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CHAPTER I 
 

 

INTRODUCTION 

 

Despite the importance of rivers to human civilization, human activities have 

negatively affected most of the world’s rivers. In much of Europe, Asia, and the U.S. and 

Mexico the threat to human water security and biodiversity is indexed at > 75%, 

indicating a high incidence of known stressors to freshwater resources (Vӧrӧsmarty et 

al., 2010). The high incidence of threat to rivers is often a result of watershed 

disturbances, like agriculture and urbanization, working in unison with nonpoint source 

pollution (Vӧrӧsmarty et al., 2010). Agriculture and urbanization in watersheds can result 

in excessive nutrient loads, sedimentation, organic matter, and pesticides (Karr & 

Schlosser, 1978; Cooper, 1993; Pusey & Arthington, 2003). An increase in impervious 

surface area is also associated with urbanization (Vӧrӧsmarty et al., 2010). The inability 

of water to infiltrate the soils results in larger flow pulses and reduced base flows, 

thereby altering instream habitat (Barbec et al., 2002). Water resource development 

such as dams, and others that result in river fragmentation, are perhaps the greatest 

stressor biodiversity (Vӧrӧsmarty et al., 2010). In addition to fragmentation of riverine 

ecosystems (Stanford et al., 1988), dams affect instream habitat by degrading water 

quality (Olden & Naimen, 2010) and disrupting natural flow (Poff et al., 1997), thermal 

(Olden & Naimen, 2010), and sediment regimes (Wohl et al., 2015). Given growing 

demand for freshwater and the relationship between water security and biodiversity, it is 

important that scientists work to understand and mitigate the effects of human civilization 

on the world’s rivers.   
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Freshwater ecosystems account for a disproportionately large amount of the Earth’s 

biodiversity, and migratory fishes in rivers account for a significant portion of threatened 

biodiversity. Despite covering < 1% of the Earth’s surface, freshwater ecosystems are home 

to 25% of all vertebrate species and 48% of all fishes (Eschmeyer & Fong, 2013). Habitat 

loss and degradation is one of five major threats to freshwater fishes (Dudgeon et al., 2006; 

Arthington et al., 2016), but basic understanding of the habitat attributes required for riverine 

fishes is often lacking (Cooke et al., 2012). The flow regime in rivers is a critical part of fish 

habitat and mitigating the effects of flow alteration has become a focus of freshwater 

fisheries biologists (Poff et al., 1997; Jager & Smith, 2008; Acreman et al., 2014). Because 

migratory fishes require a large expanse of habitat and a predictable flow regime to fulfill 

their life histories, dams and flow alterations are a major threat to migratory fish conservation 

in freshwater ecosystems (Lucas & Baras, 2001). Nearly 10% of the fishes of conservation 

concern in North America are widespread migratory fishes (Jelks et al., 2008). The loss of 

migratory species in river networks can negatively affect narrow-ranging endemic fishes that 

account for ≈ 80% of freshwater species of concern (Pringle, 1997; Jelks et al., 2008). 

Migratory fishes can provide critical links within local food webs that sustain the more 

sedentary upstream ecosystems (Winemiller & Jepsen, 1998).    

Migratory fishes provide ecosystem subsidies and services that are important to the 

function of communities, and in North America, catostomids are most likely to fill that 

ecological niche (Flecker et al., 2010). Nutrient subsidies are most apparent in the Pacific 

Northwest where Pacific Salmon Oncorhyncus spp. transport marine derived nutrients inland 

(Flecker et al., 2010). In coastal streams, the deposition of marine-derived nutrients, in the 

form of semelparous salmonid carcasses, significantly increases the growth of resident fish 

species and the next generation of Pacific salmonids (Wipfli et al., 2003). These subsidies 

occur in iteroparous freshwater fishes as well (e.g., Semaprochilodus spp., Winemiller & 

Jepsen, 2004; Flecker et al., 2010). In the temperate regions of North America, catostomids 

have the greatest potential for providing nutrient subsidies (Cooke et al., 2005; Flecker et 

al., 2010). Most catostomids undergo upstream spawning migrations into tributaries during 

the spring (Page & Johnston, 1990). In addition to deposition of carcasses and young-of-

year, catostomids are a likely host for freshwater mussel glochidia and may serve to aid 

upstream recolonization by mussels (O’Dee & Watters, 2000). Despite their ecological 

importance, catostomids have historically been labeled a “trash fish” and little effort has 

been devoted to understanding their life histories (Cooke et al., 2005).   



3 

 

Many riverine fishes are migratory and travel to different locations to complete their 

life history, creating difficulties in identifying manageable stocks (Lucas & Baras, 2001). A 

fisheries stock or population includes a group of fish that share a discrete gene pool that is 

distinguishable from other members of the same species (MacLean & Evans, 1981). 

Migratory fishes complicate the delineation of stocks by spawning with individuals outside of 

their typical home range, potentially creating a widespread, ambiguous gene pool. 

Identifying the spawning locations of migratory fishes is useful to define stocks or discrete 

populations if the species displays a high rate of homing (MacLean & Evans, 1981). 

However, spawning site fidelity rates are unknown for many species, and the scale of 

migration patterns is often underestimated or unknown, further complicating the 

conservation of riverine fishes (Cooke et al., 2012).  

Understanding basic life history and movement patterns of riverine fishes allows for 

proper population assessments, and predictions of the effects of river changes on 

populations. Habitat and instream flows are intertwined factors, critical to the persistence of 

fishes in lotic environments (Arthington et al., 2016). Fish migrate to access spawning, 

foraging, and refuge habitats, and instream flows provide migration cues and dictate the 

suitability of habitats at critical life stages (Poff et al., 1997; Lucas & Baras, 2001). Because 

of the importance of those factors, successful conservation efforts require managers to 

understand the relationship of native species with habitat and instream flows (Cooke et al., 

2012). Habitat and instream flow information paired with knowledge of migration patterns 

allows managers to protect and restore habitat, and in streams with regulated flow, create a 

suitable flow regime to allow the fulfillment of life-history requirements (Acreman et al., 2014; 

Brewer et al., 2016). Further, understanding these relationships allows managers to more 

accurately evaluate the potential effects of proposed development projects (Cooke et al., 

2012). 

Blue Sucker Cycleptus elongatus is a large river catostomid that occupies much of 

North America, but the life history of the species has only recently been investigated. Blue 

Sucker is native to the Mississippi River basin and considered vulnerable to extirpation in 

North America (Jelks et al., 2008). Blue Sucker was a common food source in the central 

U.S. during the 19th century, but was nearly fished to extinction by the early 20th century 

(Coker, 1930). Throughout the 20th century, Blue Sucker was considered imperiled and by 

the end of the century Blue Sucker was being considered for listing on the threatened and 

endangered species list (Burr & Mayden, 1999). Burr and Mayden (1999) suggested that the 

perceived decline Blue Sucker was due to misunderstanding seasonal migration patterns 
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and life history of the species. In the 21st century, knowledge of Blue Sucker life history 

began to grow, and the species is now recognized as a potamodromous, large-river 

obligate. Blue Sucker inhabits large rivers the majority of the year and migrates to tributaries 

to spawn in the late winter and spring (Neely et al., 2009). Annual Blue Sucker migrations 

may exceed 300 km (Neely et al., 2009), or remain in a 3-km reach (Oliver et al., 2017). 

Evidence of homing has recently been reported for Blue Suckers, but the rates of homing 

and straying to spawning locations remain unknown (Lyons et al., 2016; Adams et al., 

2017). Habitat and environmental conditions associated with spawning Blue Sucker were 

described in the 1980’s (Rupprecht & Jahn, 1980; Moss et al., 1983), but additional studies 

have often been opportunistic and have increased uncertainty around Blue Sucker life 

history.   

Although investigations of Blue Sucker have recently become more common, 

conservation of the species remains limited by a paucity of information. The conservation 

status of Blue Sucker is variable throughout their geographic distribution, but the species is 

of greatest concern along the periphery of the Mississippi River catchment (NatureServe, 

2018). Stock assessments provide a benchmark for the conservation of fisheries stocks 

(Allen & Hightower, 2010), but I am only aware of one thorough stock assessment of Blue 

Sucker. The assessment was conducted in the Wabash River, IN, and led to IN being the 

only state where Blue Sucker is considered stable (Bacula et al., 2009; NatureServe, 2018). 

Additional studies on Blue Sucker are warranted, because life history attributes are variable 

across the distribution (Burr & Mayden, 1999; Bacula et al., 2009), and a solid 

understanding of basic life history attributes is among the major limitations of riverine fish 

conservation (Cooke et al., 2012).  

The goal of my dissertation was to improve the knowledge of Blue Sucker ecology, 

thereby providing information on how to improve monitoring and management efforts for the 

species.  

I created four objectives to address five of the ten major factors limiting riverine fish 

conservation outlined by Cooke et al. (2012).  

My four objectives were:    

1. Determine the coarse-scale movement patterns and spawning site fidelity of 

adult Blue Sucker. 

2. Determine fine-scale habitat use of Blue Sucker and timing of migration in major 

tributaries during the spawning season. 
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3. Determine population dynamics and estimate the growth trajectory of the Blue 

Sucker population. 

4. Investigate the influence of environmental conditions on the recruitment and 

annual growth of individual Blue Suckers. 

The first objective addressed movement at the riverscape scale to determine the temporal 

and spatial scope of Blue Sucker habitat use and aid in the identification of manageable 

populations. The second objective addressed Blue Sucker movement and habitat use at a 

finer temporal and spatial scale by focusing on the spawning season. I focused on the 

spawning season because the loss of spawning habitat or inability to access spawning 

habitat is commonly attributed to failed recruitment and the decline of migratory fishes. The 

third objective built upon the spatial dynamics of Blue Sucker populations observed in the 

first objective. I determined that Blue Suckers in the Red River potentially belong to separate 

populations, and evaluated vital statistics and population trajectory of two populations. The 

fourth objective investigates the past effects of environmental variability on the current age 

structure of the two populations evaluated in objective 3. Additionally, I generated 

hypotheses about spawning and recruitment from observations made in the previous 

objectives, and tested in objective 4. A chapter is devoted to each objective, and a final 

chapter is included to summarize my findings and the management implications of my 

research. 
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CHAPTER II 
 

 

SEASONAL MOVEMENTS AND FIDELITY 

INTRODUCTION 

 The North American Great Plains is home to several large river migratory fishes; 

however, many of these fishes are at an increased risk of extinction due to human 

landscape modifications (Fausch et al., 2002). In particular, large river fishes have 

adapted their reproductive strategies to coincide with aspects of the natural flow regime; 

however, dams and water diversions have extensively altered these flow patterns (Poff 

et al., 1997; Lucas & Baras, 2001; Poff et al., 2007; Carlisle et al., 2011). Seasonal flow 

pulses often serve as cues for both local (e.g., deep pool to gravel shoal) and extensive 

(e.g., estuary to river) spawning migrations (Lucas & Baras, 2001). Dams result in 

altered flow pulses rather than natural pulses driven by the climate (Poff et al., 2007). 

The timing of unnatural flow pulses may not coincide with the timing of fish reproduction 

and can result in missed spawning cues and failed reproduction (Young et al., 2011). 

High flows promote habitat connectivity and create suitable habitat for egg and larvae 

ontogeny (Lucas & Baras, 2001; Young et al., 2011). Flow suppression contributes to 

the loss of suitable habitat for native species (Probst & Gido, 2004) and allows the 

encroachment of invasive woody vegetation (Stromberg et al., 2007). Further, many 

species display natal site fidelity and the loss of their annual cues or suitable natal 

habitat can result in population declines (Pringle, 2001; Jansson et al., 2007; Kiffney et 

al., 2009).        
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 The reproductive strategy of long-lived species generally puts them at a greater 

risk of extinction in altered environments. Large-river migratory fishes typically display a 

periodic life-history strategy and are large, highly fecund, long lived, and depend on 

predictable environmental conditions (i.e., seasonal flooding) that are favorable for 

reproduction (Winemiller & Rose, 1992). Whenever favorable environmental conditions 

do not occur, long-lived periodic strategist may wait several years for favorable spawning 

conditions (e.g., Cui-ui Chasmistes cujus, Scoppettone et al., 2000; Alligator Gar 

Atractosteus spatula, Buckmeier et al., 2017). The periodic reproductive strategy is 

beneficial during drought conditions; however, in an altered environment, the frequency 

of favorable environmental conditions may be hindered (Lucas & Baras, 2001; Poff et al., 

2007). Conversely, opportunistic strategists are relatively short-lived and must be 

adaptable to highly variable environmental conditions making them generally more 

tolerant of human landscape alteration (e.g., Red Shiner Cyprinella lutrensis, Vives, 

1993; Brassy Minnow Hybognathus hankinsoni, Falke et al., 2010). Periodic and 

opportunistic reproductive strategies represent extreme ends of a continuum rather than 

discrete strategies, and the majority of fishes display varying levels of multiple spawning 

strategies (Winemiller & Rose, 1992).   

 Making predictable use of both habitats and environmental conditions where an 

individual has previously spawned successfully can be beneficial to a population; 

however, displaying plasticity in life-history strategies is also advantageous in altered 

environments. Homing is an extreme example of site fidelity that has likely evolved 

because it increases the chances of survival and reproduction in migratory fishes 

(Gross, 1988; Thurow, 2016). However, migratory fishes that are rigid in their life-history 

strategies have limited adaptability in altered environments. For example, the loss of 

suitable habitat for semelparous Pacific salmonids is a well-documented population 

stressor (Keefer & Caudill, 2014). Plastic migratory fishes are not only able to persist in 

altered environments, but are also good colonizers. The migratory life-history combined 

with opportunistic reproductive strategy of Bighead Carp Hypophthalmichthys nobilis, is 

attributed to the rapid colonization of streams throughout North America (Coulter et al., 

2013). Populations of migratory species typically comprise individuals that may home, 

stray, or are sedentary during the spawning season (Rodriguez, 2002). Biologists often 

focus on members of the population who home to familiar reproductive habitat, because 

these individuals reveal specific areas that are important to the population (Lucas & 

Baras, 2001). However, those that stray or do not migrate, but are opportunistic in their 
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reproductive strategy can support the population when conditions are less than 

favorable, be a source of gene flow among populations, and allow the population to 

adapt to alterations in the environment (Lucas & Baras, 2001).  

The objective of my study was to determine coarse-scale movement patterns of 

Blue Sucker Cycleptus elongatus Lesueuer, 1817 during the spawning and non-

spawning seasons. At the riverscape scale, I was specifically interested in movement 

among 1) different major tributaries of the Red River, 2) a 20-km tailwater-influenced 

reach of the Red River, and 3) the downstream portion of the Red River (i.e., my 

unobservable state, see methods). Although I assumed Blue Sucker are able to move 

freely across the extensive free-flowing section of the mainstem Red River, I could not 

logistically track this area on regular tracking events. Rather, I quantified the probability 

of acoustically-tagged Blue Suckers returning to major tributaries to spawn each spring, 

and assessed spawning-site fidelity over three consecutive spawning seasons using a 

multistate mark-recapture analysis. I selected the tailwater-influenced reach of the Red 

River and three major tributaries because I hypothesized the areas had suitable 

spawning habitat for Blue Suckers and were primary migration pathways based on point 

sampling conducted by agencies and angler anecdotal observations. The goal of this 

study was to provide a riverscape-scale perspective on Blue Sucker migrations so that 

the population could be better evaluated (i.e., where to sample and when) and provide 

key information on where and when fish migrated to spawning locations to ensure 

appropriate and spatially-explicit conservation and management actions could be 

developed for this elusive species.  

         

METHODS 

STUDY AREA 

 I conducted my study over four extensive reaches in the humid (114 -140 cm of 

rain annually, Woods, 2005) lower Red River catchment of Oklahoma (Fig. 1.1). The 

lower Red River begins downstream of Denison Dam, a hydropower dam that impounds 

Lake Texoma, and flows 333 km along the Oklahoma-Texas border before entering 

Arkansas. The mainstem Red River below Denison Dam remains free flowing until it 

reaches a series of locks and dams in Louisiana. My four tracking reaches were: the 

lower extent of the three major tributaries and a section of the mainstem ~20 km 

downriver of Dennison Dam (hereafter referred to as the tailwater reach, Fig. 1.1). 

Tagged Blue Sucker were able to move above the upper extent of my tracking reaches 
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in the Blue and Muddy Boggy rivers, but I was only concerned about their entering or 

leaving the tributary. Approximately 45 km above my tracking extent, Blue Sucker 

movement was obstructed by a low head dam on the Blue River, whereas the mainstem 

Muddy Boggy River is free flowing to the headwaters with exception of a small dam on 

one of the minor tributaries. The lithology of the tributaries below the dams and the 

mainstem river is primarily alluvium (Woods, 2005), and consequently, the channel 

substrate is typically sand with few exceptions where bedrock is exposed or patches of 

gravelly riffles downriver of Dennison Dam.  

Discharge data were available at four U.S. Geological Survey gaging stations 

(07331600, 07335500, 07332500, and 07335300, Fig. 1.1) and from the U.S. Army 

Corps of Engineers (http://www.swt-wc.usace.army.mil/HUGO.lakepage.html), and water 

temperature data were available at two of the USGS stations (07335500; 0733160). The 

lower Red River basin experienced severe drought (2011-2014) followed by a wet period 

in 2015 (climate.ok.gov; Fig. 1.2). Discharge at Arthur City was low at the time of tagging 

(mean 134 + 172 SD m3/s, February – April 2015), but was very high the following 

summer (peak = 6315 m3/s May 31, 2015). In 2016, a discharge pulse in late February 

(>283 m3/s, Arthur City gage) followed by a flood in mid-March (> 1130 m3/s) delayed my 

tracking efforts by two weeks. In early April, discharge dropped to 113 m3/s before 

increasing to 1130 m3/s and discharge remained high for the rest of the early season 

2016 (Fig. 1.2). Conversely, in early season 2017, a small discharge pulse in March (283 

m3/s) was followed by low discharge (≈ 85 m3/s) through early April. Water temperature 

at Denison and Arthur City were very similar in rates of change, but temperature at 

Denison was much cooler than at Arthur City during the springs and summers, but 

warmer during the winter (Fig. 1.3).  

 

EXPERIMENTAL DESIGN 

My study design followed a multistate capture-recapture Cormack-Jolly-Seber 

framework to estimate transition probabilities among major tributaries and the mainstem 

Red River (Cormack, 1964; Jolly, 1965; Seber, 1965). Briefly, the Cormack-Jolly-Seber 

framework is a capture-recapture approach that occurs simultaneously at multiple 

locations and does not assume a closed population. The multiple locations within the 

framework are termed states, and the capture-recapture data are used to estimate the 

probability of individuals moving among states between discrete time intervals, given the 
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probabilities of survival between time intervals and detection within time intervals 

(Brownie et al., 1993; Schwarz et al., 1996).  

My tracking locations and seasons provided the framework for my states, where I 

considered three states relative to each individual fish. State A represented the reach 

where any individual was tagged, state B corresponded to the remaining three tracking 

reaches (i.e., states A and B varied by individual), and state C was the unobservable 

downstream extent of the Red River (i.e., the river segment that was not tracked). I 

hypothesized that states A and B would correspond to spawning habitat whereas state C 

would not. Two seasons were considered in my study: an ‘early season’ (Feb – May) 

that generally corresponded to the perceived spawning time, and a ‘late season’ (Jun – 

Jan) that represented post spawn and over-winter periods (Moss et al., 1983; Vokoun et 

al., 2003; Neely et al., 2009). Together, the spatial and temporal delineations allowed me 

to observe movement in the context of anticipated spawning. I anticipated a high 

probability of Blue Suckers moving to state C during the late season. Therefore, 

observation of individuals in state A during the early season would reflect spawning site 

fidelity, whereas early season observations in state B would reflect straying. However, if 

the probability of Blue Suckers moving to state C during the late season was low, I 

assumed the Blue Suckers did not leave the spawning tributary. 

I designed my study to meet the assumptions of a multistate Cormack-Jolly-

Seber model. I used acoustic tags that allowed individual identification. My study was 

conducted within the expected life span of the tags (28 months of a 36-month lifespan). 

Lastly, I internally implanted the acoustic tags anticipating high tag retention (Welch et 

al., 2007; Adams et al., 2012; Carrera-Garcia et al., 2017). Because subsequent 

detections were dependent on acoustic signals and allowed me to observe the fish 

without capturing and handling, I was not concerned with heterogeneity of individual 

behavior influencing detection (e.g., trap-happy or trap-shy individuals). The assumption 

that all individuals would transition between states at the beginning and end of the early 

season required that detection in multiple states within a season was not possible. This 

assumption was easily met if fish transitioned to unobservable state C. However, if a fish 

moved into multiple tributaries during the same season, it would violate my assumption. 

The latter only occurred on one occasion (see results).  

 

TAGGING AND TRACKING 
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In Feb-April 2015, I captured and tagged 119 Blue Suckers > 500-mm total 

length (TL) at four locations within the study area (Fig. 1.1). My capture and tagging 

protocols were approved by the Animal Care and Use Committee at Oklahoma State 

University (AG-14-21, Feb. 6, 2015). Sampling and tagging were conducted when Blue 

Suckers were expected to move into the tributaries to spawn (Moss, 1983; Vokoun et al., 

2003; Neely et al., 2009; ODWC, Unpublished data) and thus, were more susceptible to 

capture. I used boat electrofishing (5.0 GPP Smith-Root, Vancouver, WA) to capture 

Blue Suckers in the Blue, Muddy Boggy, Kiamichi, and Red rivers. I used pulsed, direct 

current and adjusted the power output according to water conductivity based on 

recommendations of Miranda (2009). Water conductivities ranged 50 – 2000 μS, and I 

typically used 60hz frequency except in the Kiamichi River where low conductivities (< 

75 μS) occasionally required 120hz to reach the target power of 2500 – 4000 watts. Blue 

Suckers were typically captured by drifting through swift-water habitats while 

electrofishing. Upon capture, Blue Suckers were placed in a 250-L tub on the stream 

bank and I changed the water approximately every 15 – 20 min to reduce holding stress. 

I anesthetized one Blue Sucker at a time with a 22 – 26 mg/L solution of Aqui-S 20E 

(New Zealand LTE. Lower Hutt, New Zealand). Once the fish lost equilibrium, I 

measured the total length (TL, 1 mm), weight (0.01 kg), and placed the fish ventral side 

up on a V-shaped cradle. Freshwater from the river was piped over the fish’s gills during 

the tagging process. A 3 – 5-cm incision was made to the right of the midline of the 

ventral side of the fish, posterior to the left pelvic fin and anterior to the anal vent. An 

acoustic transmitter (CT-05-36-I, Sonotronic Inc. Tucson, AZ) was inserted into the 

abdominal cavity and 2 – 5 interrupted absorbable sutures were used to close the 

incision (2-0 PDO, 3/8 reverse cutting needle; Unify, AD Surgical, Sunnyvale, CA, USA). 

Acoustic tag weight was 10 g in water, and the smallest fish tagged was 700 g making 

the tag burden ≤1.4% of body weight. I determined the sex of each fish based on 

macroscopic observation of the gonads. Following surgery and morphometric 

measurements, I placed fish in a freshwater recovery tank. I released each fish back to 

the collection reach after it resumed normal swimming (approximately 30 min). In 

addition to frequent water changes, I processed fish as rapidly as possible and avoided 

exposing holding tanks to direct sunlight (mean time in surgery = 6:56 + 1:29 min SD). I 

minimized stress on the fish because accumulated stress in an individual can lead to 

increased susceptibility to infection and mortality (Adams et al., 2012). 
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Passive receivers were placed at four locations within the study area to record 

fish moving into and out of my tracking reaches. I anchored passive submersible 

ultrasonic receivers (SUR; SUR-03, Sonotronic Inc. Tucson, AZ) in each of the three 

major tributaries near the confluence with the Red River, and in the Red River 

approximately 20 km downriver of Denison Dam (two at each location). Two SURs were 

placed at each location to indicate the direction the fish was traveling. However, 

detection by a single SUR was imperfect and including a second SUR at each location 

increased the probability of detecting a tagged fish (see Appendix A). I lost all but one 

SUR (Kiamichi River) in a 100-yr flood event in May 2015. In winter 2015, I replaced all 

of the SURs in the tributaries and in the tailwater reach and I maintained receivers at 

three of the four locations until spring 2017. The SURs placed in the Blue River were not 

functioning upon final retrieval.   

