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Abstract: The West Florida Platform is a broad continental shelf west of peninsular 

Florida. The platform contains abundant sinks and seals that appear favorable for future 

commercial storage of CO2. Proven offshore storage technologies, like those that have 

been deployed in the North Sea, are likely transferrable to the West Florida Platform. 

This thesis is part of a larger study to evaluate the CO2 storage potential of the Eastern 

Gulf of Mexico continental shelf adjacent to Mississippi, Alabama, and Florida. This 

project involves a detailed analysis of data from eight exploratory wells in the area of the 

Sarasota Arch, and includes analysis of geophysical logs, interpretation of 2D reflection 

seismic profiles, and volumetric analysis of the CO2 storage resource.  

 The Sarasota Arch is the primary controlling structure associated with reservoir 

development. Porous dolomite is concentrated in this structure, and the dolomite passes 

into nonporous limestone in the flanks. The porous strata identified in the Sarasota Arch 

have a potential storage resource of more than 878 Gt of CO2. Limestone and dolomite in 

Cretaceous and Paleogene strata are the primary targets for CO2 storage. The Lower 

Cretaceous Punta Gorda, Gordon Pass, and Panther Camp assessment units appear 

suitable for injection and storage of supercritical CO2 and contain abundant stacked 

dolomitic reservoirs, which are separated by regionally continuous anhydrite confining 

units. Reservoirs assessed in the Upper Cretaceous and Lower Paleogene Cedar Keys 

assessment unit contain a potential storage resource of approximately 600 Gt of CO2, 

however the lateral extent of the confining anhydrite beds is not as great as in the older 

units. Storage potential and sealing potential are greatest in Lower Cretaceous strata, 

which can hold a potential storage resource of about 278 Gt. Multi-gigatonne storage 

potential on the West Florida Platform could provide a viable storage option in the 

Eastern Gulf of Mexico, and consequently reduce the emissions footprint in the south-

eastern United States. 
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CHAPTER I 
 

 

INTRODUCTION 

 

Anthropogenic CO2 emissions generated from the Florida Peninsula constitute a 

large percentage of the total stationary emissions sourced from coastal coal fired power 

plants in the Southeastern United States. The United States Environmental Protection 

Agency estimates that about 40% of anthropogenic CO2 emissions come from the 

southeastern U.S. (NETL, 2015). For 2016, the EPA estimated the state of Florida 

produced 108,000,000 metric tons of greenhouse gas emissions (GHG) from 61 power 

plants (https://ghgdata.epa.gov/ghgp/main.do). Accordingly, there is a need to investigate 

and evaluate the potential for storage of CO2 in an environmentally safe manner. The 

broad continental shelf of the West Florida Platform may prove to be a reliable geologic 

sink for the safe, economical, and acceptable storage location for greenhouse gas, but this 

area has yet to be assessed. 

Previous onshore studies have assessed the potential for CO2 storage in the 

Southeastern United States (e.g., Pashin et al. 2008, Hills and Pashin 2010; Koperna et 

al., 2012). The studies have suggested that there is a large potential for CO2 storage in 

Miocene sandstone, and additional potential in the deeper Cretaceous formations offshore 

of Alabama, Mississippi, and Florida. Geophysical log data indicate that water in 

prospective storage formations have total dissolved solids (TDS) values much greater   

https://ghgdata.epa.gov/ghgp/main.do
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than 10,000 mg/mL (Breit, 2002), and so water that would be protected onshore 

does not extend into the offshore area being assessed. An assessment consistent with the 

methodology outlined by the National Energy Technology Laboratory (NETL) 

(Goodman et al., 2011; NETL, 2015) will provide the basis for quantitatively identifying 

the potential of the West Florida Platform for safe storage of CO2.  

 

Statement of Purpose 

The purpose of this study is to evaluate the CO2 storage potential of the eastern 

Gulf of Mexico continental shelf adjacent to western Florida. This research is being 

conducted as part of a larger investigation of the storage resource in the eastern Gulf of 

Mexico Basin and the Atlantic continental shelf that is supported by the U.S. Department 

of Energy through the Southern States Energy Board as part of the Southeast Offshore 

Storage Resource Assessment (SOSRA). This project identified offshore formations that 

could potentially store CO2 in the central part of the West Florida Platform (Fig. 1).       
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Offshore CO2 storage technology was initially proven by Statoil and its partners 

in 1996 with the Sleipner project in the North Sea (Chadwick et al., 2004; Kaarstad, 

2004). The Sleipner project stores about 0.9 Mt/yr of CO2 that has been separated from 

natural gas and condensate. The Sleipner project, importantly, is the first industrial CO2 

storage project performed specifically for greenhouse gas mitigation (Arts et al., 2009). 

Many of the technologies employed at Sleipner, as well as at other CO2 storage facilities, 

may be transferrable to the West Florida Platform, where significant CO2 emissions are 

generated by coal- and natural gas-fired power plants. Geological analysis of the West 

Florida Platform will provide the data and information needed to assess the storage 

resource in the Eastern Gulf of Mexico and to identify early opportunities for 

deployment. 

Figure 1. Location of study area outlined in purple box primarily near the Sarasota Arch (after Pashin et 

al., 2016). 



4 
 

The primary goal of this research is to characterize the geologic framework of the 

West Florida Platform in order to develop a geologic model of CO2 storage in and around 

the Sarasota Arch. I hypothesize that saline formations in Cretaceous and younger strata 

have significant (i.e., gigatonne-class) capacity for CO2 storage, and each offshore block 

(~9.0 mi2) can store annual anthropogenic greenhouse gas emissions from multiple coal-

fired power plants in peninsular Florida. This working hypothesis can be tested by 

performing a thorough analysis of well logs and 2D seismic data, which provide a basis 

for identifying prospective storage targets and seals, as well as identifying lateral 

continuity of the anhydrite topseals described in onshore studies (Roberts-Ashby et al., 

2015). Additionally, a model for CO2 sequestration will be constructed to evaluate the 

storage potential in the project area using basic reservoir and fluid properties by 

analyzing seismic and well log data for net thickness, porosity, and applying currently 

accepted volumetric calculations for estimating CO2 storage in saline reservoirs. 

(Goodman et al., 2011, NETL, 2015). 

Key objectives of this research include analyzing and correlating geophysical well 

logs, building stratigraphic cross sections, interpreting 2D seismic profiles, constructing 

isochore and isolith maps, identifying prospective storage units, and performing a static 

assessment of the available storage resource. Other objectives include characterizing the 

stratigraphic framework based on pre-stack time migrated reflection seismic data, as well 

as analyzing the geologic feasibility and risk associated with prospective sinks and seals. 

A vital task for interpreting seismic data is identifying key stratigraphic markers that help 

tie seismic and well data. A preliminary assessment of offshore CO2 storage in parts of 
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the southeastern United States has been performed by Tew, et al. (2013), who noted that 

the West Florida Platform has yet to be assessed.  

