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CHAPTER 1

INTRODUCTION

Division is one of the basic arithmetic operations present in many arithmetic-logic-

units (ALU) along with addition, subtraction, multiplication, and more. While it is

common to think arithmetic operations may only occur if a user is using a calcula-

tor or similar function, these operations are actually occurring almost constantly as

processors manipulate data for general operation.

Other arithmetic operations, such as addition, are generally used much more fre-

quently than division [1]. This could beg the question why should research focus on

an operation that may take up less than 5% of all arithmetic operations [1]. The an-

swer to this question is largely two-fold. First being that division, particularly integer

division, makes up for low usage in that it has both a high, and unpredictable cycle

count when compared to other operations [2]. When a particular operation has such a

relatively high cycle count, this can lead to a dramatic reduction in overall processor

throughput as the processor must wait for division to complete before moving onto

the next instruction. In fact, according to [1], while floating-point (FP) divides only

account for approximately 5% of all FP instructions, it accounts for over 40% of the

floating-point unit’s (FPU) stall time.

Beyond relatively slow speeds, division also suffers from implementation complex-

ity and the elusiveness of errors. Division implementations are notoriously complex

and difficult to understand, which makes it easier for problems to be missed until it

is late in a product development cycle, and thus more difficult and expensive to fix.

An example of this can be seen in the infamous 1994 Intel Pentium floating-point
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divide (FDIV) bug [3]. This bug in the Pentium FPU meant that it was possible

that the FDIV operation could return an incorrect result. If this bug had not been

caught shortly after the processor’s release, it could have caused catastrophic errors,

particularly for computers used in fields like finance, government and military, or

health-care. Speaking to the error detection difficulties, this bug showed that despite

testing methods that were considered rigorous, division bugs still prove themselves

difficult to detect, making an intimate knowledge of a divider’s design critical.

When combining the issues of relatively slow speeds and design complexity, it

is easy to see why further research into division methods is of critical importance

to increase processor performance, as well as overall knowledge of the subject so

improvements can be made well into the future. This leads to the integer divide

(IDIV) implementation presented in this work. While many previous works [2], [4],

[5] discuss higher radix division algorithms and results of implementations, they are

short on details for how to implement the algorithm they discuss, which is the main

goal of this work; that is, to provide necessary background and implementation details

for both a greater understanding of the IDIV algorithm, and allow for replication of

the implementation.

The design detailed in this work is an integer divider, an important data-path

element for any ALU, specifically allowing the use of instructions such as modulus and

IDIV [2]. There are two generic ideas behind the implementation of IDIV. The first of

these is a combinational implementation, and the other is sequential implementation.

While combinational dividers are convenient in that they finish the calculation in

one clock cycle, their downside is a tremendous reduction in processor clock speed

due to heavy delay. On top of this, combinational dividers occupy a large area,

draw significantly more power, and are difficult to pipeline making them non-ideal

for general use [2]. That is not to say they do not have purpose; asynchronous circuits

and other application-specific ALU’s may benefit from a combination implementation.
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With that said, the division implementation described in this work is a sequential

design. Sequential designs are desirable for most applications for both general-use

System-on-Chip (SoC), and application-specific integrated circuits (ASIC). The main

idea behind sequential circuits is to break up all of the work done in one clock cy-

cle with a combinational design, and spread it out over multiple cycles; which is

ideal for recursive algorithms like the one used in this design. It also provides for

implementations that are low in area and promote low-power tendencies.

The process of designing today’s newest architectures has undergone a rapid shift

from previous generations. This is because many general-purpose systems are now

becoming more application-specific. Therefore, traditional architectures and digital

systems that have long been designed with speed in mind must now combine different

approaches for optimization, such as energy, power dissipation and application-specific

functions (e.g., machine learning), in addition to speed. It has also been argued that

today’s architectures need new approaches or, better yet, tried-and-true techniques to

get better optimization of constraints than those that were previously conceived [6].