 To supplement my passive tracking, I actively tracked by boat and canoe in 

2016 and 2017 to determine fish movement into the major tributaries and the tailwater 

reach. The tailwater reach and the major tributaries were tracked approximately once 

weekly in Feb – May 2016 and 2017 when the majority of spawning activity was 

historically observed by state agency personnel. Because spawning movements were of 

interest to my study, active tracking effort was greater in the early season than in the late 

season. Low discharge during the late season reduced the navigability of the streams, 

resulting in a greater dependence on SURs. However, I tracked each reach one time in 

July, September and October 2016. Active tracking comprised towing a hydrophone 

(TH-2, Sonotronics Inc.) behind my watercraft at 7 – 9 km/h (i.e., slightly faster than the 

current) while I scanned acoustic frequencies (USR-08, Sonotronic Inc.). Upon 

identification of a tagged Blue Sucker, I recorded a GPS location and the date.      

 

MOVEMENT ANALYSIS 

 I conducted my analysis using Program Mark (Cooch & White, 2016) to test three 

specific hypotheses regarding transition probabilities (Table 2.1). First, I hypothesized 

that male and female Blue Suckers had transition probabilities that reflected differences 

in energy investment into reproduction by the two sexes (hereafter referred to as ‘sex 

hypothesis’). Specifically, I expected females to display higher fidelity to spawning 

reaches because females often invest more energy into reproduction and fidelity is 

attributed to greater fitness compared to straying (Moyle & Cech, 1996; Lucas & Baras, 

2001). Second, I hypothesized that fish tagged in reaches influenced by a dam release 
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were more likely to return (hereafter referred to as ‘dam-release’ hypothesis). The dam 

releases in the Red River tailwater and Kiamichi River would create multiple flood pulses 

and sustained discharge, providing a possible cue for spawning migration (Lucas & 

Baras, 2001); whereas, the other tributaries would be subjected to natural weather 

patterns and less predictable over finer temporal scales. Finally, I hypothesized that Blue 

Suckers tagged below Denison Dam displayed different movement patterns when 

compared to the major tributaries of the Red River (hereafter referred to as ‘tributary 

hypothesis’). Fish typically migrate to spawn because adult foraging and refuge habitats 

do not match that of the young-of-year life stages (Lucas & Baras, 2001). However, the 

tailwater reach was not a separate tributary from the Red River and possessed the 

clean, coarse substrate required for spawning and ample sandy habitat for Blue Sucker 

forage items (Moss et al., 1983), hence my hypothesis was that Blue Suckers might 

behave differently in the tailwater reach compared to the major tributaries. 

I constructed four models to reflect each of my three hypotheses and a null 

hypothesis. I split the telemetered individuals into eight groups that could be combined to 

create my hypothesized models: males or females tagged in each of four sites (the 

tailwater reach, Blue, Muddy Boggy, or Kiamichi rivers, i.e., two groups from each 

tributary) (Table 2.2). I first created the null model by combining all eight groups into a 

single model to obtain transition probabilities. Next, to compare the sex hypothesis, I 

combined my groups into male or female groups allowing comparison of transition 

probabilities between the two sexes. Similarly, the dam-release hypothesis was 

investigated by combining groups from reaches with dam releases (Red or Kiamichi 

rivers) or groups from reaches where flow is more weather-dependent (Blue and Muddy 

Boggy rivers). Finally, I tested the tributary hypothesis by combining groups from the 

tailwater reach or the major tributaries. I did not include sex and either of the location 

groups in the same model because my data were not adequate to estimate the 50+ 

parameters required to model four groups. Differences in transition probabilities between 

location groups could confound the effect of differences between sexes within location 

groups. Therefore, I excluded individuals from one of the location groups, allowing me to 

test for differences between the sexes within the location group of interest. 

Because I was interested in movement, I focused my model on transition 

probabilities. I estimated survival as constant over time (φ.) (where the “.” subscript 

denotes constant over time) and detection probability as dependent on time (��) (where 

the “t” subscript indicates time dependence) to prevent confounding parameter estimates 



14 

 

(Leberton et al., 1992). Detection probability was inherently time dependent because my 

tracking effort varied among seasons. I conducted weekly-active tracking efforts in the 

early season of both years, whereas, active tracking effort was bimonthly during the late 

seasons. The loss of all but one SUR and only tracking the tailwater reach during the 

late-2015 season meant that tracking was extremely limited during the non-spawning 

season. Additionally, because state A or B was relative to each individual and not 

discrete physical locations, I did not estimate �� separately for the two states. So, ��
�∪� 

(where superscripts “A” and “B’ indicate the states attributed to the parameter) 

represented the mean detection probabilities for all tracking reaches within each season. 

I fixed detection probability of the unobserved state C as �.
� = 0. Transition probabilities 

(��
�:�) (where superscript “S” is the occupied state, and the fish is transitioning into state 

“R”) were estimated for each season and pair of states, excluding transitions directly 

between A and B (��
�:�, ��

�:�, ��
�:�, ��

�:�). I assumed that Blue Suckers would spend a 

season in state C before moving between states A and B so,  ��
�:� = ��

�:� = 0. This 

assumption was based on my data, where only one fish transitioned between A and B 

making the estimation of these parameters impossible (see results). Finally, because all 

Blue Suckers began in state A, transitions from states B or C in the first to the second 

season were not possible (��
�:� = ��

�:� = ��
�:� = 0), and because ��

�:� = ��
�:� = 0, a Blue 

Sucker could not occur in state B in season 2, so �	
�:� = 0. I estimated parameters with 

binomial outcomes with a logit-link function (e.g., φ., survived or died; ��, detected or 

not; ��
�:�, moved or stayed); whereas, parameters with a polynomial outcome were 

estimated with a multinomial logit-link function (e.g., ��
�:� or ��

�:� or ��
�:�, moved to A or 

B or remained in C).  

Because estimated survival (φ.) was confounded with ��
�:�, I treated φ. as a 

nuisance parameter and focused my hypothesis testing on transitions. The estimation of 

φ. is dependent on an individual going undetected for multiple seasons, provided a 

reasonable chance for that individual to be detected each season. The longer an 

individual was undetected, the lower the probability the individual was still alive. In my 

study, individuals could move to and remain in state C where �.
� = 0. It was very likely 

for a fish to remain alive and go undetected for multiple seasons. Although necessary for 

my model, my estimate of φ. was not reliable; however, this estimate was not important 

to my hypothesis testing. Instead, I focused on the fish that were observed transitioning 
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back to states A or B (��
�:� and ��

�:�) as these parameters were needed to test my 

hypotheses. 

I checked that model fit was adequate and parameter estimates were realistic 

before ranking the hypothesized models using AICc. Using the built-in median �̂ 

goodness-of-fit test, I verified that median �̂ < 3 and that the parameter estimates 

reflected what I generally observed in the field (Haddon, 2001; Cooch & White, 2013). 

For example, I expected lower detection probabilities during the late 2015 season 

because these detections were based on a single SUR station and only the tailwater 

reach was actively tracked. I also anticipated higher detection estimates for each of the 

early seasons due to the higher sampling effort in that season. I compared the models 

using AICc because the method is better suited to compare non-nested models and 

models with unequal parameters than the traditional likelihood-ratio test (Leberton et al., 

1992; Burnham & Anderson, 2002; Johnson & Omland, 2004). Using AICc provides a 

relative measure of model fit (i.e., compared to all other models considered) with 

consideration for parsimony and a small sample size (Burnham & Anderson, 2002; 

Cooch & White, 2013; Aho et al., 2014). After constructing the models, I ranked them 

from low to high using AICc values. Models and hypotheses with lower AICc values were 

better supported by the data than those with higher AICc values; however, models with a 

< 2 difference in AICc were considered equally supported (Burnham & Anderson, 2002; 

Aho et al., 2014).   

For the top ranked model(s), I preformed Markov-chain Monte-Carlo simulations 

(MCMC) to obtain robust parameter estimates and 95% credibility intervals (Buckland & 

Grathwaite, 1991; White et al., 2009; Cooch & White, 2017). I used the mode and 95% 

credibility interval of these distributions to evaluate parameter estimates and the 

uncertainty around those estimates. The mode was used rather than the mean because 

it was comparable to the maximum likelihood estimates of the initial model, and the 95% 

credibility interval was comparable to the familiar 95% confidence interval in frequentist 

statistics (Kruschke, 2011). I did not specify informative prior distributions, because I did 

not have prior information to contribute; however, I did provide beta values estimated 

with logit or multinomial-logit link functions as recommended by Cooch & White (2017). I 

included 55,000 iterations with 4,000 tuning and 1,000 burn-in iterations to 

accommodate the large number of parameter estimates. Additionally, I replicated each 

MCMC 10 times to obtain Gelman - Rubin �  convergence statistics and verified that 
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parameter estimates had �  < 1.1 (Gelman & Rubin, 1996). I plotted the resulting mode 

and 95% credibility intervals for parameters of interest for comparison.  

 

RESULTS 

TAGGING AND TRACKING 

I implanted acoustic tags in 119 Blue Suckers in spring 2015 and recaptured 66 

individuals at least once during the study. I tagged 55 male and 64 female Blue Suckers 

(see appendix B). The mean TL of my tagged fish was 572 mm (43 mm SD) and the 

mean weight was 1470 g (407 mm SD). Males were covered in pronounced tubercles 

and gametes were expressed with abdominal pressure. Females displayed tubercles on 

their head and around their fins. Despite being gravid (i.e., the presence of hydrated 

oocytes), abdominal pressure did not result in gamete expression. The M:F ratio of 

recaptured Blue Suckers approximated the M:F ratio of tagged Blue Suckers (M:F 0.81 

and 0.87, respectively).  

The effective sample size (i.e., data available to provide reasonable parameter 

estimates) for my analysis was 200 observations after omitting data from one tagged 

female. The effective sample size is the number of fish tagged plus the number 

recaptured in all but the last season (Cooch & White, 2013). I recaptured 22 fish in > 2 

seasons. Only one female was recaptured in every season because she never left the 

tailwater reach, but was observed moving up and downstream throughout the study 

(Table 2.2). Only one female was excluded from the analysis because she transitioned 

between states A and B without spending a season in state C, violating an assumption 

of my design. The excluded Blue Sucker moved to Muddy Boggy and Kiamichi rivers 

during early season 2016 and to Muddy Boggy River in the early season 2017, but she 

used the tailwater reach outside of spawning.  

 

MOVEMENT ANALYSIS  

Each of the hypothesized models met the goodness-of-fit criteria; however, the 

model reflecting the tributary hypothesis had more support than the other hypotheses. 

The 95% upper bound for the median �̂ values were < 3.0 in all instances and the 

parameter estimates for survival and detection were similar among models. The 

tributary-hypothesis model had more support than all other models (AICc = 420) 

indicating that movement patterns of fish tagged in the tailwater were different than 

those tagged in the tributaries. The model associated with the dam hypothesis had no 
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more support than the null model (Hdam: AICc = 428 v. H0: AICc = 428), and the sex 

hypothesis model had less support than the null model (Hsex: AICc = 458 v. H0: AICc = 

428). Omitting the fish sampled in the tailwater reach from the analysis did not improve 

the performance of the sex hypothesis model compared to the null model (Hsex: AICc = 

316 v. H0: AICc = 288) indicating that males and females in my study had similar 

movement patterns. 

The MCMC simulation of the tributary-hypothesis model converged and had 

adequate explanatory power though the survival estimate was still confounded. The �  

values associated with the ten replicated simulations indicated that all parameter 

estimates converged (0.99 < �  < 1.01). I did not recapture 45% (53 of 119) of my tagged 

fish so I did not know their fate relative to survival. However, because some of my 

tagged fish did return after missing for more than 18 months, the survival estimate was 

still high (φ. = 0.96, 0.95 – 0.98 95% CI). The survival estimate was confounded by the 

probability of fish remaining in state C (i.e., fish could either die or survive in state C and 

I would not be able to distinguish between the conditions). Probabilities of Blue Suckers 

remaining in state C after being tagged were �	
�:�= 0.92, �


�:�= ��
�:� = 1 for fish in the 

tailwater, and �	
�:�= 0.17, �


�:�= 0.89, ��
�:� = 0.81 for fish tagged in the tributaries (Fig. 

1.4). 

The detection probabilities from the MCMC simulation of the tributary-hypothesis 

model were realistic representation of my tracking efforts. Compared to late 2015, 

detection probabilities were much higher in late 2016 when SURs were functioning 

throughout the season and I were able to track each reach on multiple occasions (��
�∪�= 

0.08 and �

�∪�=0.96, respectively). As expected, my limited tracking effort in the late 

seasons was reflected in broad credibility intervals (0.01 – 0.53 CI, 2015 and 0.61 – 1 

CI, 2016). Additionally, detection probabilities from the early seasons were higher and 

met with less uncertainty (�	
�∪� = 0.96, 0.80 – 1 CI, 2016 and ��

�∪� = 0.96, 0.68 – 1 CI, 

2017; Fig. 1.4). 

Inspection of the MCMC simulation of the tributary-hypothesis model revealed 

differences between the movement patterns of tailwater and tributary fish movements, 

and movements of tributary fish differed between years. The greatest difference between 

tailwater and tributary fish was in the probability of tagged individuals leaving state A 

(Fig. 1.4). Blue Suckers tagged in the Red River were unlikely to leave the tailwater 

reach from the early to the late seasons (��
�:� = 0.13; 0.03 – 0.87 CI, �


�:� = 0.03; 0 – 
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0.27 CI); whereas, tributary fish were likely to leave the tributaries following the early 

seasons (��
�:� = 0.98; 0.46 – 1 CI, �


�:� = 0.88; 0.64 – 0.97 CI). Additionally, large 

credibility intervals accompanied transition estimates from state C to A or B, for fish 

tagged in the Red River, indicating a high level of uncertainty (Fig. 1.5). During the early 

2016 season when discharge was typically high, Blue Suckers tagged in the tributaries 

displayed a tendency toward site fidelity (�	
�:� = 0.65; 0.31 – 0.85 CI); however, some 

Blue Suckers strayed (�	
�:� = 0.18; 0.06 – 0.41 CI; Fig. 1.5). In early season 2017 when 

discharge was low, the probability of fish returning the tributaries was low and there was 

not a clear preference between state A or B (��
�:� = 0.10; 0.01 – 0.31 CI, and ��

�:� = 

0.09; 0.01 – 0.30 CI) demonstrated by the few fish that did return (Fig. 1.5). Although 

most fish detected in 2016 displayed fidelity to each of the tagging tributaries, straying 

fish showed a tendency to use the free-flowing Muddy Boggy River (Fig. 1.6). 

 

DISCUSSION 

MOVEMENT PATTERNS 

Like many other big river fishes, my results suggest Blue Sucker has migratory 

and non-migratory individuals within their populations. Tributary-tagged Blue Suckers 

migrated into the tributaries in the early season and typically left during the late season. 

Similar movement patterns were observed in the Grand River, Missouri (Vokoun et al., 

2003), middle Missouri River, Nebraska (Neely et al., 2009), and Wisconsin River, 

Wisconsin (Lyons et al., 2016). Conversely, I estimated a low probability of Blue Suckers 

in the tailwater reach leaving during the late season, potentially suggesting either 

mainstem movements or a non-migratory portion of the population. Resident individuals 

within a migratory population are not abnormal (Rodriguez et al., 2002), in fact, 

freshwater salmonid and catostomid populations often comprise both migratory and 

sedentary members (e.g., Brown Trout Salmo trutta, Lucas & Baras 2001; Sonora 

Sucker Catostomus insignis & Desert Sucker Catostomus clarkia, Booth et al., 2014; 

Robust Redhorse Moxostoma robustum, Fisk et al., 2015). As indicated in my 

hypothesis, the tailwater reach provides suitable habitat for multiple life history 

requirements of Blue Sucker. Blue Sucker display positive rheotaxis (Moss et al., 1983), 

and the year round water flows, associated with hydropower releases, may serve as an 

attractive habitat feature. The fish I recaptured in the tailwater reach may also be using 

the reach as non-spawning habitat and migrate elsewhere during the early season. The 

fish I excluded from the analysis appeared to be spawning in Muddy Boggy River and 



19 

 

spending the rest of her time in the tailwater reach. Individuals that may have spawned 

in an unobservable region of the study area and returned to the tailwater reach within the 

early season would have falsely appeared as non-migrants in my study. Unfortunately, I 

was unable to distinguish the absence of an individual from a missed detection at a fine 

temporal resolution to provide better information on this possibility.  

Fish tagged in the tributaries were more likely to home to the tributary where they 

were tagged rather than straying, and the probability of fish returning appeared to 

correspond to flow patterns. The estimated probability of Blue Suckers from tributaries 

displaying strong site fidelity in 2016 (78% of those returning) was similar to other 

iteroparous fishes. Male Smallmouth Bass Micropterus dolomieu returned within 200-m 

of previously documented spawning sites 81% of the time (Ridgeway et al., 1991), and 

adult Weakfish Cynoscion regalis returned to their natal habitat to spawn 60-81% of the 

time (Thorrold et al., 2001). Although my three-year study was not adequate to quantify 

the relationship between flow and migration probability, Blue Suckers appeared to be 

more likely to return to the tributary where they were tagged when flows were higher. In 

the wetter 2016 period, the probability of Blue Suckers returning to any tributary was 

0.83 compared to 0.19 in 2017 when flows were much lower. Dam releases can initiate 

spawning migrations (Cushman et al., 1985; Lucas & Baras, 2001), but the influence of 

dams was not detected with my dam-release hypothesis model. Overall in 2017, I 

detected very few tagged Blue Suckers returning to the tributaries (n = 5) compared to 

the abundance observed in the tailwater (n = 15). The relatively small differences 

observed among tributaries lent little explanatory power for the dam-release hypothesis 

(Fig. 6). However, flows associated with dam releases are known attractants for 

migratory fishes (Bunt et al. 2001; Aarestrup et al. 2003), and managers should not 

discount the potential influence of dam releases during low-flow years. 

I did not detect a difference between male and female movement patterns as I 

hypothesized suggesting both sexes invest considerable effort into migrating for 

reproduction. In many animals, it is assumed that the females invest more energy into 

reproduction than males, because oocytes are more energy dense than sperm (Leonard 

& Lukowiak, 1984; Berglund et al., 1986). However, males that grow tubercles and guard 

territory expend more energy than is required for sperm production alone and thus, 

compensate for the energy difference (Moyle & Cech, 2004). Energy expensive male 

territoriality has been documented for several catostomids, including Creek Chubsuckers 

Erimyzon oblongus (Page & Johnston, 1990), Robust Redhorse (Grabowski & Isely, 
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2006), and Flannelmouth Suckers Catostomus lattipinnis (Weiss et al., 1998). When 

sampling during the early season 2017, I observed male Blue Suckers displaying 

energetically expensive spawning behavior. Blue Suckers arrived earlier and remained 

in the area longer than females, and had pronounced tubercles covering their body 

(Dyer personal observation). Similarly, Lyons et al. (2016) observed ripe male Blue 

Suckers arriving at the spawning area and remaining later than females in the Wisconsin 

River. Although males returned more frequently than females (1 yr interval verses 2 yr) 

in the Wisconsin River, recaptures were low and variation in return rates was similar for 

each sex (Lyons et al., 2016). Due to the spatial and temporal resolution of my study 

(i.e., weekly tracking events for each reach), I were not able to document the residence 

time of individuals at specific habitats. Future efforts to determine whether spawning 

Blue Suckers display territoriality would be beneficial to improve understanding of these 

patterns. 

Nearly 50% of the fish I tagged were never detected again post tagging, and I 

can only speculate their fate. Detection in the tracking reaches of my study area was 

reasonably high (except during major floods) because the reaches were a relatively quiet 

acoustic environment and were tracked frequently with both passive and active methods. 

However, I had to consider a large part of the study area unobservable. When flows 

were high (850 m3/s), I tracked the 313 km of the Red River that comprised the 

Oklahoma portion of state C during the late season 2015. I detected four Blue Suckers 

near the Arkansas border, but for the majority of this area the river was not navigable at 

average discharge (20-yr average discharge 150 m3/s; Arthur City gage, July - 

November). Unfortunately, under high flows, environmental noise likely prevented 

acoustic tag detection in this reach. It is also possible that Blue Suckers suffered 

mortality or tag loss. Tag retention and survival in captive Razorback Suckers Xyrauchen 

texanus was 100% after six months (Karam et al., 2008). Karam et al. (2008) reported 

high mortality (84%) in tagged Razorback Suckers in the wild, but suggested that the 

mortality was due to predation rather than tagging. Rechisky & Welch (2010) found tag 

retention as high as 95% after 24 weeks, and tag related mortality was < 85% in 

surgically tagged Chinook Salmon smolt Oncorhynchus tshawytscha. A tag loss rate of 

16% was observed for Steelhead smolt Oncorhynchus mykis with lengths > 140 mm 

(Welch et al., 2007). I could not assess tag loss directly, but I examined the incisions of 

several Blue Suckers recaptured during electrofishing and the incision healed as 

expected. Rechisky & Welch (2010) speculated that unabsorbed sutures leading to open 
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wounds were the primary cause for tag-related mortalities. I recognize the possibility of 

tag loss, tag malfunction or mortality as possible reasons for not detecting more tagged 

fish. However, Blue Suckers had the potential to emigrate, or may not have made 

another spawning migration within the duration of my study.   

Emigration and non-constant spawning frequencies are two possible 

explanations for low recapture of Blue Suckers. In 2015, an abnormally wet spring 

followed by Hurricane Bill, created two major flood crests (5,635 m3/s on June 2, and 

3,284 m3/s June 25; Arthur City gage). Extreme flooding can temporarily displace fish, 

but both displacement and the ability to recolonize is species specific (Dolloff et al., 

1994; Fritz et al., 2002). Blue Sucker morphology is adapted to high flows and Blue 

Suckers are typically good at maintaining their position in swift habitats (Moss et al., 

1983). However, the flood in 2015 was exceptional and Blue Suckers could have moved 

substantial distances downriver. Additionally, tagged Blue Suckers may have been part 

of a larger population or meta-population. Layher (2007) documented spawning Blue 

Suckers in a bend in the Red River, Arkansas. I detected four Blue Suckers I tagged 

near Arkansas in late 2015. The four fish traveled 120 – 240 km from their tagging 

location and were approximately 170 km from those described by Layher (2007). In the 

Missouri River, Neely et al. (2009) documented Blue Suckers traveling an average 249 

km and a maximum of 334 km during spring spawning migrations. I have no reason to 

assume that the population tagged in my study does not have a much larger range than 

defined by my tracking extent. It is also possible that Blue Suckers may not return to 

spawn every year. For many iteroparous females, environmental conditions or food 

availability can determine spawning frequencies (McBride et al., 2015). For example, 

Cui-ui in Lake Pyramid, Nevada, only reproduce in wet years when lake tributaries are 

flowing and year classes are reported as much as 17-yrs apart (Scoppettone et al., 

2000). Lyons et al. (2016) noted the spawning return intervals of PIT tagged Blue 

Suckers for both males and females were as long as six years, but this was potentially 

confounded with low detection rates. Similarly, two individuals in my study went 

undetected from the time they were tagged in 2015 until 2017, but I cannot know 

whether these two individuals chose not to spawn or avoided detection in 2016. 

Unfortunately, a study duration of approximately 10-yrs would be needed to detect the 

possible trends in highly migratory populations with irregular migration patterns. The 

current available acoustic tag life limits these opportunities without the use of other 

approaches (e.g., PIT tags) and annual sampling.  
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Of the four reaches, Muddy Boggy River was the most frequently used tributary 

by straying Blue Suckers. Muddy Boggy River was the only stream in my study without a 

dam located on the main channel. Blue River has a low-head dam, but the flow patterns 

still generally followed natural patterns. However, Blue River has lower discharge 

(median discharge 2 m3/s vs. 7 m3/s, respectively) and a smaller drainage area when 

compared to Muddy Boggy River. Further, Blue River has several bedrock shoals near 

the confluence with the Red River that likely require elevated discharge to provide 

connectivity for large-bodied fish like Blue Sucker. I suspect that the natural flow regime 

of the Muddy Boggy River, combined with larger river size, and good connectivity, make 

it an important tributary for straying fish. I also assumed that the location where an 

individual was tagged was not a result of straying; however, when I tagged fish in early 

2015, discharge was low and dam releases from Denison Dam or Hugo Reservoir may 

have drawn Blue Suckers into the tailwater reach or Kiamichi River (as I observed in 

2017). Thus, it is possible that many of the fishes observed straying to Muddy Boggy 

River were actually returning to natal habitat that was unavailable in other years due to 

low discharge.  

