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CHAPTER I

INTRODUCTION

Adaptive architectural enhancements are important in today’s computer design be-

cause many applications require or need specific instructional-level support for ex-

tra features. One important enhancement for architectures is the use of machine

learning [1]. Although machine learning is pervasive, especially in applications such

as Internet-of-Things (IoT), there is less discussion on microarchitectures and ex-

tensions to Instruction Set Architectures (ISAs) for machine learning (ML). Some

microarchitectures have been proposed [2] as well as architectural studies [3]; how-

ever, there have been a limited number of suggestions on small microarchitectures,

such as microcontrollers, that might help machine learning. In addition, many of

these microarchitectural changes can be quite large and involved. This paper aims

to present architectural enhancements that are simple yet effective in augmenting

application-specific architectures with machine learning capabilities.

1.1 Motivation

The overall motivations for the machine learning microarchitectural modifications lie

in the applications it can be used for. Simplicity and effectiveness drive the moti-

vations that affect the implementation of the modifications to the microarchitecture.

The improvements that satisfy this motivation focus on low power and area consump-

tion as well as efficiency. A low overall power and area consumption is accomplished

by reusing the added hardware for multiple purposes, while efficiency is achieved

through the implementation of the instruction in hardware, as it is predominantly
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faster to implement an instruction in hardware than it is to do so in software. This is

because software instructions are implemented by hardware and must go through the

overhead of getting to the hardware layer as well. The end product of the motivations

is a 16-bit microprocessor, capable of machine learning, which is named the Modified

Machine Learning Little Computer 3 (M2L2C-3) [4]. This is accomplished by adding

an instruction to implement convolution in hardware to the microarchitecture, which

allows for the computationally complex portion of a convolutional neural network to

be implemented in hardware.

Machine learning applications of small microarchitectures, such as microcontrollers,

can benefit a variety of fields, as machine learning already does on larger architec-

tures, but with the added benefit of consuming less area and power. With a low

power consumption machine learning microarchitecture, complex data could be both

collected and analyzed on device. For example, Kyong Lee and Naveen Verma pro-

pose a processor to handle high-order machine learning signal analysis functions for

patient-adaptive monitoring and other medical applications.[5] Applications within

the medical field are not the only applications machine learning microarchitectures

can be applied to. IoT applications such as traffic monitoring, soil condition track-

ing, and animal health monitoring could benefit from low power machine learning

microarchitectures as well, as it can be power consuming to continuously transmit

data to be analyzed.[6]

In order to help quantify the extensions, a small 16-bit architecture called the Lit-

tle Computer 3 (LC-3) is implemented and adapted to handle Convolutional Neural

Network (CNN), Multiply and Accumulate (MAC), and multiply operations without

the creation of additional hardware for each new operation. This is accomplished by

adding a small amount of hardware that can be used to implement the desired in-

struction, in this case convolution for a use within a CNN, and reusing that hardware

for other instructions such as the common case instructions of addition and multipli-
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cation, as well as the MAC and other operations, simplifying the amount of hardware

needed to accomplish all of the added functionality.

1.2 Organization

The rest of the paper is organized as follows. First, relevant background informa-

tion will be provided covering the components used in the modifications as well as

the base microarchitecture. This includes information on machine learning, convo-

lutional neural networks, multiply and accumulate units, and the Little Computer

3. Following the background information is the methodology. Within the method-

ology, different aspects of the modifications will be covered, such as the hardware,

the microsequencer, the finite state machine (FSM) , and the assembler associated

with the Little Computer 3. The results are described with relation to simulation

in Modelsim, verification, and synthesis in the next chapter. The final chapter will

discuss the conclusions drawn from the results of implementing the methodology.
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CHAPTER II

BACKGROUND

In order to create the 16-bit machine learning application-specific processor, a working

16-bit processor is needed. The processor that the modifications are applied to is the

Little Computer 3 created by Yale N. Patt and Sanjay J. Patel [7]. The machine learn-

ing modifications proposed enable the processor to compute the convolution equation

for a convolutional neural network, a type of machine learning, using one assembly

instruction enabled by the hardware. This chapter provides some background on

the processor as well as the proposed hardware modifications. The background for

the hardware modifications is broken into three different sections, Machine Learning,

Convolutional Neural Networks, and the Multiply and Accumulate Unit.

