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Abstract: Insect control is a key concern for handlers of grain and grain-based products 

during the storage, processing, and packing processes. Insect infestations and insect 

fragments in food products can cause both direct and indirect economic losses. The most 

significant economic damage from insects in food processing facilities is contamination 

of food, which can lead to rejection of shipments, treatment cost, insect fragments in 

food, consumer complaints and loss of consumer goodwill. However, the potential 

damage is hard to quantify. The cost is large but the probability of occurrence may be 

low.  

 

Food processors must balance costs of insect control and risks of failing to control 

insects, while choosing from a set of imperfect insect control methods. An economical 

insect control strategy must make effective use of available information to optimize the 

timing of insect control methods, both chemical and non-chemical.  

 

In this study, real option models are used to value insect control treatments and pick the 

optimal timing to treat insects. Daily temperature is the stochastic variable which is the 

main source that causes uncertainty about insect population and the corresponding 

potential damage.  

 

Results found that the real option approach can reduce costs compared with using an 

economic threshold approach. The optimal treatment time signaled by a real option 

approach is earlier if temperatures are expected to increase, due to the higher probability 

of damage. Conversely, the optimal treatment time is likely to be later if temperatures are 

expected to decrease. Thus, the real option approach, by taking into account probabilities 

of future temperature movements, can reduce treatment cost by postponing treatment if 

temperature is likely to decrease, and can reduce insect damage loss by accelerating 

treatment if temperature is likely to increase.  

 

 



v 
 

TABLE OF CONTENTS 

 

Chapter          Page 

 

I. INTRODUCTION .....................................................................................................1 

 1.1 Background ........................................................................................................1 

 1.2 Objectives ..........................................................................................................4 

 1.3 Outline of work ..................................................................................................4 

 

II. LITERATURE REVIEW ..........................................................................................6 

 

 2.1 Insect control in food processing facilities ........................................................6 

 2.2 Integrated pest management concept ...............................................................10 

 2.3 Critical and economic threshold for insect controls ........................................14 

 2.4 Real options .....................................................................................................17 

 2.5 Stochastic process ............................................................................................21 

 

III. THEORY AND CONCEPTUAL FRAMEWORK ...............................................24 

 

 3.1 Insect control and damage cost ........................................................................24 

 3.2 Black-Scholes model .......................................................................................29 

 3.3 Binomial trees ..................................................................................................33 

 3.4 Monte Carlo valuation .....................................................................................37 

 3.5 Data calibration ................................................................................................37 

       3.5.1 State variable ...........................................................................................38 

       3.5.2 Random walk process .............................................................................39 

       3.5.3 Mean-reverting process ...........................................................................41 

       3.5.4 Path-dependent stochastic process ..........................................................47 

 3.6 Risk-neutral probabilities .................................................................................49 

 3.7 Timing options model ......................................................................................51 

 3.8 Optimal stopping model ...................................................................................54 

 

IV. PROCEDURES AND METHODOLOGY............................................................57 

 

 4.1 Data ..................................................................................................................57 

 4.2 Procedures ........................................................................................................62 

       4.2.1 Weather process ......................................................................................62 

                Seasonality and cyclicity .........................................................................62 

                ARMA model..........................................................................................64 

                Binomial tree ...........................................................................................66 

                Monte Carlo simulation ..........................................................................68 



vi 
 

Chapter          Page 

 

        4.2.2 Insect population ....................................................................................69 

        4.2.3 Insect damage cost .................................................................................70 

        4.2.4 Treatment cost ........................................................................................72 

        4.2.5 Economic threshold ...............................................................................74 

        4.2.6 Real option models ................................................................................74 

                 Option to defer insect treatment .............................................................75 

                 Optimal timing to treat insects ...............................................................76 

                 Optimal stopping model (for expiration date) .......................................77 

        4.2.7 Total costs for the optimal decisions .....................................................78 

 

V. RESULTS ...............................................................................................................80 

 

 5.1 Weather process ...............................................................................................80 

 5.2 Economic threshold .........................................................................................82 

 5.3 Option to defer insect treatment .......................................................................85 

 5.4 Optimal timing to treat insect ..........................................................................90 

 5.5 Optimal stopping model ...................................................................................96 

 5.6 Total costs for the optimal decisions ...............................................................99 

 

VI. CONCLUSIONS AND DISCUSSION ...............................................................102 

 

 6.1 Conclusions ....................................................................................................102 

 6.2 Discussion ......................................................................................................104 

 

REFERENCES ..........................................................................................................106 

 

 



vii 
 

LIST OF TABLES 

 

 

Table           Page 

 

2.1 Mapping an Investment Opportunity onto a Call Option ...................................19 

3.1 The Relationship Between Option State and The Decision ................................29 

3.2 Mapping a Treatment Opportunity onto a Financial Call Option .......................31 

4.1 Descriptive Statistics of Daily Temperature (oF) in Alva, Oklahoma from 

1999 to 2017 ...............................................................................................57 

4.2 Data Analysis of Daily Temperature (oC) in Alva, Oklahoma from 1999 to 

2017 ............................................................................................................59 

4.3 Spectral Model for Daily Average Temperature (oC) in Alva, Oklahoma 

from 1999 to 2017 ......................................................................................63 

4.4 AR(1) Model for The Deseasonalized and Detrended Daily Average 

Temperature in Alva, Oklahoma from 1999 to 2017 .................................64 

4.5 Spectral Model for Daily Average Temperature (oC) in Alva, Oklahoma 

from 1999 to 2017 ......................................................................................66 

4.6 Insect Treatment Cost Components ....................................................................73 

4.7 Cost of Fumigations in a 28,317 m3 Food Processing Facility for Profume ......73 

5.1 AR(1)-GARCH(2,1) Model for The Deseasonalized and Detrended Daily 

Average Temperature in Alva, Oklahoma from 1999 to 2017 ...................80 

5.2 Results from Economic Threshold Model ..........................................................84 

5.3 Option Values Based on Different Maturities .....................................................91 

5.4 Binomial Process of the Option Value from Last Treatment on April 21 ..........94 

5.5 Binomial Process of the Option Value from Last Treatment on October 21 ......95 

5.6 Annualized Total Cost for the Insect Treatment Decisions from Optimal 

Timing Option Models and the Economic Threshold Model .....................99 

 



viii 
 

LIST OF FIGURES 

 

Figure           Page 

 

3.1 Cost of control vs cost of insect damage ................................................................... 24 

3.2 Random walk representation of Brownian motion ................................................... 33 

3.3 Representation of a general Binomial tree ................................................................ 34 

3.4 Representation of a truncated Binomial tree ............................................................. 44 

3.5 Random process with non-constant variance ............................................................ 48 

3.6 Decision tree for the optimal timing problem ........................................................... 52 

3.7 Diagram for the optimal timing problem .................................................................. 55 

4.1 Biweekly temperature (oC) from October 1999 to 2017 in Alva, Oklahoma ........... 58 

4.2 Biweekly temperature (oC) changes from October 1999 to 2017 in Alva, 

Oklahoma ....................................................................................................... 58 

4.3 Histogram of daily average temperature from 1999 to 2017 in Alva, Oklahoma..... 60 

4.4 Daily average temperature with time series patterns from 1999 to 2017 in Alva, 

Oklahoma ....................................................................................................... 61 

4.5 Histogram of seasonal-trend decomposed daily average temperature from 1999 

to 2017 in Alva, Oklahoma............................................................................. 61 

4.6 Fourier transforms for daily average temperature from 1999 to 2017 in Alva, 

Oklahoma ....................................................................................................... 63 

4.7 ACF and PACF for the residual and the squared residual of the AR(1) model of 

the deseasonalized and detrended daily average temperature ........................ 65 

4.8 Binomial model for a single-step option model of the insect treatment problem ..... 75 

5.1 Simulated mean reverting biweekly temperature from April 21 and October 21 ..... 81 

5.2 Simulated insect population based on simulated mean reverting biweekly 

temperature ..................................................................................................... 81 

5.3 Simulated potential damage based on simulated mean reverting biweekly 

temperature ..................................................................................................... 81 

5.4 Economic threshold (ET) insect number with and without considering benefit 

from decreasing treatment frequency ............................................................. 83 

5.5 Empirical counts for the treatment dates based on economic threshold ................... 85 

5.6 Weather path in which insect population does not reach the ET (10 insects/floor) 

on March 23 from last treatment on October 21 ............................................ 86 

5.7 Weather paths under which insect population reaches the ET (10 insects/floor) 

earlier than the economic threshold treatment date ........................................ 88 

5.8 Intrinsic and time value for timing options for different given time ranges. ............ 92 

5.9 The effect of timing flexibility on the value of option for insect treatment .............. 96 



ix 
 

Figure           Page 

 

5.10 The effect of timing flexibility on the value of option for insect treatment with 

different potential damage values ................................................................... 98 

 



1 
 

 CHAPTER I 
 

 

INTRODUCTION 

 

1.1 Background 

Insect control is a key concern for handlers of grain and grain-based products during the 

storage, processing, and packing processes. Insect infestations and insect fragments in food 

product can cause product damage (Larson et al. 2008), and both direct and indirect economic 

losses.  