 

MANAGEMENT IMPLICATIONS 

Management of dams on large rivers that mimic the natural flow regime can 

provide suitable spawning habitat and potentially mitigate the effects of extreme drought 

periods. Blue suckers displayed some plasticity in spawning location choice, as many 

presumably strayed to Muddy Boggy River when discharge was high, but moved into 

dammed tributaries when discharge was low. As the larger of the two undammed 

streams in my study, Muddy Boggy River may serve as the preferred location for 

migrating Blue Suckers in wet years; thus, protecting spawning habitat quality and 

connectivity within Muddy Boggy and Red rivers would be beneficial to the persistence 

of these populations. The plasticity in spawning-site selection by some Blue Suckers 

indicates that dam releases could be used as a management tool to provide spawning 

cues and habitat during drought conditions (e.g., Jager & Smith, 2008). For example, 

King et al. (1998) successfully manipulated the timing, magnitude and duration of dam 

releases to facilitate spawning activities by Clanwilliam Yellowfish Barbus capensis. 

However, efforts to examine both the extent of spawning habitat across the basin and 

the effects on recruitment below dams would be beneficial to understanding the 

perceived benefits of discharge-related management options. First, extreme drought in a 
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portion of the basin may not be problematic if there are other areas lower in the basin 

that provide adequate straying possibilities. Second, spawning below a dam can be 

detrimental to the population if post-spawning conditions are inadequate for recruitment 

(King et al., 1998). Below dams, recruitment can suffer due to egg desiccation 

(Grabowski & Isely, 2007), poor water quality (Mϋeller et al., 2008; Olden & Naimen, 

2010), or stunted juvenile growth (Weyers et al., 2003). Although I did not examine the 

quality of juvenile habitat below the dam, I observed water levels dropping as much as 2 

m immediately following spawning activity in the Kiamichi River due to dam operations. 

Managing discharge with major fluctuations during the spawning period may be 

detrimental to these populations. Rather, some consideration of ramping discharge in 

both directions could generate the energy required and facilitate an ecological benefit.   

Conservation plans for inland fisheries are often restricted to geopolitical 

boundaries; however, many large river migratory fishes such as Blue Sucker would 

benefit from interstate collaborative efforts. I show that many individual Blue Sucker are 

highly migratory annually and the abundance of missing tagged fish suggests I likely 

underestimate these migration distances. Within states collaboration among agencies, 

universities and the federal government are a common component to State Wildlife 

Action Plans (Lauber et al., 2011); however, collaboration among state agencies in large 

rivers is rare for fishes not listed as threatened or endangered. The U.S. Fish and 

Wildlife Service has jurisdiction over threatened and endangered species and 

collaborates with many agencies (Ballweber & Schramm, 2010). For example, the Great 

Plains Fish and Wildlife Conservation Office collaborates with several federal and state 

agencies to manage Pallid Sturgeon and Paddlefish (James, 2018). In North America, 

the Migratory Bird Treaty has resulted in the successful management of migratory 

waterfowl due to collaboration among the Canadian Wildlife Service, U.S. Fish and 

Wildlife Service and various state agencies throughout the U.S. (Anderson et al., 2018). 

Globally, marine fisheries are collaboratively managed among countries (Brown, 2017). 

The large river migratory fishes, such as those found in the Red River, would benefit 

from similar collaborative efforts among agencies. This is particularly important for 

species that are difficult to study, and do not benefit from federal listing designations. 
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Table 2.1 Candidate models used in my analysis of Blue Sucker Cycleptus elongatus 

movement. Hypotheses names refer to: the tributary hypothesis – movement patterns of 

fish tagged in the tributaries differ from fish tagged in the tailwater reach, null hypothesis 

– there is no difference in movement patterns among groups of fish, dam-release 

hypothesis – movement patterns of fish tagged in reaches with large dams differ from 

fish tagged in undammed tributaries, and sex hypothesis – movement patterns of male 

fish differ from female fish. The model notation references the survival parameter (φ) 

was estimated as a constant (.), detection probability (P) was estimated as a function of 

time (n = 4 seasons) and location, where location was either detectable (states A & B) or 

undetectable (state C, n = 2 locations), and transitions between states (�) was estimated 

as a function of time, state (A, B, or C, n = 3 states), and either sex (male or female, n = 

2), dam (reach was dammed or not dammed, n = 2), or tributary (reach was Red River 

tailwater or tributary, n = 2). K indicated the number of parameters estimated in each 

model, and the AIC scores are provided along with the difference in AIC score between 

each model and the top model. 

Hypothesis Model K AICc ΔAICc 

Tributary φ ~ ∙, P ~ time, � ~ time + state + 

tributary 

29 420 0 

Null φ ~ ∙, P ~ time, � ~ time + state 17 428 8 

Dam-release φ ~ ∙, P ~ time, � ~ time + state + dam 29 428 8 

Sex φ ~ ∙, P ~ time, � ~ time + state + sex 29 458 38 
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Table 2.2 Capture histories of acoustic telemetered Blue Suckers used in Multistate 

Cormack-Jolly-Seber model. Capture histories in the first column consist of a string of 

five characters, where each character position represents a time interval, beginning with 

tagging in spring 2015 and ending with spring 2017. Each character represents the state 

that a fish was detected in: “A” state where the fish was tagged, or “B” any other 

detectible state. Values of zero indicate the individual was not detected. The columns to 

the right indicate the number of fish from each group (sex X location) displaying a given 

capture history.    

Capture 

History 

Tailwater Blue Muddy Boggy Kiamichi 

F M F M F M F M 

A0000 4 3 7 9 8 11 8 3 

A000B 0 0 1 0 0 1 0 0 

A00AA 0 1 0 0 0 0 0 0 

A00B0 0 0 1 0 0 0 0 0 

A0A00 1 4 2 5 8 0 6 5 

A0A0A 0 0 1 0 0 0 1 1 

A0AA0 0 0 0 1 0 1 0 0 

A0AAA 8 3 0 0 0 0 0 1 

A0B00 1 1 3 0 0 0 1 3 

A0B0B 0 0 0 0 0 0 0 1 

A0BB0 0 0 0 0 0 1 0 0 

AAAA0 1 0 0 0 0 0 0 0 

AAAAA 1 0 0 0 0 0 0 0 
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Fig. 2.1 I conducted a multistate mark-recapture study of Blue Sucker in the lower Red 

River, Oklahoma, USA. Stream reaches in bold reference active tracking and tagging 

locations, and represented state A or B in individual capture histories. The Red River in 

non-bold font connects A and B states and is referred to as state C in the multistate 

framework. Stars indicate the location of the U.S. Geological Survey stream gages, and 

crosses represent the location of temperature loggers. The SURs were located in each 

of the active tracking reaches within 2 km of the lower extent. 
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Fig. 2.2 Temperature in the Red River (Arthur City) (a), and hydrographs representing 

stream discharge in cubic meters per second (m3s-1) in the Red (b), Muddy Boggy (c), 

and Kiamichi (d) rivers during the early seasons 2016 (gray), 2017 (blue), and the 20-

year average (1998 – 2017, dashed) 

(https://waterdata.usgs.gov/ok/nwis/uv?site_no=07335500, accessed 2/27/18).     
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Fig. 2.3 Water temperatures (top) and stream discharge (bottom) recorded during my 

Blue Sucker movement study. Water temperatures were recorded in the Red River at 

Arthur City (black, USGS gage 07335500) and Denison (blue, USGS gage 07331600), 

and stream discharge data are from Arthur City 

(https://waterdata.usgs.gov/ok/nwis/uv?site_no=07335500, accessed 2/27/18). 
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Fig. 2.4 Parameter estimates from Markov-Chain Monte-Carlo simulations of a 

multistate Cormack-Jolly-Seber model of coarse-scale movement patterns by Blue 

Suckers in the lower Red River, OK. From left to right, parameter estimates on the x-axis 

are: S.) probability of survival (φ.), P1.) detection probability in late-season 2015 (��
�∪�), 

P2.) P in early-season 2016 (�	
�∪�), P3.) P in late-season 2016 (�


�∪�), P4.) P in early-

season 2017 (��
�∪�), and transition probabilities of fish leaving the state they were 

tagged in, from early to late seasons 2015 (��
�:�) and 2016 (�


�:�) for fish in the Red 

River tailwater (A & B), and fish tagged in tributaries (C & D). Dots indicate the mode 

and vertical bars represent 95% credibility intervals from posterior distributions. 
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Fig. 2.5 Parameter estimates from a Markov-Chain Monte-Carlo simulation of a 

multistate Cormack-Jolly-Seber model of coarse-scale blue sucker movement in the 

lower Red River, OK. Parameters on the x-axis are the probability of an individual from 

either the Red River tailwater reach (Red) or a tributary returning to the state it was 

tagged (A) or a different observable state (B) in early-season 2016 (’16) or 2017 (’17). 

Dots indicate the mode and vertical bars represent 95% credibility intervals from 

posterior distributions. 
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Fig. 2.6 Number of telemetered Blue Suckers detected in tracking locations in early 

seasons 2016 and 2017. Tracking locations are the three major tributary rivers (Blue, 

Kiamichi, and Muddy Boggy rivers) and the Red River just downstream of Denison Dam, 

OK, USA (Tailwater). Hollow bars indicate the number of fish returning to the location 

they were tagged (state A) and the number of fish straying (state B) are shown with 

black bars. 
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CHAPTER III 
 

 

TIMING AND SPAWNING HABITAT USE  

 

INTRODUCTION 

 

Many large-river migratory fishes of the Mississippi River catchment are species 

of conservation concern (Jelks et al., 2008) including catostomids that facilitate energy 

transfer across this large region (Cooke et al., 2005; Flecker et al., 2010). Migratory 

fishes are disproportionately affected by human alteration of river environments (Hinch 

et al., 2005; Cooke et al., 2012). Changes to river connectivity (i.e., longitudinal, Ward & 

Stanford, 1983; lateral, Junk et al., 1989) and natural flow patterns (Poff et al., 1997) are 

due to human modifications that disrupt completion of the life histories of river fishes 

(Fausch et al., 2002). In fact, approximately 80% of freshwater fishes of conservation 

concern in North America inhabit localized ecoregions in the upper extents of 

catchments (Jelks et al., 2008), and the loss of connectivity with the downstream 

ecosystem may contribute to the decline of those populations (Pringle, 1997). 

Catostomidae comprises many of the affected species; however, their decline has not 

been the focus of conservation or recovery efforts due to the perceived lack of 

importance to humans (Cooke et al., 2005). However, when compared to other migratory 

fishes, catostomids are more likely to provide energy subsidies to isolated communities 

and facilitate ecological processes that require upstream movement (i.e., glochidia, 

Flecker et al., 2010).  

Blue Sucker Cycleptus elongatus is a species of concern with a complex life 

history. Blue Sucker is broadly distributed across the Mississippi River catchment, and
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was thought to be declining throughout the 20th century (Burr & Mayden, 1999). 

However, Burr & Mayden (1999) suggested that the perceived decline of Blue Sucker 

was due to misunderstanding the migratory life history of the species. Blue Sucker life 

history is better understood today, but is considered vulnerable to extirpation in North 

America (Jelks et al., 2008; NatureServe, 2018). Blue Sucker occupy the mainstem of 

large rivers for the majority of the year (Neely et al., 2010), and may migrate up to 300 

km in the spring (Metee et al., 2015; Neely et al., 2009) to spawn in swift, deep water 

with coarse substrates (Moss et al., 1983, Vokoun et al., 2003a; Zymonas & Probst, 

2007). A rise in temperature in conjunction with rising discharge is thought to cue Blue 

Sucker to undergo spawning migrations (Vokoun et al., 2003), although the water 

temperatures and the timing of movements vary regionally. Blue Sucker in the Red 

River, AR, initiated spawning in mid-March when water temperatures reached 15 – 20 °C 

(Mettee et al., 2015; Layher, 2007). However, Blue Sucker in the Grand River, MO, and 

the Missouri River, NE, spawned in late April to May when water temperatures were as 

low as 10 °C (Vokoun et al., 2003, Neely et al., 2009). Like many migratory fishes, 

migratory cues and habitat selection by Blue Sucker are likely dependent on many 

environmental factors (Lucas & Baras, 2001). Reports of Blue Sucker spawning habitat 

are reasonably consistent, but often based on opportunistic observations (e.g., Vokoun 

et al. 2003a; Layher, 1998). Targeted efforts to understand Blue Sucker spawning cues 

have often suffered from the difficulty of observing Blue Suckers during the spawning 

season and resulted in more uncertainty regarding spawning behavior (e.g., Zymonas & 

Probst, 2007; Lyons et al., 2016). Understanding the relationship between life history 

and habitat and discharge remains a limiting component of fish conservation (Cooke et 

al., 2012).   

Large rivers in Oklahoma harbor Blue Sucker at the southwestern extent of the 

Mississippi River catchment and offer a broad range of physicochemical conditions for 

studying drivers of spawning migrations and habitat use by the species. There is limited 

information about the distribution and habitat use by these populations and most existing 

information has been derived from occasional collections over time (e.g., 1940-1988, 

Burr & Mayden) rather than targeted sampling for the species. However, spawning was 

documented in the Red River, AR and the population is suspected to be declining based 

on changes in catch-per-unit-effort sampling (Layher, 1998; Layher, 2007). Additionally, 

sampling efforts by the Oklahoma Department of Wildlife Conservation (ODWC) have 

documented congregations of Blue Sucker beneath a dam on a large tributary of the 
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Red River (C. Tacket, ODWC, personal communication). Only one other recent 

collection in the Oklahoma portion of the basin has been reported (i.e., Muddy Boggy 

River, S. Brewer, Unpublished data). I began conducting targeted Blue Sucker sampling 

in the Red River catchment of Oklahoma to improve the understanding of habitat use 

and spawning migrations. My study objectives were to determine: 1) the relationship 

between environmental conditions and Blue Sucker movements into the Red River 

tributaries, and 2) spring-time habitat selection by Blue Suckers in the Red River 

tributaries. Recognizing the factors driving movement and habitat use during the critical 

spawning season would be beneficial to developing both long-term monitoring strategies 

and identifying management options for improving population abundances if needed or 

desired by the management agencies.  

 

METHODS 

 

STUDY AREA 

 I conducted my study at four sites within the lower Red River basin of Oklahoma. 

Lower Red River basin is located in the wet South Central Plains ecoregion where oak-

hickory-pine forests are interlaced with prairies (Woods, 2005). The mainstem lower Red 

River begins as a tailwater downstream of Denison Dam, a hydropower dam constructed 

in 1944 that impounds Lake Texoma (Fig. 3.1). Impoundment via Denison Dam 

disrupted the sediment regime resulting in channel down-cutting and a 20-km long series 

of coarse substrate regions that resemble riffles (tailwater reach). From Denison Dam, 

the Red River flows 333-km and generally comprises sand and alluvium substrates and 

a braided channel. Three major tributaries contribute significant discharge to the 

mainstem Red River of OK (listed from west to east, average annual flow in 

parentheses): Blue River (8.7 m3/s), Muddy Boggy River (46.3 m3/s), and the Kiamichi 

River (60.8 m3/s). Blue River is a 4th order (Strahler, 1957) stream and has a low-head 

dam ≈ 90-km upstream of the Red River confluence that acts as a fish-passage barrier. 

Muddy Boggy River is a 5th order, free-flowing river. The Kiamichi River is impounded by 

Hugo Dam 28-km upstream of the mainstem confluence. All three tributaries differ from 

the mainstem in having Cretaceous age gravel and clay substrates, heavy quantities of 

instream cover, and regular bedrock outcrops.  Dams marked the upper extents of my 

study reaches in the tailwater reach and the Kiamichi River. I designated bridge 

crossings 40 and 50 km upstream of Blue and Muddy Boggy river confluences with the 
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Red River, respectively, as the upper extent of the reaches, because the reaches could 

be tracked within a single day. 

 

MOVEMENT AND HABITAT SELECTION 

 In spring 2015, I captured and tagged both male and female Blue Suckers from 

my four study sites. I captured Blue Suckers via boat electrofishing (5.0 GPP, Smith-

Root, Vancouver, WA) and surgically implanted acoustic tags (CT-05-36-I, Sonotronic 

Inc. Tucson, AZ) in 120 individuals. I measured total length (1 mm TL), wet weight (0.01 

kg WW) and documented sex based on the macroscopic observation of the gonads. I 

selected 30 individuals > 500-mm TL from each site for tagging. I anesthetized individual 

Blue Suckers in a 22 – 26 mg/L bath of Aqui-S 20E (New Zealand LTE. Lower Hutt, New 

Zealand), and began surgery once the individual lost equilibrium. Individuals were 

placed dorsal side up in a V-shaped cradle with freshwater supplied to the gills. I 

removed scales between the left pelvic ray and the anal vent and applied povidone 

iodine to the area. I inserted an acoustic tag through a 3 – 5 cm incision and closed the 

wound with 2 – 5 simple-interrupted sutures (2-0 PDO, 3/8 reverse cutting needle; Unify, 

AD Surgical, Sunnyvale, CA, USA). Acoustic tag weight (10 g in water) was 1.4% of the 

weight of the smallest tagged Blue Sucker (0.7 kg WW). Following surgery, I placed 

individuals inside a dark 250-L tank of frequently refreshed river water at a shaded 

location during recovery. Once a fish regained equilibrium and actively avoided human 

contact, I released it back into the stream. 

  I monitored Blue Sucker movement and habitat use during spring 2016 and 

2017. I actively tracked each reach approximately weekly by traveling downstream via 

canoe while towing a hydrophone (TH-2 Sonotronic Inc. Tucson, AZ) at a speed slightly 

faster than the water current (7 – 9 kph). I scanned each of the 15 acoustic channels (69 

– 83 kHz) with an acoustic receiver (USR-08, Sonotronic Inc. Tucson, AZ) for 3 sec and 

listened for tagged fish. Upon detection of an acoustic tag, I maneuvered into a position 

where I obtained the unique aural sequence, and marked the location via GPS (Garmin 

76CSx, Garmin International, INC, Olathe, KS). I used a directional hydrophone (DH-4, 

Sonotronic Inc. Tucson, AZ) to identify the aural code when I was unable to isolate the 

tag signal from environmental noise or other tags. Additionally, I monitored Blue Sucker 

movement between portions of the mainstem Red River and my study sites using 

passive submersible ultrasonic receivers (SUR-03, Sonotronic Inc. Tucson, AZ). I 

suspended SURs ≈ 0.5 m below the water surface from buoys that I anchored within 2-
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km of the downstream extent of each study reach. I maintained 2 SURs at each location 

from winter 2015 to spring 2017, except Blue River. SURs placed in Blue River were not 

functioning upon retrieval.  

I conducted sonar surveys in the field to obtain data used to map habitat features 

that I hypothesized would influence habitat selection of spawning Blue Suckers. I used 

side-imaging sonar (Lowrance HDS Gen 3 with LSS2 side-scan transducer; Tulsa, OK) 

to create sonar images and record depths of the streambed throughout my study 

reaches. I conducted my surveys by mounting the sonar to the bow of a canoe and 

traveling the thaweg of each reach downstream at 7 – 9 kph at moderate to high flows 

(i.e., 60th – 80th percentile). I transferred sonar data to a computer for processing using 

Sonar TRX Pro software (version 16.1.6300.32523, Leraand Engineering Inc., Honolulu, 

HI). I created a gray-scale mosaic of the streambed from side-image sonar channels, 

and extracted spatially referenced depths from the down-scan sonar channel.  

I used QGIS (version 2.18, QGIS Development Team, 2014) to organize spatial 

data and create habitat variables for habitat selection analysis. In QGIS, I delineated 

stream banks and straight or meander river sections within each study reach to serve as 

habitat units (referred to as river sections hereafter). I defined meanders as areas where 

the direction of the thaweg changed by > 45° and straight river sections comprised the 

area between meanders. I limited straight river sections to 400 m because tag-detection 

trials indicated that 200 m, up or downstream, was the upper range for detecting an 

acoustic tag in large, straight river sections. I numbered the river sections (downstream 

to the upstream extent) of each study reach to use as a surrogate for distance upstream 

of the Red River confluence. Using a combination of aerial photos and field 

observations, I documented the presence of riffles in the study reaches. I created a 

binomial variable where river sections possessing a riffle or adjacent to a riffle were 

given a value of 1, and other river sections were given the value 0. I visually identified 

woody debris and coarse substrate (> 64 mm) on the side-scan sonar images (Kaeser & 

Litts, 2010), and created polygons around patches of each habitat variable. I validated 

the presence coarse substrate and woody debris using field data in Red and Kiamichi 

rivers, and used aerial photos during low flows in Blue and Muddy Boggy rivers. I 

calculated the proportional area covered by either woody debris or coarse substrate 

within each river section to account for instream cover and potential spawning habitat 

(Moss et al., 1983). I used spatially referenced depth data to calculate mean depth of 
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each river section. Side-imaging sonar surveys in each study reach were collected within 

a single day, so water depths of river sections were proportional within a study reach. 

           

DATA ANALYSIS 

 I excluded individuals in the tailwater reach from analysis because they did not 

display season movement patterns. I previously determined that Blue Suckers tagged in 

tributaries displayed seasonal migration patterns, but Blue Suckers in the tailwater reach 

were unlikely to leave and instead behaved as residents (Chapter 2). Because fish in the 

tailwater reach rarely left the reach, I could not observe Blue Suckers returning during 

the spawning season, or confidently attribute habitat selection to spawning behavior. For 

those reasons, I excluded the tailwater reach from further analysis. However, three 

individuals tagged in the tailwater reach were included in my analysis because they used 

Muddy Boggy River during at least one spawning season.    

 

Timing – I created predictor variables from temperature and discharge data to assess 

the relationship between the timing of Blue Sucker spawning migration and 

environmental cues. I obtained hydrology data from each stream recorded by USGS 

stream gages (Blue River 07332500, and Muddy Boggy 07335300; 

https://waterdata.usgs.gov/ok/nwis/rt) and USACE dam release data (http://www.swt-

wc.usace.army.mil/HUGO.lakepage.html). I calculated mean magnitude of stream flow 

at each location during each week using R Statistical Software (vers. 3.4.5, R Core 

Team, 2018). Additionally, I obtained temperature data from a temperature logger 

(HOBO onset Pro v2, Onset Computer Corporation, Bourne, MA) that I placed in the 

Red River at the Highway 271 Bridge crossing, as water temperature data were not 

available in the tributaries (Fig. 3.1). I calculated the minimum temperature recorded 

each week and the degree days between the start of the spawning season and the end 

of each week. I used minimum temperature rather than mean temperature because the 

minimum temperature reflected the residual heat retained by the environment (Mathez, 

2009). 

I created generalized linear mixed models (glmm) to assess the effect of 

environmental variables on the timing of Blue Sucker spawning migrations into the 

tributaries. My response variable was the number of Blue Suckers detected for the first 

time in the season, each tracking week, during the spring season. I expected correlation 

between temperature variables, so I used Pearson’s correlation to determine the 



38 

 

temperature variable with the strongest linear relationship with the number of Blue 

Suckers moving into tributaries. Using the ‘lme4’ package (Bates et al., 2018), I fit a 

glmm with a Poisson distribution (Lawless, 1987; Bolker et al., 2009). First, I created a 

null model with only random effects for location, year, and week, where week was an 

observation-level effect in my models to accommodate overdispersion (Bolker et al., 

2009). Next, I created two hypothesized models to test: 1.) the relationship between 

number of Blue Suckers and temperature, and 2.) the relationship between number of 

Blue Suckers and magnitude of discharge. Additionally, because migratory fishes often 

respond to both temperature and hydrology (Lucas & Baras, 2001), I considered an 

interactive effect of temperature and magnitude of discharge (Table 3.1). I included the 

location, year, and week as random effects in each model. I ranked models using AICc 

and considered the model with the lowest score the best supported by my data, provided 

that the score was > 2 points different (Burnham & Anderson, 2002; Johnson & Omland, 

2004). I assessed the effect size of my models with the coefficient of determination (R2).  

 

Habitat selection – I assessed habitat selection by Blue Suckers using two general 

approaches. First, I considered a type I habitat selection analysis, where use and 

availability were measured at the population level (Manly et al., 2007). With the type I 

approach, I did not distinguish individuals within the population and I considered all 

measured habitat available to the Blue Sucker population. The disadvantage to this 

approach is that I ignored the potential correlations among multiple observations of an 

individual. I did not observe individuals often enough to create a temporal or spatial 

correlation (i.e., > 20), and therefore did not violate assumptions of independence (Cryer 

& Kung-Sik, 2008). However, I completed a second analysis of habitat selection by 

individuals observed on > 4 occasions using a type II approach where habitat use was 

measured independently for each individual and availability was measured at the 

population level. I observed individuals using multiple tributaries in my study, and 

consequently considered all measured habitat available to individuals in the population. 