This paper presents a radix-4 unsigned digit integer divider using recurrence that

exhibits low-power tendencies [7]. In addition, as opposed to other implementations

that traditionally use radix-2 implementations [5] or carry-save adders [8], this pa-

per illustrates methods for implementing integer division by recurrence using higher

radices. More importantly, the major novelty in this paper is the demonstration of a

method for deploying a radix-4 unsigned adder using hierarchy for integer division to

allow effective deployment of logic.
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CHAPTER 2

BACKGROUND

As stated in the introduction, the proposed divider uses a higher-radix, non-restoring

division (NRD) algorithm, allowing division to be completed in fewer cycles by retiring

more bits per cycle. This chapter gives the background information necessary for the

understanding of the NRD algorithm and its implementation found in Chapter 3.

This chapter is broken into three sections. The first, Restoring Division, details

the base algorithm from which the NRD algorithm is developed. The next section,

Signed-Digit Representation, describes the non-canonical digit-set required for this

algorithm. Lastly, the Non-Restoring Division section explains the improvements to

the restoring division algorithm which make the final implemented NRD algorithm.

2.1 Restoring Division

The main idea behind division by recurrence is actually quite simple. In fact, it is the

same way that many first learn to do division by hand in elementary school. Following

the example seen in Figure 2.1, the problem given is to divide 100 by 3 where the first

operand is called the dividend and the second operand is called the divisor. First,

multiply a chosen quotient value (in this case 3) by the divisor to create new value (9)

then subtract this value from the dividend. This process continues until the residual

is smaller than the divisor, and it becomes the final remainder.

We can take this process and use it to arrive at a simplified equation to compute

the quotient iteratively. It is assumed that the input operands are the dividend (n)

and the divisor (d). This equation is radix-based (r) and every iteration produces the
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3 100

3

−9

1
0

3

1
R = 

−9

Figure 2.1: Simple Division Example

quotient qj+1:

wj+1 = r · wj + qj+1 · d .

where w is the residual, and w0 = n. This equation for the j+1 residual is calculated

each iteration along with a selected quotient digit. The process of selecting the

quotient every iteration is called the Quotient Selection Table (QST) process [8].

The theory for selecting the quotient relies heavily on determining containment

and continuity, which are covered in sections 2.3.1 and 2.3.2, respectively, and in

even greater detail in [8]. QST architectures rely on paper-pencil techniques for

subtractive-based division by looking at the divisor and shifted partial remainder.

That is, the QST is selected based on:

qj+1 = QST{r · wj, D} .

Each selected value of qj+1 is then stored in a register, and shifted left each iter-

ation to get a final quotient Q. A flow diagram for this entire process can be seen in

Figure 2.2 [8].

2.2 Signed-Digit Representation

One of the requirements for use of the NRD algorithm is that quotient digits must

be represented as signed digits rather than standard canonical digits. The reason
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Figure 2.2: Restoring Division Flow (Adapted from [8])

for this requirement is explained later in section 2.3. The idea behind signed-digit

(SD) representation is to use multiple or redundant digits to represent a single value.

Although mathematically this idea has been around for several hundred years, it was

not until the 1960s that it gained traction for its uses in digital arithmetic. This is

mainly due to the work of Avizienis [9] that illustrated that SD representations can

be helpful in promoting carry-free logic by allowing a digit to represent more than r

values, where r is the integer’s radix. In contrast, most fixed radix systems employed

by digital devices has the digit set restricted to {0, . . . , r − 1}, which is known as a

canonical or a conventional digit-set representation.

Although the SD numbering system is useful, it is somewhat cumbersome to con-

vert from SD notation back to a conventional binary representation [8] using standard

techniques. This conversion typically involves the use of a carry-propagate adder

(CPA) [8], which will end up setting the device’s critical path and should be avoided

if possible. Unfortunately, for compatibility with other devices, the quotient must

usually be reverted back to a canonical form [8].

SD arithmetic is helpful in that it provides redundancy in its definition of a num-
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ber [8]. This ultimately leads to simplification of boolean logic for digital circuits.

