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Abstract: Sorghum, Sorghum bicolor (L.) Moench, is one of the most important crops in 

the world. Since 2013, sugarcane aphid, Melanaphis sacchari has become a perennial and 

significant pest in the southern United States. It can develop on multiple grass hosts but 

does not appear to survive winter temperatures in the U.S. except in southern Texas. 

Insects depend on temperature and nutrition to develop and reproduce. The rate of aphid 

development and reproduction increases as temperature increases until it reaches a 

maximum temperature where development slows because of metabolic stress. Laboratory 

experiments were conducted at seven different constant environmental temperatures (5, 

10, 15, 20, 25, 30, 35 °C) on three different host plants, sorghum, Johnsongrass, and 

Columbus grass. Longevity, fecundity, number of nymphs per day, reproductive period, 

and intrinsic rate of growth were measured. At 5 and 35 °C, reproduction did not occur 

on any host plant. Longevity was maximum at 15 °C and decreased with increasing 

temperatures. Reproduction was highest at 25 °C on sorghum and Johnsongrass, and at 

20 °C on Columbus grass. The supercooling point (coldest temperature at which survival 

is possible) was also determined for nymphs, adults, and winged adults of SCA and was 

found to be between -22 °C and -25 °C. The results of these experiments suggest that 

alternate host plants support aphid survival but with limited reproduction. Extreme low 

and high temperatures also affect strongly SCA survival and reproduction.  
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CHAPTER I 
 

 

INTRODUCTION 

 

Sorghum, Sorghum bicolor (L.) Moench is one of the most important crops in the world. 

According to the USDA (2017), the world sorghum production for 2017/2018 will be 

approximately 59.34 million metric tons. The United States (US) is the world's largest 

producer of sorghum, with a production of 8,408,000 metric tons. Nigeria, Mexico, India 

and Sudan are the other top five producers in the world (USDA, 2017). 

In the US, sorghum is primarily produced in the region known as the “sorghum belt”, 

spanning from South Dakota to Southern Texas. In 2016, sorghum was planted on 6.7 

million acres, with Kansas having the largest planted area followed by Texas, Colorado, 

Oklahoma and South Dakota. In 2016, according to USDA-NASS, sorghum was planted 

on 400,000 acres, with harvest from 370,000 acres. Production was 20,350,000 tons, with 

an average of 55 bushels per acre.  

Sorghum cultivation is very important worldwide because the plant can be used in many 

ways. There are four major uses of sorghum: grain sorghum, forage sorghum, biomass 

sorghum and sweet sorghum (Queiroz et al., 2018; Castro et al., 2017). Grain sorghum 

occurs in many shapes and colors depending on the cultivar and is used for many 



 

 

functions, including animal feed. Forage sorghum can be used for silage, hay, grazing, 

and what is known as green-chop where it is processed by chopping and feeding it 

directly to livestock (Bean et al., 2013; Pino and Heinrichs, 2017). Biomass sorghum is a 

different cultivar grown primarily for the production of bioenergy, where it is fermented 

to produce fuel and other products. Sweet sorghum is grown predominantly for syrup 

production, alternative sweeteners, biofuel, alcohol for consumption and chemical 

products (Mercer et al., 2011; Maw et al., 2017). 

Many countries, especially in Africa, use sorghum and its derivatives for human 

consumption because of its high nutritional value. During processing of sorghum, by-

products are also obtained and are becoming part of the human diet. Among the main 

foods derived from sorghum are flours, oils and beverages, incluiding beer (Dicko et al., 

2006; Queiroz et al., 2017). Because of its characteristics of adapting well to semi-arid 

climates, the production of sorghum in African countries has increased (Queiroz et al., 

2017).  

Sorghum has long been used in animal feed. In the United States, sorghum has been used 

to feed cattle, swine, and poultry. The use of sorghum in animal feed includes silage, 

green chop, hay and pasture, and the manufacture of rations containing grains of sorghum 

as a major ingredient (Pino and Heinrichs, 2017; Inácio et al., 2018). Sorghum for silage 

is well accepted because it requires less water than maize and produces similar results as 

those fed with maize (Bean et al., 2013). 

Increasingly, sorghum has been used for the manufacture of bioethanol. The search for 

new fuels, especially those that do not originate from fossil sources and that reduce 
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damage to the environment has increased planted acreage, especially in the United States. 

Ethanol is produced from sweet sorghum juice that is extracted from stalks and has a high 

concentration of sucrose. After extracting the juice, any leftover raw material can also 

produce cellulite ethanol through other treatments (Castro et al., 2017; Appiah-Nkansah 

et al., 2018).  

Some of the characteristics that have made sorghum a major crop across the world is its 

ability to germinate and grow in low fertility soils and with limited water supply. The 

ability to grow sorghum with limited rainfall is the main reason it is widely planted in the 

region today known as the sorghum belt, in the central United States. With irrigation, it is 

possible to maintain high sorghum yields and achieve positive agronomic results even in 

arid or semi-arid regions (Pang et al., 2018). The genetic improvement of sorghum has 

allowed cultivation in regions with low rainfall. However, since 2013, the sugarcane 

aphid (Melanaphis sacchari) has threatened sorghum production in the US. 

Sugarcane Aphid (Melanaphis sacchari) 

The sugarcane aphid, Melanaphis sacchari (Zehntner) is present in many countries in 

Africa, Asia, and South America where sugarcane and sorghum are grown. Sugarcane 

aphid was first documented as a pest of sugarcane; however, many countries  have 

experienced the aphid becoming a sorghum pest. In the US, sugarcane aphids were 

reported on sugarcane in Florida (Mead, 1978) and Louisiana (Hall, 1987, White et al., 

2001) but in the last few years it has shown preference for sorghum (Rodríguez-del-

Bosque and Teran, 2015). 
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Sugarcane aphids have been known to feed on a number of grasses including rice, 

sugarcane, sorghum, millet, Bermuda grass, Johnsongrass and others. Its occurrence on 

different plants has been reported in different countries and various times of year (Singh 

et al., 2004; Armstrong et al., 2015). 