The most significant economic damage from insects in food processing facilities is 

contamination of food, which can lead to rejection of shipments, treatment cost, insect fragments 

in food, consumer complaints and loss of consumer goodwill. Insect infestations inside 

processing facilities and resulting product discount cause millions of dollars of economic losses 

each year (Harein and Meronuck 1995). 

Conventional structural fumigations with methyl bromide or sulfuryl fluoride have often 

relied on calendar-based applications with limited evaluation of overall pest population dynamics 

(Campbell et al. 2010), which can cause both unnecessary treatment costs and more rapid 

evolution of insect resistance to the fumigants. Meanwhile, consumers prefer food products 

without pesticide residues.  
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Moreover, the most widely used and effective fumigant, methyl bromide, is no longer 

available because it has been designated an ozone depleter under the Montreal Protocol. Thus, food 

producers and processers face a challenge to control insects effectively with judicious use of a greatly 

reduced arsenal of chemicals. 

Integrated pest management (IPM) programs attempt to reduce use of insecticides by using 

non-chemical treatments along with information to reduce frequency of chemical treatments and to 

optimize their timing. However, food suppliers may be hesitant to adopt such programs because of the 

potential increased costs if they fail to control insects adequately.  

Estimating these costs is difficult because insect populations, insect movement and potential 

damage are difficult to predict, and although the probabilities of catastrophic costs from insect 

infestations (e.g. recalls) are low, they are not zero. Theoretically, economic thresholds (ET) can be 

used to make this decision, but in practice, economic thresholds are difficult to implement because of 

the uncertainties.  

Time of treatment is an important decision in insect control. There is a need for a decision 

model that can optimize the frequency of using chemical treatments in a food processing facility, to 

minimize the combined costs of treatment itself and costs resulting from insect infestation.  

A manager of a food processing facility faces the dilemma that postponing a treatment (such 

as fumigation) in order to reduce the frequency of using insecticides, risks allowing insect population 

to increase to an amount that causes economic damage. Conversely, fumigating too early may allow 

the remaining insect population to rebound sufficiently that another expensive fumigation is 

necessary earlier than it would have been.   

Managers need economic guidelines to make insect control decisions that fully consider 

treatment costs, effectiveness, and costs of failing to control insects. Few studies have examined cost-

effectiveness of strategies for insect control in food processing firms (Ramaswamy et al. 2000). The 
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high cost of insect control, combined with the high cost of failing to control insects, make such 

analysis economically important. 

A real option approach that has been used in other contexts can reasonably be considered to 

this problem, because it can make the assessment of the costs of failing to control insects more 

manageable and easier to evaluate, interpret, and explain, particularly focused on strategies that 

reduce chemical use in food processing firms.  

One of the benefits of real option approach is that the model considers those uncertainties as 

flexibilities and it places a monetary value on them. The decision maker receives benefit from that 

flexibility, a benefit that decreases in value as the time value decreases. In addition, a real option 

approach considers all information available to the manager at that date, including predictions about 

the future.  One contribution of this study is the use of a real option approach to put a dollar value on 

the risk involved in the decision of when to treat for insects in a food processing facility. 

In the option models, we need to define a stochastic state variable. The key factor is insect 

population, which directly causes the potential economic loss. However, the insect population is hard 

to define and monitoring traps may not provide sufficient data. An insect growth model is an 

alternative, in which insect population usually depends on weather information. If there is a 

deterministic relationship between weather and insect population, it is proper to stochastically model 

weather patterns and then to predict insect population. 

However, few studies have simulated weather when using a real option model to study pest 

management. In fact, few studies have attempted to quantify risk involved in insect control decisions. 

There have been no studies of insect management decisions in food processing facilities using a real 

option framework. This study will add knowledge to the areas of insect control in food processing and 

applications of real options. These results will provide guidance to help the managers of food 

processing firms make better insect control decisions. 
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1.2 Objectives 

The general objective is to determine optimal timing of insect control treatments in food 

processing facilities using a real option model. 

The specific objectives are: 

1) Determine the value of deferring insect treatment using a real option approach instead of 

making an immediate decision by economic threshold criteria. 

2) Determine the value and optimal time to treat insects. 

3) Determine the effect of timing flexibility on the value of an option for insect treatment. 

 

1.3 Outline of work  

In chapter II, we summarize literature on stored products pest management in the food 

processing facilities. We introduce the concept of integrated pest management. We compare tools for 

making decisions about insect treatment, such as economical threshold and real option models. 

In Chapter III, we review the theory and framework of the option pricing and decision 

making concepts. We summarize the methods to calibrate empirical data into a stochastic process. 

Then we study the specific structure of different real option models that is useful to make a decision 

about insect treatments. The models are option to abandon, timing options and optimal stopping 

models. 

In chapter IV, we explain the procedures. We analyze the empirical weather data. We 

estimate insect population, the corresponding potential damage loss, and the cost of treatment. We 
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specify different types of real options to evaluate different problems: 1) what is the value of an option 

to delay in determining optimal timing, compared with the conventional economic threshold approach 

to determine timing? 2) during a given time interval, what is the optimal time to treat insects; 3) 

define the optimal time as until when is the best time for us to hold this option to wait?  We use both 

binomial lattice model and Monte Carlo integration to evaluate those problems. 

In chapter V and VI, we summarize the results and get the conclusion. In addition, we discuss 

several limitations and possible future implementations based on our study. 
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CHAPTER II 
 

 

LITERATURE REVIEW 

 

2.1 Insect control in food processing facilities 

Flour mills provide most stored-product insect pests with relatively mild temperatures 

and plentiful food sources. Stored-product insect species are found in moving mill stock Wagner 

and Cotton (1935), static mill stock, and inside the milling equipment (Dyte, 1965, 1966, Rilett 

and Weigel, 1956).  

Campbell and Arbogast (2004) monitored stored-product insects inside and outside a 

flour mill by using commercial pitfall and sticky traps during a two-year period. They found 17 

insect species, representing 12 families in 3 orders (Coleoptera, Hymenoptera and Psocoptera).  

Tribolium castaneum, the red flour beetle, and Tribolium confusum, the confused flour 

beetle, are two of the major beetle pests of stored and processed products, especially of milled 

grain (Arthur and Campbell, 2008). These insects cause direct and indirect product losses through 

damage and consumption.  

Insect activities directly cause grain quality loss in food processing by spreading and 

encouraging mold germination, adding to the fatty acid content of the grain, and leaving 

quantities of uric acid that cause grain rancidity (Mason and McDonough, 2012). For instance, 

the red flour beetle and the confused flour beetle produce pheromones and toxic quinone 



7 
 

compounds that can cause a foul odor and taste in the milled flour (Krischik and Burkholder, 

1991).  

Insects are a concern to the milling industry in two primary areas: internal feeding beetles 

in the whole grain before it is processed, contributing insect body fragments to flour, and external 

feeders infesting the structure and equipment within the mill leading to contamination of the 

product and potentially indicating unsanitary conditions within the mill. 

New research shows insect fragments in food cause allergic reactions and they can 

potentially carry pathogens, especially those with antibiotic resistance genes (Channaiah et al. 

2012). Although there is insufficient evidence to conclude that insect infestation necessarily 

causes human health problems, economic loss results from product rejection due to observation of 

insects or insect parts in food products, or product recalls because of health violations or 

consumer complaints. 

In practice, the food company voluntarily recalls food products when it recognizes a 

problem and notifies the appropriate regulatory agency; or when the regulatory agency issues a 

request that the company initiate a recall. The direct cost can be calculated by multiplying the 

number of units of the recalled batch that are in distribution channels by the wholesale price of 

the product as recalled or rejected (Jarrell and Peltzman 1985).  

Evidence also showed that food recalls influence product price and product demands, 

especially for a specific product line or brand. McKenzie and Thomsen (2001) found significant 

and negative responses in cash prices for recalled lean beef trimmings. Marsh et al. (2004) found 

statistically significant drops in demand for aggregate beef, pork, and poultry products due to 

recalls and Thomsen et al. (2006) found large and significant drops in sales of implicated branded 

frankfurters, which didn’t recover to the pre-recall level for several months. 
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Moreover, there are indirect losses, such as the loss of goodwill or the loss of processing 

profit for a period of time in the event that the company’s own inspectors discover an insect 

infestation in food products and are forced to shut down the processing facility and direct costs of 

extra insect treatments. Previous studies have suggested that industry bears significant costs from 

food pest or pesticide incidents that lead to product recalls. 

Structural fumigation of food processing plants using methyl bromide to manage stored-

product insects has been a major component of pest management programs (Fields and White 

2002). However, methyl bromide has been designated an ozone-depleting substance under the 

Montreal Protocol, and it has been unavailable since 2005.  

Data from the U.S. Environmental Protection Agency (EPA) provides evidence of the 

reduction of methyl bromide use. The amount of methyl bromide nominated for critical uses has 

been decreasing every year since its phase out in 2005, and the amounts nominated for 2011 were 

135,299 kg. The nominations were further reduced to 74,511 kg in 2012 and 25,334 in 2013. 

