
 DYNAMIC SPECTRUM ACCESS UTILIZING

NEURAL NETWORKS AND PARTICLE SWARM

OPTIMIZATION IN COGNITIVE RADIOS

 By

CAROLINA ARBONA

 Bachelor of Science in Electrical Engineering

Bachelor of Science in Computer Engineering

 Oklahoma State University

 Stillwater, OK

 2012

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of

 the requirements for
 the Degree of

 MASTER OF SCIENCE
 July, 2018

ii

 DYNAMIC SPECTRUM ACCESS UTILIZING

NEURAL NETWORKS AND PARTICLE SWARM

OPTIMIZATION IN COGNITIVE RADIOS

 Thesis Approved:

Dr. George Scheets

Thesis Adviser

Dr. Gary Yen

Dr. Weihua Sheng

iii
Acknowledgements reflect the views of the author and are not endorsed by committee members
or Oklahoma State University.

ACKNOWLEDGEMENTS

First, I am thankful for my advisor, Dr. George Scheets, who stuck with me through all the ups

and downs over the years and for staying on after retirement to see my thesis through. Without his

support and review this work would never have been completed. Dr. Scheets was the most

influential professor in my college education as he offered the majority of the communications

based courses that I was interested in. Some of the best advice I’ve ever gotten was ‘keep it

simple’, and it came from him.

I would also like to acknowledge Dr. Gary Yen, whose course in computational intelligence was

one of the most interesting I’ve ever taken. I still remember elements from the lectures despite it

being 4 years ago. His passion for the subject seeped through in every lesson and into this thesis.

My mother, Gloria Ossa, deserves all my love and gratitude. My mother insisted I pursue my

masters and thesis to completion and was understanding of my not coming to visit her often

enough. A mother’s love is unconditional; so much so that she proofread chapters 1 and 2 for

grammar & flow even though English is her second language and her background is in nursing. I

would also like to acknowledge the home cooked meals she’d bring me when visiting.

I would like to recognize Ian Finley for proofreading the more technical chapters. I am forever

grateful that Ian designed and built me a new computer after he identified my old one was not up

to the task of running the experiments in this thesis. I appreciate Ian’s thoughtful questions that

would often help get my gears moving again after being stuck as well as his patience and positive

attitude that kept me going when I wanted to quit.

Another acknowledgment goes my co-worker and friend, Lars Fetzek, for being of curious mind

and offering to proof-read chapters 1-3 in exchange for being allowed to read my research.

Finally, I am thankful for my friends & family who were understanding of my schedule and

appreciative of my co-workers who were kind and accommodating whenever I needed to take

vacation for school.

iv

Name: CAROLINA ARBONA

Date of Degree: JULY, 2018

Title of Study: DYNAMIC SPECTRUM ACCESS UTILIZING NEURAL NETWORKS
AND PARTICLE SWARM OPTIMIZATION IN COGNITIVE RADIOS

Major Field: ELECTRICAL ENGINEERING

Abstract: In recent years, spectrum policy has shifted and has become more accepting of
dynamic spectrum access. Technology improvements such as software defined radio and
cognitive radio has allowed research to explore more into this field. Software-defined
radio has the ability to switch the transmission parameters, such as modulation schemes;
Cognitive Radio extends software defined radio by giving it a brain to decide which of
those parameters to choose. Spectrum management can be broken down into four steps:
spectrum sensing, spectrum decision, spectrum sharing and spectrum mobility. This
paper will assume that the spectrum sensing is already known and is only interested in the
spectrum decision aspect. The author introduces a hybrid approach of an Artificial Neural
Network (ANN) which is trained by another biologically inspired algorithm: Particle
Swarm Optimization (PSO) for the spectrum decision aspect. ANNs were chosen due to
their universal function approximation capabilities. PSO was chosen to train the ANN
given its fast convergence and ability to search a complex and non-continuous state-
space. The PSO-ANN hybrid technique will be compared to game theoretic ‘Regret-
Based Learning’ procedures. This thesis seeks to gain a better comprehension of learning
schemes used in the creation of the cognitive engine and shed knowledge on the decision
capabilities through data derived from a decentralized system. This research was able to
find acceptable PSO-ANN configurations that boasted improved utilities with respect to
‘Regret Tracking’. These improved outcomes were reached faster, with convergence
occurring quickly. This phenomenon occurred in both static and dynamic situations and
for congested and non-congested environments. Regret tracking has faster computational
speeds for small simplified networks but scales very poorly for more system channels or
more channels allowed per secondary users, with both speed and system memory being
of concern. Regret tracking was found to require evaluation and therefore sensing of
every option whereas PSO-ANN only evaluates a handful of particle options. The
decrease sensing needs of PSO-ANN make it much more practical for implementation.
Due to all the limitations in regret tracking that PSO-ANN overcomes, it should be a
preferred choice when working with dynamic spectrum access.

v

TABLE OF CONTENTS
Chapter Page

I. INTRODUCTION ... 1

1.1 Motivation ... 3

II. REVIEW OF LITERATURE... 4

2.1 Dynamic Spectrum Access and Cognitive Radios.. 5

2.2 Computational Intelligence ... 8

2.2.1 Artificial Neural Networks (ANNs)... 10

2.2.2 Particle Swarm Optimization ... 14

2.3 Related Work in Dynamic Spectrum Access (DSA) 17

2.4 Related Work in Computational Intelligence ... 18

III. METHODOLOGY ... 19

3.1 Static System ... 20

3.2 Dynamic System ... 31

3.3 Comparison Algorithms .. 32

3.3.1 Regret Tracking ... 33

3.3.2 Best response ... 34

3.3.3 Fictitious Play .. 34

3.3.4 Modified Regret Tracking.. 34

3.4 Neural Network Topology .. 35

3.5 Particle Swarm .. 37

IV. FINDINGS .. 40

4.1 Model Verification .. 41

4.2 ANN Initialization & Fitness Functions ... 43

4.3 PSO Hyper-parameters: Initial Velocity, Mutations and Coefficients 45

4.3.1 Velocity Training ... 45

4.3.2 Mutation Interval Training:.. 46

4.3.3 PSO Coefficients a/b/c without mutations ... 47

4.3.4 PSO Coefficients a/b/c with mutations .. 49

4.4 Comparison of Regret Tracking algorithms to PSO-ANN 51

4.4.1 Congested Environment ... 52

4.4.2 Non-Congested Environment... 54

4.4.3 Evaluating scalability ... 56

vi

V. CONCLUSION .. 60

5.1 Future Work .. 61

REFERENCES ... 62

APPENDICES .. 66

Main.m .. 67

function Maskery_FullSimulation(SimulationType) .. 70

Optimize_PSO_ANN.m.. 75

function Optimize_PSO_ANN ... 75

function ANN_Init(ANN_Init_Check) ... 78

function PSO_W_temp = PSO_Init(PSO_Init_Check, PSO_W_temp) 82

function Velocity_Init(Velocity_Init_Check) ... 88

function Mut_Init(Mut_Init_Check) ... 90

PSO_ANN_FullSimulation.m .. 92

function PSO_ANN_FullSimulation(SimulationType) 92

MaskerySystem.m ... 96

function [Global_U, ConvergeVal, t] = MaskerySystem(AlgorithmOption) ... 96

function [Epsilon] = GetEpsilon(AlgorithmOption) 101

function [S, ValidOptions] = CalculateSS(PriUsage, Master_S) 101

Fitness_Func.m ... 102

function [U] = Fitness_Func(StateSpace, N, R, Q, QualityBits, DemandL,
PriUsage, beta, alpha1, alpha2)... 102

MaskeryDecision.m .. 103

function [Prob_Xn, OptionChosenL, RegretL] = MaskeryDecision(
OptionChosenL, RegretL, NumMasterOptions, Local_UL, ValidOptions,
n, DecisionType, Prob_Xn, Epsilon, delta_exploration) 103

PSO_ANN.m .. 105

function [StdDev, ResetCounter, GB_old, Personal_Bests, Velocity,
ANN_Array] = PSO_ANN(Fitness, curr_scenario, ResetCounter, GB_old,
Personal_Bests, Velocity, ANN_Array, Num_Elements, NumParticles,
PSO_W, MutResetInterval, Init_Position_Range, Init_Velocity_Range) 105

ANN_CalcOutput.m ... 107

function Output = ANN_CalcOutput(Input_Array, ANNs_2_Eval,
NumChannels, m, ANN_TransferFunctions, ANN_Bias) 106

vii

LIST OF TABLES

Table Page

1: ANN Transfer Functions’ Mathematical Expressions .. 11

2: PSO Variable Explanations .. 14

3: Known Parameters .. 20

4: Channel Capture Record-Keeping .. 22

5: Throughput and Collision Validation ... 24

6: System State example from code .. 27

7: Expected times between changes .. 31

8: ANN Parameters ... 35

9: Legends for PSO-ANN Parameters .. 51

viii

LIST OF FIGURES

Figure Page

1: Spectrum Hole Concept [11] .. 5

2: Simple representation of a 3-layer Feed-Forward ANN 10

3: Popular Transfer Functions used in perceptrons... 11

4: PSO Velocity Vector Analysis. .. 15

5: Particle Swarm Optimization (PSO) Flowchart.. 16

6: CSMA Sub-slots per Decision Period. ... 21

7: Channel Capture Options: Collisions, Failures and Successes 21

8: Neural Network Topology .. 35

9: Example PSO-ANN Swarm Matrix .. 37

10: PSO-ANN Swarm Personal & Global Bests .. 38

11: Published Results [8, 9] to Obtained Results – Static case 41

12: Published Results to Obtained Results – Dynamic case 42

13: Performance of Different ANN initialization parameters................................. 43

14: Weight & Bias Verification –Static & Dynamic cases 44

15: Initial Velocity Performance (3D & Top-Down views) 45

16: Mutation Interval to Demand Satisfied Comparison .. 46

17: Comparison of PSO coefficients: a, b, c. (3D & Top Down view) 47

18: PSO Coefficients verification –Static & Dynamic cases 48

19: Comparison of PSO coefficients: a, b, c. (3D & Top Down view) 49

20: PSO Coefficients verification –Static & Dynamic cases 50

21: PSO-ANN & Maskery in static environment (congested)................................ 52

22: PSO-ANN & Maskery in dynamic environments (congested) 53

23: PSO-ANN & Maskery for ro=0.05 & w=16 (congested) 53

24: PSO-ANN & Maskery in a static environment (non-congested) 54

25: PSO-ANN & Maskery in dynamic environments (non-congested) 55

26: PSO-ANN & Maskery for ro=0.05 & w=16 (non-congested) 55

27: PSO-ANN & Maskery Scalability for ‘m’ (static) .. 56

28: PSO-ANN & Maskery Scalability for ‘m’ (dynamic) 57

29: PSO-ANN & Maskery Scalability for ‘m’ (ro=0.05) 57

30: PSO-ANN & Maskery Scalability for ‘Ch’ (static) .. 58

31: PSO-ANN & Maskery Scalability for ‘Ch’ (dynamic) 59

32: PSO-ANN & Maskery Scalability for ‘Ch’ (ro=0.05) 59

1

 CHAPTER I

I. INTRODUCTION

In this era of information and mobility, society has adapted and developed a need for

interconnectedness and communication. With the advent of new technologies in process

automation, commerce, safety, and more, both private industry and government agencies that

require connectivity were experiencing ‘spectrum drought’. To better understand this situation,

here defined as the “scarcity of a seemingly infinite resource”, a review of spectrum management

policies is needed. For the purposes of this thesis only United States policies will be covered,

understanding that other countries have other agencies and may have developed other methods.

In the United States two federal agencies are responsible for spectrum management policies. One

of them is the Department of Commerce’s National Telecommunications and Information

Administration (NTIA), which allocates spectrum for government use. The other one is the

Federal Communications Commission, FCC, which currently manages spectrum by assigning

frequencies to non-governmental license holders.

Historically, the FCC has used many means to assign spectrum. From 1934 to 1984, the FCC

allocated these bands through comparative hearings where the parties claimed why they needed

the license. Then, from 1984 to 1993 the method changed to utilize lotteries where qualified

applicants were pooled together and the winners were randomly selected. After 1993 the FCC

moved to competitive bidding where participants bid for the spectrum through auctions and the

highest bidder wins [1].

2

In general, FCC policies have been driven by the technology of the day as well as the needs of

consumers and government agencies. Overall, these methods were static and are now known to be

inefficient; and moreover, the allocations were set to last for long periods of time.

On May 28, 2004 the US Government Accountability Office released a report in which it showed

the results of a study on spectrum efficiency. This report recognized that many technologies were

geared towards improving the quality of communications or throughput by using smaller amounts

of available spectrum; furthermore, it cited the importance and encouraged investment in new

technologies as follows:

“Technologies like software-defined cognitive radios can be adapted to operate in virtually any

segment of spectrum and, in the future, may be able to adapt to real-time conditions and make use

of underutilized spectrum in a given location and time. [2]”

In July of 2012 yet another report came out, this one from the President’s Council of Advisors on

Science and Technology (PCAST) [3]. PCAST labeled the auction system as inefficient and

identified gains in data transmission by utilizing shared spectrum access that co-exists with

legacy infrastructure. The PCAST report recommended working with the existing agencies to free

up spectrum for sharing and encouraged research into spectrum management technology and

practice.

The United States government listened to these recommendations [4, 5] and several “beachfront”

frequency bands were identified and freed to ameliorate the situation of spectrum scarcity and

stimulate the economy. Additionally, the FCC is now motivating research into spectrum sharing

and the use of white spaces in order to maintain international leadership in innovation.

3

1.1 Motivation

Researching the spectrum decision portion of cognitive radio for use in opportunistic spectrum

access is an intriguing optimization problem due to the many real world applications.

According to Zhao and Sadler [6], Dynamic Spectrum Access can be classified into three

categories. First, ‘Dynamic Exclusive Use Model’, in which the licensed user can sublet

resources, for which economy and market values may play a role. Second, ‘Open Sharing Model’,

in which all users have equal priority in sharing the spectrum. And third, ‘Hierarchical Access

Model’, in which the idle spectrum is shared so long as interference to license holders is minimal.

The FCC and NTIA may be open to changing policies to any or all of the above categories

depending on the original license holder and its needs. A cell phone company looking to divvy up

its spectrum at base stations could follow a hierarchical access model for users who pay for

higher or lower speeds. The same company could instead use a dynamic exclusive use model in

which the prime carriers sublet to smaller carriers. ‘Internet of Things” (IOT), could follow an

open sharing model on an unlicensed band or a hierarchical access model on allocated bands.

John Polson, an engineer with Bell Helicopter Textron states that all of the pieces for making the

leap from software radios to cognitive radios already exist. Such pieces include location services,

spectrum sensing and analysis, regulations databases, etc. The biggest challenge is designing

clever algorithms to take available information and make decisions about where to operate. [7]

This thesis presents a novel approach to spectrum decision in dynamic spectrum access that

applies neural networks trained with Particle Swarm Optimization. PSO-ANN was applied to a

network model obtained from a published article [8] and a chapter in the book ‘Cognitive

Wireless Communication Networks’ [9]. This model was chosen due to its decentralized

collaborative approach and high-level nature. PSO-ANN is then compared to the current solutions

provided for that model to further research into this complex optimization problem.

4

 CHAPTER II

II. REVIEW OF LITERATURE

This chapter will delve into the theoretical framework behind this thesis as well as related works

within these fields. The first topic considered will be cognitive radios and spectrum management.

Afterwards, a brief overview of computational intelligence will be provided along with some tie-

ins to game theory that are essential in multi-agent systems. Following these concepts, this

chapter will focus on a subset of computational intelligence, namely neural networks. This

chapter will first cover the theory, then provide an overview of the traditional training methods.

This will clarify why an alternative is worth exploring. Finally, this chapter will pivot to Particle

Swarm Optimization, which is the training method proposed for the neural network.

The related work will first cover the research in [8, 9] that provided the starting point for this

thesis. In addition, the model proposed in that research will be used in this thesis, as well as the

algorithm, as comparison for the neural network particle swarm hybrid proposed. This topic will

be further expanded upon in chapter 3. A few other recent DSA works are covered before moving

onto computational intelligence. The beginnings of PSO-ANN and the evolution towards a more

generalized and robust algorithm is covered. The section concludes with a mention of a company

presently doing research in this field.

5

2.1 Dynamic Spectrum Access and Cognitive Radios

Cognitive radios have emerged as part of a solution to spectrum scarcity. A software-defined

radio can reconfigure transmission parameters via software. Cognitive radio is built on the

software-defined radio platform but with awareness of its surroundings and the ability to learn.

Cognitive radios rearrange transmission parameters intelligently and autonomously; in layman’s

terms, it is a software defined radio with a brain. Some other things a cognitive radio must do

include managing its resources as well as sharing the spectrum with other users.

This thesis focuses on Opportunistic Dynamic Spectrum Access in cognitive radio, which is also

known as spectrum overlay. Opportunistic access occurs when a spectrum hole is sensed and used

by an unlicensed user. Spectrum holes are sometimes referred to as white or gray spaces. The

FCC definition of a white space is that where portions of the radio spectrum may not be used for

significant periods of time; these spaces may be temporal or geographic. An example of a

temporal white space is a band that lies unused at night but is active throughout the day. An

example of a geographic white space is a band that is used heavily in urban areas but is unused in

rural areas. The definition of a gray space is “areas where emissions exist but could accommodate

additional users without raising the overall noise level in a band to a level unacceptable to

incumbent users – to increase spectrum efficiency.” [10] An example of a spectrum hole can be

seen in the figure below.

Figure 1: Spectrum Hole Concept [11]

6

Those with access or a license to the spectrum are known as primary users. These have typically

paid for the use of this resource and the corresponding assignment has been made by a regulating

entity. Users that are un-licensed and do not have guaranteed rights to a portion of the spectrum

but have a need to communicate will be referred to as secondary users. Because primary users

own the resource, it is extremely important that they achieve all the communications desired and

that they are unaffected by the actions of secondary users. The premise is that if a secondary user

is on a band and it senses transmission from a primary user, said user must immediately evacuate

and resume transmission elsewhere; this is known as pre-empting. For the purpose of this

research, all secondary users are assumed to have the same access rights and thus cannot pre-empt

each other.

According to I. F. Akyildiz, et al [11], there are four major steps to a cognitive radio and

spectrum management; these are defined below:

• Spectrum Sensing: Consists of monitoring the spectrum to determine the availability of

white spaces and the operation patterns of users. Sensing will determine interference and

channel characteristics. This stage is paramount to avoiding collision with a primary user.

• Spectrum Decision: In this step, the radio learns the characteristics of certain bands, as

determined in the spectrum sensing stage. It then decides what parameters to reconfigure

in order to broadcast more efficiently. The decision may involve multiple transmission

bands or parameters. A cognitive radio may have multiple configurations for

simultaneous use depending on its hardware buildout.

• Spectrum Sharing: It is important to be aware that there may be many secondary users

who also need access. Greedy behaviors may result in more interference and possibly

jamming.

The first consideration is the network. In some cases, there may be a centralized model

where all secondary users report to a central entity such as a base station or spectrum

7

broker. In such a case, the central authority allocates and shares between all of the users.

Another option is an independent or decentralized model where each secondary user

decides how to share the spectrum without external input. This situation presents a

challenge, as it can lead to an overall destructive environment if the user acts too

greedily.