The disadvantage to the type II approach is that it requires many observations of each 

individual. The two approaches complemented one another and provided more 

information regarding my data. 

 I assessed type I Blue Sucker spawning habitat selection using a forward model 

selection approach. I used the count of Blue Sucker observations in each river section 

as my response variable. To assess habitat selection I used generalized linear model 
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with a Poisson distribution and a forward selection approach guided by AICc (Bolker et 

al., 2009). I calculated the AICc scores with the ‘AICcmodavg’ package (Mazzerolle, 

2016). The initial model included only an intercept and a fixed effect for study reach. I 

individually added the habitat variables riffle, woody debris, coarse substrate, mean 

depth, and upstream distance to the initial model. The added variable that produced the 

lowest AICc score was retained and the process repeated until the addition of variables 

no longer reduced the AICc score (Bolker et al., 2009). I included interactive effects and 

polynomial effects of retained continuous variables in subsequent iterations of the model 

selection process. I retained additional parameters if their inclusion resulted in a 

reduction of AICc score by > 2 points (Burnham & Anderson, 2002; Johnson & Omland, 

2004). I assesses the final model for satisfaction of linear model assumptions, 

overdispersion, and effect size using R2.     

 I use a multivariate outlying mean index (OMI) analysis to determine type II 

habitat selection by 24 individuals. With OMI, the distance between mean habitat use by 

an individual and the mean habitat available to the population (marginality) was used to 

determine habitat selection by individuals (Dolédec et al., 2000; Calenge, 2011). I 

conducted the OMI analysis using the ‘adehabitatHS’ package (Calenge, 2011). In the 

OMI analysis, two matrices were constructed: Z, to represent the available habitat with n 

river sections (rows) and p habitat variables (columns), and Y, to represent used habitat 

with n river sections (rows) and t individuals (columns). A principal components analysis 

(PCA) was used to determine the correlations among and the relative availability of 

habitat variables in matrix Z. With the PCA analysis, the river sections with the mean 

habitat conditions make up the center of the multivariate space, and each variable 

represents a dimension within that space. Next, river sections in matrix Y were weighted 

for each individual based on the proportional use of the river sections by a given 

individual. From this, the mean habitat use by each individual was determined, and the 

marginality of each individual was calculated. An eigen-analysis was used to create an 

x-axis and y-axis (i.e., principle components) that explain the most and the second most 

marginality in habitat conditions among river sections. The dimensions associated with 

habitat variables were plotted with their origin at the intersection of x and y axes, and 

individuals were plotted based on their mean habitat use within multivariate space. This 

allowed a visual assessment of habitat selection by individuals relative to availability 

(Callenge, 2011).    
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RESULTS 

I successfully implanted acoustic tags into 119 Blue Suckers, and redetected 

37% of those individuals in a tributary at least once during my study (see Appendix B). 

Of the 120 Blue Suckers tagged, one Blue Sucker in the Red River tailwater perished 

before being released. I suspect that the mortality was due to a gill injury during 

weighing and not due to my surgical methods. Females displayed light tuberculation 

around their head and fins, and were apparently gravid (i.e., protruding abdomen), but 

did not display gametes when pressure was applied to the abdomen. Males had heavy 

tuberculation and readily expressed gametes with light abdominal pressure. I tagged ten 

juvenile Blue Suckers that I expected were female because I observed several mature 

males of the same size, but gravid females tended to be larger (> 530 mm TL). In the 

tributaries, I observed 80% of redetections in 2016, and I suspected that low flows in 

2017 resulted in the paucity of redetections in the tributaries (Fig. 3.2). 

  

Timing – I determined that the combination of cool temperatures and high flows resulted 

in the greatest expected abundances of Blue Suckers moving into the tributaries. The 

two temperature variables had a weak relationship with the abundances of Blue Suckers 

in the tributaries. However, the relationship with weekly mean, minimum temperature 

was slightly stronger than the relationship with degree days (r = -0.09 vs. 0.04, 

respectively). Weekly mean streamflow magnitude was moderately correlated with Blue 

Sucker abundance (r = 0.42). The model with temperature and magnitude interaction 

scored 7.2 AICc points lower than the second ranked model and explained a moderate 

amount of the variation in my data (conditional R2 = 0.42; Table 3.1). The model 

indicated that high flows occurring at low temperatures, or earlier in the season, resulted 

in a greater expected abundance of Blue Suckers entering the tributaries (Fig. 3.3). 

Conversely, high flows occurring at moderate or warmer temperatures had either little 

effect or a negative effect on Blue Suckers moving into the tributaries. 

  

Habitat selection – My type I habitat selection analysis indicated that Blue Suckers in the 

tributaries positively associated with riffles and woody debris. The final model had R2 = 

0.17, and included the fixed effects for riffle presence, woody debris, and study reach 

(Table 3.2). I estimated a higher abundance of Blue Suckers in the Kiamichi River 

(βKiamichi = 2.19 + 0.32 SE) than in either Blue or Muddy Boggy rivers (βintercept = -2.44 + 

0.22 SE & βMuddy = -0.25 + 0.30 SE, respectively). Blue Suckers were more likely to occur 
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in a river section that possessed a riffle or was adjacent to a riffle (βriffle = 0.90 + 0.22 SE) 

and were positively associated with woody debris (βwood = 0.38 + 0.14 SE; Fig. 4). 

However, the amount of woody debris in my study was typically 0 – 20% and the 95% 

confidence intervals reflected the increasing uncertainty in river sections with > 30% 

woody debris (Fig. 3.4).      

I included 10 individual Blue Suckers with > 4 redetections in my type II habitat 

selection analysis. Combined I included 56 observations, with 55% in the Kiamichi River, 

30% in the Blue River, and 15% in the Muddy Boggy River. The relatively limited number 

of detections in the tributaries was due to low residency time in the study reaches (≈ 2 

weeks). Additionally, the low flows in 2017 (Fig. 3.2) likely contributed to the detection of 

only 1 individual in Blue River, 2 individuals in Muddy Boggy River and 3 individuals in 

the Kiamichi River . 

Differences in habitat availability among the different study reaches was apparent 

in the OMI analysis. The x-axis accounted for 70% of the marginality and was negatively 

associated with coarse substrate and mean depth and positively associated with 

distance upstream and woody debris (Fig. 3.5). Fish on the left side of the plot (negative 

loadings) selected river sections within 50 river sections (25 – 30 rkm) from the 

confluence, and with < 10% woody debris and, mean depths > 2 m, whereas fish on the 

right side of the plot (positive loadings) selected more woody debris, shallower depths, 

and moved further upstream. The five individuals with the strongest negative loading 

were from the Kiamichi River where available upstream distances were < 60. Coarse 

substrate was typically sparse (< 10%), and had little effect on habitat selection. The y-

axis explained an additional 18% of the marginality, and was positively associated with 

riffle presence, and negatively associated with depth. The upper point cloud reflected 

riffle presence and the lower point cloud illustrated riffle absence. Most of the fish spent 

time in river sections with and without riffles, and the position of an individual between 

the point clouds reflected the proportional amount of time that individual spent in either 

habitat. Fish E was the only individual that was not observed in or near a riffle, and was 

the only fish with unknown sex at the time of tagging (Table 3.3). The three individuals 

most strongly associated with riffles were males (C, W, D), whereas females spent 

proportionally more time in river sections without riffles.     
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DISCUSSION 

I found Blue Sucker were more likely to migrate to tributaries during the spring 

when flow pulses occurred in conjunction with cool water temperatures. Blue Suckers 

were less likely to initiate migrations as water temperatures warmed, contradicting the 

18° C spawning temperature previously reported for Blue Sucker in Red River, Arkansas, 

(Layher, 2007). Other Blue Sucker populations initiated spawning movements when 

temperatures were as low as 10 °C (e.g., Missouri, Vokoun et al., 2003; Nebraska, Neely 

et al. 2009). It was possible that Blue Suckers in my study were ready to spawn once 

water temperatures exceeded 10 °C, but flow conditions were not appropriate at that 

time. In the absence of a flow pulse, Blue Suckers may have chosen to spawn under low 

flow conditions, or resorbed their oocytes and spawned the next year. Similarly, delayed 

spawning migrations of Atlantic Salmon Salmo salar have been attributed to hydrology 

(Thorstad et al., 2008). Intrinsic factors (e.g., maturation stage and hormones) were 

thought to motivate fish movements near the end of the spawning season (Thorstad et 

al., 2008). In the Blue and Muddy Boggy rivers, the timing of flow pulses were dependent 

on precipitation; however, dams in the Red and Kiamichi rivers may alter the timing of 

natural flow pulses (Young et al., 2011). Dam releases that do not consider the effects of 

timing and magnitude of the flow pulse can be detrimental to spawning fish (Young et al., 

2011). Although my observations are unique and occurred over three spawning 

seasons, my data are based on a limited sample size and should be interpreted with 

caution (i.e., untagged fish representing a large portion of the population are 

unobservable).      

Although my sample size was limited, I have multiple lines of evidence 

suggesting riffles are important to spawning Blue Suckers and it is supported by findings 

from other studies. First, I captured most of my fish for tagging in riffles. Although it was 

possible that my electrofishing equipment was more efficient in the shallow water and 

rocky substrate associated with riffles (Reynolds, 1996), I sampled other shallow areas 

of the stream and did not capture large numbers of fish. Second, river sections with 

riffles or adjacent to riffles accounted for 47% of Blue Sucker use observations 

compared to only 26% of the available river sections being associated with riffles. The 

result is likely more complex as suggested by my type II analysis where individual Blue 

Suckers spent time in river sections with and without riffles. However, my limited data 

suggest future efforts might examine differences among sex as several of the male fish 

used riffles or areas adjacent to riffles more frequently than females. The males of 
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several catostomid species are territorial during the spawning season (e.g., Creek 

Chubsucker Erimyzon oblongus, Page & Johnston, 1990; Greater Redhorse Moxastoma 

valenciennesi, Cooke & Bunt, 1999).  

I detected a positive association of Blue Suckers with woody debris, but this 

relationship may not be limited to spawning activity. Woody debris is not typically 

associated with Blue Sucker spawning habitat (e.g., Moss et al., 1983; Vokoun et al., 

2003). However, woody debris was important in predicting the presence of Southeastern 

Blue Sucker Cycleptus meridionalis in the Pearl River, Louisiana, at any time of year 

(i.e., spawning or non-spawning, Oliver et al., 2017). Woody debris can provide refuge 

and forage opportunities to fish (Pusey & Arthington, 2003). Blue Suckers likely seek 

refuge to conserve energy during spawning migrations (Lucas & Baras, 2001), but 

foraging behavior during the spawning season is unknown for the species. I frequently 

captured Blue Suckers below brush piles in swift water when electrofishing in the 

Kiamichi River for a separate study (chapters 3 and 4) and it is possible that Blue 

Suckers were using the habitat as refuge from the strong current. 

Coarse substrate was commonly associated with Blue Sucker spawning habitat 

in previous studies (Vokoun et al., 2003, Lyons et al., 2016, Oliver et al., 2017), but I did 

not detect a relationship with coarse substrate in my analysis. Coarse substrate was 

common in the Kiamichi River (median coverage 29%), but was rare in Blue and Muddy 

Boggy rivers (median coverage 0 & 3%, respectively), and I more commonly observed 

gravel substrate in riffles in those reaches. Gravel substrate was difficult to distinguish 

from finer substrate in side-scan sonar images (Hamill et al., 2018), and because I was 

unable to identify gravel with any degree of certainty, I did not include it in my analysis. 

I used acoustic tags in my study due to high water conductivities (800-2000 μS) 

in the Red River, although the technology has some limitations in lotic environments. 

Acoustic tags are difficult to detect in swift water environments that Blue Suckers were 

hypothesized to inhabit; however, water conductivities > 800 μS cause the rapid 

attenuation of radio waves making the use of radio tags impractical in my study (Adams 

et al., 2012). Alternatively, the environmental noise associated with turbulent water and 

moving substrate in riffles make acoustic tags difficult to detect (Adams et al., 2012). In 

the tributaries, riffles were small and I was often able to detect fish from the bank using 

the directional hydrophone. On one occasion, I detected three Blue Suckers in a single 

riffle in Blue River by standing on the bank with the directional hydrophone. It is likely 

that I missed individuals due to the complexity of some riffles. I cannot quantify the 
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presence of fish that were undetected, and a potential consequence was that fish 

inhabiting noisy environments were underrepresented in my data.   

 It is apparent that Blue Suckers moved throughout the lower Red River, and used 

the tributaries during the spawning season. Although the number of Blue Suckers 

observed using the tributaries was small, the unregulated Muddy Boggy and Blue Rivers 

appear to possess suitable spawning habitat and natural flows. The water conductivities 

in these tributaries were lower than in the Red River (< 500 μS), and further research 

into habitat selection in the tributaries should implement radio tags and a finer temporal 

resolution (i.e., daily). Additionally, dam management may be important in low-flow 

years, when migratory fishes are attracted to dam releases (Bunt, 2001). My results 

indicate that Blue Suckers were more likely to move into tributaries in conjunction with 

large flow pulses occurring early in the spawning season (Feb – March) compared to 

flow pulses occurring later in the spring (April – May). Large flow pulses created by dam-

releases are typically due to heavy precipitation, leaving managers with little choice in 

the timing of such dam-releases. However, managers should consider how the rate of 

change in discharge effects fish that may be attracted to the tailwater to spawn (Young 

et al., 2011).    
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Table 3.1 Candidate models considered for my analysis of Blue Sucker migration timing. Each model is provided, ���� is the expected 

abundance of Blue Suckers entering location j during week i of year k, �� is the estimated model intercept, �� is the estimated 

coefficient associated with either the mean, minimum temperature during week i (temperature) or the mean stream discharge 

(magnitude) during week i, �	 and �
 are the estimated coefficients associated with magnitude and the interactive effect of 

temperature and magnitude, respectively. �� is the random effect of tributary j (location), �	 is the random effect of year k, and �
 is 

the random effect of week i. All random effects were distributed ~N(0,σ2), and the observation level effect of week served as the 

over-dispersion parameter associated with the negative binomial distribution. Additionally, I provide the AICc scores associated with 

each model, the difference in AICc score between a given model and the top ranked model (ΔAICc), and the conditional R2 value. 

  

 

 

Name Model AICc ΔAICc R2 

interaction ���� = �� + ��"#$%#&'"(&#� + �	$')*+"(,#� + �
"#$%#&'"(&#� ∗ $')*("(,#�

+ ��./�'"+/*� + �	0#'&� + �
1##2� 

183.2 0 0.42 

temperature ���� = �� + ��"#$%#&'"(&#� + ��./�'"+/*� + �	0#'&� + �
1##2� 190.4 7.2 0.49 

magnitude ���� = �� + ��$')*+"(,#� + ��./�'"+/*� + �	0#'&� + �
1##2� 192.0 8.8 0.31 

Null ���� = �� + ��./�'"+/*� + �	0#'&� + �
1##2� 194.3 11.1 0.38 
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Table 3.2 Forward model selection process for type I habitat selection analysis. The best supported models from each step is 

provided, ��� is the expected abundance of Blue Suckers in river section i of location j, �� is the estimated model intercept, and the 

subsequent ��’s are the coefficients associated with a tributary (location), riffle presence (riffle), or woody debris (%) (wood). The 

final model is shown in bold. 

 
Name Model AICc ΔAICc 

Step 0 ��� = �� + ��./�'"+/*�� 474.0 0 

Step 1 ��� = �� + ��&+33.#� + �	./�'"+/*� 461.3 12.7 

Step 2 456 = 78 + 79:5;;<=5 + 7>?@@A5 + 7B<@CDE5@F6 455.9 18.1 

Step 3 ��� = �� + ��&+33.#� + �	1//,� + �
&+33.# ∗ 1//,� + ��./�'"+/*� 456.5 17.5 
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Table 3.3 Biological data of Blue Suckers included in my Type II habitat selection 

analysis. The fish code corresponds to the letter assigned to individual fish in Fig. 5. 

Demographics are coded as Sex (M = male, F = female, or U = unknown); TL (total 

length); and WW (wet weight). Tag Location refers to the study reach in which an 

individual was initially captured and tagged. 

 

Fish Code Sex TL (mm) WW (g) Tag Location 

C M 511 1050 Blue 

D M 515 1200 Kiamichi 

E U 549 1130 Muddy Boggy 

G F 610 2260 Kiamichi 

I M 518 900 Kiamichi 

M F 660 2570 Muddy Boggy 

S F 519 1150 Blue 

T F 625 2350 Kiamichi 

V M 563 1350 Blue 

W M 533 1340 Kiamichi 
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Fig. 3.1 The location of my movement timing and spawning habitat selection study. The 

reaches where Blue Suckers were tagged and tracked are in bold. Stars indicate the 

location of the U.S. Geological Survey stream gages. The temperature logger was 

located at the star in Red River between Muddy Boggy and Kiamichi rivers. 
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Fig. 3.2 Water temperature at the Red River (Hwy 271 bridge, collected using a HOBO, 

Onset), and hydrographs representing stream discharge (cms) in the Red, Muddy 

Boggy, and Kiamichi rivers during the early-seasons 2016 (solid), 2017 (dashed), and 

the 20-year average (1998 – 2017, dotted) 

(https://waterdata.usgs.gov/ok/nwis/uv?site_no=07335500, accessed 2/27/18).   
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Fig. 3.3 The relationship between environmental conditions and the timing of Blue 

Suckers entering the tributaries during the spawning season. Because the tributaries 

were different sizes, and the magnitude of stream discharge was not equal among 

tributaries, I standardized the streamflow magnitude data on the x-axis. Therefore, 

values on the x-axis represent the mean (0) and standard deviations from the mean. To 

display the interactive effect of temperature and magnitude, I included a line to represent 

temperature of 11° C (dashed), 17° C (solid), and 22° C (dotted). The expected 

abundance of Blue Suckers moving into the tributaries in a given week is indicated on 

the y-axis. 
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Fig. 3.4 The relationship between woody debris (natural-log scale) and the expected 

abundance of Blue Suckers in a river section in Blue River when a riffle was present. 

The solid line indicates the mean estimate and the dashed lines represent 95% 

confidence intervals. The relationship was similar in each study reach, but more fish 

were expected to occur in the Kiamichi river than in the Blue or Muddy Boggy rivers. 

Fewer Blue Sucker were expected to occur in river sections without riffles. 
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Figure 3.5 Results from the outlying mean index, type II habitat selection analysis. The circular panel on the top left shows the 

relationship of the x and y axes in multivariate space, the relationship of the environmental variables is shown on the bottom left, and 

the large panel on the right shows the relationship of habitat selected by Blue Suckers compared to available habitat. The dots 

indicate river sections available to the population, and letters indicate the mean habitat selection by individuals. See Table 2 for 

information on individual Blue Suckers.
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 CHAPTER IV 
 

 

POPULATION DYNAMICS 

 

INTRODUCTION 

Blue Sucker Cycleptus elongatus is a broadly distributed large-river obligate with 

a cryptic life history (Burr & Mayden, 1999). The species is considered potamodromous 

as individuals spend the summer and winter in large rivers and can migrate > 300 km to 

tributaries to spawn in the spring (Morey & Berry, 2003; Neely et al., 2009). In the 

tributaries, Blue Suckers seek out swift water and coarse substrate where they 

aggregate and spawn (Moss et al., 1983; Vokoun et al., 2003; Lyons et al., 2016). Blue 

Suckers may be locally abundant at spawning locations; however, the swift and deep 

water they occupy make sampling and population evaluations difficult (Moss et al., 1983; 

Morey & Berry, 2003; Layher, 2007). Blue Sucker eggs have not been observed in the 

wild (Adams et al., 2006), but observations in a hatchery indicate that larval Blue 

Suckers hatch and absorb the yolk sac within 10 days of fertilization in 20° C water 

temperature (Semmens, 1985). The presence of larval Blue Sucker is rarely 

documented, but this life stage is hypothesized to drift to slack-water environments 

where they quickly grow (Yeager & Semmens, 1987; Fisher & Willis, 2000; Adams et al., 

2006; Bednarski & Scarnecchia, 2006). Juvenile Blue Suckers are also rare in fish 

samples; thus, their habitat use and movement patterns are unknown (Hand & Jackson, 

2003; Morey & Berry, 2003; Bacula et al., 2009). Blue Sucker growth is most rapid 

before reaching adulthood at 3 or 5 years for males and females, respectively 

(Rupprecht & Jahn, 1980). Blue Sucker may live > 30 years in some locations and can 

grow > 800 mm in total length (TL, Hand & Jackson, 2003; Bednarski & Scarnecchia, 

2006). 
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Blue Sucker is considered vulnerable to extinction (Jelks et al., 2008), though the 

status of the species is highly variable across the geographic range. Bacula et al. (2009) 

concluded the Blue Sucker population in the Wabash River, IN was stable after 

conducting a thorough assessment. Successfully reproducing populations have also 

been documented in tributaries of the Missouri and Mississippi rivers (e.g., Montana, 

Bednarski & Scarnecchia, 2006; Wisconsin, Lyons et al., 2016; and Missouri, Vokoun et 

al., 2003). Alternatively, populations in Pennsylvania are extinct, and Blue Suckers are 

considered critically imperiled in New Mexico, Ohio, West Virginia and Nebraska (Burr & 

Mayden, 1999; NatureServe, 2018). Lastly, population status of Blue Sucker in major 

tributaries of the Southern Great Plains draining to the southern extent of the Mississippi 

River is unknown.  

Flow alteration and fragmentation are two intertwined impediments thought to 

disrupt the successful completion of Blue Sucker life history. Extensive damming across 

the Blue Sucker distribution is associated with flow suppression, encroachment by 

woody vegetation, and excessive deposition of fine sediment thereby reducing suitable 

Blue Sucker spawning habitat (Collier et al., 1996). In addition to the physicochemical 

changes caused by dams (see overview by Olden & Naimen, 2010), flow alterations may 

disrupt spawning cues for migratory fishes (Young et al., 2011) and reduce fish 

recruitment (e.g., Clanwilliam Yellowfish Barbus capensis, King et al., 1998; Robust 

Redhorse Moxastoma robustum, Grabowski & Isely, 2007; Golden Perch Macquaria 

ambigua, Rolls et al., 2013). Dams are also responsible for fragmentation of river 

ecosystems, and fragmentation can inhibit gene flow among migratory populations, as 

seen in Blue Sucker (Bessert & Orti, 2008), and Mountain Sucker, Pantosteus jordani 

(Bertrand et al., 2016). Given the abundance of altered riverscapes across the globe 

(Vӧrӧsmarty et al., 2010), documenting life histories and monitoring the effects of stream 

alterations on Blue Suckers and sympatric species is critical to the conservation of native 

fishes (Cooke et al., 2012; Arthington et al., 2016). 

Population dynamics and basic life history data are critical to management and 

conservation of populations, but data are limited for many riverine fishes (Cooke et al., 

2012). Because fish populations are difficult to observe, managers use vital statistics for 

insight into the dynamics of populations (Allen & Hightower, 2010). Vital statistics are 

estimates from demographic data to describe mortality, growth, and recruitment rates in 

a population (Allen & Hightower, 2010). Although the observation of population dynamics 

may take > 20 years of data (Ricker, 1975), population models provide a link between 
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vital statistics and the trajectory of a population (Caswell, 2001). In the current study, I 

determine the vital statistics of two Blue Sucker populations and evaluate the vulnerable 

conservation ranking of Blue Sucker in Red River, Oklahoma. In Oklahoma, knowledge 

of Blue Suckers in the Red River is sparse, consisting only of occasionally documented 

occurrences from the 1940’s – 1990’s (Burr & Mayden, 1999; MARIS database, 

https://www.sciencebase.gov/catalog/item/51c45ef1e4b03c77dce65a84, 10/26/18), and 

an opportunistic capture in a tributary to the Red River in 2014. The goal of my study 

was to establish basic population information to use as a foundation for future monitoring 

efforts in the Red River, and to inform the conservation ranking of Blue Suckers in North 

America. The objectives were to: 1.) estimate the necessary vital statistics from empirical 

data to model the growth of two spawning populations, 2.) use age-based population 

models to project the growth trajectories of each population, and 3.) explore the modeled 

relationship between observed variation in recruitment and variable annual spawning 

activity.  

