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Abstract: Cambrian-Ordovician age Arbuckle Group carbonates host a wide variety of petroleum, 
mineral, and freshwater resources in Oklahoma. The studies that have been performed on the 
Midcontinent have shown the Arbuckle has been affected by both early and late diagenetic events 
with basinal fluids altering early diagenetic textures. Further constraining the origin, composition, 
and pathways of basinal fluid flow in northeastern and north-central Oklahoma would allow 
predictive characterizations of reservoir variability to be made. An integrated petrographic, 
geochemical, and fluid inclusion microthermometry study of the Arbuckle was performed using 
four subsurface cores to determine if the Arbuckle was modified by both early fluids (seawater or 
modified seawater) as well as late diagenetic fluids. The dominant lithology in the Arbuckle is 
cherty dolomite with interbedded quartz sandstones. Depositional fabrics observed range from 
subtidal to intertidal facies with some evidence of supratidal deposition. Replacement dolomite 
observed in all facies exhibit a range of very fine to coarse crystalline, planar to nonplanar 
textures. Carbon and oxygen isotope data (δ13C -3.84 to -0.63‰ VPDB and δ18O -7.92 to -3.08‰ 
VPDB) indicate much of the replacement dolomite is in equilibrium with early Ordovician 
seawater (and/or modified seawater) and partially recrystallized during the migration of warm, 
saline basinal fluids. Void-filling, coarse crystalline saddle dolomite cements plot as more 
negative δ18O values (-9.46 to -8.04 ‰VPDB) compared with replacement dolomite. Dolomite 
cements display a distinctive cathodoluminescent microstratigraphy containing two or more 
compositional zones. Fluid inclusion microthermometry of dolomite cements display increased 
homogenization temperatures (> 90ºC). Replacement dolomite and saddle dolomite cements did 
not display values of 87Sr/86Sr in equilibrium with early Ordovician seawater (87Sr/86Sr values 
ranged from 0.70969-0.71029) and likely indicate interaction with continental basement. This 
study concludes the Arbuckle Group underwent a complex diagenetic history that began 
sydepositionally (selected facies), modified by both early (seawater or modified seawater) fluids 
as well as late diagenetic basinal fluids. The basinal fluids are characterized as warm (90°C-
155°C), saline (20-27 wt. % equivalent NaCl) fluids. These fluids are thought to be sourced from 
the Arkoma and/or Anadarko basins driven by gravity fluid flow mechanisms initiated during or 
after the Alleghenian/Ouachita orogeny. 
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CHAPTER I 
 

 

INTRODUCTION 

 

 

This study uses established petrography, geochemistry, and fluid inclusion microthermometry to 

further the body of knowledge of the diagenetic history of the Arbuckle Group in northeastern 

and north-central Oklahoma. Specifically, this study tests the hypothesis the Arbuckle Group was 

modified by both early (seawater derived) fluids as well as late diagenetic basinal fluids in the 

study area. Using findings from similar studies of the Arbuckle on the Midcontinent, the 

composition, source(s) and effects of fluid flow events can be constrained. 

Arbuckle Group carbonates (Cambrian-Ordovician age carbonates of the Midcontinent) are an 

economical asset to a number of industries on the Midcontinent (Campbell and Grasmick, 1991; 

Johnson, 1991; Christenson et al., 2011; Gregg and Shelton, 2012). An estimated 93.8 million 

tons of base metals (lead, zinc, copper, and other noneconomic metal sulfides) have been mined 

(Taylor et al., 2009). Mississippi Valley-type (MVT) ore deposits of the Viburnum Mineral 

District, is one of several mineral districts hosted by Arbuckle carbonates in Southern Missouri. 

Other mineral districts in the region (including Tri-State Mineral District, Southeast Missouri 

Mineral District) may have been affected by metalliferous fluids that travelled through the 

Arbuckle Group (Gregg and Shelton, 2012; King, 2013). Arbuckle Group carbonates also host  
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significant petroleum reserves on the Midcontinent. In Oklahoma, 129 fields have produced 

hydrocarbons from Arbuckle reservoirs with the most prolific being the Oklahoma City field, 

which yielded a maximum flow rate from a single discovery well of greater than 5000 BOPD 

(Travis, 1930; Campbell and Grasmick, 1991; Johnson, 1991). In addition, petroleum and 

industrial wastewater disposal (class II Underground Injection Control wells) injected into 

Arbuckle strata (including the Reagan Sandstone and Precambrian continental basement) have 

accounted for roughly 51-68% of all disposal in Oklahoma through 2014 (Johnson, 1991; 

Murray, 2015). The Arbuckle-Simpson and Ozark-Roubidoux aquifers of south-central and 

northeastern Oklahoma respectively serve as the principal water resource to those regions 

(Johnson, 1991; Christenson et al., 2011).  Other nonfuel mineral resources of Arbuckle Group 

carbonates have also been mined in Oklahoma (Johnson, 1991). 

The correlation between these disposal practices to seismicity in the Midcontinent has increased 

the need for better understanding the reservoir properties of the Arbuckle Group (Walsh and 

Zoback, 2015). Researchers have addressed the difficulty of modelling possible seismic hazards 

without a detailed reservoir characterization and measurements of hydrologic properties (Walter 

and Zoback, 2015). Documented heterogeneities and a complex diagenetic history of the 

Arbuckle Group in Oklahoma and Kansas complicates characterization efforts (Temple, 2016; 

Franseen et al., 2004; Lynch and Al-Shaieb, 1991). Fracture and matrix permeability (horizontal 

and vertical) in the Arbuckle Group have been shown to be highly heterogeneous and anisotropic 

(Morgan and Murray, 2015). Using hydrologic properties from measurements hundreds or even 

tens of kilometers away may not yield reliable predictions in the subsurface. Petrography, fluid 

inclusion microthermometry, and geochemistry are useful tools in characterizing carbonates with 

complex depositional and diagenetic histories (Shelton et al., 1992; Goldstein, 2001; Gregg and 

Shelton, 2012). Studies on the Midcontinent have shown that the Arbuckle was affected by both 

early and late diagenetic events with basinal fluids altering early diagenetic textures (Gregg et al., 
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1993; Temple, 2016; Lynch and Al-Shaieb, 1991, King, 2013; Stoffell et al., 2008; Gregg and 

Shelton, 1992). Further constraining the origin, composition, and pathways of basinal fluid flow 

in northeastern and north-central Oklahoma can help predict changes in reservoir variability 

across the area and increase our understanding of the impact of fluid flow and the evolution of 

fluids. 

All studies of the Arbuckle Group in Oklahoma are limited by the small number and unequal 

distribution of well penetrations that include publicly available geophysical well logs, core, and 

other high-resolution data. This is in large part due to the majority of petroleum reservoirs being 

in the overlying strata. 
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CHAPTER II 
 

 

GEOLOGIC SETTING 

 

 

Oklahoma occupies part of the stable, cratonic interior of North America. Campbell et al. (1991) 

outlined seven, distinctive geologic provinces in Oklahoma. These geologic provinces are 

postulated to be indicative of separate hydrological flow units. A transect constructed for this 

study crosses the Cherokee Platform and Anadarko Shelf leading into the Anadarko Basin (Fig. 

1). Major tectonic features in the region include the Ozark Uplift, Arkoma Basin, Nemaha Fault 

Zone, and Anadarko Basin. The transect (starting in the east) crosses both a westwardly dipping 

homoclinal platform and the Nemaha Fault Zone, then extends along the Anadarko Shelf and 

nears the margin of the Anadarko Basin. The Anadarko Shelf is an arcuate homoclinal ramp 

dipping southward into the Anadarko Basin (Appendix 1). The formation of the Anadarko Basin 

and other significant tectonic features on the Midcontinent began in the late Proterozoic with 

younger uplifts occurring throughout the region during Pennsylvanian and Permian Periods 

(Leach and Rowan, 1986).  Heterogeneities in Proterozoic continental basement also indicate 

multiple igneous and metamorphic terranes underlying the Midcontinent sedimentary cover 

(Denison, 1981; Chenoweth, 1968; Reeder, 1974). Denison (1981) observed several rhyolitic and 

granitic basement rock groups in the study area including: Spavinaw Granite Group, Washington 

County Volcanic Group, and Central Oklahoma Granite Group. Late Paleozoic tectonism along
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the Ouachita Thrust Belt is believed to have resulted in northward flow of basinal fluids through 

lower Paleozoic sediments including the Arbuckle (Benthke and Marshak, 1990; Leach and 

Rowan, 1986; Viets and Leach 1990). Subsurface faulting in Oklahoma occurs throughout the 

sedimentary cover and often extend into Precambrian basement (Marsh and Holland, 2016). 

Observations from fault datasets, in addition to earthquake moment tensor solutions (McNamara 

et al., 2015; Schoenball and Ellsworth, 2017; Lund Snee and Zoback, 2016), have confirmed that 

most of the region lies in a strike-slip faulting regime with nearly vertical (70-90°) dipping faults 

that can extend from one to tens of kilometers in length. The maximum, present day horizontal 

stress direction is oriented roughly east to west. Many faults are active in Oklahoma as indicated 

by recent seismicity. Most of the active faults have not been mapped; however, epicenters can 

delineate lineaments (Schoenball and Ellsworth, 2017). In addition, oil and gas well and seismic 

reflection datasets show near vertical faults originating in basement and propagating to much 

shallower depths in younger, Pennsylvanian age formations (Christenson et al., 2011; Bizzell, 

2017). In areas where faulting in the Arbuckle Group is observed at the surface (southern 

Oklahoma, southern Missouri), hydrothermal alteration of host limestone and or dolomites occur 

(Sargent, 1969; Gentry, 2010; Temple, 2016). Petrographic and geochemical evidence for late 

diagenetic alteration of Arbuckle age carbonates exists throughout the Midcontinent (Gregg, 

1985; Gao et al., 1995; Gentry, 2010; Temple, 2016).  

Arbuckle Group carbonates of Cambrian-Ordovician age were deposited on a carbonate platform 

in an epeiric sea on the stable cratonic interior, which was positioned at roughly 10-25° S 

latitudes (Palmer, 2012; Fritz et al., 2012). The Arbuckle Group comprises part of the Sauk 

megasequence and consists of a series of 3rd to 5th order cycles separated by mutliple regional to 

sub-regional unconformities (Palmer, 2012; Fritz et al., 2012). Depositional environments ranged 

from supratidal to subtidal and transitioned to an off-platform setting in the southern Oklahoma 

aulacogen (Gatewood, 1976; Perry, 1989). Paleotopography of the eroded, ‘high relief’ (10’s of 
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meters) Precambrian basement indicate a ‘pock mark’ landscape (“Tulsa Mountains”) in Rogers 

and Osage counties (Chenoweth, 1968; Reeder, 1974). Consequently, deposition of carbonates 

and basal siliciclastic units during the earliest Ordovician transgression may have resulted in 

locally thicker deposits due to the relief of the paleo-terrane. 

There are three documented stratigraphic naming schemes used for Upper Cambrian and Lower 

Ordovician strata of Oklahoma, Missouri, Arkansas, and Kansas (Chenoweth, 1968; Overstreet et 

al., 2003). Most of the region recognizes the naming system of McQueen (1931) and McCracken 

(1955). However, the surface correlation techniques used by these researchers, involving study of 

insoluble residues, becomes less reliable moving into the subsurface. Cambrian-Lower 

Ordovician strata in Missouri (and northeastern Oklahoma) do not retain the “group” designation 

and are indicated by formational names. Despite the lack of a group designation, the term 

“Arbuckle” in this study will be used for Cambrian-Ordovician strata in the subsurface below the 

Simpson Group (Fig. 2). Strata included in the Arbuckle Group are temporally equivalent to the 

Ellenburger Group in Texas, Knox Group of the Appalachian Basin and other “Great American 

Carbonate Bank” (GACB) carbonate units of North America and elsewhere (Derby et al., 2012). 

This study will use the Chenoweth (1968) stratigraphic nomenclature in keeping with Derby 

(1991) and Temple (2016). 

The petrology of the Arbuckle has been studied by a number of researchers in eastern and 

southern Oklahoma, southern Missouri, northern Arkansas, and Kansas in core, outcrop and thin 

section (He et al., 1997, Overstreet et al., 2003; Franseen, 2004; Lucia, 2012; Fritz et al., 2012; 

King, 2013; Temple, 2016; Fig. 3). A tabled synopsis of petrographic findings has been included 

in this report (Table 1). The dominant lithology of the Arbuckle Group in the Ozark Region and 

northeastern Oklahoma is cherty dolomite. Siliciclastic deposition is interpreted to have been 

extensive during the early Ordovician and sourced from extrabasinal origins (Overstreet et al. 

2003). Major siliciclastic units include the Gunter Sandstone Member at the base of the 
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Gasconade Dolomite (Ordovician) and the Reagan Sandstone (Cambrian, Oklahoma) and its 

equivalent Lamotte Sandstone (Cambrian, Missouri; Derby, 1991; Overstreet et al., 2003; Palmer 

et al., 2012; Fritz et al., 2012). The upper portion of the Reagan Sandstone is equivalent to the 

Bonneterre Dolomite in Missouri (Chenoweth, 1968). The Arbuckle Group is comprised of six 

formations (Fig. 2); however, the completeness of the section will vary depending on the locality 

(Chenoweth, 1968). 