This report begins by presenting the basic geologic framework of the project area, 

and then the methodology used to characterize the project area and perform volumetric 

assessment. Next is a detailed discussion of the stratigraphic framework that characterizes 

the Cretaceous-Paleogene section, which is dominated by numerous successions of 

carbonate and evaporite strata. Lastly, an assessment of storage potential will be 

conducted by considering the location and lateral extent of anhydrite beds, which are 

prospective reservoir seals, as well as a determining the capacity of each prospective CO2 

sink. The U.S. Department of Energy (DOE) employs a basic volumetric approach for the 

evaluation of CO2 storage resources that includes saline formations like those that occur 

offshore of western Florida (NETL, 2007, 2015; Goodman et al., 2011).  

Important questions addressed in this study include: 

o What are the reservoir properties of limestone and dolomite in the study 

area? 

o What effect will structural features have on the flow and trapping of 

injected CO2? 

o What is the storage resource in each prospective geologic sink? 

o What is the thickness lateral continuity of sealing strata, such as anhydrite 

and shale? 

After characterization of the geologic framework and determination of the storage 

resource in the study area, recommendations are made regarding the viability of 

commercial CO2 storage programs in the Eastern Gulf of Mexico.    
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CHAPTER II 
 

 

GEOLOGIC SETTING 

The Florida Peninsula is in the eastern portion of a large Mesozoic-Cenozoic 

carbonate platform and forms the proximal portion of the West Florida shelf-slope system 

(Hine et al., 2001). The study area is located primarily in the west-central part the West 

Florida Platform in the area of the Sarasota Arch, with the Tampa Embayment lying to 

the north, and the South Florida Basin to the south (fig. 1). The platform extends 500 km 

(270 mi) westward from the shoreline to the West Florida Escarpment (fig. 2), which 

marks a steep platform margin adjacent to the deep Gulf of Mexico (Hine et al., 2001).  

During the Late Triassic, the Gulf of Mexico began forming as the North American Plate 

began rifting from the South American and African plates (Salvador, 1987; Dobson and 

Buffler, 1997). The basement rocks of the West Florida Platform are of Gondwanan 

affinity and include Precambrian-Cambrian (0.5-2.0 Ga) plutonic rocks, Ordovician-

Devonian sedimentary rocks, and Triassic-Jurassic sedimentary and plutonic rocks 

(Arthur, 1988; Randazzo, 1997).  The West Florida Platform is composed primarily of 

shallow-marine to coastal carbonate and evaporite deposits (Halley, 1985; Scott, 2001). 

 Jurassic-Cretaceous carbonates were deposited at tropical to subtropical latitudes, 

and evaporite beds dominated by anhydrite punctuate the stratigraphy (Hine et al., 2001). 

Andrew Petty (1995) correlated and characterized anhydrite beds in the platform;
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Figure 2. USGS bathymetric map showing the shelf geometry, and the steep 

Florida Escarpment (after Hine, 2001). 
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these beds are important topseals for the onshore hydrocarbon reservoirs of the Sunniland 

trend. Petty stated that the lower Cretaceous Punta Gorda Anhydrite, which is equivalent 

to the Ferry Lake Anhydrite in the central and western Gulf of Mexico, forms a key 

marker interval that is traceable from southern Mississippi to southern Florida (Petty, 

1995). Organic-rich carbonate mud also accumulated intermittently in the study area and 

has been interpreted as a product of hypersaline interior lagoons (Halley, 1985).   Based 

on a recent assessment of the onshore South Florida Basin that was performed by the 

U.S. Geological Survey (Roberts-Ashby et al., 2015), the principal reservoirs favorable 

for CO2 storage are in the Lower Cretaceous carbonate-evaporite successions and in the 

lower part of the Paleogene section. Anhydrite seals in the Paleogene section onshore are 

laterally extensive and average 650-985 feet in thickness (Roberts-Ashby et al., 2015).  
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CHAPTER III 
 

 

ANALYTICAL METHODS 

Geologic data, including public-domain well data, 2D seismic surveys, and 

preliminary Gulf of Mexico log picks obtained from the Bureau of Safety and 

Environmental Enforcement (BSEE) and the Bureau of Ocean Energy Management 

(BOEM). Basic well information, including OCSG well identification number, well 

locations, and stratigraphic picks were compiled. Rasters of geophysical well logs were 

imported into Adobe Illustrator software for graphic correlation. Seismic surveys were 

loaded into IHS Kingdom Suite software. Basic well log information is given in table 1.  

Only two mud logs are available in the study area, but these logs were invaluable for 

verifying interpretations of rock types in the geophysical logs, which include gamma ray, 

resistivity, neutron porosity, and density porosity. A combination of log suites revealed 

trends in the data, and the anhydrite successions were identified by extremely high deep 

resistivity profiles, low gamma count, bulk density values near 2.9 g/cm3, and neutron 

porosity near zero. In contrast, limestone and dolomite were differentiated primarily by 

the neutron and density porosity logs. Quality control on rock type identification and 

identifying porous intervals was performed by observing trends in the caliper log for 

zones of borehole washouts.  

 

 



10 
 

 

 Formation tops in a database from BOEM were compared with the mud logs and 

geophysical well logs. The top picks were refined based on well-log correlations and 

review of available geologic literature. Next, two regional cross sections were 

constructed, one being a strike section, and the other a dip section. These cross sections 

were made to establish correlations, delineate facies relationships, and characterize 

reservoir heterogeneity and seal continuity.  

Candidate storage objectives were identified based on the results of well log 

analysis and lithologic patterns. Similarly, potential reservoir seals were identified based 

on rock type, thickness, porosity, and continuity. The depth to reservoir is important for 

storage of CO2 in a supercritical state. The critical point for CO2 is at a temperature 

greater than 31.1° C and a pressure above 73 atm which typically occurs at depths greater 

than 2,480 ft (756 m).  

 Once all potential storage locations were identified, digital well logs were used to 

quantify the porosity of the prospective geologic sinks. Information derived from the well 

logs includes gross thickness, net thickness, and average porosity. The dataset was 

organized into a spreadsheet to perform calculations and lithologic corrections. All of the 

Table 1.  Summary of well log information within the study area of the Florida platform.   

Well Name SP GR Resistivity Conductivity Caliper Bulk Density Micro log Porosity Sonic

G-3917 No. 1 (CH) X X X X X X X X X

G-4950 No. 1 (CH) X X X X X X X

G-3903 No. 1 (VB) X X X X X X X

G-3912 No. 1 (CH) X X X X X X X X

G-3909 No. 1 (CH) X X X X X X X X

G-3906 No. 1 (CH) X X X X X X X X

G-3341 (EL) X X X X X X X X

G-3344 (EL) X X X X X X X
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neutron and density porosity logs in the study area were run on a limestone matrix, and 

corrections for other rock types were made using standard calculations outlined in 

Asquith and Krygowski (2004).  Without this correction, for example, the porosity of 

dolomite would be underestimated and of sandstone would be overestimated. A minimum 

cutoff of 15% porosity was chosen to qualify reservoirs as prospective storage units. 

