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Abstract: Arteriogenesis is the complex process of outward enlargement of small arteries 

and arterioles, also known as the collaterals. Arteriogenesis involves cell proliferation 

and vasculature remodeling and it is induced by increased fluid shear stress (FSS) after 

occlusion in major arteries upstream. Many cell types, including endothelial cells, smooth 

muscle cells, monocytes, and endothelial progenitor cells, have been implicated in this 

process. Previous studies indicate that placental growth factor (PLGF) plays a key role in 

arteriogenesis by acting as both a cell proliferation inducer and a chemoattractant. 

Previously, our group has shown that PLGF is mainly produced by endothelial cells. 

Furthermore, using in vitro and ex vivo models, our group was the first to demonstrate 

that PLGF is upregulated by FSS, and this process is NADPH oxygenase-4 (NOX-4)- and 

heme oxygenase-1 (HO-1)-dependent. Furthermore, our group discovered iron, a product 

of HO-1, can upregulate PLGF. In this study, we demonstrate transcription cofactor p300 

as a key regulator in PLGF expression. We discovered that FSS upregulates PLGF by 

increasing transcription, and p300’s histone acetyl transferase (HAT) activity is required 

in this process. This study identifies epigenetic modification as an important aspect in the 

complex process of arteriogenesis, and provides important insights for future studies and 

potential pharmaceutical targets of non-invasive treatments for cardiovascular diseases. 
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1. Arteriogenesis 

1.1. Definition 

Arteriogenesis is the in situ enlargement and remodeling of pre-existing arterioles through the 

growth of endothelial cells (EC) and smooth muscle cells (SMC), which utilizes the pre-existing 

collateral network to bypass the occluded artery1. Although initial vasodilation is involved2, 

arteriogenesis is a complex chronic process that leads to arteriole structure change through EC and 

SMC proliferation3. Multiple cell types, cytokines and other factors such as nitric oxide and proteases 

are involved in arteriogenesis. The observation of collateral growth was first made in human coronary 

artery disease (CAD) patients by Fulton in 19634. In contrast to angiogenesis, which is regulated 

mainly by hypoxia, arteriogenesis is regulated by fluid FSS5-7. Clinical observations have shown that 

increased collateral network is protective against adverse cardiac events in CAD patients8-11. 

Collateral network growth is also beneficial for pain management and amputation prevention in 

peripheral artery disease (PAD) patients12. 

1.1.1. Arteries and arterioles Structure 

Arteries are constituted of mainly 2 types of cells, endothelial cells and smooth muscle cells. A 

single layer of endothelial cells forms the inner lining of the vessel wall and has important functions 

in inflammation and platelet aggregation. Upon injury, the endothelium senses damage to the blood 

vessel and triggers blood coagulation. Leukocyte migration is facilitated by decreased adhesion 

between endothelial cells13. Endothelial cells are of special importance in this review for their 

functions in arteriogenesis, e.g. sensing of fluid FSS and recruitment of monocytes, which will be 

discussed in following sections. Smooth muscle cells run circularly around the vessel wall and their 

contraction is responsible for vasoconstriction. Interestingly, large arteries have their own blood 

vessels within their vessel walls, which are named vasa vasorum. 

Arterioles are small arteries which only have 1-2 layers of smooth muscle cells. The arteriole 

diameter can increase substantially5,14 through proliferation of EC and SMC in association with the 
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increase in FSS, thus substituting blood flow for occluded arteries6 Fig. 1 illustrates the structure of 

an arteriole. 

 

Fig. 1. Structure of arteriole 

1.1.2.  Function 

Arteries carry and distribute blood from the heart to the lungs for oxygen exchange or to organs and 

tissues to provide oxygen and nutrition. The pressure gradient of the systemic circulation (starting 

from the left ventricle and ending in the right atrium) blood vessels ensures the movement of blood 

through the body. Individual vessels within the circulatory system are a part of this overall pressure 

gradient, and pressure drops along their length. Arterioles are the major resistance vessels in the 

vascular tree with a pressure drop from 93 mm Hg to 37 mm Hg on average. This pressure decline 

helps blood enter various organs3. 

The overall function of the arterial circulation is to deliver blood to the capillaries. Capillaries are 

formed by a single layer of endothelial cells, through which gas and nutrient exchange take place3. 

Interestingly, this connection between arteries and veins (later discovered and named capillaries) 

confounded William Harvey, the physician who first made detailed and systemic observations of the 

blood circulation, for years.  
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1.2.  Conditions under which arteriogenesis occurs 

1.2.1. In response to occlusion 

Atherosclerosis. Atherosclerosis is a progressive, degenerative arterial disease characterized by 

increased thickness of the vessel wall due to formation of atherosclerotic plaque, which is composed 

of a lipid-rich deposit surrounded by an abnormal growth of smooth muscle cells. Atherosclerosis 

decreases the lumen of the blood vessel, which increases FSS on the endothelium as the same volume 

of blood is forced through a narrower opening. As the atherosclerotic plaque size increases, the 

endothelium covering it may become damaged, exposing the plaque.  Platelets can adhere to the 

collagen-rich plaque and form an intravascular blood clot (thrombus). The continued flow of blood 

past the thrombus site can dislodge the thrombus, leading to complete occlusion downstream3,13.  

Collateral network growth has been widely described after occlusion caused by atherosclerosis in 

human patients since 195615,16. Baroldi et al. observed that the average diameter of collateral vessels 

in atherosclerosis patients was 432 mm, a 1.78-fold increase compared to chronic hypoxemia patients 

without atherosclerosis15. 

Moyamoya disease. Moyamoya is the Japanese word meaning “a puff of smoke”. It is used to 

describe the extensive collaterals developed at the base of the brain after progressive occlusion of 

bilateral distal carotid arteries17. The cause of Moyamoya disease is still under investigation. 

Artificial occlusion in animal models. Many animal models have been established to study 

arteriogenesis induced by occlusion through surgically implanted occluding devices. Collateral 

growth has been observed after surgical ligation in pig, dog, rabbit, mouse, and rat5,18-23. Typically, in 

these studies, femoral artery ligation was done in one of the hindlegs, while the other leg was either 

left un-operated or sham-operated. 

1.2.2. In response to exercise 

In CAD and PAD patients. Exercise has long been known to be both protective against the 

development of cardiovascular diseases, and beneficial for rehabilitation in CAD24,25 and PAD 

patients26. Exercise can also increase coronary collateral flow in CAD patients27,28 and femoral artery 



5 

diameter in PAD patients29. Exercise has been shown to promote arteriogenesis in various animal 

models in both the coronary30 and peripheral circulation31,32. 

In athletes. It is a well-documented phenomenon that the size of arteries can be promoted by 

exercise in human athletes33,34. Many studies have also shown that exercise can promote 

arteriogenesis in healthy animals35-37. It is believed that increased blood flow induces arteriogenesis 

following exercise34,37. A study in marathon runners demonstrated increased coronary collateral 

growth38. Similarly, elite tennis players were found to have more developed collaterals in their 

dominant arms. 

1.3. Diabetes and metabolic syndrome affect arteriogenesis 

Diabetes has long been recognized as a major risk factor for the development of cardiovascular 

disease, and also reduces life expectancy, worsens prognosis, and limits recovery after cardiac 

events8,39-41. The life expectancy in patients with diabetes who experienced myocardial infarction at 

age 45 is reduced by 20 years, as compared to a 6-10 years reduction in cardiac patients without 

diabetes42. The prevalence of PAD in patients over 40 is more than twice as high in diabetic patients 

compared to non-diabetics43.  

Both type I and type II diabetes affect arteriogenesis, as shown by clinical44,45 and animal 

studies46,47. A mouse study by Yan et al. (2009) suggested that type II diabetes affects arteriogenesis 

more severely than type I46. In this study, foot and calf blood flow recovery was reduced more 

severely (by 78% and 57% respectively) in type II diabetic mice after femoral artery ligation than in 

type I diabetic mice (58% and 37%). Furthermore, type II diabetes is more clinically relevant to 

arteriogenesis research, due to its prevalence in the population and its complicated pathology. 12.2% 

of U.S. adults are estimated to have diabetes, of which 95% are type II48.Metabolic syndrome is a 

major risk factor for type II diabetes49. Metabolic syndrome is characterized by visceral obesity, 

dyslipidemia, hyperglycemia, and hypertension. In metabolic syndrome, a variety of other indicators 

are also higher than the normal range, but do not meet the criteria for diabetes. These indicators 

include fasting plasma glucose (FPG), glycated hemoglobin A1C levels (A1C) and performance on 
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the oral glucose tolerance test (OGTT)50. The diagnostic criteria for Type II diabetes are FPG levels > 

126 mg/L, A1C levels > 6.5%, and 2-h plasma glucolse (PG) in OGTT ≥ 200 mg/L51. Metabolic 

syndrome is a major risk factor for type II diabetes52.  

Many studies in both clinical populations and animal models have given valuable insights into the 

underlying mechanisms by which diabetes impairs arteriogenesis. Endothelial dysfunction is 

recognized as a hallmark in diabetes progression, and is characterized by a proinflammatory and 

prothrombic state, impaired vascular remodeling and vasodilation. Hyperglycemia53,54, altered 

arteriole dilation55,56, NO production57, neutrophil dysfunction58 and growth factor related pathways59-

61 have been shown to be related to endothelial dysfunction in diabetes. 

1.4. Mechanisms of arteriogenesis 

1.4.1. Initial stimulus 

Fluid shear stress (FSS). Narrowing of arteries caused by atherosclerosis or experimental 

occlusion by ligation leads to increased blood flow in the collateral circulation, which increases 

collateral FSS exponentially62,63.  FSS has been recognized as the most important factor in inducing 

adult arteriogenesis, as indicated by various studies. EC proliferation was shown to be increased by 

FSS in vitro64. FSS has also been found to induce differentiation of stem cells and progenitor cells to 

EC65,66. EC and SMC proliferation, and collateral artery growth were observed 1 day and 3 days after 

femoral artery ligation in rabbits19. Femoral ligation, as well as creation of a shunt between the artery 

and vein, increase FSS in collaterals. These two procedures have been shown to induce arteriogenesis 

in various animal models. In a study in rabbits, the maximum collateral conductance increased by 1.3-

fold 2 weeks after femoral ligation compared to the control leg, and doubled after 4 weeks21. In a 

mouse study, the diameter of collaterals showed an increase of 2.1-2.4-fold after occlusion compared 

to control. In the same study, the authors compared arteriogenesis and angiogenesis and identified 

arteriogenesis as the most effective mechanism to increase blood flow after occlusion18. In a study in 

pigs, collateral vessel number increased by ~2.4-fold compared to control 2 weeks after femoral 
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ligation, as observed by MRI5. One thing worth noting is, the collaterals and the surrounding tissues 

are not hypoxic, especially after increased FSS brought by major artery narrowing.  

1.1.1. Cell types involved 

1.4.1.1. Endothelial cells 

In FSS sensing. FSS is the friction between the vessel wall and flowing blood driven by blood 

pressure. FSS is a fundamental regulating force in the vasculature in homeostasis, remodeling, cardiac 

development and inflammation. Endothelium, as the barrier between blood flow and tissues, is 

directly exposed to the change of flow parameters such as pulsatile frequency, direction, and pressure. 

Various surface proteins, including PECAM-1, integrins, vascular endothelial growth factor receptor-

2 (VEGFR-2), and VE-cadherin on EC have been shown to take part in mechanical stress sensing67-72, 

which will be discussed later in this review. Upon sensing a change in FSS, a series of changes in 

morphology, protein phosphorylation/migration, cytoskeletal rearrangement, NO production and gene 

expression take place in EC67,73-76. The endothelium’s ability to sense FSS can become impaired in 

pathological conditions such as diabetes, and this impairment is considered to be the cause of 

dysfunctional arteriogenesis in diabetic patients by many researchers56,77. 

In producing nitric oxide. Endothelial nitric oxide synthase (eNOS) is a constitutively expressed 

isoform of nitric oxide synthase (NOS). Like the other 2 types of NOS, neuronal nitric oxide synthase 

(nNOS) and inducible nitric oxide synthase (iNOS), eNOS produces nitric oxide (NO) from the 

substrate L-arginine78,79 with several regulating cofactors including BH4 and Fe2+-heme80. NO is a 

small, uncharged molecule which can diffuse through cell membranes freely. NO induces 

vasodilation by activating soluble guanylyl cyclase (sGC) in SMC to produce cyclic guanosine 

monophosphate (cGMP). cGMP induces SMC relaxation via Ca2+ and K+ channel phosphorylation by 

cGMP-dependent protein kinase (PKG)81. eNOS knockout in mice causes hypertension and impairs 

arteriogenesis, suggesting that eNOS is vital in both maintaining normal blood pressure and 

arteriogenesis82,83. However, the role of eNOS in arteriogenesis is not entirely clear. One study by 

Mees et al suggested that eNOS is necessary for vasodilation but not essential for arteriogenesis while 
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others suggest otherwise83-85. For example, a study in rats done by Lloyd et al. (2001) showed that 

inhibition of eNOS by L-NAME only blocked arteriogenesis, but not angiogenesis in skeletal muscle 

after femoral ligation and exercise85, suggesting that NO is more critical for arteriogenesis than for 

angiogenesis. More research is needed to address this question. 

In recruiting monocytes. Monocytes play a critical role in arteriogenesis by producing cytokines 

to regulate EC and SMC proliferation and proteases to induce extracellular matrix remodeling. Upon 

activation, EC surface adhesion molecules are upregulated, and EC release chemotaxins that attract 

monocytes to the site of altered FSS. Many studies have shown that monocyte chemoattractant 

protein 1 (MCP-1) is upregulated by FSS in EC, leading to monocyte recruitment86-91. Peroxide92, 

VEGF-A and placental growth factor (PLGF)93,94 have also been shown to play a role in FSS-induced 

monocyte recruitment. Both VEGF-A and PLGF bind to vascular endothelial growth factor receptor-1 

(VEGFR-1), which is the only VEGF receptor present on monocytes. Interestingly, PLGF has a 

stronger chemoattractive effect on monocytes than VEGF-A in vivo92. PLGF knockdown with siRNA 

reduces monocyte migration in vitro95. It is worth noting that our lab’s previous studies showed that 

EC are the major source of PLGF, while SMC highly express VEGF-A95, and that EC PLGF is 

upregulated by FSS73, implicating the monocyte recruiting role of EC PLGF in arteriogenesis. 

In growth factor secretion. ECs produce growth factors that serve both autocrine and paracrine 

mechanisms. Our lab’s previous studies showed that PLGF is highly expressed in EC. PLGF has been 

shown to be a critical factor in arteriogenesis32,93. PLGF can induce both monocyte and SMC 

migration96. FSS has also been shown to upregulate endothelial VEGF-A, basic fibroblast growth 

factor (bFGF), platelet derived growth factor-B (PDGF-B) and TGF-β197-99. Autocrine VEGF-A 

serves crucial functions in EC survival and proliferation100,101. bFGF was shown to play a critical role 

in SMC migration and proliferation in pathological conditions by various studies102-104. PDGF-B has 

proliferative and chemoattractive effects on both EC and SMC105-108. TGF-β1 has a synergistic effect 

with PDGF on human arterial SMC proliferation, implying it has a function in maintaining the 

vasculature109. 



9 

1.4.1.2. Smooth muscle cells 

Studies suggest that vasodilation controlled by SMC tone is one of the first responses to increased 

FSS 20,110. As arteriogenesis proceeds, SMC differentiation and proliferation is essential to collateral 

development23. Coronary SMC proliferation was observed 3 weeks after occlusion in dogs111. Studies 

done previously by our lab and other groups suggest that SMC-secreted VEGF-A may have paracrine 

regulatory effects on EC functions and proliferation 95,112,113. Another important function of SMC in 

arteriogenesis is secretion of matrix metalloproteinases (MMP-2 and MMP-9) for the remodeling of 

the vasculature114. 

1.4.1.3. Monocytes 

Monocytes have been recognized as a critical mediator in arteriogenesis by secreting proteases115 

and arteriogenic cytokines. Clusters of monocytes can be observed gathering at sites of increased FSS 

within 12 h after occlusion19. Monocyte-secreted TNF-α and bFGF have been identified as important 

factors in inducing arteriogenesis. Increased monocyte production of TNF-α by LPS stimulation leads 

to significantly increased capillary density in rabbit calf muscles, implying that it affects EC 

proliferation116. Monocyte depletion by 5-fluorouracil (5-FU) markedly impairs arteriogenesis in 

occluded mouse and rabbit legs, while a quick “rebound” increase of monocyte count after 5-FU 

administration is discontinued is correlated with recovered arteriogenesis117. Knockout mice lacking 

the MCP-1 receptor chemokine (C-C motif) ligand 2 (CCL-2) also have impaired arteriogenesis, 

confirming the arteriogenic role of monocytes118. 

1.4.1.4. Progenitor cells 

Several types of endothelial progenitor cells (EPC) have been identified, including endothelial 

colony –forming cells (ECF), pro-angiogenic hematopoietic cells (PHC), late-outgrowth EPC, etc119. 

But the field is new and the definition of endothelial progenitor cells is still under debate120. 

Monocyte-derived EPCs have been shown to help improve arteriogenesis in mouse hid-limb 

ischemia121. In a recent study by Carrabba et. at. (2016), adventitial progenitor cells in bioengineered 

scaffolds improved arteriogenesis in a mouse femoral artery ligation model122. More research on 
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EPC’s arteriogenic capacity may provide important insights to the mechanism of arteriogenesis and 

prove useful in developing new therapies for cardiovascular diseases. 

1.4.2. Growth factors and other regulators involved 

1.4.2.1. VEGF-A and VEGFRs 

VEGF-A. Vascular endothelial growth factors (VEGF) are a family of growth factors. VEGF-A 

is the most studied member of this family, and is often referred to simply as VEGF in the literature. 

VEGF-A is a critical regulating factor in EC proliferation and homeostasis, as it is a ligand for both 

VEGFR-1 and VEGFR-2. VEGF-A treatment of EC monolayers increases their permeability by 

regulating adherens junctions123. VEGF-A knockout is lethal in mice, implying its critical role in 

embryonic vasculogenesis. However, its role in arteriogenesis is less clear. A study in mice suggested 

that VEGF-A has less arteriogenic effect than PLGF. VEGF-A did not show a synergistic effect with 

PLGF on arteriogenesis, although it showed synergistic effects with PLGF on SMC proliferation124. 