Sugarcane aphids (SCA) are pale yellow, gray or tan with dark cornicles, tarsi and 

antennae (Villanueva et al., 2014). Most  are females that reproduce asexually, giving 

birth to several live young, which in a few days become adults with the same ability to 

reproduce. The nymphal stage consists of four stadia. Depending on the temperature, 

sugarcane aphids take between 4 and 12 days to become adults (Chang et al., 1982).  

Adult longevity ranges from 10 to 37 days on average, and females produce 34 to 96 

nymphs, depending on temperature and nutrition (Bowling et al., 2016).  Adult SCA may 

or may not have wings. When plants begin to deteriorate, and sugarcane aphid densities 

are high, some adults will develop wings (Singh et al., 2004). The sugarcane aphid is not 

a good flier, but they can be carried by the wind over long distances. It is thought that 

aphids present in the states north of Texas are transported by air currents from Mexico 

and southern Texas where these aphids overwinter (Knutson et al., 2016). 

Usually sugarcane aphids infest the lower leaves of a plant and as colonies grow, the 

aphids make their way up the plant, and feed on the undersides of the leaf and stem. The 

aphids feed on the phloem, which is rich in sugar, eliminating excess sugars as 

honeydew, which accumulates on leaf surfaces. The honeydew causes a shiny appearance 

and allows sooty mold to grow. By feeding on plant sap, SCA also cause a reddening of 

leaves, which can lead to the death of leaf tissues (Knutson et al., 2016). 
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The sugarcane aphid usually reaches its infestation peak on a plant after 2 to 3 weeks, 

depending on temperature and climatic conditions. After this period, populations begin to 

decline. Depending on the degree of infestation, sugarcane aphids can cause economic 

loss either by loss of grain or poor development of the plant and subsequently loss of 

forage and grain. Sugarcane aphids will eventually infest emerging heads of sorghum, 

and if left unchecked will reduce anthesis, significantly reducing grain yields. Despite all 

these aphid-induced injuries, there is no indication that aphids inject any kind of toxin 

into the plants (Armstrong et al., 2015; Rodriguez-del-Bosque and Teran, 2015). 

The SCA utilizes sugarcane where available in the United States, but in 2013, it was 

detected on sorghum in both Texas and Louisiana (Villanueva et al., 2014). From these 

areas SCA reached Oklahoma and Mississippi. During the winter, the aphids survive in 

southern Texas, where two crops of sorghum are grown each year. In 2014, it reached 

sorghum fields in 12 states, and in 2015 it was present in 17 states, which represented 

90% of US sorghum acreage (Knutson et al., 2016). 

Temperature is an important environmental variable for the development, survival and 

reproduction of aphids. A milder winter allows the SCA to infest sorghum earlier than a 

colder winter when high mortality occurs. States north of Texas, which have colder 

winters, have no trace of sugarcane aphid during the winter and early spring. Like other 

aphid species, these insects are sensitive to low temperatures and are unable to survive or 

reproduce (Kieckhefer and Elliott, 1989; Armstrong et al., 1996).  

Kieckhefer and Elliott (1989) observed that the development time of Russian Wheat 

aphid, Diuraphis noxia (Mordvilko), nymphs to adult stage decreased as the temperature 
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increased. Campbell et al. (1974) demonstrated that the rate of insect development 

depends on temperature. Aalbersberg et al. (1987) observed that in fluctuating 

temperatures of 13 to 17.3 °C, female Russian Wheat aphids produced an average of 72.0 

to 81.5 nymphs, while Webster and Starks (1987) observed that 31.9 to 50.5 nymphs 

were produced in fluctuating temperatures of 13.2 to 27.2 °C. 

During winter, the temperature in Oklahoma falls below 0 °C. When temperatures drop 

abruptly, they can reach -22 °C (Jones et al. 2008). Insects usually do not survive these 

temperatures, but some species have physiology that allows survival. Some aphid species 

have the capacity to withstand low temperatures, allowing them to overwinter in 

temperate zones by either tolerating being frozen or avoiding freezing through various 

methods including supercooling the body fluid below the freezing point. Supercooling 

point (SCP) is defined by the temperature at which internal fluids freeze and indicates the 

minimum temperature that an insect can survive. Aphids can produce glycerol and other 

antifreeze compounds, dehydrate, ingest certain substances, or make changes in fatty 

acids (Powell, 1976; Worland et al. 2010). SCP’s for some species of aphids have been 

determined. The greenbug aphid, Schizaphis graminum (Rondani) has a mean SCP of -

28.98 ± 0.10 (Jones et al. 2008) and Russian wheat aphid, has a mean SCP of -27 °C 

(Armstrong and Nielsen, 2000). 

In the spring, SCA appear on sorghum as temperatures begin to rise. For this reason, it is 

necessary to understand the threshold and optimal temperatures for its survival and 

reproduction, and what possible mechanisms this aphid uses to overwinter.  
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Another important issue regarding the survival of sugarcane aphid during periods when 

sorghum crops are unavailable is to understand how alternate hosts contribute to its 

survival. Different plants are known to be temporary hosts of these aphids. Among them 

are mainly Johnsongrass (Sorghum hapelense L., Pers.) and Columbus grass (Sorghum 

almum Parodi.) (Armstrong et al, 2015). 

Johnsongrass is typically considered to be a weed present in all the warm regions of the 

world and can reduce crop yields. This weed is perennial, 0.5-1.5 m tall, with panicles 

10-35 cm long and spikelets in pairs. Johnsongrass differs from other sorghum species by 

the number of chromosomes (S. halepense n = 20, S. versicolor n = 5 and S. bicolor n = 

10). Johnsongrass is known to host insect and disease pests of sorghum (Monaghan, 

1979). 

Columbus grass is a weed that originated from the natural cross between grain sorghum 

and Johnsongrass. It was intentionally used as a forage crop in Argentina (Parodi, 1943). 

It is a perennial plant, 1-2.5 m tall, with leaves up to 50 cm long. This weed causes 

problems in sorghum crops as a grain contaminant, as well as cross breeding with grain 

varieties. It also harbors insect pests and diseases of sorghum (Eberlein, 1987). 