Primary reservoir thickness within the 15% porosity range must be > 20 feet thick, and 

the total thickness includes thin porous dolomite beds in close proximity to the primary 

reservoir. For example, many of the wells containing porous beds with a continuous 

section of 15 feet of 15% or more porosity are included if an additional 5 feet of porous 

dolomite is in proximity.  

 All seismic data were loaded into IHS Kingdom software suite for interpretation. 

Revised stratigraphic picks were tied to seismic profiles using velocity (checkshot) 

surveys, which are available for all but one well in the study area (fig. 3). Stratigraphic 

tops picked during well log interpretation were compiled into a text file (.txt), and each 

associated formation top pick was linked with their respective unique well identifier 

(UWI) and imported and into the IHS Kindgom software suite. A well to seismic tie was 

completed to confirm that the stratigraphic tops match the amplitudes within the 2D 

seismic surveys (fig. 10). After verifying the seismic to well tie, key marker beds were 

identified and traced in Kingdom software, and the geometry and continuity of the strata 

were evaluated. After interpretation, the data were exported into Petrel software to 

construct subsea structure, net thickness, porosity, and storage resource maps. The 

minimum curvature method was used to grid structure maps, and a 5,000 m 
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Figure 3. Base map of study area showing well control location of seismic lines. 
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(~3 mi.) grid was used due to the well spacing being sparse, and due to the large distance 

between seismic lines. The regional lines have 12-mile separation, and 4-mile separation 

in the northern survey. Net isolith maps of qualified dolomite and limestone intervals 

were constructed using the geophysical well logs, and the data were extrapolated using 

the available seismic data. Further, net-to-gross ratio maps were generated in order to 

identify areas with a high proportion of porosity within each prospective storage unit. 

Information required to calculate storage capacity includes reservoir thickness, 

porosity, the area of the map polygon, geothermal data, pressure data, and storage 

efficiency factors. The subsurface storage volume estimates depend on the geologic 

properties of each assessment unit. Due to the sparse well control within the project area, 

initial net thickness values calculated from each well needed to be further constrained 

seismically based on gross interval thickness in order to generate more realistic thickness 

values for each assessment unit. Mean porosity values derived from well logs and entered 

into the Petrel software suite were used for each potential reservoir interval that was 

assessed. It is important to note that the temperature and pressure used to calculate 

density were derived from equivalent onshore facies near the western end of the SOSRA 

region (Pashin, 2008).  The pressure and temperature information was used to determine 

the density of CO2 under projected reservoir conditions. The saline formation efficiency 

factors based on geologic displacement factors (Goodman et al., 2011) were used in this 

study to help constrain reservoir volumetrics.  
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The formula used follows the method employed by the National Energy 

Technology Laboratory of the U.S. Department of Energy (Goodman et al., 2011; NETL, 

2015). 

GCO2 is the estimated storage capacity 

At is the reservoir area 

hg is the gross formation thickness 

Φtot is the total porosity 

ρ is the CO2 density 

Esaline is the CO2 storage efficiency factor 

 

 

The storage efficiency factor Esaline values were determined using a Monte Carlo 

analysis as outlined in (Goodman et al., 2011), and represent the fraction of total pore 

space occupied by injected CO2. The efficiency factor was calculated from field data 

from oil and gas reservoirs in conjunction with laboratory data, as well as simulations of 

relative permeability values for CO2 in brine systems. In cases where the net-to-total area, 

net-to-gross thickness, and effective or total porosity are known, only the displacement 

efficiency factors are needed to estimate storage capacity (Goodman et al., 2011). 

Efficiency factors based on displacement terms for dolomite over a 10-90% probability 

range are P10 = 16%, P50 = 21%, and P90 = 26%, while limestone values are; P10 = 10%, 

P50 = 15%, and P90 = 21% (IEA GHG, 2009). 

This methodology is intended for high-level static assessment of CO2 storage 

resources at regional and national scales, and is general enough to be applied globally 

(Goodman, 2011). For the purposes of this study, the assessment units were considered as 

Figure 4. NETL formula for calculating CO2 storage capacity in saline reservoirs (after NETL, 2015). 

GCO2= AthgΦtotρEsaline 
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an open system in which formation brine is displaced by the injected CO2 (Goodman, 

2011). This method only takes into account the physical trapping of CO2; other trapping 

mechanisms, such as mineralization and dissolution of CO2 into brine are excluded 

(Goodman, 2011).
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CHAPTER IV 

 
RESULTS 

STRATIGRAPHIC FRAMEWORK 

The potential storage units in the study area are primarily in the Cretaceous 

section, and an additional unit occurs in the lower part of the Paleogene section. The 

three primary rock types observed in well data are porous dolomite, limestone, and 

anhydrite. Due to the subtle structure of the Florida platform, most stratigraphic units are 

continuous throughout the study area.  All prospective storage units meet the 

qualification requirements for depth, porosity, and lateral extent of confining units. The 

following sections review the stratigraphy of each potential storage interval and follow 

the assessment units identified onshore by Roberts-Ashby et al. (2015). 

 

Punta Gorda Assessment Unit 

 The Punta Gorda assessment unit is a Lower Cretaceous composite assessment 

unit consisting of the Lehigh Acres Formation and the Punta Gorda Anhydrite (fig.5; 

plates 3, 4). The Lehigh Acres Formation contains the Able Member and Twelve Mile 

Member, which are composed primarily of limestone and dolomite intercalated with 

some thin anhydrite beds. The Twelve Mile Member and the Able Member only contain 

limestone in the Tampa Embayment at depths of approximately 3,200 m (10,500 ft). 

Geophysical well logs and sample records indicate that the limestone is tight and that the 

dolomite is porous. Porous dolomite intervals in the Twelve Mile Member have net 
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thickness of about 120 feet, while those in the Able Member are about 160 feet thick. The 

Upper part of the assessment unit is the Punta Gorda Anhydrite, which is a regionally 

continuous anhydrite marker that is 200-400 feet thick. It is composed mainly of 

anhydrite and contains interbeds of dolomite and limestone.  The subsea depth of the top 

of the Lehigh Acres formation is between 9,060-12,250 ft across the entire assessment 

unit.  