The next consideration is the need for cooperation. In a cooperative environment, various

secondary users may communicate with each other to share information and intentions. In

a non-cooperative environment, there are savings from message exchanges that result in

less power/resource utilization. Again, this is at the expense of explicit information

sharing and coordination.

The last consideration is the sharing technique. In Spectrum Overlay, only white and gray

spaces are utilized. In Spectrum Underlay, spread spectrum is used so that the noise

levels seen by primary users are tolerable.

• Spectrum Mobility: The final step is to be able to move when the need arises, temporally

or spatially. A temporal example is the detection of and pre-empting by a primary user.

Another temporal example is when transmission conditions such as channel qualities,

change for better or for worse. As mentioned before, the radio must also efficiently

accommodate the quick changes in spectrum and characteristics that may result from

motion in space.

As can be seen, there are many factors that must be taken into account to automate spectrum

allocation. This thesis will focus specifically on computational intelligence for the spectrum

decision step in an independent model. The spectrum sensing portion will be assumed and

simplified. Spectrum sharing will occur through a fitness function that balances greedy behavior

and decentralized collaboration. Finally, this thesis will consider a dynamic case with varying

transmission conditions to better appreciate how well the method performs for spectrum mobility.

8

2.2 Computational Intelligence

Computational Intelligence is an all-encompassing term for non-organic creatures (machines,

computer programs, etc.) that learn from data or trials. Sometimes problems can be solved

through intricate decision trees and logical instructions, known as hard coding. In recent years

there has been a creative explosion of soft-coding methods to address the problems that cannot be

readily solved by a perfect set of instructions provided by a human. These methods may use

probability, statistics and nature-inspired motifs. A few examples:

• Neural Networks are very popular and are based on the concept of interconnected

neurons/perceptrons that mimic a biological brain.

• Particle Swarm Optimization bases its search for a solution within a state space upon the

efficient behavior of bird flocking patterns.

• Genetic Algorithms utilize the concept of survival of the fittest. Parameters or genes are

passed from parents to children in the search for better solutions.

There are many more such algorithms, as this is not meant to be an exhaustive list.

Although soft-coding is a very powerful tool, it is also known to be quite computationally intense.

The argument can be made, however, that computing power is growing exponentially. Thus this

branch of computing is still worth researching.

These algorithms are adept at recognizing patterns, searching a data space, and making decisions.

In order to utilize those functionalities, a suitable model must be obtained. Sometimes models are

simple but sometimes more advanced situations with multiple players and multiple interests

require more complex models.

Game theory studies multi-agent environments where rational players choose strategies with

varying degrees of competition or collaboration. Game theory can take day to day situations and

9

simplify them to ‘games’: zero sum games, prisoner’s dilemma, etc. Intuitively it can be noted

that game theory may have great potential in the cognitive radio field. This intuition is

demonstrated in an IEEE Spectrum magazine article by K.J. Ray Liu [12] from the University of

Maryland. In this article, Liu goes over several game-theoretic approaches to cognitive radio,

including a wireless-networking version of the aforementioned prisoner’s dilemma.

Game theory has many procedures based upon expected values and decision trees that are

mathematically proven to converge to equilibria, a bit more aligned with hard-coding sprinkled

with stochastics. Machine learning is very good at analyzing and classifying data but, as

mentioned, could be improved for the multi-agent environments. As such, machine learning can

benefit from game theoretic models and game theory could explore soft-coding techniques used

in machine learning. By putting these two methods together, great strides could potentially be

made towards furthering computational intelligence in cognitive radio.

Supervised learning is when previous knowledge of the problem is given. The system outputs are

compared to those expected and an error is calculated and used iteratively to adjust parameters.

Conversely, unsupervised learning is used when dealing with an unlabeled dataset. Usually,

unsupervised algorithms train to group the data by likeness or distance. In reinforcement learning,

a possible solution will attempt the problem but will not be told the correct way to do it as there is

not a dedicated training set for it. Instead, the solution will be rewarded if it did well according to

a fitness function. Supervised learning seeks to minimize the error while reinforcement learning is

training to maximize the reward. In reinforcement learning, an explicit desired solution is not

provided, identified or labelled as in supervised learning. There has been significant research

towards supervised learning, but because training data may not always be available in real-world

scenarios, this research will train ‘online’ through reinforcement learning of a cognitive radio’s

fitness function. The proposed solution is a hybrid approach, of an artificial neural network

(ANN) trained with particle swarm optimization (PSO).

10

2.2.1 Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) were inspired by the human brain and try to mimic its

biology by creating a group of interconnected neurons or perceptrons. They are best used when a

linear relationship between inputs and outputs doesn’t exist or isn’t readily observable, as they are

known for being universal function approximators. ANNs consist of different layers in which data

are manipulated. There are three different types of layers: input, hidden and output. Most of the

calculations are executed in the hidden layers and are not shown to the final user. Shallow neural

networks are those with only one or two hidden layers and ‘deep neural networks’ describe ANNs

with many hidden layers. The more layers in an ANN, the better it is able to handle non-linearity

but also the higher the risk to over-fit data.

Perceptrons are the units or individual neurons that make up the network. In feedforward ANNs,

perceptrons are connected through signals coming in from the layer strictly before it. An example

is shown below. Please note the number neurons per layer may vary. In recurrent ANNs, a signal

can come from any neuron and closed paths are often observed when depicting these. Though

very powerful, recurrent ANNs and other advanced ANNs are more difficult to train and will not

be the subject of discussion in this project.

Figure 2: Simple representation of a 3-layer Feed-Forward ANN

11

A perceptron provides a single output, the state of activation, that it determines from a weighted

sum of its inputs via its transfer function. As shown in figure 3, some popular transfer functions

include hard limiter, logarithmic (log-) sigmoid, hyperbolic tangent (TanH-) sigmoid, and

rectified linear unit (ReLU).

Figure 3: Popular Transfer Functions used in perceptrons

Function Name Mathematical Expression

Hard Limit Y = 1 if X > 0; Y = 0 otherwise;

Log-Sigmoid Y = 1/(1+e-X);

TanH-Sigmoid Y = (eX - e-X) / (eX + e-X);

Rectified Linear Unit (ReLU) Y = max(X, 0);

Table 1: ANN Transfer Functions’ Mathematical Expressions

-5 0 5

0

0.5

1

Hard Limit

-5 0 5

0

0.5

1

Log-Sigmoid

-5 0 5

-1

-0.5

0

0.5

1

Hyperbolic Tangent Sigmoid

-1 0 1

0

0.5

1

Rectified Linear Unit (ReLU)

12

The hard limit function has a jump at the zero point, and therefore has a discontinuous derivative.

Log-sigmoid and TanH-sigmoid are similar except that the former has an output range of (0,1)

and the latter has an output range of (-1, 1); compared to log-sigmoid, the hyperbolic tangent can

be thought of as a ‘taller S’ [13]. Both the log-sigmoid and hyperbolic tangent have continuous

derivatives but are not particularly well behaved: near zero the derivative is quite high and

towards the plateau of the ‘S’ the derivative is infinitesimally small; this leads to the vanishing or

exploding gradient problem. Some problems, such as classification, are better suited towards

sigmoid whereas others prefer the zero-centered output provided by hyperbolic tangent. Many

developers prefer ReLU, because it is more simple and thus less computationally intense than the

others. The ReLU derivative is mostly well behaved, though some have sought to improve upon

ReLU by providing variants that have a non-zero derivative for x<0. Many more transfer

functions exist, but this thesis considers only some of the more popular and simple ones. If

computational resources are not an issue, it is worth exploring some more powerful ones [14].

ANNs require training of the weight values for the various inputs. A popular training mechanism

is back propagation. Back propagation calculates an error or cost function and then propagates it

backwards from outputs to inputs, adjusting the weights as it goes. It makes the adjustments

based upon gradient descent and therefore may have issues such as the above-mentioned

vanishing or exploding gradient, putting strain on the activation functions to be chosen.

Traditional training methods may require pre-processing of the inputs to filter out those with

correlation and to generalize. This is time consuming (even for an expert) but if not done, the

ANN will take longer to train.

Research in neuroevolution is helping to overcome the shortcomings in gradient descent training

algorithms. In this research field, ANNs are trained by evolutionary algorithms such as genetic

algorithms, particle swarm, ant colony optimization, etc. One of the benefits of neuroevolution is

the use of an algorithm that does not require a differentiable transfer function (let alone a ‘well-

13

behaved’ continuous derivative). Another advantage is the ability to learn the topology, best

fitness function selection, and input features. By removing human intervention, the creation of

ANNs can be more automatic [15]. This self-learning is an exciting step towards artificial

intelligence.

Neural networks have been used with great success in many applications. Natural language

processing uses a variety of neural network types to interpret what humans mean in speech and

written language. Image processing and computer vision have advanced significantly by the use

of convolutional neural networks. The application of neural networks to economic prediction and

forecasting has been extensively studied, especially regarding stock markets and

cryptocurrencies. In recent years, there has been an explosion of research in neural networks and

reinforcement learning for decision making in game play, self-driving cars and automata/robotics.

However, ANNs should not be considered a panacea. These tend to be more computationally

intense and may be too much effort if a problem can be solved with a straightforward algorithm.

Evolutionary ANNs should also not be utilized indiscriminately or on all parameters. If a

researcher has a priori knowledge that they can express in code, then it is worthwhile to do so. By

reducing the state-space to be searched, a model can be trained with fewer iterations and less

computation. Consequently, this thesis will make use of available information to pre-process the

inputs and produce the ANN topology shown in chapter three. The evolutionary algorithm will be

used for weight training only. However, if this method needs to be generalized for another

problem/model with less a priori knowledge, then the groundwork for extensive training exists.

14

2.2.2 Particle Swarm Optimization

PSO is an optimization algorithm inspired by the patterns observed in the flocking of birds and

other wildlife. It is a simple yet powerful technique that boasts fast computation time and good

scalability while being easy to comprehend. This technique initializes a pre-defined number of

particles with random initial velocities to make up the population and search the state space. Each

particle contains positional data from the objective space and will map onto the decision space

through the use of a fitness function. Each particle does parallel computations to search for the

global optimum and will update its position after each iteration according to its velocity, per the

formulas:

���� + 1� = ����� +
��� + 1�

��� + 1� = � ∗
���� + ∗ �� ������� − ������ + � ∗ �� ������� − ������

Variable Meaning

a Inertia Coefficient

b, c Acceleration coefficients

��� position of personal best

��� position of global best.

r1, r2 uniformly distributed RV from (0, 1)

Table 2: PSO Variable Explanations

In some variations, the values of a, b, and c above may progress linearly or exponentially over the

span of time, sometimes expressed as an ‘annealing’ factor. For example, the inertia coefficient

could be closer to one at the beginning and near zero at the end for exploration. Alternatively, the

acceleration coefficients may start near zero and end near one to improve exploitation of solutions

found. In yet other variations, the global best is replaced by a local best. The local best is from a

15

smaller group of particles than the whole population as used by the global best. The local best

may look at the k-nearest neighbors or follow a topology such as ring, star, etc.

Particle swarm is exciting because it overcomes the problem of getting stuck at local minima or

local maxima, which tends to occur for other searching algorithms such as gradient descent. The

use of the random variables r1 and r2 introduces an element of uncertainty to better explore the

objective space. The initial velocity also provides some “inertia” to the particle to keep exploring

even when plateauing on minima or maxima. A graphical explanation of the position update is

shown in the following figure.

Figure 4: PSO Velocity Vector Analysis.

When the position is updated, the new fitness values are calculated. If any of the new positions

have generated new personal bests, then these are stored accordingly. The same is done with the

global best. The algorithm will come to an end when the stopping conditions are met. Usually

stopping criteria are a maximum number of iterations or convergence, but CPU resources or the

developer’s patience may also influence stopping.

On occasion a set of particles may be prematurely converging to local minima or maxima as a

result of initialization or the attraction towards the local/global bests. In that case, it is useful to

‘mutate’ the worst performers by re-initializing them with new positions and velocities to

continue the search.

16

In summary, PSO utilizes random variables, inertia speed and mutations for exploration.

Global/personal best position tracking is used for exploitation of good solutions and convergence.

The figure below illustrates PSO in flowchart form.

Figure 5: Particle Swarm Optimization (PSO) Flowchart

17

2.3 Related Work in Dynamic Spectrum Access (DSA)

In 2009, Michael Maskery [8] et al published a paper on dynamic spectrum access using spectrum

overlay. The 2009 paper [8] builds upon the work published by Maskery in Chapter 11 of a

cognitive networks book [9]. Based on a carrier sense multiple access (CSMA) system and a

Hidden Markov Model (HMM) to estimate channel contention and effective throughput, this

insight is used to create a local utility that each radio can compute which balances its personal

needs (competition) and system needs (cooperation). The competitive part of the local utility

rewards the user for meeting the demand. The cooperative components will penalize for

achieving in excess of its demand and for the degradation of channel quality as measured by

collisions. As each secondary user selfishly strives to maximize its local utility, it also works in

decentralized collaboration with other secondary users maximize the system global utility. The

decision-making algorithms he provides are game theoretic and stochastic in nature. Chapter

three, Methodology, will cover this in greater depth.

The government has been working through their Defense Advanced Research Projects Agency

(DARPA) with private companies such as Raytheon and Shared Spectrum Company to develop

the neXt Generation (XG) radio [16]. DSA research continues in 2018 with the NOAA awarding

a new contract for an engineering study and analysis of 1675-1680 MHz for sharing [17].

Private industry has been studying cognitive radio and has provided a physical radio prototype

[18] and modular software to accompany it [19]. The ‘DSA network’ module of the software

package is based on collaborative negotiation between radios to share sensing and decision data.

IEEE Standards has a group for Dynamic Spectrum Access Networks (DYSPAN) that hosted a

conference in July 2018. So far, the DYSPAN group worked to standardize terminology, best

practice for interference and coexistence, access layer protocols, building blocks for decision

making, sensing databases, etc [20].

18

2.4 Related Work in Computational Intelligence

In 2003, Ribeiro and Schlansker [21] applied neural networks with particle swarm training to

reactive power control research. Their work refines the ANN weights but leaves a foundation for

generalizing the algorithm and optimizing topology and transfer functions. Their research

problem of reactive power injection for power control requires different ANN architecture

according to the system requiring the power control and therefore is a good candidate for

evolutionary ANNs.

In 2015, an article was published by Garro and Vázquez [22] describing research conducted into

designing the topology and selecting the transfer function and synaptic weights. This generalized

algorithm was applied to supervised training data from many research fields and showed good

results for sigmoidal or Gaussian transfer functions. Many different ANN topologies emerged

from the research. Overall PSO for hyper-parameter training and weight training has proven

promising.

In 2016, Changzhi Wang et al [23] applied PSO to a feedforward neural network for the purpose

of indoor RFID localization with supervised training data. They found that the approach

converged quickly and achieved higher fitness values than some of the competitors such as a

genetic algorithm trained feedforward neural net or traditional positioning algorithms.

Evolutionary neural networks have transcended the theoretical research barrier and are now being

studied and considered by companies. Per a blog post earlier this year [24], Uber (a ride-share

company) is studying the reinforcement learning aspect of evolutionary science.

In 2017, neural networks were applied to the spectrum sensing in DSA. ANNs and their pattern

recognition capabilities provided an appeal over the Hidden Markov Model (HMM) as they do

not require statistical models or extensive knowledge of the system [25].

19

 CHAPTER III

III. METHODOLOGY

This thesis focuses on the ‘Hierarchical Access Model’ (in particular spectrum overlay) for

dynamic spectrum access. In spectrum overlay, the secondary users opportunistically use

spectrum holes (channels sensed unused by primary users). Consider

First, a few clarifications: physical radio characteristics are not used, which allows the research to

be applied to other models and problems. Thus, ‘channels’ henceforth will be a broad term, that

could just as well signify bandwidth, spread-spectrum codes, etc. Channel interference is taken to

be minimal and as such sensing errors are disregarded. By omitting physical radio characteristics,

this research overlooks the signal processing side of spectrum sensing. This high-level approach

facilitates generalization and portability to a wide range of applications. A decentralized

collaborative approach is used as there are no infrastructure needs to prevent putting this

theoretical research into practice.

This research furthers the works from Michael Maskery’s high-level and decentralized

collaboration model as proposed in [8], [9]. The first two sections of this chapter will describe

Maskery’s model for static and dynamic environments and the developments thereof in the

present research. Maskery’s algorithms will be used as a basis of comparison for evaluating the

effectiveness of the PSO-ANN hybrid approach described in the last two sections of this chapter.

ANN was chosen to provide a fast output to the radios and particle swarm was chosen for weight

training to deliver quick results and a generalized algorithm that can be reused on other models.

20

3.1 Static System

The opportunistic model will rely upon independent agents, which means that no central authority

prescribes the actions of the radios. All of the users will act selfishly but may collaborate if doing

so improves the chances of getting what they want. This is comparable to a real-life situation in

which the traffic light is out and drivers must decide who gets to cross the intersection.

In order to make the decision as to which channels to access, each individual radio must know the

following:

Variable Meaning

�ℎ Number of channels

�� ∈ {0,1}!" Primary Usage Pattern

�� Quality Vector. (Quality Bits per Channel)

#�$ Demand level of cognitive radio

%$ Maximum Number of Channels that the radio may occupy.

Table 3: Known Parameters

Where ‘n’ denotes the current time interval and ‘l’ is the secondary user. Each user only knows its

own demand and channel restrictions. The secondary usage pattern of others (&�'$) is unknown.

Example: If there are 6 channels, of which a user can only occupy 2 at once and the other knowns

are: Primary usage pattern, Yn = (1 1 0 0 0 0); Quality, Cn = (1 1 1 1 1 1) kbps; demand, d =

1.5kbps; Then the following usage patterns would all be valid: (0 0 0 0 1 1), (0 0 0 1 0 1),

(0 0 1 0 0 1), (0 0 0 1 1 0), (0 0 1 0 1 0), (0 0 1 1 0 0).

Even with this trivial example, a straightforward solution to usage pattern (Xn) is not known. To

make a decision, a user would need to learn from the environment and infer the best outcome.

21

The system as designed by Maskery [8], [9] utilizes ‘Carrier Sense Multiple Access’ (CSMA) in

which several users share spectrum via channel sensing. Each decision period n is divided into k

equal CSMA sub-slots. Figure 6 shows an example of k=10 sub-slots.

Figure 6: CSMA Sub-slots per Decision Period.

For each channel chosen during decision period (n) and at the start of a sub-slot (k), a secondary

user (l) will generate independent & uniformly distributed back-off times: τk
l ∈ (0, τ_max). Let (

be the time it takes between sensing the channel idle and switching the parameters to transmit. A

channel capture will occur for user l when τl < τm + (, for all users m ≠ l. Per Maskery, the

probability of l capturing a channel i with N competing users during time n and sub-slot k is:

P(l captures channel i during n,k) = - .1 � /01 �2�345678 9:;1 �2�'� , <$�i� > 		 τ?@A � 	(
													0, 																						<$�i� B 		 τ?@A � 	([8, 9]

The figure below shows a decision period with 3 CSMA sub-slots. When the shortest back-off

time is shorter than the next by more than (, the user with the lowest back-off time captures and

transmits on the channel. Alternatively, when the two back-off times are less than (apart, both

radios sense the channel is idle and transmit on it, thereby causing a collision of signals. This is

similar to the analogy of traffic at an intersection, except that wireless communication has no

brakes. Therefore, ‘routes’ with low-traffic intersections are better.