This is in agreement with another study which showed that PLGF was more effective than VEGF-A 

in inducing arteriogenesis93. 

VEGFR-1 and VEGFR-2. Both VEGFR-1 and VEGFR-2 are tyrosine kinase receptors. Many 

studies suggest that VEGFR-2 is highly important in regulating angiogenesis. A fifth VEGF family 

member, VEGF-E, encoded by Orf virus, specifically binds to VEGFR-2125. In one study done by 

Kiba et al. (2003), mice overexpressing VEGF-E showed highly increased angiogenesis (10-fold), 

while PLGF-2 overexpressing mice only showed 2-3-fold, implying the highly angiogenic effects of 

VEGFR-2. Inhibition of VEGFRs with ZD4190 in rats only partially impaired angiogenesis, but 

completely blocked arteriogenesis, suggesting there may be alternative mechanisms for angiogenesis, 

but that VEGFRs play an essential role in arteriogenesis32. 

1.4.2.2. PLGF 

PLGF plays a critical role in FSS-induced arteriogenesis. It has been reported that mice 

overexpressing PLGF in skin have a hypervascularized phenotype, with an increase in number, 

branching and size of arterioles, demonstrating PLGF’s arteriogenesis-inducing effects126. Our lab 
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was the first to show that PLGF is upregulated by FSS73. PLGF KO mice have a normal phenotype 

under normal physiological conditions, but have impaired arteriogenesis and wound healing. An 

important function of PLGF in arteriogenesis is monocyte recruitment. PLGF knockdown with 

siRNA impairs monocyte recruitment in vitro95. Monocyte recruitment was also found to be reduced 

in diabetic mice, and was rescued by treatment with an adenovirus expressing PLGF61. PLGF also has 

stronger chemotactic effects on monocytes than VEGF93. Our lab has found that Western diet-fed 

mice, a model for metabolic syndrome and type II diabetes, have reduced PLGF in skeletal muscle. 

1.4.2.3. Proteases 

Proteases play an important role in collateral remodeling by degrading the extracellular matrix, 

which allows for vessel growth in both angiogenesis and arteriogenesis. Clinical observations have 

shown that certain matrix metalloproteinases (MMP-3 and MMP-9) are upregulated in cardiovascular 

disease patients with signs of collateral remodeling127. Inhibition of MMPs in rabbits after myocardial 

infarction reduced collateral remodeling, but not angiogenesis128. In a recent study, siMMP-10 treated 

mice were shown to have a reduced number of arterioles and delayed tissue reperfusion after ischemia 

induced by notexin (a myotoxic and neurotoxic phospholipase discovered in the venom of the 

Australian tiger snake Norechis scutatus). Injection of MMP-10 rescued the phenotype, confirming 

the importance of MMPs in arteriogenesis129. 

2. PLGF 

2.1. Definition 

PLGF was first discovered in placental tissue and its cDNA was synthesized by Maglione et al in 

1991130. There are 4 isoforms of PLGF produced from variant splicing. PLGF-2 and 4 have a heparin 

binding sequence131-133. Functional differences among the isoforms besides heparin binding and ECM 

association are not clear to our knowledge. PLGF is a growth factor in the VEGF family that 

specifically induces arteriogenesis.  

2.2. Functions 

2.2.1. PLGF is a ligand for VEGFR-1.  
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PLGF in angiogenesis. Unlike VEGF-A, PLGF only binds to VEGFR-1, and thus it targets 

different cell types and triggers different effects than VEGF-A. Initially, PLGF occupying VEGFR-1 

was thought to affect vascular growth by the mechanism of enhancing VEGF-A stimulated 

angiogenesis through VEGFR-2134. However, more recent studies have shown that PLGF binding 

stimulates phosphorylation of specific VEGFR-1 tyrosine residues and leads to angiogenesis alone135 

or synergistically with VEGF136. PLGF KO mice have impaired angiogenesis in retina and heart136. 

Adenovirally overexpressed PLGF has been shown to enhance wound healing61. PLGF can also 

induce tumor angiogenesis by recruiting hematopoietic progenitor cells and macrophages136. These 

studies indicate PLGF is angiogenic. 

PLGF in arteriogenesis. It has been well established that increased FSS is the major stimulator 

for arteriogenesis73,137. Our group’s published work shows that both PLGF mRNA and protein are 

upregulated by FSS73. PLGF is one of the first growth factors to increase at the onset of collateral 

growth, as shown by a study published by Prior et. al20. In this study, after femoral ligation in rats, 

PLGF mRNA in the perforating artery was upregulated ~8-fold by day 2, and a 3-fold upregulation of 

PLGF mRNA still persisted 25 days post ligation. PLGF KO mice have impaired collateral growth 

after femoral ligation, but the inhibition is abolished with bone marrow transplant or PLGF 

treatment124,138. Recombinant human PLGF (rhPLGF) infusion enhances arteriogenesis after 

myocardial infarction in mice139. Mice overexpressing PLGF in the skin have a hypervascularized 

skin phenotype with an increase in number, branching and size of arterioles126. Altogether, these 

studies demonstrate that PLGF is a key factor in arteriogenesis. 

2.2.2. ECs are the major producer of PLGF in the vasculature. 

Our lab’s previous studies made the unexpected discovery that PLGF was highly expressed by 4 

EC cell lines (human lung microvascular EC, human umbilical vascular EC, human coronary artery 

EC, and mouse hemangioendothelioma EC), while very low PLGF expression was found in SMC cell 

lines95. This is in agreement with other studies human cell lines and in mice136,140-142. This finding was 

surprising since EC express very low levels of VEGF-A, as shown by our group and others. 
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2.2.3. PLGF effects on different cell types 

PLGF can induce EC, SMC, neuronal cell and fibroblast proliferation and migration, and is a 

survival factor for EC and SMC61,96,141,143-145. PLGF is also a survival factor for both solid and 

hematological tumors146,147. Thus, methods for its inhibition have been investigated as potential 

cancer treatments146,148. PLGF was shown to function in maintaining hematopoiesis through 

progenitor cell recruitment149. PLGF can recruit both monocytes and macrophage by activating 

VEGFR-192,124. PLGF is essential for placental development. Decreased serum PLGF levels have 

been linked to dysfunctional placental vascularization, preeclampsia, and small-for-gestational-age 

(SGA) newborn infants150. 

2.2.4. PLGF KO mice 

PLGF KO mice have an essentially normal phenotype both in fetal development and as adults, 

but reduced angiogenesis was observed in ovaries and infarcted heart136. Reduced wound healing has 

also been observed in PLGF KO mice61. Collateral growth in ischemic limb was impaired in PLGF 

KO mice, while treatments with bone marrow transplantation or PLGF injection rescued 

arteriogenesis61,124,138. These observations confirm that although PLGF does not appear to be required 

for embryonic development or normal vascular function, it is essential for vascular remodeling in 

pathological conditions.  

2.2.5. Role of PLGF in preeclampsia and reproduction 

Abnormal PLGF/sVEGFR-1 levels are linked to preeclampsia. Preeclampsia is a pregnancy 

disorder characterized by onset of high blood pressure, and proteinuria151. Preeclampsia can lead to 

eclampsia, and other severe complications, including organ damage and death151. Soluble VEGFR-1 

in plasma functions as a trap binding circulating PLGF, preventing it from activating cell-associated 

VEGFR1. The proposed mechanism of preeclampsia is that endothelial dysfunction occurs in 

preeclampsia patients, leading to hypertension and increased placental oxidative stress152. Serum 

PLGF levels have been demonstrated by many clinical studies to be a good biomarker for diagnosing 

preeclampsia 153-155. PLGF treatment in a mouse preeclampsia model attenuated the symptoms156. 
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2.2.6. PLGF in COPD 

Interestingly, patients with chronic obstructive pulmonary disease (COPD) have been found to 

have elevated PLGF levels157,158. PLGF has been suggested to affect COPD prognosis by increasing 

neutrophil elastase-induced emphysema159,160. Surprisingly, PLGF overexpression in mice was found 

to be sufficient to induce pulmonary emphysema161. Likewise, PLGF KO mice are resistant to 

elastase-induced emphysema162. These studies suggest that PLGF may play an important role in the 

development of emphysema. However, the mechanism(s) for this effect remain unknown. 

2.3. Regulation of PLGF 

2.3.1. FSS 

FSS is the hydrodynamic force exerted on the endothelium by blood flow. It is represented with 

the unit dyne/cm2. 1 dyne is equal to 1⋅10-5 N. FSS is calculated according to the following equation 

(Eq. 1): 

𝜏 =
4𝜇𝑄

𝜋𝑟3
 

Eq. 1. τ is FSS. µ is blood viscosity. Q is flow rate. r is the internal radius of the vessel. 

Following arterial occlusion, blood flow will increase in the downstream collateral arterioles, 

thereby increasing the FSS applied on the arteriole endothelium. Fig. 2 is an illustration of this 

process. 

 

Fig. 2. Arteriogenesis after atherosclerosis 
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2.3.1.1. Cell sensing of FSS 

Integrins. Integrins are cell surface glycoprotein receptors formed by αβ-integrin heterodimers. 

At least 18 α and 8 β subunits have been discovered in humans, which can combine to form 24 

different integrin heterodimers. Integrins connect intracellular actin filaments with extracellular 

matrix (ECM) components such as fibronectin and collagen across the cell membrane. Therefore, 

integrins can act as transmitters of mechanical forces. In a study done by Jalali et al., Shc was 

activated at different levels in EC grown on different ECM protein substrates, including human 

fibronectin (FN), human vitronectin (VN), rat collagen type I (CL), human laminin (LM), and human 

fibrinogen (FG)70. Shc is involved in many cell functions such as apoptosis, oncogenesis and 

proliferation via mitogen activated protein kinase (MAPK) and other pathways163. Inhibition of 

integrins by antibodies has been shown to attenuate FSS induced NF-ƙB translocation and 

ERK2/JNK1 activity in EC, processes which are involved in gene activation and EC migration 

respectively164,165. In an ex vivo study with pig coronary arterioles, it was shown that that the integrin-

ECM binding antagonist RGD peptide reduced FSS-induced vasodilation in a dose-responsive 

manner69.  In the same study, integrin β3 antibody also inhibited FSS-induced vasodilation. Integrins 

have also been shown to activate the small GTPase Rho and lead to FSS-induced cell alignment166. 

Integrins have also been shown to act as a co-effector for FSS sensing by VEGFR-2. FSS induced 

VEGFR-2 phosphorylation was blocked by both αvβ3 and β1 antibodies. However, treatment with the 

VEGFR-2 tyrosine kinase inhibitor SU1498 did not affect activation of Shc by integrins, suggesting 

that VEGFR-2 is downstream of integrins in FSS sensing167. Interestingly, FSS can also upregulate 

EC integrin α5β1168. These studies provide strong evidence that integrins are important FSS 

mechanotransducers in EC. 

VEGFR-2. VEGFR-2 has also been recognized as a FSS mechanosensor in EC. Both a VEGFR-2 

kinase inhibitor and siVEGFR-2 treatment reduced FSS induced Akt and eNOS activation in EC71. 

Another study done by Shay-Salit et al. (2002) suggested that VEGFR-2 acts as a co-transducer of 

FSS with the adherens junction, VE-cadherin and β-catenin72. In this study, VEGFR-2 translocation 
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induced by FSS was abolished in VE-cadherin knockout cells, suggesting that VE-cadherin is a 

cofactor for VEGFR-2 activation by FSS. Interestingly, in both studies, VEGFR-2 phosphorylation 

levels increased substantially with short periods of FSS (5-30 min). In the study done by Shay-Salit et 

al. (2002), VEGFR-2 phosphorylation levels were reduced to less than 0.5-fold of static control after 

2h and 4h of FSS, suggesting VEGFR-2’s FSS sensing is rapid but transient. 

G-proteins. G-proteins are important cellular signal transduction molecules involved in many 

cellular functions, including FSS sensing. A study done by Ohno et al. showed that the cGMP level 

increased by 4-fold after shear, which was mediated by the G-protein-coupled K+ channel. The K+ 

channel antagonist tetraethylammonium ion (TEA) and the G-protein inhibitor pertussis toxin were 

able to block the FSS-induced cGMP increase, confirming G-protein’s function in FSS sensing169. 

Using fluorescence resonance energy transfer (FRET), Chachisvilis et al. observed FSS-induced G-

protein activation by detecting a conformational change in the G-protein-coupled receptor bradykinin 

receptor-2 after exposing EC to FSS. Bradykinin is a 9-amino acid-peptide vasodilator that induces 

NO production in EC. In another study using liposome-bound G-protein, Gudi et al. showed that FSS 

activated GTPases Gaq and Gαi3 in a dose-dependent manner170. These studies provide valuable 

insights into G-protein mediated FSS sensing. 

Ion channels. Ion channel activation has been recognized as a major impact of FSS on EC. Ion 

channel activation is essential for vascular tone regulation by the endothelium. FSSA study done by 

Olesen et al. (1988) discovered the first FSS-activated K+ channel in EC. In this study, the authors 

compared the membrane potential of EC treated with acetylcholine (ACh) and FSS. Atropine, an Ach 

competitive antagonist, blocked Ach-induced inward K+ current but did not affect FSS-induced K+ 

current, implying the existence of an FSS-sensing K+ channel171. Another study showed that inward 

rectifier K+ (IRK) channel activation by FSS was regulated by Ca2+ in a dose-dependent manner, and 

inhibition to Ca2+ channels abolished IRK channel activation by FSS, suggesting the involvement of 

Ca2+ channels in FSS sensing172. Many studies have shown that Ca2+ influx is an important process in 

FSS induced signaling in EC. Studies done by Yamamoto et al. showed that in EC, FSS induced Ca2+ 
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influx is mediated by P2X4, a ligand-gated cation channel which is a purinoceptor for ATP173,174. 

P2X4 knockdown with antisense oligonucleotides (AS-oligos) blocked FSS-induced Ca2+ influx in 

vitro. An elegant mouse study done by the same group showed that knockout of P2X4 leads to 

impaired vascular tone and remodeling175. These studies show the important role Ca2+ channels play 

in FSS signaling. 

2.3.2. Oxidative stress 

Our group previously demonstrated that NOX-4 (NADPH oxidase 4) and HO-1 (heme oxygenase 

1) are involved in PLGF upregulation in EC by FSS. NOX are the predominant sources of ROS in the 

vasculature176. ROS produced by NOX activate many pathways involved in arteriogeneic 

signaling177,178. Other studies have also shown FSS activates and upregulates NOX179-181. Furthermore, 

NOX have been implicated in collateral growth182. NOX-4 is the most abundant NOX isoform in 

endothelial cells and produces H2O2
183. HO-1 is important in oxidative stress protection and generates 

three products (carbon monoxide, biliverdin, and ferrous iron) 184. NOX-4 mRNA, H2O2, and HO-1 

mRNA levels all increased after FSS treatment, while siRNA knockdown of either NOX-4 or HO-1, 

and catalase treatment were all able to block FSS-induced PLGF upregulation in EC-SMC 

cocultures73. These results suggest NOX-4 and HO-1 are important mediators PLGF upregulation.  

2.3.3. Hypoxia 

As an angiogenic growth factor, PLGF has been widely considered to be regulated by hypoxia 

inducible factor (HIF)185-187. Complete HIF is formed by dimerization of the HIF subunits α and β. 

HIF-β, first cloned in 1991188, was originally named aryl hydrocarbon receptor nuclear translocator-1 

(ARNT-1) for its function in regulating p4501A1 enzyme upon interaction with aryl hydrocarbon 

receptors189. HIF-1β binds with HIF-α and the complete HIF dimer translocates to the nucleus190. The 

three isoforms of HIF-α (HIF-1α, HIF-2α and HIF-3α) arise from three different genes. They have 

been shown to have overlapping and compensating functions with each other. Upon dimerization, 

HIF translocates to the cell nucleus and binds to hypoxia response elements (HRE) to regulate 

transcription of target genes191-193.  
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HIF-1β is constituently present in cells, while the three isoforms of HIF-α are constantly 

degraded by ubiquitination under normoxic conditions194. HIF-α degradation by the proteasome is 

regulated by prolyl hydroxylase domain proteins (PHDs) though hydroxylation of HIFα at proline 

residues195. Hydroxylated HIFα is recognized by Hippel-Lindau (VHL) protein, which initiates 

ubiquitination195,196. Factor inhibiting HIF (FIH) is another regulator of HIF-1α protein. 

Hydroxylation at Asp823 by FIH inhibits HIF-1α interaction with transcription cofactor p300197. 

Under hypoxic conditions, PHDs and FIH are inhibited due to lack of oxygen as a substrate. PHDs 

and FIH use iron, 2-oxoglutarate (2-OG), and oxygen as substrates to hydroxylate HIF-1α at different 

sites. Iron chelators198, CoCl2
95, and the 2-OG derivative dimethyloxalyl glycine (DMOG)197 are 

commonly used to inhibit PHDs and FIH and increase HIFα accumulation and activity. 

The role of HIF in regulation of PLGF is somewhat unclear. Tudisco et al. identified several 

HREs in the second intron of the PLGF gene199. In this study, under hypoxic conditions, the HREs 

were responsive to HIF-1α in human umbilical cord vein endothelial cells (HUVEC), and silencing 

with siHIF-1α abolished hypoxia-induced PLGF upregulation. Likewise, Gonsalves et al showed that 

erythropoietin increases PLGF expression in erythroid cells via HIF-1α200. However, another study 

published by Gobble et. al. (2009) demonstrated that PLGF is not regulated by HIF-1α in human 

trophoblast cells201. 

2.3.4.  Epigenetic regulation 

DNA methylation. In human lung and colon carcinoma, hypermethylation of the promoter region 

was linked to reduced PLGF transcription while treatment with demethylating agent 5-Aza-dC 

restored PLGF transcription and translation202.  