The cyclical nature of facies stacking patterns in Cambrian-Ordovician tidal flat successions of 

the Arbuckle section in southern Missouri and northeastern Oklahoma are well documented 

(Overstreet et al., 2003; Fritz et al., 2012). Multiple 3rd order sequences and unconformities are 

observed in the section, notably at the basal and upper contact with Precambrian basement and 

Middle-Late Ordovician strata of the Simpson Group (Palmer et al., 2012; Fritz et al., 2012;). 

Between 3rd order unconformities are meter-scale 4th and 5th order cycles that have a range of 

interpreted depositional environments ranging from subtidal to supratidal consisting of peloidal 

wackstones-mudstones, stromatolites, ooid grainstones, burrowed mudstones, thrombolite 

boundstones, microbial laminites, and quartz sandstones (He et al., 1997; Overstreet, 2003; 

Palmer et al., 2012; Fritz et al., 2012).  There are two dominant types of cycles observed in the 

Ozark Region. Type I cycles are less than 2 meters in thickness and have supratidal caps 

overlying intertidal-supratidal deposits. Type II cycles are 2-4 meters in thickness and have a 

thicker subtidal section underlying a intertidal-supratidal section (Overstreet et al., 2003). The 

supratidal facies typically display evidence of subaerial exposure such as mudcracks, halite casts, 

and chalcedonic chert nodules with similar shapes as gypsum and anhydrite nodules (Overstreet 

et al., 2003; Fritz et al., 2012; Temple, 2016). There is evidence for the Arbuckle facies to be 

similar to both modern tidal-flat analogs of Andros Island, a model for tidal-flat deposition under 

humid conditions, and Persian Gulf Coast, a model for tidal-flat deposition under arid conditions 

(Fritz et al., 2012). 



8 
 

Periodic subaerial exposure during Arbuckle deposition resulted in karst development (Lynch and 

Al Shaieb, 1991; Overstreet et al., 2003). Lynch and Al-Shaieb (1991) documented that 12 of the 

30 Arbuckle cores that they examined, mainly from southern and eastern Oklahoma, had 

macroscopic evidence of karst development. Recognition of subaerial exposure as viewed in core 

from this study (Shads 4) and others is confined to the easternmost part of studied region (Derby, 

1991; Lynch and Al-Shaieb, 1991; Fritz et al., 2012). Lynch and Al-Shaieb (1991) concluded 

much of the karst development in the Arbuckle may have occurred syndepositionally although 

several phases of karst are presumed to have occurred later in the Ordovician and Pennsylvanian 

Periods (Fritz et al., 2012). Fritz et al. (2012) described several phases of karst development that 

contributed to multiple episodes of dissolution, dolomitization, and cementation including: intra-

Arbuckle karst, intra-Simpson karst, sub-Woodford karst, Pennsylvanian karst, and hydrothermal 

karst. Each subsequent period of karst development may have aided in further enhancing 

subsurface dissolution features and sinkhole development where ‘deeper’ Arbuckle formations 

(Gasconade and Eminence Dolomite) hosted aquifer systems leading to the development of 

caverns (Dillon et al., 1998). 

Reservoir development of the Arbuckle has been shaped from early through late diagenesis and 

resulted in multiple porosity generation events (Fritz et al., 2012). Initial, primary porosities of 

the Bonneterre Dolomite in the Viburnum Trend ranged from 6-24% depending on primary 

lithologies (Gregg et al., 1993). Tectonism during the Pennsylvanian and Permian facilitated the 

creation of extensive fracture and fault systems. Synchronous or subsequent fluid flow event(s) 

likely spurred the precipitation of late diagenetic void-filling cements. The stratigraphy of 

Arbuckle strata, dictated by the cycle stacking architecture, likely influenced reservoir 

development (Franseen et al., 2003; Fritz et al. 2012). Stacking patterns capped by more porous, 

lithologies may explain the variability of fluid movement through Arbuckle strata laterally and in 

the vertical section (Moñtanez and Read, 1992; He et al., 2002; Ahr, 2008; Gregg et al., 2012). 
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Figure 1.  Study area with core locations and tectonic features. The transect of cores used in this study crosses the Cherokee Platform and 
Anadarko Shelf leading into the margin of the Anadarko Basin. Geologic provinces were digitized after Campbell (1991).
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Figure 2.  Stratigraphic column of northeastern and north-central Oklahoma. The 
Arbuckle Group is late Cambrian to early Ordovician in age and overlies early-mid 
Cambrian strata of the Bonneterre Dolomite and Lamotte Sandstone (when present) and 
underlies the mid-late Ordovician Simpson Group. Pictorial representation of lithology 
and System colors use USGS standards (modified after Chenoweth, 1968).
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Figure 3. Previous Arbuckle study area ‘footprints’ on the Midcontinent. Similar petrographic and geochemical studies of the Arbuckle have been 
performed in northeastern Oklahoma, southern and central Missouri, northern Arkansas, and southern Kansas. The data collected in this study 
extends the body of petrographic and geochemical knowledge of the Arbuckle Group in Oklahoma.
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Table 1. Selected Arbuckle petrographic findings on the Midcontinent.  

Age Formation
[Not distinctly separable in outcrop] Coarsely 

granular, cherty crystalline carbonate (dolomite) with 
oolitic chert (white and decreases towards base) and 

tripolitic chert.

Not described or studied.

Not described or studied.

Cherty, buff to white, very coarsely crystalline, 
crystalline carbonate dolomite. Vitreous 

semitranslucent chert with finely crsytalline quartz in 
cavities. (very cherty dolomite)

Sandy, crystalline carbonate (dolomite) and fine-
grained sandstone.

Not described or studied.

Cherty, coarsely, granular crystalline carbonate 
(dolomite). Dense, dark-bluish-gray chert in upper 
part that grades into white, dense, quartzose chert.

Sandstones, arkoses, conglomerates, clay-matrix rich 
sandstone and conglomerates, shale-rich facies. May 

be locally haemetitic and contain muddy red beds. 
Overlain quartzitic, burrowed, cross-bedded 

sandstones locally interbedded with fan-delta deposits 
(nearby Precambrian highs)

Mixed clastic-carbonate unit containing: gray-green, 
bluish shales, carbonate-cemented quartzose siltstones 

and fine-grained, locally cross-laminated, riple 
laminated or burrowed sandstones (variably 

glauconitic), and clastic-rich limestones (variably 
dolomitized) and oolitic-fossilieferous-intraclastic 

limestones.

Franseen et al., 2004 (Kansas)

Facies and/or Lithology (if described) Dolomitic Textures

Dolomitic ribbon rock, mudstone-wackestone 
interbedded ooid-skeletal packstone-grainstone, 

locally cross-bedded ooid grainstones, thrombolite 
and stomralite boundstones. Low chert content.

Brown to gray dolomite, medium to fine crystalline, 
buff to brown, argillaceous and silty.

Oolitic chert, lenses of orthoquartzite, conglomerate, 
and shale locally present. Burrowed mudstone.

Light brown to brown, medium to fine crystalline 
dolomite and argilaceous dolomite. Thick to massive 

bedded brown medium crystalline dolomite.

Chert to sandy crystalline carbonate with some 
dolomitic sandstone-sandstone (quartzose). 

Sandstone is fine to medium grained, sub-rounded 
and frosted quartz sand. Brown to gray, banded, 
oolitic, sandy chert. Sandstone can contain well-
preserved rippple marks, mud cracks and cross 

bedding.

Light gray to brown, fine crystalline, thin tho thick 
bedded. 

Crystalline carbonate with variable chert content. Cherty dolomite, medium to coarse crystalline. 
Variable chert content.

Palmer et al., 2012 (southern Missouri)

Facies and/or Lithology (if described) Dolomitic Textures

Cherty dolomite* same as Temple. Oolitic chert and 
large silicieous ooliths. Brown quartzose oolitic chert.

Light gray to light brown, medium to fine crystalline 
cherty dolomite.

Derby-Doerun

Davis

Bonneterre 
Dolomite

Gunter Sandstone

Thin fine-grained limestone to dolomite, thick ooid 
and skeletal packestones-grainstones, thromolite and 

stromalites, coarsely crystalline light-gray, tan 
dolomites. Dolomitized to undolomitized glauconitic 

limestone with thinly interbedded shale.

Light gray, medium to finely crystalline medium 
bedded dolomite.

Interbedded brown and gray crystalline carbonate 
(rather undifferentiated).

Medium to massive bedded, light gray, medium to 
coarse grained dolomite. Small amounts of nodular or 
angualr chert fragments. Druse quartz. Locally large 

chert boulders and blocks.

Mostly undifferentiated crystalline carbonate. 
Thrombolitic-stromatalitic laminates.

Massive to thickly bedded, medium to fine crystalline 
dolomite with abundance of druse quartz.

Lamotte 
Sandstone

Cambrian

Potosi Gray, mottled, banded dolomite with small chert nodules 
and angular chert fragments. Microbial laminites overlying 

burrowed wackestone/mudstone.

Medium to coarse crystalline, planar-s and 
nonplanar dolomite. 

Ordovician

Gray to white, sub-rounded sandstone. (syntaxial quartz 
overgrowths)

Eminence Gray, mottled, banded dolomite with small chert nodules 
and angular chert fragments. Microbial laminites overlying 

burrowed wackestone/mudstone.

Medium to coarse crystalline, planar-s and 
nonplanar dolomite. White silicifed ooids 

present (upper unit).

Roubidoux [Mixed carbonate siliciclastic system] Meter scale sandstone 
beds with alternating meter scale dolomite beds. Sandstone 

is fine to medium grained, subrounded quartz. Dolomite 
beds with banded brown to gray oolitic chert. Light gray, 
mottled dolomite and white sandy dolomite overlain by 

dolomitized microbial laminites. Scattered coaresly 
crystalline pyrite in vugs.

Light gray to brown dolomite. Fine to 
medium crystalline, planar-s to planar-e and 
nonplanar textures containing scattered well 
to sub-rounded quartz grains. Fractures and 
vugs lined with coarsely crystalline saddle 

dolomite cement.

Gasconade Gray, mottled, banded, cherty (chalcedonic) dolomite. 
Burrowed wackestone/mudstone capped by microbial 

laminites. 

Medium crystalline dolomite, mostly 
nonplanar dolomite with white to light gray 
chert to coarse crystalline dolomite. Coarse 

cystalline dolomite cement filling vugs.

Temple, 2015 (SW Missouri and NE Oklahoma)

Dolomitic Textures

Light gray to light brown, medium to fine 
crystalline cherty dolomite.

Jefferson City Cherty dolomite containing gypsum and halite casts at cycle 
tops. Peloidal/burrowed wackestones overlain by microbial 

laminites and/or ooid grainstones.

Light gray to light-dark brown, medium to 
fine crystalline, planar-s to planar-e cherty 
dolomite and argillaceous dolomite. Pink 
saddle dolomite cement filling open space. 

Fine crystalline planar-s dolomite (microbial 
laminite).

Facies and/or Lithology (if described)

Burrowed wackestone and mudstone capped by ooid 
grainstone and microbial laminites with intercalated thin 

beds of green shale. Some quartzic sandstone. Some 
evidence for evaporites at cycle tops (molds of hopper halite 

crystals and ghosts of gypsum laths).

Cotter/Powell
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CHAPTER III 
 

 

METHODS 

 

 

Four subsurface cores of the Arbuckle Group were viewed and sampled at Oklahoma Geological 

Survey Petroleum Information Center (OPIC) in Norman, Oklahoma. The cores range from 24m 

to 422m in length and lie along a section from northeastern to north-central Oklahoma (Fig. 1). 

Original copies of wireline logs were obtained for each well in the study from the Oklahoma City 

Geological Society Mid-Continent Library (“Log Library”) and converted into raster and Log 

ASCII Standard (LAS) files for only the Arbuckle Group interval. The logs were used for 

lithostratigraphic correlations using Information Handling Services (IHS) Kingdom software. 

Wireline curves used for correlation included: gamma-ray (GR), spontaneous potential (SP), and 

resistivity (RES). Arbuckle Group formation tops collected from IHS Enerdeq Online Database 

Browser were used as the initial formation top picks and refined using top calls from Brizendine 

(2016). The top of the Arbuckle Group was used as the datum for building the cross section. 

Thirty-eight core samples were cut into approximately 5cm x 5cm x 0.6cm billets. Core sample 

selection was based on collecting representative facies, identification of void-filling cements, and 

host carbonate rock. Petrographic analysis was conducted on thirty-eight thin sections made from 

these samples at Oklahoma State University. Thin sections were prepared by Quality Thin  
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Sections based in Tucson, Arizona. Cathodoluminescence (CL) petrography was carried out using 

a CITL CL8200 MK5-1 cold cathode optical CL system mounted on an Olympus BX 41 

microscope equipped with 4X, 10X, and 40X long focal distance objective lenses, and a “Q-

imaging” 5-megapixel cooled, low-light, digital camera system.  

