44, 45]. How-

ever, with sub-micron technology, wires delay becomes dominant and cannot be

ignored, especially below 180nm feature sizes. Therefore, to get a more accurate

delay, area, and power, this work incorporate underlying information from layout
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through Milkyway
TM

database generation and topographical synthesis through the

Design Compiler
TM

(DC) programs from SynopsysR©(SNPS).

In particular, the proposed designs are implemented in RTL-compliant Verilog and

then synthesized in an ARM 32nm CMOS library in Global Foundries (GF) cmos32soi

technology optimizing on delay. The ARM standard-cell library utilizes multiple

values of VT to aid in synthesis (i.e., MTCMOS). Synthesis was optimized for delay

utilizing Synopsys R© Design Compiler
TM

(DC) in topographical mode using a PVT

process at 25◦ C using TT corners. Topographical synthesis, provided by Synopsys R©

DC
TM

(DC) ensures synthesis that accurately predicts timing, area and power by

including information from the standard-cell layouts and underlying interconnect.

7.1.5 Power Analysis

Since power dissipation is a key factor in the circuit design, power analysis is critical

in evaluating any implementations. Power dissipation (Ptotal) in CMOS circuits comes

from two components [7]:

• Dynamic dissipation (Pdynamic) due to:

– Charging and discharging load capacitance as gates switch (Pswitch)

– “short-circuit” current while both pMOS and nMOS stacks are partially

ON (Pshort circuit)

• Static dissipation (Pstatic) due to:

– leakage (subthreshold leakage, gate leakage, and junction leakage) (Pleakage)

– contention current in ratioed circuits (Pcontention)
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Figure 7.3: CMOS Inverter (Adopted from [7])

Putting this together gives the total power dissipation of a circuit:

Ptotal = Pdynamic + Pstatic

= Pswitching + Pshort circuit + Pleakage + Pcontention

For example, Figure 7.3 shows a CMOS inverter driving a load capacitance. When

the input switches from 1 to 0, the pMOS transistor turns ON and charges the load

to VDD. When the input switches from 0 back to 1, the pMOS transistor turns OFF

and the nMOS transistor turns ON, discharging the capacitor. Suppose that the

gate switches at some average frequency fsw. Over some interval T , the load will

be charged and discharged T · fsw times. As a result, the average power dissipation

Pswitching is

Pswitching = C ·V 2
DD · fsw

Because most gates do not switch every clock cycle, it is often more convenient to

express switching frequency fsw as an activity factor α times the clock frequency f .

Now, the dynamic power dissipation may be rewritten as

Pswitching = α ·C ·V 2
DD · f
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For a long time, switching power was long utilized as a justification for smaller fea-

ture sizes as the power reduces quadratically with voltage scaling [7]. That is, Denard

scaling typically reduces the voltage as a result of smaller features sizes. The activ-

ity factor is the probability that the circuit node transitions from 0 to 1, because

that is the time the circuit consumes power. Dynamic power also includes a short-

circuit power component (Pshort circuit) caused by power rushing from VDD to GND

when both the pullup and pulldown networks are partially ON while a transistor

switches [7].

Static power is consumed even when a chip is not switching. Prior to the 90nm pro-

cess, leakage power was of concern primarily during sleep mode because it was small

compared to dynamic power. However, in nanometer processes with low threshold

voltages and thin gate-oxides, leakage can account for as much as 1/3 of total active

power [7, 46].

In this dissertation, the average power estimation is achieved by running the

simulation with over 50, 000 random test vectors utilizing an annotated Value Change

Dump (VCD) and subsequently converted to a Switching Active Interchange Format

(SAIF) for analysis through DC topographical. The dynamic, static (leakage), and

total power of each implementation are extracted from Design Compiler reports.

7.2 Delay, Area, and Power Analysis

7.2.1 A Novel Rounding Scheme for IEEE 754-2008 FP Multiplication

For comparison, the proposed multipliers, ES method and QTF method were imple-

mented and synthesized. The ES, QTF, and proposed methods do not have exceptions

due to time constraints and since it does not fall on the critical path would only impact

area. The Synopsys DesignWare implementation in shown as comparison, however,

this unit has exception logic [38].