Histone acetylation and transcription cofactor p300. Histone acetylation, a modification to the 

lysine residues, adds negative charges to histones, decreasing the attraction between histones and 

DNA and facilitating the transcription complex’s access to DNA203. Histone acetylation levels are 

regulated by histone acetyl transferases (HAT) and histone deacetylases (HDAC). In the study by 

Tudisco et al. mentioned above, histones H3 and H4, which are in close contact with PLGF hypoxia 
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responsive elements (HREs) located in the second intron, were found to be hyperacetylated under 

hypoxic conditions199. Furthermore, the HAT known as p300 CTB associated factor (PCAF) has been 

shown to be important in inducing arteriogenesis in a study with PCAF KO mice204. 

Transcription cofactor p300, first discovered as a HAT by Ogryzko et. al. in 1996205, has drawn 

our particular attention as a factor that may play an important role in PLGF regulation through 

modification of histone acetylation. p300 was first discovered as a homologue of the transcription 

cofactor cAMP-response element-binding protein (CREB)-binding protein (CBP) in studies on 

adenovirus protein E1A206,207. CBP and p300 are structurally and functionally closely related, and 

therefore are often referred to together as CBP/p300205. However, studies overexpressing or inhibiting 

expression of p300 or CTB show that these proteins do have different functions208-210. Both CBP and 

p300 facilitate gene transcription through histone acetylation at lysine residues207. They are also 

involved in post-translational modification of other proteins by acetylation, such as nuclear factor 

erythroid-2 (Nrf2)211 and p53212. In addition, p300 also goes through autoacetylation that increases its 

HAT activity213,214. A recent study by Weinert et. al. (2018) shows that histone acetylation regulated 

by p300 is highly dynamic215, which is in agreement with our observation that PLGF upregulation 

occurs quickly upon exposure to FSS.  

Several inhibitors are commonly used to inhibit p300 interaction with transcription factors, or its 

HAT activity.  Chetomin, a secondary metabolite of fungus Chaetomium cochliodes216, inhibits 

p300’s cysteine/histidine rich domain-1 (CH1) through a “zinc ejection” mechanism217. Curcumin 

inhibits p300 by forming covalent bonds with its HAT domain218,219. Lys-CoA220, C646221, and 

A485222 are competitive inhibitors for the HAT pocket of p300. 

2.3.5. Transcription factors involved in PLGF regulation 

HIF, as mentioned previously, has been implicated in PLGF transcription. Metal transcription 

factor-1 (MTF-1) has also been shown to regulate PLGF either alone223 or in coordination with NFκB 

p65, under hypoxic conditions224. Interestingly, p65 has been implicated in the regulation of FSS-

induced transcription of PDGF225 and eNOS226 in endothelial cells. 
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2.3.6. Iron 

Results so far. HO-1 uses NADPH to degrade heme and produce biliverdin, carbon monoxide 

(CO) and Fe2+. Previous studies by our group showed that treatment of HCAEC/HCASMC cocultures 

with biliverdin did not affect PLGF levels. Likewise, a carbon-monoxide releasing molecule (CORM) 

was unable to upregulate PLGF227. However, several forms of iron including hemin (a form of heme), 

ferric ammonium citrate (FAC) and iron-nitrilotriacetic acid (Fe-NTA) all stimulated PLGF 

expression in a dose-dependent manner. These results led us to the hypothesis that FSS upregulates 

PLGF by increasing cellular iron concentration through HO-1 activation. Iron metabolism is 

discussed in more detail below. 

3. Iron metabolism 

3.1. Iron absorption 

Iron is essential for mammalian health. Iron is required for oxygen transportation, respiration, 

enzyme activities and gene regulation, among other functions. Dietary iron is 10% heme, while 90% 

is ferric iron (Fe3+), which is neither soluble in water nor bioavailable. Fe3+ is reduced to Fe2+ by 

ferrireductase before being absorbed by the intestinal epithelium. Fe2+ is transferred into epithelial 

cells by the divalent metal transporter 1 (DMT1) 228,229. Once within cells, Fe2+ is oxidized to Fe3+ by 

hephaestin and released back into circulation via ferroportin230. Hepcidin, a small peptide hormone, 

regulates ferroportin exportation of iron by binding to ferroportin and inducing its endocytosis and 

subsequent lysosomal degradation231. 

3.2. Transferrin 

Circulating iron is the most dynamic iron pool contributing to iron homeostasis. After being 

released into circulation, Fe3+ binds to transferrin (Tf). Under normal physiological conditions, only 

30%-40% of Tf is iron-loaded. Iron-loaded transferrin is referred to as holotransferrin. Non-loaded Tf 

is referred to as apotransferrin. Transferrin binds to the transferrin receptor and is endocytosed. The 

affinity of the transferrin receptor for holotransferrin at pH 7.4 is 700 to 1500-fold higher than its 
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affinity for apotransferrin232. Subsequent to cellular uptake, holotransferrin releases iron in response 

to the endosomal pH decrease, and is recycled back into circulation as apotransferrin233,234. 

3.3. Ferritin 

Fe3+ is reduced to Fe2+ when it is released into the endosome, due to the endosomal pH decrease, 

and becomes part of the labile iron pool234. Fe2+ can be transported from the endosome into the 

cytoplasm by natural resistance-associated macrophage protein 1 (NRAMP1) in the endosomal 

membrane. NRAMP1 is in the same protein family as DMT1 and has a similar structure and 

function228. Ferritin then oxidizes cytosolic Fe2+ to Fe3+ and sequesters it. Iron can be released from 

ferritin by lysosome degradation235,236. Iron release from ferritin with reductive mobilization reactions 

independent of lysosome degradation has been proposed232237. 

3.4. Iron-containing proteins 

Hemoproteins. Iron is of fundamental importance to most aerobic organisms for its characteristic 

ability to bind and release oxygen when in the heme molecule. In humans, the heme-containing 

protein hemoglobin accounts for 65% of total body iron. Myoglobin and cytochromes also use heme 

for oxygen storage and for catalysis238. 

Iron-sulfur (Fe-S) cluster proteins. Iron-sulfur (Fe-S) clusters are also an efficient way of 

utilizing iron for electron transport. Numerous enzymes contain Fe-S clusters, e.g., mitochondrial 

respiratory chain complex I, dehydrogenases, aconitases, DNA primases and polymerases239. This 

review will focus more on one particular aconitase, iron responsive element-binding protein 1 (IRP-

1), which also acts as an iron sensor. 

PHDs. Prolyl hydroxylase domain proteins (PHDs) hydroxylate conserved prolyl residues in 

HIF-1α, labeling it for proteasomal degradation. Iron is a required element in the PHD active site240. 

Iron deficiency has been shown to affect PHD activity in vitro241. Iron is provided to PHDs by poly 

(rC) binding protein 1 (PCBP1). In a study by Nandal et. al. (2011), depletion of iron with 

deferoxamine (DFO, an iron chelator) and siRNA knockdown of PCBP1 both blocked PHD-2 activity 

in cell lysates. After adding Fe2+, PHD-2 activity was rescued241. 
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3.5. IRPs 

Iron responsive element-binding proteins (IRPs) are iron sensors that regulate iron metabolism-

related protein expression by binding to iron responsive elements (IRE) on mRNAs of iron-regulated 

genes, including transferrin receptor 1 (TFR-1), divalent metal transporter 1 (DMT1), and ferritin-H 

and L. IRP binding can either suppress mRNA translation by binding to the 5’UTR (e.g. ferritin H 

and L), or can enhance translation by binding to the 3’UTR to prevent mRNA degradation (e.g. TFR-

1). Two IRP isoforms have been described, IRP-1 and IRP-2. Iron regulates IRP-1 and IRP-2 

differently. In iron replete cells, IRP-1 can acquire a 4Fe-4S cluster, which releases IRP-1 from IRE 

binding, and transforms it into an aconitase. In contrast, IRP-2 is degraded by the proteasome when 

cellular iron levels are high242. 

3.6. Iron related conditions 

Iron deficiency. Iron deficiency is the most common nutritional disorder worldwide243. Iron 

deficiency can be caused by dietary deficiency, high plasma soluble transferrin levels (sTf)244, high 

levels of hepcidin231, or chronic disease (ammonia of chronic disease, ACD). Oral iron 

supplementation is recommended by the World Health Organization for iron deficiency 

management245. 

Iron overload. Besides diet-caused iron overload, 4 types of hereditary hemochromatosis (HFE) 

have been described that cause hepcidin deficiency and iron overload. The 4 types of mutations are in 

human hemochromatosis protein (HEF-1), hemojuvelin (HJF)/hepcidin (HAMP), TfR2 and 

ferroportin 1246. Iron depletion by phlebotomy and iron chelators are used clinically to treat iron 

overload247. 

Sickle cell disease and PLGF. Sickle cell disease (SCD) patients have been shown to have 

excessive accumulation of iron levels due to blood transfusions248,249. Interestingly, SCD patients have 

also been found to have elevated PLGF levels250,251. This suggests a potential role of iron in PLGF 

regulation, consistent with our lab’s findings. 

3.7. Iron and the Fenton reaction 
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Fe2+ can catalyze H2O and O2 into forming H2O2 and other radicals, including HO· and HOO·. 

This process is named the Fenton reaction. It has been shown to cause DNA damage252 and lipid 

oxidation253. 

4. Discussion 

Arteriogenesis has been regarded as a “natural bypass”254. It has the potential to reduce the risk of 

myocardial infarction brought by CAD255. Therefore, it is an important therapeutic target. However, 

arteriogenesis is a complex process that involves many cell types and regulatory factors. 

Arteriogenesis can induced by FSS produced by blood being diverted through collaterals from 

stenosed major arteries, or by the increased blood flow produced by exercise.  

PLGF is an important factor in arteriogenesis; however, its regulation by FSS, signaling 

pathways, and epigenetic mechanisms remains unclear. Our group was the first to show PLGF is 

upregulated by FSS73. These previous studies further determined that NOX-4, HO-1, and iron have 

important functions in this process. Therefore, one of the key goals of this project was to identify 

further downstream steps in the pathway by which FSS regulates PLGF. Iron overload in SCD 

patients is linked to increased PLGF levels248,250,251, and our previous results show that several forms 

of iron can upregulate PLGF. However, the mechanism of PLGF upregulation by iron requires further 

elucidation. Thus, a second major goal of this project was to characterize the mechanism by which 

iron regulates PLGF. 

Our results described in the following chapters show that p300 HAT activity is a key contributor 

to PLGF upregulation by FSS. Likewise, we provide evidence that histone acetylation is increased by 

FSS in HCAEC, as measured by mass spectrometry. In future studies, more mass spectrometry 

analyses can be done to characterize the effect of FSS on histone acetylation levels. Likewise, 

Western blotting using antibodies for histones with specific acetylated lysine sites can be used to 

examine the effect of FSS on acetylation levels.  
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Our results further suggest that a transcription factor is critical in PLGF transcription, and 

demonstrate that HIF-1α, and HIF-2α are not involved in upregulation of PLGF by FSS. The 

transcription factor involved in stimulating PLGF transcription in HCAEC following FSS exposure 

remains undetermined. NFκB is one potential candidate, as it has been shown to be activated by FSS 

and to interact with the PLGF promoter region. Further studies are necessary to define the key 

transcription factor(s) involved in PLGF regulation by FSS. 

In summary, the results of our study have important implications for our understanding of how 

arteriogenesis is regulated. Further exploration of the signaling pathways determined in this study 

may identify novel pharmaceutical targets for effectively inducing arteriogenesis to reduce the risk 

and burden of CAD. 
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Abstract 

Placental growth factor (PLGF) has been shown to have important functions during 

development and under pathological conditions. PLGF is regarded as an important factor in 

arteriogenesis, the remodeling and enlargement of smaller arterioles induced by fluid shear stress 

(FSS) that is produced when blood is diverted from occluded upstream arteries. Our lab’s 

published work indicates that PLGF is upregulated by FSS, and that heme oxygenase-1 (HO-1) is 

activated by FSS1. HO-1 uses heme to produce CO, iron, and biliverdin. Our lab’s previous 

results showed that neither CO nor biliverdin is able to increase PLGF expression in endothelial 

cells. However, we found that several forms of iron, including hemin, ferric ammonium citrate 

(FAC), and ferric nitrilotriacetate (Fe-NTA) can upregulate PLGF in endothelial cells (HCAEC)2. 

Interestingly, it has previously been reported that iron overload in sickle cell disease (SCD) 

patients is correlated with PLGF upregulation in serum3-5. Our results are in agreement with those 

findings. We next asked which signaling pathway(s) mediate this effect of iron on PLGF. Iron is 

known to influence hypoxia inducible factor (HIF) expression though PHD proteins6-8, and others 

have reported a role for HIF in regulation of PLGF9,10. Therefore, we hypothesized that iron 

produced by FSS-activated HO-1 increases intracellular iron to upregulate PLGF via an iron-

response protein (IRP)-dependent pathway. We also hypothesized that iron deficiency would 

impair PLGF expression. In this chapter, we show that iron upregulates PLGF in human coronary 

artery endothelial cells (HCAEC). However, we were not able to show a role for ferritin or IRPs 

in FSS-induced PLGF expression. Similarly, dietary-induced iron deficiency did not affect PLGF 

levels in rat hearts, although it increased transferrin receptor mRNA (~8-fold) as expected. In 

further experiments, we measured PLGF and HO-1 mRNA in HCAEC treated with FSS, 

curcumin, and chetomin. Surprisingly, curcumin and chetomin treatments had opposite effects on 

PLGF and HO-1 mRNA. These results suggest that increased HO-1 mRNA levels alone are not 
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sufficient to upregulate PLGF. Further studies to explore the dynamic interactions between PLGF 

regulation and iron metabolism are needed. 

Keywords: PLGF, iron metabolism, HO-1 
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Introduction 

Placental growth factor (PLGF) has been deemed to be a critical factor in arteriogenesis11-14, 

the process of small artery remodeling and enlargement in response to increased fluid shear stress 

(FSS) after occlusion of a major artery. Our lab’s previous work has shown that PLGF 

upregulation by FSS is dependent on upregulation of NADPH oxidase-4 (NOX4)1 and heme 

oxygenase (HO-1)2. Our results revealed an interesting link between FSS regulation of PLGF and 

cellular iron homeostasis. HO-1 breaks down heme and produces iron, biliverdin, and CO. Since 

both biliverdin and CO act as antioxidants, HO-1 is an important enzyme in the cellular response 

to oxidative stress15,16. In our lab’s previous studies, human coronary artery endothelial cells 

(HCAEC) were treated with iron, biliverdin, or CO, followed by measurement of PLGF levels. 

Only iron, but not biliverdin or CO, could upregulate PLGF2. Upregulation of PLGF by iron has 

been observed by other researchers17,18, in agreement with our results. This finding is of clinical 

interest because iron overload has been linked with elevated PLGF levels in human patients3,19.  

A previously published study by our lab showed that H2O2 can upregulate PLGF by 

increasing its mRNA half-life in human coronary artery smooth muscle cells (HCASMC) 20. 

Likewise, the upregulation of PLGF in HCAEC/HCASMC cocultures is mediated by a H2O2 –

dependent pathway. Transition metals such as iron can donate or accept electrons easily21-23, and 

the Fenton reaction describes the phenomenon by which transition metals generate ROS in 

solution. Therefore, in the present studies, we first tested whether iron-mediated upregulation of 

PLGF is mediated by reactive oxygen species (ROS) created by the Fenton reaction. The 

response to iron persisted in the presence of catalase, suggesting that the effect of iron on PLGF is 

mediated by cellular signaling pathways other than ROS. 

We next tested the hypothesis that FSS-induced HO-1 upregulation increases intracellular 

iron content, which in turn upregulates ferritin though iron responsive element binding protein-1 
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and/or 2 (IRP1, IRP2). We further hypothesized that this increased ferritin would sequester 

intracellular free iron, thereby reducing activity of prolyl hydroxylase domain proteins 1, 2, and 3 

(PHD1, 2, and 3). Lastly, we anticipated that reduced PHD activity would cause hypoxia 

inducible factor (HIF) to accumulate and bind to the PLGF promoter region’s putative hypoxia 

responsive element to increase PLGF transcription, as illustrated in Fig. 1. 

We tested several steps of this hypothesis by assessing ferritin levels in HCAEC following 

FSS exposure, the effect of IRP-1 and -2 knockdown on upregulation of PLGF by FSS, and the 

effect of an iron-deficient diet on PLGF expression in rat hearts. Neither ferritin nor IRPs 

appeared to be involved in regulation of PLGF by FSS. Likewise, the iron-deficient diet failed to 

reduce PLGF levels in rat hearts. The involvement of HIF in FSS-mediated upregulation of PLGF 

was also thoroughly investigated, leading us to rule out a role for HIF in this pathway (see chapter 

4).  

In the course of the HIF experiments, we identified transcription cofactor p300 as a key 

component of the pathway by which FSS upregulates PLGF. We therefore tested whether p300 

also mediates upregulation of PLGF by iron. Our results show that iron upregulates PLGF by a 

pathway that involves 1) p300 binding to a transcription factor other than HIF and 2) p300 

histone acetyltransferase (HAT) activity.  

To our knowledge, there have been no studies linking iron homeostasis with arteriogenesis. 

Our results suggest that p300 plays an important role in this novel signaling pathway. Further 

elucidation of the mechanism of PLGF upregulation by iron will provide new insights which 

could lead to novel treatments to improve arteriogenesis.  
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Materials and Methods 

Cell culture. Passage 6 (P6) human coronary artery endothelial cells (HCAEC, Lonza) and 

human coronary artery smooth muscle cells (HCASMC, Lonza) were used in all experiments. 

The cells were cultured in matching media (Smooth Muscle Growth Medium-2/SmGM-2 and 

Microvascular Endothelial Cell Growth Medium-2/EGM-2MV, Lonza) for 3 d to reach 

confluence before seeding. For monoculture experiments, HCAEC were seeded in 12 well plates 

and allowed to reach confluence for 24 h before ~18 h of serum restriction. For serum restriction, 

cells were incubated with 2% FBS medium supplemented with 15 mM HEPES, 30 µg/mL 

gentamycin, and 15 ng/mL amphotericin-b (Lonza). The 2% FBS medium was a 3:2 mixture of 

serum-free DMEM (Sigma) and HCAEC or HCASMC medium. For coculture experiments, the 

cells were seeded on either side of a polyester insert with 0.4 µm pores in a 6-well plate format 

(Corning Transwell). This allows the two types of cells to come into contact but prevents cell 

migration. Before seeding, the seeding side was coated with 0.1% gelatin in matching medium for 

1 h in a cell culture incubator (37˚C, 5% CO2). The gelatin coating medium was then aspirated 

and the inserts were allowed to dry. HCASMC were seeded on the inverted side of the insert at 

10,000 cells/cm2 then incubated to allow attachment for 4-6 h before the inserts were repositioned 

into a receiving well with 2 mL of SmGM-2. HCASMC were incubated overnight before 

HCAEC were seeded on the receiving side of the insert at 25,000 cells/cm2. HCASMC were fed 

with fresh SmGM-2 when HCAEC were seeded. Co-cultures were incubated at 37˚C, 5% CO2 for 

24 h before 18 h of serum restriction. 