Figure 7: Channel Capture Options: Collisions, Failures and Successes

Decision Period 'n'

CSMA Subslot 'k' 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2

22

For the example illustrated in Figure 7, the radios can keep the records shown in Table 4 and will

know the back-off times at which each event occurred.

User Success Failure Collision

Radio “A” 1, τ3
a 1, τ2

a 1, τ1
a

Radio “B” 1, τ2
b 1, τ3

b 1., τ1
b

Table 4: Channel Capture Record-Keeping

In his work, Maskery provides a means to infer the number of users competing with user l on a

channel from the success, failure and collision statistics and their respective back-off times. The

inference expands on the probability of l capturing the channel during (n, k) as provided before.

The channel contention equation is difficult to solve, so he uses numerical approximations for his

final formula. Maskery admits that although accurate on average, his formula has a large error in

special cases. Maskery then proposes using the channel contention formula as a seed for Newton-

Raphson iteration, Newton-Raphson’s method being necessary due to the approximation that had

been made for the difficult-to-solve equation.

The author did at first encode the channel contention estimate as was stated in the article but

found it very imprecise. This thesis is a study of computational intelligence techniques for

spectrum decision and not a study of spectrum sensing. Hence, it was decided to assume some

other means of knowledge or enhanced spectrum sensing and thus each radio in this study will

know exactly how many users are competing against ‘l’ for each channel: C�$ �i� = 	∑ &�E�F�EG$.

Thus, there is no estimation or uncertainty; N is the sum of all other players vying for the channel.

In game-theoretic terms, this knowledge will avoid a game of imperfect information. This

assumption is appealing in consideration of the amount of knowledge derived from the quantity

of users. (An error in N propagates significantly to other variables.) The adoption of this

23

assumption renders the performance of the compared decision-making algorithms insensitive to

variances in sensing. Maskery makes the same assumption in his paper as is explained later in the

chapter.

Through more probabilistic derivations, Maskery provides the ability to calculate the expected

throughput (successful attempts) and collisions per channel ‘i’ in decision period ‘n’.

� Throughput [8, 9]:

H�$ �i� = - &�$ �i�1 + C�$ �i� �1 − (<IJK��3:;1 �2�, 				C�$ B 0
																							1,																								C�$ = 0	

� Collisions [8, 9]:

L�$ �i� = 	 &�$ �i�(<IJK + &�$ �i�1 + C�$ �i� [1 − � (<IJK��3:;1 �2� − .1 − (<IJK9�3:;1 �2�]
The throughput and collisions of the formulas above correspond to the expected proportion of

CSMA slots captured or determined to be useless per decision period, consistent with Figure 7.

(Although Figure 6 showed an example of 10 CSMA slots per decision period, Maskery uses 20

CSMA slots per decision period in his study.)

All of the users on the channel should be taken into account for calculations of throughput and

collisions; this is reflected in the formulas by the term �1 + C�$ �i�); where again, C�$ stands for

the number of users competing against ‘l’ for the channel and the addition of 1 accounts for user

‘l’.

Another assumption being made is that δ and τmax are significantly smaller than the total CSMA

time slot such that the throughput is affected only by channel captures. Consequently, the effect

of sensing the channel at the start of each CSMA period is not factored into the throughput

calculation.

24

The collision and throughput formulas provided by Maskery were validated to see the progression

of the performance trackers as C�$ grew. The calculations of the validation table assumed

(/<_ %�� = 0.1, but the pattern holds for other (/<_%�� values.

As seen in Table 5, the throughput acts as expected and decreases as C�$ grows. The collisions

stay almost static with a slight decrease as users grow, which is counter-intuitive. The expectation

is that collisions should grow as users grow. For that reason, an alternate ‘collisions’ formula was

pursued, instead of the one provided by Maskery.

There are finite states for an attempted channel: Either it was captured by one of the users or there

was a collision: H�$ �i� ∗ �1 + C�$ �i�� + LRST�$ �i� = 1. This mathematical expression takes into

account the equal likelihood of channel capture and the requirement that probabilities sum to 1.

Isolating the collision term of the prior mathematical expression and substituting the throughput

for its formula yields a new collisions calculation that will be used in this study instead:

� Collisions

LRST�$ �i� = U&�$ �i� ∗ [1 − .1 − (<IJK9�3:;1 �2�], 				C�$ B 0
																							0,																								C�$ = 0	

A collision rate that satisfies this equation is shown by column Qnew.

N+1 R Q Qnew

1 1 0 0

2 0.41 0.19 0.18

3 0.24 0.19 0.28

4 0.16 0.19 0.34

5 0.12 0.18 0.41

6 0.09 0.18 0.47

Table 5: Throughput and Collision Validation

25

Per the first row of Table 5, for one user on a channel, a throughput of one and no collisions are

expected. The second row shows two users on the channel: 41% of attempts go to user 1, another

41% to user 2, and 18% of attempts are wasted due to collisions. The other rows similarly work

out, with small rounding errors for the 2 decimal places shown. Being satisfied with the results,

the Qnew formula superseded Q in all future calculations. To be clear, all further mentions to Q

will refer to the new formula just derived.

From the performance measurements, a global system utility can be derived. The global utility

will be used to track the overall system health in the graphs of chapter 4. Unfortunately, the

individual radios cannot compute the global utility function from the parameters that are known

to them. Therefore, local utility functions calculated from known parameters will be created to

help maximize the global utility function.

• Global Fitness Function:

V�&�� = min$X�,	…,	Z [%FR \��] ∗ H�$ �&��#$, 	1^_

The global fitness is determined by the worst performing user in the system. For this, the

proportion of demand satisfied for each radio ‘l’ will be found by calculating the quality *

throughput / demand. It does not matter if the ratio is higher than what was needed, so it gets

capped at 1. The minimum is taken to identify the worst performing user. The global fitness will

then be bounded from [0, 1].

As can be seen, the global fitness function requires knowing the demand and the usage pattern of

all users. For that reason, it cannot be calculated by the individual users.

26

To construct an effective local utility, the calculations must use only knowledge that the user has.

Intuitively, each user should attempt to meet but not exceed its demand. It has also been made

clear that each user should avoid congested channels. Therefore, the local fitness function as

obtained and provided by Maskery is a combination of rewards and penalties:

� Reward for reaching demand:

`$[0]a&�$ b = %FR \��]H�$#$, 	1^

� Penalty for achieving excess rate and greedy behavior; to avoid congestion:

`$[1]a&�$ b = − �c1 ���]H�$ − a#$ + 	db�3
; β: Acceptable amount of excess

� Penalty for degradation of channel quality due to collisions; to avoid interference and

jamming:

`$[2]a&�$ b = � 1∑ ���f�g h ���F�L�$ �F�C�$ �F��::j1���kl

� Final Local Utility Function, a weighted sum of the above component utilities:

`$a&�$ b = max{`$[0]a&�$ b + 	o�`$[1]�&�$ � + 	o�`$[2]a&�$ b	, 	0}

From the numerical results of his article, Maskery suggests the system performs well for values

(α1, α2) = (0.2, 1.8) in the final local utility defined above.

In attempting to maximize their local utility, the radios will also be working in a decentralized

collaborative manner to improve the system performance. Similarly to the global fitness function,

the local fitness function is bounded from [0,1].

27

Example: What follows below is a decision period output from the code. Let a decision period

denote 20 CSMA attempts per channel. The rows of each matrix correspond to secondary users

and the matrix columns correspond to the channels. 6 secondary users and 10 channels were used

to mimic Maskery’s graphs (to be seen in chapter four). Some of the calculations are partial

elements of formulas previously presented; such partial calculations are explained in the table.

Quality Vector (��� =

1 3 1 1 2 1 2 1 2 1

User’s Demand �#�� =

(4 2 2 1 1 4) T

Primary Usage Pattern (��) = 0 0 0 0 0 0 1 1 0 0

Secondary Usage Pattern (Xn) =

 1 0 0 0 0 0 0 0 1 0

 0 1 0 0 0 1 0 0 0 0

 0 0 0 0 0 0 0 0 1 0

 1 0 0 1 0 0 0 0 0 0

 0 0 1 0 0 0 0 0 0 1

 0 0 0 0 1 0 0 0 0 0

Number of Users Competing with ‘L’ (Nn) =

 1 1 1 1 1 1 0 0 1 1

 2 0 1 1 1 0 0 0 2 1

 2 1 1 1 1 1 0 0 1 1

 1 1 1 0 1 1 0 0 2 1

 2 1 0 1 1 1 0 0 2 0

 2 1 1 1 0 1 0 0 2 1

Expected Channel Throughput (Rn) = (before applying multiplication with Xl
n)

0.41 0.41 0.41 0.41 0.41 0.41 0 0 0.41 0.41

0.24 1.00 0.41 0.41 0.41 1.00 0 0 0.24 0.41

0.24 0.41 0.41 0.41 0.41 0.41 0 0 0.41 0.41

0.41 0.41 0.41 1.00 0.41 0.41 0 0 0.24 0.41

0.24 0.41 1.00 0.41 0.41 0.41 0 0 0.24 1.00

0.24 0.41 0.41 0.41 1.00 0.41 0 0 0.24 0.41

Expected Collisions (Qn) = (before applying multiplication with Xl
n)

0.19 0.19 0.19 0.19 0.19 0.19 0 0 0.19 0.19

0.27 0 0.19 0.19 0.19 0 0 0 0.27 0.19

0.27 0.19 0.19 0.19 0.19 0.19 0 0 0.19 0.19

0.19 0.19 0.19 0 0.19 0.19 0 0 0.27 0.19

0.27 0.19 0 0.19 0.19 0.19 0 0 0.27 0

0.27 0.19 0.19 0.19 0 0.19 0 0 0.27 0.19

Global_U_temp = (before applying the ‘min’)

(0.30 2.00 0.41 1.41 2.00 .50) T

Local Utilities =

(0 0.80 0.06 0.75 0.80 0.50) T

Table 6: System State example from code

28

In this example, channel qualities were taken from a uniform distribution of values within the

subset {1, 2, 3} and demands from {1, 2, 3, 4} to mimic the original results shown in section 4.1.

It is comforting that the secondary usage patterns produced by the regret tracking algorithms of

section 3.3 do not encroach upon the primary usage pattern. The secondary usage pattern shows

that secondary user #1, corresponding to the first row, will to attempt channels #1 and #9 during

this decision period of 20 CSMA attempts.

The matrix for N shows the number of users rivaling a user for that channel. User #1 is rivaling

only one other user for channel #1. User #1 did not attempt to use channel #2, but if it had it

would have expected to compete with one other user. This pattern holds for all other channels and

all other users.

The values of throughput and collisions are as shown in Table 5. These are conditioned on the

number of competing users shown in the N matrix. Note that Table 5 is indexed according to

total users per channel (N+1) when reading and cross-verifying the values to this example that

uses competition: N. For example, a user attempting to access a channel in competition against

one other user, such as the case for user #1 and channel #1, would expect to access the channel

41% of the time. Had user #2 attempted to access channel #1, it would have competed against

two other users and would expect to access the channel 24% of the time.

As mentioned in Table 6 above, the throughput and collisions matrices correspond to the

formulas before multiplication with the usage pattern. This was done in the code to accommodate

the decision-making algorithms- both regret tracking and PSO-ANN. Both will require evaluating

options not taken in order to determine the future round. The multiplication with the usage must

still occur in order to calculate the utility values which follow.

The ‘Global_U_temp’ matrix corresponds to each secondary user’s contribution to the overall

global utility function, or: ��]H�$ /#$.

29

For user #1 the calculation is:

�1		3		1		1		2		1		2		1		2		1� 	 ∗ 	 �0.41		0		0		0		0		0		0		0		0.41		0�r4 = 0.41 + 2 ∗ 0.414 = 0.3075;
The throughput above now shows the multiplication with the usage pattern of user #1.

The local utilities correspond to the weighted sums of the subcomponents as explained before this

numerical exercise. The local utility for user#1 can be calculated as follows:

• The first utility component, known as the reward for reaching the demand, is 0.3075. This

value was previously calculated in the global utility example.

• The second component is the penalty for achieving excess rate. This value is zero, as no

excess rate was achieved.

• The third component is the penalty for channel quality degradation. User #1 collides with

user #4 19% of the time on channel #1. User #1 also collides 19% of the time with user

#3 on channel #9.

A penalty is expected and can be calculated with:

− 1∑ ���f�g h ���F�L�$ �F�C�$ �F� =�::j1���kl

− \�1 ∗ 0.191 � + 0 + 0 + 0 + 0 + 0 + 0 + 0 + �2 ∗ 0.191 � + 0^1 + 2 = 	�0.19;

In the above calculation, the usage pattern was applied to the collisions read from the ‘Q’

matrix of Table 6. Thus, the reason for the many zeros in the numerator. The denominator

corresponds to the sum of the qualities being damaged by user#1.

• Finally, the local utility is: max{(0.3075 - 0.2*0 - 1.8*0.19), 0} = max{-0.03, 0} = 0;

30

The remaining users local utilities can be similarly verified from the formulas provided in this

chapter. Such verification shows that users #1, #2, and #3 are penalized for their collisions in the

local utility. Users #2 and #5 witness penalties for greediness and user #6 has no penalty.

User#2’s local utility will be briefly reviewed to showcase the greedy penalty.

• The reward for reaching demand corresponds with:

min	�[3 ∗ 1 + 1 ∗ 1]2 , 1� 	= min	�2,1� = 1;
• The greedy penalty for ‘l’=2:

− 1#� ���]H�� − a#� + 	db�3 =	� [�3 ∗ 1 + 1 ∗ 1� − �2 + 0�]32 = 	�1;

In this calculation, d = 0, which signifies zero tolerance for greediness.

• The penalty for channel quality degradation is zero, as this user had no collisions.

• Lastly, the final utility for user #2 is max{(1 - 0.2*1 - 0), 0} = max{0.8, 0} = 0.8;

These numerical examples were provided as instruction to the reader as well as to verify the code

for the model. Additional verification is provided in chapter four.

31

3.2 Dynamic System

The dynamic system examined in this thesis will have 2 primary users, 10 channels, and 6

secondary users to mimic the data prepared by Maskery, who chose simple setups to demonstrate

the algorithms. Two dynamic cases are analyzed, one with slow-varying parameters and one with

fast-varying parameters.

In the slow varying case the parameters that may change are the demand levels of the 6 secondary

users and the location of the 2 primary users. As such, the quantity of parameters changing is 8.

In the fast varying case all of the parameters from the slow varying case may change as well as

the quality of the channels, which is allowed to fluctuate by +/- 10%. Because there are 8

available channels and there were already 8 varying parameters, the quantity of parameters

changing is 16.

For each of these cases, the varying parameters do so independently of the others with probability

of w (Greek letter ‘ro’). Therefore, the expected duration time between a change, provided by

Maskery in [8, 9], is: x�w� = �1	 � �1 − w�#�JzJI{�'�

In order to simulate Maskery’s results, the mean innovation time was taken from the dynamic

graph in the numerical results. Then, the w of the table below was calculated by solving the above

equation for w and inputting the mean innovation time (T). Finally dynamic system simulations

(detailed in chapter 4) were run for each w	as shown in the table.	
Number of Varying Parameters = 8

T 1000 500 250 125 62.5 31.25 15.63 7.81 3.91 1.95

ro 0.0001 0.0003 0.0005 0.001 0.002 0.004 0.008 0.017 0.036 0.086

Number of Varying Parameters = 16

T 1000 500 250 125 62.5 31.25 15.63 7.81 3.91 1.95

ro 6.25E-05 0.0001 0.0003 0.0005 0.001 0.002 0.004 0.009 0.018 0.044

Table 7: Expected times between changes

32

3.3 Comparison Algorithms

The algorithms that follow in the subsections were either designed by Maskery or in turn used as

a comparison in his work and stem from research done in the game theory field [8, 9]. Encoding

these served as more than a performance comparison; the output graphs obtained were compared

to those provided and helped diagnose if the model had been accurately represented and

calculated.

Maskery first proposes his own game theoretic algorithm that is based on “regret tracking”; a

notion in which each user seeks to minimize the regret of not having taken another option

consistently. This method requires computation of every viable option whether taken or not taken

during each decision-making interval. It calculates instantaneous regret values and recursively

sums them so that the regret matrix will be a running average of the regrets over time. This

method utilizes stochastics for the final decision; regrets help to scale the probabilities of taking a

certain option, with a higher regret being more likely.

Other algorithms analyzed are 'best response' and 'fictitious play' which Maskery provided for his

own comparison. These methods do not employ stochastics; they always choose the option that

minimizes the regret. ‘Best response’ does not base its decision upon a running average of

regrets, but rather upon the regret from the immediately previous round. ‘Fictitious play’ chooses

the option that minimizes the running average regret.

Maskery acknowledges that the previous algorithms require knowing the utilities of channels not

used. In turn, the utilities are calculated from the number of users on a channel. Using the channel

contention method will require having attempted the channel to sense back-off times and

outcomes. Maskery states that he assumes additional sensing resources for options not taken in

the above algorithms but provides another ‘modified regret tracking’ method that does not use

additional sensing resources. Instead, it infers the regrets from the existing data of options taken.

33

3.3.1 Regret Tracking

This algorithm will calculate the instantaneous regrets and recursively incorporate them into a

running average regret. This average regret is used to compute the likelihood of choosing a

solution; a higher regret corresponds to a higher likelihood of selection.

Denote Sl as the state space of valid solutions: |�$ = �x	 ∈ �0,1}!": � ∗ �� = 0, ∑ ��F� ≤ %$�∈!" }.

}$ is the number of elements in the state-space |$. Define a Sl x Sl instantaneous regret matrix as:

~Eg$ �&�� = �{&�$ = �}	�`$af, &�'$b − 	`$a�, &�'$b�	
Initialization is done by taking a random action X0

l and then initializing the average regret, θ, as:

�l$ = ~$�&l�. Then &�$ = ���%��g~Eg$ �&l� and ��$ = ~$�&��.
For n = 2, 3, … ; &�$ is chosen with probability:

�a&�3�$ = f	|	&�$ = �, ��$ = �$b 	= 	-max��Eg$, 0� /	�	,																						f	 ≠ �	1 − 	h max��E�$, 0� /	�	�GE ,			f	 = �

Where � B a}$ � 1ba`IJK$ − `I��$ b = 	 a}$ � 1b�1 − 0� = 	 }$ � 1;		Therefore, � = }$ was

chosen to satisfy the inequality.

Next, the average regret is updated from the instantaneous regret as:

��3�$ =	��$ +	���~$�&�3�� � ��$ �.
�� = 1/�R + 1� is used for the static case or a constant in the dynamic case. As such, θ is a

recursive calculation of the arithmetic average in the static case. In the dynamic case, θ is a

recursive calculation of a moving average. As the regret of not having taken another action

grows, so does the likelihood of changing to that decision.

34

3.3.2 Best Response

Best Response is based upon the instantaneous regret and so does not require calculation of θ.

The usage pattern is chosen according to &�3�$ = ���%��g~Eg$ �&�$ �. This algorithm will change

to a different usage pattern if that pattern would have yielded a better decision in the immediately

preceding round. The steps are identical to those of the regret tracking algorithm, but use �� = 1.