The largest benefit of redundancy for the purpose of division is that it simplifies

the selection of the quotient bits [4] in the QST. Most SD numbers usually employ

symmetric digit set representations such that:

D = {a, . . . ,−1, 0, 1, . . . , a} .

where a = −a. In contrast to canonical digit sets, redundant digit sets allow a single

digit to represent more than one value. For example, with a = 2 and r = 4, known

as radix-4 representation, the value of 24 can be represented as 024 or 124.

A measure of the redundancy of a symmetric SD representation can made using

the measure of redundancy (ρ), and the radix (r), defined as follows:

ρ =
a

r − 1
3 1

2
< ρ ≤ 1 .

Redundant number representations employ redundancy factors that are ≥ dr/2e.

The choice of redundancy factor can limit or enhance representations of numbers and

subsequently their implementations. Many systems, including this work, typically

utilize minimally-redundant representations such that ρ = 2/3. The reason for this

is simply that the multiply by 2 operation is easier to accomplish in hardware than a

multiply by 3 operation, or other non-power of two value.

2.3 Nonrestoring Division

As explained in Section 2.1, the restoring division algorithm is an effective method for

correctly calculating an integer division operation. Unfortunately, when the calcu-

lated residual is found to be negative, it performs the restore operation. The restore

operation is the process of adding the divisor back to the remainder, and subtracting

one unit in the last position (ulp) from the quotient in order to ensure the remain-

der is positive. Ultimately, the restore operation is inevitable, but it can be seen by
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combining the restoration with the next subtraction of the divisor, restoration can

be eliminated during the iterative process. Subsequently, the CPA that would be

required to do the restore operation is also eliminated saving power, area, and delay

expenses. There are two conditions that must be met however in order to use the

NRD algorithm. The first is containment and the second is continuity.

2.3.1 Containment

The containment condition [8] sets up the selection intervals necessary for computing

the subsequent quotient digit. For a given quotient digit, qi+1 can be chosen to be

k. That is, an interval of allowable partial remainders. These regions are defined by

the interval [Lk, Uk] such that L is the lower value and U is the upper value of the

shifted partial remainder, r · wi, so that the subsequent shifted partial remainder is

bounded. In other words, the interval is chosen based on the range of redundancy to

avoid the quotient from not representing the final result properly. The equations for

the upper and lower bounds can be given as [8]:

Uk = (k + ρ) · d

Lk = (k − ρ) · d .

2.3.2 Continuity

The next condition, continuity, exists because of the overlap that occurs in the con-

tainment condition. From the equations given above for Uk and Lk, it’s easy to see

that the upper bound Uk−1 will overlap with the lower bound Lk. Unfortunately,

because of this overlap, a quotient digit may be chosen from either minimum value.

To help understand the recurrence, a visualization is utilized called Robertson’s di-

agram (Figure 2.3) that plots the recurrence relationship for a given quotient digit

(i.e., a plot of wj+1 versus r · wj). The choice of redundancy within the SD notation

will incur an overlap between Lk and Uk−1 such that sk (i.e., the selection interval)
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w[j+1]

dρ

dρ−

... ......

ddρ−r ρr

rw[j]

−a a−1 0 1 k

add−ad kd−d

L Uk k

Figure 2.3: Robertson’s Diagram (wj+1 vs r · wj).

can either be k − 1 or k. Since the containment equations are defined, it is easy to

measure this overlap as

Uk−1 − Lk = (k − 1 + ρ) · d− (k − ρ) · d = (2 · ρ− 1) · d .

The simplest selection function is to make sk constant and perform a comparison

on a constant value. Thus, many implementations for QSTs resort to memory lookups

or possibly programmable logic array (PLA) elements. The constants should satisfy

the following containment condition for selection [8]:

max(Lk(di), Lk(di+1)) ≤ mk(i) ≤

min(Uk−1(di), Uk−1(di+1)) .

The max and min are required because the containment produces regions that are

positive and negative with the PD plot which can be seen in Figure 2.4. A PD plot is

a remapped Robertson’s Diagram used to plot the values necessary for correct QST

selection [4] (i.e., r · wj vs. D).