Fluid shear stress setup. Fluid shear stress (FSS) was applied to co-cultures with motor-

attached (Optimal Engineering Systems, Inc.) cones made of ultra-high molecular weight 

polyethylene with a 5˚ incline towards the center as described previously by our group and 

others1,24,25 (Fig. 2. A). The motors were controlled by specialized software, Allegra (Optimal 

Engineering Systems, Inc.) to turn at different rates simulating pulsatile blood flow. For these 
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studies, we used a waveform that simulates collateral flow downstream of a coronary artery with 

60% stenosis (average FSS 1.24 Pa, Fig. 2. B), which is considered clinically critical, as 

described in previous publications1,26. Only HCAEC on the upper side of inserts were directly 

exposed to FSS, whereas HCASMC were not directly exposed to FSS but were accessible to 

diffusible mediators produced by HCAEC in response to FSS. The FSS stimulus was applied to 

the cocultures for 2 h. During FSS exposure, the Transwell plates were kept on plate heaters to 

maintain cell cultures at 37 ˚C.  Media and/or cell lysate was collected 0-24 h after the 2 h-shear 

stress exposure. The static inserts were covered with parafilm to prevent excessive evaporation 

and was placed next to FSS exposure inserts for the same duration of treatments as published by 

our group previously1. 

Animal experiments. Weanling male Sprague-Dawley rats were housed in individual cages 

in a humidity and temperature controlled room with a 12 h light/dark cycle in the Laboratory 

Animal Resource Facility at Oklahoma State University. Upon arrival at the facility, rats were fed 

with control (C) diet (Harlan Teklad) for 3 days to allow acclimation to the facility. C group rats 

were fed with the C diet at 50 mg Fe/kg body weight, and iron-deficient (ID) group rats were fed 

with ID diet (Harlan Teklad.) at <5 mg Fe/kg. C and ID groups were allowed ad libitum access to 

diets. Pair-fed (PF) group was fed with the C diet restricted to the average amount consumed by 

the C group. All groups were allowed ad libitum access to deionized water. After 21 days, rats 

were injected with a ketamine/xylazine cocktail followed with euthanization by exsanguination. 

Rat tissues were isolated and flash-frozen and stored in -80 °C freezer. 

Chemical exposure. Unless otherwise specified, all chemicals were added to both the 

HCAEC and HCASMC sides of the Transwell insert immediately before FSS exposure. Control 

groups were treated with same volume of the vehicle. Chemicals used were ferric ammonium 

citrate (FAC, Sigma), catalase (Sigma), chetomin (Sigma), curcumin (Tocris), A485 (Tocris), and 

hemin (Sigma). 
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siRNA treatments. Pre-designed, lyophilized siRNA (Silencer Select) was purchased from 

Thermo Fisher and reconstituted with RNAase free H2O before being stored at -20 ˚C. For cell 

treatment, a siRNA mix was made with Opti-MEM and Lipofectamine RNAiMAX following the 

manufacturer’s instructions to reach a final siRNA concentration of 5 nM in cell culture media. 

The siRNA mix was combined with normal culture media and added to cell culture wells/flasks 

immediately before cells were trypsinized, re-suspended in media, and added to wells/flasks. 

Cells were incubated with the siRNA mix for 24 h. Knockdown efficacy was determined using 

real-time qRT-PCR. For siRNA treated HCAEC used in shear stress experiments, HCAEC were 

seeded in inserts immediately after siRNA treatment and incubated with 2% FBS medium for 18 

h before shear stress exposure. 

Real-time qPCR. RNA extraction was performed with the RNeasy Mini Kit (Qiagen), or 

RNeasy Fibrous Tissue Mini Kit (Qiagen). Cells were trypsinized with TrypLE (Gibco) then 

centrifuged at 5,000 RPM for 5 min to form a pellet. The pellet was lysed with buffer RLT from 

the RNeasy Mini kit then stored at -80 ˚C until further steps following the manufacturer’s 

instructions. Tissue samples were homogenized with a homogenizer (Bio-Gen) in buffer RLT 

from the Fibrous Tissue Mini Kit (Qiagen) then RNA extraction was performed following the 

manufacturer’s instructions. The RNA concentration was determined with a Synergy Plate Reader 

(Biotek) using a Take3 Micro-Volume Plate (Biotek). For cDNA synthesis, reverse transcription 

was done within 1 h after RNA extraction using the QuantiTect Reverse Transcription Kit 

(Qiagen). The remaining RNA was stored at -80 ˚C. cDNA was stored at 4 ˚C. For real-time 

qPCR, 5 or 10 ng of cDNA was used per reaction for cell culture samples, and 40 ng was used for 

animal tissue samples. A PCR master mix was made using PerfeCTa SYBR Green FastMix, Low 

ROX (Quanta Biosystems), and 50 nM primers. Real-time qPCR was performed in an ABI 7500 

Fast instrument (Applied Biosystems). Relative mRNA quantification was normalized to β-actin 

and a reference control sample, then calculated as 2-ΔΔCt. For ferritin and PLGF in rat hearts, 
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mRNA levels were normalized to β-actin, ribosome proteins RPL19, and RSP29. Table 1 shows 

the primer sequences used. 

Homo 

sapiens β-actin 
Forward  TGCCGACAGGATGCAGAAG 

Reverse CTCAGGAGGAGCAATGATCTTGAT 

Homo 

sapiens PLGF 
Forward  CCTACGTGGAGCTGACGTTCT 

Reverse TCCTTTCCGGCTTCA TCTTCT 

Homo 

sapiens HIF-1α 
Forward  TCATCCATGTGACCATGAGGAA 

Reverse GAGAAAAAAGCTTCGCTGTGTGT 

Homo 

sapiens PHD-2 
Forward  CCAGAAGGCAAAGCCCAGTT 

Reverse CTCGTGCTCTCTCATCTGCAT 

Homo 

sapiens PHD-3 
Forward  GTTCCCTCTCTGGTTGCACG 

Reverse CAGGAAGTTGTCCAGGTAGCA 

Homo 

sapiens IRP-1 
Forward  GCTTGGGTCAGGTTCGCC 

Reverse GATCGAAAATGGTAAGCGCCC 

Homo 

sapiens IRP-2 
Forward  GACGCCCCAAAAGCAGGATA 

Reverse CAGCTTCCAACAAGACCCGT 

Homo 

sapiens HO-1 
Forward  CTGCGTTCCTGCTCAACATC 

Reverse GGCAGAATCTTGCACTTTGTTG 

Rattus 

rattus β-actin 
Forward  AGTTCGCCATGGATGACGAT 

Reverse TGCCGGAGCCGTTGTC 

Rattus 

rattus RPL19 
Forward  CGTCCTCCGCTGTGGTAAA 

Reverse TGGCGATTTCGTTGGTTT 

Rattus 

rattus RPS29 
Forward  GCCAGGGTTCTCGCTCTTG 

Reverse GGCACATGTTCAGCCCGTAT 

Rattus 

rattus TfR 
Forward  TCGGCTACCTGGGCTATTGT 

Reverse CCGCCTCTTCCGCTTCA 

Rattus 

rattus PLGF 
Forward  CTGCTGGGAACAACTCAACAGA 

Reverse GCGGCCCCACACTTCATT 

Table 1. Primer sequences 

ELISA. Media were collected at certain time points after shear stress exposure and treated 

with a cocktail of protease inhibitors (1 mM PMSF, 1 mM Na3VO4, 1 μg/mL leupeptin, 1 mM 

benzamidine-HCl, 1 μg/mL aprotinin, 1 μg/mL pepstatin A) before being stored at -80 ˚C. For 

cell lysis, after cells pellets were collected as described in the previous passage, pellets were lysed 

with RIPA buffer supplemented with the same cocktail of protease inhibitors. Both PLGF and 

HIF-1α ELISA were performed using the respective DuoSet ELISA kits (R&D Systems) 
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following the manufacturer’s instructions. For FAC and catalase treated samples, the 

concentration of PLGF was expressed in pg/mL to eliminate the difference in protein 

concentration introduced by adding catalase. For the rest of the experiments, the concentration of 

PLGF was normalized to total protein as measured with the BCA assay (Pierce).  

Western blot. RIPA buffer supplemented with a protease inhibitor cocktail (1 mM PMSF, 1 

mM Na3VO4, 1 μg/mL leupeptin, 1 mM benzamidine-HCl, 1 μg/mL aprotinin, 1 μg/mL pepstatin 

A) was used for both tissue and cell lysis. Protein concentration was determined using the BCA 

assay (Pierce). 

For protein extraction from cultured cells, media were removed and the cells were rinsed with 

warm DPBS (Lonza). Cells were dissociated by incubation with TrypLE (Gibco) for 5 min at 37 

˚C. Cold EGM-2MV was then added to the wells to halt trypsinization. Cells were centrifuged at 

5,000 RPM for 5 min to form a pellet, then lysed with RIPA buffer on ice for 30-45 min with 

vortexing every 10 min. The cell lysate was then centrifuged at 8,000 RPM for 15 min, and the 

supernatant was collected and stored at -80 ˚C. A rabbit-anti human/mouse/rat polyclonal 

antibody (Abcam) was diluted to 1:2000 for β-actin detection. A rabbit-anti-human monoclonal 

antibody (Abcam) was diluted to 1:2000 for ferritin detection. An HP-tagged mouse IgGκ 

binding protein (Santa Cruz) and an HP-tagged donkey-anti-rabbit secondary antibody (Jackson 

Immuno) were diluted to 1:5,000 and 1: 10,000 respectively to detect primary antibodies. For 

protein extraction from rat heart tissue, 10-30 mg of rat heart (mainly ventricle tissue) was 

homogenized with a homogenizer (Bio-Gen) in RIPA buffer.  The homogenized tissue was then 

centrifuged at 8,000 rpm for 15 min. The supernatant was collected, aliquoted, and stored at -80 

˚C. For Western blotting, 10 µg of protein was loaded in each lane of a 12% acrylamide gel.  

Samples were mixed with 3x Laemmli buffer supplemented with bromophenol blue. The 

electrophoresis condition was 100 V for 150 min at room temperature. The transferring condition 
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was 60 V for 150 min in an ice-cooled chamber. PVDF membrane (Fisher) was used for blotting. 

Membranes were blocked with SuperBlock (Fisher) TBS blocking buffer for 10-15 min at room 

temperature. A monoclonal mouse-anti-rat PLGF antibody (Santa Cruz) was diluted at 1: 1,000 

for PLGF detection. An HP-tagged mouse-anti-mouse secondary antibody (Santa Cruz) was 

diluted at 1:5,000 to detect the primary antibody. Primary antibodies were incubated overnight on 

a shaker at 4 ˚C. Secondary antibodies were incubated for 1 h on a shaker at room temperature. 

West Pico PLUS Chemiluminescent Substrate was used for chemiluminescent detection of 

protein bands. Chemiluminescent images were captured with an Amersham Imager 600 series 

instrument (GE). Pixel density was analyzed with ImageJ software and normalized to β-actin as a 

loading control.  

Statistical analysis. Student’s t-test was used to detect difference between two groups. One-

way or two-way ANOVA followed by Tukey’s or Holm-Sidak t-test were used as recommended 

by SigmaStat software to detect differences between multiple treatment groups. All data are 

presented as mean ± SE. Statistical significance is indicated as *p<0.05, **p<0.01, ***p<0.0001, 

and ****p<0.0001. 
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Results 

Placental growth factor (PLGF) upregulation by fluid shear stress (FSS)s is a rapid 

reaction in HCAEC. To determine the activation of mRNAs of prolyl hydroxylase domain 

protein-2 (PHD-2), iron responsive element binding protein-1 (IRP-1). PLGF was upregulated by 

3.22-fold (±0.60 SE, p<0.01, N=4) at 2 h post-FSS (Fig. 3. A). IRP-1 mRNA was not affected by 

FSS, while IRP-2 mRNA was upregulated immediately following FSS (Fig. 3. B and C). 

Interestingly, PHD-2 was upregulated immediately following FSS (Fig. 3. D) while HIF-1α 

mRNA was downregulated 4 h post FSS (Fig. 3. E). PHD-2 targets Hypoxia inducible protein-1α 

(HIF-1α), other than HIF-2α, for proteasome degradation7. PHD-2 upregulation will lead to 

reduced HIF-1α protein levels, which is in agreement with our observation that the levels of HIF-

1α and PLGF are inversely correlated in HCAEC. Rishi et. al. (2015) have also shown that KO of 

PHD-1 and PHD-3 improves perfusion after hind-limb ischemia in mice27. 

Iron upregulates PLGF, but not by the Fenton reaction. Our lab’s previous results show 

that three forms of iron (hemin, FAC, and Fe-NTA) can upregulate PLGF2. Iron, as a transition 

metal, can cause a Fenton reaction since it can easily accept or donate electrons, creating reactive 

oxygen species21,22. Our lab previously showed that H2O2 can upregulate PLGF in HCASMC20 

and HCAEC1. To determine whether PLGF upregulation by iron is due to the Fenton reaction and 

generation of H2O2, HCAEC were treated with catalase and ferric ammonium citrate (FAC) for 6 

h. PLGF mRNA was measured with real-time qRT-PCR. Catalase treatment did not affect PLGF 

upregulation by FAC, indicating that eliminating H2O2 did not prevent PLGF upregulation by 

FAC (Fig. 4). This result suggests that iron upregulates PLGF though a different mechanism than 

the Fenton reaction. 

Iron deficiency does not affect PLGF levels in rat hearts. It has been widely documented 

that iron overload in SCD patients is correlated with increased PLGF levels3-5,28,29. Our results 

confirm that iron can upregulate PLGF. Therefore, we hypothesized that iron deficiency would 
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have the opposite effect to reduce PLGF. To test this hypothesis, PLGF mRNA and protein levels 

were measured in iron-deficient (ID) diet-fed rat hearts. The ID diet increased transferrin receptor 

mRNA substantially, as expected (by 5-6 fold compared to control diet and pair-fed rat hearts). 

However, PLGF mRNA was not affected by the ID diet (Fig. 5. A, B, and C). Furthermore, 

PLGF protein levels were not affected by the ID diet (Fig. 5. D and E). These results suggest that 

an iron-deficient diet does not affect basal PLGF levels in rat hearts. 

Knockdown of IRPs does not affect PLGF levels. Iron-responsive element binding proteins 

(IRP) are key factors in the regulation of ferritin levels. Both IRP-1 and IRP-2 bind to the 3’ UTR 

iron responsive element (IRE) of ferritin mRNA and prevent ferritin from being translated under 

normal conditions30. When cellular iron levels increase, IRP-1 forms an iron-sulfur cluster and 

functions as a cellular aconitase31,32, while IRP-2 is degraded by proteasomes33. Both actions 

release IRP from ferritin mRNA, allowing for ribosome binding and translation to occur. To test 

the hypothesis that IRP play a role in upregulation of PLGF by iron, we knocked down IRP-1 and 

IRP-2 in HCAEC using siRNA. Neither IRP-1 nor IRP-2 knockdown affected PLGF mRNA 

levels in HCAEC (Fig. 6. A, B, and C). These results suggest IRP-1 and IRP-2 are not involved 

in PLGF regulation by iron. 

Ferritin is not upregulated by fluid shear stress. Our lab’s previous results show that HO-1 

is upregulated by FSS. HO-1 breaks down heme to produce iron, biliverdin, and CO. When 

cellular iron levels increase, more ferritin is produced by increased translation mediated by iron 

response proteins (IRP). We hypothesized that FSS induced HO-1 upregulation and the resulting 

increase in cellular iron levels would lead to increased ferritin. To test this hypothesis, we used 

Western blotting to measure ferritin protein in HCAEC from cocultures that were treated with 2 h 

FSS. Ferritin levels were measured at 0, 2, 4, 8, 12, and 16 h after the shear exposure. Both the 

heavy chain and light chain of ferritin were measured. Total ferritin levels were not affected by 
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FSS (Fig. 7. A and B). This result suggests that ferritin is not a component of the pathway by 

which FSS upregulates PLGF. 

PLGF upregulation by FSS is not HIF-dependent. We next tested the hypothesis that the 

FSS-induced increase in transcription of PLGF mRNA is mediated by HIF. Hypoxia inducible 

factor (HIF) is widely regarded as one of the most important transcription factors in regulating 

angiogenesis and arteriogenesis34. To characterize the role that HIF plays in regulation of PLGF 

by FSS in HCAEC, cocultures were treated with 100 μM of DMOG, a prolyl hydroxylase domain 

protein inhibitor, to increase HIF-1α and HIF-2α. PLGF protein was upregulated by DMOG in 

HCAEC under both static and FSS conditions, and FSS resulted in an additive increase in PLGF 

by 1.23-fold (control static 187.80±13.63 pg/mg, control FSS 298.71±27.25 pg/mg, p<0.0001; 

DMOG static 264.19±16.14 pg/mg, DMOG FSS 369.99±12.90 pg/mg, p<0.0001, N=4. Fig. 8. 

A). This result suggests the induction of HIF may not be the mechanism of PLGF upregulation by 

FSS, since FSS produced an increase in PLGF even when HIF was already highly induced.  

To test the effect of HIF inhibition on PLGF regulation by FSS, we treated cocultures with 

chrysin (a flavonoid that has been shown to reduce both HIF-1α mRNA and protein35-37) before 

FSS exposure. Chrysin reduced the basal level of PLGF mRNA; however, FSS upregulation of 

PLGF persisted (1.82 fold, Fig 8. B). These results also suggested that HIF-1α and HIF-2α are not 

likely to mediate the increased transcription of PLGF produced by FSS exposure. 