3.3.3 Fictitious Play

Fictitious Play is similar to best response, but incorporates some memory to remedy the fallacy of

assuming constant play between turns. Fictitious Play follows the regret tracking algorithm, with

the exception of usage pattern selection. The decision behind the usage pattern follows the

maximum of the average regret matrix: &�3�$ = ���%��g�Eg$ �&�$ �. Probabilities are not

employed as the decision always goes to the highest average regret.

3.3.4 Modified Regret Tracking

Modified Regret Tracking extrapolates data from the options taken and uses it to compute the

regret values for options not taken, with the aim of avoiding the need for additional sensing

resources. Hence it doesn’t require knowing the exact regrets for all values.

Modified regret tracking is similar to regret tracking except it substitutes the instantaneous regret

calculation with an estimate that uses the probabilities as follows:

~Eg$ �&�� = �{&�$ = f} 	.��$ ��� ��$ �f�� 9`$af, &�'$b − 	��&�$ = � 	`$a�, &�'$b

On most rounds, &�$ is chosen from the probability defined in the original regret tracking

algorithm. However, on a few rounds as determined by a uniform random variable, the action is

chosen from the state-space Sl with equal likelihood. This is done to introduce random

exploration.

35

3.4 Neural Network Topology

As mentioned in previous chapters, PSO has the ability to optimize the creation of the artificial

neural network (ANN), but if a priori knowledge of the problem exists, then it is wise to make use

of it. To begin, only one hidden layer (ℎ� was used. As will be seen in chapter 4, this topology

was adequate for the problem. Additional experimentation was foregone given that adding more

layers risked slowing down training, convergence and computational speeds. The specifics of the

ANN used are shown in the figure and table that follow:

Figure 8: Neural Network Topology

Variables Meaning Size

T��F, �� weight term from	�E ⇨ �� Ch x (Ch+1)

T��F, �� weight term from		�E ⇨ &� Ch x Ch

��F�	 Bias term going into �� Ch x 1

��F�	 Bias term going into	&� Ch x 1

Ch Number of Channels Integer

Table 8: ANN Parameters

36

The inputs should be on a similar scale of magnitude as mismatches in scale risk, thereby creating

an imbalance of input strength. For example, the channel quality (kbps ~ Mbps) would be an unfit

choice of input alongside ml. The argument can be made that the weights make up for the

discrepancy, but this is only true if the weights are allowed a large range. Overall, it is best to

scale the inputs to an appropriate level.

To bring channel quality to similar magnitude as ml, it was decided to divide by the radio’s

demand for regularization. This can be conceptualized as Demand Satisfied (DS) per channel. To

improve this concept, the throughput and channel availability (������F��	were included:

�}�$ �F� = H�$ �F� ∗ �������F�� ∗ ���F�	/	#�$;		 Where: ������F� = ~����F��

The input matrix is then: � = [�}�$ �1�				�}�$ �2�			…					�}�$ ����					%$]]. As defined before,

�}�F� is the demand satisfied per channel i and ml is the maximum quantity of channels that the

user may occupy.

The inputs are multiplied by the first layer weights and summed; then, the first level bias is

subtracted. This value is fed to a transfer function and input to the second layer weights and

second layer bias. From here, the top ml outputs are taken as the channel usage pattern. The feed-

forward process previously described can be computed with the following vector math:

� = 	T� ∗ � � �;

� = 	T� ∗ }[�] � �;

& = 	%��[�, %];
S[*] represents the transfer functions commonly used in ANNs previously explained in chapter 2.

The outcomes from the Hard Limit, Log-Sigmoid, Hyperbolic Tangent Sigmoid, and Rectified

Linear Unit (ReLU) functions are presented in chapter 4.

37

3.5 Particle Swarm

The particle swarm’s position matrix is initialized with ANN parameters, namely the weights and

biases for each layer. As such, the swarm actually consists of a network of neural networks. For

visualization, an example swarm is shown in the figure below as a matrix with as many columns

as there are particles and as many rows as there are number of elements. The number of elements

per ANN is as defined in the previous section

Figure 9: Example PSO-ANN Swarm Matrix

38

To begin, the ANN particles matrix is initialized with random values for the weights and biases.

In order to apply the position update formula explained in chapter 2, a velocity matrix of the same

size as the position matrix will be initialized.

���� + 1� = ����� + 	
��� + 1�

Optimization of initialization parameters were evaluated and the results are presented in chapter

4. During initialization, the personal bests are set to the first iteration of ANNs in the particles

matrix.

The input vector to the ANNs is created from the parameters provided in Maskery’s model. The

output layer (usage pattern) is calculated for each ANN particle by applying the input vector and

feeding it forward. A local fitness function is calculated from the usage pattern. Then, each

particle is compared to its personal best. If the new ‘position’ yielded a usage pattern with a

higher fitness, then the personal best is updated with that new ‘position’. These personal bests for

each particle are in turn compared to the global best of the swarm. Similarly, the global best is

updated if any of the other particles performed better.

The figure below shows example matrices for personal and global bests. For elegance of

presentation, the weights and biases below were compressed to vector notation.

Figure 10: PSO-ANN Swarm Personal & Global Bests

39

The velocity was updated per the following formula (introduced in chapter 2) using the known

personal and global bests.

��� + 1� = � ∗
���� + ∗ �� ������� − ������ 	 + � ∗ �� ������� � ������

The effects of varying the inertia coefficient (a) and the acceleration coefficients (b, c) are shown

in chapter 4.

This research covers experiments with and without mutations. When the mutations were enabled,

the global best was compared to the global best of the previous round. Each time these were

equal, the counter increased. Otherwise, it was reset. When the counter was above the mutation

threshold, the bottom-most particles were mutated, or re-initialized per the parameters used

during the initialization.

For each iteration in which the PSO algorithm is run, it returns the global best as the chosen ANN

to be used. The PSO-ANN algorithm is run for each secondary user considered.

40

 CHAPTER IV

IV. FINDINGS

This chapter details the experiments dedicated to configuring the problem, the PSO-ANN

algorithm and the comparisons to regret tracking algorithms. The tests were run over many

decision periods to see the development of the algorithms. Then, they were averaged across

several scenarios to be able to compare results more effectively.

The first experiment was done to verify the model as obtained from Maskery’s publications [8],

[9], essentially it is a comparison of copy-cat output graphs to those from the published articles.

From there, ANN parameters such as transfer function, initialization positions, and use of bias is

observed. Then, a study of PSO Hyper-parameters is undergone, starting with the initialization

velocity. After velocity, an analysis of mutation impact on performance was done and a preferred

mutation interval was selected. This subsection ends with an optimization of coefficients a/b/c for

the velocity update formula. This optimization is done both with and without mutations.

Once the PSO-ANN has been set up, a comparison between Maskery’s methods and PSO-ANN

ensues. The first comparison occurs in a congested environment; the next comparison has some

bandwidth to spare. The final test is an evaluation of scalability of both maximum number of

channels allowed per secondary user (m) as well as scalability of overall system channels (Ch).

The computational speeds provided correspond to an Intel® Core™ i5-7600K CPU @3.80GHz

and will vary for other computers. The metric to note is instead the ratio of the speeds.

41

4.1 Model Verification

The graphs of the figure below show the performance for a static case with non-varying

parameters. None of the regret tracking algorithms achieved quite as promised performance-wise;

they are never the less close to what was expected. Moreover, the shapes of the curves do match

in the equilibrium comparison.

Figure 11: Published Results [8, 9] to Obtained Results – Static case

Modified regret tracking is not plotted in the equilibrium comparison graphs due to large un-

normalized regret values as explained in [8, 9]. Additionally, this large un-normalized regret was

yielding negative probabilities in order to satisfy the probability formula of chapter 3. So, the

42

regret was temporarily normalized before applying in the probability calculations. The large un-

normalized regret values were stored for use across the iterations.

These observations from Figure 11 similarly hold true for the dynamic case that was executed

below. Overall, the shapes of the copy-cat track with the publication, where lesser time between

changes results in less utility. Modified regret tracking underperformed the most, but since regret

tracking is the main focus of comparison, the remaining algorithms are left in for minimum

benchmarking. The solid lines indicate slow varying primary users (w=8 changing parameters)

and the dashed lines indicate fast varying (w=16 changing parameters) as explained in chapter 3.

Figure 12: Published Results to Obtained Results – Dynamic case

43

4.2 ANN Initialization & Fitness Functions

Given a priori knowledge of the fitness functions and channels being bounded from [0, 1], it is

logical to start with weights and biases around that range. Four transfer functions were tested with

four different ranges of initialization PSO ‘positions’ (corresponding with ANN weights and

biases). Solid lines indicate bias in use while the dashed lines of the same color do not use bias. It

is difficult to discern a preferable weight and bias initialization strategy from the graphs but it is

clear that Log-Sigmoid is the best transfer function for this problem. All but Log-Sigmoid show

significant noise and variance despite the 100 scenario averaging. Both TanH and ReLU

experience drop-offs in performance; although it’s possible it could be from an un-perfected PSO.

Based on these graphs, Log-Sigmoid is used as the transfer function for the PSO-ANN.

Figure 13: Performance of Different ANN initialization parameters

%
 D

e
m

a
n

d
 S

a
ti
s
fi
e

d
 (

W
o

rs
t

P
la

y
e

r)

%
 D

e
m

a
n

d
 S

a
ti
s
fi
e

d
 (

W
o

rs
t

P
la

y
e

r)

%
 D

e
m

a
n

d
 S

a
ti
s
fi
e

d
 (

W
o

rs
t
P

la
y
e

r)

%
 D

e
m

a
n

d
 S

a
ti
s
fi
e

d
 (

W
o

rs
t
P

la
y
e

r)

44

For these tests, an unrefined PSO with values of a=b=c=0.1 was used and initial velocities were

taken from a uniform distribution in [-0.2 0.2]. To further hone the initial positions, more

experiments were done. These experiments focus on the first 200 iterations to better see the

initialization. Both static and dynamic cases were plotted as shown in the figures below.

Figure 14: Weight & Bias Verification –Static & Dynamic cases

From the above curves, it was determined that the initialization range for ‘positions’ of weights

and biases would be from the uniform random distribution of [0 1]. As explained before, the solid

lines still indicate use of bias whereas dashed lines did not use bias. A strategy for bias was

inconclusive and so it will continue to be studied in the following subsections.

0 50 100 150 200

Decision Period Index

0

0.1

0.2

0.3

0.4

0.5

0.6

Performance Comparison of Log-Sigmoid

Static Env; Number of Scenarios = 100

[0 1]

[-1 1]

[-0.2 1]

[-0.5 0.5]

0 50 100 150 200

Decision Period Index

0

0.05

0.1

0.15

0.2

0.25

0.3

Equilibrium Comparison of Log-Sigmoid

Static Env; Number of Scenarios = 100

[0 1]

[-1 1]

[-0.2 1]

[-0.5 0.5]

45

4.3 PSO Hyper-parameters: Initial Velocity, Mutations and Coefficients

4.3.1 Velocity Training

The initialization velocity [Vstart, Vend] was allowed to range from [-1, 1], with Vstart <= Vend. The

first experiment at 200 decisions was inconclusive. By the 200th decision, much of the benefit

provided by the initialization velocity were negligible. Furthermore, the effect of the unrefined

a/b/c coefficients could cloud or interfere with the results. For these reasons it was decided to

focus on the first 10 decisions in the experiment below.

Figure 15: Initial Velocity Performance (3D & Top-Down views)

The heights on the left graph show the best outcomes received. Since the heights could be

difficult to distinguish, colors and a top down view are provided as well. There are several

adequate ranges but the absolute maximum occurred for the uniform random distribution within

[0.6 0.8]. Consequently, this range was chosen to move forward.

46

4.3.2 Mutation Interval Training:

20% of the particle population was allowed to mutate whenever the global best had not improved

in a certain amount of decisions. This threshold will be referred to as the mutation interval. The

mutation interval was allowed the range: [0, 10, 20, … , 100] with an interval of 0 designating no

mutations. The outcome is shown below.

Figure 16: Mutation Interval to Demand Satisfied Comparison

As is readily observable, the results are overall inconclusive, with no pattern discernable. This is

possibly as a result of unrefined PSO coefficients. Thus, the subsections that follow show the

fine-tuning of a/b/c PSO coefficients with and without mutations. For the mutations case, an

interval of 50 decisions was taken because it ranked highest in this experiment, in terms of

average demand satisfied.

0 20 40 60 80 100

Mutation Interval

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
v
e
ra

g
e
 D

e
m

a
n
d
 S

a
ti
s
fi
e
d

Average Demand Satisfied

200 Decisions, 200 Scenarios

Max of 0.65212 at Interval=50

47

4.3.3 PSO Coefficients a/b/c without mutations

The experiments to refine the a/b/c coefficients evaluate and average the proportion of demand

satisfied for different a/b/c values. This is similar to the velocity experiment but with an extra

variable requiring optimization. The discrete range given to ‘a’ was [0.25, 0.5, 0.75, 1];

coefficients b and c were allowed the range [0, 0.2, 0.4, … , 2].

Figure 17: Comparison of PSO coefficients: a, b, c. (3D & Top Down view)

From the experiment above, several solutions proved viable, especially for the planes where

a=0.75 and 1. The top 4 performing combinations of a/b/c were chosen to move forward to the

verification experiments of the next page.

48

Figure 18: PSO Coefficients verification –Static & Dynamic cases

The above experiments show the performance of the different coefficients in static and dynamic

cases. The solid lines use bias and the dashed lines do not. 0.75/0.2/0.4 with bias was chosen to

move forward for its performance in the static case. 0.75/0.2/0.4 without bias was also chosen due

to its performance in the dynamic case and runner-up status in the static case.

49

4.3.4 PSO Coefficients a/b/c with mutations

The exercise shown below is identical to that of the prior subsection except that mutations were

enabled with an interval of 50 decisions.

Figure 19: Comparison of PSO coefficients: a, b, c. (3D & Top Down view)

Observe that the mutations case favors the a=1 plane over the a=0.75 plane as opposed to the

non-mutations case which favored a=0.75 over the a=1 plane. This is surprising because the ‘a’

coefficient corresponding to the inertial element of the velocity is usually associated with

exploration as opposed to ‘b’ & ‘c’ who are exploitation. Since mutations are already introducing

exploration, it was logical to assume less exploration would be needed from the coefficients as

compared to the non-mutations experiment.

As in the prior subsection the four best outcomes moved forward to verification as shown next.

50

Figure 20: PSO Coefficients verification –Static & Dynamic cases

As was used before, the solid lines indicate presence of bias and dashed lines represent no bias.

From this experiment, 1/0.4/0.6 without bias was chosen to move forward for its performance in

the static case. 1/0.6/0.4 with bias was also chosen for its runner up performance in the static case

and its stability in the dynamic case.

0 200 400 600 800 1000

Mean innovation time T(ro)

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

%
 D

e
m

a
n
d
 S

a
ti
s
fi
e
d
 (

W
o
rs

t
P

la
y
e
r)

PSO Hyper-Parameters Performance Comparison

Dynamic Env; Number of Scenarios = 100

1/0.6/0.4

1/0.4/0.6

0.75/0.2/0.4

51

4.4 Comparison of Regret Tracking algorithms to PSO-ANN

From the prior subsections, the following combinations of PSO and ANN hyper-parameters are

going to be used and are designated in the legends as shown in the table. Log-Sigmoid transfer

function, initial position ranges in the uniform distribution of [0, 1] and velocity ranges from [0.6,

0.8] are common to all. Dashed lines now indicate fast users in the dynamic case (w=16).

Legend PSO Coeff (a) PSO Coeff (b) PSO Coeff (c) Bias Used

No Mut #1 0.75 0.2 0.4 Yes

No Mut #2 0.75 0.2 0.4 No

Mut #1 1 0.4 0.6 No

Mut #2 1 0.6 0.4 Yes

Table 9: Legends for PSO-ANN Parameters

The first experiment is a congested environment where demands are pulled from a uniform

distribution on {1, 2, 3, 4} and qualities from {1, 2, 3}. This was provided by Maskery in his

published works. According to statistics, the average demand expected per user is 2.5; the system

demand expected is 15 with 6 secondary users. Similarly, the quality expected per channel is 2;

the expected system quality is 16 from 10 channels of which 2 are occupied by primary users.

The second experiment modifies the first in that it allows the qualities to range the uniform

distribution of {1, 2, 3, 4}. As such, the expected system quality is 20 to fulfill the expected

system demand of 15. Therefore, the experiment occurs in a non-congested environment.

The third experiment evaluates the scalability of the regret tracking and PSO-ANN algorithms. It

does so by increasing the maximum allowed channels per secondary user to 3 and 4. Then, it sets

this value back to 2 and increases the available channels in the system to 15 and 20. The main

focus of this experiment is computational complexity but performance graphs are provided also.

The performance graphs now include a fast-varying dynamic graph for ro = 0.05 and w=16.

52

4.4.1 Congested Environment

In this congested environment, PSO-ANN outperforms the regret tracking algorithms

considerably. The worst player meets 60% of their demand within just 30~40 decisions using

PSO-ANN, whereas regret tracking is nearing 60% around decision 200. All PSO-ANN

combinations perform about equally well and converge rather quickly.

Figure 21: PSO-ANN & Maskery in static environment (congested)

PSO-ANN outperforms regret tracking in the dynamic cases of the following page also, with

higher utilities being achieved. Although the fast-varying case of ro=0.05 is less than ideal it is

understandable given the speed at which changes are occurring.

Regret tracking outperforms PSO-ANN in computational speeds, the latter being 1.79 times

slower.

53

Figure 22: PSO-ANN & Maskery in dynamic environments (congested)

Figure 23: PSO-ANN & Maskery for ro=0.05 & w=16 (congested)

Computational Speed: 264 seconds for PSO-ANN & 143 seconds for Maskery. 1.79:1 ratio.

54

4.4.2 Non-Congested Environment

PSO-ANN outperforms regret tracking once again in the non-congested environment. It is even

more prominent here, where PSO-ANN achieves at least 80% of the worst player’s demand in

about 30~40 decisions. Regret tracking is still at about 70% at 200 decisions in.

Figure 24: PSO-ANN & Maskery in a static environment (non-congested)

The same observation holds for the dynamic cases of the following page. PSO-ANN is at about

80% utility even for very fast changes. Regret tracking seems to max out at 70% for slower

changes and does more poorly for lower T(ro). The last dynamic case has PSO-ANN at an

average 60% where regret tracking is around 40%.

Regret tracking outperforms PSO-ANN in computational speeds once more, PSO-ANN being

slower by a factor of 1.82.

55

Figure 25: PSO-ANN & Maskery in dynamic environments (non-congested)

Figure 26: PSO-ANN & Maskery for ro=0.05 & w=16 (non-congested)

Computational Speed: 265 seconds for PSO-ANN & 145 seconds for Maskery. 1.82:1 ratio.

56

4.4.3 Evaluating scalability

Updating the maximum number of channels that the radio may occupy (m) from 2 to 3 yielded

computational speeds of 253.99 seconds for PSO-ANN and 524.75 seconds for Maskery. Or a

ratio of 1:2.08 in favor of PSO-ANN. Updating m = 4 and running only 5 scenarios instead of

100 yielded 19.38 seconds on PSO-ANN & 489.97 seconds for Maskery. A surprising 1:25 ratio

in favor of PSO-ANN.