Management of the Sugarcane Aphid in Sorghum 

Scouting for sugarcane aphids should begin when plants have 4 to 5 leaves. When SCA 

are found in a field, sampling should be done once or twice a week. If they reach the 

action threshold, insecticide must be applied to protect the crop (Knutson et al. 2016).  
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Scouting for aphids consists of walking at least 25 feet into the field and examining 

plants for SCA on the underside of leaves. A total of 60 to 80 plants around the field need 

to be checked as well as sites near Johnsongrass (Knutson et al. 2016). 

When the population of SCA is increasing rapidly, the use of insecticides may be needed 

to prevent honeydew buildup and yield loss before harvest. There are two available 

insecticides to control SCA, Sivanto 200SL and Transform WG, which can manage SCA 

on both grain and forage sorghum. There are other products that have been used for SCA 

but they have not been as effective as Sivanto and Transform WG (Villanueva et al. 

2014; Knutson et al. 2016). Insecticide seed treatment also controls SCA and other 

insects for approximately 4 to 6 weeks after planting (Knutson et al. 2016). 

An alternative method to control SCA is utilizing resistant varieties of sorghum against 

these aphids that exhibit tolerance, antibiosis, or antixenosis (Armstrong et al. 2016). 

Tolerant cultivars can withstand or recover from insect damage. Another way resistance 

is expressed is by antibiosis where SCA cannot survive or reproduce as well as it can on a 

susceptible hybrid. When the rate of population increase is lower, natural enemies also 

play an important role controlling the number of aphids (Knutson et al. 2016).   

 



 

 

Objectives 

1. Compare survival and reproduction of Sugarcane aphid on sorghum, 

Johnsongrass and Columbus grass at different temperatures. 

2. Determine the supercooling point for the sugarcane aphid. 
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Abstract 

Sugarcane aphid (SCA) has become a severe pest across much of the sorghum belt.  It can 

develop on multiple grass hosts but does not appear to survive winter temperatures in the U.S. 

except in southern Texas. Survival and reproduction by insects is a result of exposure to 

appropriate nutrition and temperatures at which metabolic processes are maintained. The rate of 

aphid development and reproduction increases as temperature increases until it reaches a 

maximum temperature where development slows because of metabolic stress.  A series of 

laboratory experiments were performed where clonal SCA were housed at seven different 

constant environmental temperatures (5, 10, 15, 20, 25, 30, 35 °C) on one of three host plants, 

sorghum, Johnsongrass, or Columbus grass.  Longevity, fecundity, number of nymphs per day, 

reproductive period, and intrinsic rate of growth were measured.  At temperatures below 10 °C 

and above 30 °C, reproduction did not occur on any host plant.  Longevity was maximum at 15 

°C and decreased with increasing temperatures.  Optimal temperatures for intrinsic rate of 

increase was between 15 °C and 25 °C on all host plants but maximum fecundity differed by host 

plant and was greatest on sorghum.  The supercooling point (coldest temperature at which 

survival is possible) was also determined for nymphs, adults, and winged adults of SCA and was 

found to be between -22 °C and -25 °C.  The results of these experiments suggest that SCA can 

use alternate hosts for survival and reproduction, but both low and high temperatures limit its 

biology.  Higher temperatures may trigger dispersal, while low temperatures eliminate SCA in 

most of the United States.        

Key words: Winter survival, host plant, population dynamics, alternate host 
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Introduction 

The sugarcane aphid (SCA), Melanaphis sacchari (Zehntner) is a pest of sorghum, Sorghum 

bicolor (L.) Moench, in many parts of the world and since 2013 became a major pest of the crop 

in the United States (Knutson et al. 2016, Nibouche et al. 2018).  SCA was first introduced to the 

United States (U.S.) in the 1970s from Hawaii and was known as a pest only of sugarcane 

Saccarum officinarum L.  The clonal lineage that attacks sorghum was recently introduced to 

North America from either Africa or Asia (Nibouche et al. 2018). Populations of the SCA have 

also been observed utilizing other hosts including sugarcane Saccarum officinarum L., 

Johnsongrass Sorghum halepense (L) Pers., and Columbus grass Sorghum almum Parodi 

especially in the southern U.S. (Nibouche et al. 2015).       

Based on colonization patterns and absence of SCA in most areas until after sorghum has 

reached advanced growth stages, SCA appears to only survive in the extreme southern U.S. 

(Michaud et al. 2018).  In southern Texas, sorghum is grown twice per year and temperatures do 

not reach freezing.  Understanding cold tolerance is important to predict whether seasonal crop 

pests are able to overwinter. The ability of these pests to overwinter will influence management 

decisions (Worland et al. 2010).  

Insects are generally classified as freeze tolerant or freeze avoidant, although these designations 

represent endpoints on a spectrum (Somme 1982).  Freeze tolerant insects are able to withstand 

freezing by controlling where ice forms in their tissues. These insects generally freeze at 

temperatures close to 0 °C. Ice, is nucleated in the extracellular fluids in a controlled manner. In 

contrast, freeze avoidant insects use physiology and behaviors to lower freezing points and/or 

find thermal refugia.  These insects lower the freezing point of their extracellular fluids up to -30 
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°C and survive in a supercooled state. The ability to supercool is accomplished through the 

accumulation of cryoprotectants and removal of ice nucleators from their body (Somme, 1982; 

Armstrong and Nielsen, 2000; Worland et al. 2010). 

The supercooling point (SCP) provides an indication of the lowest temperature at which an insect 

can survive. The SCP is determined by finding the temperature at which the insect freezes and is 

recorded as a sudden increase in temperature from the release of the latent heat of fusion.  SCP is 

influenced by body size, feeding status, and the quality and quantity of nucleating agents 

(Powell, 1976; Somme, 1982; Jones et al. 2008). 

Effects of Temperature on SCA survival and reproduction 

Because environmental temperatures influence nearly every aspect of insect physiology, weather 

strongly influences the population dynamics of insect pests. For aphids, heavy rains can wash 

them off host plants and reduce populations; while winds can spread them over long distances 

allowing them to reach new areas (Lowe, 1966; Knutson et al. 2016). Temperature is the most 

important abiotic factor affecting the development and reproduction of aphids (Aalbersberg et al. 