Knockdown (KD) of PHD-2 reduces basal levels of PLGF but did not inhibit PLGF 

upregulation by FSS. To determine the involvement of PHD-2 in PLGF regulation, we treated 

HCAEC with siPHD-2 before exposure to FSS. siPHD-2 reduced PLGF protein levels at 12 h in 

both static and FSS treated HCAEC, but PLGF upregulation by FSS prevailed. PHD-2 inhibition 

leads to increased HIF-1α (Fig. 9). This result is in agreement with our observation that HIF-1α is 

negatively correlated with PLGF. 
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Knockdown (KD) of PHD-3 abolishes PLGF upregulation by FSS. To determine the 

involvement of PHD-3 in PLGF regulation, we treated HCAEC with siPHD-3 before exposure to 

FSS. siPHD-3 did not affect basal level of PLGF, but inhibited PLGF upregulation by FSS (Fig. 

10. A and B). PHDs can target many proteins for prolyl-hydroxylation38. KD of PHD-2 may 

affect a target that is involved in PLGF regulation. 

PLGF upregulation by hemin is p300 dependent. Other studies in our lab ruled out HIF as a 

mediator of FSS-induced PLGF expression, but revealed a role of transcription cofactor p300 in 

this pathway. Therefore, we hypothesized that p300 is also a mediator of iron-induced PLGF 

expression. To test this hypothesis, cocultures were treated with hemin  chetomin for 12 h. 

Chetomin inhibits the interaction between p300 and transcription factors at p300’s 

cysteine/histidine rich domain-1 (CH1). Hemin upregulated PLGF as expected. Chetomin 

abolished the stimulatory effect of hemin on PLGF transcription, and also sharply reduced basal 

PLGF mRNA levels (Fig. 11. A). A similar trend was seen for PLGF protein levels. (Fig. 11. B). 

In addition to binding to transcription factors, p300 also possesses histone acetyltransferase 

(HAT) activity, which can modulate gene transcription by altering histone acetylation. To 

determine whether p300’s HAT activity also contributes to upregulation of PLGF by iron, we 

treated HCAEC with hemin  A485, a potent and specific p300 HAT inhibitor39. A485 treatment 

affected PLGF levels similarly to chetomin, suggesting that p300 HAT activity is also required 

for PLGF upregulation by hemin (Fig. 11. C). Overall, these results confirm that p300 is critical 

for both basal and iron-stimulated PLGF transcription. 

HO-1 upregulation does not correlate with PLGF upregulation with p300 inhibition. Our 

lab previously made the observation that HO-1 is upregulated by FSS, and that HO-1 is required 

for PLGF upregulation by FSS2. Curcumin is known to be somewhat nonspecific40,41, and other 

groups have reported that curcumin can induce HO-1 expression42,43. Since we previously showed 

a stimulatory role for HO-1 in regulation of PLGF expression, we therefore assessed the effect of 
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p300 inhibition by curcumin and chetomin on HO-1 expression. Inhibition of p300 by both 

curcumin and chetomin strongly upregulated HO-1 mRNA (Fig. 12. A and B). Nevertheless, 

PLGF expression was inhibited by both drugs, in contradiction to our previous work showing that 

HO-1 is required for the FSS-induced increase in PLGF. These results suggest that upregulation 

of HO-1 mRNA may be necessary, but not sufficient, for upregulation of PLGF. 
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Discussion 

PLGF is regarded as a critical factor in arteriogenesis11-14. In this study, we confirmed the 

positive correlation between iron and PLGF observed in our previous work, and investigated the 

mechanism for this effect. Contrary to our initial hypothesis, we found that neither ferritin nor 

IRP-1/IRP-2 contributes to the upregulation of PLGF by iron. In further studies, we tested the 

importance of p300 in PLGF regulation by treating HCAEC with the p300 inhibitors chetomin, 

curcumin, and A485. Our results show that iron upregulates PLGF though transcription cofactor 

p300. Both the transcription factor binding activity and the histone acetyltransferase activity of 

p300 appear to be required. The key transcription factor(s) that interact with p300 to regulate 

PLGF expression remain to be identified. However, our other studies have ruled out a role for 

HIF in this pathway (chapter 3). HIFs are regulated by PHDs at the post-translational level8. 

Under hypoxia conditions, PHDs are inhibited thus HIFs can accumulate. PHD-2 targets HIF-1α 

more specifically than HIF-2α44. KD of PHD-2 will leads to increased HIF-1α. We observed that 

KD of PHD-2 lead to reduced basal levels of PLGF, but PLGF upregulation persisted. This result 

corroborates with our observation that reduced HIF-1α leads to increased PLGF levels (Chapter 

4), confirming HIF-1α’s negative effect on PLGF transcription. Interestingly, siPHD-3 did not 

affect basal levels of PLGF, but abolished PLGF upregulation by FSS. In a recent study, Stoehr 

et. al. (2016), employing bioinformatics and mass spectrometry, demonstrated that PHDs can 

hydroxylate many protein targets38. It is possible that other than the HIFs, a protein targeted by 

PHD-3 is involved in PLGF regulation by FSS. This is a very interesting observation and it is 

worth further studies. 

Our previous studies on FSS showed that upregulation of PLGF by FSS is dependent on HO-

12. Therefore, we would expect increased HO-1 levels to result in increased PLGF levels. 

However, while curcumin and chetomin abolished PLGF upregulation by iron (as well as FSS – 

see chapter 3), these p300 inhibitors both dramatically increased HO-1 mRNA levels, in 



56 

agreement with other researchers’ observations42,45. We did not assess HO-1 protein levels or HO-

1 activity in these studies. Therefore, it is possible that the increase in HO-1 mRNA which we 

observed following drug treatment did not result in any change in HO-1 activity. This is a 

limitation of the current study. Nevertheless, we conclude that upregulation of HO-1 mRNA 

alone is not sufficient to stimulate PLGF expression. 

Transcription factors that interact with heme compounds, including nuclear receptor Rev-

erbα (NR1D1) and BTB domain and CNC homolog 1 (Bach-1) can potentially be involved in 

PLGF regulation. Binding with heme enhances gene suppression activities of both NR1D1 and 

Bach-1, as both are important regulators of heme synthesis46,47. Further investigation into NR1D1 

and Bach-1 can potentially lead to important links between PLGF regulation and iron 

metabolism. 

It is also possible that the compounds we used are inhibiting HO-1 from inducing PLGF 

through some other mechanism. Curcumin in particular is known to be quite nonspecific, and 

targets many proteins and pathways including mTOR41, HSP70, tubulin, and even β-actin40. This 

nonspecificity makes it difficult to interpret results from curcumin-treated cells. However, we 

also tested other p300 inhibitors (chetomin, A485) and obtained results similar to those from 

curcumin, suggesting that the effects of curcumin on PLGF are mediated through inhibition of 

p300. Chetomin reduced PLGF mRNA more drastically compared to PLGF protein in media at 

12 h of treatment. This is probably because the media had been incubated with the HCAEC for 18 

h before exposure to chetomin, during which period the PLGF protein in media accumulated, 

while PLGF mRNA transcription was inhibited by chetomin. We have observed that PLGF 

mRNA has a relatively short half-life, 1.67 h. 

The mechanism by which the p300 inhibitors used in the present study stimulates HO-1 

expression remains undefined. HO-1 is regulated by the transcription factor nuclear factor 
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erythoid 2–related factor 2 (Nrf2). Several studies indicate acetylation of Nrf2 by p300 or the 

p300 paralog CREB binding protein (CBP) increases its transcription activity48,49. It is worth 

noting that p300 and CBP share 50% homology and work closely together physically and 

functionally50. There are also non-acetylation dependent mechanisms by which p300 activates 

Nrf2 and increases transcription of Nrf2 target genes. Indeed, curcumin is known to inhibit p300 

HAT activity by forming covalent bonds with the p300 acetyltransferase domain though the 

Michael addition51. This observation indicates that curcumin does not activate HO-1 transcription 

though acetylation of Nrf2. Likewise, another study showed that curcumin activates HO-1 

transcription by increasing Nrf2 expression via the MAPK pathway42.  

A very interesting phenomenon has been studied by several research groups that Nrf2 

competes with NFkB p65 for interaction with p30043,52. Upregulation of HO-1 by heme or 

overexpression was also found to inhibit p65 target genes expression53.  

As noted above, the transcription factor(s) that interact with p300 to regulate PLGF in 

response to FSS or iron remain to be identified. One possible candidate is NF-kB. The NF-kB 

subunit p65 has been implicated in FSS regulation of endothelial nitric oxide synthase (eNOS)54 

and platelet derived growth factor (PDGF)55, through binding with the shear stress responsive 

element (SSRE) in the promoters of these genes. Several SSREs are also found in PLGF 

promoter, and p65 has been shown to regulate PLGF56. Thus, we anticipate that p65 is likely to be 

the transcription factor involved in FSS upregulation of PLGF. Although Nrf2 also interacts with 

p300, it appears less likely to mediate the effects of FSS and iron on PLGF. Whereas p65 

interacts with p300 at its CH1 domain57, Nrf2 interacts with the CH3 domain of p30058. Chetomin 

also acts at the CH1 domain to inhibit p300 by “stealing” a zinc atom from this domain, but to our 

knowledge has no effect on the CH3 domain. Therefore, the inhibition of PLGF expression which 

we observed following chetomin treatment is consistent with a role for p65, but not Nrf2. 

Furthermore, this could explain the differential effects of p300 inhibitors on PLGF and HO-1 
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mRNA, since HO-1 is regulated by Nrf2. Studies are currently ongoing to examine the role of 

p65 in regulation of PLGF by FSS and iron. 

Although an association between iron and arteriogenesis has not previously been 

demonstrated, a link between iron and PLGF has been reported by others. Iron overload due to 

blood transfusions in sickle cell disease (SCD) has been linked with increased blood PLGF levels, 

and PLGF levels have been suggested to be an indicator for the severity of iron overload in SCD 

patients3,19,29. We therefore hypothesized that iron deficiency would have the opposite effect, to 

reduce PLGF levels. We tested this hypothesis in a rat model of diet-induced iron deficiency. 

Contrary to expectations, we found that iron deficiency did not reduce the basal level of PLGF in 

rat heart tissue. It is possible that iron plays a role in upregulation of PLGF above basal levels, but 

that iron is not required in order to maintain normal unstimulated levels of PLGF expression. It is 

also possible that there are tissue-specific differences in the regulation of PLGF that were not 

detected in this study, since only heart tissue was examined. 

In conclusion, this study revealed the importance of the transcription cofactor p300 in 

regulation of PLGF by iron. However, further details of the mechanism by which iron upregulates 

PLGF remain to be discovered. Studies are currently underway to assess the role of p65 in this 

pathway. Better understanding of this mechanism could lead to new treatments to improve 

arteriogenesis or to modulate other processes which are mediated by PLGF. 
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Figures 

Fig. 1

 

Fig. 1. Proposed pathway of PLGF upregulation by FSS through iron homeostasis. 

Heme oxygenase-1 (HO-1) is a downstream target of NADPH oxidase-4 (NOX-4). HO-1 

degrades heme to produce iron, CO, and biliverdin, among which iron was shown to upregulate 

PLGF in HCAEC. Increased intracellular iron levels reduces the activity of iron responsive 

element binding protein (IRP), which releases ferritin mRNA for translation. Increased ferritin 

levels in turn sequesters and reduces free iron. Prolyl hydroxylase domain proteins (PHDs) 

activities are inhibited under reduced iron conditions, thus hypoxia inducible factor (HIF) can 

accumulate, which induces placental growth factor (PLGF) transcription. 
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Fig. 2 

 

 

Fig. 2. Coculture fluid shear stress (FSS) model. A. Coculture setup. Human coronary 

artery endothelial cells (HCAEC) and human coronary artery smooth muscle cells (HCASMC) 

were seeded on either side of the inserts to simulate artery structure. 4 μM pores in the transwell 

membrane allow communication between EC and SMC but not cell migration. Shear stress was 

applied with a polyethylene cone connected to a micromotor. B. FSS wave form. Micromotors 

were controlled by software to turn at certain rates to simulate the shear stress in collateral 

arteries diverted from a clogged artery with 60% stenosis1,26. 
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Fig. 3 
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Fig. 3. mRNA levels of PLGF, IRP-1, IRP-2, PHD-2, and HIF-1α after FSS. A-D, 

asterisks indicate significant differences from static controls (N=3 or 4). E. HCAEC was treated 

with siHIF-1α before seeding to the inserts. Cocultures were exposed to FSS for 2 h. HCAEC cell 

lysis was collected 4 h after FSS. 
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Fig. 4 

 

Fig. 4. Iron does not upregulate PLGF though the Fenton reaction. Cocultures were 

exposed to ferric ammonium citrate (FAC, 100 µg/mL) and catalase (500 U/mL). Media were 

sampled at 12 and 24 h. PLGF concentration was measured using ELISA. (N=4) 
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Fig. 5 
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Fig. 5. Iron deficiency (ID) increases transferrin receptor (TfR) mRNA, but does not 

reduce PLGF mRNA in rat hearts. A, B, and C. TfR mRNA levels were upregulated by ID 

diet. Three internal controls (β-actin and ribosome proteins RPL19 and RSP29) were used to 

quantify TfR mRNA. Rats were fed the control (C), iron-deficient (ID), and pair-fed (PF) diets 

for 21 d. D, E. The ID diet does not decrease PLGF protein in rat hearts. PLGF protein was 

measured in tissue extracts by Western blotting. Since PLGF in samples was heavily dimerized, 

the dimer was used to quantify PLGF. (N=11, 12, and 7 for C, ID, and PF respectively.) 
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Fig. 6 
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Fig. 6. PLGF transcription is not affected by iron responsive element binding protein 

(IRP) 1 and 2 knockdown. A, B. siRNA treatments successfully knocked down IRP-1 and 

IRP-2 mRNA. HCAEC was exposed to siRNA for 24 h, after which cell lysate was collected. C. 

Knockdown of IRP-1 and/or IRP-2 does not affect transcription of PLGF. The same samples 

shown in A and B were analyzed for PLGF mRNA levels (N=3). 
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Fig. 7 

 

 

Fig. 7. Fluid shear stress (FSS) does not upregulate ferritin. Cocultres were exposed to 2 h 

of FSS. Ferritin levels in HCAEC were measured with Western Blot (WB). Ferritin heavy chain 

(ferritin H) and ferritin light chain (ferritin L) were both detected by the same antibody and their 

pixel densities were combined during analysis. A. Typical image of ferritin WB. Lanes: 1. 

before FSS, 2-13: post FSS/static exposure: 2. Static 0 h; 3. FSS 0 h; 4. Static 2h; 5. FSS 2h; 6. 

Static 4h; 7. FSS 4h; 8. Static 8 h; 9. FSS 8 h; 10. Static 12 h; 11. FSS 12h; 12. Static 16h; 13. 

FSS 16 h. B. Pixel density analysis of ferritin WB. 
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Fig. 8 

 

 

Fig. 8. PLGF upregulation by FSS is not HIF-dependent. A. Induction of HIF does not 

interrupt PLGF upregulation by FSS. DMOG (100 µM) was added to cocultures immediately 

before FSS exposure. HCAEC media were collected 12 h post FSS. PLGF in media was measure 

with ELISA and normalized to total protein (N=4). B. Reduction of HIF does not interrupt 

PLGF upregulation by FSS.  Cocultures were treated with chrysin (30 µM) immediately before 

exposure to FSS. Cell lysis was collected 4 h post FSS. Chrysin was reported to decrease both 

HIF-1α mRNA and protein. 
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Fig. 9 

 

Fig. 9. Knockdown of prolyl hydroxylase domain protein-2 (PHD-2) reduces basal levels 

of PLGF but does not affect PLGF upregulation by FSS. HCAEC were treated with siPHD-2 

before seeding to inserts. Cell media was collected at 12 h after FSS. PLGF levels in media were 

analyzed with ELISA and normalized to total protein measured by BCA assay (N=4). 
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Fig. 10 

 

 

Fig. 10. Knockdown of prolyl hydroxylase domain protein-3 (PHD-3) abolishes PLGF 

upregulation by FSS. HCAEC were treated with siPHD-3 before seeding to inserts. Cell lysis 

was collected 4 h after FSS (N=4). A. siPHD-3 successfully knocked down PHD-3 mRNA. B. 

siPHD-3 abolished PLGF upregulation by FSS. 
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Fig. 11 
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Fig. 11. PLGF upregulation by iron is p300-dependent. A. Chetomin abolished the 

upregulation of PLGF mRNA expression by hemin and sharply reduced basal PLGF 

mRNA levels. Inhibition of the interaction between the p300 CH1 domain and transcription 

factors by chetomin drastically reduced PLGF expression under basal levels and inhibited hemin-

stimulated PLGF upregulation. Chetomin interrupts p300-transcription factor binding by a zinc 

ejection mechanism. (N=3). B. Chetomin inhibits PLGF protein upregulation by hemin. 

HCAEC were exposed to hemin (10 µM) and/or chetomin (30 nM) for 12 h (N=3). C. A485 

reduced PLGF mRNA and inhibited its upregulation by hemin. HCAEC was exposed to 

hemin (10 µM) and/or p300 HAT inhibitor A485 (20 nM) for 6 h (N=4). 
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Fig. 12 

 

 

Fig. 12. Heme oxygenase-1 (HO-1) mRNA is sharply increased by treatment with p300 

histone acetyl transferase (HAT) inhibitors. Cocultures were treated with curcumin (25 µM) 

and A485 (20 nM) immediately before exposure to FSS. Cell lysate was collected 4 h post FSS 

exposure. (A. N=3; B. N=4) 
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CHAPTER III 
 

 

FLUID SHEAR STRESS UPREGULATES PLACENTAL GROWTH FACTOR IN 

ENDOTHELIAL CELLS VIA TRANSCRIPTION COFACTOR p300 
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Abstract 

Coronary artery disease (CAD) is the leading cause of death worldwide1. In CAD, 

atherosclerosis leads to coronary artery stenosis (narrowing) and results in lack of blood flow to 

the affected tissue. When the artery becomes nearly or totally occluded, myocardial infarction 

(MI) occurs, potentially resulting in death. However, in CAD, vessel stenosis also diverts blood 

flow to surrounding smaller blood vessels, which make up the collateral network. These vessels 

represent an alternate pathway for blood flow which bypasses the stenosed or occluded coronary 

artery. Increased fluid shear stress (FSS) in the collateral network has been observed to induce a 

volume and diameter increase in these collateral blood vessels via endothelial cell (HCAEC) and 

smooth muscle cell (HCASMC) proliferation2. This process of vessel enlargement is called 

arteriogenesis. By maintaining blood flow to the myocardium, arteriogenesis is protective against 

the negative consequences of CAD3-6. Since current treatments for CAD (coronary artery bypass 

grafting, balloon angioplasty, stent implantation) are invasive and/or can fail over time, it would 

be beneficial to find non-invasive treatments to enhance arteriogenesis in human patients. 