 

Gordon Pass Assessment Unit 

 The Gordon Pass assessment unit is a Lower Cretaceous composite assessment 

unit that includes the Marco Junction Formation, the Lake Trafford Formation, and the 

Gordon Pass Formation (fig.6-7; plates 1, 2). Both the Marco Junction and Gordon Pass 

Formations are of Early Cretaceous age (Albian) and are included in the Big Cypress 

Group. Dolomite is abundant in these formations, particularly on the Sarasota Arch, and 

limestone predominates in the Tampa Embayment. The Marco Junction Formation 

generally contains 80-120 feet of porous dolomite with interbedded anhydrite. The Lake 

Trafford Formation generally contains 80-100 feet of porous dolomite with interbedded 

limestone and anhydrite. Towards the northwest end of the study area, the Lake Trafford 

Formation is composed principally of limestone (plates 1, 2). The Gordon Pass Formation 

is a regionally continuous anhydrite marker that is about 180-350 ft thick and contains 

interbeds of dolomite and limestone. The Gordon Pass anhydrite thins toward the 

northwest from around 300 ft to 150 ft. However, the anhydrite beds appear to maintain 

lateral continuity. The depth of the top of the Marco Junction Formation is between 7,780 

and 10,200 ft in the study area.  
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Figure 5. Stratigraphic column showing prospective storage targets and reservoir seals in onshore 

southern Florida. (after Roberts-Ashby et al., 2015) 
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Cedar Keys Assessment Unit 
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Panther Camp Assessment Unit 

 The Panther Camp assessment unit (Lower Cretaceous) consists of the Dollar Bay 

Formation (Big Cypress Group) and the Panther Camp Anhydrite (fig. 5, plates 1, 2). The 

depth to the top of the Dollar Bay Formation is between 6,880-9,800 ft. The base of the 

Dollar Bay is dominantly tight limestone that thickens with depth and distance from the 

Sarasota Arch and ranges from 130 ft to 550 ft thick. The upper interval of the Dollar Bay 

Formation contains several thick intervals (20-40 ft) of dolomite interbedded with lenses 

of anhydrite. Overlying the Dollar Bay Formation is a regionally continuous section of 

Panther Camp Anhydrite. The thickness of the Panther Camp anhydrite varies from 65- 

220 ft and it is the thickest near the crest of the Sarasota Arch.  

 

Rookery Bay Formation (Naples Bay Group) 

 The Rookery Bay Formation is a thick, nonporous limestone unit that thins 

towards the West Florida Escarpment and the crest of the Sarasota Arch (fig 5; plates 1, 

2). At well OCSG-3344, which is closest to the Tampa Embayment, the limestone 

thickens to a maximum of 730 ft. Towards the western limits of the study area, which is 

near the West Florida Escarpment, well OCSG-3903 indicates that the limestone of the 

Rookery Bay Formation passes into dolomite towards a structural high near the shelf 

margin. The Rookery Bay Formation is the best representation of how the geometry of 

the Sarasota Arch and the shelf margin control the thickness of reservoir facies. Closer 

examination of the strike line cross section reveals that the Rookery Bay tight limestone 

thickens on both flanks of the Sarasota Arch towards the Tampa Embayment and the 
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South Florida Basin (plate 1). Further, the Rookery Bay pinches out and passes into 

dolomite towards the shelf margin (plate 2). 

 

Corkscrew Swamp Formation (Naples Bay Group) 

 Overlying the Rookery Bay Formation is the Corkscrew Swamp Formation. The 

dominant rock types in most of the study area are dolomite, which is interbedded with 

anhydrite. Interestingly, in well OCSG-3912 (plate 1), the limestone thickens on part of 

the Sarasota Arch. Facies changes from dolomite to limestone indicate that there is a 

structural low in this portion on the Sarasota Arch during deposition of the Corkscrew 

Swamp Formation. Although there is abundant dolomite facies, this formation was not 

considered as an assessment unit. The topseal anhydrite layers are considerably thinner, 

ranging from 2-8 feet thick with the thin Atkinson shale overlying the Corkscrew Swamp.  

 

Atkinson Formation 

The Atkinson Formation is dominantly a marine shale unit that is correlated with 

the Marine shale of the Tuscaloosa Group (Applin and Applin, 1967). (fig. 3, plates 1, 2). 

The Atkinson Formation marks the base of the Upper Cretaceous section, and the basal 

surface of the formation is thought to be a regional disconformity (Buffler et al., 1980). 

The Atkinson Formation is no more than 50 ft thick in the study area, and is locally as 

thin as 14 feet thick (plates 1, 2).  
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Cedar Keys Assessment Unit 

The Cedar Keys assessment unit includes the Upper Cretaceous Pine Key and 

Lawson Formations, as well as the lower part of the Cedar Keys Formation (fig. 3, plates 

1, 2). This is the thickest and shallowest assessment unit considered in this project. At the 

base of the Pine Key Formation is a section of Upper Cretaceous chalk that is most 

readily identified from a decrease in bulk density values, and further described in mud 

logs in the southeast portion of the study area. Directly above the chalk is a thick, porous 

interval of limestone that is generally about 1,000 feet thick and thins downdip towards 

the southwest (plates 1, 2).  

Above the Pine Key is the Lawson Formation, which is composed of porous 

dolomite, but this formation is logged geophysically only in two wells. Due to limited 

well log control in this assessment unit, the thickness and lateral extent of the Lawson 

Formation and younger units is not fully understood. The lithology of the upper member 

of the Lawson Formation is described as coarse crystalline dolostone containing layers of 

nodular and lensoid gypsum and anhydrite (Roberts-Ashby et al., 2015). 

The overlying Cedar Keys Formation is of Paleocene age and constitutes a 

succession of porous dolomite interbedded with anhydrite (fig.3, plates 1, 2). Only three 

of the wells that penetrate the Cedar Keys Formation have a useful log suite; the interval 

is not logged in most wells. Depth from the surface to the top of the reservoir in the 

assessment unit varies between 3,950 to 4,200 feet The anhydrite beds in the Cedar Keys 

Formation appear to be continuous on the proximal shelf, where the Upper Cretaceous-

Paleocene section is thickest, but are absent in the west and southwest part of the study 

area (plates 1, 2). Net thickness of the observed anhydrite beds is 130-150 feet. 
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Structural Framework 

 Strata in the West Florida Platform are effectively flat-lying, and major structures 

in the platform include the Sarasota Arch, the Tampa Embayment, and the South Florida 

basin (Dobson and Buffler, 1997). The principal structure in the study area is the Sarasota 

Arch. The axial trace of the structure trends northeast-southwest, plunges towards the 

West Florida Escarpment, and was likely formed by differential subsidence since the Late 

Jurassic (Foote, 1985, Martin and Case, 1975). Foote (1985) indicated that the Sarasota 

Arch was active during the Cretaceous. Differential uplift of the Sarasota Arch relative to 

the Tampa Embayment and the South Florida Basin resulted in the thinning of strata 

across the arch (plate 1). Structure maps of the Punta Gorda, Gordon Pass, and Panther 

Camp Formations show only minor changes in the structure of the Sarasota Arch (figs. 6-