Carbon and oxygen isotope compositions were measured at the University of Miami Stable 

Isotope Laboratory using a Finnigan-MAT 251 mass spectrometer. Standard error was reported 

relative to the Vienna Pee Dee Belemnite (VPDB) standard for δ13C and δ18O and was less than 

±0.08‰ based on replicate measurements (Swart and Eberli, 2005). All samples were reacted for 

10 minutes using the common acid bath method at 90˚C and standard isobaric corrections were 

applied. Corrections were not applied for the differences in the fractionation of δ18O as a result of 

the dissolution of dolomite by phosphoric acid (Swart et al., 2005). Ratios of 87Sr/86Sr were 

measured using a Thermal Ionisation Mass Spectrometry (TIMS) at the University of Kansas 

Radiogenic Isotope Laboratory and have errors of 0.000014 at 95% confidence level. 

Fluid inclusion microthermometric measurements were performed on eight, doubly polished thick 

sections at Oklahoma State University. Thick sections were prepared using techniques designed 

to avoid extensive heating of samples (Goldstein and Reynolds, 1994). Measurements were made 

using a Linkam THMSG 600 heating and cooling stage. Errors of homogenization (Th) and last 

ice melting (Tm) temperatures were ±1.0˚C and ±0.3˚C, respectively based on analysis of 

synthetic fluid inclusions (Shelton and Orville, 1980). Inclusions analyzed in this study were 

aqueous, two-phase, primary inclusions, using the classification of Roedder (1984). Tm 

measurements were used to calculate salinities using equations from Bodnar (1992). 
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CHAPTER IV 
 

 

RESULTS 

 

 

Electric Log Correlation 

All four cores were correlated using the top of the Arbuckle initially using IHS Enerdeq 

formation top data and refined following Brizendine (2016) using the following curves: 

spontaneous potential (SP), gamma-ray (GR), and resistivity (RES) logs, if available. Using the 

Shads 4 core as the primary type log for Arbuckle Group formations, it was determined the Osage 

C-1 core sampled the basal Gasconade Formation (Gunter Sandstone Member), and both the 

Meisner MH 2 and Wichert 1 cores sampled the Cotter-Powell and/or Jefferson City Formations 

(Fig. 4). Correlations were based on lithostratigraphic correlations for purposes of identifying 

cored intervals. 

Stratigraphy and Petrology 

Four subsurface cores (whole and discontinuous slab) of Arbuckle strata in Oklahoma were 

studied including (from east to west): Shads 4, Osage C-1, Meisner MH 2, and Wichert 1 (Fig. 1). 

One of the oil wells, Meisner MH 2, cored, tested and produced from the ‘upper’ Arbuckle, with 

an initial oil production (41.5° gravity oil) of 225 BPD on a 32/64” choke. The Shads 4 core was 

the focus of the study because it cored a complete Arbuckle Group  section of 422m. Work done
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by James Derby (1991) was heavily relied upon for formation top calls in addition to a full 

lithology description with sub-meter scale resolution. The lithological descriptions by Derby 

(1991) were digitized and are included in Appendix 2. Only 15 m of ‘basal’ Arbuckle, 34 m of 

‘upper’ Arbuckle, and 24 m of ‘upper’ Arbuckle are represented in the Osage C-1, Meisner MH 

2, and Wichert 1 cores respectively. Details of these oil and observation wells are included in 

Appendix 3. Correlations of Arbuckle Group formation tops were interpreted in cross section 

(Fig. 4). 

All cored intervals were observed to be dolomitized based on petrography and a weak 

effervescence in diluted hydrochloric acid. Core and thin section descriptions start at the base of 

each formation. Core examination was done at a sub-meter scale. Tabled core descriptions are 

included in Appendix 4. 

The Shads 4 core (Fig. 1) has 422m of continuous core of the complete Arbuckle section from 

493 m to 895 m (Fig. 5). Precambrian basement of the Washington Volcanic Group was cored 

with predominantly reddish-brown, andesite porphyry. A nonconformable contact exists between 

the Reagan Sandstone Formation and Precambrian, Washington Volcanic Group. The Reagan 

Sandstone (896-918 m) is comprised of light to dark brown, arkosic sandstones with interbedded, 

thin shale beds. No distinct differences were observed in the Reagan Sandstone compared to the 

Lamotte Sandstone in southern Missouri as described by Palmer et al. (2012). If the Lamotte 

Sandstone is the age-correlative formation to the Reagan Sandstone, the Reagan is the only Upper 

Cambrian strata examined in this study. Previous authors have noted an unconformable contact 

that exists between Upper Cambrian carbonates and the Gasconade Dolomite (Overstreet et al. 

2003; He et al., 2012). Derby (1991) described a “pebbly, weathered disconformity zone” close to 

the suggested unconformity. 
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The Gunter Sandstone Member (863-896 m) at the base of the Gasconade Dolomite is a mix of 

gray to white, medium-grained, sub-rounded sandstone, sandy dolomite, burrowed dolomitic 

mudstone and shale. Palmer et al. (2012) described the composition of the Gunter Sandstone in 

southwestern Missouri as being made up of several meter-scale shoaling-upward cycles. While 

cyclicity at that resolution was not specifically observed or documented in the Gunter Sandstone, 

shoaling-upward cycles are thought to be present given the range of facies that were observed. 

Facies include: burrowed-mottled mudstones, laminated mudstones, shales, and quartz 

sandstones. Sandstone facies typically have intergranular porosity up to 5-10% (visually 

estimated). Burrowed-mottled, dolomitic mudstones displayed intercrystalline porosity up to 5-

10% (visually estimated). Isolated, solution-enlarged vugs are open to filled with nonplanar 

(saddle) dolomite cement crystals as large as 4 cm in the longest dimension. Sulfide 

mineralization (pyrite, sphalerite, and galena) is present in thin (<0.25 m) vuggy zones. 

The Gasconade Dolomite (797-863 m) is dominantly thick (>2 m) intertidal to subtidal 4th to 5th 

order paracycles consisting of gray to brown, medium crystalline, cherty dolomite. The 

Gasconade is composed of brown to gray silicified, burrowed dolomitic mudstones, pelletal-

skeletal packstones, microbial laminates and hemispherical stromatolites. Primary porosity is 

intercrystalline with secondary porosity types consisting of moldic, fracture, fenestral, and vuggy 

porosity up to 5-20% with extremely vuggy zones displaying >20% porosity (visually estimated) 

(Fig. 6a). The secondary porosity types observed are more typically found in the packstone facies. 

Extremely vuggy zones (>0.25 m in thickness) exist in the Gasconade and are 2 cm high 

extending across the core with some intervals of quartz-lined vugs. Oil staining exists near the 

base. 

The Roubidoux Formation (725-797 m) is comprised of thick (>2 m) intertidal 4th to 5th order 

paracycles consisting of bedded gray, cherty to sandy dolomite, planar stromatolites, thrombolitic 

dolomite, and dolomitic sandstone as observed by Palmer et al. (2012). Primary porosity is 
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intercrystalline with secondary porosity types consisting of moldic, fracture, fenestral, and vuggy 

porosity up to 5-20% (visually estimated). Chert and sand concentrations vary throughout the 

section; however, sand content decreases overall up-section and transition to mainly cherty 

dolomite. Zones of brecciated chert and thin chert nodules are less prevalent in the upper part of 

the formation. Vugs are scattered throughout. 

The Jefferson City Dolomite (616-725 m) is comprised of brown to gray, cherty dolomite with 

shoaling upward cycles of dolomitic mudstones-wackestones overlain by pelletal or oolitic 

packstones/grainstones and stromatolites. Primary porosity is intercrystalline with secondary 

porosity types consisting of moldic, fracture, and vuggy porosity up to 5-20% (visually 

estimated). Isolated, solution-enlarged vugs are open to filled with saddle dolomite cement and 

are as large as 7 cm in the longest dimension (Fig. 6b). Thin zones of dissolution breccia and 

chert nodules exist at 4th to 5th order cycle tops as observed by Overstreet et al. (2003). The base 

of shoaling upward cycles is typically oil stained. Cycle tops of oolitic packstones/grainstones are 

partially to fully replaced by chert and also display bitumen staining. Oolitic chert is commonly 

observed in intertidal facies, most notably in oolitic packstones and grainstones (Fig. 6c). Rarely, 

suspended, rounded oolitic chert clasts (2-3cm) occur within subtidal facies (Fig. 6d). 

The Cotter and Powell Dolomites (493-616 m) are cyclic light gray to gray to brown, cherty, 

burrowed-mottled, laminated, dolomitic mudstones-wackestones overlain by stromatolites and 

oolitic packstones-grainstones. A large (>10 cm in diameter), hemispheroidal stromatolite was 

observed in the section (Fig. 6e). Primary porosity is intercrystalline with secondary porosity 

types consisting of moldic, fracture, and vuggy porosity up to 5-20% (visually estimated). Chert 

partially or fully replaced oolitic packstones/grainstones facies. Brecciated zones were more 

prevalent than in the rest of the entire Arbuckle section. These zones were found at 4th and 5th 

order cycle tops in the Cotter and Powell Dolomite as observed by Overstreet et al. (2003). 
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The Osage C-1 core (Fig. 1) has 15 m of discontinuous core (slabbed) of the ‘basal’ Arbuckle 

between 1035-1051m. Based on lithostratigraphic correlation and similar stratigraphic and 

petrographic findings, this section is interpreted to represent part of the basal Gasconade 

Dolomite (Fig. 2 and 4, Appendix 5) and is partially or wholly composed of the Gunter Sandstone 

Member. The interval consists of cyclical wavy, skeletal-peloidal wackestone, burrowed 

wackestone-mudstone, sandy tidal flat laminites, sandy, cryptalgal stromatolites, and dolomitic 

sandstones. Sandstones are composed of sub-rounded, medium grained (0.06-0.15 mm), medium 

sorted quartz grains with intergranular porosity up to 5% (visually estimated). Vuggy zones were 

primarily observed in burrowed mudstones-wackestones. Rounded, pseudomorphs of gypsum 

nodules(<1-2cm in size) were observed in the core (Fig. 6f). Additionally, possible ‘chicken wire’ 

textures are observed in core. The base of cycles is eroded with pebbly zones, highly stylotized 

zones, increased sand content and coarser crystalline planar-nonplanar dolomite. 

The Meisner MH 2 (Fig. 1) has 34m continuous core (slabbed) of the ‘upper’ Arbuckle between 

1902-1936m. It is composed of meter-scale shoaling upward cycles that are interpreted to be part 

of the Cotter/Powell Dolomite (Fig. 2 and 4, Appendix 6). Thick (>2 m) sections of subtidal, 

burrowed wackestones, mottled-laminated mudstones, cryptmicrobial laminites, pelletal-skeletal 

packstones and cross-bedded oolitic grainstones were observed. Soft sediment deformation is 

observed close to the interfaces of sand-rich mudstones and clay-rich, laminated mudstones (Fig. 

6g). Intercrystalline porosity is typical in all facies observed with fracture, vuggy, and moldic 

secondary porosity of up to 5% (visually estimated). The most porous zones are in burrowed 

mudstones-wackestones and contain vugs that measure 1 cm in the longest dimension. 

The Wichert 1 core (Fig. 1) has 24 m continuous core (slabbed) between 2883-2907m in the 

‘upper’ Arbuckle. It is composed of meter-scale shoaling upward cycles that are interpreted to be 

part of the Cotter/Powell Dolomite (Fig. 2 and 4, Appendix 7). Thick (>2 m) sections of subtidal, 

burrowed wackestones and laminated mudstones are overlain by oolitic grainstones and 
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packstones. In cycles observed near the top of the cored interval, crinkly laminated or 

cryptmicrobial laminates are overlain by subtidal, organic-rich mudstone facies (Fig. 6h, and 6i). 

Intercrystalline porosity is found in all facies with mainly fracture secondary porosity. Very little 

vuggy and moldic porosity was observed in this section. Fine-grained (<0.03 mm) quartz and silt-

rich laminations are present in mudstone facies. 

Petrography 

Replacement Dolomite Petrography 

Most of the dolomite observed in the Arbuckle Group is replacive dolomite of pre-existing 

limestone. Figure 7 displays the representative lithologic fabrics and dolomitic textures associated 

with replacement dolomite. Distinguishing between very fine to medium crystalline planar and 

medium to coarse crystalline planar and nonplanar replacement dolomite was important in 

identifying relationships between lithologic facies, dolomitic texture and cathodoluminescent 

(CL) patterns. Distinctive CL compositional zonation is present in replacement dolomite and 

dolomite cements in the study area. Typically, CL zonation consists of a dull, mottled to non-CL 

center followed by one to five zones alternating between non-CL and dull to moderately bright 

CL. 