Placental growth factor (PLGF), a member in the vascular endothelial growth factor (VEGF) 

family, is critical in arteriogenesis. In this study, we explored the mechanism of FSS upregulation 

of PLGF in HCAEC. Using a HCAEC-HCASMC coculture model to simulate FSS in small 

arteries, we discovered that p300, a transcription cofactor and histone acetyl transferase (HAT), 

plays a central role in PLGF upregulation by FSS. p300 is involved in regulation of many genes 

through acetylation of histones7 and other regulatory proteins, including p538 and nuclear factor-2 

(Nrf-2)9. We found that inhibition of p300 HAT activity abolished FSS-induced upregulation of 

PLGF, but did not decrease basal levels of PLGF. Conversely, activation of p300 HAT activity 

upregulated PLGF.  We conclude that FSS upregulates PLGF via p300 HAT activity. 

Keywords: collaterals, shear stress, p300, histone acetylation 
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Introduction 

Coronary artery disease (CAD) is the leading cause of death worldwide10. CAD causes more 

morbidity and mortality in high income countries than lower income countries. However, a global 

shift of increasingly higher mortality caused by CAD has been observed and is predicted to 

continue10. This shift is largely associated to lifestyle changes and obesity11,12. Common clinical 

interventions for coronary artery occlusion caused by CAD usually involve coronary artery 

bypass grafting (CABG) or percutaneous coronary intervention (PCI), stent placement13. CABG 

is a major surgical procedure which requires the chest to be opened. While stent placement is less 

invasive, restenosis is common and the vessel often requires further intervention14. Moreover, the 

effectiveness of stenting has recently been called into question, in a controversial placebo-

controlled study of the effect of stent placement on chest pain and exercise time15. Moveover, 

CABG and PCI surgeries cost more than $20,000 and $30,000 respectively. At 5 years, the 

accumulated costs are $56,000 to almost $61,000, as reviewed in 201016. It will be vastly 

beneficial for patients and greatly reduce the financial burden of treatment if effective non-

invasive treatments for CAD can be developed.  

The existence of collateral coronary circulation in healthy human hearts had long been 

disputed since the first observation made in the 1700s17,18. In 196319, Fulton reported coronary 

anastomoses were ubiquitous in both healthy and pathological human hearts. More importantly, 

the collateral coronary circulation was shown to be functional in patients without CAD20. 

Arteriogenesis, the complex remodeling and enlargement of pre-existing collateral vessels upon 

occlusion, has been shown to reduce major cardiac events21 and to improve survival and 

prognosis after percutaneous intervention22,23. Although the human coronary collateral network 

was previously considered to be relatively limited compared to many other mammals such as 

hamster, dog, and cat24, recent studies with improved technology suggest that human coronary 

collateral vessels are also abundant20,25. Moreover, a study with 210 patients showed that as little 
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as 24% fractional collateral flow was sufficient to prevent ischemia26. Arteriogenesis is induced 

by fluid shear stress (FSS) as shown in many animal models ranging from canine to primate27-31. 

Similarly, in human, the extensiveness of collateral vessels is correlated with the severity of 

CAD32,33, which is determined by reduction of the diameter of coronary arteries34. Exercise is 

well known to be beneficial for cardiac function including increasing stroke volume, artery 

caliber, and myocardial contractility35,36. Exercise can also induce collateral growth as observed 

in animal models37-39, as well as in human. A clinical trial conducted in 2016 reported 4 weeks of 

high-intensity or moderate-intensity exercise in patients with stable CAD increased coronary 

collateral flow index (CFI) by ~40%40. Marathon runners were known to have more developed 

collateral circulation41. These studies and observations confirm FSS as the driving force of 

arteriogenesis. 

Placental growth factor (PLGF) has been shown by many studies to be a critical factor in the 

regulation of arteriogenesis42-44. Our lab was the first one to demonstrate that PLGF is mainly 

produced by endothelial cells as a secretory protein45. Furthermore, our group was the first to 

show that PLGF is upregulated by FSS44,46. Using a coculture model and ex vivo experiments with 

mouse mesenteric arterioles, our lab has shown that FSS upregulates PLGF in human coronary 

artery endothelial cells (HCAEC), and that this process is NADPH oxidase-4 (NOX-4) 

dependent46. However, further details of the pathway by which FSS upregulates PLGF remain to 

be discovered.  

In this study, using the coculture FSS model previously established in our lab, we 

demonstrate that FSS induces PLGF expression in HCAEC via a p300-dependent pathway. 

Initially, we hypothesized that PLGF regulation in HCAEC by hypoxia and FSS would be 

mediated by hypoxia inducible factor (HIF); however, we found that HIF plays no role in this 

pathway (an unexpected finding considering that HIF is a well-recognized angiogenic 

transcription factor). Once HIF was ruled out as the effector of PLGF upregulation by FSS, our 
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attention was drawn to p300, a transcription cofactor that numerous transcription factors 

(including HIF) interact with closely for many genes’ regulation. Through its histone 

acetyltransferase activity, which increases histone acetylation at the promoter region of target 

genes, p300 has been implicated as an effector in the upregulation of numerous genes, including 

vascular endothelial growth factor (VEGF) expression under hypoxia47, and FSS activation of 

eNOS48. Acetyl groups add negative charge to the histone, thereby decrease interaction between 

the histone and DNA. Using p300 specific HAT inhibitors (curcumin49 and A48550), and a 

specific p300 HAT activator (CTB51), we were able to show that FSS upregulates PLGF by 

increasing PLGF gene transcription via p300 HAT activity, as illustrated in Fig. 1. Epigenetic 

modifications have been recognized as a dynamic process involved in both short-term and long-

term gene expression regulations. Our group is the first to show that p300 is important in PLGF 

regulation in endothelial cells, which signifies epigenetics as a new aspect of arteriogenesis 

research. 

  



84 

Materials and methods 

Cell culture. Passage 6 (P6) human coronary artery endothelial cells (HCAEC, Lonza) and 

human coronary artery smooth muscle cells (HCASMC, Lonza) were used in all experiments. 

The cells were cultured in cell type-specific media (Smooth Muscle Growth Medium-2/SmGM-2 

or Microvascular Endothelial Cell Growth Medium-2/EGM-2MV, Lonza) for 3 d to reach 

confluence before subculturing into plates for experiments. TrypLE Express (Invitrogen) was 

used to disperse cells for subculturing according to manufacturer’s protocol. The cells were 

seeded on opposite sides of polyester inserts with 0.4 µm pores in a 6-well plate format 

(Transwell, Corning) to mimic the vascular wall. This allows the two types of cells to come into 

contact and to exchange signaling mediators, but prevents cell migration and allows gene and 

protein expression in the two cell types to be analyzed separately. Before seeding, the side to be 

seeded was coated with 0.1% gelatin in cell type-specific medium and incubated for 1 hr in a cell 

culture incubator (37˚C, 5% CO2). The gelatin coating medium was then aspirated and the inserts 

were allowed to dry. The inserts were inverted and HCASMC were seeded on the reverse side of 

the insert at 10,000 cells/cm2. Inserts were then incubated in the inverted position for 4-6 h to 

allow attachment, before being placed right side up into a receiving well containing 2 mL of 

SmGM-2 and incubated overnight. The following day, HCAEC were seeded on the top side of 

the insert at 25,000 cells/cm2 in EGM-2MV. HCASMC were also fed with fresh SmGM-2 at this 

time. The co-cultures were then incubated at 37˚C, 5% CO2 for a further 24 h. Prior to 

experimental treatments, cells were serum-restricted for 18 h by incubation with 2% FBS media 

supplemented with 15 mM HEPES, 30 µg/mL gentamycin, and 15 ng/mL amphotericin-b 

(Lonza). Serum-restriction medium was prepared as a 3:2 mixture of serum-free DMEM and cell 

type-specific medium).  

Fluid shear stress setup. Fluid shear stress (FSS) was applied to co-cultures with motor-

attached (Optimal Engineering Systems, Inc.) cones made of ultra-high molecular weight 
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polyethylene with a 5˚ incline towards the center as described previously by our group and 

others46,52,53 (Fig. 2. A). The motors were controlled by specialized software, Allegra (Optimal 

Engineering Systems, Inc.) to turn at different rates simulating pulsatile blood flow. For these 

studies, we used a waveform that simulates collateral flow downstream of a coronary artery with 

60% stenosis (average FSS 1.24 Pa, Fig. 2. B), which is considered clinically critical, as 

described in previous publications46,54. Only HCAEC on the upper side of inserts were directly 

exposed to FSS, whereas HCASMC were not directly exposed to FSS but were accessible to 

diffusible mediators produced by HCAEC in response to FSS. The FSS stimulus was applied to 

the cocultures for 2 h. During FSS exposure, the Transwell plates were kept on plate heaters to 

maintain cell cultures at 37 ˚C.  Media and/or cell lysate was collected 0-24 h after the 2 h-shear 

stress exposure. The static inserts were covered with parafilm to prevent excessive evaporation 

and was placed next to FSS exposure inserts for the same duration of treatments as published by 

our group previously46. 

Experimental treatments. Unless otherwise specified, all experimental treatments were added 

to both the upper (HCAEC) and lower (HCASMC) media reservoirs of the Transwell plate 

immediately before FSS exposure. Control groups were treated with the same volume of the 

vehicle. Experimental treatments included actinomycin D (Cayman Chemical), chetomin (Sigma-

Aldrich), dimethyloxaloylglycine (DMOG; Cayman Chemical), chrysin (Sigma-Aldrich), 

deferoxamine (DFX; Sigma-Aldrich), curcumin (Tocris), and A485 (Tocris). 

siRNA treatment. Pre-designed, lyophilized siRNA (Silencer Select) was purchased from 

Thermo Fisher and reconstituted with RNAase-free H2O before being stored at -20 ˚C. For 

transfection, a siRNA mixture was made with Opti-MEM and Lipofectamine RNAiMAX 

following the manufacturer’s instructions. The siRNA mixture was combined with normal culture 

media and added to fresh cell culture wells/flasks to reach a final siRNA concentration of 5 nM. 

The cells to be treated were then trypsinized, re-suspended in media, and added to the wells/flasks 
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containing the siRNA mixture. Cells were incubated with the siRNA mixture for 24 h. 

Knockdown efficacy was determined using real-time qRT-PCR as described below. For siRNA 

treated HCAEC to be used in shear stress experiments, HCAEC were seeded on the inserts 

immediately after siRNA treatment and incubated with 2% FBS medium for 18 h before FSS 

exposure. 

Hypoxia treatment. For hypoxia studies, HCAEC were seeded in 12-well plates immediately 

after siRNA treatment. Cells were allowed to attach overnight. A hypoxia chamber (Stem Cell 

Technologies) was flushed and filled with 1% O2, 5% CO2, and 94% N2 after the 12 well plates 

were placed inside. The hypoxia chamber was then placed in a cell culture incubator for 18 h 

before media were collected. 

PLGF mRNA half-life. For assessment of PLGF mRNA half-life, HCAEC were seeded in 

12-well plates and allowed to reach confluency. Actinomycin D (10 μg/mL) was added to the 

media to inhibit transcription. Cell lysate was collected at 0, 1, 3, 6, and 9 h post-actinomycin D 

treatment. Real-time qRT-PCR was used to quantify PLGF mRNA as described below. Half-life 

was calculated as follows: 𝑡1
2

=
ln⁡(2)

𝜆
. λ represents the decay constant. 

Real-time qRT-PCR. RNA extraction was performed with the RNeasy Mini Kit (Qiagen). At 

the conclusion of experiments, cells were trypsinized with TrypLE (Gibco) and the resulting cell 

suspension was centrifuged at 5,000 RPM for 5 min to form a pellet. The pellet was lysed with 

buffer RLT from the RNeasy Mini kit, then stored at -80 ˚C until RNA was extracted following 

the manufacturer’s instructions. The RNA concentration was determined using a Synergy Plate 

Reader (Biotek) and Take3 Micro-Volume Plate (Biotek). For cDNA synthesis, reverse 

transcription was done within an hour after RNA extraction using the QuantiTect Reverse 

Transcription Kit (Qiagen). The remaining RNA was stored at -80 ˚C and cDNA was stored at 4 

˚C. For real-time qPCR, 5 or 10 ng of cDNA was used per reaction. A master mix was made 
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using PerfeCTa SYBR Green FastMix, Low ROX (Quanta Biosystems) and 50 nM primers 

(Invitrogen). Real-time qPCR was performed in an ABI 7500 Fast instrument (Applied 

Biosystems). Relative mRNA quantification was normalized to β-actin as a reference, then 

calculated as 2-ΔΔCt of control samples. Table 1 shows the primer sequences used. 

Species Target 
 

Sequence 5’-3’ 

Homo 

sapiens 
β-actin 

Forward  TGCCGACAGGATGCAGAAG 

Reverse CTCAGGAGGAGCAATGATCTTGAT 

Homo 

sapiens 
PLGF 

Forward  CCTACGTGGAGCTGACGTTCT 

Reverse TCCTTTCCGGCTTCA TCTTCT 

Homo 

sapiens 
HIF-1α 

Forward  TCATCCATGTGACCATGAGGAA 

Reverse GAGAAAAAAGCTTCGCTGTGTGT 

Homo 

sapiens 
HIF-2α 

Forward  CCCTGGATAGCAAGACCTTCCT 

Reverse CTCCTCAGGGTGGTAACCAATC 

Table. 1. Primer sequences 

ELISA. Media were collected at multiple time points after FSS exposure and treated with a 

cocktail of protease inhibitors (1 mM PMSF, 1 mM Na3VO4, 1 μg/mL leupeptin, 1 mM 

benzamidine-HCl, 1 μg/mL aprotinin, 1 μg/mL pepstatin A) before the samples were stored at -80 

˚C. For cell lysis, cell pellets were collected as described above, then lysed with RIPA buffer 

supplemented with the same cocktail of protease inhibitors. Both PLGF and HIF-1α ELISA were 

performed using the respective DuoSet ELISA kit following manufacturer’s instructions (R&D 

Systems). The concentration of PLGF was normalized to total protein as measured by the BCA 

assay (Pierce). 
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Results 

FSS upregulates both PLGF mRNA and protein. To assess the effect of FSS on PLGF 

regulation in HCAEC, the cocultures were exposed to 2 h of FSS at an average intensity of 1.24 

Pa to simulate flow in collaterals downstream of an artery with 60% stenosis, as described by 

previous publications46,54. After FSS exposure, the cocultures were returned to the cell culture 

incubator. Media (for PLGF protein analysis) and cell lysate (for PLGF mRNA analysis) was 

then collected at several time points post-FSS exposure. Real-time qRT-PCR results showed that 

at 4 h post FSS, PLGF mRNA was upregulated to ~1.4-fold of the level in static controls 

(1.67±0.27, p<0.05, N=4, Fig. 3. A). Likewise, PLGF protein in HCAEC media was upregulated 

to ~1.4-fold of the static control value at both 12 and 24 h post-FSS (12 h, static 359.83±16.71 

pg/mg, FSS 501.00±43.01 pg/mg, p<0.05; 24 h, static 511.03±17.99 pg/mg, FSS 680.05±54.42 

pg/mg, p<0.05, N=4. Fig. 3. B). These results confirm our lab’s previous observation that FSS 

upregulates PLGF in HCAEC55. 

Actinomycin D inhibits PLGF upregulation by FSS. To determine whether the increase in 

PLGF mRNA after FSS was due to increased transcription, or to increased mRNA half-life (as 

observed by our lab’s previous work in HCASMC48), the PLGF mRNA half-life was measured. 

Actinomycin D was added to HCAEC monocultures to abolish transcription. Samples of cell 

lysate were then collected at several time points and PLGF mRNA levels were assessed with 

qRT-PCR. Based on these data, we calculated that the half-life of PLGF mRNA in HCAEC is 

1.67 h (Fig. 4. A). In contrast, β-actin mRNA levels did not decrease after actinomycin D 

treatment at the time points analyzed (Fig. 4. C), while total RNA concentration was reduced by 

actinomycin D in a time-dependent manner (Fig. 4. B). This suggests β-actin as a good reference 

gene in HCAEC. When transcription was reduced to ~0.1-fold with actinomycin D in cocultures, 

PLGF mRNA levels were greatly reduced (to ~10%), and exposure of the cocultures to FSS did 
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not upregulate PLGF mRNA (Fig. 4. D). These results indicate that FSS upregulates PLGF 

mRNA in HCAEC by increasing transcription. 

PLGF upregulation by FSS is not HIF-dependent. We next tested the effect of chetomin, 

another small molecule HIF inhibitor. Chetomin, a fungal secondary metabolite produced by 

Chaetomium cochliodes56, has been shown to be a specific and potent HIF inhibitor which acts by 

interrupting the interaction between HIF and its transcription cofactor p30057,58. Cocultures were 

treated with 30 nM of chetomin immediately before exposure to FSS. In contrast to the chrysin 

results, chetomin reduced PLGF under both static and FSS conditions (Fig. 5. A). Therefore, our 

results using small molecule activators and inhibitors of HIF were not entirely conclusive. 

Furthermore, although DMOG and chrysin are commonly used to manipulate HIF, they have 

been known to have off-target effects59-62.  