Many alternatives have been tested as replacements for methyl bromide. Dhana et al. 

(2008) tested physical control methods such as heat treatment. Extremely high ambient 

temperature (50℃ or above) in a flour mill can effectively kill insects within the mill and 

machinery (Roesli et al. 2003), but the costs of electricity and equipment used for treatment are 

much higher than for methyl bromide fumigation.  

Adam et al. (2010a) compared the costs of fumigating a food warehouse facility using 

methyl bromide and one of its chemical replacements sulfuryl fluoride (sold as ProFume®). They 

found that sulfuryl fluoride fumigations are more expensive than methyl bromide fumigations. 

Sulfuryl fluoride is an economical alternative only if a low dose of chemical is adequate, a 

condition that depends on the type of fumigation to be conducted. 
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Many studies have shown that aerosol treatments using a combination of synergized 

pyrethrins and insect growth regulator (IGR) methoprene are efficient methods to control stored-

product insects in food processing facilities. Aerosols are targeted to specific locations, and do 

not require prior removal of all food and shutting down the whole facility.  

When the manager decides to adopt aerosols as an insect control method, he must install 

a network of pipes with nozzles in areas within the facility that might be targeted. Once this 

network is installed, the manager can use a computer in the control center to spray the chemical in 

the targeted locations at the appropriate time.  

By targeting specific locations based on monitoring information, chemical use and 

shutdown costs can be reduced. However, spraying only targeted areas may reduce efficiency of 

insect control because aerosol is only effective on exposed insects. It is easy for insects to escape 

to neighboring areas that have not been treated (Jenson et al. 2010).  

Sanitation programs have been emphasized in stored product pest management. Earlier 

studies suggested that sanitation can reduce or eliminate insect populations by eliminating the 

insects’ resources. Arthur and Campbell (2008) found that adoption of sanitation when using 

pesticides with less penetration ability than fumigants (such as aerosols) can reduce amount of 

insecticide needed.  

However, sanitation by itself is unlikely to sufficiently control insect population. 

Williams et al. (2015) argued that financial investment in better sanitation is not a requirement to 

improve the facility cleanliness and pest management effectiveness, but that employees’ 

knowledge and awareness of the pest management program is a better indicator of sanitation’s 

impact on facility pest management. 

All these insect control techniques have advantages and disadvantages. Different flour 

mills with different structures, surroundings, climate, and insect species may require different 
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types of insect control techniques. Sometimes, more than one technique is necessary to control an 

insect population. Choosing an effective and economical strategy is a difficult and important 

problem. 

 

2.2 Integrated pest management concept 

IPM is a balanced use of multiple control tactics – biological, chemical, and cultural – as 

is most appropriate for a particular situation in light of careful study of all factors involved (Way 

1977). Thus, unlike calendar-based treatment, IPM approaches stress judicious use of pesticide 

with the objective of maximizing its efficiency. After obtaining information on insect population, 

chemical efficacy, treatment cost, and risk of failure to control insects, integrated pest 

management tactics can help managers to make better decisions regarding insect management 

strategies (Fields and White 2002). 

Uncertainty about insect population is a significant barrier to decision-making about 

insect control. Two major parts of the uncertainty are uncertain insect growth and uncertain insect 

movements, both of which are due in part to variable weather and conditions in a facility’s 

surroundings. 

This uncertainty can lead to unnecessary treatments, which increases costs and 

environmental impacts, or failure to make treatments when needed, increasing both risk of failing 

to control insects and cost of extra treatments. There are many ways to obtain information about 

insect population, including sampling or monitoring information, expert systems, consultants, and 

the predictions of computer simulation models (Hagstrum and Flinn 2012). However, there is 

much risk in these approaches. 
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Pheromone trapping programs have been widely used to monitor insect population and 

distribution in food processing (Flinn et al. 2010). The common four types of traps are: light 

traps, aerial traps, surface traps, and bulk grain traps (Toews and Nansen 2012). Those traps have 

corresponding food odor or pheromone as attractants for capturing insects. 

Due to stored product insects’ habits, that they often are sedentary during the day and 

active at night when they search for food, mates, and shelter (Toews et al. 2003), pheromone traps 

are important as a method to estimate insect population.  Long-term monitoring can provide more 

information about insects present than an estimate based on visual inspection (Hagstrum and 

Subramanyam 2000), which could not provide numerical data for decision support (Toews and 

Nansen 2012). 

Campbell and Arbogast (2004) pointed out some other advantages of pheromone trapping 

programs, which are that they can detect insect immigration, provide earlier warning of potential 

problems, and detect insect levels in inaccessible areas within the structure of the building. In 

addition, a pheromone trapping programs is a good method for applying spatial analysis of stored 

product insect density. Spatial mapping of insect counts can be used to characterize the 

relationships among sample data points and then interpolate values between points in the food 

processing facilities (Campbell et al. 2002). Spatial analysis recognizes that sample points that are 

closer together are more correlated than sample points that are farther apart, which are assumed as 

completely independent in conventional statistical approaches (Toews and Nansen 2012).  

However, pheromone trapping to assist insect monitoring may provide inaccurate 

information on insect population (Campbell et al. 2002). For example, since pheromones attract 

insects, the counts of insects in pheromone traps may overestimate the actual population. In fact, 

many studies have argued that there is not always a tight correlation between captures of stored 

product insects and insect population densities (Campbell et al. 2002, Hagstrum et al. 1998, 
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Nansen et al. 2004a, Nansen et al. 2004b, Toews et al. 2009, Toews et al. 2005a, Toews et al. 

2005b, Vela-Coiffier et al. 1997). There are many biological and environmental effects, including 

pheromone lure age or trap replacement interval (Toews et al. 2006), environmental conditions 

such as sanitation level or dust accumulation (Nansen et al. 2004a, Nansen et al. 2004b, Roesli et 

al. 2003), trap position and indoor conditions such as air temperature, air movement, light, and 

photoperiod (light and dark cycles) (Toews and Nansen 2012). 

When Campbell et al (2002) used pheromone trapping with contour mapping and mark-

recapture to assess the spatial distribution and movement patterns of some species of stored-

product insects, they found that decisions about trap type, trap location and the number of traps 

were difficult because different choices for these variables could lead to different estimates of 

spatial distribution of pest infestation. 

Although risk of inaccuracy exists, pheromone trapping is still one of the most efficient 

and cost-effective tools available for monitoring stored-product insect density for many pest 

control studies. Pest management professionals can combine practical, economic, and ecological 

considerations based on their experience to minimize the riskiness (Toews and Nansen 2012). 

As an attempt to improve on monitoring strategies, using information from a variety of 

sources, entomologists have developed models for estimating insect population using computer 

simulation programs (Arthur et al. 1998, Flinn and Hagstrum 1995, Flinn et al. 2004, Hagstrum et 

al. 1998, Hagstrum and Subramanyam 2000, 2006, Skovgard et al. 1999, Smith 1994, Sporleder 

et al. 2004). Such simulations use information on the relationship between temperature and 

humidity conditions in the food processing facility environment and insect life cycle history to 

predict insect population growth rate (Hagstrum and Subramanyam 2000). Testing of at least 

some of these models have showed that for a number of important species the predictions of adult 

insects have tended to follow trap catch estimates fairly well (Flinn et al. 2010). 
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In 2010, Flinn et al. (2010) developed a model for the red flour beetle in wheat flour mills 

that can be used to predict population growth of red flour beetle as a function of inside air 

temperature. The model uses a distributed delay to simulate variation in developmental time, 

manage survivorship, and model insects through various life stages. Their model could be very 

useful to develop optimal integrated pest management strategies for food processing facilities. 

One of the advantages of the Flinn et al. (2010) model is that the input was as simply as 

hourly inside air temperature in the facility, which managers can measure more easily than insect 

density for decision making. Another advantage is that their model can predict the effects of 

various structural treatments and subsequent population rebound, which provides enough 

information for other insect treatment decision-making studies.  

However, since monitoring data with pheromone trapping is the main source of 

information about insect life history to calibrate the insect simulation models, some of the same 

risk of inaccuracy experienced with trapping data exists in these models. Mitigating this, though, 

since the insect growth models are based on insect physiology and many studies of insect growth 

determinants, they likely are less susceptible to random errors than relying solely on strictly 

empirical monitoring data. 

In addition, IPM strategies are costly. Cost of monitoring programs includes cost of traps 

and labor costs of gathering traps and identifying and counting insects. There might also be risk 

of losing floor traps because of ongoing plant activities, including sanitation, leading to both 

economic costs and costs in term of information loss (Campbell et al. 2002).   

Successful IPM programs need to define the balance between the costs of doing 

additional IPM and the gains in information obtained and the potential economic benefits of 

reducing the amount of chemical use (Campbell et al. 2002). There may also be benefits to 
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society of IPM, such as environmental benefits, although individual firms do not realize these 

benefits and may not include them in their decision criteria.  