Replacement dolomite in subtidal, burrowed mudstones is typically unimodal, very fine to fine 

crystalline (<0.01 mm) planar-s dolomite with intercrystalline porosity. Very fine to fine 

crystalline, planar-s replacement dolomite in subtidal mudstones generally display dull to 

moderately bright CL and lack compositional zonation. Replacement dolomite in subtidal to 

intertidal burrowed-skeletal wackestones and pelletal-skeletal packstones display polymodal, fine 

to medium crystalline (<0.01-0.05 mm) planar-e to planar-s with mimically replaced allochems. 

Differences are observed in dolomite textures where allochems are present. Fine to medium 

crystalline (0.01-0.05 mm) planar-e textures filling allochem ghosts typically display open, 
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moldic or fenestral porosity. CL microstratigraphy in fine to medium crystalline (<0.01-0.05 

mm), planar-e to planar-s replacement dolomites typically consists of either dull to moderately 

bright CL with no compositional zonation or dull to moderately bright CL displaying up to 2-3 

compositional zones. When zonation is present, it generally consists of the following sequence of 

compositional zones: Z1) dull or moderately bright, mottled CL core, Z2) less bright, variable 

thickness, non-CL zone, and Z3) bright, CL outer rim. Replacement dolomite observed in 

dolomitic sandstones and replacing cryptmicrobial stromatolites are comprised of medium (0.01-

0.03 mm) planar-s dolomite crystals and display similar CL patterns to those described above 

(Fig. 7c). 

Medium to coarse crystalline (0.03-0.7mm), planar to nonplanar replacement dolomite is 

observed in pelletal-skeletal packstones, dolomitic sandstones and cryptmicrobial stromatolites. 

CL microstratigraphy in medium to coarse crystalline (0.03-0.7 mm), planar to nonplanar 

dolomite display up to four to five zones including: Z1) dull to moderately bright, mottled CL 

core, Z2) dull to bright, mottled CL zone (potentially partially dissolved), Z3) dull to non-CL 

zone, and Z4) dull to moderately bright, CL outer zone and Z5) dull to non-CL, thicker outer 

zone. 

Open Space Filling Cements 

Dolomite cements occupying open pore spaces (fractures, vugs, molds) display the most complex 

CL zonation (up to six compositional zones) (Fig. 8). Void-filling dolomite cements are typically 

coarse (0.05-10 mm) crystalline, nonplanar dolomite cement (saddle dolomite). These cements 

are observed in a range of facies throughout all cores studied. Infrequently, quartz cement was 

observed lining large vugs and as fracture fill cement. Quartz cement displays no CL response. 

CL microstratigraphy of coarse (0.05-10 mm), saddle dolomite displays two to six compositional 

zones (Fig. 9 and 10). Compositional zonation patterns typically consist of: Z1) dull to non-CL 
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mottled CL core, Z2) mottled to non-CL, outer CL core, Z3) dull, thick CL zone, Z4) dull, CL 

zone, Z5) lighter, dull CL outer zone. Irregular CL banding and the most complex CL pattern was 

observed in medium to coarse crystalline (0.05-10 mm), saddle dolomite in the Gasconade 

Dolomite and Gunter Sandstone Member respectively. This compositional zonation pattern 

consists of: Z1) dull to moderately bright, mottled CL core, Z2) non-CL to dull, homogenous, CL 

outer core, Z3) banded, dull to moderately bright, CL zone (Z4 truncates Z3 and displays 

irregular banding), Z4) banded, bright to moderately bright, CL zone, Z5) bright, non-banded CL 

zone, and Z6) dull to non-CL zone. Both the Shads 4 and Osage C-1 cores display irregular 

banding in coarse, saddle dolomite (Fig. 9c-9f). 

Fluid Inclusion Microthermometry 

Dolomite Cements 

Primary, two phase inclusions (liquid and vapor) observed in coarse (0.05-10mm) saddle 

dolomite were measured for vapor homogenization temperature (Th), ice melting temperature 

(Tm) and eutectic temperature (Te) when possible. Inclusions ranged in size from 3-10 µm with a 

mean size of 6 µm. Smaller inclusions were observed and measured; however, the confidence of 

the measurements for these inclusions varies due to poor optical resolutions. No petroleum 

inclusions were observed. The inclusions contain ~2-10% vapor volume at room temperature 

(21°C) and vapor bubble movement at room temperature was common. One hundred and twenty-

four fluid inclusions were analyzed for Th and Tm temperature values, out of which both Th and 

Tm measurements were obtained on sixty-nine fluid inclusions. Fluid inclusion assemblages were 

plotted for each core using salinities calculated from measured Tm values and equations from 

Bodnar (1992) for dolomite cements (Fig. 11, Table 2). 

In the Shads 4 core, Th of primary fluid inclusions in dolomite range from 90.80 to 142.55°C with 

an average of 115.01°C and median of 115.60°C (Fig. 11 and Table 2). Tm values range from -
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25.90° to -17.85°C with an average of -21.49°C and median of -22.00°C. Salinities ranged from 

20.9 to 26.1 wt. % NaCl equivalent. Five Te measurements were collected from five different 

assemblages and ranged from -40.8 to -40.0°C. 

In the Osage C-1 core, Th values of primary fluid inclusions in dolomite range from 95.90° to 

154.30°C with an average of 122.49°C and median of 116.67°C (Fig. 11 and Table 2). Tm values 

range from -27.30° to -19.05°C with an average of -22.74°C and median of -22.71°C. Salinities 

ranged from 21.7 to 27.0 wt. % NaCl equivalent. Four Te measurements were collected from four 

different assemblages and ranged from -44.3 to -34.5°C. 

In the Meisner MH 2 core, Th values of primary fluid inclusions in dolomite range from 89.98° to 

122.80°C with an average of 109.33°C and median of 110.79°C (Fig. 11 and Table 2). Tm values 

range from -35.70° to -17.50°C with an average of -24.93°C and median of -23.45°C. Salinities 

ranged from 20.6 to 32.6 wt. % NaCl equivalent. One Te measurement of -40.2°C was made. Two 

data points from Meisner MH 2 (1915m) are considerably more saline (~33 wt. % NaCl 

equivalent) despite displaying cooler temperatures (~100°C). These fluid inclusions were among 

the smallest (<3 µm) measured. 

In the Wichert 1 core, Th values of primary fluid inclusions in dolomite range from 115.40° to 

131.10°C with an average of 123.66°C and median of 123.73°C (Fig. 11 and Table 2). Tm values 

range from -22.55° to -18.57°C with an average of -21.15°C and median of -21.60°C. Salinities 

ranged from 21.4 to 24.0 wt. % NaCl equivalent. 

Nearly 80% of all 124 Th measurements fall within the range of 90° to 130°C with 100% of all 

measurements between 90° to 155°C. Nearly 70% of all 69 Tm measurements fall within -25° to -

20°C with 100% between -35°to -15°C. Inclusions plot as two distinct populations: a lower 

temperature (89°C to 128°C) with moderate salinity (20 to 27 wt. % NaCl equivalent) and higher 

temperature (128°C to 154°C)  with moderate salinity (20 to 27 wt. % NaCl equivalent). 



24 
 

Isotope Geochemistry 

Fine crystalline planar replacement dolomites generally displayed δ13C and δ18O values in 

equilibrium with early Ordovician seawater or (and/or modified seawater (Veizer et al., 1999), 

ranging from δ13C -2.5 to -1.6‰ VPDB and δ18O -9 to -5‰ VPDB. Fine crystalline, planar 

replacement dolomites display δ13C values ranging from -3.84 to -0.63 ‰ VPDB and δ18O values 

ranging from -7.92 to -3.08‰ VPDB (Fig. 12 and Table 3). Medium to coarse crystalline planar-

nonplanar replacement dolomite display δ13C values ranging from -2.72 to -1.61‰ VPDB and 

δ18O values ranging from -7.94 to -6.17‰ VPDB. Values for δ13C or δ18O in either fine planar or 

medium to coarse planar-nonplanar replacement dolomites displayed no significant trends in the 

vertical section when compared with depth. 

Dolomite cements display δ13C values ranging from -3.49 to -0.98 ‰ VPDB and δ18O values 

ranging from -9.46 to -4.25‰ VPDB (Fig. 12 and Table 3). Values of δ13C or δ18O in dolomite 

cements displayed no significant trends in the vertical section when compared with depth. 

Fine crystalline planar replacement dolomite display values of 87Sr/86Sr ranging from 0.70946 to 

0.70986. 87Sr/86Sr values measured for medium to coarse crystalline planar-nonplanar 

replacement dolomite ranged from 0.70947 to 0.70972 Values of 87Sr/86Sr for coarse crystalline 

saddle dolomite cement ranged from 0.70969 to 0.71029. 
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Figure 4.  Lithostratigraphic correlation of cored intervals. The Osage C-1 core sampled the basal Gasconade Formation (Gunter Sandstone 
Member), and both the Meisner MH 2 and Wichert 1 cores sampled the Cotter-Powell and/or Jefferson City Dolomite.

W E 
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Figure 5. Shads 4 core diagram with electric logs. Shads 4 has 422m of continuous core of the 
complete Arbuckle section for the interval of 493m to 895m (modified after Derby, 1991).
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Figure 6. Lithology of core and representative core features. a) Vuggy zone (lined with 

dolomite) within laminites in the Gasconade Dolomite (Shads 4). b) Isolated, solution-enlarged 

vugs are open-filled with saddle dolomite cement crystals that are as large as 7 cm in the longest 

dimension in the Jefferson City Dolomite (Shads 4). c) Oolitic (grainstone) chert (Shads 4). d) 

Suspended, rounded, oolitic (packstone-grainstone) chert within a mudstone in the Jefferson City 

Dolomite (Shads 4). e) Cross-section of a large stromatolite in the Cotter-Powell Dolomite (Shads 

4). f) Polygonal-to-globular shaped, centimeter-sized pseudomorphs of gypsum nodules. Wispy, 

organic seams (mechanically compacted) are observed draping gypsum nodules (Osage C1; 1cm 

scale). g) Soft sediment deformation is observed close to the interfaces of sand-rich mudstones 

and clay-rich, laminated mudstones (Meisner MH 2). h) Stromatolitic ‘bump’ within 

cryptmicrobial laminites (left); homogenous, organic-rich mudstone (right; Wichert 1). i) 

Homogenous, organic-rich mudstone with intermittent laminations (Wichert 1; 5cm scale). 

Figure 7. Petrography of replacement dolomite. a) Very fine-fine crystalline, planar-s dolomite 

replacing laminated mudstone with occasional, very thin, silty laminations (Shads 4; PPL). b) 

Very fine to fine crystalline, planar-s dolomite replacing burrowed, pelletal mudstone (Meisner 

MH 2; PPL); vertical burrow with a slightly coarser crystalline planar dolomite (left) moldic 

porosity at the top of the vertical burrow (right). c) Micritized peloids-pellets (left), very fine-

medium crystalline planar-s to planar-e polymodal dolomite replacing peloidal-pelletal-skeletal 

wackestone (Meisner MH 2; PPL); pyro-bitumen-filled, sub-horizontal fracture (right). d) Very 

fine to fine crystalline, planar dolomite replacing cryptmicrobial, ‘crinkly’ laminites (Meisner 

MH 2; PPL); organic matter and fine silts that were trapped in microbial mats (left). e) Very fine 

to fine crystalline, planar dolomite replacing organic-rich, laminated mudstones (Wichert 1; XL). 

f) Fine crystalline planar dolomite replacing homogenous mudstone (Meisner MH 2; XL). g) 

Medium to coarse crystalline, planar-e dolomite replacing peloidal, vuggy mudstone (Shads 4; 

PPL); open vugs can be nearly 1mm in size (left). h) Fine-medium crystalline, planar-nonplanar 

polymodal dolomite replacing a fenestral carbonate (Shads 4; XL); micritized peloids (left); open 

pore space in fenestrae (right). Note: PPL (plane polarized light), XL (cross polarized light). 
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Figure 6. Lithology of core and representative core features. 
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Figure 7. Petrography of replacement dolomite. 
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Figure 8. Petrography of dolomite cements. a) Coarse crystalline, saddle dolomite cement filling 

a solution-enlarged fracture and vug within a laminated mudstone (Meisner MH 2; XL). b) 

Coarse crystalline, saddle dolomite cement filling a vertical fracture that terminates at a high 

relief stylolite (Meisner MH 2; PPL). c) Coarse crystalline, saddle dolomite cement lining a large 

(>2cm in longest dimension), solution-enlarged vug (Shads 4; PPL). Open pore space exists 

within the vug. d) Medium-coarse crystalline, saddle dolomite cement filling an isolated vug 

within a homogenous mudstone (Meisner MH 2; PPL). e) Coarse crystalline, saddle dolomite 

cement (left) with fine sediment filling, forming a geopetal structure (Meisner MH 2; PPL). This 

photomicrograph is rotated 90° counterclockwise from the vertical position of the field of view. f) 

Coarse crystalline, saddle dolomite cement filling collapsed skeletal material (left; Wichert 1 

XL); fine crystalline, replacive dolomite (right). g) Coarse crystalline, saddle dolomite cement 

(SD) filling a large vug (>4cm). The vug is lined with quartz (Q) and medium crystalline, saddle 

dolomite cement. Fine-medium crystalline, dolomite replaced (RD) the host rock adjacent to the 

vug (Shads 4; PPL). h) XL photomicrograph of the same field as (g). Note: PPL (plane polarized 

light), XL (cross polarized light). 