To more specifically assess the involvement of HIF in FSS upregulation of PLGF, we used 

siRNA to knock down (KD) HIF-1α and HIF-2α in HCAEC before FSS exposure. KD was 

successful at reducing both mRNA (<10% remaining) and protein levels (lower than detection 

threshold after DMOG treatment) as measured by real-time qPCR (Fig. 5. B and C) and ELISA 

(Fig. 5. D) respectively, whereas a control siRNA had no effect on HIF levels (Fig. 5. E. and 5. 

F). In agreement with our results from the DMOG and chrysin experiments above, KD of HIF-

1α, HIF-2α, or both did not affect PLGF upregulation by FSS (Fig. 5. E and F). We therefore 

concluded that PLGF upregulation by FSS is not HIF-1α or HIF-2α-dependent. 

 PLGF upregulation by hypoxia is not HIF-dependent. Our group has previously shown that 

PLGF is upregulated by hypoxia in HCAEC45. After determining that PLGF upregulation by FSS 

is not dependent on HIF-1α/HIF-2α KD, we questioned whether PLGF upregulation by hypoxia 

in HCAEC is HIF-dependent. After KD of HIF-1α/HIF-2α by siRNA, HCAEC monocultures 

were exposed to either hypoxia (1% O2), 100 μM of DMOG, or 100 μg/mL of deferoxamine 
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(DFX) for 18 h, followed by media collection. Similar to our previously reported results, hypoxia 

increased PLGF. Surprisingly, HIF knockdown had opposite effects than expected. Under 

normoxic conditions, KD of either HIF-1α or both HIF-1α and HIF-2α increased PLGF protein. 

Under hypoxic conditions, the effect of the knockdown on PLGF was even further increased (to 

6.89 and 6.93-fold of control) (Fig. 6. A). DMOG and DFX treatments showed similar effects for 

both PLGF mRNA and protein, which were both greatly increased by HIF-1α KD, but not 

affected by HIF-2α KD alone (Fig. 6. B). These results indicate that neither HIF-1α nor HIF-2α 

are involved in PLGF regulation by hypoxia in HCAEC. However, as we observed with FSS 

treatment, chetomin reduced PLGF under both normoxia and hypoxia conditions (Fig. 6. C). 

Curcumin, a specific inhibitor to p300 HAT activity, also reduced PLGF under both normoxia 

and hypoxia conditions (Fig. 6. C). 

FSS increases PLGF transcription via transcription cofactor p300. As discussed above, our 

experiments with small molecule HIF activators/inhibitors were not entirely consistent, but 

further experiments with siRNA conclusively ruled out a role for HIF in upregulation of PLGF by 

either FSS or hypoxia. Therefore, the ability of chetomin to abolish upregulation of PLGF by FSS 

and hypoxia drew our attention to the transcription cofactor and histone acetyl transferase (HAT) 

p3007. To determine whether p300 HAT activity is involved in FSS-induced upregulation of 

PLGF, we treated cocultures with the p300 HAT-specific inhibitors curcumin and A485 prior to 

FSS exposure. Inhibition of p300 HAT by curcumin and A485 abolished PLGF upregulation by 

FSS, but did not affect the basal PLGF level (Fig. 7. A and B). To assess if p300 activation could 

induce PLGF, we then treated HCAEC with a p300 HAT activator, N-(4-Chloro-3-

trifluoromethyl-phenyl)-2-ethoxy-benzamide (CTB). CTB upregulated PLGF at both 20 and 40 

µM (Fig. 7. C). Altogether, these results strongly suggest that FSS upregulates PLGF through 

p300 HAT. 
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Nuclear factor κ B (NFκB) is involved in PLGF regulation. NFκB p65 has been shown to 

interact with PLGF promoter in human embryonic kidney cell line HEK29363.  Furthermore, p65 

has been implicated in upregulation of two important FSS-induced proteins in endothelial cells by 

interacting with the shear stress response element (SSRE): endothelial nitric oxide synthase 

(eNOS)55, and platelet derived growth factor (PDGF)64. To determine the involvement of p65 in 

PLGF regulation, we treated HCAEC with TPCA-165,66, an inhibitor to inhibitor of IκB kinase-α 

(IKK-α) and IKK-β. IKK-α and IKK-β phosphorylase inhibitor of κB (IκB). Upon 

phosphorylation, IκB undergoes ubiquitination and releases NFκB subunits p65 and p50 allowing 

nuclear transportation. By inhibiting IKK-α or IKK-β phosphorylation, NFκB activity is 

inhibited. 

TPCA-1 reduced PLGF protein in HCAEC media in a dose-responsive manner at 18 h of 

treatment (r2=0.687, p<0.001, N=4), suggesting p65 is involved in PLGF regulation (Fig. 8). 

We have also tried siRNA against p65, but both batches of siRNA sent by the manufacture 

(Fisher) did not succeed in p65 mRNA KD. Further experiments to specifically knock down p65 

will provide meaningful insight in involvement of p65 in PLGF regulation. 
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Discussion 

Although PLGF has been recognized as an important arteriogenesis inducing factor43,67, it has 

been studied much less by researchers compared to VEGF-A. On Google Scholar, a search for 

“PLGF” yields 29,700 results, while “VEGF” yields 1,630,000 results. Unlike angiogenesis 

(capillary growth), which is mainly driven by hypoxia, arteriogenesis is driven by fluid shear 

stress (FSS) produced by blood moving through collaterals after being diverted from clogged 

major arteries68. It is worth noting that the collaterals that are receiving this diverted blood from 

blocked arteries are not hypoxic themselves. Therefore, we surmised that FSS would be a key 

stimulus for PLGF expression. Our previously published study confirmed this hypothesis by 

showing that PLGF is upregulated by FSS in human coronary artery endothelial cells (HCAEC) 

through a NADPH oxidase-4 (NOX4)-dependent mechanism46. However, the other specific 

components of this signaling pathway remain unclear.  

In this study, using the coculture-FSS model with HCAEC and human coronary artery 

smooth muscle cells (HCASMC), we discovered that FSS upregulates PLGF through 

transcription cofactor p300. This finding is in agreement with studies that have shown that p300 

is activated by FSS48,69 and is important for FSS upregulation of endothelial nitric oxide synthase 

(eNOS)48. One mechanism by which p300 facilitates transcription is through its histone acetyl 

transferase (HAT) activity. Histone acetylation and deacetylation are highly dynamic processes. 

On average, the acetylation sites regulated by p300 have a turnover rate of less than 30 min70. 

This could explain the rapid increase in PLGF mRNA after FSS which has been observed by our 

lab. Increased PLGF mRNA levels are observed immediately after FSS exposure, and peak at 4 h 

post FSS. The increase of PLGF protein in media is observed at 8 h post FSS, and peaks at 24 h 

post FSS46. Mass spectrometry or Western Blot analysis of histone acetylation using acetylation 

specific antibodies could further confirm the role of p300 HAT activity in PLGF upregulation by 
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FSS. p300 is known to acetylate many lysine residues of histones: H2AK5, H2BK5, H2BK12, 

H2BK15, H2BK20, H3K14, H3K18, H3K23, H4K5, H4K8, and H4K1271, and H3K5672. 

P300 also interacts with numerous transcription factors to regulate gene transcription. 

Chetomin treatment blocked the effect of FSS on PLGF mRNA and also decreased PLGF levels 

under static conditions, suggesting that a transcription factor interacting with p300 is important 

for PLGF expression. Chetomin inhibits p300 cysteine histidine rich domain-1 (CH1) by 

“stealing” the zinc atoms important for protein-protein interaction57. We initially hypothesized 

that hypoxia inducible factor (HIF) was involved in FSS upregulation of PLGF. Many angiogenic 

growth factors are regulated by hypoxia, including PLGF45,73. Surprisingly, knockdown (KD) of 

HIF-1α and/or HIF-2α did not affect PLGF expression under static or FSS conditions. Even more 

surprisingly, HIF KD had no effect on PLGF under hypoxia or hypoxia mimicking conditions 

(DMOG and DFX). Rather than inhibiting PLGF, KD of HIF-1α increased PLGF protein by ~2-

fold under both normoxic and hypoxic conditions. These results indicate that neither HIF-1α nor 

HIF-2α is the transcription factor regulating PLGF gene expression under conditions of FSS or 

hypoxia.  

Aside from HIF, p300 interacts with many other transcription factors at its CH1 domain74. 

Among these, nuclear factor κB (NFκB) subunit p6575 appears to be a likely candidate for 

regulating PLGF expression. HIF-1α and p65 have been shown to compete for p300 binding76. 

This competition could explain the upregulation of PLGF which we observed following HIF-1α 

KD, by allowing more p65 to bind to p300. p65 is known to be involved in endothelial nitric 

oxide synthase (eNOS)55 and platelet derived growth factor (PDGF)64 upregulation by FSS. In 

these studies, p65 was shown to interact with the shear stress responsive element (SSRE; 

sequence 5’-3’ GAGACC) found in the promoter regions of eNOS and PDGF. p65 is also known 

to be involved in PLGF transcription under hypoxic conditions63. We identified two SSREs in the 

PLGF promoter region, located at positions 3116-3122 and 4431-4437. In future studies, 
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chromatin immunoprecipitation (ChIP) assay or electrophoretic mobility shift assay (EMSA) can 

be used to study the interaction between p65 and the PLGF SSRE after exposure to FSS.  

Our results show that FSS upregulates PLGF transcription by increasing p300 activity. The 

mechanism by which FSS activates p300 in our system remains to be determined. However, p300 

phosphorylation at Ser1834 by Akt is known to increases both its interaction with p6577 and its 

HAT activity78. Furthermore, FSS upregulates p300 phosphorylation via Akt79, and FSS has been 

shown to upregulate PLGF via Akt in human syncytiotrophoblasts80. Therefore, FSS-Akt-p300 is 

a promising possible pathway for PLGF upregulation that can be explored in future studies. 

In conclusion, this study showed that p300 and NFκB as direct effectors of FSS-mediated 

PLGF regulation. Further investigation of this pathway has the potential to lead to development 

of non-invasive treatments for stenosis by identifying novel pharmaceutical targets. 
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Figures 

Fig. 1 

 

Fig. 1. Proposed pathway of placental growth factor (PLGF) upregulation by fluid shear 

stress (FSS) through transcription cofactor p300. FSS activates p300, which interacts with a 

transcription factor to increases histone acetylation at PLGF’s promoter region. Chetomin inhibits 

p300 cysteine/histidine rich domain-1 (CH1) interaction with transcription factors by removing 

zinc ions located at CH181. Curcumin and A485 are p300 HAT inhibitors50,82. CTB is a p300 

HAT activator51. 
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Fig. 2 

 

 

Fig. 2. Coculture fluid shear stress (FSS) model. A. Coculture setup. Human coronary 

artery endothelial cells (HCAEC) and human coronary artery smooth muscle cells (HCASMC) 

were seeded on either side of the inserts to simulate artery structure. 4 μM pores in the transwell 

membrane allow communication between EC and SMC but not cell migration. Shear stress was 

applied with a polyethylene cone connected to a micromotor. B. FSS wave form. Micromotors 

were controlled by software to turn at certain rates to simulate the shear stress in collateral 

arteries diverted from a clogged artery with 60% stenosis46,54. 
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Fig. 3 

 

 

Fig. 3. Fluid shear stress (FSS) upregulated PLGF mRNA and protein. A. Shear stress 

increased PLGF mRNA in EC. Cocultures were exposed to shear stress for 2 h and incubated 

under 5% CO2, 37 °C for 4 h before sample lysis. Relative mRNA levels were calculated using 

the ΔΔCt method. (Mean±SE, N=4, *p<0.05) B. Shear stress increased PLGF protein in EC 

media. Cocultures were exposed to shear stress for 2 h and incubated under 5% CO2, 37 °C for 

12 or 24 h. PLGF levels were normalized to total protein. (N=4) 
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Fig. 4 
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Fig. 4. Shear stress upregulates PLGF by increasing transcription. A. PLGF’s half-life 

was 1.67 h in EC. Actinomycin D inhibits mRNA production by binding to DNA during 

transcription initiation. EC cell lysis was collected 0, 0.5, 1, 3, 6 h after actinomycin D was 

added. (Mean±SE, N=4) B. Total RNA concentration reduction after actinomycin D 

treatment. Total HCAEC RNA concentration was reduced by actinomycin D in a time-

dependent manner. C. β-actin mRNA is a good indicator of total mRNA. β-actin threshold 

cycle number was measured with 10 ng cDNA/reaction for HCAEC treated with actinomycin D 

(10 μg/mL) for 0, 0.5, 3, 6, and 9 h. D. Actinomycin D treatment abolished shear stress 

upregulation of PLGF. When transcription was inhibited by actinomycin D, FSS upregulation 

of PLGF mRNA was abolished. Cell lysis was collected 4 h post shear stress. This indicates shear 

stress does not upregulate PLGF mRNA by increasing its half-life (N=4). 
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Fig. 5 
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Fig. 5. Transription cofactor p300 is important for PLGF regulation. A. Binding 

capacity of p300’s CH1 domain is critical for PLGF transcription. Cocultures were treated 

with chetomin (30 µM) immediately before exposure to FSS. Interruption between p300 CH1 

domain and transcription factor by chetomin drastically reduced PLGF expression. Chetomin 

interrupts p300-transcription factor binding by a zinc ejection mechanism. (N=4) B and C. 

siRNA treatments successfully knocked down HIF-1α and HIF-2α mRNA. HCAEC was 

exposed to siRNA for 24 h. Afterwards, cells were replenished with fresh media and incubated 

for 24 h before cell lysis was collected. HIF-1α and HIF-2α mRNA levels were measured by real-

time qPCR (N=3). D. siRNA treatment successfully knocked down HIF-1α protein in 

HCAEC. HCAEC was exposed to siRNA for 24 h then replenished with fresh media with 100 

µM of DMOG for 6 h of treatment. Cellular HIF-1α was measured with ELISA and normalized 

total protein (N=3). E and F. Knockdown (KD) of HIF-1α and/or HIF-2α does not interrupt 

FSS upregulation of PLGF.  HCAEC was treated with siHIF-1α, and/or siHIF-2α before being 

seeded in inserts. Cell lysis was collected 4 h post FSS (N=3 and 5). 
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Fig. 6 
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Fig. 6. Upregulation of PLGF by hypoxia is not HIF-dependent. A. KD of HIFs does not 

reduce PLGF upregulation by hypoxia. HCAEC was exposed to siRNA for 24 h then 

replenished with fresh media with 2% FBS then kept in 1% oxygen. HCAEC media were 

collected after 18 h of hypoxia exposure. PLGF in media was measured with ELISA and 

normalized to total protein (N=4). B. KD of HIF-1α and/or HIF-2α do not reduce PLGF 

upregulation by DMOG or DFX. HCAEC was exposed to siRNA for 24 h, then replenished 

with fresh 2% FBS media with 100 µM of DMOG or 100 µM DFX. HCAEC media were 

collected after 18 h of hypoxia. PLGF in media was measured with ELISA and normalized to 

total protein (N=4). C. p300 is important for PLGF mRNA expression. Chetomin (30 nM), and 

curcumin (25 µM) were added to HCAEC before exposure to hypoxia. Cell lysis was collected 

after 18 h of hypoxia. Curcumin is a specific inhibitor to p300 histone acetyl transferase (HAT) 

activity (N=3). 
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Fig. 7 

 

 

 

Fig. 7. Upregulation of PLGF by FSS is p300 histone acetyl transferase (HAT) activity 

dependent. A and B. Inhibition of p300 HAT does not affect basal level of PLGF but 
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abolishes PLGF upregulation by FSS. Cocultures were treated with 25 µM of curcumin (A), or 

20 nM of A485 (B) immediately before exposure to FSS. Cell lysis was collected 4 h post FSS 

(N=5 for both). C. Activation of p300 HAT upregulates PLGF. HCAEC was treated with 20 

µM or 40 µM of CTB for 6 h (N=4).  
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Fig. 8 

 

Fig. 8. Inhibition to NFκB reduces PLGF. HACEC was treated with TPCA-1 at 40 nM, 

200 nM, 1 μM, 2.5 μM, 5 μM, or vehicle DMSO for 18 h. PLGF levels in media were, analyzed 

with ELISA and normalized to total protein in media with BCA assay (N=4). 
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Arteriogenesis is the process of outward remolding of pre-existing arterioles upon exposure 

to increased fluid shear stress (FSS)1. Placental growth factor (PLGF) is a key factor in inducing 

arteriogenesis2. Our group’s previously published work demonstrated that PLGF is upregulated 

by FSS and that this process is NADPH oxidase-4 (NOX-4) and heme oxygenase-1 (HO-1) 

dependent3. To better understand the mechanism of PLGF upregulation by FSS, we employed an 

in vitro coculture model to simulate the structure of arteriole and its exposure to FSS. Two key 

discoveries were made in this study. First, FSS upregulates placental growth factor through 

increased transcription. Second, transcription cofactor p300 plays a central role in PLGF 

upregulation by FSS and by iron. 

Coronary artery disease (CAD) is the leading cause of mortality both in the United States and 

worldwide4. The advancement of treatments has greatly contributed to the reduction of CAD 

caused mortality (more than 50% age-adjusted reduction by the year 2000 compared to 19805). 

However, CAD remains a tremendous burden to our society despite advanced pharmaceutical and 

surgical interventions. The total direct medical cost of CAD is projected to be $918 billion in the 

US in 20306. Improved collateral circulation has been shown to reduce the risk of mortality and 

major cardiac events caused by coronary artery disease7-9. Better understanding of the mechanism 

of arteriogenesis may provide pharmaceutical targets for which potential treatments to improve 

collateral growth can be developed.  

Iron overload is correlated with increased serum PLGF levels in sickle cell disease (SCD) 

patients due to blood transfusion10-13. Our results show several forms of iron, including hemin (a 

type of heme), ferric ammonium citrate (FAC), and ferric nitrilotriacetate (FeNTA) can 

upregulate PLGF in HCAEC and that this process is not due to Fenton reaction. Some studies 

suggest ferric iron can also cause Fenton reaction by being initially reduced by superoxides14,15. 

Interestingly, hemin, FAC, and FeNTA all contain iron (3+), while ferrous iron (2+) did not 

upregulate PLGF. Our results show p300 is also important in PLGF upregulation by iron, but the 
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mechanism remains unclear. We also discovered dietary-induced iron deficiency in rats does not 

reduce PLGF mRNA or protein in the hearts. Further studies on PLGF upregulation by iron is an 

interesting topic and can potentially lead to iron-related therapy for arteriogenesis. 