1987, Ozder and Saglam, 2013). Aphid development rate is directly related to the temperature. 

When these insects are exposed to temperatures below the threshold for development, survival is 

possible, but growth and maturation are not (Campbell et al., 1974). 

As temperatures increase, insect development rate increases from the threshold of development 

to an almost linear relationship where increasing temperatures speed development rates in a 

predictable manner.  However, when temperatures become too warm, the rate of development 

decreases because of physiological stress. These temperature limits are often species-specific 

(Campbell et al, 1974). Previous work on aphids by Ozder and Saglam (2013) showed that 
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development time of the common lime aphid, Eucallipterus tiliae (L.) and the crapemyrtle aphid, 

Tinocallis kahawaluokalani (Kirkaldy) decreased as temperature increased.  Kieckhefer and 

Elliot (1989) also observed that temperature affected the development time of Russian wheat 

aphid Diuraphis noxia (Mordvilko). In contrast, development time of the oleoander aphid, Aphis 

nerii Boyer de Fonscolombe species increased as temperature increased. In this experiment the 

effects of temperatures ranging from 20 to 27 °C were evaluated (Ozder and Saglam 2013).  

Similar experiments have not been previously reported for SCA. 

The goals of this research were to determine the effects of temperature on SCA survival, 

development, and reproductive biology.  The SCP was also determined.  In addition, 

performance on three different host plants was tested across all experimental temperatures. The 

hypotheses tested were 1) SCP would be similar for all life stages; 2) a temperature threshold and 

thermal maximum could be determined for SCA, and 3) that SCA would respond similarly to 

temperature regardless of host plant used.   

Materials and Methods 

All experiments were conducted at the United States Department of Agriculture – ARS lab in 

Stillwater, Oklahoma between February 2017 and July 2018. Sugarcane aphids used in this 

experiment are part of the stock colony maintained at the USDA-ARS lab. They were originally 

collected from a field in Matagorda, Texas in 2013 and kept on the susceptible sorghum variety 

RTx7000 (Armstrong et al. 2016). This colony is transferred every two weeks to new seedling 

plants and kept on a greenhouse bench at temperatures ranging from 21 °C to 31 °C. 
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Determination of supercooling point (SCP) 

To determine the supercooling point of sugarcane aphids, a Sable Systems International TC-2000 

was connected to a computer running the RealTerm 2.0 program, which captured and stored data 

from the thermocouple. To carry out the SCP measurement, a thermocouple chamber was 

constructed using a 2.5 cm by 20 cm pyrex test tube with a stopper. A metal dowel was attached 

to the stopper in order to slide it up and down inside the test tube. A hole was drilled in the 

middle of the stopper and a 1-m-long copper constantan 30-gauge thermocouple wire was 

extended through it and taped to the metal dowel.  

Dry ice was mixed with alcohol in a 300 ml beaker to obtain an extreme low temperature (-50 

°C). The test tube was placed in the middle of that mixture in the beaker. Each aphid was placed 

singly onto the tip of the thermocouple using petroleum jelly to secure it. The aphid was then 

lowered into the test tube. As the stopper was moved, the aphid was exposed to lower and lower 

temperatures. Temperature measurements were taken every 0.2 seconds until the supercooling 

point was detected.  

Twenty aphids of three different life stages, nymphs 24 to 48 hours old, and nymphs older than 

48 hours, winged adults were tested.  Aphids were not acclimated prior to being tested, as 

previous research has shown that acclimation had no effect on SCP in other aphid species 

(Armstrong and Nielsen, 2000).  
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Effects of temperature on life history 

To evaluate survival and reproduction of sugarcane aphids at different temperatures, a 

susceptible sorghum variety, KS 585, and two known alternate hosts, Johnsongrass and 

Columbus grass, were used. Johnsongrass seeds were obtained directly from a research station in 

Stillwater where this grass grows naturally. Columbus grass seeds were purchased from Turner 

Seeds Company located in Breckenridge, Texas.  

Two sorghum seeds were planted in cone-tainers (model SC10, S7S greenhouse supply, Tangent, 

Oregon 97389) 5 cm diameter x 20 cm tall in a rich three-layer media of potting soil, fritted clay 

and sand (from bottom to top respectively). When the plants reached the three-leaf stage, the 

most vigorous one was maintained and the other one removed. To protect the plants, a clear 

plastic cylinder was placed over them. All tubes had three holes covered with polyester fine 

mesh netting for ventilation. The seeds of Johnsongrass and Columbus grass had a different 

treatment to germinate. First, they were scarified to remove the outer shell of the seed. Then they 

were placed on a moist paper towel, which was folded and placed inside a ziploc bag. The bag 

was placed in a growth chamber at a temperature of 27 °C. After 3 days inside the growth 

chamber, the seeds germinated and were transferred to a pot with potting soil where they 

remained for another 5 days in the same growth chamber. After this period, they were 

transplanted into the cone-tainers, in the same ways as the sorghum trials. 

When the plants reached the three-leaf stage, 10 replicates were placed on a tray. Using a camel 

hair brush, one SCA nymph was placed on a leaf of each plant and covered with the tube. Each 

tray was then placed in a growth chamber, previously set at a constant experimental temperature, 

with a photoperiod of 14:10 (L: D) hours and humidity of approximately 65%. 
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Replicate treatments were grown at 5, 10, 15, 20, 25, 30 and 35 °C. Each day, each plant was 

evaluated and observed to determine if the aphids had reproduced. When there were new nymphs 

on the plants, all nymphs were counted and removed from the plant, leaving only the original 

female. This process was performed every day until the original female died. When the original 

female was missing for three consecutive days, she was also considered dead. 

 

Statistical analysis 

Data from SCP experiments were summarized in SAS 9.3.  Differences among life stages were 

tested using PROC Mixed Analysis of Variance.  All data from the experiments to quantify the 

effects of temperature, including aphid longevity, fecundity, pre-reproductive and reproductive 

periods, were analyzed using PROC Mixed Analysis of Variance (SAS 9.3, SAS Institute 2010) 

followed by a LSMEANS test when significant differences were detected. 