2.1 Machine Learning

Machine learning - a common topic today, especially among conferences - provides

a way for computers to solve problems through different methods of learning, such

as supervised and unsupervised learning. Through machine learning, programs can

complete a variety of tasks, such as image, language, and speaker recognition. Su-

pervised learning works by training a program by providing it with a large number

of diverse inputs and the correct outputs associated with the inputs. Once sufficient

training has taken place, the program can be used to complete the task it was trained

for.

Training is an important part of supervised machine learning. In image recogni-

tion, in order to identify an image, the program must first be provided with a variety
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of images from different angles and distances and a label associated with each im-

age. One method of supervised learning that is useful for image recognition is the

convolutional neural network.

2.2 Convolutional Neural Networks

Modern Convolutional Neural Networks are based on work from the research paper

by Yann Lecun et al. [8]. In the aforementioned paper, the authors propose a neu-

ral architecture called LeNet-5, used for recognizing hand-written digits and words.

The name is inspired from signal and systems theory in processing signals using the

convolution operator or:

y[n] = x[n] ∗ h[n] =
∑

k

x[k] · h[n− k] (2.1)

The architecture of the LeNet-5 can be seen in Figure 2.1 [8] and can be expressed

with 4 layers, convolution, subsampling, fully connected layers, and Gaussian connec-

tions. In the convolution stage, filters are convolved with the input image to produce

feature maps according to the filter used. The subsampling layer then produces fea-

ture maps half the size of the previous feature maps produced through the convolution

layer by performing a local averaging and sub-sampling. The fully connected layer

consists of several layers of hidden nodes. In the full connection layers, the output of

every node is connected to the input of every node in the next layer with computation

occuring within each node. Finally, an output probability is produced in the final

layer of the CNN. Further information on LeNet-5 can be found in the aforemention

research paper by Yann Lecun et al. [8]

Convolutional Neural Networks have improved vastly since the creation of the

LeNet-5. Such improvements include expanding into the topics of computer vision

(CV) and natural language processing (NLP). CV applications include facial recogni-
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Figure 2.1: LeNet-5 Architecture [8]

tion, scene labeling, image classification, action recognition, human pose estimation,

and document analysis, while NLP applications cover topics such as speech recogni-

tion and text classification [9]. CV and NLP can consequently be applied to a variety

of fields, such as autonomous vehicles [10], health care monitoring [11], and many

other areas.

2.3 Multiply and Accumulate Unit

Although convolution is extremely useful, it can be computationally complex for its

implementation in hardware. Reusability of hardware is taken into consideration

in order to make the addition of the CNN hardware more advantageous. This is

accomplished by using a multiply and accumulate unit, which can be utilized for

multiplication, addition, and the computation of digital signal processing (DSP) op-

erations, such as convolution, filtering, and computation of the Fast Fourier Trans-

form [12]. Because the MAC has similarities to a CNN, it can also be used in a CNN

operation [13]. This can be seen within the following two equations that consist of

multiplication and addition over N iterations.

zij = yij +
K−1∑

m=0

K−1∑

n=0

xi+m,j+nwmn (2.2)
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OutputCNN =
N∑

n=0

AnBn + C0 (2.3)

Equation 2.2 shows the equation for a 2-Dimensional MAC operation; breaking this

equation down to one dimension produces Equation 2.3. Equation 2.3 has been

written using the variable names that are provided to and result from the proposed

assembly CNN operation, where An and Bn are the values to be convolved, C0 is the

initial offset, and N is the number of times to compute the summation within the

convolution equation.