The costs and benefits of these various IPM strategies in food-processing facilities have 

not been critically evaluated, optimally integrated, or compared with those for sulfuryl fluoride 

fumigations or high-temperature treatments (Zhu et al. 2009).  

Previous studies by Adam et al. (2010a, 2006, 2010b) estimated and compared costs of 

grain damage and insect treatments for both IPM and chemical-based strategies in stored grain 

facilities. Evaluation of insect damage cost and efficacy will be more difficult and costly in a 

food-processing facility than in the more homogeneous environment within stored grain facilities 

because of the variety of processing activities which results in a wide range of insect growth 

conditions.  

Food suppliers may be hesitant to adopt alternative components of an IPM approach that 

uses less chemicals when facing those uncertainties, and they need accurate information about 

cost and effectiveness of available IPM alternatives to make good insect control decisions. They 

need direct evidence of cost and benefit, including costs of failing to control insects, in order to 

adopt IPM strategies. 

 

2.3 Critical and economic threshold for insect controls 

A standard criterion is required to help managers make treatment decisions with the 

available information. The threshold concept, introduced by entomologists, is the critical insect 

population at which a specific treatment should be taken (Saphores 2000).  

Stern et al. (1959) defined economic threshold as “the density at which control measures 

should be determined to prevent an increasing pest population from reaching the economic injury 
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level” (p. 86). The economic injury level is “the lowest population density that will cause 

economic damage, which is the amount of injury that justifies the cost of artificial control 

measures.” 

It is hard to build a standard model for an economic threshold because the economic 

injury level may vary by locations, seasons, or a manger’s scale of economics value (Stern et al. 

1959). Conventional cost-benefit analysis identifies the economic threshold as the point where the 

benefits from the treatment are merely equal to or greater than the costs (Ndeffo-Mbah et al. 

2010).  

However, those economic models of pest control are mostly too theoretical because they 

rely on perfect information about pest population (Saphores 2000). In other words, economic 

threshold decision making models are based on assumptions of certainty (Mumford and Norton 

1984). Managers, however, face considerable uncertainty when they are making decisions. A 

model that explicitly includes uncertainty is necessary. 

One approach is to use Bayesian decision theory (Luce and Raiffa 2012, Mumford and 

Norton 1984). The earliest application of Bayesian decision theory to pest control decision 

making was introduced by Carlson (1970). This method recommends that managers use 

probabilities to weight several levels of outcomes and then to make a decision based on the 

expected outcomes. The probabilities usually were predicted based on historic information. In 

decision-making situations in other contexts, binomial trees, first introduced by Cox and Miller 

(1965) and Cox, Ross and Rubinstein (1979), were widely adopted to express the magnitude of 

outcome changes over time by steps. 

Most of the studies only consider one point of time of benefit and cost to make a current 

decision. However, sometimes time plays an important role in the decision making (Guthrie 

2009). For example, if a current insect population is below the economic threshold, instead of 
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making the instant decision, either treat or not, there might be another choice: wait until a later 

time to see if treatment is necessary.  

For the problem of managing insect populations in food processing, insect population 

may be reduced by future cold weather. In that case, even though the insect population reaches 

the economic threshold, a current treatment may not be essential because the potential damage 

could be eliminated below the criteria level after a population reduction by cold weather.  

If an insect treatment can be delayed and still effectively eliminate potential damage, this 

would likely enable a manager to delay subsequent treatments, reducing costs because the 

frequency of the treatments is reduced in the long run (Ndeffo-Mbah et al. 2010).  

When they included “delay” as an alternative choice in their study, Ndeffo-Mbah et al. 

(2010) argued that treatment should be undertaken when the benefits exceed the costs by a certain 

amount and not if they are merely equal to or greater than the costs as standard net-present-value 

(NPV) analysis suggests. Their study showed the evidence of model that including “delay” leads 

to a reduction in fungicide use. 

As a result, future actions or insect population states may influence current decisions. A 

dynamic decision model that can consider future actions conditions will be more proper for insect 

treatment problems. 

Real option models may be a possible solution because they allow future treatment as a 

choice. When future treatment becomes a part of the choice set, the decision model should 

contain more information, which is not only about different possible outcomes but also about 

timing. Real option models should be a good method for an optimal timing problem such as 

identifying the best time to apply insect treatment. 
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2.4 Real options 

A real option, which is derived from the term “option” in financial markets, is the right, 

but not an obligation, to exercise a certain real action in the face of uncertainty (Cheah and Jicai 

2006). Myers (1977) coined this term, and Zeng and Zhang (2011) argued that many corporate 

investment assets, particularly growth opportunities, can be viewed as call options. Therefore, 

techniques developed for financial options can be extended and adapted to "real-life" decisions.  

During 1980-1990, after the first proposal by Myers (1977), this topic began to attract 

academic interest on theories and applications of the real options analysis (Amram and Kulatilaka 

1998, Borison 2005, Ross 1978, Trigeorgis 1993). Attention to real options spread to industries, 

which considered the real option approach as a potentially important tool for valuation and 

strategy. Beginning in the oil and gas industry and extending to a range of others, the real option 

approach has been frequently applied to technology adoption decisions (Purvis et al. 1995) and 

capital investment decisions (Anderson and Weersink 2014, Stokes et al. 2008).  

One of the advantages of a real option approach is that it values the decision maker’s 

flexibility in choosing to exercise an action now, wait until a later date to exercise, or not to 

exercise at all. The decision maker receives benefit from that flexibility, a benefit that decreases 

in value as the time value decreases. 

Another advantage of a real option approach is that it considers all information available 

to the manager at that date as well as new information revealed in the future. This distinguishes it 

from static decision making, in which the manager’s action at every future date depends only on 

information available to the manager at the current date (Guthrie 2009). 

Using a real option analysis, as opposed to traditional economic analysis such as net 

present value, can provide a decision maker wider information about choices that can be made, 
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such as measuring the value of delaying the investment choice until a later time, especially when 

facing some uncertainties (Copeland and Tufano 2004). 

Dixit and Pindyck (1994, 1995) and Ross (1995) both pointed out traditional investment 

decision-making, which ignores the value created by the delay of investment decisions, may 

result in wrong investment decisions. McGrath et al. (2004) showed that a real option analysis 

helped to identify the source of variability and the effect of risk on an investment project’s 

valuation. The higher variability suggested the stronger possibility that actual value might deviate 

from the expected future returns.  

Stokes et al. (2008) found that real option analysis allowed a better comparison between 

investing to convert a dairy farm’s technology to a new methane technology or not investing. In 

this way, they could more fully consider the advantages of reducing the uncertainty of fluctuating 

energy prices by using energy produced on the farm. 

Many business decisions can be mapped into underlying financial options. For example, 

the opportunity to invest in the expansion of a firm's factory, or alternatively to sell the factory, is 

a real call or put option, respectively. Luehrman (1998) shows an example of how the 

characteristics of business opportunity can be mapped onto the template of a call option (Table 

2.1).  
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Table 2.1 Mapping an Investment Opportunity onto a Call Option 

Investment Opportunity Call Option 

Present value of a project’s operating assets to be 

acquired 

Stock price (S) 

Expenditure required to acquire the project assets Exercise price (X) 

Length of time the decision may be deferred Time to expiration (t) 

Time value of money Risk-free rate of return (rf) 

Riskiness of the project assets Variance of returns on stock (σ2) 

Source: Luehrman, 1998  

 

In financial options, European options can only be exercised at maturity (Hull 2009).  

This type of financial option can be mapped into a simple real option model, for example, 

whether to treat insects now or two weeks later. American options allow option holders to 

exercise the option at any time prior to and including the maturity date (Hull 2009). This type of 

financial option can be mapped into a more complex real option model – for example, which date 

(now or two weeks later) is the best time to treat insects. 

A Bermudan option is a type of exotic option that can be exercised only on 

predetermined dates, typically every month. Bermudan options are a combination of American 

and European options; they are exercisable at the date of expiration, and on certain specified dates 

that occur between the purchase date and the date of expiration. Bermudan options may fit insect 

treatment models well because food-processing managers may acquire insect information every 

other week or every month to make decisions, rather than every day. 

Similar to a financial option, time is a major factor that gives the real option value. Since 

the future is uncertain, a real option has time value because of the probability that some event will 

happen in the future with the result that the option is “in the money.” But real options are not 
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typically traded as securities, and do not usually involve decisions on an underlying asset that is 

traded as a financial security (Amram and Howe 2003).  

Studies of real options have been broadly extended into decision making of many other 

areas. Odening et al. (2005) noted that three conditions must exist to make a real option 

meaningful: 1) uncertainty of returns from an action; 2) irreversibility of the action; and 3) 

flexibility with respect to time of action. Real options analysis can reasonably be used in any 

problem that satisfies those three properties.  

All three of the conditions hold in the insect treatment application considered here 

(Saphores and Shogren 2005). First, uncertainty arises in the evaluation of the insect population. 