As seen on the Table 7.1, our method is 2% faster than ES method, 3% faster
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Table 7.1: Post-synthesis results for the proposed design (without denormalized num-
bers support) in cmos32soi 32nm GF technology at 10 GHz

Methods Delay # Cells Area Power [mW]

[ps] [um2] Dynamic Static Total

DW mult (normalized) 410 12,438 17,515 26.02 11.34 37.35

QTF (normalized) 372 13,178 18,226 19.25 11.90 31.12

ES (normalized) 370 12,943 17,477 18.92 11.30 30.20

Proposed (normalized) 361 12,925 17,757 19.07 11.53 30.59

than QTF method, and 12% faster than DesignWare implementation. The proposed

method is 2% larger than ES method but 3% smaller than QTF method. In term of

power dissipation, our method is about the same as ES method but still 2% better

than QTF method, and 18% better than DesignWare. An important element is here

the QTF method is not accurate when testing. A small numer of errors (< 10)

occured because of the way the QTF method computes m1 that was described above

making it non IEEE compliant. These errors were not intentional and due to the

manner which the MSB is computed in the logic, it can be corrected to achieve IEEE

compliance.

Table 7.2: Post-synthesis results for the proposed design (supporting denormalized
numbers) in cmos32soi 32nm GF technology at 10 GHz

Methods Delay # Cells Area Power [mW]

[ps] [um2] Dynamic Static Total

DW fp mult (denormalized) 526 17,869 24,476 41.10 15.22 56.32

QTF (denormalized) 590 14,858 18,603 25.52 10.06 35.58

ES (denormalized) 583 14,517 19,317 24.60 10.44 35.04

Proposed (denormalized) 567 13,820 17,838 22.60 9.54 32.14
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Table 7.3: Post-synthesis results for the proposed hybrid design (supporting denor-
malized numbers) in cmos32soi 32nm GF technology at 10 GHz

Methods Delay # Cells Area Power [mW]

[ps] [um2] Dynamic Static Total

Hybrid (double-precision) 628 17,070 21,448 29.37 11.81 38.18

Hybrid (single-precision) 628 17,070 21,448 8.00 11.57 19.57

Hybrid (half-precision) 628 17,070 21,448 2.91 11.43 14.34

7.2.2 An Optimized IEEE FP Multiplier Supporting Denormalized Num-

bers

For comparison, the proposed multiplier supporting denormalized numbers is imple-

mented with three rounding methods: our proposed method, QTF method, and ES

method. Similar to previous experiments, the Synopsys DesignWare implementation

is also shown as comparison [38].

As seen on the Table 7.2, the proposed design using our rounding method is 4%

faster than using QTF rounding and 3% faster than using ES rounding but 8% slower

than DesignWare multiplier. Moreover, our proposed design also uses 7% less number

of cells than QTF rounding, 5% less number of cells than ES rounding, and 22% less

number of cells than DesignWare multiplier. In addition, about power dissipation,

our proposed design consumes 10% less power than both QTF and ES methods and

43% less power than DesignWare multiplier. It is worth to notice that DesignWare

implements exception processing (NaN, Inf, Zero) while our design does not. However,

it is clear that our proposed design is both faster, smaller, and more power-saving

than QTF and ES rounding methods in designs that support denormalized numbers.

7.2.3 A Hybrid Precision IEEE FP Multiplier Supporting Denormalized

Numbers

As described in previous chapter, the hybrid precision design aims to improve the

power dissipation of deep learning applications that can be trained and run with low
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precision numbers. Therefore, in this experiment, the power dissipation of proposed

design is measured in three precision modes: double precision (default), single preci-

sion, and half precision [38]. As seen on Table 7.3, switching to the half and single

precision mode can save 62% and 49% power dissipation comparing to the double

precision mode respectively. In addition, comparing to the double precision design in

Table 7.2, the area overhead is fairly small (20%) given the power saving.

7.3 Chapter Summary

This chapter briefly introduces about the ASIC design flow that is used to imple-

ment designs described in previous chapter. In particular, proposed and state-of-the-

art designs are implemented in RTL-compliant Verilog, verified against TestFloat-3c

software, and then synthesized ARM 32nm CMOS library technology using Synopsys

Design Compiler. Based on experimental results, our proposed rounding method is

both faster and smaller than QTF and ES method in both normalized and denormal-

ized design implementations. In addition, the combined precision and hybrid precision

designs can reduce significantly power dissipation for deep learning applications.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In conclusion, in this dissertation, we have presented the general knowledge of IEEE

floating point multiplication and architectural improvements that can be applied to

increase the performance and reduce the power dissipation.