2.4 LC-3

The LC-3 micrarchitecture has a 16-bit Instruction Set Architecture (ISA), shown in

Figure 2.2, which is made up of a 4-bit opcode and 12 remaining bits for hard-coded

values and operands such as source registers, destination registers, and offsets. The

architecture of the LC-3 that the modifications build upon and are evaluated against

can be seen in Figure 2.3 [7].

The LC-3 is a Von Neumann architecture, also called a Princeton Architecture,

meaning that it is made up of 5 main functional units. In addition to the 5 func-

tional units, the LC-3 architecture also includes a bus, which can hold one 16-bit

value per clock cycle, and 7 registers that can be used as operands, such as the

source and destination registers, in the ISA. Within the Von Neumann architec-

ture, the first is the memory unit, which allows the LC-3 to store and load data.

In addition to the main memory block, the LC-3 also contains two memory reg-

isters, the memory address register (MAR) and the memory data register (MDR),

which hold the addresses and data of an instance of memory respectively. The sec-

ond and third units are the input and output (I/O) units. The I/O units allow

for connections to exist between the processor and I/O devices such as keyboards,

monitors, mice, and more. This component is not implemented in the M2L2C-3 or

7



the synthesized version of the LC-3 used for comparisons. The fourth unit is the

processing unit. For the LC-3, this is the arithmetic logic unit (ALU), responsible
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AND+ DR SR1 1 imm50101

AND+ SR1 0 00 SR2DR0101

JSR 1 PCoffset110100

JSRR 0 00 BaseR 0000000100

ST SR PCoffset90011

LD+ DR PCoffset90010

ADD+ SR1DR 1 imm50001

ADD+ SR1 0 00 SR2DR0001

BR n pz PCoffset90000

LDR+ DR BaseR offset60110

STR SR offset6BaseR0111

RTI 0000000000001000

NOT+ DR SR 11111111001

LDI+ DR PCoffset91010

JMP 000 BaseR 0000001100

STI SR PCoffset91011

RET 000 111 0000001100

TRAP trapvect800001111

Reserved 1101

LEA+ DR PCoffset91110

Figure 2.2: LC-3 ISA
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Figure 2.3: LC-3 Datapath [7]

for computing addition, bitwise AND instructions, and bitwise NOT instructions.

The final unit is the control unit, which is made up of the instruction register (IR)

and the program counter (PC). The IR and PC allow the processor to remember the

current location within a program and allow for each instruction to be called and

evaluated in the instruction cycle, which breaks down and evaluates each instruction
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in steps.[7]

The instruction cycle consists of 6 possible steps, fetch, decode, evaluate address,

fetch operands, execute, and store result, 2 of which (fetch and decode) are required

for every instruction. The instruction cycle can be explained best using the finite

state machine of the LC-3. The FSM, depicted in Figures 1.2 and 1.3, can be sum-

marized as a sequence of states. To move from one state to another, the transitioning

requirements must be satisfied, for example, to move from state 32, which takes in an

instruction, to state 1, the ADD operation, the operand of the instruction must be

0x0001. The states within the FSM complete different steps of the instruction cycle.

The fetch step is the process of collecting the instruction to complete. This occurs

in states 18, 33, and 35. When combined, these states collect the address pointed to

by the PC, increment the PC, pull the memory from the incremented address, and

store it in the IR, using the memory address register and the memory data register

to store the address between pulling it from the PC and storing it in the IR. The

decode step occurs in state 32. As described previously, the decode step takes the

opcode of the instruction taken from the IR, and moves to the state that matches

the value of the opcode. The evaluate address step is used to determine and store

address values. For example, within the LD instruction, in state 2, the address is

determined by computing the sum of the PC and a 9-bit offset value provided when

the instruction is called; the address is then stored in the memory address register.

The fetch operands step can be seen within state 1. This step is used to pull the data

from an operand, in this case source register 1 (SR1), in order to use the data from

the operand. The execute step is used for instructions containing computations such

as those found in the ALU. The store results step is used to save data into registers.