 

Results 

The SCP was determined by exposing aphids to cold temperatures and measuring when the 

exothermic reaction of ice crystallizing occurred (Figure 1). All life stages of aphids had mean 

SCP at temperatures below -20 °C. Nymphs, 24 to 48 hours old, had the lowest supercooling 

point of -25.8 °C, while nymphs older than 48 hours had a SCP of -22.2 °C. Winged adults had a 

SCP of -23.7 °C (Table 1). The SCP temperature were significantly different among life stages 

tested with nymphs between 24 and 48 hours old capable of surviving the coldest temperatures. 
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SCA responds in different ways when exposed to varying temperatures, as well as when exposed 

to constant temperature but to different grass hosts.  At cold and hot temperatures (5 °C and 35 

°C), aphids did not survive long on the different grasses nor did they reach the adult reproductive 

stage. On Columbus grass, no aphids reached the adult stage at 10 °C but some aphids had low 

reproduction on sorghum and Johnsongrass (Tables 3-5).  Overall, the aphids’ longevity was 

higher on sorghum than on Johnsongrass and Columbus grass (Fig. 2). At 15 °C, the aphids had 

the greatest longevity on sorghum and Johnsongrass, but the greatest longevity on Columbus 

grass was observed at 20 °C (Tables 3-5).  

Fecundity of aphids increased as temperatures increased across all grasses. The most progeny on 

sorghum and Johnsongrass was observed at 25 °C while on Columbus grass, reproduction was 

greatest at 20 °C.  Across temperatures from 15 °C to 30 °C, SCA females produced significantly 

more offspring (55.6 nymphs per female) on sorghum than on the other grasses, where mean 

fecundity on Johnsongrass and Columbus grass resulted in 39.5 and 30.4 nymphs per female 

(Figure 3).    

The pre-reproductive period of aphids on all three grasses decreased with increasing temperature. 

The reproductive period for aphids that reached maturity on sorghum and Johnsongrass was 

longest when they were exposed to 15 °C while the longest reproductive period for Columbus 

grass was at 20 oC (Tables 3, 4, and 5). The relationship between pre-reproductive period and the 

number of progeny produced in the same amount of time (md) varied by grass species and was 

longest at 15 °C for sorghum and Columbus grass (Tables 3 and 5).  For Johnsongrass, md was 

similar for all temperatures above 10 °C Table 4).  The intrinsic rate of increase (rm) of SCA 

increased as temperature increased for both sorghum and Johnsongrass; however, on Columbus 

grass rm peaked at 25 °C (Table 3, 4 and 5).   
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Discussion 

Supercooling point (SCP) 

Results obtained in the SCP experiment demonstrated that SCA can withstand different 

temperatures depending on life stage. This difference in freezing point has been shown to be 

directly related to aphid size (Armstrong and Nielsen, 2000). Winged adults, though older, are 

smaller than 48-hour-old nymphs, and larger than 24-48 hour-old nymphs. Larger aphids likely 

contain more haemolymph and thus may be the most susceptible to freezing.    

Aphids have been classified as freeze avoidant and some species accumulate cryoprotectants and 

eliminate nucleating agents (Powell, 1976; Jones et al. 2008).  However, in these experiments, 

the aphid colonies were never exposed to cold or freezing temperatures and thus were unlikely to 

have accumulated cryoprotectants. The fact that aphids feed directly on the phloem makes them 

consistently void of ice nucleators in all life stages, likely influencing their resistance to freezing 

(Armstrong and Nielsen, 2000). 

Although SCA originates from tropical regions, this species can withstand extremely cold 

temperatures. This ability appears to be inherent in aphid species independent of their origin 

(Somme, 1982).  Armstrong and Nielsen (2000), when evaluating SCP for Russian wheat aphid 

adults, detected a mean SCP of -26.94 °C. Jones et al. (2008), evaluating the SCP for the adult 

greenbug, detected a mean SCP of -25.98 °C. Other species of aphids have a mean SCP between 

-20 and -25 °C (Table 2). 
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Effects of temperature on life history 

Survival and reproductive capability of SCA was strongly affected by temperature and host 

plant.  Aphids lived longer at 5 °C and 35 °C temperatures when inhabiting sorghum than they 

did on either Johnsongrass or Columbus grass (Tables 3-5).  The threshold temperature that 

would allow SCA to become adults and reproduce appears to be between 5 °C and 10 °C and is 

similar for other aphid species (Conti et al. 2010). Temperatures above 30 °C also appear to 

impact SCA survival. High temperatures can be lethal because they directly affect the somatic 

tissue of aphids including the developing embryos within them and can also affect the nutritional 

quality of the plant (Daniels, 1967; Campbell and Mackauer, 1977; Hayakawa et al. 1990; Asin 

and Pons, 2001).  Columbus grass is the most tropical host tested but SCA performance was 

poorest on this host, even at higher temperatures, suggesting the potential for secondary plant 

compounds or nutritional limitations of this host. 

Reproduction did not occur at the lowest or highest temperatures on any grass.  At 15 °C, low 

rates of reproduction occurred on both sorghum and Johnsongrass but not on Columbus grass.  

At 15 °C, aphids reared on sorghum and Johnsongrass showed the longest life span and 

reproductive period, in addition to having a high fecundity level. The longevity of several aphid 

species has been reported to be longest at around 15 °C (Michels and Behle, 1989; Kieckhefer 

and Elliott, 1989; Hayakawa et al., 1990; Conti et al. 2010).  Above 15 °C, SCA longevity 

decreased except for the aphids on Columbus grass, where they had the greatest longevity at 20 

°C. This difference was not significant and additional research on the interaction between SCA 

and Columbus grass is needed to determine the reason that the relationship between temperature 

and longevity differed for this host. 
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Although the increase in temperature decreases the longevity of aphids, this is generally not a 

major factor in reproductive rate of aphids because most nymphs are produced early in the 

adult’s lifetime. Therefore, it is more advantageous for aphids to have a high reproductive rate at 

a higher temperature even when it shortens their lifespan (Hayakawa et al. 1990; Girma et al. 