The graphs that follow correspond to m=3 and eventually both converge to their maximums from

the m=2 non-congested case. It can be seen from the curve shapes that it takes both a few more

decision periods to learn. As in the cases before, PSO-ANN outperforms regret tracking in utility,

speed and convergence.

Figure 27: PSO-ANN & Maskery Scalability for ‘m’ (static)

57

Figure 28: PSO-ANN & Maskery Scalability for ‘m’ (dynamic)

Figure 29: PSO-ANN & Maskery Scalability for ‘m’ (ro=0.05)

58

The following experiments set ‘m’ back to 2 but increased the total number of channels to 15. For

this case the computational speeds were 355 seconds for PSO-ANN and 294 seconds for regret

tracking. This is a small ratio of 1.19:1 in favor of regret tracking. When the number of channels

increased to 20 the new speeds were 493.27 seconds for PSO-ANN and 895.70 seconds for

Maskery. This corresponds to a 1:1.81 ratio now in favor PSO-ANN. A hybrid ‘m’=3 with 15

channels was attempted but could not run regret tracking due to memory constraints.

The graphs below are for 15 channels. PSO-ANN now hits 100% utility and does so quickly

given all the quality available in the system. Surprisingly, regret tracking does not achieve 100%

even at 200 iterations. PSO-ANN outperforms regret tracking in the dynamic cases also,

providing 80% satisfaction in the fast varying case of ro=0.05 to Maskery’s 60%.

Figure 30: PSO-ANN & Maskery Scalability for ‘Ch’ (static)

59

Figure 31: PSO-ANN & Maskery Scalability for ‘Ch’ (dynamic)

Figure 32: PSO-ANN & Maskery Scalability for ‘Ch’ (ro=0.05)

60

 CHAPTER V

V. CONCLUSION

From the findings it was concluded that compared to regret tracking algorithms, PSO-ANN has

shown to converge faster and adapt to dynamic environments better. The proportion of demand

satisfied was consistently higher in PSO-ANN for every test environment evaluated.

In small simplified networks the regret tracking algorithms compute decisions faster by simply

computing every option. However, regret tracking struggles to scale as the problem grows,

presenting speed and memory concerns. Regret tracking scales better to number of channels

increasing than number of channels allowed per user. Within practical applications, system

channel growth is much more likely than allowable channels per user growing, since the latter

corresponds to adding transceivers. Nevertheless, the limitation exists and can be a vulnerability.

PSO-ANN handles increases in channels per user without any computational burden but has some

burden as the number of channels grow. This is due to the ANN weights being proportional to the

number of channels. Overall, PSO-ANN is preferable in larger complex systems.

The regret tracking algorithm requires an all-knowing presence in order to compute every option,

which is heavy on spectrum sensing. PSO-ANN only requires enough sensing to evaluate a

handful of particle options. As mentioned in chapter 1, computers are getting stronger and smaller

(more mobile) whereas adding more sensing could make it less mobile. For all these reasons

PSO-ANN is strongly recommended over regret tracking for dynamic spectrum access.

61

5.1 Future Work

The recommended next step is to expand the particle swarm to incorporate some of the hyper-

parameters of the ANN that were painfully tuned in chapter 4. As of now it the algorithm is

optimizing the weights of an ANN whose topology was created with a priori knowledge. This

expanded PSO could include the selection quantity of hidden layers, neurons per layer, and

transfer function.

After generalizing the algorithm, more inputs could be included and the ANN could optimize

itself to use them or not. An example of an additional input is computation time, to incentivize

using the minimum amount of neurons and decrease complexity. Another input worth exploring

is the hand-off time to switch parameters, this would help to inject stability and deter changes

over minimal transmission improvements.

Once the model creation has been generalized by the PSO, it is worth expanding the model and

fitness functions to include the hardware side for a physical radio, a specification sheet is

provided in [18].

This research could be expanded to a centralized network where a hub or base station would

monitor and direct the traffic. In this case, the hub could receive requests from several secondary

users and determine the access and routing for each one. Some other systems that exhibit similar

characteristics are Wi-Fi, internet of things, self-piloting vehicle, GPS route calculations, routers,

fiber multiplexors, etc.

The last improvement recommended is expanding the fitness functions to include an economic

analysis. Doing so would bring a better sense of reality to the problem versus the more theoretical

and hypothetical nature of it at this stage.

62

REFERENCES

[1] United States General Accounting Office, “Spectrum Management: FCC’s Licensing

Approach in the 11, 18, and 23 Gigahertz Bands Currently Supports Spectrum

Availability and Efficiency” Report to Congressional Requesters, GAO-13-78R,

November 2012. [Online]

[2] United States General Accounting Office, “Spectrum Management. Better Knowledge

Needed to Take Advantage of Technologies That May Improve Spectrum Efficiency.”

Report to Congressional Requesters, GAO-04-666, May 2004. [Online]

Available: https://www.gao.gov/new.items/d04666.pdf. [Accessed: June 3, 2018]

[3] President’s Council of Advisors on Science and Technology, “Realizing the Full

Potential of Government-Held Spectrum to Spur Economic Growth.” Report to the

President, July 2012. [Online]

Available: https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/

pcast_spectrum_report_final_july_20_2012.pdf. [Accessed: June 3, 2018]

[4] Barack Obama, “Presidential Memorandum: Unleashing the Wireless Broadband

Revolution.” Memorandum for the Heads of Executive departments and Agencies. June

28, 2010. [Online]

63

 Available: https://obamawhitehouse.archives.gov/the-press-office/presidential-

memorandum-unleashing-wireless-broadband-revolution. [Accessed: June 3, 2018]

[5] Jason Furman and John P. Holdren, “Making the Most of the Wireless Spectrum.” Blog.

July 20, 2012. [Online]

 Available: https://obamawhitehouse.archives.gov/blog/2012/07/20/making-most-

wireless-spectrum [Accessed: June 3, 2018]

[6] Q. Zhao and B. Sadler, “A survey of dynamic spectrum access," IEEE Signal Processing

Mag., May 2007. {pp. 2}

[7] Roy Rubenstein, “Radios Get Smart” Feb. 1, 2007 [Online]

Available: https://spectrum.ieee.org/consumer-electronics/standards/radios-get-smart

[Accessed Dec. 13, 2014]

[8] M. Maskery, V. Krishnamurthy, Q. Zhao, "Decentralized dynamic spectrum access for

cognitive radios: cooperative design of a non-cooperative game", IEEE Trans. Commun.,

vol. 57, no. 2, pp. 459-469, 2009.

[9] Hossain, Ekram, and Vijay K. Bhargava, eds. Cognitive wireless communication

networks. Springer Science & Business Media, 2007.

[10] FCC, “Spectrum policy task force report, ET Docket No. 02-155,” Technical Report

Series, November 2002.

[11] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, S. Mohanty, "Next generation/dynamic spectrum

access/cognitive radio wireless networks: A survey", Comput. Netw., vol. 50, no. 13, pp.

2127-2159, 2006.

[12] K.J. Ray Liu, “Cognitive Radio and Game Theory” Mar. 22, 2011 [Online]

64

 Available: https://spectrum.ieee.org/telecom/wireless/cognitive-radio-and-game-theory

[Accessed Dec. 12, 2014]

[13] Tyler Renelle, “Hyperparameters 1” Podcast minutes 36-44, Jan. 1,2018 [Online]

Available: http://ocdevel.com/mlg/27 [Accessed: June 4 2018]

[14] W. Duch, & N. Jankowski. “Transfer functions: hidden possibilities for better neural

networks.” In ESANN (pp. 81-94) April, 2001.

[15] Xin Yao, "Evolving artificial neural networks," in Proceedings of the IEEE, vol. 87, no.

9, pp. 1423-1447, Sep 1999.

[16] D. Bushey, “RAYTHEON AWARDED $4 MILLION CONTRACT TO CONTINUE

DEVELOPMENT OF NEXT GENERATION WIRELESS COMMUNICATIONS

SYSTEM FOR DARPA” Raytheon: Investors: News Release. [Online]

Available at: http://investor.raytheon.com/phoenix.zhtml?c=84193&p=irol-

newsArticle&ID=449383 [Accessed 17 Jul. 2018].

[17] Share Spectrum Company, “Shared Spectrum Company Awarded Contract by

NOAA/NESDIS” SSC News. May 22, 2018. [Online]

Available at: http://www.sharedspectrum.com/wp-content/uploads/SSC-SPRES-Press-

Release-Task-6-2018.pdf [Accessed 17 Jul. 2018].

[18] Shared Spectrum Company, “Reference Design Specifications – DSA Radio” August 12,

2010. [Online]

Available: http://www.sharedspectrum.com/wp-content/uploads/SSC-DSA-2100-

Reference-Spec-Sheet.pdf [Accessed: July 16, 2018]

65

[19] F. Perich, E. Morgan, O. Ritterbush, M. McHenry, & S. D’Itri. "Efficient dynamic

spectrum access implementation." MILITARY COMMUNICATIONS CONFERENCE,

2010-MILCOM 2010. IEEE, 2010.

[10] F. Granelli, P. Pawelczak, V. Prasad, K. Subbalakshmi, R. Chandramouli, J. Hoffmeyer,

& H.S. Berger. “Standardization and Research in Cognitive and Dynamic Spectrum

Access Networks: IEEE SCC41 Efforts and Other Activities,” IEEE Communications

Magazine, vol. 48, no. 1, pp. 71-79, Jan. 2010 (Copyright IEEE): An update on the

activities of SCC41 working groups [posted: 22 January 2010]

[21] P. F. Ribeiro, & W. K. Schlansker, “A hybrid particle swarm and neural network

approach for reactive power control.” IEEE 2006

[22] Beatriz A. Garro and Roberto A. Vázquez, “Designing Artificial Neural Networks Using

Particle Swarm Optimization Algorithms,” Computational Intelligence and Neuroscience,

vol. 2015, Article ID 369298, 20 pages, 2015. [Online]

Available: https://doi.org/10.1155/2015/369298. [Accessed: April 1, 2018]

[23] C. Wang, Z. Shi, & F, Wu, “An Improved Particle Swarm Optimization-Based Feed-

Forward Neural Network Combined with RFID Sensors to Indoor Localization.”

Information 2017, 8, 9.

[24] K. Stanley, J. Clune, “Welcoming the Era of Deep Neuroevolution” Dec. 18 2017

[Online] Available: https://eng.uber.com/deep-neuroevolution/ [Accessed: June 5, 2018]

 [25] I. Khan, A. Waqar, S. Wasi, & S. Khadim. "Comparative Analysis of ANN Techniques

for Predicting Channel Frequencies in Cognitive Radio." INTERNATIONAL JOURNAL

OF ADVANCED COMPUTER SCIENCE & APPLICATIONS 8.12 (2017): 296-303.

66

APPENDICES

The programming suite used for this research is MATLAB, created by MathWorks. The code was

developed and can run on MATLAB2012 but about 30% improvement in computational speeds

was obtained after upgrading to a trial of MATLAB2018. Moreover, to run the code provided, a

parallel computing add-on is recommended. This add-on allows MATLAB to run on all the cores

of the computer, significantly speeding up run-time even further. If the parallel computing add-on

is not available, replace the ‘parfor’ loop in the code with a regular ‘for’ loop.

Each subsection of the appendices corresponds to a MATLAB script, known as ‘.m file’ given the

‘.m’ extension. Within a script, many functions may reside but usually at least one function of the

same name as the script. Sometimes supporting functions may be located in a script as well, as

long as these functions are not being called outside of that file.

Script ‘Main’ was used to setup the graphs of section 4.4 while script ‘Optimize_PSO_ANN’ was

used for the experiments in 4.2-4.3. ‘PSO_ANN_FullSimulation’ is used to create PSO-ANN

graphs used by both ‘Main’ and ‘Optimize_PSO_ANN’.

‘MaskerySystem’ and ‘Fitness_Func’ are scripts that follow the outline of the static and dynamic

systems presented in the methodology chapter, sections 3.1-3.2. ‘MaskeryDecision’ is the where

the regret tracking algorithms reside that correspond to the theory presented in section 3.3.

‘PSO_ANN’ and ‘ANN_CalcOutput’ are the functions that contain the PSO-ANN algorithm. The

former follows the PSO explanation of section 3.5 and the latter is a feed-forward computation of

the neural network explained in 3.4.

67

Main.m

clc;

clear;

close all;

global SecUser PriUser NumChannels m K

global Tmax delta beta alpha1 alpha2

global NumScenarios DecisionPeriodIndex ro w

global delta_exploration

%Initialize constants

SecUser = 6; %Total # of Cog Radio Users

PriUser = 2;

NumChannels = 10;

m = 2; %num of transceivers on radio.

K = 20; %CSMA attempts per decision period

Tmax = 0.00001; %10us max back-off time for CSMA

delta = Tmax/10;

beta = 0; %Grace for exceeding demand

alpha1 = 0.2;

alpha2 = 1.8;

ro = 0; %Zero Means Do Nothing - Static Environment

w = 8;

%Global parameters for PSO-ANN

global Num_Elements NumParticles

global ANN_TransferFunctions % 1=HardLim; 2=Log-Sigmoid; 3:Tanh-Sigmoid; 4:ReLU;

global ANN_Bias % 1= Use Bias; 2= Do not use bias;

global Init_Position_Range Init_Velocity_Range

global PSO_W MutResetInterval% PSO_W = [a1 a2 b1 b2 c1 c2];

NumParticles = 5;

Num_Elements = NumChannels*(NumChannels+1)+(NumChannels^2)+2*NumChannels; %w1

+ w2 + 2*bias

68

MutResetInterval = 50;

Init_Velocity_Range = [0.6 0.8];

PSO_W = [0.75 0.2 0.6];

ANN_TransferFunctions = 2;

ANN_Bias = 1;

Init_Position_Range = [0 1];

Maskery_Static = 1;

Maskery_Dynamic = 0;

ANNPSO_Static = 0;

ANNPSO_Dynamic = 0;

% DecisionPeriodIndex = 1000; % Full

% NumScenarios = 100; % Full

DecisionPeriodIndex = 50; %Short For Testing

NumScenarios = 3; %Short For Testing

delta_exploration = 0.01;%Mod regret tracking

ANN_TransferFunctions = 2;

Init_Position_Range = [0 1];

Init_Velocity_Range = [0.6 0.8];

DecisionPeriodIndex = 3000;

NumScenarios = 100;

NumChannels = 15;

MutResetInterval=-50;

Num_Elements = NumChannels*(NumChannels+1)+(NumChannels^2)+2*NumChannels;

m = 2; %num of transceivers on radio.

tic

PSO_ANN_FullSimulation(1)

PSO_ANN_FullSimulation(2)

PSO_ANN_FullSimulation(3)

toc

69

tic

Maskery_FullSimulation(1)

Maskery_FullSimulation(2)

Maskery_FullSimulation(3)

toc

SecUser = 6; %Total # of Cog Radio Users

PriUser = 2;

NumChannels = 15;

Num_Elements = NumChannels*(NumChannels+1)+(NumChannels^2)+2*NumChannels;

m = 2; %num of transceivers on radio.

DecisionPeriodIndex = 10; %Short For Testing

NumScenarios = 3; %Short For Testing

tic

PSO_ANN_FullSimulation(1)

PSO_ANN_FullSimulation(2)

PSO_ANN_FullSimulation(3)

toc

tic

Maskery_FullSimulation(1)

Maskery_FullSimulation(2)

Maskery_FullSimulation(3)

toc

fprintf('\n \n')

70

function Maskery_FullSimulation(SimulationType)

global NumScenarios DecisionPeriodIndex ro w

global LocalU_Avg LocalU_min

if SimulationType == 1

 fprintf('\n Running Maskery Static ...\n')

 [Global_U_Regret, MaxRegVal_Regret] = MaskerySystem(1);

 [GlobalU_BestResponse, MaxRegret_BestResponse] = MaskerySystem(2);

 [GlobalU_FictPlay, MaxRegret_FictPlay] = MaskerySystem(3);

 [Global_U_ModRegret, ~] = MaskerySystem(4);

 figure('rend','painters','pos',[1000 100 440 640])

 subplot(2,1,1);

 hold on

 plot(Global_U_Regret, 'b');

 plot(GlobalU_BestResponse,'g');

 plot(GlobalU_FictPlay,'r');

 plot(Global_U_ModRegret, 'k');

 hold off

 title({'Maskery Performance Comparison', ['Static Env; Number of Scenarios = '

num2str(NumScenarios)]}, 'FontSize',14)

 xlabel('Decision Period Index', 'FontSize',10);

 ylabel('Proportion of Demand Satisfied (Worst Player)', 'FontSize',10)

 ylim([0 1]);

 legend('Regret Tracking', 'Best Response', 'Fictitious Play', 'Modified Regret', 'Location', 'Best')

 legend boxoff

 subplot(2,1,2);

 hold on

 plot(MaxRegVal_Regret, 'b');

 plot(MaxRegret_FictPlay,'r');

 plot(MaxRegret_BestResponse,'g');

 % plot(MaxRegVal_ModRegret, 'k');

71

 hold off

 title({'Maskery Equilibrium Comparison', ['Static Env; Number of Scenarios = '

num2str(NumScenarios)]}, 'FontSize',14)

 xlabel('Decision Period Index', 'FontSize',10);

 ylabel('Maximum Regret Value (Worst Player)', 'FontSize',10)

 ylim([0 1]);

 legend('Regret Tracking','Fictitious Play', 'Best Response', 'Location', 'Best')

 legend boxoff

end

if SimulationType == 2

 % Call Maskery a few times and plot demand satisfied vs mean innovation time

 T_ro = [1000 500 250 125 62.5 31.25 15.625 7.8125 3.90625 1.953125];

 ro_w8 = [0.000125055 0.000250219 0.000500877 0.001003518 0.002014142 ...

 0.004057146 0.008233394 0.016975005 0.036289442 0.085776295];

 D8_Global_U_Regret = zeros(10,DecisionPeriodIndex);

 D8_GlobalU_BestResponse= zeros(10,DecisionPeriodIndex);

 D8_GlobalU_FictPlay= zeros(10,DecisionPeriodIndex);

 D8_Global_U_ModRegret= zeros(10,DecisionPeriodIndex);

 fprintf('\n Running Maskery Dynamic w=8 ...\n')

 for i = 1:10

 ro = ro_w8(i);

 [D8_Global_U_Regret(i, :), ~] = MaskerySystem(1);

 [D8_GlobalU_BestResponse(i, :), ~] = MaskerySystem(2);

 [D8_GlobalU_FictPlay(i, :), ~] = MaskerySystem(3);

 [D8_Global_U_ModRegret(i, :), ~] = MaskerySystem(4);

 end

72

 w = 16;

 % Call Maskery a few times and plot demand satisfied vs mean innovation time

 ro_w16 = [6.25293e-5 0.000125117 0.00025047 0.000501885 0.001007578 ...