8). All three maps show the width of the arch to be approximately 130 miles wide and 

shows the locations of the Tampa Embayment and the South Florida Basin. In all three 

maps, a domal structure, which is the highest part of the arch in the study area, is present 

in the area of well OCSG-3903. In contrast, deposition during the Cedar Keys time 

indicates that the arch is muted relative to the other intervals mapped and that a domal 

structure is south of the domal structure in the older beds (fig. 9).  Nearly all wells within 

this project are located near the axial trace of the Sarasota Arch, except OCSG-3341 and 

OCSG-3344 which are located on the northern limb near the Tampa Embayment.  
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Figure 6. Subsea structure map of the top of the Punta Gorda Formation, West Florida Platform. 
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Figure 7. Subsea structure map of the top of the Gordon Pass Formation, and initial development of 

secondary domal structure, West Florida Platform.  
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Figure 8. Subsea structure map of the top of the Panther Camp Formation, West Florida Platform.  
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Figure 9. Subsea structure map of the top of the Cedar Keys Formation, West Florida Platform.  
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Seismic Interpretation 

 The 2D seismic reflection surveys used in this project cover the southern end of 

the Tampa Embayment, the Sarasota Arch, and most of the South Florida Basin (figs. 10-

11). Figure 10 is a strike line that shows the simplicity of the structure on the shelf, with 

subparallel reflectors defining the broad, open structure of the Sarasota Arch. Figure 11 is 

a dip line traversing the shelf and showing the shelf margin and upper part of the West 

Florida Escarpment. The Lower Cretaceous section is dominated by subparallel 

reflections, and clinoforms elements are developed near the shelf margin.  

The anticlinal structure of the Sarasota Arch is observed in the NE-central portion 

of the seismic survey (fig. 11). Additionally, the clinoform strata at the shelf margin are 

slightly elevated relative to the adjacent shelf strata (fig. 11). This figure also shows that 

the Cedar Keys assessment unit forms a southwestward thinning wedge of sediment that 

marks the initiation of a major westward progradation from the peninsula and 

establishment of the distally steepened shelf that persists today. Tertiary strata (post-

Cedar Keys) is observed to be channelized in the proximal part of the profile and 

clinoform in the distal part (fig. 11). 

Unfortunately, some of seismic lines do not adequately image the Lower 

Cretaceous section because of noise related to channeling and paleokarst in the post-

Cedar Keys section. Primary strike lines trending SE-NW were relatively flat with only 

subtle changes in structure of the Sarasota Arch (fig. 10). In contrast, the dip lines depict 

the distally steepened shelf towards the West Florida Escarpment (fig. 11).  
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Figure 10. Strike line 4-108a showing regional structure of the West Florida Platform. 

Figure 11. Dip Line 4-101 showing structure of the West Florida Shelf and shelfbreak.  
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Porosity 

Porous strata within the Punta Gorda, Gordon Pass, and Panther camp assessment 

units are all dolomite, whereas the upper Cretaceous-Paleocene section includes porous 

limestone in addition to porous dolomite in the Cedar Keys assessment unit. Qualified 

reservoir (>15% porosity, >20 ft thick) in the Punta Gorda assessment unit is the 

dolomite of the Lehigh Acres Formation within the Glades Group. Qualified reservoir in 

the Gordon Pass assessment unit is dolomite of the Marco Junction Formation in the Big 

Cyprus Group. Porous dolomite of the Dollar Bay Formation constitutes the reservoir for 

the Panther Camp assessment unit of the Naples Bay Group. The Cretaceous-Paleocene 

Cedar Keys assessment unit includes dolomite reservoirs in the Cedar Keys and Lawson 

Formations and the porous limestone reservoir in the Upper Pine Key Formation.   

The highest average porosity in the Punta Gorda assessment unit approaches 25% 

at well OCSG-3912 (fig. 12). Figure 12 establishes the typical reservoir to seal 

relationship found throughout the study with thick sections of porous dolomite capped by 

regionally continuous anhydrite. Reservoir quality dolomite of the Lehigh Acres 

Formation is overlain by the thick Punta Gorda anhydrite topseal (fig. 12). The formation 

is largely unqualified in the Tampa Embayment and South Florida Basin. Porosity is 

primarily developed on the northern flank of the Sarasota Arch (fig. 13), and the net 

thickness map trend (fig. 14) suggests that the paleostructure may be slightly different 

from modern structure. Where there is porous dolomite in the Punta Gorda assessment 

unit, the average net interval thickness is 287 ft (fig. 14), and porosity is principally 

developed on the northwestern limb of the Sarasota Arch (figs. 13, 14). A maximum net  

 



30 
 

 

Well 

Assessment 
Unit 

OCSG 
3341 

OCSG 
3344 

OCSG 
3903 

OCSG 
3906  

OCSG 
3917 

OCSG 
3909 

OCSG 
3912 

Cedar Keys N/A N/A N/A 26.6 23.7 26.7 N/A 

Panther Camp 20.4 21.8 22.4 23.4 21.4 23.3 19.8 

Gordon Pass 20.5 20.6 20.6 19.7 20.1 19.8 20.2 

Punta Gorda <15 <15 21 19.6 17.7 19.5 25.6 

 

 

Table 2. Calculated average total porosity for net thickness intervals within each assessment unit on the West 

Florida Platform.  

Figure 12. Interpretation of well OCSG-3912 in the Lehigh Acres dolomite reservoir.   
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Figure 13. Porosity map of the Lehigh Acres Formation within the Punta Gorda assessment unit, 

West Florida Platform.  
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Figure 14. Net porous dolomite isolith map of the Able and Twelve Mile Members of the Lehigh 

Acres Formation within the Punta Gorda assessment unit, West Florida Platform.  
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 thickness around 400 ft is observed on the northern flank of the arch, and thickens 

southwest towards the shelf margin (fig. 14). Net porous dolomite is absent towards the 

Tampa Embayment where minimal reservoir is off observed at well OCSG-3917 (fig. 

14). The average total porosity of the Lehigh Acres Formation is about 18.5%. 

Reservoir quality dolomite is also developed in the Marco Junction Formation of 

the Gordon Pass assessment unit as seen in log analysis of well OCSG-3903 (table 2, fig. 