An example of this step can be seen in state 27, where data from the memory data

register is stored into a destination register.[7]

If the user wants to modify, remove, or add an instruction, both the FSM and the
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microsequencer must be altered. The microsequencer is used to change the values of

the control signals, depicted in Figure 3.2 as hollow arrows, for each state in the FSM.

This is done by updating and running a Python file containing the control signals and

their associated states. The FSM is modified by changing where each state points to

in order to rearrange, add, or remove the states that make up instructions.
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CHAPTER III

METHODOLOGY

The motivations for a low overall area and power consumption drive the changes to-

wards reusing the added hardware by first creating the hardware for the desired CNN

instruction and then utilizing that hardware to provide the functionality for other

instructions, such as the common case instructions of multiplication and addition,

without the addition of unnecessary hardware. Focusing on the reuse of hardware

resulted in a CNN instruction (which can also be utilized as a multiply and ac-

cumulate operation), the hardware for a multiplication instruction if the FSM and

microsequencer are modified, and the capability to solve DSP calculations, such as

convolution, without additional hardware beyond that required of the MAC unit. Fig-

ure 3.2 removes the I/O components and highlights the hardware modifications made

to the LC-3 to provide the capability to implement the CNN, MAC, and multiply

operations.

The flow diagram for the changes to the LC-3, the FSM, the microsequencer, and

the assembler can be seen in Figure 3.1. The process to add an instruction begins

with the datapath of the LC-3. If additional hardware is needed to implement the new

instruction, it must be added to the datapath. Once the hardware has been modified,

the FSM is modified, if needed, to include the proper set of states for the instruction

to go through. After checking the FSM for changes, the microsequencer may need to

be changed as well. If this is the case, the appropriate control values should be set for

each state and the microsequencer should be recompiled. Following the addition of

the necessary hardware, states, and control values, the instruction is tested. If it does

13



not work as expected, the instruction is debugged in Mentor Graphics Corporation

(MGC) Modelsim in order to determine what part of the architecture needs modified

before testing it again. If the instruction does work, the assembler is adjusted to

include the instruction. The following sections cover, in depth, the changes made to

the LC-3 to produce the M2L2C-3 containing the CNN instruction.

Start

Yes

No

Change the datapath

Change the microcode

No

No

Yes

Yes

Change the  FSM

Does the microcode
need modified?

Does the FSM
need modified?

Does the datapath
need modified?

Compile the microcode

Test the instruction

No

Does the instruction work?

Is functionality
wrong for a state?

Is a state skipped?

Is the hardware wrong?

No

No

assembly code?
Does it work in

Done

Yes

No

Yes

No Yes

Yes

Yes

Change the assembler

Figure 3.1: Flow Diagram: Adding Instructions to the LC-3
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3.1 Modifying the Hardware

The LC-3 ISA (Figure 2.2) can only write to one register and can read from two

per instruction. When implementing a CNN or a MAC, more than 2 values may

be supplied for multiplication; for this reason, and because the LC-3 only accepts 2

inputs, the data supplied to the CNN instruction for convolution must be provided

in the form of 2 vectors of data and must be preloaded into memory. The vectors

are loaded into memory in alternating order before running the instruction. This is

shown further in Chapter IV. In order to handle the vectors without calling the CNN

instruction for each iteration, the user stack pointer (USP), designated as register 6

(R6) by the LC-3, is utilized.

Most CNN architectures have several computational elements associated with

them. These involve the convolution, pooling, and fully-connected layers to form

a full 3-step architecture. The hardware modifications used to create the M2L2C-3

affect only the convolution step within the CNN architecture. The basic structure of

the modification is shown more in depth and with relation to Equation 2.3 in Figure

3.3.