We first proposed a combined IEEE half and single precision multipliers for many

deep learning implementations in which half precision can be safely used to train

and run a network. With a configurable control signal, our proposed multipliers

can be easily configured to switch between single and half precision IEEE floating-

point modes. Our design was completely verified with Hauser’s SoftFloat scheme

for the correctness. Compared to IEEE standard binary32 multipliers, the proposed

multipliers has a small overhead while provide a significant savings of 44% in power

dissipation when running in binary16 mode.

We then proposed a clarification and optimization on rounding for IEEE 754-

compliant floating-point multiplication. SBH’s method is first clarified and provided

that it is not applicable for RI mode. Then, QTF’s method is summarized and clarified

on how it solved the limitations of SBH’s method using a special CA. However,

QTF’s method is based on a rounding table and its design is not optimized and

produces inaccurate results. It uses 6 control signals and a 3:1 mux for the LSB

and a 4:1 mux for the final result selection. Based on a formula similar to the ES

method, a hybrid QTF/ES design is presented that uses only 2 control signals and a

standard 2:1mux. The experimental results illustrate an efficient, fast and low-power
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Table 8.1: Normalized experimental results for proposed design (without denormal-
ized numbers support)

Methods Delay # Cells Area Power [mW]

[ps] [um2] Dynamic Static Total

DW mult (normalized) 1.14 0.96 0.99 1.36 0.98 1.22

QTF (normalized) 1.03 1.02 1.03 1.01 1.03 1.02

ES (normalized) 1.02 1.00 0.98 0.99 0.98 0.99

Proposed (normalized) 1.00 1.00 1.00 1.00 1.00 1.00

implementation using a 32nm library. Table 8.1 shows the experimental results of

DesignWare FP multiplier (without denormalized numbers support), ES method,

and QTF method that are normalized respect to the results of the proposed design

for an easy comparison.

Correct rounding of both normal and denormal results further exacerbates the

growing complexity of an IEEE 754 multiplier. Due to the importance of high preci-

sion in scientific applications [12], the precision must be preserved. Simply truncat-

ing denormal results to zero is unacceptable [13]. Consequently, having floating-point

units that can handle normalized and denormalized numbers is essential, especially for

scientific computing [14]. Recently there have been several types of hardware imple-

mentations that handle floating-point denormalized IEEE-754 numbers [15, 16, 17].

This dissertation discusses methods of implementing both normalized and denor-

malized IEEE 754 numbers [2]. In particular, it combines the pre-normalizing and

Table 8.2: Normalized experimental results for proposed design (supporting denor-
malized numbers)

Methods Delay # Cells Area Power [mW]

[ps] [um2] Dynamic Static Total

DW fp mult (denormalized) 0.93 1.29 1.37 1.82 1.60 1.75

QTF (denormalized) 1.04 1.08 1.04 1.13 1.05 1.11

ES (denormalized) 1.03 1.05 1.08 1.09 1.09 1.09

Proposed (denormalized) 1.00 1.00 1.00 1.00 1.00 1.00
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post-normalizing steps in existing methods into a simpler and faster single step. Table

8.2 shows the experimental results of DesignWare FP multiplier (supporting denor-

malized numbers), ES method, and QTF method that are normalized respect to the

results of the proposed design for an easy comparison.

Finally, we proposed an IEEE 754 compliant floating-point multiplier that can

handle half, single, and double-precision operations. The previous implementations [20,

19] only demonstrated new methods for single and double-precision operations, how-

ever, this design extends the ideas by specifically adapting the architecture for half-

precision IEEE 754 multiplication. Half-precision floating-point multipliers are new

additions to the 754 standard [2] that are specifically useful for architectures that

use machine learning computations. By utilizing smaller amounts of precision, these

multipliers can speed up computations for designs that are well suited for neural net-

works and machine learning applications [21]. Moreover, extensions are added to the

multiplier to also handle denormalized IEEE 754 floating-point numbers as well as

half and single-precision floating-point numbers [2].

8.2 Future Work

For the future work, our combined IEEE half, single and double precision multipliers

can be modified to handle four binary16 and two binary32 operations at the same time

with a relatively small modification. A combined Fused Multiply-Add (FMA) that

perform A× B + C ×D, in which A,B,C,D can be binary32 or binary16 numbers,

is also promising if utilizing our design.

In addition, since the Compound Adder is a key component in any rounding

designs. However, existing designs all use Carry-Select Adder and duplicate carry-

chain to implement this Compound Adder, which is not optimal in terms of area,

power and delay. Therefore, an improvement in Compound Adder can help speed up

the overall performance and reduce the area/power of the Multipliers.
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