The future insect density and future damage is stochastic due to fluctuations in weather and the 

surrounding environment. Second, irreversibility arises in pest damage and insect control 

expenditures. Finally, insect control can be delayed under appropriate conditions. Thus, a real 

option approach can be used for this study. The choice to conduct a treatment for insect control 

can be compared to an investment opportunity and modeled as a call option. 

Some studies have used a real option approach in pest management decisions. Saphores 

(2000) formulated an optimal stopping model for applying pest control measures when the 

density of a pest population varies randomly. Saphores and Shogren (2005) generated a 

compound stopping option model to control exotic pests under conditions of uncertain pest 

density.  

Richards et al. (2006) created a hypothetical “bug option,” showing that such an option 

could improve risk-return results for insuring insect damage in a cotton farm. Ndeffo-Mbah et al. 

(2010) compared a real option approach with conventional NPV approach for optimal timing of 

crop disease control. Their model measured the benefits of delaying control and the value in 

waiting.  
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A timing option is a real option focused on determining how long to delay a decision 

(e.g., ‘wait until when’ to exercise the option). There are many kinds of timing option, such as 

deferring, abandoning, expanding, staging, or contracting a capital investment project. (Guthrie 

2009, Mun 2002, Trigeorgis 1996). The insect control problem considered here can be considered 

as a variation on an option to abandon an existing project. 

The real option model is proper for a “when” to treatment an insect problem because it 

value timing. When the value of the project contains both the current value of insect treatment 

and the value of treatment at a future time, the model can describe the value of waiting, a time 

value.  

The value of waiting reflects the benefits gained from holding the option and wait until 

sometime later. While waiting, the uncertainty may be reduced with better information. If time 

value becomes zero, waiting is no longer valuable. Several previous studies have used “optimal 

timing to treat” options (Ndeffo-Mbah et al. 2010, Saphores and Shogren 2005), and that 

principle is still proper for the problem of insect treatment in food processing.  

 

2.5 Stochastic process 

  Unlike prices or log prices of futures markets for a finance option, the stochastic state 

variables in most real option models are physical variables. For the problem of insect treatment in 

food processing facilities, the stochastic variable is insect population, which causes uncertain 

insect damage. Many previous studies about pest management using real option methods treated 

the state variables as pest population or pest density.  

 Carlson (1970) estimated crop disease density when defining the optimal control of peach 

rot. Ndeffo-Mbah et al. (2010) estimated epidemics disease density when defining the optimal 
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chemical control for crop disease. Saphores and Shogren (2005) studied exotic pest population  

when defining the optimal biologic control. Most of those studies have mentioned that the 

uncertainties of pest or disease are associated with weather. However, none of them treated 

weather as a stochastic variable, while in most cases weather is the key source of the uncertainty.  

 Collecting weather data is much easier than measuring insect population in a food 

processing facility. Past weather information might be more accurate, since risk of inaccurate 

monitoring of traps exists and the risk is very hard to define (Campbell et al. 2002).  If we treat 

weather as the stochastic variable, and use computer simulation programs from to estimate insect 

population from Flinn et al. (2010), insect population then becomes deterministic based on the 

stochastic weather.   

Many studies have shown that weather follows a mean reverting process with strong 

seasonality patterns in both mean and the variance (Bellini 2005, Benth and Šaltytė-Benth 2005, 

Dornier and Querel 2000, Roustant et al. 2004, Wang et al. 2015). They also found that weather 

data such as temperatures are temporally dependent. While the other studies from Carlson (1970), 

Ndeffo-Mbah et al. (2010) and Saphores and Shogren (2005) modeled the pest density process as 

a Brownian motion stochastic process, they did not consider mean reversion. Furthermore, insect 

population might be even more nonstationary than weather.  

Another adavantage of estimating weather as the stochastic variable is that this model 

allows the ability of some extensions such as adding more specific stochastic components other 

than weather on insect population. By doing so, we can easily trace the source of the uncertainty 

rather than process insect numbers directly.  

The real option approach has not been used in the context of insect management 

decisions in grain/food processing facilities. Moreover, few studies have considered the economic 

impact from stored product insects recognizing the large effect of weather on insect populations. 
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A study to develop a decision model for insect control based on a real option approach could fill 

this vacancy in the literature.  
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CHAPTER III 
 

 

THEORY AND CONCEPTUAL FRAMEWORK 

 

3.1 Insect control and damage cost 

When a manger faces an insect treatment decision in a flour mill, the choice for extra 

fumigations adds treatment costs but can potentially reduce damage cost. On the other hand, 

fewer fumigations can save treatment costs but insect population can also grow, increasing 

damage. As the number of insect treatment increases, cost of potential insect damage and cost of 

insect treatment move in opposite directions (Figure 3.1). Managers want to minimize the total of 

treatment cost and damage cost to maximize their profit.  

 

Figure 3.1 Cost of control vs cost of insect damage  
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Taking the production process and all prices as given, the objective of the manager can be 

specified as 

(3.1)  min
𝑇𝑅𝑗𝑙𝑡∈{0,1}

𝐸(𝐶) = ∑ ∑ ∑ 𝑇𝑅𝑗𝑙𝑡 ∗ 𝑇𝐶𝑗𝑡𝑙𝑗 + 𝐸(𝐷̃),  

 𝑠. 𝑡.  𝐷̃ = 𝑓(𝐼𝑙𝑡̃),  

 𝐼𝑙𝑡̃ = 𝑔(𝑾𝑡̃ , 𝐼𝑙𝑡−1, 𝑇𝑅𝑗𝑙𝑡),  

where 𝐸(𝐶) is the expected total cost, 𝑇𝑅𝑗𝑙𝑡 is the choice variable when 𝑇𝑅𝑗𝑙𝑡 = 1 representing 

adopting a treatment, where 𝑗 = 0, … , 𝐽 represent different types of treatments,  𝑙 = 0, … , 𝐿 

represent the treating spots for a treatment, 𝑡 = 0, … , 𝑇 represent treatment dates, 𝑇𝐶𝑗 is the 

treatment cost ($) for each type, 𝐸(𝐷̃) is the expected value of damage loss from insect 

infestation as a function of insect population 𝐼𝑙𝑡̃,  𝐼𝑙𝑡̃ is the insect population at location 𝑙 and time 

𝑡, which is a function of vector of weather factors 𝑾𝑡̃, such as temperature, humidity and , insect 

population 𝐼𝑙𝑡−1 at location 𝑙 and time 𝑡 − 1 and the total number of treatments ∑ ∑ ∑ 𝑇𝑅𝑗𝑙𝑡𝑡𝑙𝑗 . 

With an economic threshold approach, the optimal policy is to apply an insect treatment 

as soon as insect population reaches a critical value, denoted 𝐸𝑇. It can be written as, 𝑇𝑅𝑗𝑙𝑡 = 1, 

when 𝐼𝑙𝑡̃ ≥ 𝐸𝑇𝑙𝑡. The threshold separates “low” and “high” values of insect population. For the 

“high” values, if action is not taken immediately unacceptable damage loss occurs.  

In practice, the economic threshold is hard to implement because of random factors, 

especially uncertain insect population. Insect population is dynamic and fluctuates; the numbers 

may reach the threshold at some point but may drop below the threshold later. The conventional 

threshold model would lose that part of information, which is important to make the optimal 

decision.  
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In contrast, a real option approach takes into account various risk factors while 

considering information about the future. The model puts a value on treating or waiting to treat, 

so it can be used to determine the optimal time of insect treatment. The corresponding insect 

population at that optimal time determined by the real option approach will be called in this study 

the critical threshold 𝐸𝑇∗, which may be more accurate than ET because it contains more 

information. 

  Timing in real option models, in general, is about “when to act” in the decision-making. 

The action makes the event switch from one state to another state; usually the change is 

irreversible. In an investment context in timing decision, the decision maker desires to make a 

potential future cash inflow be sufficient to offset initial project cash outflow. The manager might 

consider different kinds of options for different types of actions, such as option to switch, option 

to expand, option to defer or delay and option to abandon. 

 An option to switch provides flexibility to use cheapest future inputs or the most 

profitable future outputs mix as alternatives from current input or output when the relative prices 

of the inputs or outputs fluctuate over time. An option to expand enables management to 

accelerate the rate or expand the scale of production with a follow-on cost if and when market 

conditions turn out to be more favorable than expected. 

An option to defer or delay enables management to defer investment until a later time. 

The option to defer investment is analogous to an American call option on the net present value 

of expected operating cash flows of the completed projects where the exercise price (strike price) 

equals the investment outlay (Trigeorgis 1996). The choice to invest early forgoes some of the 

benefits of deferring the choice for a better situation later, so the manager receives value by 

deferring if there is still time value left (Luehrman 1998).  
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 Management may abandon a project if the anticipated required expenditure exceeds the 

value from continuing the project, so that the net revenue from continuing is negative. In “option 

to abandon” models, the expense of abandonment is offset by the salvage value from eliminating 

the bad parts (Guthrie 2009). The option to abandon can be valued as an American put option on 

the current value of the project with an exercise price equal to the salvage value (Trigeorgis 

1996). 