3.2 Utilizing the Microsequencer

To optimize the control, the LC-3 and M2L2C-3 utilize microprogramming, or a

microsequencer, to handle the implementation of the control signals for each state

within the overall FSM structure (Figures 1.2 and 1.3 in Appendix 5.1) and to allow

easy updates to the microarchitecture. Updates can include modifying, removing,

adding, or moving instructions within the FSM. The specific micropipelined control

diagram for the CNN instruction is highlighted in Figure 3.4. It contains 6 states

specific to the CNN instruction as well as the first 4 states used to determine which

instruction has been called.

15
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Figure 3.2: M2L2C-3 Processor Datapath with Modifications Highlighted

3.3 CNN Architecture in Depth

Before calling the CNN instruction, the user stack pointer (USP), carry in value (C),

and the number of iterations (N) must be initialized in memory. The USP should be

pre-loaded with the memory address that points to the first value of vectors A and

B. The values of N and C come from Equation 2.3, where the value of N provides

the upper limit of the summation of the convolution equation and the value of C

16



RF

−1

LOAD_A

A B

LOAD_B

X

+

01 CNN_MUX... ...

Gate_CNN

N C

Figure 3.3: CNN Hardware

holds the initial offset to add to the summation during the initialization. During the

instruction, N is decremented until it reaches 0, setting the condition code register

(CCR) with each pass. The CCR holds a 3-bit value with each bit representing the

flag for whether the value of the previous computation produces a positive, negative,

or zero value. The condition code (CC) value determines whether the instruction

computes another cycle or ends and move to the next instruction. In subsequent

loops following the start of the instruction, C holds the total value produced by the

previous iterations of the summation.

When the CNN instruction is called, it starts at state 5, the beginning of 6 states

(highlighted in red) that make up the CNN instruction loop, as seen in Figure 3.4. In

state 5, the memory location of the initial value of vectors A and B is loaded into the

MAR and the USP by incrementing the previous USP value provided prior to running

the instruction. The next state, 46, loads the memory of the address collected by the

MAR into the MDR and repeats the functionality described in the previous state.

State 53, loads the data stored in the MDR into the register that holds the current
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[IR[15:12]]

R

55

Figure 3.4: CNN Micropipelined Control Path

value from vector A and repeats the process to store data into the MDR. State 55 is

responsible for decrementing the value of N and setting the CCR so that the cycle can

end when the proper number of iterations is completed. The instruction ends when

N reaches 0. In state 56, the process used to load register A is repeated for register B

and the Z bit of the CCR is checked to determine whether the value produced should

be stored in a temporary register and continue for another cycle (state 57) or in the

destination register to return the final value (state 58).
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3.4 LC-3 Assembler

The functionality to call the CNN instruction in assembly was added by modifying

the LC-3 assembler. In order to get the assembler to accept the modifications made

to the ISA in assembly, the files associated with the LC-3 assembler and simulator

were modified to include the addition of the CNN instruction, and then recompiled.

Figure 3.5 shows the ISA of the M2L2C-3 produced by the modifications made

to the datapath, FSM, microsequencer, and the assembler. This allows the user to

call the CNN instruction from assembly while still having additional room for more

instructions.

The inclusion of a function operand allows for the addition of more instructions

while still maintaining the 16-bit architecture of the M2L2C-3. The instructions that

contain the opcode 0x0001, ADD and NOT, have been modified to include a function

operand, seen in bits 3 and 4, which allows for multiple instructions per opcode.

Setting the function operand to 0x00 selects the ADD instruction, while setting it to

0x01 selects the NOT instruction.
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BR n pz PCoffset90000

TRAP trapvect800001111

LEA+ DR PCoffset91110

Reserved 1101

RET 000 111 0000001100

JMP 000 BaseR 0000001100

STI SR PCoffset91011

LDI+ DR PCoffset91010

1001CNN SR2SR1DR000

RTI 0000000000001000

STR SR offset6BaseR0111

LDR+ DR BaseR offset60110

AND+ DR SR1 1 imm50101

AND+ SR1 0 00 SR2DR0101

JSR 1 PCoffset110100

JSRR 0 00 BaseR 0000000100

ST SR PCoffset90011

LD+ DR PCoffset90010

ADD+ SR1 0 00 SR2DR0001

ADD+ SR1DR 1 imm50001

NOT+ 0001 DR SR 0 01 000

Figure 3.5: M2L2C-3 ISA
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CHAPTER IV