The PD plot is a useful visual aid to see all of the selection regions possible for a

given implementation. As the selection process goes into the negative quadrant, the

selection regions are switched [8].
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for q = k
j+1

ρ

Figure 2.4: P-D diagram.

Since a single set of selection constants is used for a given interval of length 2−δ,

only the δ most-significant bits are used in the QST function. From this, we now

have to figure out the limited number of bits needed to be examined from the shifted

residual. Any size can be utilized, however, a smaller number of bits is better since

this minimizes the QST table regardless if implemented with a memory lookup or

combinationally. Therefore, the selection constant has the following form:

mk(i) = Ak(i) · 2−c ,

where Ak is an integer.

10



CHAPTER 3

Implementation

This chapter details the architectural implementation for the NRD algorithm shown

in Chapter 2. The final architecture for the divider design is shown in Figure 3.1. The

overall design allows for a maximum of 19 iterations to return a correct result. The

critical path is set by the CPA leading to the final output rem. To preserve cycles,

the number of iterations is calculated and passed to a finite state machine (FSM),

not pictured, for signal control, rather than assuming worst case for each operation.

From Figure 3.1, the iterative nature of the recursive algorithm is easily seen, with

the carry and sum looping back to the multiplexers (mux) at the top. Most of the

architecture is straight forward to understand and replicate from the figure. There

are however some exceptions to this.

The first, is that for 32-bit division, there are 36 bits of internal precision, starting

with the shifted divisor. Previously, Section 2.1 indicates that we iteratively select

and store a quotient qj+1 to get a final quotient. In the figure however, it is seen

that instead of Q coming from QST, it comes from previously unmentioned blocks,

ls_control and OTF. Lastly, it is stated in sections 2.1 and 2.3 that restoration

is eventually required, and the final CPA blocks at the bottom of the architecture

diagram show this in place. The following sections help to explain each of these

architecture components and their purpose.
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[35]

36

36

36

36

36
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[35:28] [35:28]

q

{Carry[33:0],2’h0}

{Sum[33:0],2’h0}

{[35:1],ulp}

+

4−1 2−1

2−1

2−1

2−1

{3’h0, Dividend, 1’h0}

{4’h0,Dividend}

2−1 2−1

Carry Sum

rem

d={3’h0,shifted,1’b0}

Q

={q2+,q+,q−,q2−}
i+1

Figure 3.1: Architecture of the Proposed Integer Divider.
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3.1 Normalization and Alignment

One of the potentially standout items that can be seen in Figure 3.1 is the internal

bus sizes. For a 32-bit integer divide operation, the internal buses for the carry and

sum calculation are all 36 bits. This is due to the normalization of the divisor that

must occur to allow for the QST to operate correctly.

In order for the selection functions to work properly, the divisor must have a

leading-one integer bit. Therefore, the divisor is shifted accordingly via a leading-one

detector [8]

d∗ = 2m · d

where d∗ is the shifted divisor, and m is the number of shifts required to have a

leading-one. This gives us a modified divisor in the range of [1/2, 2).

Since this computation involves a higher radix version of division, the bits that

get retired could be complicated by a non-power of two boundary. That is, a correct

remainder is required for the bit of the quotient so that it is aligned to the radix-r

boundary. This requires extra bits within the intermediate computation to allow for

the computation to take place.

Moreover, as mentioned earlier, Robertson’s diagram lays out the range of values

that be utilized during a recurrence. This ultimately causes the recurrence to go

out of bounds. Therefore, the resulting bounds within the computation require extra

integer bits as stipulated by Robertson’s diagram (i.e., [−r · ρ · Dmin, r · ρ · Dmax]).

The radix-4 case with a = 2, in a [1, 2) domain, results in a range of [−16/3, 16/3].

This means that any recurrence computation requires 3 integer bits for the unsigned

integer case in order to avoid loss of precision.