 

METHODS 

STUDY AREA 

My study was focused on two populations of Blue Sucker located in the lower 

Red River basin. The lower Red River begins as a tailwater downriver of Lake Texoma, 

a 36,000-ha hydropower reservoir. I designated the upper 20-rkm of the lower Red River 

as the tailwater reach and sampled the first population from that location (Fig. 4.1). In the 

tailwater reach, the dam release of sediment-starved waters has resulted in ≈ 20 rkm of 

degraded stream bed and coarse substrates are now abundant (in an otherwise 

sandbed river). The remaining downriver channel of Red River is narrower when 

compared to historic morphometry of a southern Great Plains River (see Brewer et al., 

2016). The Kiamichi River is one of three major tributaries (> 4th order; Strahler, 1957) 

draining to the lower Red River within Oklahoma. The Kiamichi River is impounded by 

Hugo Dam 28-km upriver of the Red River confluence, and I sampled my second 

population from the Kiamichi River within 2 km of Hugo Dam. 

 

FIELD SAMPLING 

I sampled Blue Suckers during their spawning migrations, when they were locally 

abundant, to conduct my population assessments. In 2016, I sampled the Red River for 

one week each in early March and late May. In 2017, I increased my sampling effort and 
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sampled the Red and Kiamichi rivers (Fig. 4.1) once weekly from February 17 – March 

30, and twice weekly from April 1 – May 2. I increased sampling effort in April, because 

Blue Suckers were more abundant during that time. My population assessments of Blue 

Sucker were primarily based on fish captured in the Red and Kiamichi rivers in 2017; 

however, length-at-age data from the Red River tailwater collected in 2016 were used in 

the growth analysis.  

At each location, I sampled Blue Suckers using boat electrofishing to collect 

demographic data for my population assessments. I sampled swift-water habitats with a 

single anode, 5.0 GPP, boat-mounted electrofishing unit (Smith-Root, Vancouver, 

Washington). I shocked while drifting the boat with the current, and a chase boat was 

used to collect Blue Suckers that surfaced behind the shock boat (Moss et al., 1983, 

Layher, 1998). I adjusted the electrofisher amperage output according to the water 

conductivity at each site (Miranda, 2009). I typically used 60 kHz frequency, although 

low conductivities in the Kiamichi River (<75 μS) occasionally required 120 kHz to 

achieve the target output (2.5 – 4 amps, 1000 v/high setting; Miranda, 2009).  

Upon capturing Blue Suckers, I recorded data determine the vital statistics of the 

populations. I measured the total length (1 mm, TL) and weight (0.01 kg WW) of each 

Blue Sucker, and determined sex based on gamete expression or secondary sex 

characteristics (e.g., pronounced tubercles coving the body for males, or tubercles only 

around head and fins and protruding abdomen of females; Lyons et al., 2016). The 

leading pectoral ray was removed for age estimation. I collected pectoral rays because 

the method is non-lethal and is as precise as otoliths for aging Blue Suckers (Rupprecht 

& Jahn, 1980; Labay et al., 2011; Acre et al., 2017). In 2016, I removed the leading 

pectoral fin ray of every other Blue Sucker captured in each 25-mm length bin to create 

a length-age key. However, my data from 2016 indicated no length-age relationship for 

adult Blue Sucker, so I began collecting pectoral rays from all Blue Suckers in 2017. 

Pectoral rays were stored in coin envelopes (#1 Brown Kraft Coin Envelopes, Staples, 

Farmingham, MA) and allowed to air dry until I returned to the lab. In 2017, I also 

collected ovaries from the first three females captured in each 25-mm length bin at each 

location. I preserved the ovaries in 10% formalin.            

 

LABORATORY PROCESSING 

I sectioned and aged pectoral fin rays to determine the age structure of the two 

populations. Pectoral fin rays were dried in a dehydrator for > 1 week before I set the 
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proximal 7 – 9 mm portion of the ray in epoxy resin. Once the resin cured, I sectioned 

each ray (0.7 – 1.1 mm) from the proximal end, using a Bueler low-speed Isomet® saw 

(Bueller Isomet 1000, Lake Bluff, IL), and then mounted three sections to a microscope 

slide using a nitrocellulose-ethyl acetate solution (i.e., clear fingernail polish; Bednarski & 

Scarnechia, 2006). For each fish, two observers independently enumerated the annuli 

(opaque rings) with 40x magnification and transmitted light. When readers disagreed on 

the age of an individual, a consensus age was obtained in collaboration with one another 

(Casselman, 1983; Panfili et al., 2002).  

Absolute fecundity (total quantity of oocytes possessed by an individual during 

the current spawning cycle) was estimated for each fish by subsampling and weighing 

oocytes from the preserved ovaries. For each fish, I collected subsamples of 100 

oocytes from the anterior, middle, and posterior portion of each ovary (Daugherty et al., 

2008). I weighed individual subsamples using an electronic balance (0.001 g, Mettler 

AT250, American Instrument Exchange, Inc., Haverhill, MA), calculated the average 

subsample weight, and divided by 100 to determine the average weight of each oocyte. I 

then estimated the absolute fecundity for an individual by dividing the total weight of an 

ovary by the average oocyte weight for an individual (Daugherty et al. 2008).  

It is common for individual fish to possess oocytes in multiple developmental 

stages (Corriero et al., 2003), and the inclusion of multiple sizes of oocytes in the ovary 

can affect the accuracy of my gravimetric estimation methods. Therefore, I did not 

distinguish developmental stages of oocytes in my subsamples, with the exception of 

perinuclear and atretic stages (terminology from Corriero et al., 2003). I did not 

enumerate perinuclear stage oocytes because they did not represent the viable oocytes 

for the present spawning cycle, and I could not differentiate atretic oocytes for 

enumeration. I did not remove the weight associated with perinuclear oocytes, because I 

assumed the weight was negligible. Additionally, atretic oocytes represented potential 

oocytes from the current spawning cycle and although I was unable to enumerate atretic 

oocytes, their mass was included in my absolute fecundity estimates. 

 

VITAL STATISTICS 

I estimated vital statistics from empirical data to create the necessary parameters 

for age-based population models. The vital statistics for populations typically include 

mortality, growth and recruitment rates because monitoring these parameters can 

indicate problems in the population stability (Allen & Hightower, 2010). I estimated four 
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parameters related to population vital statistics: the probability of an oocyte recruiting to 

age-1 (S1), annual probability of surviving post-recruitment (S2), age-specific probability 

of reaching maturity (p(a)), and age-specific fecundity (f(a); Caswell, 2001). The 

estimated parameters dictate the portion of each age cohort that survives, matures, and 

contributes to the next generation.  

I constructed catch curves to estimate the annual probability of survival for 

recruited fish (S2) and variability in recruitment for the two Blue Sucker populations. I 

only considered data from 2017 in the catch-curve models, because age data collected 

in 2016 were subsampled and did not represent the relative abundances of age classes 

in the population. Using the ‘FSA’ package (Ogle, 2017) in Program R (version 3.4.4, R 

Core Team 2018), I developed catch curves by regressing the loge -transformed 

abundance of fish in each age class against age. I considered the age corresponding to 

the peak of the age-frequency plot (modal age class) the earliest age that recruited to 

my gear (Miranda & Bettoli, 2007). Because the modal age class could be due to a 

strong age class, rather than the youngest recruited age class, I constructed additional 

catch-curve models that included the age class prior to the modal age class (Miranda & 

Bettoli, 2007). I accepted the model with the largest coefficient of determination (R2) as 

the best model (Zar, 2010). Although age classes > 20 years were rare in my sample, I 

did not exclude them from the analysis because they supported the declining trend of the 

younger age classes. I used the slope of the models to provide estimates of the 

instantaneous mortality rate (Z) and calculate the annual survival rate (S2; Ricker, 1975), 

where  

G	 = #HI. 

The R2 value from the resulting models provided the recruitment coefficient of 

determination (RCD), a measure of recruitment variability (Isermann et al., 2002). 

To determine the age-specific fecundity rates (f(a)), I developed multiple 

hypotheses regarding the relationship of absolute fecundity with either size or age. 

Because females from the Red River tailwater and the Kiamichi River may have 

represented different populations, I included a random effect for site in each 

hypothesized model. I developed four generalized linear mixed models: 1) fecundity 

predicted by age, 2) fecundity predicted by TL, 3), second-order polynomial relationship 

of fecundity with age and 4) second-order polynomial relationship between fecundity and 

TL. I ranked all models using AICc and considered the lowest AICc score my top model 

(Burnham & Anderson 2002; Johnson & Omland 2004). If AICc scores of top ranked 
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models differed by < 2 points, I retained the simpler model in favor of parsimony 

(Burnham & Anderson, 2002; Johnson & Omland, 2004). I checked that the top model 

met the assumptions of a generalized linear model (Zar, 2010). 

I modeled the relationship between TL and age because I was creating an age-

based model and fecundity was potentially linked to TL rather than age. Although it was 

possible to exclude TL in my model by modeling the relationship between fecundity and 

age, incorporating TL provided a better understanding of population dynamics and 

uncertainty in my age-based model. I created von Bertalanffy growth curves for each 

population using the FSA package in R (version 0.8.20; Ogle, 2018), but high variability 

in length at age in Red River and lack of fish aged < 6 in Kiamichi River resulted in 

erroneous models (e.g., estimated L∞ was not observed in my data; Fig. 4.2). Therefore, 

I used a multiple hypothesis approach to model the relationship between TL and age to 

compare adult growth rates between sexes and populations. I included Blue Sucker age 

data from both 2016 and 2017 in my growth analyses, because they were based on 

individual length-at-ages and not relative abundances within age classes. I considered 

four linear models: 1.) TL of adult Blue Suckers, predicted by the interaction of age and 

location, 2.) TL predicted by the interaction of age and sex, 3.) TL predicted by sex and 

the interaction of age and location, and 4.) TL predicted by location and the interaction of 

age and sex. I ranked the four models using AICc and the best model was considered to 

have the lowest AICc score. If AICc scores were similar (< 2 point difference) I selected 

the simpler model, provided that the assumptions of a generalized linear model were 

met (Burnham & Anderson, 2002; Johnson & Omland, 2004; Zar, 2010). 

          To incorporate TL into the fecundity parameter, I developed a function in R to 

reflect the possibility that fecundity (f(a)) was a function of size rather than age. I used 

my top model of adult Blue Sucker growth to estimate the TL of an individual based on 

its age,  

JKL
M =  �� + ��)#*,#&� + �	N)#� + �
K/�'"+/*� + ��N)#� ∗ K/�'"+/*� 

where JKL
M  is the expected TL of fish i, β0 is the model intercept, and β1 – β4 are the 

estimated coefficients associated with the age, sex, capture location and the interaction 

between age and capture location of individual i. The JKL
M  estimate was then used to 

predict the fecundity of the individual, 

3(')L
Q =  �� + ��JKL

M + �	JKL
M 	

+ �K/�'"+/*� 
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where 3(')L
Q  is the expected number of eggs (absolute fecundity) given the TL of 

individual i and capture location j. The β parameters are the estimated coefficients and � 

is the random effect associated with capture location.  

I used logistic regression to determine the age-specific probability of a juvenile 

Blue Sucker reaching maturity (p(a)) for both locations. I based my function on the Red 

River population because I observed adult and juvenile Blue Suckers in equal 

proportions at that location. To create the p(a) function, I regressed the binomial maturity 

status of individuals against age,   

%(')L
Q =  �� + ��')#�, 

Where β0 is the model intercept, and β1 is the estimated coefficient associated with the 

age of fish i. Similar to Rupprecht & Jahn (1980), I found the youngest mature male was 

age 3 and the youngest mature female was age 5. Because I was interested in the 

probability of a female being mature given her age, I excluded the three-year old male 

from the analysis. Because of the similarity of the two populations in adult age 

distribution, I used the age-at-maturity function for both populations (Fig. 4.3). In the Red 

River, I observed all Blue Suckers were mature by age 12, but younger age classes still 

included juveniles. In the Kiamichi River, I only captured adults and determined that Blue 

Suckers did not fully recruit to the gear until age 13.  

I was unable to estimate the probability of age-1 recruitment (S1) directly, so I 

used my other estimates to approximate the probability. I defined S1 as the probability of 

an oocyte becoming an age-1 Blue Sucker, and obtained the parameter as,  

G� = R�
S(�)

/R�
U , 

or the mean expected abundance of age-1 juveniles (R�
S(�)

) divided by the mean 

expected abundance of oocytes (R�
U) in the population (Vaughn & Saila, 1976). The line 

associated with the catch-curve models provided an estimate of the mean expected 

abundance in each age class. I estimated, R�
S(�)

 by back-transforming the expected 

abundance when age = 1. To estimate R�
U I used the catch-curve model to provide mean 

abundance estimates for all ages. I multiplied the estimated abundance of each age 

class by the respective probability of reaching maturity (p(a)) to separate the estimated 

adult abundance from the juveniles. Next, I multiplied the age-specific abundance of 

adults by the age-specific fecundity rates (f(a)), and I obtained R�
U from the sum of the 

resulting product. 
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POPULATION MODEL 

With the necessary parameters estimated, I created a female-based Leslie matrix 

model the growth of each population. I only modeled the female population because 

population growth is dependent upon egg production, and I assumed the abundance of 

males did not contribute to egg survival (Gotelli, 2008). I constructed a matrix with 

dimensions 25 X 25, corresponding to the average age of the oldest Blue Suckers 

observed in each population (i.e., 23 and 28). The matrix took the form, 

 F1 F2 ∙ ∙ ∙ F25  

 S1 0    0  

 0 S2    0  

 ∙  ∙   ∙  

 ∙   ∙  ∙  

 0 0 ∙∙∙ 0 S2 0  

 

where, the columns correspond to age, the survival probabilities were listed diagonally, 

age-specific fecundities were listed across the top row, and all other values were zero. 

The fecundity rates were based on p(a) and f(a), because maturity was a prerequisite for 

a Blue Sucker to contribute to the next generation. Therefore,  

VW = 3(') ∗ X: V ∗ %('), 

where, Fa is the realized fecundity for fish of age a, f(a) was the age-specific mean 

fecundity (described previously), M:F was 0.5, to remove the males, and p(a) is the age-

specific probability of being mature (described previously).  

 I used Markov-chain Monte Carlo (MCMC) simulations to incorporate 

demographic stochasticity and the uncertainty around my parameter estimate into my 

population growth models. I incorporated demographic stochasticity into my models by 

treating the transitions to the next age class (S2), and from immaturity to maturity (p(a)), 

of each individual as random, rather than deterministic events (Caswell, 2001). However, 

my model resulted in the presence of millions of oocytes in the population following each 

spawning season, and computing efficiency required that the probability of age-1 

recruitment (S1) be treated as deterministic rather than random. Because my fecundity 

functions provided mean estimates of TL and absolute fecundity given the age of an 

individual, I allowed the β-estimates within the function to vary randomly for each 

individual. For each β-estimate I created a random normal distribution with the β-
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estimate as the mean, and the standard error (SE) of the estimate as the standard 

deviation parameter in the distribution. For each individual, each β-estimate in the 

function was selected at random and the absolute fecundity of that individual was 

determined from the resulting function. Similarly, I incorporated uncertainty in my annual 

survival probabilities (S2) by randomly selecting the S2 for each simulated year from a 

uniform distribution with the upper and lower bounds set by the 95% confidence intervals 

around my S2 estimates. 

 I conducted 1000 iterations of my MCMC simulations to estimate discrete 

population growth (λ) over 50 years. In each iteration, I estimated λ as the geometric 

mean of R�/R�H�, where N is population abundance at time step t (Caswell, 2001). The λ 

estimate for each iteration was used to calculate the mean λ and 95% credibility intervals 

for λ. When λ > 1, the population was growing exponentially, λ ≈ 1, the population was 

stable, and λ < 1 indicated exponential decay of the population (Caswell 2001).     

 I used my population models to explore the relationship between variable annual 

spawning frequencies and the recruitment variability observed in the two populations. 

The previously described model assumed that each female contributed oocytes to the 

population each year, but individual female Blue Suckers may not return to spawn every 

year (Lyons et al., 2016, Chapter 2). My estimate of age-1 recruitment (S1) represented 

the average recruitment probability in any year, and mitigated the variability in individual 

spawning behavior. However, intermittent spawning by females does increase 

uncertainty in my estimates of population growth. I simulated variable spawning 

probabilities and evaluated the effect of spawning variability on the recruitment variability 

observed in my data. In my MCMC simulations, I randomly selected the annual 

spawning probability for each year from a beta distribution with a user-defined mean. 

The contribution of oocytes by a female to the next generation was treated as a random 

event guided by the spawning probability for that year. Because my estimate of S1 

included the variability associated with intermittent spawning, the parameter was 

adjusted upward to maintain the growth rate (λ) estimated in the previous version of the 

model. I used the RCD value estimated from my catch-curve models as the metric for 

recruitment variability. At the end of each simulation, I estimated the RCD by fitting a 

catch-curve model to the last simulated year and extracting the R2 value. I manipulated 

the mean spawning probability in my beta distribution and the S1 parameter so that the 

95% credibility intervals of the simulated RCD and λ contained the observed RCD value 

from my catch-curve models and the λ estimate from the previous model. I recognize 
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that recruitment variability may be influenced by non-constant age-1 recruitment; 

however, incorporating non-constant spawning provided a representation of the 

uncertainty in my projections.     

  

RESULTS 

VITAL STATISTICS 

I included demographic data from 176 Blue Suckers from the Red River and 123 

from the Kiamichi River in the population vital statistic assessments. In the Red River, TL 

ranged 315 – 640 mm and ages were estimated 3 – 28 years, and in the Kiamichi River, 

TL ranged 516 – 714 mm and ages were estimated 6 – 23 years (Fig. 4.2). In 2017, the 

Red River M:F = 0.26, and M:F = 2.94 in Kiamichi River. I did not estimate the M:F ratio 

from my 2016 sampling because many of the individuals captured appeared to be post 

spawn and I was unable to determine the sex based on gamete expression. Additionally, 

I collected and analyzed ovaries of 13 females from the Red River and 18 females from 

the Kiamichi River.  

Blue Suckers in the Red River tailwater had a lower annual mortality rate, but 

greater variability in recruitment than those in the Kiamichi River. The modal age in the 

Red River population was 6 years; however, including 5-year old fish produced an 

overall better model suggesting that Blue Suckers recruited to sampling methods at age 

5 (R2 = 0.46 v. 0.52, respectively). The instantaneous mortality rate (z + 95% confidence 

interval (CI)) of Blue Sucker in the Red River tailwater was 0.11 + 0.05 and annual 

survival rate (S + 95% CI) was 89.5 + 1.05% (Fig. 4.4). The modal age of the Kiamichi 

River population was 13 years, and including 12-year old fish did not improve the model 

(R2 = 0.79 v. 0.77, respectively). For that reason, I considered fish younger than 13 

underrepresented in my sample, and determined that z = 0.27 + 0.09 and S = 76 + 1.09% 

in the Kiamichi River. In the Red River tailwater, the RCD was 0.52, compared to 0.79 in 

the Kiamichi River, indicating greater variability in recruitment in the Red River tailwater.    

My model of a polynomial relationship between TL and fecundity had the most 

support (Table 1). On average, Blue Suckers in the Kiamichi River were more fecund 

than those in the Red River (mean difference = 7,440 eggs; Fig. 4.5). I estimated the 

range of absolute fecundity for the smallest Blue Suckers at 50,000 – 60,000 oocytes 

and the largest Blue Suckers exceeded 100,000 oocytes.   

My top-ranked linear model of adult growth rates indicated that growth rates 

varied by sex and the interaction between age and location (Table 4.2). Adult Blue 
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Suckers in the Red River grew an average of 3.7 mm TL per year (0.7 SE, β2), but in the 

Kiamichi River grew an additional 2.7 mm TL (1.0 SE, β4) more per year (Fig. 4.6). 

Although growth rates differed between locations, Blue Suckers were generally similar in 

size at the two locations (20.06 mm TL, 13.38 SE, β3). Additionally, female Blue Suckers 

averaged 37-mm TL (4.64 SE. β1) larger than males. My top model explained a 

moderate amount of the variation (R2 = 0.37), but growth was highly variable among 

individuals.  

I determined that the probability of female Blue Suckers reaching maturity 

increased from the age of 5 to the age of 12 years. The model explained a moderate 

amount of the variation in my observations (R2 = 0.64), and the probability of reaching 

maturity increased from near 0 at age 4 to near 1 at age 12. At age 9, 50% of Blue 

Sucker were expected to have reached maturity. Because the age structure of adults 

was similar at both locations, I considered the function representative of the Kiamichi 

River population as well (Fig. 4.3). 

 

POPULATION MODEL 

My population models indicated a stable population in the Red River tailwater 

and a declining Kiamichi River population, although the mean annual spawning 

probability was similar for the two populations. I estimated λ = 1.006 (1.004 – 1.008 95% 

credibility intervals) in the Red River tailwater population. When the mean annual 

spawning probability was 0.18 (Fig. 4.7), the observed RCD was replicated and the λ 

credibility intervals increased to 0.993 – 1.011. In the Kiamichi River, λ = 0.939 (0.937 – 

0.942), and RCD was replicated when mean annual spawning probability was 0.17. The 

credibility intervals around λ increased to 0.936 – 0.958 when the variable spawning 

probabilities were incorporated in the Kiamichi River population model. 

 

DISCUSSION 

My survival and recruitment estimates for Blue Sucker were comparable to other 

catostomid populations; however, my fecundity estimates were relatively low compared 

to other Blue Sucker populations. In a study of seven catostomid species from four 

streams in Iowa, Quist and Spiegel (2012) reported annual survival rates and RCD 

values ranging from 38 – 82% (S) and 0.49 – 0.95 (RCD). My observed annual survival 

rate in Kiamichi River was similar to that of Blue Suckers observed in the Wabash River, 

IN (i.e., S ≈ 76%; Bacula et al., 2009), but the annual survival rate in the Red River was 
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high (S = 89.5%) compared to other catostomid populations. In a separate study, I 

estimated that Blue Suckers in the Red River were less likely to undergo seasonal 

migration than those in the Kiamichi River, potentially contributing to the lower mortality 

rate (Chapter 2). Blue Suckers in my study were smaller and less fecund than those in 

the Wabash River, IN (Daugherty et al., 2008; Bacula et al., 2009). The largest Blue 

Suckers in my study had TL ≈ 50 mm less than the largest Blue Suckers captured in the 

in the Wabash River, IN (Daugherty et al., 2008). In addition to being larger, Blue 

Suckers from the Wabash River, IN were more fecund. I estimated Blue Sucker with TL 

≈ 675 mm to have 100,000 – 120,000 oocytes per individual, compared to a mean of 

150,000 oocytes per individual in Blue Suckers of the same size in the Wabash River 

(Daugherty et al., 2008). Further, Daugherty et al. (2008) estimated mean absolute 

fecundities > 200,000 oocytes per individual for fish with TL > 700 mm. The difference in 

fecundity was likely due to regional variation in size and growth within the species. For 

example, smaller body sizes of American Shad Alosa sapidissima were attributed to 

lower latitudes along the North American Atlantic coast (Leggett & Carscadden, 1978), 

and a similar trend in body sizes along the American Pacific Coast manifested in lower 

fecundities at lower latitudes in Pacific salmonids Oncorhynchus spp. (Beacham, 1982). 

My simulated spawning probability best matched 2017, but intraspecies 

variability in iteroparus fishes can be high. In Chapter 2, I estimated the probability of 

Blue Suckers returning to the tributaries to spawn in spring 2016 was 0.83, and 0.19 in 

2017. My theoretical spawning distributions used to replicate the observed RCD values 

(Fig. 6) indicate that my estimates during 2017 were common, and my estimate for the 

exceptionally wet 2016 was a rare occurrence. Many iteroparous migratory fishes 

undergo nonconsecutive spawning migrations. In the Wisconsin River, female Blue 

Suckers typically returned to spawn every other year, whereas many of the males 

returned each year (Lyons et al., 2016). Female American Shad along the east coast 

were less likely to return to spawn than males in any population and the probability of 

repeat spawning declined at lower latitudes, ranging from complete post-spawn mortality 

in Florida to 65% probability of returning in New Brunswick (Leggett & Carscadden, 

1978). The similarity in simulated spawning behavior in my study populations indicates 

the differences in population growth may be due to post spawn variation in recruitment 

rather than spawning behavior. 