 

Figure 9. CL photomicrograph representative of the range of the observed CL microstratigraphy. 

a) Coarse crystalline, saddle dolomite cement filling a vug in a skeletal wackestone (Wichert 1; 

PPL). b) CL photomicrograph of the same field as (a). c) Coarse crystalline, saddle dolomite 

cement lining a large (>2cm) vug in the ‘basal’ Arbuckle (Shads 4; PPL). d) CL photomicrograph 

of the same field as (c). e) Coarse crystalline, saddle dolomite cement filling a vug in the ‘basal’ 

Arbuckle (Osage C1; PPL). f) CL photomicrograph of the same field as (e). g) Coarse crystalline, 

saddle dolomite cement filling an isolated vug (Shads 4; PPL). h) CL photomicrograph of the 

same field as (g). 
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Figure 8. Petrography of dolomite cements. 
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Figure 9. CL photomicrograph representative of the range of the observed CL microstratigraphy. 
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Figure 10. CL composite photomicrographs of Jefferson City and Gasconade Dolomites. a) 
Coarse crystalline, saddle dolomite cement in the ‘upper’ Jefferson City Dolomite (Shads 4; 
PPL). b) CL photomicrograph of the same field as (a). c) Coarse crystalline, saddle dolomite 
cement in the ‘lower’ Jefferson City Dolomite (Shads 4; PPL). d) CL photomicrograph of the 
same field as (c). e) Coarse crystalline, saddle dolomite cement and sub-rounded quartz grains in 
the ‘lower’ Gasconade Dolomite (Osage C1; PPL). f) CL photomicrograph of the same field as 
(e). 
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Figure 11. Plot of fluid inclusion assemblage’ s salinities vs. Th values for inclusions observed. Fluid inclusions plot as two distinct populations: a 
lower temperature and moderate salinity fluid, and a higher temperature and moderate salinity fluid. There are two data points (Meisner MH 2) 
that plot as an anomalously lower temperature and higher salinity fluid. Fluid 3 is plotted as observed by Shelton et al. (1992) and Temple (2016). 
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Table 2. Fluid inclusion assemblage data for saddle dolomite cements in the study area.

SH 500m Rogers Co., OK Assemblage 1 Dolomite 102.1 -22.4 24.0
Assemblage 2 Dolomite 90.8 -22.6 24.1
Assemblage 3 Dolomite 107.2 -17.9 20.9
Assemblage 4 Dolomite 91.9 -20.2 22.5
Assemblage 5 Dolomite 129.4 -24.1 25.0
Assemblage 6 Dolomite 142.6 -21.6 23.4
Assemblage 7 Dolomite 117.2 -18.0 21.0

SH 682m Rogers Co., OK Assemblage 1 Dolomite 131.5 -23.2 24.5
Assemblage 2 Dolomite 110.8 -18.7 21.4
Assemblage 3 Dolomite 99.1 -18.7 21.5
Assemblage 4 Dolomite 101.8 -21.3 23.2

SH 882m Rogers Co., OK Assemblage 1 Dolomite 121.8 -22.6 24.1
Assemblage 2 Dolomite 130.8 -25.9 26.1
Assemblage 3 Dolomite 132.8 -23.7 24.8
Assemblage 4 Dolomite 115.6 - -

OSA 1036m Osage Co., OK Assemblage 1 Dolomite 117.0 -23.3 24.5
Assemblage 2 Dolomite 113.8 -22.8 24.2
Assemblage 3 Dolomite 114.3 - -
Assemblage 4 Dolomite 116.7 -27.3 27.0
Assemblage 5 Dolomite 123.8 -23.4 24.6

OSA 1044m Osage Co., OK Assemblage 1 Dolomite 154.0 -22.6 24.1
Assemblage 2 Dolomite 112.7 -21.4 23.3
Assemblage 3 Dolomite 154.3 -19.1 21.7
Assemblage 4 Dolomite 95.9 -22.1 23.8

MSR 1915m Garfield Co., OK Assemblage 1 Dolomite 107.5 - -
Assemblage 2 Dolomite 100.2 -35.5 32.4
Assemblage 3 Dolomite 104.0 - -
Assemblage 4 Dolomite 102.3 -35.7 32.6
Assemblage 5 Dolomite 122.1 -17.5 20.6
Assemblage 6 Dolomite 115.1 -23.8 24.8

MSR 1924m Garfield Co., OK Assemblage 1 Dolomite 115.3 -23.1 24.4
Assemblage 2 Dolomite 122.8 -19.5 21.8
Assemblage 3 Dolomite 114.1 -24.1 25.0
Assemblage 4 Dolomite 90.0 -20.3 22.6

WIC 2899m Major Co., OK Assemblage 1 Dolomite 123.4 -22.2 23.8
Assemblage 2 Dolomite 123.5 -21.7 23.5
Assemblage 3 Dolomite 131.1 -21.5 23.4
Assemblage 4 Dolomite 115.4 -20.4 22.6
Assemblage 5 Dolomite 124.1 -21.8 23.5
Assemblage 6 Dolomite 125.5 -20.6 22.8
Assemblage 7 Dolomite 124.0 -22.6 24.0
Assemblage 8 Dolomite 122.4 -18.6 21.4

Calculated Salinity (wt. % eq. NaCl)Tm˚CSample ID Location Assemblage Mineral Th˚C



36 
 

 

Figure 12. Stable isotopes values of δ13C and δ18O.  Stable isotopes values of δ13C and δ18O (per mil VPDB) for fine planar replacement 
dolomite, medium to coarse planar-nonplanar replacement dolomite, and dolomite cement from the study area. Early Ordovician seawater 
values obtained from Veizer et al. (1999).
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Figure 13. Stable isotopes values of 87Sr/86Sr versus δ18O. Stable isotopes values of 87Sr/86Sr versus δ18O (per mil VPDB) for fine planar 
replacement dolomite, medium to coarse planar-nonplanar replacement dolomite, and dolomite cement from the study area. Early 
Ordovician seawater values obtained from Veizer et al. (1999). 
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Table 3. Stable isotope data for replacement dolomite and dolomite cements in 
the study area.

Sample ID Mineral δ13C δ18O 87Sr/86Sr

SH 496m Replacement Dolomite -2.2 -3.8

SH 500m Replacement Dolomite -3.5 -4.8

SH 604m Replacement Dolomite -2.3 -5.4

SH 669m Replacement Dolomite -3.8 -7.9

SH 682m Replacement Dolomite -1.7 -6.2 0.70987

SH 682m Replacement Dolomite -2.2 -6.3

SH 718m Replacement Dolomite -2.2 -5.6 0.70947

SH 882m Replacement Dolomite -3.8 -5

SH 718m Dolomite Cement -2.8 -9.5

SH 500m Dolomite Cement -2.6 -9

SH 604m Dolomite Cement -3.2 -9.4

SH 682m Dolomite Cement -2.6 -8.4

SH 682m Dolomite Cement -2.5 -8

SH 882m Dolomite Cement -3.5 -8.7 0.7103

OSA 1036m Replacement Dolomite -1.7 -6.2 0.70972

OSA 1039m Replacement Dolomite -2.7 -7.9

OSA 1039m Replacement Dolomite -1.8 -6.2

OSA 1044m Replacement Dolomite -1.6 -6.4

OSA 1036m Dolomite Cement -1.8 -8.7 0.70988

MSR 1903m Replacement Dolomite -3.6 -4.5 0.71091

MSR 1907m Replacement Dolomite -1.8 -5.3

MSR 1914m Replacement Dolomite -2.3 -4.3

MSR 1915m Replacement Dolomite -1.6 -4

MSR 1919m Replacement Dolomite -0.6 -3.6

MSR 1923m Replacement Dolomite -1.4 -4.5

MSR 1924m Replacement Dolomite -1.7 -3.7

MSR 1929m Replacement Dolomite -2.4 -3.4

MSR 1915m Dolomite Cement -2 -8.1

MSR 1919m Dolomite Cement -1 -4.3

MSR 1924m Dolomite Cement -2.5 -7.4 0.70969

MSR 1929m Dolomite Cement -2.6 -8.3

WIC 2883m Replacement Dolomite -3.5 -4

WIC 2899m Replacement Dolomite -1.7 -5.7

WIC 2904m Replacement Dolomite -2.6 -3.1

WIC 2905m Replacement Dolomite -2.9 -4.5

WIC 2899m Dolomite Cement -1.8 -6.5

WIC 2899m Dolomite Cement -1.7 -6
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CHAPTER V 
 

 

DISCUSSION 

 

 

Sedimentation and Early Diagenesis 

During the early Ordovician, widespread limestone deposition occurred throughout the 

Midcontinent on a broad, shallow, carbonate platform to low-gradient ramp interrupted by 

increased siliciclastic (intrabasinal) input with punctuated, regional to sub-regional 

unconformities indicative of repeated meter-scale sea level changes (He at al., 1997; Overstreet et 

al., 2003; Fritz et al., 2012; Temple, 2016).  

The range of lithofacies and cycle stacking patterns observed in the Arbuckle Group of 

northeastern and north-central Oklahoma are consistent with previous works on the Midcontinent 

(He et al., 1997, Overstreet et al., 2003; Franseen, 2004; Temple, 2016; King, 2013; Fritz et al., 

2012). Thick (>2 m) subtidal to intertidal cyclical facies appear to have dominated the Jefferson 

City, Cotter, and Powell Dolomite in the westernmost portion of the study area (Wichert 1, 

Meisner MH 2) with thinner (0.5 to >2m) subtidal to supratidal cyclical facies in the Jefferson 

City, Cotter, and Powell Dolomite on the Cherokee Platform (Osage C-1, Shads 4). The 

Gasconade Dolomite and Roubidoux Formation are also interpreted to be largely deposited in  
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subtidal to intertidal environments but with variable siliciclastic input throughout the section on 

both the Anadarko Shelf and Cherokee Platform. The idealized cycles described by Overstreet et 

al., 2003 provided a reference for the cores examined in this study. Type I cycles observed in the 

study area consists of thinner (< 2m) packages of burrowed-mottled, mudstone-wackestones 

overlain by pelletal-oolitic packstones and grainstones and capped by intertidal laminites and 

microbial stromatolites (i.e. Overstreet et al., 2003). Type II cycles observed in the study area 

consists of thicker (> 2m), subtidal dominated cycle bases of homogenous to burrowed mudstone-

wackestones overlain by intertidal cryptmicrobial and mechanical laminites (i.e. Overstreet et al., 

2003). 

Although dolomitization tends to be fabric destructive, original (limestone) depositional fabrics in 

the Arbuckle are largely preserved in the study area (e.g. Moñtanez, 1992). Early diagenetic 

dolomitization mechanisms are thought to differ in supratidal/uppermost intertidal sections and 

subtidal facies (e.g. Moñtanez, 1992; He et al., 1997; Overstreet et al., 2003; Fritz et al., 2012; 

Temple, 2016). Early replacement dolomite of the Arbuckle Group was likely formed 

syndepositionally within tidal flats under relatively low-temperature and low-pressure conditions 

(e.g. Moñtanez, 1992; Sibley and Gregg, 1987). Supratidal facies consist of mainly 

cryptmicrobial laminites and are replaced by a range of very fine to medium crystalline planar to 

nonplanar replacement dolomite. Intertidal facies consist of pelletal-intraclastic wackestones and 

cryptmicrobial laminites and are also replaced by a range of very fine to medium crystalline, 

planar to nonplanar replacement dolomite. Supratidal and the uppermost intertidal facies may 

have been completely or partially dolomitized syndepositionally and affected by subaerial 

exposure thus contributing to the creation of secondary porosity such as vugs and molds observed 

in the facies (e.g. Moñtanez, 1992; Fritz et al., 2012). Dolomitization throughout these sections of 

the Arbuckle likely occurred by an evaporative pumping mechanism (Temple, 2016). Seawater 

saturating the sediment, moves up due to the capillary effect during evaporation from the surface 
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causing an increase in gypsum precipitation leading to a loss in Ca2+ and an increase in Mg/Ca 

ratios (Fig. 14). Ultimately, groundwater becomes increasingly concentrated in Mg resulting in 

dolomitization (Hsu and Siegenthaler, 1970). Subtidal facies consist of mainly homogenous to 

burrowed-mottled mudstones and wavy, peloidal wackestones and are largely replaced by very 

fine to fine crystalline, planar replacement dolomites. Dolomitization of subtidal sediments may 

have occurred due to refluxing brines (Adams and Rhodes, 1960) that were formed in the 

overlying supratidal and uppermost intertidal sections that seeped down slowly into the original 

limestone (Fig. 14). The degree of dolomitization of subtidal facies during early diagenesis likely 

varied in the section and may have ranged from completely undolomitized to completely 

dolomitized. Modern analogs for such dolomitization mechanisms are observed in the Persian 

Gulf sabkha environments and are associated with deposits of gypsum and halite (Patterson and 

Kinsman, 1982; McKenzie et al., 1980). Evidence for evaporites are commonly observed in 

Lower Ordovician sections on the Midcontinent (Overstreet et al., 2003). 