 0.002030635 0.004125206 0.00852383 0.018312393 0.043849539];

 D16_Global_U_Regret = zeros(10,DecisionPeriodIndex);

 D16_GlobalU_BestResponse= zeros(10,DecisionPeriodIndex);

 D16_GlobalU_FictPlay= zeros(10,DecisionPeriodIndex);

 D16_Global_U_ModRegret= zeros(10,DecisionPeriodIndex);

 fprintf('\n Running Maskery Dynamic w=16 ...\n')

 for i = 1:10

 ro = ro_w16(i);

 [D16_Global_U_Regret(i, :), ~] = MaskerySystem(1);

 [D16_GlobalU_BestResponse(i, :), ~] = MaskerySystem(2);

 [D16_GlobalU_FictPlay(i, :), ~] = MaskerySystem(3);

 [D16_Global_U_ModRegret(i, :), ~] = MaskerySystem(4);

 end

 figure('rend','painters','pos',[1500 100 475 425])

 hold on

 plot(T_ro, mean(D8_Global_U_Regret, 2), 'b');

 plot(T_ro, mean(D8_GlobalU_BestResponse, 2),'r');

 plot(T_ro, mean(D8_GlobalU_FictPlay, 2),'g');

 plot(T_ro, mean(D8_Global_U_ModRegret, 2), 'k');

 plot(T_ro, mean(D16_Global_U_Regret, 2), 'b:');

 plot(T_ro, mean(D16_GlobalU_BestResponse, 2),'r:');

 plot(T_ro, mean(D16_GlobalU_FictPlay, 2),'g:');

 plot(T_ro, mean(D16_Global_U_ModRegret, 2), 'k:');

 hold off

 title({'Maskery Performance Comparison', ['Dynamic Env; Number of Scenarios = '

num2str(NumScenarios)]}, 'FontSize',14)

 xlabel('Mean innovation time T(ro)', 'FontSize',12);

73

 ylabel('Proportion of Demand Satisfied (Worst Player)', 'FontSize',12)

 ylim([0 1]);

 legend('Regret Tracking','Best Response', 'Fictitious Play', 'Modified Regret', 'Location', 'Best')

 legend boxoff

end

if SimulationType == 3

 w = 16;

 ro = 0.05;

 fprintf(['\n Running Maskery Dynamic; ro = ' num2str(ro) ' ...\n'])

 [Global_U_Regret, MaxRegVal_Regret] = MaskerySystem(1);

 [GlobalU_BestResponse, MaxRegret_BestResponse] = MaskerySystem(2);

 [GlobalU_FictPlay, MaxRegret_FictPlay] = MaskerySystem(3);

 [Global_U_ModRegret, ~] = MaskerySystem(4);

 figure('rend','painters','pos',[1000 100 440 640])

 subplot(2,1,1);

 hold on

 plot(Global_U_Regret, 'b');

 plot(GlobalU_BestResponse,'g');

 plot(GlobalU_FictPlay,'r');

 plot(Global_U_ModRegret, 'k');

 hold off

 title({'Maskery Performance Comparison', ['Dynamic Env; ro = ' num2str(ro) ' w = '

num2str(w)]}, 'FontSize',14)

 xlabel('Decision Period Index', 'FontSize',10);

 ylabel('Proportion of Demand Satisfied (Worst Player)', 'FontSize',10)

 ylim([0 1]);

 legend('Regret Tracking', 'Best Response', 'Fictitious Play', 'Modified Regret', 'Location', 'Best')

 legend boxoff

 subplot(2,1,2);

 hold on

74

 plot(MaxRegVal_Regret, 'b');

 plot(MaxRegret_FictPlay,'r');

 plot(MaxRegret_BestResponse,'g');

 % plot(MaxRegVal_ModRegret, 'k');

 hold off

 title({'Maskery Equilibrium Comparison', ['Dynamic Env; ro = ' num2str(ro) ' w = '

num2str(w)]}, 'FontSize',14)

 xlabel('Decision Period Index', 'FontSize',10);

 ylabel('Maximum Regret Value (Worst Player)', 'FontSize',10)

 ylim([0 1]);

 legend('Regret Tracking','Fictitious Play', 'Best Response', 'Location', 'Best')

 legend boxoff

end

if SimulationType == 4

 fprintf('\n Running Maskery Static "2" ...\n')

 [Global_U_Regret, ~] = MaskerySystem(1);

 hold on

 plot(Global_U_Regret,'r');

 plot(LocalU_Avg, 'b')

 plot(LocalU_min, 'g')

 hold off

 title({'Performance Comparison of Maskery Techniques', '(Static Environment)', ['Number of

Scenarios = ' num2str(NumScenarios)]}, 'FontSize',14)

 xlabel('Decision Period Index', 'FontSize',12);

 ylabel('Proportion of Demand Satisfied (Worst Player)', 'FontSize',12)

 ylim([0 1]);

 legend('Global U', 'Avg Local U', 'Min Local U', 'Location', 'Best')

 legend boxoff

end

end

75

Optimize_PSO_ANN.m

function Optimize_PSO_ANN

global SecUser PriUser NumChannels delta Tmax

global NumScenarios DecisionPeriodIndex ro w m

global beta alpha1 alpha2;

%Initialize constants

SecUser = 6; %Total # of Cog Radio Users

PriUser = 2;

NumChannels = 10;

m = 2; %num of transceivers on radio.

K = 20; %CSMA attempts per decision period

%K = 2; %CSMA attempts per decision period

Tmax = 0.00001; %10us max back-off time for CSMA

delta = Tmax/10;

beta = 0; %Grace for exceeding demand

alpha1 = 0.2;

alpha2 = 1.8;

ro = 0; %Zero Means Do Nothing - Static Environment

w = 8;

%Global parameters for PSO-ANN

global Num_Elements NumParticles

global ANN_TransferFunctions % 1=HardLim; 2=Log-Sigmoid; 3:Tanh-Sigmoid; 4:ReLU;

global ANN_Bias % 1= Use Bias; 2= Do not use bias;

global Init_Position_Range Init_Velocity_Range

global PSO_W % PSO_W = [a1 a2 b1 b2 c1 c2];

global MutResetInterval % 0= off; # = how many intervals of GB=GB_old before mutation

global PSO_TurnOff

NumParticles = 3;

Num_Elements = NumChannels*(NumChannels+2)+(NumChannels^2)+2*NumChannels; %w1

+ w2 + 2*bias

76

MutResetInterval = 0; %(NumScenarios/6);

%Setting these in the event I comment things out. They should default to best findings

ANN_TransferFunctions = 2;

ANN_Bias = 1;

Init_Position_Range = [0 1];

PSO_W = [0.75 0.2 0.4];

Init_Velocity_Range = [0.6 0.8];

 DecisionPeriodIndex = 2%00; %Short For Testing

 NumScenarios = 1%0%0; %Short For Testing

t = clock;

PSO_W = [0.1 0.1 0.1]; %Original for testing

Init_Velocity_Range = [-0.2 0.2];

 DecisionPeriodIndex = 1000; %Short For Testing

 NumScenarios = 100; %Short For Testing

ANN_Init(1); % To determine best XFER-func, weights and bias on/off.

%what I learned:

ANN_TransferFunctions = 2;

 DecisionPeriodIndex = 200;

 NumScenarios = 100;

ANN_Init(2); %For verification, static case

ANN_Init(3); %For verification, dynamic case

%More of what I learned

ANN_Bias = 1;

Init_Position_Range = [0 1];

 DecisionPeriodIndex = 10; %More scenarios, shorter decision period

 NumScenarios = 1000;

Velocity_Init(1); %To determine starter velocity in PSO

Init_Velocity_Range = [0.6 0.8]; %What I learned

 DecisionPeriodIndex = 100;

 NumScenarios = 100;

PSO_W_temp = PSO_Init(1, 0); %To determine a/b/c in PSO

 DecisionPeriodIndex = 200;

 NumScenarios = 100;

77

PSO_Init(2, PSO_W_temp); %For verification, static case

PSO_Init(3, PSO_W_temp); %For verification, dynamic case

%what I learned

PSO_W = [0.75 0.2 0.6];

 DecisionPeriodIndex = 200;

 NumScenarios = 200;

Mut_Init(1); %To determine mutations percentage and interval

 DecisionPeriodIndex = 200;

 NumScenarios = 100;

%what I learned

MutResetInterval = 50; %Regular mutations as determined by Mut_Init(1);

 DecisionPeriodIndex = 100;

 NumScenarios = 100;

PSO_W_temp = PSO_Init(1, 0); %To determine a/b/c in PSO

 DecisionPeriodIndex = 200;

 NumScenarios = 100;

% PSO_W_temp = [1 0.6 0.4; 1 0.4 0.6; 0.75 0.2 0.4] %For use w/Mutations

 PSO_W_temp = [0.75 0.2 0.4; 0.75 0.4 0.4; 0.75 0 0.6] %For use w/o Mutations

PSO_Init(2, PSO_W_temp); %For verification, static case

PSO_Init(3, PSO_W_temp); %For verification, dynamic case

 ANN_TransferFunctions = 2;

 Init_Position_Range = [0 1];

 Init_Velocity_Range = [0.6 0.8];

 DecisionPeriodIndex = 30%00;

 NumScenarios = 100;

 PSO_ANN_FullSimulation(1)

 PSO_ANN_FullSimulation(2)

fprintf(['\n Total time elapsed ' num2str(etime(clock, t)) 'seconds ...\n'])

 end

78

function ANN_Init(ANN_Init_Check)

datetime('now')

global ro NumScenarios ANN_TransferFunctions Init_Position_Range

global w DecisionPeriodIndex ANN_Bias

ANN_Bias_old = ANN_Bias;

w_old = w;

ro_old = ro;

ANN_TransferFunctions_old = ANN_TransferFunctions;

Init_Position_Range_old = Init_Position_Range;

ro = 0;

Init_Position_Range_temp = [0 1; -1 1; -0.2 1; -0.5 0.5];

max_i = size(Init_Position_Range_temp,1);

plotStyle = {'b','r','g','k','b:','r:','g:','k:'};

plotTitle = {'Hard-Limiter', 'Log-Sigmoid', 'TanH-Sigmoid', 'ReLU'};

if ANN_Init_Check == 1

 figure('rend','painters','pos',[0 0 680 600])

 for j=1:4

 tic

 fprintf(['\n Running ANN Initialization ' plotTitle{j} '...\n'])

 ANN_TransferFunctions = j;

 subplot(2,2,j)

 hold on

 ANN_Bias = 1;

 for i=1:max_i

 Init_Position_Range = Init_Position_Range_temp(i, :);

 [GlobalU, ~] = MaskerySystem(12);

 plot(GlobalU, plotStyle{i});

 legendInfo{i} = ['[' num2str(Init_Position_Range_temp(i, 1)) ' '

num2str(Init_Position_Range_temp(i, 2)) ']'];

 end

 ANN_Bias = 0;

 for i=1:max_i

79

 Init_Position_Range = Init_Position_Range_temp(i, :);

 [GlobalU, ~] = MaskerySystem(12);

 plot(GlobalU, plotStyle{i+max_i});

 end

 title(plotTitle{j}, 'FontSize',14)

 xlabel('Decision Period Index', 'FontSize',10);

 ylabel('% Demand Satisfied (Worst Player)', 'FontSize',10)

 ylim([0 1])

 legend(legendInfo, 'Location', 'Best')

 hold off

 toc

 end

end

if ANN_Init_Check == 2

 tic

 ANN_TransferFunctions = 2;

 fprintf(['\n Running ANN Extensive Initialization ' plotTitle{ANN_TransferFunctions} '...\n'])

 figure('rend','painters','pos',[10 10 440 640])

 subplot1 = subplot(2,1,1);

 subplot2 = subplot(2,1,2);

 ANN_Bias = 1;

 for i=1:max_i

 Init_Position_Range = Init_Position_Range_temp(i, :);

 [GlobalU, Converge] = MaskerySystem(12);

 hold(subplot1, 'on')

 plot(subplot1, GlobalU, plotStyle{i});

 hold(subplot1, 'off')

 hold(subplot2, 'on')

 plot(subplot2, Converge, plotStyle{i});

 hold off

 legendInfo{i} = ['[' num2str(Init_Position_Range_temp(i, 1)) ' '

num2str(Init_Position_Range_temp(i, 2)) ']'];

 end

80

 ANN_Bias = 0;

 for i=1:max_i

 Init_Position_Range = Init_Position_Range_temp(i, :);

 [GlobalU, Converge] = MaskerySystem(12);

 hold(subplot1, 'on')

 plot(subplot1, GlobalU, plotStyle{i+max_i});

 hold(subplot1, 'off')

 hold(subplot2, 'on')

 plot(subplot2, Converge, plotStyle{i+max_i});

 hold off

 end

 title(subplot1, {['Performance Comparison of ' plotTitle{ANN_TransferFunctions}], ['Static

Env; Number of Scenarios = ' num2str(NumScenarios)]}, 'FontSize',14);

 xlabel(subplot1, 'Decision Period Index', 'FontSize',10);

 ylabel(subplot1, '% Demand Satisfied (Worst Player)', 'FontSize',10);

 ylim(subplot1, [0 1]);

 legend(subplot1, legendInfo, 'Location', 'Best');

 title(subplot2, {['Equilibrium Comparison of ' plotTitle{ANN_TransferFunctions}], ['Static

Env; Number of Scenarios = ' num2str(NumScenarios)]}, 'FontSize',14);

 xlabel(subplot2, 'Decision Period Index', 'FontSize',10);

 ylabel(subplot2, 'Std Deviation Value', 'FontSize',10);

 legend(subplot2, legendInfo, 'Location', 'Best');

 toc

end

if ANN_Init_Check == 3

 datetime('now')

 tic

 w = 16;

 % Call ANN PSO a few times and plot demand satisfied vs mean innovation time

 T_ro = [1000 500 250 125 62.5 31.25 15.625 7.8125 3.90625 1.953125];

 ro_w16 = [6.25293e-5 0.000125117 0.00025047 0.000501885 0.001007578 ...

 0.002030635 0.004125206 0.00852383 0.018312393 0.043849539];

81

 ANN_TransferFunctions = 2;

 GlobalU = zeros(10,DecisionPeriodIndex);

 GlobalU_noBias = zeros(10,DecisionPeriodIndex);

 fprintf('\n Running ANN PSO Dynamic w=16 ...\n')

 figure('rend','painters','pos',[10 10 475 425])

 hold on

 ANN_Bias = 1;

 for i=1:max_i

 Init_Position_Range = Init_Position_Range_temp(i, :);

 fprintf(['On InitPositions=[' num2str(Init_Position_Range_temp(i, 1)) ...

 ' ' num2str(Init_Position_Range_temp(i, 2)) '] & with Bias\n']);

 for j = 1:10 %Cutting down on computation

 ro = ro_w16(j);

 [GlobalU(j, :), ~] = MaskerySystem(12);

 end

 plot(T_ro, mean(GlobalU, 2), plotStyle{i});

 legendInfo{i} = ['[' num2str(Init_Position_Range_temp(i, 1)) ' '

num2str(Init_Position_Range_temp(i, 2)) ']'];

 end

 ANN_Bias = 0;

 for i=1:max_i

 Init_Position_Range = Init_Position_Range_temp(i, :);

 fprintf(['On InitPositions=[' num2str(Init_Position_Range_temp(i, 1)) ...

 ' ' num2str(Init_Position_Range_temp(i, 2)) '] & no Bias\n']);

 for j = 1:10 %Cutting down on computation

 ro = ro_w16(j);

 [GlobalU(j, :), ~] = MaskerySystem(12);

 end

 plot(T_ro, mean(GlobalU, 2), plotStyle{i+max_i});

 end

 title({'Performance Comparison of Log-Sigmoids', ['Dynamic Env; Number of Scenarios = '

num2str(NumScenarios)]}, 'FontSize',14)

 xlabel('Mean innovation time T(ro)', 'FontSize',12);

82

 ylabel('% Demand Satisfied (Worst Player)', 'FontSize',12)

 legend(legendInfo, 'Location', 'Best')

 hold off

 toc

end

ANN_Bias = ANN_Bias_old;

w = w_old;

ro = ro_old;

ANN_TransferFunctions = ANN_TransferFunctions_old;

Init_Position_Range = Init_Position_Range_old;

end

function PSO_W_temp = PSO_Init(PSO_Init_Check, PSO_W_temp)

global NumScenarios DecisionPeriodIndex ro w

global ANN_Bias % 1= Use Bias; 2= Do not use bias;

global PSO_W MutResetInterval% PSO_W = [a1 a2 b1 b2 c1 c2];

% PSO_W_temp = [0.75 0.2 0.6; 0.25 2 0.6; 0.75 0.6 0.4];

% PSO_W_temp = [1 0.4 0.8; 1 1.2 0.2; 1 0.6 0.4];

max_i = size(PSO_W_temp,1);

plotStyle = {'b','r','g','b:','r:','g:'};

ANN_Bias_old = ANN_Bias;

MutResetInterval_old = MutResetInterval;

PSO_W_old = PSO_W;

w_old = w;

ro_old = ro;

if PSO_Init_Check == 1

 datetime('now')

 tic

% ANN_TransferFunctions = 2;

% ANN_Bias = 1;

% Init_Position_Range = [0 1];

83

 fprintf('\n Running PSO Extensive Initialization Log Sigmoid...\n')

 [X,Y,Z] = meshgrid((0:10)/5, (0:10)/5,(1:4)/4);

 C = zeros(size(X));

 for i=1:numel(X)

 PSO_W = [Z(i) X(i) Y(i)];

 [GlobalU_PSOInit, ~] = MaskerySystem(12);

 C(i) = mean(GlobalU_PSOInit, 2);

 end

 [value, idx] = max(C(1:numel(X)));

 figure('rend','painters','pos',[10 50 600 550])

 hold on

 for i=1:numel((1:4)/4)

 surf(X(:, :, i), Y(:, :, i), Z(1,1,i)*ones(size(X(:, :, 1))), C(:, :, i))

 end

 caxis([min(C(1:numel(X))) max(C(1:numel(X)))]);

 colorbar

 title({'Average Demand Satisfied', ...

 [num2str(DecisionPeriodIndex) ' Decisions, ' num2str(NumScenarios) ' Scenarios'], ...