RESULTS

The proposed design and modifications are implemented in register transfer level

(RTL) compliant Verilog, a type of hardware descriptive language (HDL) code used

to model hardware, and then synthesized in an ARM 32nm CMOS library in Global

Foundries (GF) cmos32soi technology. The ARM standard-cell library utilizes multi-

ple threshold voltage (VT ) values to aid in synthesis (i.e., MTCMOS), which was opti-

mized for delay utilizing SynopsysR© Design Compiler
TM

(DC) in topographical mode

using a Process-Voltage-Temperature (PVT) variation at 25◦ C with typical-typical

(TT) corners. Topographical synthesis, provided by SynopsysR© DC
TM

(DC) ensures

synthesis that accurately predicts timing, area and power by including information

from the standard-cell layouts and underlying interconnects. Within synthesis, stan-

dard cells, which are premade to line up with other standard cells with respect to the

power (VDD) and ground (GND) rails as well as the inputs and outputs of the cells,

are used. The average power estimation was achieved by running the simulation on

sample code test vectors. The synthesis scripts are synthesized for delay using a 1ns

clock (1 GHz) and a 5× loading of a nominal flip-flop.

4.1 Assembly Usage of Hardware

Before running the CNN instruction, the USP and the input vectors, A and B, should

be stored into memory sequentially (i.e., A0, B0, A1, B1, ... , AN-1, BN-1, AN, BN).

The USP should hold the value preceding the memory address of A0 (i.e. if A0 is

stored in memory location 0x303F, the USP should contain 0x303E before running
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the instruction).

The CNN instruction should be used as follows, with the value of variable C from

Equations 2.3 stored in SR1 and the value of variable N stored in SR2.

CNN DR SR1 SR2

If variable N is not stored in the proper register, the instruction will not complete the

desired number of cycles with the appropriate initial offset. In addition, if variable C

is not stored in the proper location, the intermediate results may be added to the data

that is stored in SR1, which may be the result of a previous instruction or random

data within the memory location.

An example of the usage of the CNN instruction in an assembly file can be seen

below. Vectors A and B must be pre-loaded into memory according to the order

discussed above. In this example, the vectors of data start at memory location 0x4000.

ld R6, USP

ld R3, C

ld R4, N

cnn R2, R3, R4

N .FILL x000A

C .FILL x0001

USP .FILL x3FFF

4.2 Simulation and Verification

The following set of data was passed into an assembly program that calls the CNN

instruction using the format shown as example code in the previous Section. Vectors

A and B act as the values to be convolved and variables C and N contain the initial

offset and temporary values between each cycle of the summation and the upper limit

of the summation, respectively.
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A = {1, 0, 2, 4, 1, 3, 2, 1, 0, 2}

B = {2, 7, 3, 1, 5, 0, 2, 3, 9, 1}

C = 1

N = 9

Result = 27

Running HDL simulation testing on the assembly program verifies that calling the

CNN instruction produces the correct final and intermediate results. This can be seen

in Figure 1.1, containing a portion of the Modelsim waveform produced from testing

the instruction, in Appendix 5.1

Table 4.1 provides the cycles per instruction (CPI) of the microarchitecture im-

plementation of the M2L2C-3 for the CNN, MAC, and multiply instructions. The

CPI for each iteration of each instruction is large because vectors, rather than single

values, are supplied to the instructions and multiple states must be executed in order

to pull the data from memory. Each iteration of the CNN instruction goes through

6 states and consume 1 clock cycle per state, resulting in 6 cycles per iteration per

instruction.