Division is harder than most computations because it has to deal with bits from

the most-significant portion towards the least-significant digits, sometimes called an

online algorithm [8]. Therefore, since the range of the final quotient is modified (i.e.,
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1/2 < q < 2), the dividend has to also be shifted appropriately. As specified in [8],

this can achieved by shifting the dividend right by v + s bits where v = 2 for ρ < 1

such that:

(m+ v + s) mod k = 0 ,

for m fractional bits and k = 2 for radix 4 (i.e., r = 2k).

Integer division requires a remainder to be produced, which is one advantage of

using division by recurrence compared to other division methods that employ multi-

plication. However, since division by recurrence is implemented using a non-restoring

division algorithm, the remainder needs to be modified appropriately. Consequently,

the remainder needs to be shifted accordingly after N cycles [8]:

rem =

 w[N ] · 2(n·log2r−m) if w[N ] ≥ 0

(w[N ] +D) · 2(n·log2r−m) if w[N ] < 0 .

3.2 Quotient Generation

Chapter 2 mentions that there are multiple ways to implement a QST. Since this

QST is chosen to have each selection region constant, there are generally two ways to

implement this type of QST. The first way is using a memory-lookup. While memory-

lookup could be a viable option for larger integer division, it is impractical for this

implementation due to a relatively small QST (58 product terms). Instead, the QST

uses combinational logic in order to avoid the increased complexity of introducing a

memory component along with the high area and power requirements. In addition,

the proposed design incorporates specialized logic to maintain a one-hot encoding for

the quotient selection in order to save power and spurious switching.

Chapter 2 indicates that the QST is responsible for the generation of the final

quotient. While this is correct, it must be remembered that the output of the QST is

in SD notation that can only be handled by other devices that are specifically designed
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Figure 3.2: OTF Conversion Block Diagram (Adapted from [8])

to take it as input; which makes it necessary to return back to standard binary. As

previously stated, this would typically require the use of a CPA after the entire

quotient had been calculated. Instead, this design uses a technique called on-the-fly

(OTF) conversion to convert from the SD redundant notation back to conventional

binary [8]. The OTF unit is responsible for the translation of each quotient digit during

a recurrence and is controlled by the ls_control block. The hardware visualization

for this relationship can be seen in Figure 3.2.

On-the-fly conversion [8] is an extremely efficient method of conversion since re-

currence methods for division, and even square root, are online algorithms [8]. Most

OTF designs need a clock to store elements every iteration and subsequently have

setup and hold constraints that require the need to handle this storage with the gen-

eration of the quotient. The logic for OTF conversion is based on knowing what

the most-significant digit of the previous conversion (Q) is and then either selects

the previous version or selects another value of the conversion that is one ulp smaller

(QM = Q−ulp) [8]. It is easier to describe OTF conversion as a series of careful shifts

and loads. The simplified example below (Figure 3.3) in radix-2 can be used to un-

derstand how on-the-fly conversion takes the returned QST values (0.110110011010)

and converts it to the standard binary representation (0.110001111010). Q and QM

registers are initialized to 0, and depending on the chosen qk, the values are shifted

15



Figure 3.3: OTF radix-2 example (Adapted from [8])

between registers and then shifted left.

In this example, when qk is 1, Q[k− 1] is shifted to QM [k], and left shifted with a

0 stored in the least significant bit (LSB). Then, Q[k] is left shifted with a 1 stored in

the LSB. When qk is 0, Q[k] is left shifted and a 0 is stored, while QM [k] stores a 1.

Lastly, When qk is −1, the value from QM [k − 1] is shifted into the QM [k] register

and a 1 is stored, and QM [k] is simply left shifted with a 0 stored in the LSB. The

equations for OTF operation are given in [8] as:

Q[j + 1] =

 (Q[j], qj+1) if qj+1 ≥ 0

(QM [j], (r − |qj+1|) if qj+1 < 0 .

QM [j + 1] =

 (Q[j], qj+1 − 1) if qj+1 ≥ 0

(QM [j], ((r − 1)− |qj+1|) if qj+1 < 0 .