15). Alternating sections of reservoir quality dolomite (> 15% porosity) and sealing 

anhydrite of the Gordon Pass punctuate this section. However, the Sunniland Formation 

at the base of the storage unit is not a target for sequestration, as the porosity values did 

not meet the criteria for a minimum 15% porosity cutoff. Porosity is highest near the 

shelf margin close to well OCSG-3903, and on the northern flank of the Sarasota Arch 

(fig. 16). The average net thickness of reservoir containing greater than 15 percent 

porosity within the assessment unit is around 130 feet, and is located in the Marco 

Junction and Lake Trafford Formations. Due to limited well control, any significant 

increases in net thickness of reservoir are apparent when analyzing the net porous 

dolomite isolith map (fig. 17). Net thickness of porous reservoir increases from 100 ft on 

the eastern portion of the study area, to 395 ft in well OCSG-3903 and is greatest near the 

shelf margin (fig.17). The average total porosity of the Marco Junction and Lake Trafford 

Formations range from 19.7% in well OCSG-3906, and 20.6% in wells OCSG-3344 and 

OCSG-3903 (table 2). 
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The Dollar Bay Formation within the Panther Camp assessment unit is composed 

of thick dolomite reservoirs separated by thin anhydrite beds and capped by the Panther 

Camp anhydrite topseal as seen in well OCSG-3909 (fig. 18). The basal limestone of the 

Dollar Bay varies in thickness from 130 ft on top of the Sarasota Arch to more than 550 ft 

in the adjacent basins. This unit is not a target interval for storage and does not meet the 

minimum 15% porosity cutoff for this study. Increases in porosity/thickness trends are 

similar to those in the Gordon Pass assessment unit towards the shelf margin (figs. 19, 

20). Porosity is highest near wells OCSG-3906 and OCSG-3909 close to the crest of the 

Sarasota Arch (fig. 19). The net porous thickness of qualified Dollar Bay reservoir ranges 

from 65-350 feet. The proportion and thickness of dolomite in the Dollar Bay Formation 

tends to increase toward the crest of the Sarasota Arch and the shelf margin (fig. 20, plate 

1). The average total porosity of the Dollar Bay Formation ranges from 19.8% in well 

OCSG-3912, to 23.4% in well OCSG-3906 (table 2).  
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Figure 18. Interpretation of well OCSG-3909 in the Dollar Bay dolomite reservoir.   
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The Upper Cretaceous Pine Key and Lawson formations and the Paleocene Cedar 

Keys formation constitute the youngest assessment unit evaluated in this study. The rocks 

in these formations contain much higher porosity (up to 30%) than those in the older 

assessment units (fig. 21). In well OCSG-3917, dolomite reservoir of the Lower Cedar 

Keys Formation is located at a depth of around 4,000 ft and is overlain by the Middle 

Cedar Keys anhydrite seal (fig. 21).  As stated previously, the basal part of the Pine Key 

Formation contains a thick section of chalk, which tends to have very low permeability 

and is thus not included in this assessment. Porosity decreases towards the Tampa 

Embayment and South Florida Basin areas, and is highest on the northern flank of the 

Sarasota Arch near the shelf margin at well OCSG-3903, and near the crest at wells 

OCSG-3909 and OCSG-3906 (fig. 22). The proportion and thickness of reservoir 

increases towards the eastern portion of the study area to over 2,000 ft near the crest of 

the Sarasota Arch near wells OCSG-3909 and OCSG-3906 (fig. 23). Due to the westward 

progradation from the peninsula and southwestward thinning wedge of sediment, the 

same increases in thickness near the shelf margin in older reservoirs is not observed in 

the Cedar Keys assessment unit (fig. 23). The Cedar Keys assessment unit has the highest 

net thickness of porous carbonate, with an average thickness of around 610 m (2,000 ft) 

of qualified limestone and dolomite (fig. 23, plates 1, 2).  
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Figure 21. Interpretation of well OCSG-3917 in the Lower Cedar Keys dolomite reservoir.   
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Figure 22. Total porosity map of the Pine Key and Lawson Formations within the Cedar 

Keys assessment unit, West Florida Platform.  
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Figure 23. Net porous dolomite and limestone isolith map of the Pine Key and Lawson Formations 

within the Cedar Keys assessment unit, West Florida Platform.  
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Volumetrics 

The primary reservoirs described in this study are dolomitic in nature, and occur 

mainly on the Sarasota Arch. CO2 density values used for volumetric calculations were 

determined as a function of temperature and pressure, and values range from 700 to 800 

kg/m3. (fig. 24). The calculated storage resource for each assessment unit is summarized 

in tables 3-5. 

The Lehigh Acres Formation within the Punta Gorda assessment unit is a 

potential storage target for CO2 and contains reservoir quality dolomite at depths of 

around 10,500 ft. The best potential target for storage is in the area surrounding well 

OCSG-3912 due to increased porosity identified during log analysis, with a P50 storage 

resource of around 5 Mt/km2 (fig. 25; table 4). There is no projected storage potential in 

the southeastern portion because the net thickness of reservoir was less than 20 feet in 

well OCSG-3917, and may be absent in the South Florida Basin.  

Within the Gordon Pass assessment unit, dolomite of the Marco Junction and 

Lake Trafford Formations has the highest storage potential near well OCSG-3903, which 

coincides with the highest point on the subsea structure map (figs.7, 26; plate 2). The P50 

storage potential of this assessment unit decreases from around 4 Mt/km2 near well 

OCSG-3903, to an average of about 1-2 Mt/km2 near the surrounding wells.  

Similarly, the Dollar Bay Formation within the Panther Camp assessment unit 

contains its highest P50 storage capacity values near well OCSG-3903 with a local 

average of 4 Mt/km2, and is also the structural high for this assessment interval (figs. 8, 

27; plate 2).  
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In contrast to the other potential reservoirs, the thick limestone and dolomite 

within the Cedar Keys assessment unit project a much larger storage resource. The 

limestone in the upper portion of the Pine Key Formation contributes P50 storage 

potential of about 120 Gt, while the dolomite of the Lawson and Lower Cedar Keys 

Formation are estimated to contain around 480 Gt of P50 storage potential (table 4).  

Storage potential in the area of wells OCSG-3906, and 3909 have P50 values near 23 

Mt/km2.  

 

 

 

 

Figure 24. Density values for CO2 as a function of temperature and pressure 

(modified from Bachu, 2003).  

   Cedar Keys                                  Panther Camp 

   Gordon Pass                                 Punta Gorda 
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Assessment 

Unit 

Thickness 

(m) 

Mean 

Porosity 

Density 

(kg/m3) 

P90 

Efficiency 

Storage 

Resource 

(Gt) 

Upper Cedar 

Keys  305 0.237 700 0.210 594 

 

Lower Cedar 

Keys  107 0.237 700 0.150 169 

Panther Camp  
67 0.214 790 0.210 133 

Gordon Pass  
55 0.203 800 0.210 105 

Punta Gorda  
67 0.171 800 0.210 107 

Total   600       1108 

      

 

 

 

Assessment 

Unit 

Thickness 

(m) 

Mean 

Porosity 

Density 

(kg/m3) 

P50 

Efficiency 

Storage 

Resource 

(Gt) 

Upper Cedar 

Keys  305 0.237 700 0.210 480 

 

Lower Cedar 

Keys  107 0.237 700 0.150 121 

Panther Camp  
67 0.214 790 0.210 107 

Gordon Pass  
55 0.203 800 0.210 85 

Punta Gorda  
67 0.171 800 0.210 87 

Total   600       879 

    

 

 

 

 

 

 

 

Table 3. P90 estimated CO2 storage potential for the Sarasota Arch SOSRA project sub region.  