Many studies have shown that p300 is activated by FSS16-18,  which coincides with our 

discovery that p300 activation is essential for PLGF upregulation by FSS. In addition to the 

regulation of PLGF, p300 has also been shown to be important for the regulation of many genes 

involved in arteriogenesis, including endothelial nitric oxide synthase (eNOS)16, vascular 

endothelial growth factor (VEGF)19,20, and monocyte chemoattractant protein-1 (MCP-1)21. 

Interestingly, p300-CBP–associated factor (PCAF), another transcription cofactor/HAT, was also 

shown to be a key factor in arteriogenesis in a study by Bastiaansen et al (2013)22. Analysis of 

histone acetylation levels using Western blot for p300’s targets histone H3K9, H3K18, and 

H3K2723,24 after exposure to FSS could provide further insights into the role of p300 in PLGF 

regulation. 

Heme, as an important metabolite, is constantly being synthesized in many types of cells 

including endothelial cells25,26. Supplementing erythrocytes with ferric iron increases heme 

synthesis27,28. Transcription factors nuclear receptor Rev-erbα (NR1D1), and BTB domain and 

CNC homolog 1 (Bach-1) respond to heme29,30. It is plausible that NR1D1 or Bach-1 is involved 

in PLGF upregulation by hemin, FAC, and FeNTA. 

Nuclear factor κ-B (NFκB) p65 was shown to regulate the transcription of PLGF31, and it is 

activated by FSS32. We discovered several shear stress responsive elements (SSRE), which are 

recognized by p65, in the PLGF promoter region. p65 also interacts with p300 at its CH1 

domain33,34. Interestingly, it has been suggested that p65 and HIF-1α antagonize each other for 

binding with p30035, which is in agreement with our results that knockdown of HIF-1α 

upregulated PLGF. Furthermore, protein kinase A (PKA) is an activator of p6533, and p30036,37. 
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Further analysis of p65 could greatly further our understanding of PLGF regulation. Knockdown 

of p65 using siRNA can be used to determine the role of p65 in PLGF regulation. Western blot 

for phosphorylated p65 (Ser 53638) after exposure to FSS can be used to show if p65 is activated 

by FSS. 

We determined that hypoxia inducible factor (HIF)-1α, HIF-2α, and Metal transcription 

factor-1 (MTF-1) are highly unlikely to be the transcription factor involved in PLGF transcription 

in human coronary artery endothelial cells (HCAEC). Activation of MTF-1 by zinc, a heavy 

metal  did not lead to upregulation of PLGF, despite literature showing MTF-1 is involved in 

PLGF regulation in fibroblasts under hypoxia conditions39,40. Another heavy metal, cadmium, at 

high concentration (200 µM) upregulated PLGF mRNA. However, MTF-1 is a more responsive  

to zinc than to cadmium41. Cd is also highly cytotoxic to endothelial cells, causing apoptosis at as 

low as 5 µM42, suggesting the upregulation of PLGF by Cd may be through non-specific 

mechanisms other than activation of MTF-1. 

It is possible that another transcription factor is involved in PLGF regulation. p300’s CH1 

domain has been shown to interact with many transcription factors including signal transducer 

and activator of transcription 2 (STAT-2), retinoid X receptor (RXR), and hepatocyte nuclear 

factor-4 (HNF-4), as reviewed by Chen et al (2011)43. Analysis of binding sequences of these 

transcription factors may reveal potential interactions with the PLGF promoter region. 

In this study, we emphasized histone acetylation as a new perspective in PLGF regulation. 

We demonstrated that iron, HIF-1α, and p300 can be developed as potential pharmaceutical 

targets for improving arteriogenesis. 

 

  



117 

References 
 

1. Sellke FW, Simons M. Angiogenesis in cardiovascular disease. Drugs. 1999;58(3):391-

396. 

2. Luttun A, Tjwa M, Moons L, et al. Revascularization of ischemic tissues by PlGF 

treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. 

2002;8(8):831-840. 

3. Rashdan NA, Lloyd PG. Fluid shear stress upregulates placental growth factor in the 

vessel wall via NADPH oxidase 4. Am J Physiol Heart Circ Physiol. Nov 15 

2015;309(10):H1655-1666. 

4. Zipes DP, Libby P, Bonow RO, Mann DL, Tomaselli GF. Braunwald's Heart Disease E-

Book: A Textbook of Cardiovascular Medicine: Elsevier Health Sciences; 2018. 

5. Ford ES, Ajani UA, Croft JB, et al. Explaining the decrease in US deaths from coronary 

disease, 1980–2000. 2007;356(23):2388-2398. 

6. Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart Disease and Stroke Statistics-2017 

Update: A Report From the American Heart Association. Circulation. Mar 7 

2017;135(10):e146-e603. 

7. Cui K, Lyu S, Song X, et al. Effect of Coronary Collaterals on Prognosis in Patients 

Undergoing Primary Percutaneous Coronary Intervention for Acute ST-Segment 

Elevation Myocardial Infarction: A Meta-Analysis. Angiology. Oct 2018;69(9):803-811. 

8. Seiler C, Engler R, Berner L, et al. Prognostic relevance of coronary collateral function: 

confounded or causal relationship? Heart. Oct 2013;99(19):1408-1414. 

9. Meier P, Hemingway H, Lansky AJ, Knapp G, Pitt B, Seiler C. The impact of the 

coronary collateral circulation on mortality: a meta-analysis. Eur Heart J. Mar 

2012;33(5):614-621. 

10. Sundaram N, Tailor A, Mendelsohn L, et al. High levels of placenta growth factor in 

sickle cell disease promote pulmonary hypertension. Blood. Jul 08 2010;116(1):109-112. 

11. Voskaridou E, Larrisi K, Politou M, et al. Increased von Willebrand factor and high 

circulating placental growth factor correlate with inflammation and iron overload in 

patients with compound heterozygous sickle cell and beta-thalassemia: Am Soc 

Hematology; 2014. 

12. Perelman N, Selvaraj SK, Batra S, et al. Placenta growth factor activates monocytes and 

correlates with sickle cell disease severity. Blood. 2003;102(4):1506-1514. 

13. Brittain JE, Hulkower B, Jones SK, et al. Placenta growth factor in sickle cell disease: 

association with hemolysis and inflammation. Blood;115(10):2014-2020. 

14. Starke P, Farber JJJoBC. Ferric iron and superoxide ions are required for the killing of 

cultured hepatocytes by hydrogen peroxide. Evidence for the participation of hydroxyl 

radicals formed by an iron-catalyzed Haber-Weiss reaction. 1985;260(18):10099-10104. 

15. Halliwell B, Gutteridge JMC. Oxygen toxicity, oxygen radicals, transition metals and 

disease. 1984;219(1):1-14. 

16. Chen W, Bacanamwo M, Harrison DG. Activation of p300 histone acetyltransferase 

activity is an early endothelial response to laminar shear stress and is essential for 

stimulation of endothelial nitric-oxide synthase mRNA transcription. J Biol Chem. Jun 13 

2008;283(24):16293-16298. 

17. Illi B, Scopece A, Nanni S, et al. Epigenetic histone modification and cardiovascular 

lineage programming in mouse embryonic stem cells exposed to laminar shear stress. 

Circ Res. Mar 18 2005;96(5):501-508. 

18. Illi B, Nanni S, Scopece A, et al. Shear stress-mediated chromatin remodeling provides 

molecular basis for flow-dependent regulation of gene expression. Circ Res. Jul 25 

2003;93(2):155-161. 



118 

19. Gray MJ, Zhang J, Ellis LM, et al. HIF-1alpha, STAT3, CBP/p300 and Ref-1/APE are 

components of a transcriptional complex that regulates Src-dependent hypoxia-induced 

expression of VEGF in pancreatic and prostate carcinomas. Oncogene. Apr 28 

2005;24(19):3110-3120. 

20. Arany Z, Huang LE, Eckner R, et al. An essential role for p300/CBP in the cellular 

response to hypoxia. 1996;93(23):12969-12973. 

21. Goebeler M, Gillitzer R, Kilian K, et al. Multiple signaling pathways regulate NF-κB–

dependent transcription of the monocyte chemoattractant protein-1 gene in primary 

endothelial cells. 2001;97(1):46-55. 

22. Bastiaansen AJ, Ewing MM, de Boer HC, et al. Lysine acetyltransferase PCAF is a key 

regulator of arteriogenesis. Arterioscler Thromb Vasc Biol. Aug 2013;33(8):1902-1910. 

23. Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. The transcriptional 

coactivators p300 and CBP are histone acetyltransferases. Cell. 1996;87(5):953-959. 

24. Weinert BT, Narita T, Satpathy S, et al. Time-Resolved Analysis Reveals Rapid 

Dynamics and Broad Scope of the CBP/p300 Acetylome. Cell. Jun 28 2018;174(1):231-

244 e212. 

25. Petrillo S, Chiabrando D, Genova T, et al. Heme accumulation in endothelial cells 

impairs angiogenesis by triggering paraptosis. Cell Death Differ. Mar 2018;25(3):573-

588. 

26. He D, Behar S, Nomura N, Sassa S, Lim HW. THE EFFECT OF ALA AND 

RADIATION ON PORPHYRIN/HEME BIOSYNTHESIS IN ENDOTHELIAL CELLS. 

1995;61(6):656-661. 

27. Walsh R, Thomas E, Chow S, Fluharty R, Finch CJS. Iron metabolism. Heme synthesis 

in vitro by immature erythrocytes. 1949;110(2859):396-398. 

28. Ponka P, Schulman HM, Wilczynska AJBeBA-GS. Ferric pyridoxal isonicotinol 

hydrazone can provide iron for heme synthesis in reticulocytes. 1982;718(2):151-156. 

29. Gibbs JE, Blaikley J, Beesley S, et al. The nuclear receptor REV-ERBalpha mediates 

circadian regulation of innate immunity through selective regulation of inflammatory 

cytokines. Proc Natl Acad Sci U S A. Jan 10 2012;109(2):582-587. 

30. Hira S, Tomita T, Matsui T, Igarashi K, Ikeda-Saito M. Bach1, a heme-dependent 

transcription factor, reveals presence of multiple heme binding sites with distinct 

coordination structure. IUBMB Life. Aug-Sep 2007;59(8-9):542-551. 

31. Cramer M, Nagy I, Murphy BJ, et al. NF-κB contributes to transcription of placenta 

growth factor and interacts with metal responsive transcription factor-1 in hypoxic human 

cells. Biological chemistry. 2005;386(9):865-872. 

32. Davis ME, Grumbach IM, Fukai T, Cutchins A, Harrison DG. Shear stress regulates 

endothelial nitric-oxide synthase promoter activity through nuclear factor kappaB 

binding. J Biol Chem. Jan 2 2004;279(1):163-168. 

33. Zhong H, Voll RE, Ghosh S. Phosphorylation of NF-κB p65 by PKA stimulates 

transcriptional activity by promoting a novel bivalent interaction with the coactivator 

CBP/p300. Molecular cell. 1998;1(5):661-671. 

34. Gerritsen ME, Williams AJ, Neish AS, Moore S, Shi Y, Collins T. CREB-binding 

protein/p300 are transcriptional coactivators of p65. Proceedings of the National 

Academy of Sciences. 1997;94(7):2927-2932. 

35. Mendonca DB, Mendonca G, Aragao FJ, Cooper LF. NF-kappaB suppresses HIF-1alpha 

response by competing for P300 binding. Biochem Biophys Res Commun. Jan 28 

2011;404(4):997-1003. 

36. Li W, Wang H, Kuang CY, et al. An essential role for the Id1/PI3K/Akt/NFkB/survivin 

signalling pathway in promoting the proliferation of endothelial progenitor cells in vitro. 

Mol Cell Biochem. Apr 2012;363(1-2):135-145. 



119 

37. Grandage VL, Gale RE, Linch DC, Khwaja A. PI3-kinase/Akt is constitutively active in 

primary acute myeloid leukaemia cells and regulates survival and chemoresistance via 

NF-kappaB, Mapkinase and p53 pathways. Leukemia. Apr 2005;19(4):586-594. 

38. Sakurai H, Chiba H, Miyoshi H, Sugita T, Toriumi WJJoBC. IκB kinases phosphorylate 

NF-κB p65 subunit on serine 536 in the transactivation domain. 1999;274(43):30353-

30356. 

39. Green CJ, Lichtlen P, Huynh NT, et al. Placenta growth factor gene expression is induced 

by hypoxia in fibroblasts: a central role for metal transcription factor-1. 2001;61(6):2696-

2703. 

40. Cramer M, Nagy I, Murphy BJ, et al. NF-kappaB contributes to transcription of placenta 

growth factor and interacts with metal responsive transcription factor-1 in hypoxic human 

cells. Biol Chem. Sep 2005;386(9):865-872. 

41. Smirnova IV, Bittel DC, Ravindra R, Jiang H, Andrews GKJJoBC. Zinc and cadmium 

can promote rapid nuclear translocation of metal response element-binding transcription 

factor-1. 2000;275(13):9377-9384. 

42. Kaji T, Mishima A, Yamamoto C, Sakamoto M, Koizumi FJT. Effect of cadmium on the 

monolayer maintenance of vascular endothelial cells in culture. 1992;71(3):267-276. 

43. Chen J, Li Q. Life and death of transcriptional co-activator p300. Epigenetics. Aug 

2011;6(8):957-961. 

 

 



120 

APPENDICES 

 

 
THE FOLLOWING APPENDIX CONTAINS DATA THAT WERE NOT FURTHER 

PURSUED BUT ARE STILL MEANINGFUL. 
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Metal transcription factor-1 (MTF-1) activation does not upregulate PLGF.  MTF-1 is 

activated by heavy metals including zinc, cadmium, and copper. Zinc also induces interaction 

between MTF-1 and p3001. Studies have linked MTF-1 with PLGF transcription regulation2,3. We 

were interested to know if MTF-1 is the transcription factor involved in PLGF upregulation by 

FSS. Thus, we treated HCAEC with ZnSO4 and CdSO4, then measured PLGF mRNA levels. At 6 

h, PLGF mRNA was not affected by ZnSO4 at 100, 200, or 400 µM. CdSO4 did not affect PLGF 

mRNA levels at 50 and 100 µM. Only 200 µM of CdSO4 increased PLGF mRNA by 1.63-fold 

(±0.253 SE, p<0.05) whereas in literatures 50 and 80 showed effect on MTF-1 nuclear 

translocation4 and metallothionein expression5 respectively. Zinc is a strong activator of MTF-1’s 

transcription activity5,6. This result suggests MTF-1 is not involved in PLGF transcription 

regulation in HCAEC. 

 

Fig. 1. Activation of metal transcription factor-1 (MTF-1) does not induce PLGF. 

HACEC was treated with ZnSO4, or CdSO4, or vehicle autoclaved ddH2O for 6 h (N=4). 
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Citrate synthase substrate and product do not affect PLGF levels. Our results show DMOG 

increased PLGF basal levels, but did not affect FSS upregulation of PLGF. DMOG not only 

inhibits PHDs, it affects enzymes that use 2-oxoglutarate (2-OG) as a substrate. DMOG was also 

shown to inhibit mitochondria7. Acetyl-CoA levels are directly correlated with p300 histone 

acetyl transferase (HAT) activity, because p300 has a low affinity for acetyl-CoA binding8. To 

determine if citrate synthase, an important enzyme in TCA cycle acetyl-coA production, is 

involved in PLGF regulation, we treated HCAEC with citrate synthase upstream substrate acetate 

(in the form of sodium acetate)9, and product citrate (in the form of sodium citrate). Sodium 

EDTA was used as a control for citrate’s chelating activity. Neither sodium acetate nor sodium 

citrate affected PLGF mRNA levels, suggesting citrate synthase may not play an important role in 

PLGF regulation. 

 

Fig. 2. Citrate synthase substrate and product do not affect PLGF levels. HACEC was 

treated with sodium EDTA (NaEDTA, 600 μM), trisodium citrate (NaCitrate, 400 μM), disodium 

acetate (NaAC, 600 μM), or vehicle ddH2O for 6 h. NaEDTA was used as control for citrate’s 

chelating activity (N=5). 
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AMPK activation does not upregulate PLGF. AMPK is activated by Ca2/calmodulin-

dependent protein kinase kinase (CaMKK)10,11. CaMKK is regulated by intracellular Ca2 levels12. 

FSS increases intracellular Ca2 levels by activating calcium channel13,14. To determine if AMPK 

activation can upregulate PLGF, we treated HCAEC with AICAR, an analog of AMP, and an 

activator of AMPK. AICAR did not affect PLGF mRNA levels, suggesting AMPK may not be 

involved in PLGF regulation. 

 

Fig. 3. Activation of AMPK does not affect PLGF. AICAR is an analog of AMP, which 

activates AMPK. HACEC were treated with AICAR at 0.25, 0.5, 1, and 2 mM for 6 h (N=3). 
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Histone acetyl transferase (HAT) and histone deacetylase (HDAC) inhibitors affect PLGF 

mRNA in HCAEC. We showed that p300 HAT activity is critical in PLGF upregulation by FSS. 

We were curious to know if HAT and HDAC inhibitors could affect PLGF levels. We treated 

HCAEC with HAT inhibitor anacardic acid (AA), and HDAC inhibitor trichonstatin A (TA). 

Similar to p300 HAT inhibitors curcumin and A485, AA did not affect basal level of PLGF 

mRNA, but abolished PLGF upregulation by FSS. show similar effect. However, to our surprise, 

TA reduced PLGF and abolished PLGF upregulation by FSS. TA inhibits many classes of 

HDAC, it also inhibits NADPH oxidase-4 (NOX-4)15. Our group has previously shown that 

PLGF upregulation by FSS is NOX-4 dependent. This could explain why TA treatment reduced 

PLGF. 

 

Fig. 4. Histone acetyl transferase (HAT) and histone deacetylase (HDAC) inhibitors affect 

PLGF mRNA in HCAEC. HCAEC-HCASMC cocultures were treated with HAT inhibitor 

anacardic acid (25 μm) and trichonstatin-A (300 nM) before exposure to FSS. Cell lysis was 

collected 4 h after FSS (N=3). 
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