This study on insect control decisions will focus on the option to defer and the option to 

abandon. Suppose the problem starts after the application of the last fumigation, when insect 

population is controlled sufficiently and the probability of infestation is low. Deferring treatment 

reduces the frequency of treatment so that it reduces the total cost of treatments (Figure 3.1). 

Meanwhile, insect population grows while deferring treatment so that the probability of insect 

infestation loss increases.  

The “option to treat” insects can be thought of as an option to abandon. The cost of 

treatment is analogous to cost of abandonment, and the insect damage cost is analogous to the 

cost of continuing a (losing) investment project. The cost of insect treatment is offset by the 

salvage from eliminating the insect damage. When the treatment is applied, treatment cost is 

incurred and probability of infestation is reduced.  

Assume the objective for the manager is to minimize the expected total cost in the 

presence of uncertainty. The objective is to determine the optimal time to treat insects in a food 

processing facility. In order to accomplish this, a real option approach will be used. The following 

paragraphs describe how a real option is evaluated and how a real option model can help make 

timing decisions, and then putting those concepts to the insect problem.  
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According to the classic option formula, the option value is 

(3.2)  𝑉𝑡 = 𝐸(𝑉𝑇) ∗ 𝑒−𝑟(𝑇−𝑡),  

where 𝑉𝑡 is the option value at time 𝑡, 𝑉𝑇 is the option value at the expiration time 𝑇, 𝑟 is a 

discount rate. By deferring insect treatment to time 𝑇, the management foregoes a cost of 

potential insect damage, 𝐷𝑇, and insect treatment cost, 𝑇𝐶. Thus, the value of an option to defer 

insect treatment is  

(3.3)  𝑉𝑇 = min (𝑇𝐶 − 𝐷𝑇 , 0),  

For the option to abandon (option to treat insect), the management pays 𝐷𝑇 +  min (𝑇𝐶 − 𝐷𝑇 , 0) 

at abandonment. Thus the value of the option to treat insects is 

(3.4)  𝑉𝑇 = min (𝐷𝑇 , 𝑇𝐶).  

When value of treatment is less than treatment cost (𝐷𝑇 < 𝑇𝐶), the option is out of the 

money. In contrast, the option is in the money if value of treatment is greater than treatment cost 

(𝐷𝑇 > 𝑇𝐶). While waiting to treat, value of treatment increases as insect population grows. 

Therefore, the “out-of-the-money” situation increases its probability of moving “into the money.” 

When insect population grows sufficiently high, potential infestation loss occurs and treatment is 

necessary. At that point, the option has no value remaining. 

If the real option is in the money (has intrinsic value) but has no time value, the processer 

would “treat now.” If the option is out of the money but has time value, the processor would 

“wait to treat.” If there is no probability of an “out-of-the-money” option moving into the money, 

the processor should “never treat.” Thus, the optimal timing to apply fumigation is when the 

option value is “in the money” and the time value goes to zero (Table 3.1). 
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Table 3.1 The Relationship Between Option State and The Decision  
Time value > 0 Time Value = 0 

In the Money: 

DT > TC  

Wait to treat until time 

value goes to 0 

Treat now 

Out of Money:  

DT < TC 

Wait to treat Never treat 

 

The key to estimate the value of the option is to evaluate the 𝐸(𝑉𝑇) in equation (3.2) 

which includes two parts: 1) the expected of value of the treatment, 𝐸(𝐷𝑇|𝐷𝑇 > 𝑇𝐶) and 2) the 

probability of “in-the-money” occurs, 𝑃(𝐷𝑇 > 𝑇𝐶). The distribution of uncertain variable 𝐷𝐿𝑇 

becomes very important.  

The Black-Scholes model, which is the basic formula for calculating the value of a 

European call/put financial option model, can also be used for real options. However, insect 

population as the key dynamic variable may not be able to be directly observed, as prices or 

assets are. There might be some adjustment to adopt the real option models into the insect 

problem. Next, we would discuss the option finance pricing models for both European and 

American options and timing options. 

We will first describe the assumptions, derivations and the formula of Black-Scholes 

models. Secondly, we will introduce the binomial tree, applying it to an empirical real option 

state variable process. Third, we will describe details in using timing options to solve an optimal 

timing problem. For each section, we will map the above concepts into the insect treatment 

problems, specifically addressing the adjustments needed to adapt real option concepts to insect 

treatment problems. 

 

3.2 Black-Scholes model 
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The Black-Scholes model applies when the nonstationary state variable is modeled by the 

logarithm of a geometric diffusion process and it explicitly assumes that the variable process is 

continuous. The formula of a Black-Scholes model for a European call option is (Black and 

Scholes 1973, Merton 1973) 

(3.5)  𝐹(𝑆, 𝑡) = 𝑐(𝑆, 𝑡) = 𝑆𝑡𝑁(𝑑1) − 𝑌𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2),  

where 

𝑑1 =
1

𝜎√(𝑇 − 𝑡)
[ln (

𝑆𝑡

𝑌
) + (𝑟 +

𝜎2

2
) (𝑇 − 𝑡)] 

𝑑2 = 𝑑1 − 𝜎√(𝑇 − 𝑡) 

where 

𝐹(𝑆, 𝑡) is the price of a derivative as a function of time and stock price, 

𝑐(𝑆, 𝑡) is the price of a European call option, 

𝑁(∙) is the cumulative distribution function of the standard normal distribution, 

𝑇 − 𝑡 is the time to maturity (expressed in years), 

𝑆𝑡 is the spot price of the underlying asset, 

𝑌 is the strike price, 

𝑟 is the risk-free rate (annual rate, expressed in terms of continuous compounding) and 

𝜎 is the volatility of returns of the underlying asset. 

Table 3.2 shows how to map an insect treatment opportunity (parameters on equation 

(3.2)) onto a financial call option (parameters on equation (3.5)). If an insect treatment model 
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follows the same assumptions as the Black-Scholes model does, it is easily to directly use the 

Black-Scholes formula by understanding this transformation.  

Table 3.2 Mapping a Treatment Opportunity onto a Financial Call Option  

Treatment Opportunity  Financial Call Option 

The value of the option to treat at time, 𝑉 The price of a European call option, 𝑐 

Treatment cost, 𝑇𝐶 Exercise price/ strike price, 𝑌 

The value of treatment, 𝐷 The spot price of the underlying asset, 𝑆 

Some discount rate, 𝑟 The risk-free rate, 𝑟 

Level of uncertainty about  

insect damage, 𝜎 

The volatility of returns of the 

underlying asset, 𝜎 

 

Before adapting the method of measuring option values as Black-Scholes model, we have 

to understand more details about the assumption and the concept behind the equations. Following 

are some important terminologies:  

Brownian motion (Wiener process), describes a continuous-time stochastic process 

(Brown 1828, Dixit and Pindyck 1994, Wiener 1923a, b), 𝑑𝑧 = 𝜖𝑡√𝑑𝑡, where 𝜖 is a random draw 

from 𝜙(0,1), a normal distribution with mean 0 and standard deviation 1. Wiener process has 

with three important properties: the Markov property, independent increments, and changes that 

are normally distributed (Dixit and Pindyck 1994). 

Brownian motion with drift (-average change per unit time), a generalized Wiener 

process that the drift rate and the variance rate can be set equal to constant (Dixit and Pindyck 

1994), 𝑑𝑥 = 𝛼 𝑑𝑡 + 𝜎 𝑑𝑧, where 𝑑𝑧 is the increment of a Wiener process with a drift rate of 0 

and a variance rate of 1, 𝛼 is the drift parameter, and 𝜎 is the variance parameter. 

Geometric Brownian motion (Ito Process), a more complex feature in that the drift and 

the variance coefficients are functions of the current state and time (Dixit and Pindyck 1994), 

𝑑𝑥 = 𝑎(𝑥, 𝑡)𝑑𝑡 + 𝑏(𝑥, 𝑡)𝑑𝑧. The continuous-time stochastic process 𝑥(𝑡) is called an Ito process 

(Itō 1944, 1951).  
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Ito’s Lemma, in general to differentiate or integrate functions of Ito process (Dixit and 

Pindyck 1994, Itō 1944, 1951). Suppose an Ito process 𝑥(𝑡) and a function of 𝐹(𝑥, 𝑡) that is at 

least twice differentiable in 𝑥 and once in 𝑡, Ito’s Lemma gives the differential  d𝐹 =
𝜕𝐹

𝜕𝑡
𝑑𝑡 +

𝜕𝐹

𝜕𝑥
𝑑𝑥 +

1

2

𝜕2𝐹

𝜕𝑥2 (𝑑𝑥)2, or substituting 𝑑𝑥, then d𝐹 = [
𝜕𝐹

𝜕𝑡
+ 𝑎(𝑥, 𝑡)

𝜕𝐹

𝜕𝑥
+

1

2
𝑏2(𝑥, 𝑡)

𝜕2𝐹

𝜕𝑥2] 𝑑𝑡 +

𝑏(𝑥, 𝑡)
𝜕𝐹

𝜕𝑥
𝑑𝑧, which shows the change in 𝐹(𝑥, 𝑡) is normally distributed with mean 

[
𝜕𝐹

𝜕𝑡
+ 𝑎(𝑥, 𝑡)

𝜕𝐹

𝜕𝑥
+

1

2
𝑏2(𝑥, 𝑡)

𝜕2𝐹

𝜕𝑥2] 𝑇 and variance [𝑏(𝑥, 𝑡)
𝜕𝐹

𝜕𝑥
]2𝑇. 