 

Table 4. P50 estimated CO2 storage potential for the Sarasota Arch SOSRA project sub region.  
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Assessment 

Unit 

Thickness 

(m) 

Mean 

Porosity 

Density 

(kg/m3) 

P10 

Efficiency 

Storage 

Resource 

(Gt) 

Upper Cedar 

Keys  305 0.237 700 0.16 366 

 

Lower Cedar 

Keys  107 0.237 700 0.10 80 

Panther Camp  
67 0.214 790 0.16 82 

Gordon Pass  
55 0.203 800 0.16 64 

Punta Gorda  
67 0.171 800 0.16 66 

Total   600       658 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. P10 estimated CO2 storage potential for the Sarasota Arch SOSRA project sub region.  
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Figure 25. CO2 storage resource map of the Lehigh Acres Formation within the Punta Gorda 

assessment unit, West Florida Platform.  
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Figure 26. CO2 storage resource map of the Marco Junction and Lake Trafford Formations 

within the Gordon Pass assessment unit, West Florida Platform.  
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Figure 27. CO2 storage resource map of the Dollar Bay Formation within the Panther Camp 

assessment unit, West Florida Platform.  
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Figure 28. CO2 storage resource map of the Pine Key, Lawson, and Lower Cedar Keys 

Formations within the Cedar Keys assessment unit, West Florida Platform.  
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CHAPTER V 
 

 

DISCUSSION 

Depositional Environment 

 Abundant anhydrite, dolomite, and limestone beds indicate that the West Florida 

Platform formed in an arid, tropical to sub-tropical climate, and the major carbonate-

anhydrite successions appear to record relative changes of sea level in the platform 

interior. Changes of sea level and uplift of the Sarasota Ach apparently led to the increase 

of evaporation reflux on the arch where the development of circulation-restricting 

barriers led to the formation of shelf wide evaporative lagoons (Adams and Rhodes, 

1960; Hardie, 1987; Morse et al., 2007). This caused increases in the salinity of brine, 

which became dense enough to displace connate water and seep downward through the 

lagoon floor where magnesium replaced part of the calcium to recrystallize as porous 

dolomite. The proposed depositional model indicates that the West Florida Platform was 

primarily deposited in a restricted rimmed platform margin where there are hypersaline 

conditions favorable for dolomitization and evaporite deposition (fig. 29).  

 A previous study of chalky limestone and micrite in the Gordon Pass Formation 

interprets the depositional environment as distal back reef (Winston, 1976). Onshore 

investigation of the Panther Camp assessment unit suggests that the Dollar Bay 

Formation was deposited during both sea level regressions and transgressions, and is 

largely composed of sequences of evaporites and carbonates deposited in a tidal
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 flat/lagoonal restricted marine setting, and in a subtidal platform open marine setting 

(Mitchell-Tapping, 1990, Pollastro, 2001). The Cedar Keys Formation is thought to have 

been deposited in a tidal flat environment during the Paleocene, and possibly continuing 

into the Eocene (Pollastro, 2001).  
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Figure 29. Depositional sequence model of the carbonate platform margin, highlighting the dolomite and anhydrite facies 

distribution across the Sarasota Arch. (Modified after Hanford and Loucks, 1993). 
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Reservoirs 

 

As stated previously, porous dolomite is thickest in the crestal region of the 

Sarasota Arch, and the proportion of limestone increases in the adjacent basins (Tampa 

Embayment and South Florida Basin) (plates 1, 2). Cross-section A-A’ shows that all of 

the Lower Cretaceous assessment units in the study area thin from the Tampa 

Embayment onto the Sarasota Arch, indicating that the arch grew during deposition. 

Sediment deposited on the Sarasota Arch is prone to dolomitization and diagenetically 

enhanced porosity development due to the evaporation reflux and circulation restricting 

barriers in the platform margin (Adams and Rhodes, 1960). This is true for the complete 

Lower Cretaceous section and for the Lawson Formation.  

Identification of the storage resource in each assessment unit was achieved by 

using the defined reservoir properties during well log analysis and seismic interpretation, 

and leveraging them with CO2 density values and storage efficiency factors for each 

assessment unit to generate the storage resource maps and perform the volumetric 

calculations. Previously discussed storage resource maps of the Punta Gorda, Gordon 

Pass, and Panther Camp assessment units average 2.5 Mt/km2, while the Cedar Keys 

assessment unit averages 15 Mt/km2. Higher storage potential exists in targeted locations, 

and indeed reinforces the hypothesis that each offshore block holds the capacity to store 

annual greenhouse gas emissions from multiple coal-fired power plants in peninsular 

Florida. Caution should be taken due to the fact that the volumetric calculations include 

the entire study area, and it is likely that many of the reservoirs do not extend into the 

Tampa Embayment or South Florida Basin. Thus, the overall storage resource may be 

overestimated but not confirmed due to the lack of wells in the project area. 
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The qualified reservoirs within the Lehigh acres Formation of the Punta Gorda 

Assessment unit are almost entirely porous dolomite. The storage resource map indicates 

that the best storage location occurs near well OCSG-3912 with 5 Mt/km2 of storage 

potential, or 116 Mt per offshore block in the surrounding area. The limestone units 

within the Punta Gorda assessment interval are generally nonporous and thus do not meet 

the minimum 15% porosity requirement for qualification. Comparisons between the 

strike cross section, subsea structure maps, and porosity maps reveal trends of reservoir 

heterogeneity. Two wells located in the Elbow Area, which is at the southeast end of the 

Tampa Embayment, contain mainly nonporous limestone in the Lehigh Acres Formation 

(plate 1). In general, the reservoirs of the Lehigh Acres formation provide an attractive 

target for CO2 sequestration on the Sarasota Arch, where porous dolomite predominates.  

Potential storage objectives in the Gordon Pass assessment unit are similar to 

those in the Punta Gorda assessment unit. The qualified reservoirs are in porous dolomite 

of the Gordon Pass and Marco Junction Formations. The storage resource map indicates 

that the best storage location is near well OCSG-3903 with 5 Mt/km2, or 116 Mt per 

offshore block of storage potential near the shelf margin. The two northernmost wells, 

OCSG-3344, and OCSG-3341, which are in the Tampa Embayment, are the only wells 

penetrating the Gordon Pass assessment unit that are dominated by nonporous limestone. 

The distribution of porous dolomite in the Dollar Bay Formation of the Panther 

Camp assessment unit again shows that the Sarasota Arch played an important role in 

dolomitization and porosity development. The best storage locations are located near 

wells OCSG-3903 and OCSG-3906 with 4 Mt/km2 or 93 Mt of storage potential per 

offshore block. The Dollar Bay reservoir in the Panther Camp assessment unit has similar 
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net thickness to the Lehigh Acres reservoir within the Punta Gorda assessment unit, yet 

the P50 CO2 storage resource is much larger at about 107 Gt and is attributed primarily to 

the high porosity and continuity of the reservoir in the study area (table 4; plates 1 and 2). 