Table 4.1: Cycles Per Instruction (CPI)
Cycles Per Instruction

Instruction Iterations Cycles

CNN N 6 ·N

MAC N 6 ·N

Multiply N 6 ·N

4.3 Synthesis

In order to evaluate the proposed design, the M2L2C-3 is compared against data

from Table X from the paper proposed by Ardakani et al. [14], containing 5 different

machine learning architectures as well as the LC-3. Table 4.2 shows the area and
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power results of running synthesis on the M2L2C-3 and LC-3 as well as the previously

collected results of the other architectures. Table 4.2 also lists the methodology

and technology used to determine the area, number of cells, and power for each

architecture.

Compared to the base microarchitecture, the M2L2C-3 microarchitecture pro-

vides an increase in area, number of cells (see Table 1.1), and total power by 86.74%,

92.91%, and 42.67%, respectively. However, it should be noted that the LC-3 con-

tains no form of multiplication (318 standard cells synthesized alone) or capability to

compute the convolution operation and consequently has significantly less area (789

standartd cells vs. 409 standard cells). With respect to the other CNN architec-

tures, the M2L2C-3 consumes significantly less area and total power. The M2L2C-3

consumes 99.98% less power than the machine learning architecture with the least

power consumption, Envsion, and 99.95% less area than that of the machine learning

architecture created by Ardakani et al., which holds the smallest area consumption.

Table 4.2: Comparison of M2L2C-3 to Pre-Existing Architectures

Hardware Methodology Technology Bits Area [mm2] Power [mW]

LC-3 Synthesis 32 nm 16 4.84E−4 3.07E−2

M2L2C-3 Synthesis 32 nm 16 9.04E−4 4.38E−2
Chain-NN [14] Synthesis 28 nm 16 – 567.5
DNPU [14] Silicon 65 nm 4− 16 16 63
Envision [14] Silicon 28 nm 1− 16 1.87 26− 44
Eyeriss [14] Silicon 65 nm 16 12.52 236− 278

Ardakani et al. [14] Synthesis 65 nm 16 1.77 254− 260
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CHAPTER V

CONCLUSIONS

The architectural enhancements proposed in this paper allow for the use of a con-

volution instruction, which allows for a section of complex computation within a

convolutional neural network to be accelerated through hardware on a 16-bit mi-

croarchitecture. The modifications provide a significant increase in area, number of

standard cells, and power from the base microarchitecture; however, the base mi-

croarchitecture of the LC-3 contains no functionality for multiplication, which can

add heavily to the area and power consumption of an architecture. This can be seen

in Table 1.1, where the area associated with hardware for multiplication consumes

351.90 µm2, or 72.65% of the area of the synthesized LC-3. When compared to the

machine learning architectures from Table 4.2, the M2L2C-3 consumes significantly

less area and power.

The motivations that affect the implementation of the architectural enhancements

focus on the creation of simple, yet effective hardware modifications that produce a

low overall area and power consumption. The requirements of the aforementioned

motivations produced modifications that focus on the reuse of hardware, allowing

for additional functionality while maintaining a small area consumption by creating

the functionality for multiple operations. While the hardware added to the LC-3 for

machine learning purposes focuses specifically on the convolution instruction for use

in convolutional neural networks, the computation of convolution in hardware is not

the only benefit of the modifications. The added hardware can also be used to provide

functionality for other instructions, like those related to digital signal processing as
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well as the common case instructions of addition and multiplication.

Machine learning microarchitectural enhancements such as those implemented in

the M2L2C-3 could be applied to medical and IoT applications, as mentioned in Chap-

ter 1. In addition, applications that currently benefit from machine learning could

benefit from machine learning microarchitectures and the lower power consumption

associated with them. One other application of the M2L2C-3 mirrors that of the base

microarchitecture, the LC-3, to teach students about computer architectures, how

to implement complex instructions for machine learning and digital signal processing

applications, and how to test and debug the creation of microarchitectures.