1990; Diaz and Fereres, 2005).  At higher temperatures, SCA reproduced an average of about 2 

nymphs per female per day between 20 and 30 oC.  Interestingly, SCA produced fewer nymphs 

per day on Columbus grass, except at 20 oC (Tables 3-5).  This difference is also reflected in the 

intrinsic rate of increase which increased with increasing temperatures for two of the hosts, but 

not Columbus grass.  

Based on these experiments, the optimum temperature for longevity, fecundity and development 

of the sugarcane aphid is between 20 and 25 °C.  Several species of aphids have similar 

reproductive and survival characteristics at these temperatures. In a constant temperature 

experiment, the currant-lettuce aphid, Nasonovia ribisnigri (Mosley), had a high survival rate 

between 16 °C and 24 °C, with no mortality of nymphs occurring above 20 °C. The optimum 

temperature for reproduction and survival of this species is recorded at 24 °C (Diaz and Fereres, 

2005).  Wood and Starks (1972) observed that for greenbug, Schizaphis graminum (Rondani), on 

a susceptible sorghum variety, the optimal temperature for reproduction was between 21.1° C 

and 26.7 °C. Walgenbach et al. (1988) also observed that greenbug fecundity peaked at around 

20.8 ° C, whereas development rate increased until 26 °C for this species. The Asparagus aphid, 

Brachycorynella asparagi (Mordvilko) had its highest fecundity at 23 °C (Hayakawa et al. 

1990). The Bird cherry-oat aphid, Rhopalosiphum padi, showed the highest fecundity at 25 °C 

(Asin and Pons, 2001).  
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SCA differs from most other species of aphids by being able to survive and reproduce in a 

constant temperature of 30 °C. Although there is a decrease in longevity and in the total number 

of nymphs produced, survival and fecundity were greater when compared to other species of 

aphids. At 30 °C, SCA took between 5 and 6 days to reach the adult stage and reproduce. On 

sorghum and Johnsongrass, the intrinsic rate of increase was highest at 30 °C. Comparing the 

effects of temperature on aphids reared on different hosts, Johnsongrass is a good alternate host 

in the absence of sorghum. Most life history characteristics when compared to the results 

obtained on sorghum. With the increase in temperature, longevity decreased but reproductive 

rate increased, and at 25 °C, the largest number of nymphs was produced (Table 4). 

 It is noteworthy that the SCA colony is maintained on susceptible sorghum; however, the variety 

of sorghum used in these trials was different than the one used to maintain the aphids.  It is 

expected that aphids have preferred hosts and in the absence of these hosts, they may use other 

less desirable plants. Starks et al. (1973) evaluated the preference of two different biotypes of 

greenbug (Biotype B and C) in relation to three sorghum varieties (OK-8, Deer and Piper) and 

concluded that longevity and fecundity was lower for both biotypes on the nonpreferred 

cultivars.  

Columbus grass proved not to be as good of an alternate host as Johnsongrass. Besides SCA 

having lower numbers for all variables when compared to sorghum and Johnsongrass, no 

reproduction occurred at temperatures 5, 10 and 35 °C.  Temperature and quality of food 

influence development, survival, and reproduction of aphids (Aalbersberg et al., 1987; Campbell 

et al., 1974; Singh and Singh, 2015). It is likely that nutritional qualities influence SCA on 

Columbus grass.  Columbus grass occurs naturally in the extreme southern United States and it is 

likely that cooler temperatures used in these trials affected the plant quality or synthesis of 
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photosynthate needed for SCA nutrition.  Even at 15 °C, SCA did not have as long a life span as 

those on sorghum or Johnsongrass. SCA exposed to 20 °C had a longevity similar to those at 15 

°C, but fecundity was greater. Above 20 °C, aphid longevity and fecundity decreased, and when 

comparing these variables on Columbus grass to sorghum and Johnsongrass, the results were 

lower. 

Temperature determines the physiological state of insects and consequently is the key variable 

that regulates survival, fecundity, and population density. Although insects are not exposed to 

constant temperatures in the environment, this type of study offers valuable insights into 

population dynamics of a species and shows that SCA does not survive in northern areas of the 

sorghum belt even in the presence of Johnsongrass. Information on how temperature influences 

the life cycle of an insect pest is essential to understanding its biology and developing IPM 

strategies (Diaz and Fereres, 2005; Ozder and Saglam, 2013).  In the absence of sorghum, 

scouting should be conducted on Johnsongrass in the spring to limit population build up and 

further dispersal to sorghum by the SCA. 
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Figure 1. Generalized plot showing the point when ice formed and the latent heat of 

crystallization was released. 
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Figure 2. Longevity (Mean + 1 S.E.) of sugarcane aphid on three different grasses across 15-25 
oC). Longevity was significantly reduced on Columbus Grass (Kruskal-Wallis ANOVA, P < 

0.05).   
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Figure 3 Reproduction (Mean + 1 S.E.) of sugarcane aphid on three different grasses across 15-

30 oC). Reproduction was significantly reduced on Columbus Grass and JohnsonGrass (Kruskal-

Wallis ANOVA, P < 0.05). 
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Table 1. Mean (± S.E.) for supercooling points for three different age classes of sugarcane aphids 

(N = 20 per trial). 

Sugarcane aphid age class Supercooling point (± S.E.) 

Winged Adults -23.7 ± 0.41b 

24-48h nymphs -25.8 ± 0.24 c 

Older than 48h nymphs -22.2 ± 0.41 a 

Overall model df 2, 57; F = 25.24, P>F = <0.0001.   

Means followed by the same letters are not significantly different; LSMeans P<0.05. 

 

 

Table 2. Coldest reported SCPs for adults of aphid species. 

Species SCP (°C) Reference 

Aphis glycenes Matsumura -24.9 McCornack et al. 2005 

Megoura crassicauda 

Mordvilko 

-24.5 Asai et al. 2002 

Myzus persicae (Sulzer) -24.2 Bale et al. 1988 

Sitobion avenae (F.) -24.2 Knight et al. 1986 

Acyrthosiphon pisum (Harris) -23.7 Asai et al. 2002 

Aphis fabae Scopoli -23.6 O’Doherty 1986 

Elatobium abietinum 

(Walker) 

-15.7 Powell 1974 

 

 

 

 

 

 

 

 

 



 

 

Table 3. Mean (+ 1 S.E.) longevity and number of offspring produced for sugarcane aphids at different experimental temperatures in 

Sorghum.  