The result of this at the end of the calculation is that the QM register will store

16



the value of the quotient one ulp less than the value stored in the Q register. If the

remainder returns negative, then the final quotient will be chosen as the value stored

in QM to complete the required restore operation.

3.3 Remainder Generation

As discussed in Chapter 2, restoring division is not practical for a high-speed imple-

mentation due to the restoration step. To refresh with restoring division, when the

residual wj+1 is negative, the divisor is added back to the remainder and the quo-

tient has one ulp subtracted (Figure 3.4). To avoid the restore step, the nonrestor-

ing division algorithm along with SD representation is implemented. Unfortunately,

restoration must still occur in order to get a correct and positive remainder. Figure

3.4 can be utilized to visualize this occurrence. In this example, if the remainder

correction is not performed, it will be returned as negative which is mathematically

valid (3 · 34 − 2 = 100), but is typically not helpful as output. It also goes against

mathematical convention of a positive remainder. The two CPA’s and mux at the

bottom of Figure 3.1 choose between the remainder that has the divisor added back

if it is negative, or the normal remainder if no restore is needed.

3 100

3

−9

1
0

R = 

−12

4

−2


−1


+

Figure 3.4: Restoration Operation
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CHAPTER 4

RESULTS

4.1 Simulation and Verification

The proposed divider is designed and simulated using RTL-compliant SystemVerilog.

In order to ensure correct operation, a testbench was created to randomly generate

approximately 32 million vectors as input to the device. Values returned by the

divider are compared against true results within the testbench given by the division

and modulus operators to assure correctness.

To attempt to adhere to the IEEE-1801 standard for Design and Verification of

Low-Power Integrated Circuits [10], the power numbers provided in Table 4.1 and

Table 4.2 are generated using Synopsys’ PrimeTime using 28, 344 vectors. In order

to obtain good estimations of energy consumption, PrimeTime requires a Switching

Activity Interchange Format (SAIF) file. The purpose for this file is to assist in the

extraction and storing of switching activity from a design [10], which can make large

differences in reported power numbers. It also assists in power approximations from

the characterization liberty file. The SAIF file for this design was generated using a

combination of simulation and Synopsys R©tools.

4.2 Design Comparison

For a baseline comparison, two other designs, DW_div_seq and DW_div, from the Syn-

opsys DesignWare Intellectual Property (IP) library are also implemented [11] in the

same IBM/GF 32nm SOI process. These designs were chosen for comparison for sev-
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eral reasons. The first is that the Synopsys IP library is widely used in both industry

and academia in order to speed up design time, particularly if the device needed is

outside of the expertise of the organization. Next, because Synopsys R©creates both

the synthesizer and the design, the finished device is highly optimized, so it serves

well as ”optimal” design to be compared against.

DW_div_seq is a sequential design which allows for both a radix-2, and a radix-4

synthesis model. In order to ensure the two designs are as similar as possible, the

radix-4 implementation is used in the comparison and the number of cycles is set

to 19 via the num_cyc variable. DW_div is a combinational implementation which

is included not just for comparison, but also to illustrate the importance sequential

design. Not only does the combinational design exhibit a dramatic increase in both

area and power, it is also the only of the three designs to not meet the 1 GHz timing

requirement, although it was relatively close (706.2 MHz).

Both divider designs were synthesized using Synopsys’ Design Compiler (DC) to-

pographical mode, optimized for minimum delay. DC topographical mode is desirable

over the typical wire load model (WLM) in order to ensure a stronger correlation to

the area, power consumption, and delay of a post-layout physical implementation. To

give some comparison of synthesis, the number of logic levels is also reported from its

Quality-of-Route (QoR) output. The number of logic levels is an effective method of

Table 4.1: Post-synthesis Results for the Proposed Design in cmos32soi 32nm GF

technology 1 GHz using RVT cells

Methods # Cells Area [um2] Logic
Power [mW]

Levels Dynamic Static Leakage Total

Proposed 2,191 1,922.08 22 0.0192 0.1002 0.5983 0.7177

DW_div_seq 829 1,000.58 43 0.0939 0.7136 0.3097 1.1137

DW_div 18,337 20,497.23 139 7.1251 5.3012 11.7124 24.1387
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determining the efficiency of logic deployment by stating the number of gates that de-

fines the critical path. Since energy and power are input dependent [12], all synthesis

runs were completed using a 1 GHz cycle time.