5.1 Future Improvements

A significant disadvantage of using the LC-3 as the base for the modifications is that

the 16-bit ISA limits the capabilities of the microarchitecture. Increasing the word size

could greatly benefit changes for machine learning; however, the low area requirements

of the 16-bit microarchitecture could benefit applications that need smaller footprints,

such as IoT applications. The M2L2C-3 could also be improved with functionality

that allows for multiple values to be stored and loaded (similar to the ARM store many

(STM) and load many (LDM) instructions) to and from the register file. This would

benefit users of the M2L2C-3 by reducing the number of instruction calls necessary

to load the vectors of data before running the CNN instruction.
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APPENDICES

APPENDIX A: Additional Figures and Tables

A.1 Topographical Synthesis

Table 1.1 displays the area and power analysis that resulted from running topograph-

ical synthesis on the M2L2C-3 and the LC-3. The same analysis is also provided for

the multiplication instruction in order to quantify the increase in each area between

the LC-3 and the M2L2C-3.

A.2 Simulation

Figure 1.1 shows a small section of the waveform produced by running the CNN

instruction on a set of vectors. The final result is stored in register 2, rf[2].

A.3 Finite State Machine - Instructions

Figure 1.2 depicts the main portion of the M2L2C-3 FSM, an updated version of the

LC-3 FSM adapted handle the new M2L2C-3 instructions [7]. The states that set the

control signals for instructions are shown in this part of the finite state machine.

A.4 Finite State Machine - Interrupts

Figure 1.3 depicts the second portion of the M2L2C-3 FSM, an unmodified version of

the L2C-3 FSM [7]. These states affect the interrupt functionality of the processor.

29



Table 1.1: Topographical Synthesis Results
Area and Power Analysis

Hardware Bits Area [µm2] Total Cells
Power

Static [µW] Dynamic [µW] Total [µW]

LC-3 16 484.38 409 27.60 3.07 30.7
M2L2C-3 16 904.53 789 42.12 1.68 43.8
multiply 16 351.90 318 210.33 110.44 320.77
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Figure 1.1: Verification of CNN instruction in ModelSim

31



(See FSM.2)
To 8

(See FSM.2)
To 13

R7 <− PC
MDR<− M[MAR]R

_ 28

PC<−MDR
30

PC<−BaseR
R7<−PC

21

[IR[11]]
4

PC<−PC+off11
R7<−PC

20

To 18To 18

To 18

To 18

To 18

22
PC<−PC+off9

To 18

MAR<−ZEXT[IR[7:0]]

To 18

To 18

MAR<−PC+off9
2

R

_
RMDR <−M[MAR]

25

27
DR <− MDR

set CC

To 18

6
MAR<−B+off6

MAR<−MDR

26

24

MDR<−M[MAR]
_
R

MAR<−PC+off9

10

SP,MAR <−SP+1
9

SP,MAR<−SP+1
MDR<−M[MAR]

46

MDR<−M[MAR]
A<−MDR

53

set CC

55
N<−N−1

[Z]
B<−MDR

56

DR<−A*B+C
58

C<−A*B+C
57

To 18

To 9

10

MAR<−PC+off9
3

MAR<−B+off6
7

MDR<−SR23

MAR<−PC+off9

11

_
R

29

31

MDR<−M[MAR]

MAR<−MDR

(See FSM.2)
To 49

1101

To 18

R

17

set CC
DR<−SR1+OP2*

19
1

[IR[4:3]]set CC
DR<−NOT(SR)

ADD/NOTset CC
DR<−SR1&OP2*

5

12
PC<−BaseR

14

DR<−PC+off9
set CC

15

To 18

M[MAR]<−MDR
_
R

16

LEA

TRAPJSRSTISTRSTCNNLDILDRLD

[IR[15:12]]

0

R

_
R

MAR <− PC
PC <− PC + 1

[INT]

MDR <− M

IR <− MDR

1

[BEN]
0 1

0

BR

JMP

AND

RTI

0 1

R

R

R

Figure 1.2: Updated LC-3 FSM adapted for use in the M2L2C-3 - Instructions [7]
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Figure 1.3: Unmodified LC-3 FSM utilized in the M2L2C-3 - Interrupts [7]
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