Fine crystalline planar replacement dolomites display δ13C and δ18O values in equilibrium with 

early Ordovician seawater and evaporated seawater ranging from δ13C -2.5 to -1.6‰ VPDB and 

δ18O -9 to -5‰ VPDB (Fig. 12; Veizer, 1999). This is consistent with the interpretation that much 

of the original limestone was dolomitized early and retained the carbon and oxygen isotopic 

signature of the original diagenetic environment (Fig. 15). Replacement dolomites that have 

retained the carbon and oxygen isotopic signature of early Ordovician seawater typically display 

dull, mottled to non-CL cores (Moñtanez, 1992). Fine crystalline planar replacement dolomite 

that plots as less negative (‘heavier’) oxygen isotopes values and outside of the range of early 

Ordovician seawater can be explained by dolomitization occurring in seawater modified by 

evaporation. After initial stabilization in modified seawater, continued stabilization may have 

occurred during karst developments in fresh or mixed water aquifers (e.g. Moñtanez and Read, 

1992). Fine planar replacement dolomite with δ13C values between -4.0 to 0‰ VPDB and δ18O 
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values between -5.0 to -3‰ VPDB may indicate increased microbial sulfate reduction or 

oxidation of organic matter (Hudson, 1977; Swart, 2015). 

Pelletal-oolitic packstones and grainstones are typically replaced by chert but also display fine 

crystalline replacement dolomite as pellets and ooids that were selectively replaced with 

replacement dolomite as isopachous rims (e.g. Moñtanez, 1992). The timing of chert replacement 

and early dolomitization looks to be consistent with a paragenetic pattern that places chert 

replacement prior to replacement dolomite (i.e. Temple, 2016). The evidence for this is the 

preservation of internal textures of ooids in oolitic cherts. If dolomitization occurred prior to chert 

replacement, the internal fabric of the grains would have been destroyed by dolomitization. 

Additionally, eroded oolitic chert clasts observed in subtidal facies may not have withstood 

transport if chert replacement did not occur prior to early dolomitization. 

Late Diagenesis 

Medium to coarse crystalline planar-nonplanar replacement dolomite is interpreted to be partially 

or completely recrystallized early diagenetic replacement dolomite by basinal fluids during late 

diagenesis (e.g. Sibley and Gregg, 1987; Gregg and Shelton, 1990). Gregg and Sibley (1984) 

concluded these textures can indicate dolomite growth under epigenetic (dolomitization at 

elevated temperatures) conditions above 50°C. Additionally, polymodal textures were more 

commonly observed in these recrystallized replacement dolomites further indicating partial 

recrystallization of early, fine planar dolomite into medium to coarse crystalline nonplanar 

dolomite. CL of medium to coarse crystalline, planar-nonplanar replacement dolomite display 

dull, mottled to non-CL cores but also display CL banding in outer zones similar to CL 

microstratigraphy in void-filling, coarse crystalline saddle dolomite cements. This suggests that 

early replacement dolomite CL cores remained partially intact and basinal fluids precipitated 
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syntaxial cement overgrowths onto these cores that are contemporaneous with saddle dolomite 

cements.  

The range for limestone in equilibrium with early Ordovician seawater is broad and may overlap 

substantially with fine planar replacement dolomites and saddle dolomite cements; however, 

medium to coarse crystalline planar to nonplanar replacement (recrystallized) dolomite typically 

displays more negative δ18O values than fine planar replacement dolomites. This is expected if 

this rock was partially or completely reset (with respect to carbon and oxygen isotopic 

compositions) by warm, saline basinal fluids.  

Void-filling saddle dolomite cements in secondary porosity, including vugs, molds and fractures, 

represents the latest stage of dolomitization in the Arbuckle Group. Void-filling saddle dolomite 

cements is thought to indicate precipitation at temperatures above 60°C in burial settings and/or 

from warm, saline basinal fluids ascending upward through strata (Radke and Mathis, 1980; 

Gregg and Sibley, 1984). CL zonation observed in void-filling dolomite cements result from 

changing chemical composition (Fe2+ and Mn2+) of the precipitating fluids indicating 

geochemically evolving fluids moving through the reservoir (Gregg and Shelton, 2012; Gregg et 

al., 2012; Temple, 2016).  

CL microstratigraphy of coarse crystalline saddle dolomite cements is correlative across the 

section with some slight variances of the complexity of depending on location and stratigraphic 

position. Irregular CL banding in the Shads 4 and Osage C-1 cores may be indicative of at least 

partial dissolution of Z1 and Z3. Similarity exists between the irregular CL banding in the study 

area and southern Missouri (Gregg and Hagni, 1987). Dissolution of dull to non-CL replacement 

dolomite cores may be indicative of early diagenetic interaction with fresh or mixed water aquifer 

systems (e.g. Moñtanez and Read, 1992). Alternatively, dissolution occurred in the deep burial 

setting with the passing of multiple, geochemically distinct, warm, saline fluids. One or more of 
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the fluids being a metalliferous brine that caused dissolution in dolomite as critical ‘poisoning’ 

levels produced complex faceting (Gregg and Hagni, 1987). The latter explanation is more 

plausible given the proximity to MVT base metal deposits of northeastern Oklahoma and 

southeastern Missouri.  

Although overlapping with early Ordovician seawater, carbon and oxygen isotope geochemistry 

of dolomite cements largely display more negative (‘lighter’) δ18O values than early diagenetic 

textures and medium to coarse planar to nonplanar replacement dolomites. This is consistent with 

the interpretation that these cements precipitated in equilibrium with the warm, saline basinal 

(hydrothermal) fluids (Fig. 16; Fritz et al., 2012). Portions of Arbuckle strata that were in close 

proximity to or within a fault zone with enhanced fracture networks may have been preferential 

fluid flow conduits for hydrothermal (fluids at least 5-10°C warmer than surrounding host rock) 

fluids that interacted with continental basement (Fig. 16).  

Fluid inclusion microthermometry provides the strongest evidence for the precipitation of saddle 

dolomite cements by warm, saline basinal fluid(s) having a temperature and salinity range 89°C 

to 154°C and 20 to 27 wt. % NaCl equivalent, respectively (Fig. 11; Table 2). Shelton et al. 

(1992) and Temple (2016) interpreted their fluid inclusion data to indicate either mixing of two 

end-member saline fluids, shown as Fluids 1 and 2 in Figure 11, or a cooling trend in one saline 

fluid. The range of homogenization temperatures measured for this study are interpreted 

similarly. A third component fluid, Fluid 3 (Fig. 11) was not observed in this study area and may 

be fluid originating in the Ozark region and did not migrate westward into this study area. 

Strontium isotope data for the study area is problematic. A majority (> 85%) of the 87Sr/86Sr ratios 

values indicate a continental basement or basement-derived sedimentary rock signature (87Sr/86Sr 

ratios > 0.7095) and is higher than that would be expected for carbonates in equilibrium with 

early Ordovician seawater (Veizer et al., 1999). Banner et al. (1990) and Shelton et al. (2009) 
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predict a covariation of oxygen and strontium isotopes that express a mixing trend between early 

Ordovician seawater and water that has equilibrated with continental basement. However, this 

mixing trend is not observed in oxygen and strontium isotope values in in this study by Temple 

(2016). The only explanation that can be offered for these observations is that all of the dolomite 

studied were reset with respect to basinal fluids that derived their 87Sr/86Sr composition from 

continental basement or sedimentary rocks derived from continental basement. 

Origin, Timing and Evolution of Late Diagenetic Fluid Flow 

Previous research suggests basin fluid flow events correspond on the Midcontinent of North 

America correspond with Ouachita (Alleghenian coeval) orogeny tectonism during the Late 

Pennsylvanian and Permian Periods (Bethke and Marshak, 1990; Viets and Leach, 1990; Shelton 

et al. 1992; Appold and Garven, 1999). Basinal brines are thought to have migrated northward 

from the Arkoma and/or the Anadarko basins through a gravity (topographical) driven fluid flow 

system (Appold and Garven, 1999). The gravity-driven basin fluid flow model described by 

Appold and Garven (1999) explains a mechanism in which deep basinal brines migrate towards 

the basin margin under a hydraulic gradient established by the Alleghenian/Ouachita orogeny. As 

the brine fluid migrated through the Arbuckle, the excess heat was conducted to adjacent strata 

partially explaining an anomalous thermal history of organic sediments in the Arkoma Basin 

(Bethke and Marshak, 1990). 

Musgrove and Banner (1993) observed recent groundwater mixing of geochemically distinct 

fluids that affect the Ozark region today. If today’s mixing trend is indicative of the presence of 

past mixing trends, this may explain why the missing, less saline third end member fluid (Fluid 3, 

Fig. 11) is found within or in closer proximity to the Ozark Plateau aquifer where fluids are more 

meteoric in origin compared to sources from the Western Interior Plains aquifer system and 

Southwestern Interior Plains aquifer system (Mugrove and Banner; 1993). Additionally, 
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Musgrove and Banner (1993) also described a very saline groundwater (evaporated sea water 

source made up of Na-Ca-Cl) originating from the Anadarko Basin that are present in the western 

portion of the study area today. They believe that this is a remnant Paleozoic age fluid. An 

Anadarko basin derived basinal fluid may aid in explaining the anomalous calculated salinities 

(~33 wt. % NaCl equivalent) along the Nemaha Fault Zone. The timing of the development of the 

Anadarko Basin (late Mississippian through Pennsylvanian) compared to the expected timing of 

brine migration (Pennsylvanian-Permian) overlap substantially (Perry, 1989; Bethke and 

Marshak, 1990). This may suggest a mechanism for basin fluid flow in the Anadarko Basin that 

transported a warm, very saline (>30 wt. % NaCl equivalent), fluid through the Arbuckle Group. 

An alternative interpretation for the missing Fluid 3 end member in the study area is the distance 

from the Reelfoot Rift fluid source in southeastern Arkansas which may have been the source of 

less saline, high temperature fluids throughout the Paleozoic (Keller et al., 2000; Shelton et al. 

1992).  

Based on fluid inclusion data, these basinal fluids may have been sourced from the Arkoma 

and/or the Anadarko basins. Warm, saline fluids (89°C to 154°C and 20 to 27 wt. % NaCl 

equivalent) migrated through the Arbuckle Group (preferentially) driven by a gravity-driven fluid 

flow system during and/or after the Alleghenian/Ouachita orogeny. Eutectic temperatures 

measured further indicate that these fluids were not simple NaCl brines but complex saline brines 

consisting of Ca, Mg, Na chlorides and sulfates. 

Petroleum fluid inclusions are rare in the Arbuckle Group. Neither Shelton et al. (1992) or 

Temple (2016) observed petroleum fluid inclusions in southern Missouri or northeastern 

Oklahoma. King (2013) observed primary, pseudosecondary, and secondary petroleum fluid 

inclusions in the Arbuckle in saddle dolomite cements in southern Kansas postulating the 

migration of petroleum during or during and after saddle dolomite precipitation. Although the 
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evidence is not widespread, the explanation of King (2013) may offer insight into the timing of 

petroleum migration in the Arbuckle Group. 
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Figure 14. Conceptual early diagenetic model. Extensive, early dolomitization occurred during early diagenesis by two main mechanisms: 
evaporative pumping and refluxing brines (after Fritz et al., 2012). 
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Figure 15. Interpretation of stable carbon and oxygen isotopes. 
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Figure 16. Conceptual dolomitization model for late diagenesis (saddle dolomite). Saddle dolomite cements precipitated from hydrothermal fluids 
(after Fritz et al., 2012).
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CHAPTER VI 
 

 

CONCLUSIONS 

 

 

Multiple stages of dolomitization affected Arbuckle Group carbonates of the Midcontinent. 

Extensive dolomitization was initially constrained to selective facies within shallow platform, 

meter-scale, shoaling upward cycles. During early diagenesis, fine planar replacement dolomite 

formed syndepositionally in supratidal facies and both supratidal and the uppermost intertidal 

facies were dolomitized by evaporative pumping mechanisms. Portions of intertidal and subtidal 

facies were dolomitized by refluxing brines that were formed in the overlying sections.  

During burial, basinal fluids and groundwater (in aquifer hosted systems) preferentially migrated 

within the established flow conduits further dissolving (in the case of fresh or mixed water 

systems) or recrystallizing early replacement dolomite. Fracture networks created during and/or 

after the Alleghenian/Ouachita orogeny and uplifting during the Laramide orogeny (associated 

deep-seated fault movement) interrupted once discrete flow units promoting vertical migration of 

hydrothermal fluids from continental basement.  