The youngest reservoirs assessed in this study are the limestone reservoirs of the 

Pine Key Formation and the dolomitic reservoirs of the Lawson and Cedar Keys 

Formations. The best storage locations are located near wells OCSG-3909 and OCSG-

3906 with greater than 22 Mt/km2 of storage potential, or 512 Mt per offshore block. This 

area is the most prospective target location for subsurface CO2 storage attributed to 

reservoir thickness, high porosity, shallow depth, and identified overlying seals. The 

porous limestone unit in the Pine Key Formation is about 110 m (350 ft) thick across the 

study area, and only the upper Pine Key is considered a target interval. It is important to 

note that limestone, like that in the Pine Key assessment unit, has a lower P50 

displacement efficiency factor than dolomite (Goodman, 2011; tables 3-5). CO2 

sequestration in the Pine Key Formation should be considered since the storage resource 

approaches 120 Gt; however, the overlying Lawson and lower Cedar Keys porous 

dolomite units may provide even more attractive targets for CO2 sequestration. Together, 

the dolomite reservoirs of the Upper Cretaceous Lawson Formation and the Paleocene 

Cedar Keys Formation have net thickness greater than 300 m (1,000 ft) and accounts for 

more than half of the total estimated storage resource in the study area (~480 Gt.) (table 

4, fig. 29).  With mean porosity of about 24 percent, there is value in further analysis of 

the Cedar Keys assessment unit. 
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Seals and Storage Risks 

Seals 

 All of the impermeable sealing strata identified as caprocks for the saline 

formations in the study area are anhydrite, and nonporous limestone may provide 

additional sealing capacity. As discussed previously in the stratigraphic framework 

section, there is an abundance of both thick anhydrite beds, and stacked layers of laterally 

continuous anhydrite interbedded with the dolomite. Many of the thin anhydrite layers (< 

10 ft) can be correlated across the study area (plates 1, 2). Furthermore, the thick and 

laterally continuous anhydrite beds at the top of the Punta Gorda, Gordon Pass, and 

Panther Camp assessment units are considered low-risk seals.  

The Cedar Keys assessment unit does follow some trends similar to those in the 

other assessment units. The stacked anhydrite beds have net thickness between 130-150 

ft, yet this stratigraphic section was not logged in most wells. The lateral extent of the 

Cedar Keys anhydrite beds is not known due to sparse well control in the study area. The 

anhydrite layers appear to be absent in the Tampa Embayment at wells OCSG-3341, 

3344, and also at well OCSG-3903. This limits potential injection sites to the crestal 

region of the Sarasota Arch where anhydrite is present.  Unfortunately, the thick 

anhydrite seals onshore do not extend throughout the assessment unit. Generally, the 

anhydrite beds in the Cedar Keys Formation are about 10 ft thick and are thus much 

thinner than those in the other assessment units. For purposes of analyzing risks of 

potential commercial CO2 sequestration, the Cedar Keys assessment unit is considered 

higher risk than the other assessment units until further studies can be completed in order 

to assess the lateral extent of confining units.  
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CHAPTER VI 
 

 

CONCLUSION 

The West Florida Platform contains a system of arches and basins which play a 

crucial role in determining the quality of the carbonate reservoirs discussed in this 

project. All potential reservoirs assessed during this study are at a temperature and 

pressure favorable for supercritical storage of CO2. With a total P50 storage resource 

estimated at 879 Gt, the potential for CO2 storage in the area of the Sarasota Arch is 

encouraging for future commercial development.  

Data from the U.S. GHG inventory (https://ghgdata.epa.gov/ghgp/main.do)  

provides estimates of yearly emissions from key power plants along the coast of Florida. 

Annual CO2 emissions from the Crystal River, Big Bend, Mcintosh Jr., and Polk power 

plants are 9.5, 7.7, 1.9, and 1.6 Mt respectively. The combined total emissions generated 

annually is 20.7 Mt, with an average of about 5.2 Mt/year per power plant. Within the 

assessed boundaries of this study, each offshore block (~9 mi2 23.3 km2) averages 2.5 

Mt/km2 (58 Mt/offshore block) in the Punta Gorda, Gordon Pass, and Panther Camp 

assessment units. However, the higher net thickness and porosity of the Cedar Keys 

assessment unit is greater than 15 Mt/km2 in the area where seal integrity is not in 

question. Assuming the average in the Punta Gorda, Gordon Pass, and Panther Camp 

assessment intervals, the annual potential exists to store emissions equal to 11 coal-fired

https://ghgdata.epa.gov/ghgp/main.do
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power plant in each offshore block within the assessment unit, and even more potential 

exists in the Cedar Keys assessment unit.  

 Reservoir-quality CO2 sinks in the project area are developed primarily in 

dolomite, as it is the principal rock type with significant porosity. Stratigraphic analysis 

demonstrates that dolomite is concentrated on the Sarasota Arch and that limestone 

predominates in the adjacent Tampa Embayment and the South Florida Basin. The only 

limestone unit with sufficient porosity (>15 %) to qualify as reservoir in this study is the 

Upper Cretaceous Pine Key Formation, which is in the Cedar Keys assessment unit. It is 

worthwhile to note that the association of the Upper Pine Key with chalky carbonate 

should be approached cautiously, since chalk is known for high porosity and low 

permeability (e.g., Scholle, 1977).   

 The dolomitic reservoirs of the Punta Gorda, Gordon Pass, Panther Camp, and 

Cedar Keys assessment units contain the primary target reservoirs that were assessed, and 

together contain more than 755 Gt of storage capacity at the P50 efficiency factor for 

saline reservoirs. Additional potential may exist in the dolomite intervals within the 

Naples Bay Group, but that interval was unassessed due to lack of a viable topseal. 

Although there is seal risk associated with this interval, anhydrite in the overlying Cedar 

Keys could seal any fugitive CO2, however the extent of confining units in the Cedar 

Keys is limited. 
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All confining units in the study area are composed of thick, stacked beds of anhydrite, 

and the major anhydrite markers appear continuous throughout the study area except in 

the Cedar Keys Formation, where anhydrite beds are restricted to the northeastern part of 

the study area. The major anhydrite intervals within the Punta Gorda, Gordon Pass, and 

Panther Camp Formations tend to thin basinward from the Sarasota Arch but still appear 

to maintain integrity as confining units. Further studies need to be conducted in order to 

verify the lateral extent of anhydrite in the Cedar Keys Formation, which contains the 

largest storage resource assessed in this study. Ultimately, the storage potential of the 

West Florida Platform is vast, and the platform may provide a viable option for the future 

commercial storage of CO2 in the Eastern Gulf of Mexico.
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