 

Temperature 

(°C) 

Longevity (d) Fecundity Nymphs/ day Rp d md rm 

5 8.8 ± 1.41 a - - - - - - 

10 31.2 ± 2.9 b 3.66 ± 2.66 a 0.08 ± 0.05 a 5.00 ± 4.00 a 33.3 ± 1.33 a 3.66 ± 2.66 a - 

15 47.4 ± 4.64 c 58.1 ± 7.24 b 1.2 ± 0.10 b 26.1 ± 2.46 b 14.5 ± 1.38 b 34.8 ± 6.94 b 0.15 ± 0.01 a 

20 30.5 ± 1.91 b 61.5 ± 4.47 b 2.03 ± 0.13 c 20.6 ± 1.57 bc 7.3 ± 0.44 c 29.8 ± 3.94 b  0.33 ± 0.00 b 

25 28.8 ± 2.21 b 67.3 ± 4.84 b 2.38 ± 0.16 c 18.8 ± 2.48 c 6.0 ± 0.33 cd 27.3 ± 4.15 b 0.40 ± 0.02 c 

30 16.9 ± 1.85 d 39.8 ± 4.69 c 2.35 ± 0.42 c 10.8 ± 1.59 a 5.1 ± 0.10 d 23.5± 1.64 b 0.45 ± 0.01 d 

35 8.7 ± 1.15 a - - - - - - 

Means followed by the same letters are not significantly different; LSMeans P<0.05. 

Longevity = df= 4, 36, F = 15.39 P > F = 0.0001 

Fecundity = df= 4, 29.8, F= 11.67 P > F = 0.0001 

Nymphs per day = df= 4, 38, F= 28.45 P > F = 0.0001 

Rp (Reproductive period) = df 4, 38, F= 10.13 P > F = 0.0001 

d (Pre-reproductive period) = df= 4, 38, F= 103.38 P > F = 0.0001 

md ( Number of progeny produced in a reproductive period equal to the pre-reproductive period) = df= 4, 38, F= 3.06 P > F = 0.0278 

rm (Intrinsic rate of increase) = df= 3, 36, F= 62.71 P > F = 0.0001 



 

 

Table 4. Mean (± 1 S.E.) longevity and number of offspring produced for sugarcane aphids at different experimental temperatures in 

Johnson grass. 

 

Temperature 

(°C) 

Longevity (d) Fecundity Nymphs/day Rp d md rm 

5 3.90 ± 1.08 a - - - - - - 

10 36.8 ± 7.42 bc 8.2 ± 2.46 a 0.14 ± 0.04 a 12.0 ± 3.05 a 39.4 ± 1.43 a 8.2 ± 2.46 a 0.04 ±0.01 a 

15 44.3 ± 4.34 c 39.5 ± 5.35 b 0.90 ± 0.10 ab 24.7 ± 3.27 b 14.9 ± 0.67 b 25.6 ± 4.11 b 0.16 ± 0.01 b 

20 31.6 ± 4.18 bd 40.5 ± 9.65 b 1.20 ± 0.25 b 14.7 ± 2.69 a 11.7 ±0.88 c 21.9 ± 4.44 b 0.20 ± 0.03 b 

25 23.7 ± 2.56 de 48.3 ± 7.11 b 2.22 ± 0.36 c 15.0 ± 2.06 a 6.8 ± 0.49 d 25.8 ± 4.30 b 0.36 ± 0.04 c 

30 14.6 ± 1.36 e 32.7 ± 6.95 b 2.00 ± 0.35 c 7.4 ± .088 a 5.4 ± 0.29 d 23.8 ± 3.71 b 0.42 ± 0.04 c 

35 4.2 ± 1.16 a - - - - - - 

Means followed by the same letters are not significantly different; LSMeans P<0.05. 

Longevity: df= 6, 54 F= 17.81 P>F= 0.0001 

Fecundity: df= 4, 30.4 F= 4.79 P>F= 0.0041 

Nymphs/day: df= 4, 30.4 F= 11.00 P>F= 0.0001 

Rp (Reproductive period) : df= 4, 39 F= 6.54 P>F= 0.0004 

d (Pre-reproductive period): df= 4, 32.1 F= 245.97 P>F= 0.0001 

md (Number of progeny produced in a reproductive period equal to the pre-reproductive period): df= 4, 30.3 F= 2.93 P>F= 0.0371 

rm (Intrinsic rate of increase): df= 4, 29.9 F= 22.97 P>F= 0.0001 



 

 

Table 5. Mean (± 1 S.E.) longevity and number of offspring produced for sugarcane aphids at different experimental temperatures in 

Columbus grass. 

 

Temperature 

(°C) 

Longevity (d) Fecundity Nymphs/day Rp d md rm 

5 3.1 ± 0.18 a - - - - - - 

10 13.9 ± 2.84 bc - - - - - - 

15 27.0 ± 3.83 d 8.5 ± 4.18 a 0.33 ± 0.14 a 11.0 ± 1.96 ac 21.3 ± 0.95 a 12.1 ± 5.48 a 0.07 ± 0.05 a 

20 31.4 ± 2.05 d 62.9 ± 7.41 b 2.00 ± 0.20 b 18.7 ± 1.61 b 10.5 ± 0.80 b 34.3 ± 4.64 b 0.25 ± 0.04 b 

25 20.2 ± 2.41 b 36.1 ± 10.42 c 1.74 ± 0.45 b 12.2 ± 1.70 a 7.55 ± 0.84 c 21.5 ± 4.56 ab 0.33 ± 0.04 b 

30 13.4 ± 1.58 c 16.8 ± 5.05 ac 1.20 ± 0.31 ab 6.0 ± 1.70 c 7.11 ± 0.84 c 14.1 ± 4.14 a 0.28 ± 0.04 b 

35 3.7 ± 0.63 a - - - - - - 

Means followed by the same letters are not significantly different; LSMeans P<0.05. 