Most of the dolomite in the Arbuckle in the study area was at least partially recrystallized during 

late diagenesis by warm, saline basinal fluids. Warm saline brines (89°C to 154°C and 20 to 27 

wt. % NaCl equivalent) are responsible for precipitation of late dolomite cements. The fluid may 

have cooled as it migrated through the Arbuckle from the Arkoma and/or Anadarko basins as it 
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ascended through the section. Hydrothermal fluids (>90°C) that precipitated saddle dolomite 

cements migrated through deep-seated faults and associated fracture networks that were likely 

conduits for fluid flow. 

The data presented in this study are consistent with the prevailing hypotheses of (a) Arbuckle 

Group carbonates in northeastern and north-central Oklahoma were modified by both early 

(seawater derived) fluids as wells as late diagenetic fluids and (b) migration of basinal fluids 

through a gravity driven flow system originating in the Arkoma and/or Anadarko basins. 
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Appendix 1. Top of Arbuckle structure map with core locations. Formation data from IHS Enerdeq was downloaded and are shown on the map as 
an ‘x’ for each well location with a Arbuckle top. The top of the Arbuckle is shown for each cored well used in this study in meters subsea. 100m 
subsea contours were generated using the kriging interpolation method in Esri ArcGIS. No smoothing or top validation was performed.
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Depth (m) Lithologic Description 
 
 

492.6 (LOWER ORDOVICIAN* to UPPER CAMBRIAN Arbuckle Group) (Shallow marine shelf with repeated subaerial exposure.) (Entire unit has dull yellow-green to pinkish-yellow fluorescence.) 

 
492.6 (?Cotter and Powell Fms.?) 

 

492.6 Dolomite. Mostly light gray to buff, medium crystalline, slightly porous; with coarsely crystalline dissolution cavity fillings and pods to tabular units of well-rounded medium-grained quartz 
sandstone (probably derived from unit above as cavity filling.) Locally brecciated. Sparse green clay lining cavities. Slightly porous, ~8%, no significant vugs. 

 
494.7 Dolomite. Light to medium gray, medium to coarse crystalline, fractured by dissolution brecciation, porous to vuggy, vugs 3-30 mm across, Short zones of 25% porosity. Tight zone with light 

blue-gray slaking shale layers 1628.5-29.0. 
 

499.5 Dolomite, chert, breccia, shale, sandstone. Dolomite, light gray, finely crystallic, laminated, locally grades to: shale, light greenish-gray. Contains zones of collapse breccia and cave fill, 
consisting of dolomite, shale, white chalky chert, soft green shale, and white medium-grained quartz sandstone. Local chert nodules. Hard. 

 
503.4 Dolomite. Light gray, fine crystalline (microsucrosic). Probably dolomitized lime mudstone. Medium. 

 

505.0 Dolomite, chert and shale. Dolomite, light to medium gray, fine to medium crystalline. Originally laminated and burrow-mottled. Numerous collapse breccias, common vertical and incline 
fractures, chert nodules and breccias. Localized green shale cavern fill at 1657.5-.9. 

 
516.0 Dolomite. Light gray fine to medium crystalline, highly porous, vuggy, moldic, slight fracture. Thine zones of vuggy porosity >25%. Hard. 

 

518.2 Dolomite and chert. Mostly tight, finely crystalline, originally laminated mudstone, with abundant chert nodules and cherty zones. Numerous partially fractured and vuggy zones with little 
matrix porosity. Scattered thin zones of oomoldic, fossil (?) moldic porosity. 

 
540.4 Dolomite, chert, and shale. Dolomite, light gray, finely crystalline, largely dolomitized algal laminite boundstone grading down to dark brown laminated mudstone.  Short intervals of 

intercrystalline, pelmoldic, and microvuggy porosity near top, moldic and vuggy at base. Thin shales at top, 1774.5, 1789.6, and at base. Siliceous zone throughout; and scattered large white, 
chalky and light gray, very hard, dense chert nodules throughout. Hard to very hard. 

548.3 Dolomite, chert, and shale. Dolomite, light brownish-gray, medium crystalline oomoldic packstones(?), with interbeds of medium gray burrow-mottled wackestone. Chertified zones throughout. 
Dark green shale 1806.3-1807. Very hard. 

 

551.9 Dolomite and chert, minor shale. Dolomite light gray to light brown. Tight, finely crystalline laminated mudstone; several thin zones of medium crystalline, slightly porous burrowed 
wackestone. Chert present in almost every foot in form of nodules, thin layers and indistinct silicified zones up to 0.2 ft thick. Shale is dark greenish-gray in the laminae and partings at 1817, 
1836, 1844-45. Hard to very hard. 

 
563.0 Dolomite, siliceous. Light to medium brownish-gray burrow mottled dolomite wackestones, mostly finely crystalline. Porous zones of finely crystalline ooid or pellet moldic packstones at 

1856-1858.8, 1863-64, 1872-74.5. Very few, small chert nodules, many zones very hard, indistinctly silicified. Very hard with soft porous zones. 

Dolomite, siliceous, cyclic. Five distinct shoaling upward cycles as follows: At base is laminated to thin bedded, dark brown to light gray layers of mudstone, finely crystalline. Grades up to 
burrowed wackestone, fine to medium crystalline, light brownish-gray. 
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571.4 Upper unit is fossil and oolitic packstone, may have moldic porosity. Top may have some diagenetic terrane dissolution breccias. Chert distributed throughout as small nodules and vague 

silicified zones. Bases of cycles as follows: 1946.8, 1919.4, 1908.5, 1897.4, 1889.9. Hard. 
 

593.4 Dolomite, cherty. Dolomite, light gray, fine crystalline mudstones and algal laminates, locally with medium to coarse crystalline breccias and cavity fillings. Few zones several feet thick of 
burrowed wackestones and oomoldic packstone. Prominent white chalky chert nodules to 0.2 ft thick scattered throughout. Local porosity in vugs, molds, and fractures, but no significant 
porous zones. Grades to unit below. Probably subaerially exposed diagenetic terrane. Very hard. 

 
605.2 Dolomites, locally cherty. Light gray to dark brown finely crystalline, tight, mudstones and algal laminates. Thin zones of burrowed wackestones. Sparse small light gray chert nodules. No 

porosity. Hard. 
 

615.8 (?Top of Jefferson City FM.?) 

 

615.8 Dolomite. Light tan to brown, fossiliferous, oolitic, porous packstones, medium crystalline. Insignificant chert. Few thin brown intervals of brown mudstone. Recognizable large gastropods 
(Helicotoma? ) at 2025.1  and 2048.9. Oomoldic and  fossil moldic porosity, locally enhanced by fractures and vugs. Hard. 

Dolomite, cherty. Shoaling upward cycles of thin slightly porous fossiliferous pelletal or oolitic packstone(?) at top; light tan to brown, slightly shaly mudstones at base, mudstone 3-5 ft 
thick, porous intervals 1 or 2 ft. Dark brown, oil stained mudstones in lower 634.9 two cycles. Cherty or siliceous intervals; 2092-93.3, 2100-2101, 2104.5-2105.4, 2110.7-2112; nodules at 
2111.4, 2114.5, 2121.4 (oil shows, leached), 2134.0, 2140-41. Oil stained sandstones, 0.2 ft thick at 2142.2, 2135.1. Shaly zones at 2095.0-2096.1, 2104.4.5, 2108.6-09.1- 

655.7 Dolomite, cherty. Light to dark brown, tight mudstones and rubbly thrombolitic slightly porous wackestones; discontinuous cherty throughout. Thin zones of algal laminates appear leached. 
Vuggy and fracture porosity in wackestone some coarse crystalline vug fillings. Hard. 

662.5 Sandstone, dolomitic. White, very fine grained to fine grained, well rounded, well sorted, dolomite cemented, tight. Hard. 
 

662.9 Chert and dolomite. Siliceous to chertified cycles of algal laminates to rubbly thrombolitic dolomites, to oolitic, pelletal grainstones. Greater than 50% chert, mostly as replacement of 
dolomite textures, fewer distinct nodules (see fluorescent list). Chert nodules chalky to light blue-gray and translucent, commonly with moldic porosity. Some cherty zones are agate and 
silicified ooids. Many zones of dissolution breccias. Generally, tight rock with vuggy and fracture porosity. Locally, distinct stromatolitic structures. 

 
680.5 Sandstone, white fine grained, poorly sorted and well rounded, pebbly at top with dolomite and phosphatic clasts, dolomite cemented. (Possibly other thin zones of sandstone, difficult to 

distinguish on unslabbed core from silicified granular dolomite!) Thin (0.1-0.2 ft) dark shale intervals at 2190, 2195, 2199.8, 2221.8, and 2238.8. Extremely hard. 
 

684.2 Dolomite, cherty. Medium brown to medium gray porous thrombolitic dolomite, partially silicified with chert nodules and siliceous zones, and zones of dissolution breccia. Much like unit 
above but less chert. Thin  shaly mudstone zones at  2265, 22278-79, 2287, 2292-94, and 2328. Local vuggy porosity to 30%, vugs to 2 cm across. Sparse very thin quartz sandy zones. 
Extremely hard to cherty layers to moderately hard in porous dolomite units (see list of porosity zones). 

Dolomite, cherty. Medium gray to dark brownish-gray finely crystalline dolomite mudstone, most very tight with 1-2 ft zones of algal laminates, planar stromatolites and thrombolites. 
Discontinuous vuggy and fracture porosity. Thin (0.1-0.2 ft) zones of very hard, 

711.7 brittle chert, mostly brecciated and adjacent to quartz and dolomite lined vugs. Some vugs extend width of core and 3 cm high. Zone of horizontal fenestral porosity (20%) at 2365.4-2367 in 
planar stromatolites. Hard to locally extremely hard, much "twisted off" core. 

725.1 (?Roubidoux Fm.) 
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725.1 Dolomite, cherty. Light to medium gray, fine to coarse crystalline, interbedded tight and porous. Thrombolitic, stromatolitic, and ?grainstone dolomite. Moderate porosity and permeability at 
top, increasing to zones of >20% porosity towards base. Thin (0.1-0.2 ft) intervals of light bluish-gray chert at 2476.5-2479, 2505.3-2510.8. Porous coarse crystalline dolomites locally partially 
silicified. Coarsely  crystalline slightly porous dolomites strongly  resemble sandstones but generally  lack  quartz sand. Thin (0.1-0.2  ft) dark  shaly layers of 2395, 2419.8, 2458, 2494.7, 
2497.3, and 2529.7. Thin sandy zones at 2388.6-.7 and 2411.0-.3. Hard to very hard. Extremely hard chert zones at 2402, 2414, 2428, 2447.0-.3. Hard to very hard. Extremely hard chert zones 
at 2402, 2414, 2428, 2447- 50, 2457 (breccia), 2509-2511, and 2522-23. Indefinite lower contact 

771.1 Dolomite and sandstone. Little to no chert. Dolomite, light gray, medium to coarse crystalline, relatively tight, thrombolitic and stromatolitic. Interbedded sandstone and sandy interval 0.5-1.5 
ft thick, white to light brow (oil stained), medium to coarse grained. Mostly fairly tight rock. Sandstone at 2530.8-2531.5,2533.0-.8, 2534.6-35.5,2550.6-2552,2561-2562.6. Highly siliceous 
below 2552. Thin chert at 2544.8. Hard. 

782.6  Dolomite, sandy. Dolomite, light gray, interbedded tight fine crystalline mudstone and porous coarse crystalline, vuggy planar stromatolites or recrystallized fenestral mudstones. Thin 
lenticular sandy dolomite zones throughout, plus thin sandstone beds at 2580.9 81.1, 2593.9-94.2, 2595.0-.2, 2597.5-.8, 2597.4-98.1,2601.2-.5, and 2602.0-.3. Few thin chert nodules and 
siliceous zone. Scattered large vugs. Hard. 

797.1 (?Gasconade Fm.?) 

797.1 Dolomite, cherty. Dolomite light gray to light brown medium to coarsely crystalline, porous with thin zones of medium bluish-gray very dense chert, typically fractured and/or vuggy. Macro-
porosity associated with chert and vugs but thick intervals of good intercrystalline porosity. Highly siliceous chertified dolomite zones throughout. Hard. 

 
816.2 Chert, dolomitic. Light gray to brown (oil stained) chertified dolomite algal and thrombolitic mudstone; few white to gray chert nodules. Vuggy and fractured; tight matrix down to 2686, 

microporous oil stained 2686 to base. 
 

821.6 Cherty, dolomitic. Light to dark bluish- to brownish-gray chertified dolomite mudstone with nodules of white chalky chert and hard dense dark gray chert. White dolomite crystals fill vugs 
and line cavities. Thin zones of brecciated chert. Vugs to 2cm high extend across core. Matrix tight to slightly porous (some intervals salt encrusted). Mostly crudely laminated. Gradational to 
unit below. Very hard. 