Examining the relationships between water releases and recruitment of Blue 

Sucker would be beneficial to understanding the effects of dam operations on this 
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species. Although I was not able to empirically evaluate age-1 recruitment, it is possible 

that dam release practices in the system contributed to recruitment variability. On 

several occasions, I observed Blue Suckers actively spawning over gravel bars and 

riprap during dam releases only to have their spawning habitat dewatered an hour later 

when water releases ceased. Dam release practices have been implicated in stranding 

the eggs of the endangered Robust Redhorse Moxostoma robustum (Grabowski and 

Isely, 2007), stunting the growth of juvenile Robust Redhorse and V-lip Redhorse M. 

collapsum (Weyers et al., 2003), and reducing the availability of suitable age-0 habitat 

for Clanwilliam Yellowfish Barbus capensis (King et al., 1998). In addition to reducing 

available habitat, dam releases caused young-of-year mortality by rapidly changing the 

temperature, dissolved oxygen, and hydraulic conditions of the habitat in the Olifants 

River, South Africa (King et al., 1998).  

I treated Blue Sucker occupying the two river systems as separate populations, 

but conservation efforts would benefit from consideration of metapopulation dynamics 

and should be explored further. Treating subpopulations as individual populations can 

result in reduced stock biomass and a high probability of exploitation, whereas, ignoring 

the spatial structure of the population could result in the loss of subpopulations (Ying et 

al., 2011). Immigration into the Red River tailwater population may explain the high 

survival probability and low RCD estimated for the population. Catch curve models and 

the RCD assume a closed population. Adults immigrating into the population would 

violate the closure assumption, and adding adults to the population after recruitment 

would result in a slower declining slope and a higher survival probability. Additionally, the 

recruitment variability of the immigrants and immigration rates would be reflected in a 

lower RCD estimate. Therefore, my results should be interpreted with caution until 

population closure or metapopulation dynamics are evaluated.  

Although my study was based on a single year of data, it indicated that 

population stability may be problematic and serves as a starting point to improve 

monitoring and management efforts. At a minimum, the Blue Sucker population should 

be monitored over several years to capture interannual population trends, a variety of 

hydrologic and temperature cycles, and improved representation across the basin. A 

monitoring program would reduce uncertainty in my vital statistic estimates, provide a 

more reliable population trajectory, and provide a way to evaluate the effects of dam 

management on Blue Sucker.  
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Table 4.1 Result from my analysis of Blue Sucker fecundity. The name of the model 

represents the hypothesized relationship with absolute fecundity (number of eggs per 

individual). I provide the scores used to rank the models (AICc), the difference in score of 

each model compared to the top model (∆AICc), and the conditional R2 value associated 

with each model. 

Name Model K AICc ∆AICc R2 

TL2 
V#�(*,Y"0L

Q =  �� + ��JKL
M + �	JKL

M 	
+ � ∗ K/�'"+/*� 3 655.9 0 0.44 

Age2 
V#�(*,Y"0L

Q =  �� + ��')#LZ + �	')#LZ
	

+ � ∗ K/�'"+/*� 3 671.5 15.6 0.48 

TL V#�(*,Y"0L
Q =  �� + ��JKL

M + � ∗ K/�'"+/*� 2 672.2 16.3 0.43 

Age V#�(*,Y"0L
Q =  �� + ��')#LZ + � ∗ K/�'"+/*� 2 707.2 51.3 0.40 
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Table 4.2 Result from growth of adult Blue Suckers. The name of the model indicates the hypothesized relationship with somatic 

growth. I provide the scores used to rank the models (AICc), the difference in score of each model compared to the top model 

(∆AICc), and the R2 value associated with each model. 

Name Model K AICc ∆AICc R2 

Sex + Age * 

Location 

JKL
M =  �� +  ��)#*,#&� + �	N)#� + �
K/�'"+/*� + ��N)#� ∗ K/�'"+/*� 5 1910.5 0 0.37 

Location + Age * 

Sex 

JKL
M =  �� + ��K/�'"+/*� + �	N)#� + �
)#*,#&� + ��N)#� ∗ )#*,#&� 5 1914.9 4.4 0.35 

Age * Sex JKL
M =  �� +  ��)#*,#&� + �	N)#� + �
N)#� ∗ )#*,#&� 4 1921.2 10.7 0.33 

Age * Location JKL
M =  �� +  ��N)#� + �	K/�'"+/*� + �
N)#� ∗ K/�'"+/*� 4 1965.4 55.1 0.16 
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Fig. 4.1 The lower Red River, Oklahoma and major tributaries. Fish were collected in the 

Tailwater and Kiamichi River (shown in bold).  

 



70 

 

 

Fig. 4.2 Von Bertalanffy growth curves for Blue Suckers in the Red (left) and Kiamichi 

(right) rivers. The von Bertalanffy estimates for the Red River population were: L∞ = 762 

mm, K = 0.05, t0 = -16 mm. Parameter estimates in Kiamichi River were: L∞ = 586 mm, K 

= 0.62, t0 = 2 mm. Because juveniles were missing from the Kiamichi River population, I 

included two juveniles from Muddy Boggy River to fit the curve (juvenile total lengths = 

279 & 475 mm, aged 3 & 5 years, respectively).     
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Fig. 4.3 Length-frequency and age-frequency histograms of Blue Suckers caught in Red 

(A. and B.) and Kiamichi (C. and D.) rivers in 2017. The age-frequency plot for the Red 

River (B.) is stratified by mature (white) and juvenile (gray) fish. I did not capture 

juveniles in the Kiamichi River.   
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Fig. 4.4 Catch-curve models for Blue Suckers captured in the Red River tailwater (left) 

and the Kiamichi River (right). 
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Fig. 4.5 Relationship between absolute fecundity (total number of eggs per individual) 

and Blue Sucker size (total length) in the Red River tailwater and Kiamichi River. 
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Fig. 4.6 Comparison of male and female adult Blue Sucker growth rates from Red and 

Kiamichi rivers. 
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Fig. 4.7 Density plot representing the theoretical annual spawning probability used in my 

simulation of variable Blue Sucker spawning activity. I determined the probability of Blue 

Suckers spawning by randomly drawing a value from the distribution at the beginning of 

each simulated year.   
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CHAPTER V 
 

 

ENVIRONMENTAL INFLUENCE ON POPULATION DYNAMICS 

 

INTRODUCTION 

Water availability provided via dams is a necessary resource for the developing 

world, but science recognizes negative effects of dams on riverine ecosystem services. 

Historically, rivers supported human civilization by providing clean water, fertile soils, 

and food, but modern societies use dams to retain water, control floods, and provide 

electricity (Vörösmarty et al., 2010; Poff & Schmidt, 2015). Dams fragment riverine 

ecosystems (Fausch et al., 2002), and alter the natural flow (Poff et al., 1997), thermal 

(Olden & Naimen, 2010), and sediment regimes (Wohl et al., 2015). Disruption of 

riverine processes impairs pollution abatement, limits soil fertility soil on the floodplain, 

and limits food supplies in some regions (Cushman, 1985; Jager & Smith, 2008). In 

particular, migratory fishes were once a reliable food source for humans, but the 

prevalence of dams in the world’s developed nations has resulted in widespread decline 

of migratory fishes (Lucas & Baras, 2001).  

Recruitment, the number of fish that survive from hatch to a size or life stage of 

management importance, is a key factor that determines population structure and is 

influenced by both temperature and flow conditions. Recruitment influences the size 

structure and abundance of populations. In particular, recruitment is considered one of 

the most important rate functions in fish populations (Gulland, 1982; Allen & Hightower, 

2010). Temperature affects spawning condition of adults as well as survival and 

development of eggs and young-of-year (Lucas & Baras, 2001; Moyle & Cech, 2004). 

Hydrological conditions can influence recruitment success (Bonvechio & Allen, 2005; 

Dutterer et al., 2013; Rolls et al., 2013); though, these effects are not well understood for 
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many species, especially migratory populations (Cooke et al., 2012). Few studies have 

described hydrology-recruitment relationships for non-game species in particular (Cooke 

et al., 2005) despite the important ecological role they play in many river systems.  

River discharge and temperature are among several factors that affect fish 

growth, another key management target. Select flow conditions can increase benthic 

invertebrate abundances, thereby increasing growth rates in fishes via bottom-up trophic 

effects (Weisberg & Burton 1993; Rutherford et al., 1995). Additionally, temperature 

affects foraging behavior and metabolic efficiency of fishes, and extreme temperature 

can be a limiting factor on growth rates. Like recruitment, growth rates are important to 

fish populations because size dictates survival, maturity and fecundity of individuals in 

the population (Allen & Hightower, 2010). 

Migratory fishes are ecologically important to aquatic communities, but dams 

often limit successful reproduction, recruitment, and even growth. Migratory fishes 

facilitate upstream nutrient flow and other processes that are critical to persistence of 

local, endemic communities (Flecker et al., 2010). These endemic fishes comprise ≈ 

80% of North American freshwater fishes of conservation concern (Jelks et al., 2008), 

and species loss may be exacerbated via limited access by migratory fishes to these 

habitats (Pringle, 2001). Reproductive failure by migratory individuals may occur due to 

disruption of environmental cues that are hypothesized to trigger both aggregation and 

spawning (Lucas & Baras, 2001). When cues are appropriate, flow suppression by dams 

can physically prevent access to spawning habitat or create unsuitable habitat (Junk et 

al., 1989; Poff et al., 1997). Instability of habitat below dams can negatively affect 

recruitment of young-of-year fishes (King et al., 1998). Additionally, suppressed flow and 

unstable habitat can restrict growth by limiting access to foraging habitat (Junk et al., 

1989) and reducing secondary productivity (Cushman, 1985; Jowett, 2003). Failed 

reproduction and recruitment are commonly referenced as a primary stressor on 

migratory fishes and restricted growth may exacerbate the problem; however, fishery 

managers lack the information needed to adequately mitigate the perceived 

consequences of dams on migratory populations (Lucas & Baras, 2001). 

Blue Sucker Cycleptus elongatus is an emblematic, migratory, large-river 

catostomid with a declining spatial distribution. Blue Suckers are capable of annual 

spawning migrations in excess of 300 km (Neely et al., 2009). Given the migratory life 

history and broad distribution, Blue Suckers likely provide nutrient and process subsidies 

to many aquatic communities (Flecker et al., 2010). However, their “non-game” status 
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coupled with their inconspicuous life history has resulted in a paucity of research on the 

species’ life history (Burr & Mayden, 1999; Cooke et al., 2005). Blue Sucker are a 

species of conservation concern in 21 of the 22 states that they occupy and are locally 

extinct in Pennsylvania (NatureServe, 2018). With the prevalence of dams and regulated 

flow throughout Blue Sucker distribution (Pracheil et al., 2013), conservation of Blue 

Sucker depends on understanding the effects of flow and temperature on recruitment 

and growth of populations (Cooke et al., 2012).   

I investigated the influence of environmental conditions on the recruitment and 

somatic growth of Blue Suckers sampled from two flow-regulated rivers of the Southern 

Great Plains. My goal was to provide managers with information useful to improving flow 

conditions below dams to benefit Blue Sucker recruitment and growth. Because young-

of-year Blue Sucker are inherently difficult to sample and recruitment relationships 

require extensive temporal sampling, I used information obtained from adult Blue Sucker 

to examine the effects of stream flow and temperature on recruitment and somatic 

growth. My general approach was to rank several hypotheses regarding the temporal 

and spatial influence of discharge and temperature conditions on the age structure of 

two populations. I back-calculated annual growth by Blue Sucker to assess relationships 

with flow and temperature conditions.  

   

METHODS 

STUDY AREA 

I sampled Blue Suckers from reaches of the lower Red River catchment downstream of 

Denison (10-km downstream) and Hugo dams (2-km downstream), Oklahoma. The Red 

River originates in the Texas Panhandle and flows east forming the Oklahoma-Texas 

border (Fig. 5.1). The Red River is impounded for hydropower generation and flood 

control via Dennison Dam, creating a delineation between what agencies consider the 

lower and upper Red River. Although the upper Red River is ecologically significant for 

several threatened pelagophilic fishes (Worthington et al., 2018), the lower Red River is 

home to many large river fishes. There are three relatively large tributaries within the 

lower Red River of Oklahoma, but the Kiamichi River is of interest because Blue Suckers 

congregate below the dam during the spawning period. The Kiamichi River is impounded 

by Hugo Dam 28-km upstream of the confluence with the Red River. Hugo Lake is 

managed for recreational fishing, flood control, and water storage. Both rivers have 
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reaches where water releases could be managed to improve down river conditions for 

fishes.  

 

FIELD SAMPLING AND PROCESSING 

In March – May 2017, I sampled Blue Suckers using electrofishing to collect 

pectoral rays across a range of fish sizes. Blue Suckers were captured using a 5.0 GPP 

electrofishing unit (Smith-Root, Inc. Vancouver, WA) mounted to a 14’ Jon boat 

(Alumacraft Boat Co. Arkadelphia, AR). Water conductivity ranged 50 – 2000 μS 

(Kiamichi and Red rivers, respectively) and I adjusted power output according to 

Miranda (2009). I typically used 60 Hz frequency direct current, although low 

conductivities in the Kiamichi River occasionally required 120 Hz to achieve the target 

output (2500 – 4000 watts). I used a chase boat whenever possible because Blue 

Suckers often surfaced behind the electrofishing boat. Captured Blue Suckers were 

measured (1 mm total length, TL), and a 2-cm section of the leading left pectoral ray was 

removed using diagonal cutters to clip the ray as near the articulation point as possible 

(Bednarski & Scarnecchia, 2006). I collected pectoral rays because they were 

considered the most reliable, non-lethal age structure in catostomids (Beamish & 

McFarlane, 1969; Labay et al., 2011; Acre et al., 2017). I stored pectoral rays in 

individual #1 manila coin envelopes, and allowed the rays to air-dry until I transported 

them to the laboratory. 

I processed pectoral rays in the laboratory for age and growth analysis. I further 

dried pectoral rays in a dehydrator for at least one week. Next, I cleaned excess flesh 

from each specimen, clipped the proximal end to < 1 cm, and set the clipped segment in 

epoxy (DeVries & Frie, 1996). Once the epoxy cured, I cut ≈ 1-mm sections with a low-

speed saw (Bueller Isomet 1000, Lake Bluff, IL) and mounted those sections to a 

microscope slide using a nitrocellulose-acetate solution (clear fingernail polish; 

Bednarski & Scarnecchia, 2006). I viewed the sectioned pectoral rays under 40x 

magnification with transmitted light. I defined annuli as concentric, nested rings of 

opaque bone tissue, and two readers independently enumerated annuli in each pectoral 

ray (Casselman, 1983; Panfili et al., 2002; Labay et al., 2011). When readers disagreed, 

I simultaneously reviewed the specimen in question and readers reached a consensus 

age. I photographed the clearest section from each pectoral ray using a camera 

mounted to the microscope (Leica DFC295, Leica Camera, Inc. Allendale, NJ). For each 

fish, I used ImageJ software with the OpenJ pluggin (version 1, Schneider et al., 2012) 
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to measure the distance between the inner-most annuli and the outer edge of each 

annuli along the apex of the ray in the photograph (Ricker, 1975; Panfili et al., 2002; 

Quist & Spiegel, 2012). The distances between consecutive annuli were proportional to 

somatic growth and served as a record of annual growth of individuals (DeVries & Frie, 

1996). 

    

DATA PROCESSING 

Recruitment – I created catch-curve models and used the model residuals to determine 

year-class strength. Using R statistical software (version 3.4.4, R Core Development 

Team, 2018), I created catch-curve models for each population by regressing fish 

abundance in each year class against age (i.e., years). The slope of the regression line 

described the mean instantaneous mortality rate of the population, and the line 

represented the mean expected abundance in each year class given the mean mortality 

rate (Ricker, 1975; Miranda & Betolli, 2007). The residuals were the difference between 

the observed abundance and the expected abundance for each year class, and served 

as a measure of recruitment variability (Guy & Willis, 1995; Isermann et al., 2002). 

Positive residuals indicated the observed abundance was greater than the expected 

reflecting a strong year class, whereas negative residuals indicated a weak year class 

(Maceina, 1997). I created catch-curve models for each population, calculated the 

residuals, and rescaled them on the student’s t scale allowing comparison of the 

residuals from each catch-curve model (Maceina, 1997). Because I collected Blue 

Suckers in spring 2017, the outer-most annuli represented recent growth leading up to 

winter 2016/2017 (Peterson et al., 1999). Therefore, the year class an individual 

belonged to was determined as 2017 minus the age of the individual. 

 

Somatic growth – To estimate individual annual growth, I measured the distance 

between the outer edges of consecutive annuli excluding age 0-1. The distance between 

two consecutive annuli in a pectoral ray was proportional to the somatic growth of that 

individual during a given year (Ricker, 1975; DeVries & Frie, 1996). Pectoral rays did not 

contain a well-defined centrum due to a blood vessel in the center of the ray (Panfili et 

al., 2002; Bacula et al., 2009). Therefore, I was not able to measure growth between 

hatching and age 1, and instead began my measurements at the age 1 – 2 increment. 

Because the apices of annuli rarely followed a straight line, I took my measurements 

between the outer edge of the age-1 annulus apex and the outer edge of each 
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consecutive annulus apex (Fig. 5.2). I calculated annual growth as the difference in 

length between the consecutive annuli. Measuring annuli in this manner mitigated the 

effect of nonlinear apices in individual pectoral rays.  

 

Environmental conditions – I obtained discharge and temperature data from remote 

monitoring stations in my study area. Discharge data were available from the U.S. 

Geological Survey (USGS) gages in the tailwater below Denison Dam (07331600), in the 

Red River, between the tailwater and Kiamichi River confluence near Arthur City, TX, 

and in the Muddy Boggy River (gages 07331600, 07335500, and 07335300, 

respectively; https://waterdata.usgs.gov/ok/nwis/rt, accessed: 1/8/2018). I obtained dam 

release data from Hugo Dam (USACE; http://www.swt-

wc.usace.army.mil/HUGO.lakepage.html, accessed: 1/8/2018) given this represents the 

bulk of flow in the Kiamichi River below Hugo reservoir (i.e., there is no stream gage). 

Temperature data were unavailable so I used air temperature recorded by a weather 

station in Hugo, OK as surrogate 

(http://www.mesonet.org/index.php/weather/daily_data_retrieval, accessed: 6/19/2018). 

Although it was possible to estimate water temperature from the recorded air 

temperature, models of the relationship are imperfect and introduce error into my 

analysis (e.g., Morrill et al., 2005). I was primarily interested in accounting for winter or 

growing seasons that were cooler or warmer relative to the other winters and growing 

seasons included in my analysis, and air temperature provided and adequate measure 

(e.g., Quist & Spiegel, 2012).  

I defined seasons that corresponded to life-history events of Blue Sucker that 

could be used to develop my hypotheses. I defined three seasons that related to Blue 

Sucker movements and growth: 1.) spawning, February 1 – May 31; 2.) growing, June 1 

– September 30; and 3.) winter, October 1 – January 31. These seasons corresponded 

to observed movement patterns and temperature changes (Peterson et al., 1999; Neely 

et al., 2009; Chapter 2). I used R statistical software to calculate stream flow metrics 

related to timing, frequency, duration, and variability of seasonal discharge at each 

location.  

I calculated flow patterns and temperature metrics that I hypothesized to 

influence the growth, foraging, spawning success, and recruitment of Blue Suckers. I 

chose metrics described by Olden and Poff (2003) to describe the magnitude, timing, 

variability, duration, rate of change, or frequency of seasonal flow pulses (Table 5.1). 
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The magnitude and timing of high-flow pulses during the spawning season provide 

necessary cues for Blue Sucker spawning migration (Moss et al., 1983; Vokoun et al., 

2003; Chapter 3), and are potentially related to the spawning success of 

potamodromous fishes (Lucas & Baras, 2001; Thurow, 2016). High or low flow 

magnitude, variability, and duration of high or low flows, during the growing and winter 

seasons, affect growth and survival of riverine fishes by altering habitat availability (King 

et al., 1998; Young et al., 2011) and secondary productivity (Bednarek & Hart, 2005, 

Rolls et al., 2013). The rate of change and variability of flow pulses can result in the 

stranding of nests (Grabowski & Isley, 2007) and stunted growth of young-of-year 

(Weyers et al., 2003). Additionally, I calculated the maximum temperature over the 

growing season (i.e., see seasons above), minimum temperature during the winter 

season, and the average temperature from both the growing and winter seasons.  

Extreme temperatures can reduce foraging efficiency and growth of fishes (Moyle & 

Cech, 2004).           

I used hydrology data from multiple locations, because Blue Suckers were 

mobile. I previously documented Blue Suckers moving throughout the lower Red River to 

fulfill their life-history requirements (Chapter 2). In this study, I was attempting to match 

the conditions Blue Suckers experienced during the growing, winter, and spawning 

seasons to year-class strength or individual growth. I could not assume that Blue 

Suckers occupied the reach where captured throughout their lives. Blue Suckers display 

some degree of fidelity to spawning sites (Lyons et al., 2016; Chapter 2), and foraging 

habitat (Adams et al., 2017), however, variability exists within the population and it is 

unclear whether homing to spawning habitats is natal. Further, the behavior of age-0 

Blue Sucker is unknown (Adams et al., 2006), and Blue Suckers may remain in their 

natal tributary or drift to the mainstem after hatching. I addressed the possibility of the 

spatial influence on year-class strength using hypothesis testing.    

 

DATA ANALYSIS 

Hypotheses – I created eight candidate models that each represented different 

hypotheses regarding the relationship between year-class strength and environmental 

conditions. First, I created a model to serve as 1.) null hypothesis that included an 

intercept and the sample locations as a fixed effect. Next, I included three hypotheses to 

reflect the temporal dynamics of Blue Sucker life history in the mainstem Red River 

(Table 5.2): 2.) adult hypothesis, reflected growing and winter season conditions in the 
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mainstem, leading up to the spawning season, 3.) main spawning hypothesis, reflected 

conditions in the mainstem river during the spawning season, and 4.) main recruitment 

hypothesis, that represented growing and winter season conditions in the mainstem 

following the spawning season. I included four additional hypotheses to reflect the 

spatial dynamics of the Blue Sucker population. Two hypotheses were based on strong 

spawning-site fidelity: 5.) local spawning hypothesis, described conditions during the 

spawning season, at the sampling locations, and 6.) local recruitment hypothesis, 

reflected conditions following the spawning season, at the sampling locations. The last 

two hypotheses were based on the observation that straying Blue Suckers frequently 

selected Muddy Boggy River over other tributaries (Chapter 2): 7.) Muddy Boggy 

spawning hypothesis, described flow conditions during the spawning season in Muddy 

Boggy River, and 8.) Muddy Boggy recruitment hypothesis, reflected conditions post-

spawning season in Muddy Boggy River.   

 

Recruitment – I evaluated the statistical support for each of my eight hypotheses by 

using a model-selection framework and hypothesis-testing framework. I included several 

variables to represent each hypothesis based on ecological theory, but statistical theory 

favors parsimony and several of my variables were likely redundant (Akaike, 1973). 

Therefore, I used a forward-selection process to reduce my variable set representing 

each hypothesis to create the best-supported candidate model of my data (Akaike, 1973; 

Hobbs & Hillborn, 2006). I then used AICc to rank my selected candidate models and 

determine the relative support of my eight hypotheses (Johnson & Omland, 2004).  

First, I created a generalized linear model (candidate model) to represent each of 

the aforementioned eight hypotheses. I used a forward selection approach guided by 

AICc to create the best candidate model of my data to represent each hypothesis 

(Akaike, 1973; Hobbs & Hillborn, 2006; Bolker et al., 2009). I calculated the AICc scores 

with the ‘AICcmodavg’ package (Mazzerolle, 2016). The null model included an intercept 

and a fixed effect for location. To create additional candidate models, I individually 

added the habitat variables associated with each hypothesis to the null model (Table 1). 

I retained the added variable that produced the lowest AICc score and repeated the 

process until the addition of variables no longer reduced the AICc score by > 2 points 

(Bolker et al., 2009). I included an interactive effect of the retained variables with location 

in subsequent iterations of the model selection process. Because I only had a single 

year of data to construct catch curve models, my data were limited to the age-at-
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recruitment and the longevity of individuals in the population at each location (15 and 7 

years for Red and Kiamichi rivers, respectively). Fitting a generalized linear model to a 

small data set risks overfitting, however using AICc as a selection criterion prevents 

overfitting by penalizing the addition of excessive parameters (Akaike, 1973; Johnson & 

Omland, 2004). I reviewed residual plots to ensured that each candidate model satisfied 

the assumptions of generalized linear models (i.e., normality, heteroscedasticity, 

independence) and calculated R2 to determine how well each model explained the 

variation in my data (Zar, 2001).   