 ['Max of ' num2str(value) ' at a=' num2str(Z(idx)) ', b=' num2str(X(idx)) ', c='

num2str(Y(idx))]}, 'FontSize',14)

 xlabel('Personal Best (b) ', 'FontSize',12);

 ylabel('Global Best (c) ', 'FontSize',12);

 zlabel('Inertia Coefficient (a)', 'FontSize',12)

 view([-35 15])

 hold off

 figure('rend','painters','pos',[1000 50 600 550])

 hold on

 for i=1:numel((1:4)/2)

 subplot(2, 2, i)

 surf(X(:, :, i), Y(:, :, i), C(:, :, i))

 colorbar

84

 title({'Average Demand Satisfied', [num2str(DecisionPeriodIndex) ' Decisions, '

num2str(NumScenarios) ' Scenarios'], ['a = ' num2str(Z(1,1,i))]}, 'FontSize',14)

 xlabel('Personal Best (b) ', 'FontSize',12);

 ylabel('Global Best (c) ', 'FontSize',12);

 caxis([min(C(1:numel(X))) max(C(1:numel(X)))]);

 view([0 90])

 end

 hold off

 figure('rend','painters','pos',[1000 50 200 1000])

 hold on

 for i=1:numel((1:4)/2)

 subplot(4, 1, i)

 surf(X(:, :, i), Y(:, :, i), C(:, :, i))

 title({['a = ' num2str(Z(1,1,i))]}, 'FontSize',14)

 xlabel('Personal Best (b) ', 'FontSize',12);

 ylabel('Global Best (c) ', 'FontSize',12);

 caxis([min(C(1:numel(X))) max(C(1:numel(X)))]);

 view([0 90])

 end

 hold off

 C_temp = C;

 [value, idx] = maxk(C_temp(1:numel(X)),10);

 BestValues = [Z(idx); X(idx); Y(idx); value;]'

 filename = 'testdata.xlsx';

 xlswrite(filename,BestValues,1,'B2')

 [~, idx] = maxk(C_temp(1:numel(X)),3);

 PSO_W_temp = [Z(idx); X(idx); Y(idx);]';

 toc

end

if PSO_Init_Check == 2

85

 datetime('now')

 tic

 fprintf('\n Running PSO Extensive Init with Mutations; Log Sigmoid; Static...\n')

 figure('rend','painters','pos',[10 10 480 640])

 subplot1 = subplot(2,1,1);

 subplot2 = subplot(2,1,2);

 ANN_Bias = 1;

 for i=1:max_i

 PSO_W = PSO_W_temp(i, :);

 [GlobalU, Converge] = MaskerySystem(12);

 hold(subplot1, 'on')

 plot(subplot1, GlobalU, plotStyle{i});

 hold(subplot1, 'off')

 hold(subplot2, 'on')

 plot(subplot2, Converge, plotStyle{i});

 hold off

 legendInfo{i} = [num2str(PSO_W_temp(i, 1)) '/' num2str(PSO_W_temp(i, 2)) '/'

num2str(PSO_W_temp(i, 3))];

 end

 ANN_Bias = 0;

 for i=1:max_i

 PSO_W = PSO_W_temp(i, :);

 [GlobalU, Converge] = MaskerySystem(12);

 hold(subplot1, 'on')

 plot(subplot1, GlobalU, plotStyle{i+max_i});

 hold(subplot1, 'off')

 hold(subplot2, 'on')

 plot(subplot2, Converge, plotStyle{i+max_i});

 hold off

 end

 title(subplot1, {'PSO Hyper-Parameters Performance Comparison', ['Static Env; Number of

Scenarios = ' num2str(NumScenarios)]}, 'FontSize',14)

 xlabel(subplot1, 'Decision Period Index', 'FontSize',10);

86

 ylabel(subplot1, '% Demand Satisfied (Worst Player)', 'FontSize',10)

 ylim(subplot1, [0 1]);

 legend(subplot1, legendInfo, 'Location', 'Best');

 title(subplot2, {'PSO Hyper-Parameters Equilibrium Comparison', ['Static Env; Number of

Scenarios = ' num2str(NumScenarios)]}, 'FontSize',14)

 xlabel(subplot2, 'Decision Period Index', 'FontSize',10);

 ylabel(subplot2, 'Std Deviation Value', 'FontSize',10)

 legend(subplot2, legendInfo, 'Location', 'Best');

 toc

end

if PSO_Init_Check == 3

 datetime('now')

 tic

 w = 16; % Call ANN PSO a few times and plot demand satisfied vs mean innovation time

 T_ro = [1000 500 250 125 62.5 31.25 15.625 7.8125 3.90625 1.953125];

 ro_w16 = [6.25293e-5 0.000125117 0.00025047 0.000501885 0.001007578 ...

 0.002030635 0.004125206 0.00852383 0.018312393 0.043849539];

 fprintf('\n Running PSO Extensive Init with Mutations; Log Sigmoid; Dynamic...\n')

 GlobalU = zeros(10,DecisionPeriodIndex);

 GlobalU_Mut = zeros(10,DecisionPeriodIndex);

 fprintf('\n Running ANN PSO Dynamic w=16 ...\n')

 figure('rend','painters','pos',[10 10 475 425])

 hold on

 ANN_Bias = 1;

 for i=1:max_i

 PSO_W = PSO_W_temp(i, :);

 fprintf(['On Hyper-params= ' num2str(PSO_W_temp(i, 1)) '/' ...

 num2str(PSO_W_temp(i, 2)) '/' num2str(PSO_W_temp(i, 3)) ' & with Bias\n']);

 for j = 1:10 %Cutting down on computation

 ro = ro_w16(j);

87

 [GlobalU(j, :), ~] = MaskerySystem(12);

 end

 plot(T_ro, mean(GlobalU, 2), plotStyle{i});

 legendInfo{i} = [num2str(PSO_W_temp(i, 1)) '/' num2str(PSO_W_temp(i, 2)) '/'

num2str(PSO_W_temp(i, 3))];

 end

 ANN_Bias = 0;

 for i=1:max_i

 PSO_W = PSO_W_temp(i, :);

 fprintf(['On Hyper-params= ' num2str(PSO_W_temp(i, 1)) '/' ...

 num2str(PSO_W_temp(i, 2)) '/' num2str(PSO_W_temp(i, 3)) ' & without Bias\n']);

 for j = 1:10 %Cutting down on computation

 ro = ro_w16(j);

 [GlobalU(j, :), ~] = MaskerySystem(12);

 end

 plot(T_ro, mean(GlobalU, 2), plotStyle{i+max_i});

 end

 title({'PSO Hyper-Parameters Performance Comparison', ['Dynamic Env; Number of Scenarios

= ' num2str(NumScenarios)]}, 'FontSize',14)

 xlabel('Mean innovation time T(ro)', 'FontSize',12);

 ylabel('% Demand Satisfied (Worst Player)', 'FontSize',12)

 legend(legendInfo, 'Location', 'Best')

 hold off

 toc

end

ANN_Bias = ANN_Bias_old;

MutResetInterval = MutResetInterval_old;

PSO_W = PSO_W_old;

w = w_old;

ro = ro_old;

end

88

function Velocity_Init(Velocity_Init_Check)

global NumScenarios DecisionPeriodIndex ro w

global ANN_Bias Init_Velocity_Range % 1= Use Bias; 2= Do not use bias;

global PSO_W MutResetInterval% PSO_W = [a1 a2 b1 b2 c1 c2];

Velocity_Start_Range = -1:.2:1;

Velocity_End_Range = -1:.2:1;

max_j = size(Velocity_End_Range,2);

ANN_Bias_old = ANN_Bias;

MutResetInterval_old = MutResetInterval;

PSO_W_old = PSO_W;

w_old = w;

ro_old = ro;

Init_Velocity_Range_old = Init_Velocity_Range;

Init_Velocity_Range = [-0.2 0.2];

if Velocity_Init_Check == 1

 datetime('now')

 tic

 fprintf('\n Running PSO Velocity Initialization Log Sigmoid...\n')

 [X,Y] = meshgrid(Velocity_Start_Range, Velocity_End_Range);

 Z = nan*zeros(size(X));

 for j=1:max_j

 for i=1:j

 Init_Velocity_Range = single([Velocity_Start_Range(i) Velocity_End_Range(j)]);

 [GlobalU, ~] = MaskerySystem(12);

 Z(j, i) = mean(GlobalU, 2);

 end

 end

 [value, idx] = max(Z(1:numel(X)));

 figure('rend','painters','pos',[10 50 600 550])

 hold on

89

 h1 = surf(X, Y, Z);

 h1.FaceColor = 'interp';

 colorbar

 title({'Average Demand Satisfied', ...

 [num2str(DecisionPeriodIndex) ' Decisions, ' num2str(NumScenarios) ' Scenarios'], ...

 ['Max of ' num2str(value) ' at Vstart=' num2str(X(idx)) ', Vend=' num2str(Y(idx))]},

'FontSize',14)

 xlabel('V start', 'FontSize',10);

 ylabel('V end', 'FontSize',10);

 zlabel('Avg Demand Satisfied', 'FontSize',10)

 view([-90 90])

 hold off

 figure('rend','painters','pos',[10 50 600 550]);

 hold on

 h=bar3(Z);

 title({'Average Demand Satisfied', ...

 [num2str(DecisionPeriodIndex) ' Decisions, ' num2str(NumScenarios) ' Scenarios'], ...

 ['Max of ' num2str(value) ' at Vstart=' num2str(X(idx)) ', Vend=' num2str(Y(idx))]},

'FontSize',14)

 xlabel('V start', 'FontSize',10);

 ylabel('V end', 'FontSize',10);

 zlabel('Avg Demand Satisfied', 'FontSize',10)

 z_lim= [min(Z(Z>0)) max(Z(Z>0))];

 zlim(z_lim);

 view([150 15])

 set(gca,'XTickLabel',[-1 -0.66 -0.33 0 0.33 0.66 1])

 set(gca,'YTickLabel',[-1 -0.66 -0.33 0 0.33 0.66 1])

 hold off

 for i=1:numel(h)

 %# get the ZData matrix of the current group

 Z = get(h(i), 'ZData');

 rowsInd = reshape(1:size(Z,1), 6,[]);

90

 barsIdx = all([Z(2:6:end,2:3) Z(3:6:end,2:3)]==0, 2);

 Z(rowsInd(:,barsIdx),:) = NaN;

 set(h(i), 'ZData',Z)

 end

 for k = 1:length(h)

 zdata = h(k).ZData;

 h(k).CData = zdata;

 h(k).FaceColor = 'interp';

 end

 caxis(z_lim)

 view([-130 50])

 toc

 % Z_temp = Z;

 % [value, idx] = maxk(Z_temp(1:numel(Z)),10);

 % BestValues = [Z(idx); X(idx); Y(idx);]'

 % filename = 'testdata.xlsx';

 % xlswrite(filename,BestValues,3,'B2')

end

Init_Velocity_Range = Init_Velocity_Range_old;

end

function Mut_Init(Mut_Init_Check)

global NumScenarios DecisionPeriodIndex ro w

global MutResetInterval % 0 = off; # = intervals before mutation

MutResetInterval_temp = [0; 20; 40];

max_i = size(MutResetInterval_temp,1);

plotStyle = {'b','r','g','b:','r:','g:'};

MutResetInterval_old = MutResetInterval;

w_old = w;

ro_old = ro;

if Mut_Init_Check == 1

91

 datetime('now')

 tic

 fprintf('\n Running PSO Mutations Extensive Initialization Log Sigmoid...\n')

 MutResetInterval_temp = 0:10:100;

 C = zeros(size(MutResetInterval_temp));

 for i=1:numel(MutResetInterval_temp)

 MutResetInterval = MutResetInterval_temp(i);

 [GlobalU_MutInit, ~] = MaskerySystem(12);

 C(i) = mean(GlobalU_MutInit, 2);

 end

 [value, idx] = max(C);

 figure('rend','painters','pos',[0 0 400 350])

 hold on

 bar(MutResetInterval_temp, C);

 title({'Average Demand Satisfied', ...

 [num2str(DecisionPeriodIndex) ' Decisions, ' num2str(NumScenarios) ' Scenarios'], ...

 ['Max of ' num2str(value) ' at Interval=' num2str(MutResetInterval_temp(idx))]},

'FontSize',14)

 xlabel('Mutation Interval', 'FontSize',12);

 ylabel('Average Demand Satisfied', 'FontSize',12);

 hold off

 Values = [MutResetInterval_temp; C;]'

 filename = 'testdata.xlsx';

 xlswrite(filename,Values,2,'B2')

 toc

end

MutResetInterval = MutResetInterval_old;

w = w_old;

ro = ro_old;

end

92

PSO_ANN_FullSimulation.m

function PSO_ANN_FullSimulation(SimulationType)

global ro NumScenarios w DecisionPeriodIndex

global MutResetInterval PSO_W ANN_Bias

w_old = w;

ro_old = ro;

MutResetInterval_old = MutResetInterval;

PSO_W_old = PSO_W;

ANN_Bias_old = ANN_Bias;

max_i = 4;

MutResetInterval_temp = [0; 0; -50; -50];

PSO_W_temp = [0.75 0.2 0.4; 0.75 0.2 0.4; 1 0.4 0.6; 1 0.6 0.4] %For use w/o Mutations

ANN_Bias_temp = [1; 0; 0; 1];

plotStyle = {'b','r','g','k'};

legendInfo = {'No Mut#1', 'No Mut#2', 'Mut#1', 'Mut#2'};

if SimulationType == 1

 fprintf(['\n Running PSO-ANN Verification Static...\n'])

 figure('rend','painters','pos',[10 100 440 640])

 subplot1 = subplot(2,1,1);

 subplot2 = subplot(2,1,2);

 for i=1:max_i

 MutResetInterval = MutResetInterval_temp(i, :);

 PSO_W = PSO_W_temp(i, :);

 ANN_Bias = ANN_Bias_temp(i, :);

 [GlobalU, Converge] = MaskerySystem(12);

 hold(subplot1, 'on')

 plot(subplot1, GlobalU, plotStyle{i});

 hold(subplot1, 'off')

 hold(subplot2, 'on')

 plot(subplot2, Converge, plotStyle{i});

 hold off

93

 end

 title(subplot1, {'PSO-ANN Performance Comparison', ['Static Env; Number of Scenarios = '

num2str(NumScenarios)]}, 'FontSize',14);

 xlabel(subplot1, 'Decision Period Index', 'FontSize',10);

 ylabel(subplot1, '% Demand Satisfied (Worst Player)', 'FontSize',10);

 ylim(subplot1, [0 1]);

 legend(subplot1, legendInfo, 'Location', 'Best');

 legend(subplot1, 'boxoff')

 title(subplot2, {'PSO-ANN Equilibrium Comparison', ['Static Env; Number of Scenarios = '

num2str(NumScenarios)]}, 'FontSize',14);

 xlabel(subplot2, 'Decision Period Index', 'FontSize',10);

 ylabel(subplot2, 'Std Deviation Value', 'FontSize',10);

 ylim([0 1]);

 legend(subplot2, legendInfo, 'Location', 'Best');

 legend(subplot2, 'boxoff')

end

if SimulationType == 2

 w = 16;

 % Call ANN PSO a few times and plot demand satisfied vs mean innovation time

 T_ro = [1000 500 250 125 62.5 31.25 15.625 7.8125 3.90625 1.953125];

 ro_w16 = [6.25293e-5 0.000125117 0.00025047 0.000501885 0.001007578 ...

 0.002030635 0.004125206 0.00852383 0.018312393 0.043849539];

 GlobalU = zeros(10,DecisionPeriodIndex);

 fprintf(['\n Running PSO-ANN Verification Dynamic...\n'])

 figure('rend','painters','pos',[500 100 475 425])

 hold on

 for i=1:max_i

 MutResetInterval = MutResetInterval_temp(i, :);

 PSO_W = PSO_W_temp(i, :);

 ANN_Bias = ANN_Bias_temp(i, :);

 fprintf(['On PSO-ANN=' legendInfo{i} '\n']);

 for j = 1:10 %Cutting down on computation

94

 ro = ro_w16(j);

 [GlobalU(j, :), ~] = MaskerySystem(12);

 end

 plot(T_ro, mean(GlobalU, 2), plotStyle{i});

 end

 title({'PSO-ANN Performance Comparison', ['Dynamic Env; Number of Scenarios = '

num2str(NumScenarios)]}, 'FontSize',14)

 xlabel('Mean innovation time T(ro)', 'FontSize',12);

 ylabel('% Demand Satisfied (Worst Player)', 'FontSize',12)

 ylim([0 1]);

 legend(legendInfo, 'Location', 'Best')

 legend boxoff

 hold off

end

if SimulationType == 3

 w = 16;

 ro = 0.05;

 fprintf(['\n Running PSO-ANN Verification 1 RO...\n'])

 figure('rend','painters','pos',[10 100 440 640])

 subplot1 = subplot(2,1,1);

 subplot2 = subplot(2,1,2);

 for i=1:max_i

 MutResetInterval = MutResetInterval_temp(i, :);

 PSO_W = PSO_W_temp(i, :);

 ANN_Bias = ANN_Bias_temp(i, :);

 [GlobalU, Converge] = MaskerySystem(12);

 hold(subplot1, 'on')

 plot(subplot1, GlobalU, plotStyle{i});

 hold(subplot1, 'off')

 hold(subplot2, 'on')

 plot(subplot2, Converge, plotStyle{i});

 hold off

 end

95

 title(subplot1, {'PSO-ANN Performance Comparison', ['Dynamic Env; ro = ' num2str(ro) ' w =

' num2str(w)]}, 'FontSize',14)

 xlabel(subplot1, 'Decision Period Index', 'FontSize',10);

 ylabel(subplot1, '% Demand Satisfied (Worst Player)', 'FontSize',10);

 ylim(subplot1, [0 1]);

 legend(subplot1, legendInfo, 'Location', 'Best');

 legend(subplot1, 'boxoff')

 title(subplot2, {'PSO-ANN Equilibrium Comparison', ['Dynamic Env; ro = ' num2str(ro) ' w = '

num2str(w)]}, 'FontSize',14)

 xlabel(subplot2, 'Decision Period Index', 'FontSize',10);

 ylabel(subplot2, 'Std Deviation Value', 'FontSize',10);

 ylim([0 1]);

 legend(subplot2, legendInfo, 'Location', 'Best');

 legend(subplot2, 'boxoff')

end

w = w_old;

ro = ro_old;

MutResetInterval = MutResetInterval_old;

PSO_W = PSO_W_old;

ANN_Bias = ANN_Bias_old;

end

96

MaskerySystem.m

function [Global_U, ConvergeVal, t] = MaskerySystem(AlgorithmOption)

%AlgorithmOption:

%1=Regret Tracking, 2=Best Response, 3=Fictitious Play, 4=Modified Reg Tracking

global SecUser PriUser NumChannels delta Tmax

global NumScenarios DecisionPeriodIndex ro w m delta_exploration

global Num_Elements NumParticles

global LocalU_Avg LocalU_min

global Init_Position_Range Init_Velocity_Range

global beta alpha1 alpha2;

global ANN_TransferFunctions ANN_Bias

global PSO_W MutResetInterval %NumScenarios, Not needed since no annealing

Global_U = zeros(NumScenarios, DecisionPeriodIndex);

t = zeros(NumScenarios, DecisionPeriodIndex);

ConvergeVal = zeros(NumScenarios, DecisionPeriodIndex, SecUser);

Local_U_All = zeros(SecUser, DecisionPeriodIndex, NumScenarios);

Epsilon = GetEpsilon(AlgorithmOption);

 %Init space of possible choices. (Will not change if ro=0, static env)

Master_S = (de2bi(1:((2^NumChannels)-1), NumChannels)); %All combinations of channels

BadRows = (sum(Master_S, 2) > m); % Bad if more channels chosen than transceivers

Master_Options = find(BadRows == 0); %Get indexes of rows of good combinations

Master_S = Master_S(Master_Options, :);

NumMasterOptions = size(Master_Options, 1);

parfor p= 1:NumScenarios

 Demand = randi([1,4], SecUser, 1);%User Demand Vector

 QualityBits = randi([1,4], 1, NumChannels); %Channel Quality Vector. Bits/time on each

channel

 PriUsage = randperm(NumChannels);

 PriUsage = PriUsage<=PriUser;

 [S, ValidOptions] = CalculateSS(PriUsage, Master_S);

97

 %Init Regret & Probabilities variables

 Regret =zeros(NumMasterOptions, NumMasterOptions, SecUser);

 Prob_Xn= zeros(SecUser, NumMasterOptions);

 Prob_Xn(:, ValidOptions) = (1/size(ValidOptions, 1)); %All Options = likely

 OptionChosen = ValidOptions(randi([1 size(ValidOptions,1)],SecUser, 1)); %Column matrix

w/index for the State Space for each Sec user

 X = Master_S(OptionChosen, :); %Actually pulls the entire row from S for each Sec User

 if AlgorithmOption > 10 %PSO_ANN

 %Going to create matrix that stores all particle data.