Longevity: df= 6, 63 F= 23.02  P>F= 0.0001 

Fecundity: df= 3, 36  F= 11.30  P>F= 0.0001 

Nymphs/day: df= 3,32 F=5.02 P>F= 0.0058 

Rp (Reproductive period): df= 3, 31  F= 9.99  P>F= 0.0001 

d (Pre-reproductive period): df= 3, 23.9  F= 51.71  P>F= 0.0001 

md (Number of progeny produced in a reproductive period equal to the pre-reproductive period): df= 3, 31 F= 4.78 P>F= 0.0075 

rm (Intrinsic rate of increase): df= 3, 31 F= 6.21 P>F= 0.0020 
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CHAPTER III 
 

 

NOT TOO COLD NOT TOO HOT: THE EFFECTS OF TEMPERATURE ON SUGARCANE 

 

Sugarcane aphid (SCA), like any other insects, needs a good quality food source and 

adequate temperatures that provide enough heat to support metabolism and mechanism. 

The sugarcane aphid has shown a preference for sorghum in recent years causing 

substantial economic losses to sorghum growers since 2013. It was first discovered on 

sorghum in south Texas and gradually spread across the North American sorghum belt. 

Since 2013, SCA has become a perennial pest. 

At present, SCA does not overwinter in states north of Texas including Oklahoma, and 

throughout the winter, there is no trace of these aphids in the field. However, most aphids 

are freeze avoidant insects, with an ability to supercool. In the present work, SCA was 

able to cool to -4 °F as winged adults and down to -13 °F for nymphs. 

Based on laboratory studies, SCA cannot survive for more than a week if temperatures 

drop below 41 °F. When exposed to these constant temperatures, nymphs are not able to 

develop and reach the adult stage. However, when the temperature is 50 °F or greater, 

SCA exhibits a longer life span and some may even reproduce. Although infesting 

sorghum at this average temperature, SCA will not be able to increase to the point of 



 

 

causing economic damage to the crop. Nevertheless, sorghum growers should be aware 

of increasing populations because with an average temperature of 50 °F, aphids can live 

up to 31 days, and as temperatures rise, populations will increase.  At 59 °F, SCA has its 

longest life span on sorghum, living for up to 47 days. In this temperature range, SCA 

requires about two weeks to reach the adult stage, and thereafter begins to reproduce. The 

total number of nymphs produced by each female at this temperature averages 58. 

However, the reproductive period of the aphids at this temperature is also long, with 

fewer nymphs produced per day. 

At 68 °F, SCA has a higher reproductive rate and can reach economic thresholds quickly. 

At this temperature, the time the nymphs take to reach the adult stage is only 7 days. 

Although the life span of SCA declines to an average of 30 days, the total number of 

nymphs produced increases to 61 nymphs per female. The females’ reproductive period 

is shorter, but the number of nymphs produced per day is higher. This means that at 68 

°F, females take less time to start reproducing and when they start, they produce more 

nymphs per day. Thus, the ability to infest sorghum and increase the population is higher 

than at lower temperatures. 

Above 59 °F, the life span of SCA decreases with increasing temperature. However, the 

ability of the population to increase rapidly rises with temperature. At 77 °F, the total 

number of nymphs produced is the greatest. This temperature seems to be optimal for 

population increase. The number of nymphs produced per day at this temperature is 

higher than at all other temperatures and the nymphs take only 6 days to reach the adult 

stage and begin reproduction.  
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At 86 °F, the life span and fecundity of SCA falls dramatically. However, nymphs take 

only 5 days to reach adult stages, but their reproductive period is shorter when compared 

to lower temperatures. However, they still have a high production of nymphs per day, 

which also gives them a greater capacity to reach economic thresholds. 

As with most species of aphids, SCA is sensitive to high temperatures and at 95 °F, they 

survive for an average of 8 days. However, nymphs do not reach the adult stage and 

therefore do not reproduce at temperature at this temperature. Sorghum growers can 

expect aphid populations to decline when average temperatures for a period of time are in 

the range of 95 °F. 

In the absence of sorghum in the field, SCA may use alternate hosts such as Johnsongrass 

or Columbus grass. Although these grasses exhibit some similarities with sorghum, the 

performance of SCA on both is different. 

In general, Johnsongrass is a good alternate host. It provides the nutrients needed for the 

aphids to survive and maintain their populations. However, when comparing it to 

sorghum, SCA does not have similar population increases. SCA did not survive for long 

and could not reproduce at temperatures of 41°F and 95 °F on Johnsongrass.  

SCA on Johnson grass showed a greater longevity at 59 °F (44 days) as well as those on 

sorghum, but fecundity was lower and the number of nymphs per day / female was less 

than one. Fecundity was higher at 77 °F, producing an average of 44 nymphs; the number 

of nymphs per day / female was also similar to sorghum (2.22). At 86 °F, SCA had 

shorter periods to reach the adult stage, shorter life span, and lower total nymphs than in 
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lower temperatures, but high reproductive rate, which indicates an ability to infest other 

plants quickly. 

Johnsongrass appears to be a good alternate host in the absence of sorghum. On the other 

hand, Columbus grass while also an alternate host does not appear to support SCA 

population growth. Perhaps because of nutritional deficiency, SCA has lower longevity 

and fecundity on Columbus grass when compared to sorghum and Johnsongrass. On 

Columbus grass, the aphids did not survive for long or reproduce at temperatures of 41, 

50 and 95 °F. Longevity, which was around 30 days on both sorghum and Johnsongrass 

at 50 °F, was only 14 days on Columbus grass.  

At 59 °F, aphids survived for 27 days but reproduction was significantly reduced. For 

Columbus grass, the best temperature for longevity and reproduction was 68 °F. Aphid 

longevity peaked at 31 days and fecundity was a maximum of 63 nymphs / female. 

However, even with this improvement in temperature, when compared to sorghum and 

Johnsongrass, the aphids on Columbus grass survived less, reproduced less, and took 

longer to develop. This demonstrates that Columbus grass does not represent a preferred 

host for SCA populations to reach high numbers.  
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