Next, I determined the best-supported recruitment hypotheses by ranking the 

candidate models using AICc. I considered the model with the lowest AICc score to 

represent the hypothesis best supported by my data (Johnson & Omland, 2004; Hobbs 

& Hillborn, 2006). I considered models with a difference < 2 AICc points of the top model 

equally supported by my data. Additionally, I calculated the Akaike weights of each 

candidate model as a measure of relative support for the hypotheses (Hobbs & Hillborn, 

2006).  

 

Somatic growth – I used a mixed effects model to describe the annual somatic growth of 

individual Blue Suckers. I used the lme4 package in R (Bates et al., 2018) to model 

incremental length data from Blue Sucker pectoral rays following the methods described 

by Weisberg et al., (2010). My null model was: 

�[�W = "W + ℎ[]WH� + 3[� + .� + ^[�W 

Where: �[�W was the incremental measurement at age a, from fish k of year class c,  

"W was a fixed effect corresponding the age of a fish, 

  ℎ[]WH� was a random effect corresponding to the year a fish was age a with 

~N(0,σ`
	) ,  

3[� was a random effect associated with an individual fish k from year class c, 

with ~N(0,σa
	),  

.� was a random effect associated with the capture location of fish k, with 

~N(0,σb
	),and  

^[�W represented the unexplained variation, or residuals in my model and was 

~N(0,σ	).  

I used a forward stepwise approach to select seasonal flow or temperature variables 

(Table 5.1), and retained variables that best explained ^[�W. I used AICc to evaluate the 
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effect of additional variables and favored parsimony when additional variables failed to 

lower the AICc scores > 2 points of the simpler model (Burnham & Anderson, 2002; 

Johnson & Omland, 2004). I visually inspected residual plots to ensure that my final 

model satisfied the assumptions of generalized linear models (i.e., normality, 

heteroscedasticity, independence). I calculated the conditional R2 to determine the 

portion of variability explained by the fixed and random effects in the final model 

(Nakagawa & Schielzeth, 2013).   

 

RESULTS 

FISH SAMPLING 

I captured and aged 126 Blue Suckers downstream of Dennison Dam and 123 

from the Kiamichi River, but truncated year-class data between the age-at-recruitment 

and the 20-year class. I determined that Blue Suckers fully recruited to my sampling 

gear at age 5 and age 13 in the Red and Kiamichi rivers, respectively. Blue Sucker with 

ages > 20 were poorly represented in my data (2 & 3 individuals in Red & Kiamichi 

rivers, respectively), and were excluded from analysis. I used 110 fish from Red River 

and 65 fish from Kiamichi River in my analysis of year class strength. 

Similarly, I truncated my growth data to include only length increments formed 

within the past 20 years in my growth analysis. Although Blue Sucker reached 23 years 

of age, I excluded increments with age > 20 from analysis due to incomplete 

environmental data from those years. I was not limited by the age at recruitment for this 

objective, and included 109 and 110 individuals from the Red and Kiamichi rivers, 

respectively, resulting in 2,180 growth increments for my analysis.  

 

ANALYSIS 

Environmental data – I observed considerable variability in discharge and temperature 

during my study period. Mean magnitude of discharge during the growing seasons 

ranged 33 – 975 m3/s in the mainstem Red River, with the highest flows occurring in 

2007 and lowest flows occurring 2012. Flows were most variable in 2011 with 1.74 

coefficient of variation, and most stable in 2005 with 0.28 coefficient of variation. Mean 

magnitude of discharge ranged 21 - 429 m3/s during the winter. Mean average 

temperature during the growing season ranged 23.8 – 28.0 °C and 8.3 – 12.8 °C during 

the winter. 
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Recruitment – I successfully created candidate models for 5 of 8 hypotheses, but I did 

not retain any additional variables for 3 of the hypotheses. Each of my candidate models 

(excluding the null hypothesis) retained an interactive effect with location (Table 5.2). A 

negative relationship with mean change in flow direction was retained in the Adult 

condition and Red spawning hypotheses. Additionally, a positive relationship with mean 

magnitude was retained in the Red spawning hypothesis. The rate of decline in 

discharge was negatively related to year-class strength in the local spawning hypothesis. 

The three hypotheses indicated that Blue Sucker recruitment was strongest when 

seasons began with high flow and discharge declined over time. Conversely, recruitment 

was poor when high flows were sustained during the season or when flows increased 

more frequently than they declined during the season. A positive relationship with 

duration of low flows (< 25th percentile) was retained in my candidate model of the 

Muddy Boggy recruitment hypothesis. My data did not support the inclusion of 

environmental variables in the Red recruitment, local recruitment, or Muddy Boggy 

spawning hypotheses.       

The adult condition and Muddy Boggy recruitment hypotheses accounted for 

76% of the total Akaike weight and were equally supported by my data. The adult 

condition hypothesis included an interactive effect between location and mean change in 

flow during the growing season (Table 5.2). The adult condition model indicated that 

recruitment was higher when flows began high and decreased throughout the growing 

season (slope = -1.03 + 0.36 SE, Fig. 5.3). I did not detect a relationship between year-

class strength in the Kiamichi River and mean changes in flow in the adult condition 

model (slope = 0.21 + 0.26 SE). The model associated with the Muddy Boggy recruitment 

hypothesis indicated winters in Muddy Boggy River with more days where stream flow 

was < 25th percentile resulted in higher Blue Sucker recruitment in the Red River (slope 

= 0.83 + 0.38 SE).  However, I did not detect a relationship between recruitment in the 

Kiamichi River and winter flows in Muddy Boggy River (slope = -0.10 + 0.32 SE, Fig. 

5.3).  

 

Somatic growth – The null growth model was best supported by my growth data, and 

explained a moderate amount of variation in growth (conditional R2 = 0.31). My results 

indicate that individual growth varied randomly among individuals and years, and the 

fixed effect of age best explained annual growth. As expected, Blue Sucker annual 

growth decreased as Blue Suckers aged (slope = -0.04 + 0.004 SE). 
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DISCUSSION 

My adult condition hypothesis was the most supported and indicated that Red 

River summer flow conditions were important for gonadal growth; however, the 

Weisberg model did not suggest summer conditions (i.e., or anything else) related to 

somatic growth. The results of my adult condition model indicated that a wet spring 

followed by dry summer resulted in higher recruitment the following year. These flow 

patterns can flush allochthonous nutrients into the river early in the growing season and 

provide relatively stable conditions for macroinvertebrate production (Dodds, 2002; 

Jowett, 2003). I did not detect a similar relationship between stream flow and somatic 

growth, but mature Blue Suckers in my study area showed an average annual growth of 

only 2 – 4 mm (Chapter 4) suggesting that Blue Suckers invested relatively little energy 

into somatic growth after reaching maturity (Bednarski & Scarnecchia, 2006; Bacula et 

al., 2009). 

 I detected a statistical link between flows in the Muddy Boggy River and 

recruitment in the Red River possibly indicating metapopulation dynamics thereby 

suggesting that connectivity in the lower Red River is important. The failure to recognize 

metapopulation dynamics is a major limitation to the management of potamodromous 

fishes (Thurow, 2016). Understanding how Blue Suckers spawning in the Muddy Boggy 

River contribute to the Red River tailwater population will be important for the 

management of the population (Ying et al., 2011; Spurgeon et al., 2018). My results 

indicated that low-flow winters in Muddy Boggy River result in better recruitment in the 

Red River, but understanding the mechanisms behind this relationship will require 

further research. Blue Sucker may leave Muddy Boggy River in response to unsuitable 

conditions (Lucas & Baras, 2001), or stable conditions associated with low flows may 

produce an abundance of recruits that disperse due to high densities (Humphries et al., 

1999; Mallen-Cooper & Stuart, 2003). Despite uncertainty in the mechanisms of the 

Muddy Boggy – Red River relationship, it is apparent that connectivity between the 

locations is important to the population. 

 The small sample size from the Kiamichi River resulted in a large degree of 

uncertainty in my recruitment analysis of Kiamichi River fish. The number of parameters 

in my final models were high compared to the observations from the Kiamichi River 

resulting in little explanatory power for that population (Babyak, 2004). Given the 
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uncertainty around my estimates for the Kiamichi population, concluding that the 

Kiamichi River population was unaffected by environmental conditions is inappropriate. 

The selection of an interactive effect with location in each of my models suggested that 

the response of the Kiamichi River population to environmental conditions may be 

different than that of the Red River population. However, I observed less variability in 

recruitment in the Kiamichi River compared to the Red River (R2 = 0.76 v. 0.52, 

respectively, Chapter 4). Considering the uncertainty in my estimates, it was possible 

that Blue Suckers in the Kiamichi River had a similar, but weaker response to stream 

flow. Future work is need to understand the relationships of the Kiamichi River 

population with environmental conditions.  

 I used flow variables calculated from daily discharge data in my analyses, but 

evaluating the effects of flow alterations at a sub-daily resolution would benefit 

managers. I was unable to quantify the sub-daily flow variation associated with 4 to 12-hr 

hydropower releases that occurred during the spring season. Consistent sub-daily 

hydropower releases would appear as stable flows at the daily resolution, without 

recording the daily fluctuation of 283 m3/s that I observed when sampling. Areas with 

drastic sub-daily fluctuations in flow can strand eggs and larvae on gravel bars, leaving 

the nests to desiccate (Grabowski & Isley, 2007, Young et al., 2011). Further, such flows 

can reduce survivability by stressing and stunting the growth of young-of-year fishes 

(Weyers et al., 2003), reducing the availability and quality of prey (Bednarek & Hart, 

2005; Rolls et al., 2013), and reducing the availability of suitable habitat for young-of-

year fishes (King et al., 1998, Olden & Naiman 2010). In dry years, fish may be artificially 

stimulated to spawn below dams (Bunt, 2001), and avoiding extreme sub-daily flow 

alterations may produce stable populations within the system, rather than sinks in 

difficult years (Nagrodski et al., 2012).   

 The results of my study provide the potential management options of designer 

flows and sanctuary rivers. Recreating the natural flow regime is often suggested as 

dam management strategy; however, this strategy is often impractical and may not be 

necessary (Jager & Smith, 2008; Acreman et al., 2014). Instead, understanding how fish 

populations have persisted in an altered environment can allow managers to determine 

and create designer flows (i.e., flow regimes created for specific ecological objectives) 

that benefit native fishes (Acreman, et al., 2014; Chen & Olden, 2017). An example of a 

designer flow based on or results would be a large flow pulse early in the growing 

season (May – June) and then a return to a typical or moderate hydropower operation 
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for the rest of the season (Acreman et al., 2014). Additionally, if Muddy Boggy River 

provides a source population for Blue Sucker (i.e., Muddy Boggy recruitment 

hypothesis), it could be treated as a sanctuary river (Moyle & Mount, 2007). Marine 

sanctuaries are proven to provide source population to exploited saltwater fisheries 

(Halpern, 2003), and similar to my study, the availability of unregulated tributaries 

positively influenced the recruitment of Paddelfish Polyodon spathula (Prachiel et al., 

2009).  

 The relationship between environmental conditions and fish recruitment and 

growth are complex, but managers would benefit from a better understanding of the 

effects of flow alteration on native fishes. My results suggest that seasonal flows are 

important to the different life-history requirements of Blue Suckers, and that connectivity 

within the river network is likely important to the conservation of the species. Blue 

Sucker life history may not be identical to other sympatric large-river fishes, but flow 

management that benefits Blue Suckers would likely benefit other native species that are 

adapted to the natural conditions of the Southern Great Plains. Properly-timed designer 

flows that protect spawning fishes and their offspring and promote individual growth and 

health may provide a balance between human needs and biodiversity conservation 

(Acreman et al., 2014). The human demand for water is likely to increase in the future 

(Vӧrӧsmarty et al., 2010), and it is important that I work mitigate the effects of flow 

regulation on the freshwater fisheries population dynamics. 
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Table 5.1 Variables included in year-class strength and annual growth analyses. 

Variables were adapted from Oden and Poff (2003). Each variable was calculated from 

mean daily flow data within a season. Variables associated with the adult condition 

hypothesis were calculated from the year prior to each year class, whereas all others 

were from the same year as each year class. The growing season corresponded to 

warm months (June – September), winter corresponded to cooler months (October – 

January) and spawning season was primarily spring months (February – May).   

Hypothesis Metric Variable Description Gage Season 

Adult 

Condition 

Magnitude MA 1 mean discharge Arthur 

City 

Growing 

 Variability MA 3 coefficient of 

variation  

Arthur 

City 

Growing 

 Variability MA 5 Skewness Arthur 

City 

Growing 

 Variability RA 6-7 change of flow Arthur 

City 

Growing  

 Frequency FL 1 days with Q <25th 

percentile 

Arthur 

City 

Growing 

 temperature TMAX maximum 

temperature 

Arthur 

City 

Growing 

 Magnitude MA 1 mean discharge Arthur 

City 

Winter 

 Variability MA 3 coefficient of 

variation  

Arthur 

City 

Winter 

 Variability MA 5 Skewness Arthur 

City 

Winter 

 Variability RA 6-7 change of flow Arthur 

City 

Winter 

 Frequency FL 1 days with Q <25th 

percentile 

Arthur 

City 

Winter 

 temperature TMIN minimum 

temperature 

Arthur 

City 

Winter 

Red Magnitude MA 1 mean discharge Arthur Spawning 
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Spawning  City 

 Variability MA 3 coefficient of 

variation  

Arthur 

City 

Spawning 

 Variability MA 5 Skewness Arthur 

City 

Spawning 

 Variability RA 6-7 change of flow Arthur 

City 

Spawning 

 Timing TH 1 date of maximum 

flow 

Arthur 

City 

Spawning 

 Timing TH 50 Earliest date Q > 

median 

Arthur 

City 

Spawning 

 rate of 

change 

RA 1 Mean rate of 

positive changes in 

flow 

Arthur 

City 

Spawning 

 rate of 

change 

RA 3 Mean rate of 

negative changes 

Arthur 

City 

Spawning 

 rate of 

change 

RA 8 Number of flow 

reversals 

Arthur 

City 

Spawning 

 Duration DH 50 Consecutive days 

where Q > median 

Arthur 

City 

Spawning 

Red 

Recruitment 

Magnitude MA 1 mean discharge Arthur 

City 

Growing 

 Variability MA 3 coefficient of 

variation  

Arthur 

City 

Growing 

 Variability MA 5 Skewness Arthur 

City 

Growing 

 Variability RA 6-7 change of flow Arthur 

City 

Growing 

 Frequency FL 1 days with Q <25th 

percentile 

Arthur 

City 

Growing 

 Temperature TMAX maximum 

temperature 

Arthur 

City 

Growing 

 Magnitude MA 1 mean discharge Arthur Winter 



92 

 

City 

 Variability MA 3 coefficient of 

variation  

Arthur 

City 

Winter 

 Variability MA 5 Skewness Arthur 

City 

Winter 

 Variability RA 6-7 change of flow Arthur 

City 

Winter 

 Frequency FL 1 days with Q <25th 

percentile 

Arthur 

City 

Winter 

 temperature TMIN minimum 

temperature 

Arthur 

City 

Winter 

Local 

Spawning  

Magnitude MA 1 mean discharge Denison/ 

Hugo 

Spawning 

 Variability MA 3 coefficient of 

variation  

Denison/ 

Hugo 

Spawning 

 Variability MA 5 Skewness Denison/ 

Hugo 

Spawning 

 Variability RA 6-7 change of flow Denison/ 

Hugo 

Spawning 

 Timing TH 1 date of maximum 

flow 

Denison/ 

Hugo 

Spawning 

 Timing TH 50 Earliest date Q > 

median 

Denison/ 

Hugo 

Spawning 

 rate of 

change 

RA 1 Mean rate of 

positive changes in 

flow 

Denison/ 

Hugo 

Spawning 

 rate of 

change 

RA 3 Mean rate of 

negative changes 

Denison/ 

Hugo 

Spawning 

 rate of 

change 

RA 8 Number of flow 

reversals 

Denison/ 

Hugo 

Spawning 

 Duration DH 50 Consecutive days 

where Q > median 

Denison/ 

Hugo 

Spawning 

Muddy Boggy Magnitude MA 1 mean discharge Muddy Spawning 
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Spawning Boggy 

 Variability MA 3 coefficient of 

variation  

Muddy 

Boggy 

Spawning 

 Variability MA 5 Skewness Muddy 

Boggy 

Spawning 

 Variability RA 6-7 change of flow Muddy 

Boggy 

Spawning 

 Timing TH 1 date of maximum 

flow 

Muddy 

Boggy 

Spawning 

 Timing TH 50 Earliest date Q > 

median 

Muddy 

Boggy 

Spawning 

 rate of 

change 

RA 1 Mean rate of 

positive changes in 

flow 

Muddy 

Boggy 

Spawning 

 rate of 

change 

RA 3 Mean rate of 

negative changes 

Muddy 

Boggy 

Spawning 

 rate of 

change 

RA 8 Number of flow 

reversals 

Muddy 

Boggy 

Spawning 

 Duration DH 50 Consecutive days 

where Q > median 

Muddy 

Boggy 

Spawning 

Local 

recruitment 

Magnitude MA 1 mean discharge Denison/ 

Hugo 

Growing 

 Variability MA 3 coefficient of 

variation  

Denison/ 

Hugo 

Growing 

 Variability MA 5 Skewness Denison/ 

Hugo 

Growing 

 Variability RA 6-7 change of flow Denison/ 

Hugo 

Growing 

 Frequency FL 1 days with Q <25th 

percentile 

Denison/ 

Hugo 

Growing 

 Temperature TMAX maximum 

temperature 

Denison/ 

Hugo 

Growing 

 Magnitude MA 1 mean discharge Denison/ Winter 
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Hugo 

 Variability MA 3 coefficient of 

variation  

Denison/ 

Hugo 

Winter 

 Variability MA 5 Skewness Denison/ 

Hugo 

Winter 

 Variability RA 6-7 change of flow Denison/ 

Hugo 

Winter 

 Frequency FL 1 days with Q <25th 

percentile 

Denison/ 

Hugo 

Winter 

 Frequency FL 10 days with Q <10th 

percentile 

Denison/ 

Hugo 

Winter 

 temperature TMIN minimum 

temperature 

Denison/ 

Hugo 

Winter 

Muddy Boggy 

recruitment 

Magnitude MA 1 mean discharge Muddy 

Boggy 

Growing 

 Variability MA 3 coefficient of 

variation  

Muddy 

Boggy 

Growing 

 Variability MA 5 Skewness Muddy 

Boggy 

Growing 

 Variability RA 6-7 change of flow Muddy 

Boggy 

Growing 

 Frequency FL 1 days with Q <25th 

percentile 

Muddy 

Boggy 

Growing 

 temperature TMAX maximum 

temperature 

Muddy 

Boggy 

Growing 

 Magnitude MA 1 mean discharge Muddy 

Boggy 

Winter 

 Variability MA 3 coefficient of 

variation  

Muddy 

Boggy 

Winter 

 Variability MA 5 Skewness Muddy 

Boggy 

Winter 

 Variability RA 6-7 change of flow Muddy 

Boggy 

Winter 
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 Frequency FL 1 days with Q <25th 

percentile 

Muddy 

Boggy 

Winter 

 Temperature TMIN minimum 

temperature 

Muddy 

Boggy 

Winter 

Growth model Magnitude MA 1 mean discharge Arthur 

City 

Growing 

 Variability MA 3 coefficient of 

variation  

Arthur 

City 

Growing 

 Variability MA 5 Skewness Arthur 

City 

Growing 

 Frequency FL 1 days with Q <25th 

percentile 

Arthur 

City 

Growing 

 Frequency FH 1 days with Q >75th 

percentile 

Arthur 

City 

Growing 

 Temperature TMEAN mean temperature Arthur 

City 

Growing 

 Magnitude MA 1 mean discharge Arthur 

City 

Winter 

 Variability MA 3 coefficient of 

variation  

Arthur 

City 

Winter 

 Variability MA 5 Skewness Arthur 

City 

Winter 

 Frequency FL 1 days with Q <25th 

percentile 

Arthur 

City 

Winter 

 Frequency FH 1 days with Q >75th 

percentile 

Arthur 

City 

Winter 

 Temperature TMEAN mean temperature Arthur 

City 

Winter 
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Table 5.2 Candidate models for each year-class strength hypothesis, AICc scores, 

difference in AICc (∆AICc), Akaike weights (ω), and conditional R2. In the models, β0 

refers to the intercept, βx coefficients are associated with the selected environmental 

variables from Table 1, and location j (lj).   

Hypothesis Model AICC ∆AICC Ω R2 

Adult 

conditioning 

��� = �� + ��.� + �	��67�� + �
.� ∗ ��67��

+ ^�� 

 

63.7 0 0.41 0.42 

Muddy Boggy 

recruitment 

��� = �� + ��.� + Ve1�� + �	.� ∗ Ve1�� + ^�� 

 

64.0 0.3 0.35 0.41 

Local 

spawning 

��� = �� + ��.� + �	��3�� + �
.� ∗ ��3��

+ ^�� 

 

66.1 2.4 0.12 0.35 

Red 

spawning 

��� = �� + ��.� + �	X�1�� +  �
��67��

+ ��.� ∗ X�1�� + ^�� 

 

66.7 3.0 0.09 0.44 

Null ��� = �� + ��.� + ^�� 68.8 5.1 0.03 0.01 
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Fig. 5.1 The lower Red River, Oklahoma and major tributaries. Fish were collected in the 

Tailwater and Kiamichi River. Stars represent streamflow gages and crosses represent 

temperature loggers used in the study.  
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Fig. 5.2 Diagram of pectoral ray used in my growth study. Concentric lines represent 

annuli and arrows represent incremental measurements between age-1 annulus and the 

apex of each annulus. 
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Fig. 5.3 Relationship of Blue Sucker recruitment (year-class strength) with 

environmental conditions. The top panels represent the Adult Condition hypothesis and 

the relationship of year-class strength with the mean change in stream flow during the 

growing season prior to spawning for the Red (A.) and Kiamichi (B.) river populations. 

The bottom panels represent the Muddy Boggy recruitment hypothesis and the 

relationship of year-class strength with the number of days having stream flow < 25th 

percentile in the Muddy Boggy River during the winter following spawning season for the 

Red (C.) and Kiamichi (D.) river populations. 
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CHAPTER VI 
 

 

MANAGEMENT IMPLICATIONS AND FUTURE RESEARCH 

 

I documented Blue Suckers using the tailwaters of the two major dams in my 

study, and managers would benefit from considering the effect of dam management 

practices on the population. Blue Suckers were abundant for longer periods of time in 

the Hugo and Denison Dam tailwaters compared to the unregulated tributaries. My 

objectives did not address the link between Blue Sucker movement and attraction to 

dam release waters, but the phenomenon is established and environmental engineers 

use flow attraction in the design of fish ladders (Bunt, 2001). The rapid change in stream 

discharge that is often associated with dam management practices can be detrimental to 

the survival, growth and recruitment of riverine fishes (King et al., 1998; Weyers et al., 

2003; Grabowski & Isley, 2007). Given my observations of tailwater use by Blue Suckers 

in spawning condition, water managers should consider the effects of the timing, 

magnitude, and rate of change of controlled discharge on the migratory fishes that may 

be attracted to artificial flow pulses (Jager & Smith, 2008; Young et al., 2011). 

The seasonal movement patterns of Blue Sucker serve as a useful framework for 

the future study and management of the species. Limited understanding of the scope 

and seasonality of movement patterns is a major limitation to the identification of 

manageable populations of riverine fishes (Cooke et al., 2012; Cooke et al., 2016). Blue 

Suckers were capable of moving throughout the lower Red River, and displayed 

spawning-site fidelity. Spawning-site fidelity is often used in the identification of 

manageable populations of migratory fishes (MacLean & Evans, 1981). I documented 

strong evidence of spawning site fidelity in only one of two years, and uncertainty still 

exists in the movement patterns of Blue Suckers over their ≈ 20-year lifespan. Genetic 

analysis and otolith microchemistry may provide further insight into the connectivity of 
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Blue Sucker populations within the river network (e.g., Bertrand et al., 2016; Spurgeon et 

al., 2018). At a minimum, regular population monitoring would be beneficial to evaluating 

the complexity of Blue Sucker spawning behavior and movement patterns. Successful 

management of the species will require an understanding of the rate and spatial 

dynamics of gene flow throughout the river catchment (Ying et al., 2007; Cooke et al., 

2016). 