Chert and dolomite. Light brownish-gray to medium gray, mostly porous chertified burrowed dolomite mudstones, algal laminates, and hemispherical stromatolites. Nodules of white to dark gray 
brecciated dense chert. Irregularly interbedded intervals of less 

840.3 siliceous medium to coarse crystalline dolomite. Numerous quartz-crystal-lined vugs, some extending entirely across core and 1-2cm high. much intercrystalline microscopy and vuggy 
macroporosity. Zones of extremely  high permeability,  cavernous vuggy  porosity at 2784.3-.7, 2789.4-90.2, 2791-92.3. Zone of extremely hard dense chert 2785.5-2788.5 Very hard. 

862.7 (?Gunter Sandstone Member of Gasconade Fm.?) 

862.7 Dolomite, sandstone, and chert. Dolomite, medium brownish-gray, medium to coarsely crystalline, burrow-mottled and algal laminated mudstone; locally siliceous grading to chertified 
dolomite (no distinct chert nodules). Sand occurs as many  thin  lenses in dolomite, and thicker beds of white, medium grained well-rounded sand at 2737-38.7, 2846.8-2849.4, 2851.6-2854, 
2858.9-2859.8. Transitional contact to unit below. Hard. 

 
872.9 Dolomite, siliceous. Medium to dark gray, medium to coarse crystalline laminated to burrow-mottled siliceous mudstone; thin dark shaly zones and sandstone stringers. Generally tight with 

scattered small vugs, dolomite or chert filled. Hard. 
 

876.2 Dolomite and sandstone, interbedded. Dolomite medium to dark gray, medium crystalline tight, siliceous, laminated to slightly burrowed mudstone. Interbeds of white to light gray with brown 
stringers medium-to coarse-grained quartz  sandstone, tight, at 2874.6- 75.2, 2878.9-79.1, 2881.0-83.8. Hard. 
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879.0 Dolomite, siliceous to chertified. Medium to dark gray, medium crystalline laminated and burrow-mottled. Tight with mostly isolated open or dolomite-filled vugs. Thin vuggy zones of sulfide 

mineralization 2885-2897. Dolomite all very hard, siliceous, locally converted to dense chert. Very hard. 
 

884.6 Sandstone, dolomite, and shale. Sandstone, white to medium gray, medium to coarse grained, locally pebbly with thin  intercalation of dolomite and  shale. Dolomite, light brownish-gray, 
burrow-mottled  and medium crystalline mudstone, beds 0.4-1.0  ft thick. Shale dark greenish-gray, thin laminae to unites 0.3 ft thick. Hard. 

 

887.6 Dolomite and shale, sandy. Dolomite, light brownish-gray, medium crystalline, burrow-mottled mudstone. Shale, light to medium gray laminae to units 0.2 ft thick. Floating quartz sand 
throughout; few thick sand lenses. Hard. 

 
888.8 Sandstone. White to light greenish-gray, medium to coarse grained, locally fine pebbles. Slightly porous (core salt coated). Hard. 

 
889.6 Dolomite, shale, and sandstone, interbedded. Dolomite, medium crystalline, light gray to dark brownish-gray, burrow-mottled to laminated mudstone. Thin interbeds of shale or sandstone 

<0.5ft thick. Sandstone as above. Shale, light to dark  greenish-gray with sparse small fossil fragments. Trilobite fragments at 2919. Pebbly, weathered disconformity zone at 2932-33. 
Moderate to hard. 

 
895.9 (Basal Sandstone; "Reagan Fm.") 

 
895.9 Sandstone, locally shaly. White to light brown, fine to very coarse grained, locally with fine pebbles of adjacent lithologies. With thin shaly laminae and shale beds as above <0.2 ft. Moderate to 

hard. 
 

898.2 Sandstone, shale, and mudstone. Fine to very fine-grained sandstone and mudstone, light gray to medium brown with laminae and thin interbeds of greenish gray shale. Locally burrowed. 
Transitional contact. Moderate to hard. 

 
901.3 Sandstone, locally shaly. White, light brown to medium gray, medium to very coarse grained and fine pebbly, locally highly porous. Brown zones appear oil stained but no cut and no 

fluorescence. Mostly quartz with  pebbles and  grains of adjacent lithologies. Shale zones, as above, at 2964.3-.9, 2966.7-67.2, 2973.4-.5. Horizontal bedding. Moderate. 
 

908.3 Sandstone, arkosic. Light to dark brown. Fine- to very coarse-grained and pebbly arkosic sandstone, derived from underlying porphyritic andesite with thin fine-grained to slightly shaly layers 
at 0.5-0.2 ft. Horizontal bedding. Moderately hard. 

 
911.0 Arkosic sandstone. Dark brownish-gray, fine- to coarse-grained, poorly sorted arkosic sandstone with faint dark horizontal laminae and irregular vertical burrows or root remains. Transitional 

lower contact. Hard. 
 

911.7 Arkosic sandstone. Light gray to light red-brown grading down to medium to dark reddish-brown; fine to coarse grained with very thin horizontal dark shaly laminae. Increasingly  pebbly 
toward  base. From 3010 to  3011.5 are discontinuous layers of pebbles to 2 cm across including white quartzitic sandstone, chert, shale, and andesite. Possibly a volcanic agglomerate. Hard. 
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Appendix 4. Lithologic and petrographic core descriptions . 

SH 498m Rogers Co., OK
Unimodal, very fine to finely crystalline, planar-s dolomite. Possible chert.

SH 501m
Unimodal, finely crystalline, planar dolomite with fracture filling (void filling) nonplanar dolomite 

cement. Considerable chert is present.

SH 564m
Unimodal, very fine to finely crystalline, planar-e to planar-s dolomite.

SH 604m
Polymodal, fine to medium crystalline planar-s to nonplanar dolomite with coarse, unimodal, 

nonplanar vug filling (void filling) dolomite cement.

SH 637m
Nodular, oolitic chert 

SH 638m
Polymodal, very fine to finely crystalline, planar-s dolomite with vug filling (void filling) unimodal, 

medium to coarsely crystalline, nonplanar dolomite cement.

SH 678m
Unimodal, very fine to finely crystalline, planar-s dolomite accompanied by a cherty oolitic 

grainstone.

SH 682m
Very fine to finely crystalline, unimodal, planar-s dolomite vug filling (void filling), medium to 

coarsely crystalline, nonplanar dolomite cement.

SH 682m
Very fine to finely crystalline, unimodal, planar-s dolomite.

SH 718m
Very fine to medium crystalline, polymodal, planar-s dolomite with large vug filling polymodal, 

nonplanar dolomite with some distributed chert.

SH 799m
Unimodal, medium crystalline, planar-e dolomite with mimically replaced allochems (ooids).

SH 805m
Polymodal, medium-coarse crystalline planar-s and nonplanar dolomite with mimically replaced 

allochems (ooids).

SH 882m
Unimodal, very finely to finely crystalline, planar-e to planar-s dolomite with fracture filling (void 

filling), unimodal, nonplanar dolomite cement.

OSA 1036m Osage Co., OK
Medium crystalline, polymodal, planar-e to planar-s dolomite to nonplanar dolomite.

OSA 1039m
Medium crystalline, unimodal, planar-s to nonplanar dolomite. 

OSA 1042m
Medium crystalline, unimodal, planar-e to planar-s dolomite

OSA 1044m
Medium to coarsely crystalline, polymodal, planar-s to nonplanar dolomite

OSA 1048m
Transition from sandstone to dolomite. Fine-medium crystalline, polymodal, planar-s to nonplanar 

dolomite.

OSA 1048m
Sandy dolomite to sandstone w/ dolomitic cement (quartz-rich some feldspar and polymorph quartz, 

chert rock frags (<1-2%)).

MSR 1904m Garfield Co., OK
Unimodal, planar-s, finely crystalline dolomite

MSR 1907m
Unimodal, finely crystalline, planar-e to planar-s dolomite (molds…) with fracture filling (void 

filling) unimodal, coasrely crystalline, nonplanar dolomite cement.

MSR 1907m
Unimodal, very finely to finely crystalline planar-e to planar-s dolomite with mimically replaced 

allochems (nonskeletal).

MSR 1914m
Unimodal, very finely to finely crystalline, planar-e to planar-s dolomite with vug filling (void 

filling) unimodal, medium to coarsely crystalline, nonplanar dolomite cement.

MSR 1914m
Unimodal, planar-s dolomite with channel/fracture filling (void filling) unimodal, coarsely 

crystalline, nonplanar dolomite cement.

MSR 1919m
Unimodal, very fine to finely crystsalline planar-s dolomite with mimically replaced allochems 

(micritic texture)

MSR 1923m
Unimodal, very finely crystalline planar-e to planar-s dolomite.

MSR 1924m
Unimodal, finely crystalline, planar -e to planar-s dolomite with fracture filling (void filling) 

unimodal, coarsely crystalline nonplanar dolomite cement.

MSR 1929m
Very fine-finely crystalline, unimodal, planar-s dolomite with some sandy dolomite.

MSR 1929m
Unimodal, planar-e to planar-s, finely crystalline dolomite with vug filling (void filling) nonplanar, 

medium to coarse crystalline dolomite cement.

MSR 1930m
Very fine-finely crystalline, unimodal, planar-s dolomite.

MSR 1935m
Polymodal, planar-s, fine-medium crystalline dolomite with some nonplanar dolomite fill (frags) 

allochem replaced dolomite.

Fractured, vuggy, organic lean mudstone

Bioturbated, peloidal wackestone

Organic lean, vuggy mudstone

Bioturbated mudstone

Bioturbated, slightly fossiliferous mudstone to wackestone

Crinkly laminated, organic lean mudstone or bacterial 
laminates

Medium crystalline dolomite

Medium crystalline dolomite

Vuggy, medium to coarsely crystalline dolomite

Fine-medium crystalline, sandy dolomite

Quartz arenite to feldspathic sandstone. Sandy, crystalline 
carbonate 

Finely laminated, organic-lean dolomitic mudstone or finely 
crystalline dolomite

Finely laminated, fractured, organic-lean mudstone or finely 
laminated crystalline dolomite

Finely laminated, organic lean mudstone to brecciated, 
interclastic wackestone

Fractured, bioturbated, vuggy organic lean mudstone, 
interclastic wackestone

Fractured, vuggy, organic lean mudstone to brecciated, 
vuggy, interclastic wackestone

Finely laminated, organic-lean pelleted/peloidal mudstone or 
finely crystalline dolomite

Medium crystalline dolomite

Bioturbated, vuggy, dolomitic mudstone

Vuggy, dolomitic mudstone with some fractures

Nodular, oolitic chert

Vuggy, mottled, dolomitic wackestone

Cherty, oolitic grainstone  to finely laminated, bioturbated, 
dolomitic mudstone

Vuggy, dolomitic mudstone with minor fractures

Dolomitic, finely laminated mudstone with some minor 
fractures

Fractured, dolomitic wackestone to packstone with some 
chert

Vuggy dolomitic mudstone

Crystalline carbonate or fractured, fenestral, dolomitic 
packstone to grainstone (organic lean)

Vuggy, dolomitic mudstone or finely crystalline dolomite 

Cherty, dolomitic packstone

Sample ID Location Petrographic Description Lithology Classification (Dunham)

Bioturbated, dolomitic mudstone
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Appendix 4 (cont’d). Lithologic and petrographic core descriptions. 

 

WIC 2883m Major Co., OK
Very fine crystalline, unimodal, planar-e to planar-s dolomite.

WIC 2885m
Very finely crystalline, unimodal, planar-s sandy dolomite.

WIC 2899m
Fabric destructive, polymodal planar-e to planar-s dolomite (allochem replaced?) with planar void 

filling saddle dolomite cement.

WIC 2904m
Very fine to finely crystalline, unimodal, planar-s dolomite.

WIC 2904m
Very fine-to finely crystalline, unimodal, planar-e to planar-s dolomite.

WIC 2905m
Unimodal, planar-e to planar-s, medium crystalline dolomite with mimic replacement fabrics.

WIC 2906m
Dolomitized mudstone to wackestone. Fine-medium crystalline, unimodal planar-e to planar-s, 

fabric non-destructive dolomite.
Laminated to highly bioturbated, pelleted, mudstone to 

wackestone

Micritized dolomite mudstone

Dolomitized sandy wackestone to mudstone

Skeletal/peloidal wacketsone to packstone

Finely-laminated, graded dolomitic mudstone to wackestone

Laminated (sandy?) dolomitic mudstone with some vertical 
fractures

Fabric destructive…medium crystalline dolomite with some 
laminations and fractures. May have been a skeletal 

wackestone to packstone.

Sample ID Location Petrographic Description Lithology Classification (Dunham)
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Appendix 5. Osage C1 core graphic with wireline log. 
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Appendix 6. Meisner MH2 core graphic with wireline log. 
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Appendix 7. Wichert 1 core graphic with wireline log.
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Appendix 8. Individual fluid inclusion microthermometry data.
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Appendix 8 (cont’d). Individual fluid inclusion microthermometry data.
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Appendix 8 (cont’d). Individual fluid inclusion microthermometry data.
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Appendix 8 (cont’d). Individual fluid inclusion microthermometry data. 
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