The above provides the mathematical fundamentals for using the Black-Scholes methods 

to evaluate the value of the options. To adapt it into an insect treatment real option problem, the 

derivative form describes the uncertainty of the progression for treatment value, using a 

Geometric Brownian motion process with some drift for the stochastic variables (Dixit and 

Pindyck 1994).  

The original Black-Scholes model provided theoretical support for valuing European 

options assuming continuous variable in the stochastic process. The European options property 

does not allow early exercises. However, the binomial trees with discrete-time random walks and 

early exercises could be very useful tools for applied empirical problems such as insect treatment 

decisions. A relevant question to be answered with this approach is, “Are the changes in the 

random variable over any finite time interval still normally distributed?” 

In the next section we review a finding that the Geometric Brownian motion can be 

derived as the continuous limit of a discrete-time random walk (Cox and Miller 1965, Dixit 1993, 

Dixit and Pindyck 1994). This implies that the same principle of the original Black-Scholes 

model can be used for calculating the value of each node for an American option in binomial tree 

models. Similarly, Bermudan options follow the same principle, except that the time frequency is 

weekly or monthly. 
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3.3 Binomial trees 

A multiplicative binomial process can deal with many stochastic problems, in which the 

binomial tree displays two possible outcomes of the stochastic variable and its corresponding 

probabilities at any point. This discrete random walk can represent Brownian Motion if the time 

period approaches zero. 

Assume the length of each discrete time period is ∆𝑡. The variable 𝑥 moves either up or 

down by the amount ∆ℎ with corresponding probabilities of 𝑝 and 𝑞 (where 𝑞 = 1 − 𝑝) each time 

period (Figure 3.2). With initial value of 𝑥0, the ∆𝑥 from each period to the next is a random 

variable that can take on the values ±∆ℎ. 

  
Source: Dixit and Pindyck (1994) 

Figure 3.2 Random walk representation of Brownian motion 

 

The value of probabilities 𝑝 and 𝑞 and the increments ∆ℎ and ∆𝑡 can be set arbitrarily 

with 𝛼 and 𝜎, but the relationship ∆ℎ and ∆𝑡 must satisfy ∆ℎ = 𝜎√∆𝑡 according to the Brownian 
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motion property. As ∆𝑡 goes to zero, the distribution (binomial distribution) of cumulated change 

(𝑥𝑡 − 𝑥0) converges to a normal distribution with mean 𝛼𝑡 and variance 𝜎2𝑡, where 𝛼 is the drift 

and 𝜎2 is the variance per unit of time as for Brownian motion (see more details in Dixit and 

Pindyck (1994)). 

As a result, Brownian motion is the limit of a random walk. The changes in 𝑥 over finite 

periods are normally distributed as the number of steps becomes very large; the binomial 

distribution approaches a normal distribution. Thus, a binomial tree is a convenient tool for 

evaluating option values with finite time intervals. It is also useful for practical real option 

decision making models, because it provides a traceable way to evaluate options in a simple 

setting and for which early exercise may be optimal, as with an American option. 

The two general representations of binomial tree for the process of the stochastic 

variables are in Figure 3.3, where the footnote u and d represent moving up and down, 

respectively. The corresponding probabilities are the same as in Figure 3.2. 

n=0 n=1 n=2 n=3  

 

 

 

 

 

 

Figure 3.3 Representation of a general Binomial tree 

 
For a financial option, the process of 𝑥 here could be the movements of stock prices or 

any other asset. We can work backward through the binomial tree to price the options. Similarly, 

x(i,n) 0 1 2 3 

0 x xu xuu xuuu 

1  xd xud  xuud  

2   xdd xudd  

3    xddd 
xddd 

xuuu 

xudd 

xuud 

x 

xu 

xd 

xdd 

xud 

xuu 
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for a real option, the process of 𝑥 becomes the movement of state variables and we want to 

generate a cash flow (value) at each node, still working backwards. 

The calculation of the original binomial tree in financial options is based on some 

assumptions and properties. The most important is the assumption about to price options as if the 

investors are “risk-neutral,” that is, there are no arbitrage opportunities. In fact, we are not 

assuming all investors are actually risk neutral nor are the risky assets expected to earn risk-free 

rate of return. This is discussed further after the option pricing equations. 

In a general binomial process, the call option price at maturity is zero because the option 

becomes worthless, which follows the terminal condition. Working backwards, the option price 

(of a call option) is 

(3.6)  C = 𝑒−𝑟ℎ[𝑝∗𝐶𝑢 + (1 − 𝑝∗)𝐶𝑑],  

where C is the value of the option, 𝐶𝑢 and 𝐶𝑑 represent the value of the option when the stock 

goas up or down, respectively, 𝑟 is the continuously compounded annual interest rate, ℎ is the 

length of a binomial period in years, 𝑝∗ is the risk neutral probability of an increase in the stock 

prices, 𝑝∗ =
𝑒(𝑟−𝛿)ℎ−𝑑

𝑢−𝑑
, where 𝑢 = 𝑒(𝑟−𝛿)ℎ+𝜎√ℎ and 𝑑 = 𝑒(𝑟−𝛿)ℎ−𝜎√ℎ are the up and down 

movement of stock return, and 𝜎 is the annual volatility. 

In the real option model, similarly, the replicating portfolio is 

(3.7)  V =
𝜋𝑢

∗𝑉𝑢+𝜋𝑑
∗𝑉𝑑

𝑅𝑓
,  

where 

(3.8)  
 

𝜋𝑢 =
𝑍∗𝑅𝑓−𝑥𝑑

𝑥𝑢−𝑥𝑑
  and  𝜋𝑑 =

𝑥𝑢−𝑍∗𝑅𝑓

𝑥𝑢−𝑥𝑑
,  
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where 𝜋𝑢 and 𝜋𝑑 are risk-neutral probabilities, which differ from the actual probabilities, 𝑉𝑢 and 

𝑉𝑑 are the market values of cash flow, 𝑅𝑓 = 1 + 𝑟𝑓, where 𝑟𝑓 denote the one-period risk-free 

interest rate, 𝑍 is the current price of the spanning asset and 𝑥𝑢 and 𝑥𝑑 are the up and down 

movements of the state variable. 

As described earlier, the Black-Scholes model based on Brownian motion is the limit of a 

random walk represented by the binomial tree. If it is a European option, which can only be 

exercised at maturity, there is no problem directly to use equations (3.6) or (3.7), working 

backwards through the binomial tree to evaluate the option value. 

For an American option, which allows early exercises, there should be a comparison 

between equations (3.6) (and (3.7)) and 𝑌 − 𝑆 at each node when working back through the 

binomial tree. For example, the financial American option price at a node is max(𝑒−𝑟ℎ[𝑝∗𝐶𝑢 +

(1 − 𝑝∗)𝐶𝑑], 𝑌 − 𝑆) instead of max(𝑒−𝑟ℎ[𝑝∗𝐶𝑢 + (1 − 𝑝∗)𝐶𝑑], 0). 

There is another form of option, Bermudan option, which is an exotic option that can 

only be exercised at specified times during its life (McDonald 2006, Merton 1973). The 

frameworks are similar to that of the American options. In practice, the manager of a food 

processing facility may collect insect information every other week or monthly. We need to set 

the specific exercise times that represent options to treat insects or not. Thus, insect problems are 

suited for the format of a Bermudan option. 

It is important to note that binomial trees are different from a decision tree. The former 

describes the random process, while the decision tree describes the structure of the problem. 

There are many different problems, such as options to expand, options to wait and options to stop, 

with differing decision tree structures. Some complex problems may require more than one kind 

of binomial trees. 



37 
 

 

3.4 Monte Carlo valuation 

Alternative to binomial pricing approach, Monte Carlo valuation is another common 

method to evaluating option values, especially when the state variable is path-dependent. In 

Monte Carlo valuation, specific paths of future state variable are simulated and then be used to 

compute the discounted expected payoff of the option. The Monte Carlo price is 

(3.9)  V =
1

𝑛
𝑒−𝑟𝑇 ∑ 𝑉𝑖𝑇

𝑛
𝑖 ,  

where 𝑉1𝑇, …, 𝑉𝑛𝑇 are the market values of cash flow based 𝑛 randomly drawn from the 

simulated state variables. 

The binomial tree and Monte Carlo simulation describes the random walk of the state 

variables of interest. The information about the size of up and down moves and the corresponding 

probabilities comes from the historic data. The technique for calibrating the data information into 

a random walk becomes very important. A well-fitted random walk model would provide 

accurate information for decision-making. In the next section, details for calibrating data 

information for a random process are described. 