Estimates for area, power, and delay for each component used in the design can be

seen in Table 4.1 and Table 4.2. There were five different threshold voltage libraries

obtained from ARM R©used during synthesis: HVT, MVT, RVT, SVT, and UVT.

HVT signifies the “high” threshold voltage, MVT signifies the “mezzanine” thresh-

old voltage, RVT signifies the “regular” threshold voltage, SVT signifies “super-high”

threshold voltage, and UVT signifies “ultra-high” threshold voltage, respectively. Due

to the higher threshold voltage, the HVT, SVT, and UVT libraries have a lower

static power but higher dynamic power. The lower threshold voltage MVT and RVT

libraries have a lower dynamic power but a slightly higher static power. By syn-

thesizing the designs to different combinations of these libraries, the set of libraries

that optimizes the proposed design in terms of lowering area, delay, and power is

determined experimentally. Therefore, Table 4.1 is synthesized for only RVT cells

concentrating on delay, whereas, Table 4.2 is synthesized for lower leakage. It is im-

portant when designing any circuit with multiple libraries to determine which library

or combination of libraries best fits design goals and constraints.

Table 4.2: Post-synthesis Results for the Proposed Design in cmos32soi 32nm GF

technology at 1 GHz using Low-Leakage cells

Methods # Cells Area [um2] Logic
Power [mW]

Levels Dynamic Static Leakage Total

Proposed 2,200 1,957.53 19 0.0176 0.0948 0.0531 0.1655

DW_div_seq 1,690 1,333.57 31 0.1032 0.6937 0.0044 0.8014

DW_div 19,583 21,824.71 146 7.3791 5.6150 9.2842 22.2783
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CHAPTER 5

CONCLUSIONS

This paper presents a novel implementation for a radix-4, 32-bit integer divider. The

benefit of higher radix is a reduction in the number of cycles required for a complete

calculation. The maximum number of cycles in this design is 19 and it has a clock

rate of 1 GHz, which gives a maximum calculation time of 19 nanoseconds (ns). The

critical path for this design is set by the remainder generating CPA rather than the

quotient thanks to the use of the efficient on-the-fly conversion technique.

The basis for the implementation is a nonrestoring division algorithm which is

based off the restoring division algorithm. The key difference being that the non-

restoring algorithm does not restore the divisor when the residual is negative. In

order to accomplish this, it must use signed-digit representation, to give digits a

measure of redundancy, which reduces the complexity of the quotient selection table.

The area, power, and timing estimates are given for an implementation in IBM/GF

32SOI 32-nm technology synthesized assuming a 1 GHz clock rate. The results in-

dicate that this divider is slightly larger than a comparable divider from Synopsys’

DesignWare IP, but has significantly smaller amounts of power dissipation and num-

ber of logic levels, making this design desirable for low power applications.

5.1 Future Work

It is important on any design to look towards the future for possible further research

and improvements. This design is no exception. One way to expand on the work

done in this implementation is to further increase the radix. A higher radix will
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allow more bits per cycle to be retired, which in turn decreases the total number of

cycles required to complete a calculation. Unfortunately as the radix increases, the

combinational logic required to correctly calculate the quotient for each cycle also

increases in complexity.

As the radix continues to increase, it approaches an, effectively, combinational

design. From the results for the DW_div implementation, this has dramatic conse-

quences for the area, power consumption, and single-cycle delay. The benefits gained

by increasing the radix will begin to plateau due to a nonlinear relationship between

the radix and the logic required to complete the calculation. This idea is given as a

visual in Figure 5.1 [8] which shows the estimated factor of area increase and speedup

for a chosen radix. When choosing a radix for a divider, these consequences must be

taken into account for the specific application being used.

Figure 5.1: Radix vs Area and Speedup (Adapted from [8])
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