 ANN_Array = randi(Init_Position_Range*1000, Num_Elements, NumParticles,

SecUser)/1000;

 Velocity = randi(Init_Velocity_Range*1000, Num_Elements, NumParticles, SecUser)/1000;

 Personal_Bests = zeros(Num_Elements, NumParticles, SecUser);

 Personal_Bests = ANN_Array;

 GlobalBest = zeros(Num_Elements, 1, SecUser);

 %Init mutations for option 11

 ResetCounter = zeros(SecUser);

 end

 for n= 1:DecisionPeriodIndex

 %Model starts here.

 N = repmat(sum(X, 1), SecUser, 1) - X;

 %Calculating Throughput

 %Equation (9) page 462

 R = (1 ./ (1+N)) .* ((1-(delta/Tmax)).^(1+N));

 R(N == 0) = 1; %If the channel is not attempted, throughput will stay as 1.

 %R still needs .* X or each X in StateSpace

 R = R - repmat(PriUsage, SecUser, 1); %To take out the ones from primary users.

 %Calculating the Probability of Collision

 %Equation (11) page 462, Modified by C.A. to represent true probab

98

 Q = 1-((1-(delta/Tmax)).^(1+N));

 Q(N == 0) = 0;

 %Global System Utility

 Global_U_temp = (X.*R) * (QualityBits.* ~PriUsage)' ./Demand;

 [Global_U(p, n), ~] = min([Global_U_temp; 1]);

 %It's calculating the throughput from each channel times the bits per

 %channel to determine how much got transmitted then divides by the demand

 %to get a ratio. Then it finds out which radio did the worst (min funct).

 for L = 1:SecUser

 if AlgorithmOption < 10 %Maskery

 %For comparing Local U to Global U

 Local_U = zeros(NumMasterOptions,1);

 Local_U(ValidOptions) = Fitness_Func(S, N(L, :), R(L, :), Q(L, :), QualityBits,

Demand(L), PriUsage, beta, alpha1, alpha2); %Calculates the fitness functions

 Local_U_All(L, n, p) = Local_U(OptionChosen(L));

 %Makes the decision below

 [Prob_Xn(L, :), OptionChosen(L), Regret(:, :, L)] = ...

 MaskeryDecision(OptionChosen(L), Regret(:, :, L), NumMasterOptions, Local_U,

ValidOptions, n, AlgorithmOption, Prob_Xn(L, :), Epsilon(n), delta_exploration);

 X(L, :) = Master_S(OptionChosen(L), :); %Actually pulls the entire row from S for

each Sec User

 ConvergeVal(p, n, L) = max(max(Regret(:, :, L), [], 1), [], 2);

 else %PSO_ANN

 ANN_Inputs = [(R(L, :).*QualityBits/Demand(L)) m]';

 Channels_Chosen = ANN_CalcOutput(ANN_Inputs,[ANN_Array(:, :, L)

Personal_Bests(:, :, L) GlobalBest(:, :, L)], NumChannels, m, ANN_TransferFunctions,

ANN_Bias);

 Local_U= Fitness_Func(Channels_Chosen', N(L, :), R(L, :), Q(L, :), QualityBits,

Demand(L), PriUsage, beta, alpha1, alpha2);

 [ConvergeVal(p,n,L), ResetCounter(L), GlobalBest(:, :, L), Personal_Bests(:, :, L),

Velocity(:, :, L), ANN_Array(:, :, L)] = ...

99

 PSO_ANN(Local_U', n, ResetCounter(L), GlobalBest(:, :, L), Personal_Bests(:, :, L),

Velocity(:, :, L), ANN_Array(:, :, L), ...

 Num_Elements, NumParticles, PSO_W, MutResetInterval, Init_Position_Range,

Init_Velocity_Range);

 X(L, :) = ANN_CalcOutput(ANN_Inputs, GlobalBest(:, :, L), NumChannels, m,

ANN_TransferFunctions, ANN_Bias);

 end

 end

 if ro ~= 0

 %Slow varying: Demand or PriUsage can change

 ChangeDemand = rand(SecUser, 1) < ro;

 Demand = randi([1,4], SecUser, 1) .* ChangeDemand + Demand .* (~ChangeDemand);

%User Demand Vector

 %Updating PriUser positions if needed

 NewPriUsage = find(PriUsage == 0);

 CurrentPriUsage = find(PriUsage);

 NewPriUsage = NewPriUsage(randperm(NumChannels-PriUser));

 Change = 0;

 for pri_change_test = 1:PriUser

 if rand < ro

 PriUsage(CurrentPriUsage(pri_change_test)) = 0;

 PriUsage(NewPriUsage(pri_change_test)) = 1;

 Change = 1;

 end

 end

 if w == 16 %Fast varying, quality may also change by max +/- 10%. Pg467-Section C

 QualityBits = QualityBits.* (1 + (rand(1, NumChannels) < ro).*(0.2*rand(1,

NumChannels) - 0.1));

 QualityBits= max([QualityBits; zeros(1, NumChannels)], [], 1); %Zero out unlikely

negs

 end

100

 if Change == 1

 [S, ValidOptions] = CalculateSS(PriUsage, Master_S);

 end

 %else Do Nothing - Static Environment

 end

 end

 %p

end

Global_U = mean(Global_U, 1);

if AlgorithmOption < 10

 LocalU_Avg = mean(Local_U_All, 1);

 LocalU_Avg = mean(LocalU_Avg, 3);

 LocalU_min = min(Local_U_All, [], 1);

 LocalU_min = min(LocalU_min, [], 3);

 ConvergeVal = max(ConvergeVal,[], 3); %Max across each user.

 ConvergeVal = mean(ConvergeVal, 1); %Average across each scenario

else

 ConvergeVal = mean(ConvergeVal, 3); %Average across each user

 ConvergeVal = mean(ConvergeVal, 1); %Average across each scenario

end

end

101

function [Epsilon] = GetEpsilon(AlgorithmOption)

%For Maskery's average regret matrix

global DecisionPeriodIndex ro

if AlgorithmOption ~= 2

 if (ro == 0) % Per discussion of 5.1 on page 464:

 Epsilon = 1./((1:DecisionPeriodIndex)+1);%Decreasing stepsize option, works best for

unchanging parameters

 else

 Epsilon = 0.1*ones(1, DecisionPeriodIndex); %Constant stepsize, works best for evolving

parameters.

 end

else

 Epsilon = ones(1, DecisionPeriodIndex); %Makes decision based purely on H and not avg

Regret. For Best Response

end

end

function [S, ValidOptions] = CalculateSS(PriUsage, Master_S)

%Calculate State Space

 BadRows = (Master_S * PriUsage'); %bad if channel is used by primary.

 ValidOptions = find(BadRows == 0); %Get indexes of rows of good combinations

 S = Master_S(ValidOptions, :); %Retrieve only the good row combinations.

end

102

Fitness_Func.m

function [U] = Fitness_Func(StateSpace, N, R, Q, QualityBits, DemandL, PriUsage, beta, alpha1,

alpha2)

QualityBits = QualityBits .* ~PriUsage; %Effective quality is zero for off-limits channels

NumOptions=size(StateSpace, 1);

 %Local System Utility 0

Local_U0 = (QualityBits./DemandL).*R;

%This part is the ratio of how much demand could've been fulfilled per channel

Local_U0 = min([StateSpace * Local_U0' ones(NumOptions, 1)], [], 2);

%Sums across the channels to get each radio utility, then takes minimum between that and 1, to

not reward using more than what was needed.

%Local System Utility 1

Local_U1 = StateSpace *(QualityBits .* R)' - (DemandL + beta);

%Takes care of inside parenthesis in Eq.14, pg 463.

Local_U1 = - max([Local_U1 zeros(NumOptions, 1)], [], 2) ./DemandL;

%This part zeros out negative values (underachievement) because you don't want to penalize a

radio that didn't go over the demand. Then div by demand to get a ratio not a big number.

%Local System Utility 2

D = Q ./ N; %Right above Eq. 15, page 463.

D(N == 0) = 0; %Clean up the NaNs due to N==0, aka X=0;

 %D is collisions per user on a channel.

Local_U2 = (-1./(StateSpace *QualityBits')).* (StateSpace *((QualityBits.*D)'));

%D*Q is how many bits are lost due to collisions. Then you divide by the total to get a ratio

%Total Utility

U = Local_U0 + alpha1 * Local_U1 + alpha2 * Local_U2; %This is a weighted average.

U = max([U zeros(NumOptions, 1)], [], 2); %This zeros out negative values. No neg fit funct.

U(StateSpace* ~PriUsage' == 0) = 0; %To penalize and make U = 0 if no channel used aside pri

usage.

end

103

 MaskeryDecision.m

function [Prob_Xn, OptionChosenL, RegretL] = MaskeryDecision(OptionChosenL, RegretL,

NumMasterOptions, Local_UL, ValidOptions, n, DecisionType, Prob_Xn, Epsilon,

delta_exploration)

%DecisionType:

%1=Regret Tracking, 2=Best Response, 3=Fictitious Play, 4=Modified Reg Tracking

mu=size(ValidOptions, 1);

H=zeros(NumMasterOptions); % H(j,k)

 if DecisionType ~= 4

 %Eq. 19, pg 464.

 H(OptionChosenL, :) = Local_UL - Local_UL(OptionChosenL);

else

 %Modified H of Eq. 27, pg 465.

 H(ValidOptions, OptionChosenL) =

(Prob_Xn(ValidOptions)'/Prob_Xn(OptionChosenL)).*Local_UL(OptionChosenL);

 H(OptionChosenL, ValidOptions) = H(OptionChosenL, ValidOptions) -

Local_UL(OptionChosenL)';

end

if n==1 %Page 464 Step #1

 [~, OptionChosenL] = max(H(OptionChosenL, :));

 RegretL = H; %initialization

 %Page 464, Eq. 20

 Prob_Xn= zeros(1, NumMasterOptions); %For Mod Regret Tracking

 Prob_Xn(ValidOptions)=RegretL(OptionChosenL,

ValidOptions)/(mu*max(RegretL(OptionChosenL, ValidOptions)));

 Prob_Xn= max([Prob_Xn; zeros(1, NumMasterOptions)]); %Removes negative values

 Prob_Xn(OptionChosenL) = 0;

 Prob_Xn(OptionChosenL) = 1- sum(Prob_Xn(ValidOptions));%Makes last option the

remainder that adds to 1.

else

 if n==2

 RegretL = H; %initialization

104

 else

 RegretL = RegretL +(Epsilon)*(H - RegretL); %Avg Regret Update

 end

 if ((DecisionType == 1) || (DecisionType == 4))

 %Page 464, Eq. 20

 Prob_Xn= zeros(1, NumMasterOptions);

 if max(RegretL(OptionChosenL, ValidOptions)) > 1

 Prob_Xn(ValidOptions)=RegretL(OptionChosenL,

ValidOptions)/(mu*max(RegretL(OptionChosenL, ValidOptions)+0.00001));

 else

 Prob_Xn(ValidOptions)=RegretL(OptionChosenL, ValidOptions)/mu;

 end

 Prob_Xn= max([Prob_Xn; zeros(1, NumMasterOptions)]); %Removes negative values

 Prob_Xn(OptionChosenL) = 0;

 Prob_Xn(OptionChosenL) = 1- sum(Prob_Xn(ValidOptions));%Makes last option the

remainder that adds to 1.

 OptionChosenL = find(rand<=cumsum(Prob_Xn),1,'first');

 if (DecisionType == 4 && (rand<delta_exploration))%Page 465, just under Eq. 27

 OptionChosenL = ValidOptions(randi(size(ValidOptions,1)));

 end

 else %FictitiousPlay & Best Response: Page465-Section C -> c) ->step 2a

 RegretL_temp = min(RegretL(OptionChosenL,ValidOptions))*ones(1,NumMasterOptions)-

1; %So it's never chosen.

 RegretL_temp(1,ValidOptions) = RegretL(OptionChosenL,ValidOptions);

 idx= find(max(RegretL_temp)==RegretL_temp); %In the event there are several of same

size

 OptionChosenL = idx(randi(size(idx,2))); %Just choose one at random

 end

end

 if (isempty(Prob_Xn) || isempty(OptionChosenL) || isempty(RegretL))

 msgbox('ERROR');

end

end

105

PSO_ANN.m

function [StdDev, ResetCounter, GB_old, Personal_Bests, Velocity, ANN_Array] =

PSO_ANN(Fitness, curr_scenario, ResetCounter, GB_old, Personal_Bests, Velocity,

ANN_Array, Num_Elements, NumParticles, PSO_W, MutResetInterval, Init_Position_Range,

Init_Velocity_Range)

ANN_Fitness = Fitness(1:NumParticles);

PB_Fitness = Fitness((1:NumParticles)+NumParticles);

if curr_scenario == 1

 Personal_Bests = ANN_Array;

 [~, I] = max(Fitness);

 Global_Best = Personal_Bests(:, I);

else

 [PB_Fitness, I] = max([ANN_Fitness; PB_Fitness]);

 I = repmat(I, Num_Elements, 1);

 Personal_Bests = ANN_Array.*(2-I) + Personal_Bests.*(I-1);

 [~, I] = max([PB_Fitness Fitness(1+2*NumParticles)]);

 Global_Best = [Personal_Bests GB_old]; %GB_Fitness

 Global_Best = Global_Best(:, I);

end

 %Update the ANNs here with velocity from prior calc

ANN_Array = ANN_Array + Velocity; %Equivalent to x = x + v;

 %Update the velocity for the next iteration here.

Velocity = PSO_W(1)*Velocity + PSO_W(2)*(Personal_Bests -

ANN_Array)*(randi(1000)/1000) + ...

 (repmat(PSO_W(3)*Global_Best, 1, NumParticles) - ANN_Array)*(randi(1000)/1000);

 if ((MutResetInterval > 0))

 %if each element is the same then

 if isequal(Global_Best, GB_old)

 ResetCounter = ResetCounter + 1;

 else

 ResetCounter = 0;

106

 end

 if ResetCounter > MutResetInterval

 ResetCounter = 0;

 Y = sort(ANN_Fitness);

 Num_Mutations = ceil(0.2*NumParticles); % 20percent

 [~, I] = find(ANN_Fitness <= Y(Num_Mutations));

 ANN_Array(:, I) = randi(Init_Position_Range*1000, Num_Elements, length(I))/1000;

 Velocity(:, I) = randi(Init_Velocity_Range*1000, Num_Elements, length(I))/1000;

 Personal_Bests(:, I) = ANN_Array(:, I); %Update the personal best to be current ANN

 end

end

 if ((MutResetInterval > 0))% && (rand<0.05))

 %if each element is the same then

 if isequal(Global_Best, GB_old)

 ResetCounter = ResetCounter + 1;

 else

 ResetCounter = 0;

 end

 if ResetCounter > MutResetInterval

 ResetCounter = 0;

 Y = sort(ANN_Fitness);

 Num_Mutations = ceil(0.6*NumParticles); % 20percent

 [~, I] = find(ANN_Fitness <= Y(Num_Mutations));

 ANN_Array(:, I) = randi(Init_Position_Range*1000, Num_Elements, length(I))/1000;

 Velocity(:, I) = randi(Init_Velocity_Range*1000, Num_Elements, length(I))/1000;

 Personal_Bests(:, I) = ANN_Array(:, I); %Update the personal best to be current ANN

 end

end

GB_old = Global_Best;

StdDev = std(PB_Fitness);

end

107

ANN_CalcOutput.m

function Output = ANN_CalcOutput(Input_Array, ANNs_2_Eval, NumChannels, m,

ANN_TransferFunctions, ANN_Bias)

 Num_ANN = size(ANNs_2_Eval, 2);

 h = zeros(NumChannels, Num_ANN);

 Output = zeros(NumChannels, Num_ANN);

 start = 1;

 finish = start -1 + NumChannels*(NumChannels+1);

 w1 = ANNs_2_Eval(start:finish, :);

 start = 1+finish;

 finish = start -1 + NumChannels;

 b1 = ANNs_2_Eval(start:finish, :);

 start = 1+finish;

 finish = start -1 + (NumChannels^2);

 w2 = ANNs_2_Eval(start:finish, :);

 start = 1+finish;

 finish = start -1 + NumChannels;

 b2 = ANNs_2_Eval(start:finish, :);

 %Calculate Input to Hidden Layer

 x = repmat(Input_Array, NumChannels, Num_ANN);

 x = w1 .* x;

 %Calculate Hidden Layer

 for i = 0:(NumChannels-1)

 h(i+1, :) = sum(x(i*NumChannels + (1:NumChannels), :));

 end

108

 if ANN_Bias

 h = h - b1;

 end

 switch ANN_TransferFunctions

 case 1 %Calculate Hard Limiter on Hidden Layer Neurons

 s = h >0;

 case 2 %Calculate Sigmoid of Hidden Layer Neurons

 s = 1./(1+exp(-h));

 case 3 %Calculate Hyperbolic Tangent Sigmoid on Hidden Layer Neurons

 s = (exp(h) - exp(-h)) ./ (exp(h) + exp(-h));

 otherwise %Calculate ReLu on Hidden Layer Neurons

 s = max(h, zeros(size(h)));

 end

 %Calculate Input to Output Layer

 x2 = repmat(s, NumChannels, 1);

 x2 = w2 .* x2;

 %Calculate Output Layer (Output)

 for i = 0:(NumChannels-1)

 Output(i+1, :) = sum(x2(i*NumChannels + (1:NumChannels), :));

 end

 if ANN_Bias

 Output = Output - b2;

 end

 Output = max(Output, zeros(size(Output))); %Anything less than 0% is zeroed out.

 temp = sort(Output, 1);

 Output = not(Output <= repmat(temp(end-m, :), NumChannels, 1));

 %This was done to only take the two highest. But may take more if identical values so I need

to zero out bad ANNs. No reward!

 IsValid = (sum(Output, 1) <= m);

 Output = Output .* repmat(IsValid, NumChannels, 1);

end

VITA

Carolina Arbona

Candidate for the Degree of

Master of Science

Thesis: DYNAMIC SPECTRUM ACCESS UTILIZING NEURAL NETWORKS AND
PARTICLE SWARM OPTIMIZATION IN COGNITIVE RADIOS

Major Field: Electrical Engineering

Biographical:

Education:

Completed the requirements for the Master of Science in Electrical Engineering at
Oklahoma State University, Stillwater, Oklahoma, USA in July, 2018.

Completed the requirements for the Bachelor of Science in Electrical Engineering
at Oklahoma State University, Stillwater, Oklahoma, USA in December, 2012.

Completed the requirements for the Bachelor of Science in Computer Engineering
at Oklahoma State University, Stillwater, Oklahoma, USA in December, 2012.

Experience:

Co-op Engineer with American Electric Power in Tulsa, Oklahoma, USA from
May 2011 to April 2012.

Software Engineering Intern with Raytheon in Indianapolis, Indiana, USA from
May 2012 to December 2012.

Senior Engineer with American Electric Power in Tulsa, Oklahoma, USA from
January 2013 to Present.

Professional Memberships:

Institute of Electrical and Electronics Engineers, IEEE. Total Years – 5.
State of Oklahoma Professional Engineer. Total Years – 1.