In three of my four objectives, I observed evidence of metapopulation dynamics 

in the Red River and further investigation is warranted for successful management. Blue 

Suckers that did not display reach fidelity (i.e., tagged location) typically used Muddy 

Boggy River (chapter 2), and I observed a statistical link between recruitment in the Red 

River tailwater and environmental conditions in Muddy Boggy River (chapter 5). 

Additionally, I observed individuals using the Red River tailwater during the non-

spawning season, and moving to Muddy Boggy River during each spawning season 

(chapter 2). Further, I estimated high survival rate and large recruitment variability in the 

Red River tailwater population, possibly indicating the presence of immigrants into the 

population (chapter 4). It is possible that the Red River tailwater represents a sink 

population that is periodically restored by Muddy Boggy River immigrants, although the 

evidence of this is tangential. Treating potential sub-populations as separate populations 

is a safer approach, from a management perspective, than assuming a single large 

population (Begg et al., 1999), but ignoring the connectivity among populations may 

result in the failure to recognize population declines (Ying et al., 2011). 

My study indicates that protecting connectivity in the lower Red River, and 

designation of Muddy Boggy River as a sanctuary stream would likely benefit Blue 

Sucker. Recognition of metapopulation dynamics and source populations provides the 

management option of designating sanctuary streams. Marine sanctuaries have proven 

successful in the conservation and management of saltwater populations (Halpern, 

2003), and designating unregulated tributaries, like Muddy Boggy River, was recently 

proposed as a method to mitigate the effects of flow regulation (Moyle & Mount, 2007). 

Similar to my findings in Chapter 5, environmental flows in unregulated tributaries have a 

stronger influence on recruitment of Paddelfish Polyodon spathula than conditions in the 

mainstem Missouri River, NE (Prachiel et al., 2009). Preventing flow regulation in Muddy 

Boggy River and protecting existing connectivity in the lower Red River will be important 

to the conservation of large-river fishes in the lower Red River. 
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I provided empirical evidence of the spatial scope of the Blue Sucker population 

and interstate collaboration would benefit research and management of Blue Suckers 

and other migratory fishes. My results indicate that residents may exist below Denison 

Dam, but Blue Suckers using the major tributaries may periodically leave the state 

boundaries (Chapter 2). I documented four individuals moving between the tributaries 

and the Oklahoma-Arkansas border. Collaborative efforts with Arkansas, Texas, and 

Louisiana would benefit Blue Suckers and other migratory large-river fishes. 

Collaborative management plans that span several geopolitical boundaries have been 

successful for migratory birds (Anderson et al., 2018) and marine fisheries (Brown, 

2017), and similar plans are needed for freshwater fishes.      
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APPENDICIES 
 

APPENDIX A: Detection of Acoustic Telemetry Tags 
 

 Electronic transmitters and telemetry studies can provide valuable information 

about movement and habitat use of fishes, but the methods are not without limitations. 

The use of electronic transmitters allows multiple observations of individuals at a fine 

temporal and spatial resolution and may be one of the most important technological 

advances in the study of fish movement and behavior (Lucas & Baras, 2001). Acoustic 

and radio transmitters are most commonly implemented in fisheries studies, and each 

have advantages and disadvantages depending on the situation (Adams et al., 2012). 

Radio tags transmit a signal through freshwater with low conductivities (i.e., < 800 μS) 

and air allowing easy detection. However, high water conductivities result in the rapid 

attenuation of radio waves, and the trailing antenna associated with radio transmitters 

results in a higher probability of tag loss (Adams et al., 2012). Acoustic tags transmit a 

signal through water, regardless of water conductivity, but are effectively undetectable in 

air. Acoustic tags require a relatively uninterrupted underwater path between the 

transmitter and the receiver, and environmental noise can reduce the detectability of the 

signal (Adams et al., 2012). I chose to use acoustic tags for my study, do to high 

conductivities in the mainstem Red River (1200 – 2000 μS) and high retention rates 

documented in other catostomids (Razorback Sucker Xyrauchen texanus; Karam et al., 

2008). 

 I experimented with the limitations of acoustic tags in my study, because riverine 

environments are less than ideal for acoustic telemetry (Melnychuk, 2012). With acoustic 

telemetry, there are three sources of variability in detection: 1. the tag must be in range 

of the receiver at the time the receiver is listening to the channel of the tag, 2. the tag 

must ping while the receiver is listening to the channel of the tag, and 3. environmental 

noise cannot interfere with signal transmission. Acoustic signals can be transmitted 1-km 

in an open environment, but the streambed or stream banks in riverine environments 
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can interrupt the signal. Therefore, the effective range of an acoustic transmitter is often 

limited to a single channel unit in the river. Acoustic transmitters are programmed to 

transmit at different frequencies to avoid signal collisions, requiring acoustic receivers to 

scan multiple channels (Adams et al., 2012). The reduced range of the acoustic signal in 

the river reduces the probability of a transmitter pinging within range of the receiver at 

the time the receiver is scanning the frequency of the signal. The first two sources of 

variation are random, whereas, the third source is dependent upon environmental 

conditions. The most common source of environmental noise was associated with 

streamflow. Elevated stream flows create environmental noise by increasing turbulence 

in the water column and mobilizing sediment along the streambed (Adams et al., 2012). 

Therefore, I tested the ability to detect transmitters with my passive telemetry gear and 

active telemetry protocol in a variety of conditions and locations. 

 

TRANSMITTERS 

 I acquired 130 acoustic transmitters with variable frequencies and ping intervals 

for my study, and retained 10 acoustic transmitters to estimate detection error. The 

frequency of the acoustic transmitters varied between 69 – 83 kHz and ping intervals 

ranged 1100 – 1500 milliseconds (ms). The combination the frequency and ping interval 

allowed identification of individuals using the passive receivers (SUR). Ping intervals of 

tags on the same frequency were > 50 ms apart to avoid mistaken identity. Additionally, 

each transmitter produced a unique aural sequence to allow identification with active 

telemetry. The aural sequence was created by 3 – 4 sequences of pings at the rate 

specified by the ping interval and sequences were separated with a pause 2x the ping 

interval (www.sonotronics.com, accessed: 11/28/2018).  

 

ACTIVE TRACKING 

Methods – I conducted an active detection experiment in each of my tracking reaches to 

estimate detection error associated with my protocol. I designed the experiment to 

accommodate the aforementioned sources of variation in transmitter detection. I 

randomly selected a channel unit for every 5-km of reach length to represent variability 

in size of channel units at each location. I conducted trials on multiple days to represent 

different stream flow conditions (2 – 3 days per location). Finally, I replicated each day 

and each location three times. Each replicate consisted of placing a transmitter near the 

streambed in a randomly selected channel unit. A tracking crew then carried out the 
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standard protocol by towing a hydrophone at 7-9 km/h while scanning 15 acoustic 

frequencies (≈ 3 seconds per channel). Tracking replicates began either at the head of 

the channel unit or 250-m upstream of the transmitter (large units) and ended at the 

mouth of the channel unit or 250-m below the transmitter. The receiver operator was 

unaware of the transmitter’s frequency prior to the first detection. To test for bias due to 

operator awareness of a transmitter in the channel unit, I placed transmitters in the test 

locations in Red and Kiamichi rivers without the tracking crew’s knowledge.   

 I analyzed the effect of stream flow on acoustic transmitter detection at each 

study reach. I averaged the binomial response of each replicate for each channel unit 

within each trial to determine the mean detection probability. I converted the discharge 

recorded by the USGS stream gage in the study reach at the time of the trial to a 

percentile that was relative to stream discharge recorded by the gage over the past 20 

years. I used a linear regression model to explain the relationship between mean 

detection probability and the interactive effect of stream discharge and the study reach. I 

visually assessed residual plots to ensure the assumptions of linear models were 

satisfied. 

 I tested for possible bias associated with receiver operator’s knowledge of 

transmitter locations. I used a two-way ANOVA to compare trials where the tracking 

crew placed the transmitter (known treatment) and trials where the tracking crew was 

unaware of transmitter presence (blind treatment) in the Kiamichi and Red rivers. I 

visually inspected residual plots to ensure satisfaction of linear regression assumptions. I 

assessed statistical significance at α = 0.05.       

 

Results – Detection probabilities were unaffected by stream flow except in Blue River 

where I detected a positive relationship. In each reach except Blue River, I detected a 

weak negative relationship with discharge (Fig. A.1), but with a considerable amount of 

uncertainty (slope + SE; Red = -0.22 + 0.21, Muddy Boggy = 0.28 + 0.40, Kiamichi = -0.41 

+ 0.84). I detected a strong positive relationship between stream flow and detection 

probability in Blue River (Blue = 1.64 + 0.53). Low detection rates in Blue River were 

associated with flows of 1.8 m3/s-1 and resulted in a greater chance of the streambed of 

woody debris disrupting the acoustic signal. Among the other three study reaches, 

detection probability was best in the slow moving, deep Kiamichi River (mean = 0.94 + 

0.24 SD), and worst in the often turbulent, wide, and shallow Red River (mean = 0.58 + 

0.41 SD). Although detection probabilities in the lower half of Muddy Boggy River 
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resembled those of the Kiamichi River, smaller channel units in the upper reaches of 

Muddy Boggy River were more similar to Blue River reducing the mean probability of 

detection for the study reach (mean = 0.76 + 0.28 SD). My model would benefit from data 

collected at additional stream flows, as it explained 39% of variance (R2). 

 I determined that knowledge of a transmitter’s presence did not bias the 

probability of detection in my study. The results of my two-way ANOVA analysis 

indicated that there was not a significant difference between blind and known treatments 

(F1,38 = 0.14, p = 0.71). However, detection probabilities were significantly greater in the 

Kiamichi River than in the Red River (F1,38 = 10.75, p < 0.01).  

 

PASSIVE TRACKING 

Methods – I placed SURs within 2-km of each stream’s confluence with the Red River, 

and monitored them throughout the study. I suspended each SUR from buoy that I 

tethered to an anchor in the stream. I weighted the receiver end of each SUR to ensure 

the receiver remained submerged. The buoy kept the receiver within 0.5-m of the water 

surface at low to moderate flows; however, the buoy became submerged when water 

depth exceed the length of the tether (i.e., > 5 m). Backflow from high flows in the Red 

River resulted in a calm, quiet acoustic environment in Muddy Boggy and Kiamichi rivers 

regardless of flows. High flows resulted in turbulent water in Red and Blue rivers, and I 

was unable to maintain SURs in Blue River. I checked that SURs were functioning every 

2 – 3 months, and downloaded data and replaced batteries every 6 – 7 months.  

 I used observational data from passive and active telemetry to assess the 

success rate of SUR detections. Initially, I designed an experiment that involved towing 

acoustic transmitters past an SUR and documented whether it recorded the transmitter. 

However, this experimental design require unfounded assumptions about Blue Sucker 

movement behavior and speed in the reach with the SUR. My experimental trials 

resulted in a single record of the transmitter when the SUR was successful. However, 

SURs recorded fish multiple times when they entered or left the reach and a single 

detection was indicative of a false identification. SURs frequently recorded 

environmental noise, and on one occasion, an SUR in Kiamichi River recorded a 

frequency and ping interval that matched a transmitter that I recorded in the Red River 

on the same day. I determined that my experimental trials were not representative of 

reality, and instead assessed SUR success by comparing the ratio of transmitters 
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recorded by SURs in each reach to the total number of transmitters recorded in the 

reach.         

 

Results – The SURs performed best in Muddy Boggy River, but had variable success in 

Red and Kiamichi rivers. The SURs placed in Muddy Boggy River recorded 91% (20 of 

22) of the individuals detected during the springs 2016 and 2017. Success was more 

variable in the Kiamichi River, where SURs recorded 90% (27 of 30), 59% (10 of 17), 

and 0% (0 of 3) in springs 2015, 2016, and 2017. I placed SURs 3 – 4 m underwater 

(50% of depth) in the Kiamichi River prior to spring 2017, in response to vandalism 

during the summer 2016. Setting the SURs deeper may have prevented further 

vandalism, but I observed one SUR laying on the streambed during the low flows of 

2017. SURs recorded relatively few of the Blue Suckers detected in the tailwater reach, 

0% (0 of 23) in 2016, and 31% (5 of 16) in 2017. Both SURs in the Red River tailwater 

were buried in sand for most of spring 2016 and were incapable of detecting acoustic 

tags. Further, Blue Suckers likely remained in the Red River tailwater year round 

(Chapter 2) and would not have passed the SURs. 
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Fig. A.1 Results of active-telemetry, detection-error trials in the lower Red River. Stream 

discharge is shown as a percentile of the flows observed over the past 20 years in each 

study reach. I did not extrapolate the lines of any reach outside of my observations. 
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APPENDIX B: Demographics of Blue Suckers used in Telemetry Studies 

 

I captured and surgically implanted acoustic transmitters into 119 Blue Suckers in the 

Red River and its major tributaries during spring 2015. I tagged 30 Blue Suckers in each 

study reach, but one individual perished before release in the Red River tailwater 

resulting in 29 tagged Blue Suckers at that location. I attributed my only mortality to a gill 

injury when weighing the individual, and began using a net cradle to weigh fish for the 

remainder of the study. Tagged male to female ratio was 1:1 (n = 110), with 10 fish of 

unknown gender. I suspect the unknown Blue Suckers to be females who have not yet 

reached sexual maturity, based on the observed sizes of mature fish (Fig. A.3).  The 

mean total length and weight of tagged males was 564 mm (+ 42 SD) and 1357 g (+ 357 

SD) and 587 mm (+ 40 SD) and 1651 g (+ 391 SD) for females (Fig. A.2). 

I detected 68 individuals on 281 occasions during my study (Table A.1). The majority 

of the detections were made in 2016 (73%), and 48% and 89% of detections in 2016 and 

2017, respectively, were made in Red River tailwater. Overall, I detected 24 individuals 

from Red River tailwater (166 detections), 14 from Blue River (39 detections), 10 from 

Muddy Boggy River (22 detections), and 19 from Kiamichi River (54 detections). The 

ratio of tags to detections was similar for males and females, but fish with unknown sex 

were detected less frequently (percent detected, F = 63%, M = 55%, U = 30%, Table 

A.2).    
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Table A.1 Demographics of Blue Suckers used in telemetry studies (Chapters 2 & 3). The number active tracking recaptures of each 

individual is provided for each year and location. I indicated individuals that were only detected by passive telemetry with ‘SUR’ 

rather than a numeral.  

          Recaptures   

 

2016 2017 

 Aural 

Code Sex TL (mm) WW (g) 

Tag 

Location Blue Kiam Muddy Red Blue Kiam Muddy Red Total 

3-3-3-4 M 565 1470 Muddy                 0 

3-3-4 F 621 1900 Red 

 

9 

 

4 13 

3-3-4-4 M 561 1200 Red 

 

8 

 

5 13 

3-3-4-5 F 555 1750 Blue 

 

0 

3-3-4-6 M 634 1950 Kiam 

 

1 

 

1 

3-3-4-7 M 567 1460 Blue 

 

0 

3-3-5-4 F 567 1680 Blue 

 

0 

3-3-5-5 F 631 1990 Muddy 

 

0 

3-3-6-5 M 585 1730 Kiam 

 

SUR 

 

0 

3-3-6-6 F 644 1960 Muddy 

 

0 

3-3-7-7 F 640 1940 Muddy 

 

0 

3-3-7-8 M 520 900 Red 

 

12 

 

8 20 

3-3-7-8 F 580 1300 Red 

 

12 

 

8 20 

3-3-8-4 F 610 1700 Red 

 

6 

 

1 7 

3-3-8-6 F 632 1800 Muddy 

 

SUR 

 

0 

3-3-8-7 F 610 1820 Blue 

 

0 

3-4-3-7 M 499 1120 Blue 

 

0 

3-4-3-8 U 519 900 Kiam 

 

0 

3-4-4 F 589 1300 Red 

 

2 

 

2 0 

3-4-4-8 F 660 2570 Muddy 

 

4 

 

4 

3-4-5 M 526 1070 Muddy 

 

0 

3-4-5-4 M 613 1570 Muddy 

 

0 
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          Recaptures 

     2016 2017 

Aural 

Code Sex TL (mm) WW (g) 

Tag 

Location Blue Kiam Muddy Red Blue Kiam Muddy Red Total 

3-4-5-5 M 504 800 Red 

 

3 

 

3 

3-4-5-6 F 575 1300 Red 

 

5 

 

2 7 

3-4-6-4 M 630 1720 Blue 2 

 

2 

3-4-7-4 F 645 1980 Blue 

 

0 

3-4-7-5 F 610 2260 Kiam 

 

3 

 

2 

 

5 

3-5-3-5 F 531 1410 Kiam 

 

1 

 

1 

3-5-3-6 U 518 990 Blue 

 

0 

3-5-3-7 F 519 1150 Blue 8 

 

1 

 

9 

3-5-3-8 M 563 1350 Blue 4 

 

4 

3-5-4-5 F 589 1570 Kiam 

 

1 

 

1 

3-5-4-6 M 520 900 Red 

 

SUR 

 

0 

3-5-5 M 574 1500 Red 

 

1 

 

6 7 

3-5-5-7 F 534 1180 Blue 

 

SUR 

 

0 

3-5-5-8 M 572 1300 Blue 

 

0 

3-5-6 M 549 1140 Muddy 

 

0 

3-5-6-8 F 625 2350 Kiam 

 

6 

 

6 

3-5-7-4 U 533 1070 Muddy 

 

1 

 

1 

3-5-7-5 F 608 1500 Red 

 

0 

3-5-7-6 M 622 1670 Blue 

 

0 

3-5-7-8 M 582 1100 Red 

 

0 

3-5-8-4 U 595 1000 Red 

 

0 

3-6-3-6 F 569 1460 Blue 

 

0 

3-6-3-7 U 524 900 Kiam 

 

0 

3-6-4-7 M 516 920 Muddy 

 

SUR 

 

SUR 0 

3-6-4-8 F 600 1300 Red 

 

0 
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          Recaptures 

     2016 2017 

Aural 

Code Sex TL (mm) WW (g) 

Tag 

Location Blue Kiam Muddy Red Blue Kiam Muddy Red Total 

3-6-5 M 568 1400 Kiam 

 

1 1 

 

2 

3-6-5-6 M 556 1180 Blue 

 

0 

3-6-5-7 M 560 1230 Blue 

 

0 

3-6-6 F 562 1650 Muddy 

 

1 

 

0 

3-6-6-6 M 614 1940 Kiam 

 

1 

 

1 

3-6-6-7 M 524 1120 Blue 

 

0 

3-6-7-7 F 539 1540 Kiam 

 

0 

3-6-7-8 F 595 1970 Kiam 

 

0 

3-7-4-8 M 587 1300 Red 

 

1 

 

1 

3-7-5-7 M 515 1200 Kiam 

 

9 

 

3 

 

12 

3-7-5-8 F 562 1200 Red 

 

4 

 

4 

3-7-6 F 606 1600 Red 

 

4 

 

5 9 

3-7-6-7 M 510 1040 Blue 2 

 

2 

3-7-7 F 648 2460 Muddy 

 

3 

 

3 

3-7-7-4 F 548 1570 Blue 

 

SUR 

 

0 

3-8-7 M 531 1340 Kiam 

 

0 

3-8-8 M 580 1500 Kiam 

 

0 

3-8-8-8 U 494 800 Kiam 

 

SUR 

 

0 

4-4-4 M 557 1100 Red 

 

0 

4-4-5 F 555 1390 Kiam 

 

2 

 

2 

4-4-5-6 M 600 1740 Blue 

 

0 

4-4-5-7 F 564 1760 Kiam 

 

1 

 

1 

4-4-5-8 M 629 1900 Red 

 

4 

 

6 10 

4-4-6-5 M 610 1720 Kiam 

 

3 

 

3 

4-4-6-8 F 581 1950 Kiam 

 

1 

 

1 
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          Recaptures 

     2016 2017  

Aural 

Code Sex TL (mm) WW (g) 

Tag 

Location Blue Kiam Muddy Red Blue Kiam Muddy Red Total 

4-4-7 F 542 1440 Blue 

 

SUR 

 

0 

4-4-8 U 577 1350 Muddy 

 

0 

4-4-8-8 F 582 1720 Blue 

 

SUR 

 

0 

4-5-4-5 M 529 1060 Muddy 

 

3 

 

3 

4-5-5-6 M 532 1220 Muddy 

 

0 

4-5-5-8 F 576 1400 Red 

 

6 

 

5 11 

4-5-6-5 M 512 850 Blue 5 

 

5 

4-5-6-8 M 662 2490 Muddy 

 

0 

4-5-7-7 F 530 1200 Kiam 

 

0 

4-6-4-8 M 565 1450 Muddy 

 

0 

4-6-5 F 710 2790 Muddy 

 

0 

4-6-5-5 U 509 1000 Kiam 

 

0 

4-6-6 F 606 1890 Blue 

 

0 

4-6-6-8 M 562 1480 Kiam 

 

SUR 

 

0 

4-7-4-7 M 530 700 Red 

 

2 

 

2 

4-7-4-8 F 594 1610 Muddy 

 

SUR 

 

0 

4-7-7 M 571 1350 Muddy 

 

0 

4-7-8 F 514 900 Red 

 

4 

 

2 6 

4-8-5 M 677 2160 Kiam 

 

SUR 

 

0 

4-8-5-8 M 553 1430 Kiam 

 

1 2 

 

3 

4-8-6 M 588 1400 Red 

 

1 

 

1 

4-8-8 M 626 2050 Muddy 

 

0 

5-5-5 M 544 1290 Muddy 

 

SUR 0 

5-5-5-8 F 588 1640 Blue 2 

 

2 

5-5-6-6 F 549 1200 Red 

 

2 

 

2 

 

1 1 6 
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          Recaptures 

     2016 2017  

Aural 

Code Sex TL (mm) WW (g) 

Tag 

Location Blue Kiam Muddy Red Blue Kiam Muddy Red Total 

5-5-7-7 M 536 1290 Kiam 

 

0 

5-5-7-8 F 621 2070 Blue 2 

 

2 

5-6-5-7 M 518 900 Kiam 

 

6 

 

1 

 

7 

5-6-7 F 567 1430 Muddy 

 

0 

5-6-7-8 M 609 1570 Blue 1 

 

1 

5-6-8 F 594 1960 Muddy 

 

SUR 

 

0 

5-6-8-8 F 572 1500 Red 

 

4 

 

4 8 

5-7-6-7 M 511 1050 Blue 6 

 

6 

5-7-6-8 M 548 1240 Muddy 

 

0 

5-7-8-7 U 512 1050 Muddy 

 

0 

5-7-8-8 F 535 1400 Kiam 

 

0 

5-8-7 F 591 1500 Red 

 

1 

 

1 

5-8-7-8 F 613 2120 Blue 

 

2 2 

5-8-8 M 550 1270 Muddy 

 

0 

5-8-8-8 F 599 1500 Red 

 

1 

 

1 

6-6-6 F 608 1490 Muddy 

 

0 

6-6-7-8 U 549 1130 Muddy 

 

4 

 

4 

6-7-7 F 565 1490 Kiam 

 

0 

6-7-8 F 587 1400 Red 

 

SUR 

 

0 

6-8-6-8 M 577 1300 Red 

 

5 

 

5 10 

6-8-8-7 M 539 1160 Blue 

 

0 

7-8-8 M 533 1340 Kiam   4             4 
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Table A.2 Summary of telemetry data used in telemetry studies (Chapters 2 & 3). I provide the number of individuals tagged and 

redetected, and total number of redetections made of fish tagged at each location and of each sex group. 

Location Female Male Unknown 
where 
tagged Tagged Detected 

Total 
Detections Tagged Detected 

Total 
Detections Tagged Detected 

Total 
Detections 

Blue 14 8 19 15 6 20 1 0 0 

Kiamichi 12 7 17 14 11 36 4 1 1 

Muddy 12 6 11 14 3 6 4 2 5 

Red 16 14 98 12 10 68 1 0 0 

Total 54 35 145 55 30 130 10 3 6 
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Fig. A.2 Top panel: size distribution of female (black squares), male (blue triangles) and 

unknown gender (red diamonds) Blue Suckers used in the telemetry studies. Blue Suckers 

were tagged in the Blue, Kiamichi (Kiam), Muddy Boggy (Mud) and Red rivers. Bottom 

panel: length and weight distributions of all tagged Blue Suckers. 
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