 

3.5 Data calibration 

Guthrie (2009) and Dixit and Pindyck (1994) have summarized simple methods to 

replicate the random process from historic data. Since prices are non-negative and volatility is 

higher when price is high than when it is low, it is common to use logarithm price changes, which 

the Black-Scholes model did (equation (3.5)).  
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However, for many real option problems, the state variable does not have the same 

properties prices do. Many alternative methods are more suitable to deal with the special data. 

Here the focus is on methods suitable for insect treatment problem in a food processing facility. 

3.5.1 State variable 

Insect population is the key uncertainty due to stochastic weather. Flinn et al. (2010) note 

that insect population is mainly a function of insect growth and insect immigration. Insects grow 

exponentially under certain weather conditions. Insect immigration depends on weather 

conditions, facility-specific factors such as integrity of the storage structure and cleanliness of the 

facility and grounds, and characteristics of the natural habitat surrounding the facility grounds 

(Campbell et al. 2002).    

Those kinds of uncertainty are very hard to model. We can simulate a stochastic binomial 

process for the potential damage loss as function of the insect population, which is as most of the 

other real options studies related to pest management have done (Anderson and Weersink 2014, 

Carlson 1970, Ndeffo-Mbah et al. 2010, Saphores and Shogren 2005). 

Suppose the treatment value reflects the avoidance of potential damage, 𝐷𝐿(𝐼𝑡), where 

𝐷𝐿 is a function of insect population, 𝐼𝑡, where the insect population is a function of weather.  

Then the increment in potential damage 𝐷𝐿 is 

(3.10)  𝑑𝐷𝐿 = 𝐴(𝐷𝐿(𝐼𝑡(𝑊𝑡)), 𝑡)𝑑𝑡 + 𝐵(𝐷𝐿(𝐼𝑡(𝑊𝑡)), 𝑡)𝑑𝑧,  

where 𝑑𝑧 is the increment of a standard Wiener process, which is the independent increment 

having an zero mean and instantaneous variance equal to 𝑑𝑡 (Dixit and Pindyck 1994), and the 

estimation of 𝐴(𝐷𝐿(𝐼𝑡(𝑊𝑡)), 𝑡) and 𝐵(𝐷𝐿(𝐼𝑡(𝑊𝑡)), 𝑡) should follow information from insect 

population growth trends. 
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Then applying Ito’s Lemma (Dixit and Pindyck 1994), the differential form of 𝑑𝐹 for the 

process of 𝐷𝐿(𝐼𝑡) is 

(3.11)  𝑑𝐹 =
𝜕𝐹

𝜕𝑡
+ 𝐴(𝐷𝐿(𝐼𝑡(𝑊𝑡)), 𝑡)

𝜕𝐹

𝜕𝐷𝐿
+

1

2
𝐵2(𝐷𝐿(𝐼𝑡(𝑊𝑡)), 𝑡)

𝜕2𝐹

𝜕𝐷𝐿2 ,  

where 𝐹(𝐷𝐿(𝐼𝑡(𝑊𝑡)), 𝑡) is the functional format of the value of the option from equation (3.2). 

The problem is, in practice, the insect population data cannot be collected directly. The 

source of insect population information mainly comes from insect monitoring. However, insect 

monitoring may provide inaccurate information and it is hard to build a straightforward 

relationship between the monitoring data and insect population. Alternatively, using appropriate 

weather variables in an insect growth simulation model may provide the best prediction of inset 

population, with prediction, that are robust across a range of pre-calibrated scenarios. For this 

study, the simulation model developed by Flinn et al. (2010) is used with weather, specifically 

temperature, as the random variable determining insect population. 

3.5.2 Random walk process 

Suppose the movement of weather is follow the process as shown in Figure 3.3. At node 

(0,0) the value is 𝑊0, which is based on historical weather data, daily temperature. In each 

subsequent period temperature either increases by 𝑢 or decreases by 𝑑. Then the temperature 

𝑊(𝑖, 𝑛) at node (𝑖, 𝑛) would have 𝑛 − 𝑖 up moves and 𝑖 down moves, where 𝑛 = 0,1,2, … , 𝑇 and 

𝑖 = 0,1,2, … , 𝑛. Moreover, it follows a random walk as the change of temperature is 

(3.12)  𝑑𝑊𝑡 = 𝛼𝑊𝑡𝑑𝑡 + 𝜎𝑊𝑡𝑑𝑧𝑡,  

where 𝑑𝑧 is the increment of a standard Wiener process, which iis the independent increment 

having an zero mean and instantaneous variance equal to 𝑑𝑡, and 𝛼 and 𝜎 are the drift and 

volatility. 
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The information of 𝑢 and 𝑑 comes from the empirical data. They could be the percentage 

of up and down moves, or they could follow some other formats such as adding a value instead of 

multiplying by a percentage. In some complicate situation, 𝑢 and𝑑 are not constant values. Dixit 

and Pindyck (1994) and Guthrie (2009) have provided sufficient details about the steps to 

calibrate the process tree using historic data to estimate the size of up and down moves and the 

probabilities of those occurrences.  

The first step is to gather the information from the data into the estimators of the 

normalized parameters. As discussed earlier, using changes of the logarithm of the state variable 

may not be suitable for a temperature process. One obvious reason is that temperature could drop 

below zero in winter. Thus, we do not take the logarithms and we process temperature change 

directly. 

For the random process, we would like to define the drift and the variance of the change 

of temperature, where the form of the change is 

(3.13)  𝑊𝑡+1 − 𝑊𝑡 = ℎ + 𝜀𝑡+1, 𝜀𝑡+1~𝑁(0, 𝜑2),  

where 𝑊𝑡 denotes the 𝑡th observation of the temperature, ℎ and 𝜑 are constant and 𝜀𝑡+1 is the 

stochastic term. This equation describes changes in 𝑊 as normally distributed with mean ℎ and 

variance 𝜑2, from which the parameters ℎ and 𝜑 are related to the drift and volatility of the 

Brownian motion by ℎ = 𝛼∆𝑡 and 𝜑2 = 𝜎2∆𝑡 (Guthrie 2009). 

Then, historical data is used to determine the parameters of the sample mean ℎ̂ and 

standard deviation 𝜑̂, then can use then to estimate the population mean 𝛼̂ and standard deviation 

𝜎̂,  

(3.14)  𝛼̂ =
ℎ̂

∆𝑡𝐷
   and  𝜎̂ =

𝜑̂

√∆𝑡𝐷
,  
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where ∆𝑡𝐷 is the time step in from the collecting data, where the data have one observation every 

∆𝑡𝐷 years. Here 𝛼̂ and 𝜎̂ are the normalized drift and volatility for the Brownian motion process. 

The next step is to determine the 𝑢 and 𝑑 to build a binomial tree. ∆𝑡𝑀 is used to denote 

time steps in the model, which may differ from the time steps in the data so that we have to 

convert the unit for consistency. The increases and decreases in value at each step is 𝜎̂√∆𝑡𝑀. 

Thus the total up and down moves are (𝑛 − 𝑖)𝜎̂√∆𝑡𝑀 + 𝑖(−𝜎̂√∆𝑡𝑀) at node (𝑖, 𝑛), then the 

temperature equals 

(3.15)  𝑊(𝑖, 𝑛) = 𝑊0 + (𝑛 − 2𝑖)𝜎̂√∆𝑡𝑀, 
 

from which we can define 𝑊(𝑖, 𝑛 + 1) = 𝑊0 + ((𝑛 + 1) − 2𝑖)𝜎̂√∆𝑡𝑀 = 𝑊(𝑖, 𝑛) + 𝜎̂√∆𝑡𝑀 and 

𝑊(𝑖 + 1, 𝑛 + 1) = 𝑊0 + ((𝑛 + 1) − 2(𝑖 + 1))𝜎̂√∆𝑡𝑀 = 𝑊(𝑖, 𝑛) − 𝜎̂√∆𝑡𝑀. Then the additive 

size of up move is 𝑈 = 𝜎̂√∆𝑡𝑀 and the size of down move is 𝐷 = −𝜎̂√∆𝑡𝑀. 

The third step is to estimate the probabilities. The method is to set the expected value of 

changes in temperature over the next period equal to the normalized parameter estimates (Guthrie 

2009). The expected change over the next period at node (𝑖, 𝑛) is 

(3.16)  λ𝑢(𝑖, 𝑛)𝜎̂√∆𝑡𝑀 + (1 − λ𝑢(𝑖, 𝑛))(−𝜎̂√∆𝑡𝑀) = 𝛼̂∆𝑡𝑀,, 
 

which implies that 

(3.17)  λ𝑢(𝑖, 𝑛) =
1

2
+

𝛼̂√∆𝑡𝑀

2𝜎̂
, 

 

where λ𝑢(𝑖, 𝑛) is the probability of an up move at node (𝑖, 𝑛) and the probability is constant for 

all the time increments. 

3.5.3 Mean-reverting process 
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At this point, we want to check the properties from this random process to make sure the 

temperature values make sense. For a random walk as shown in equation (3.13), the temperature 

is expected to grow by ℎ at each time step with a constant probability. Thus, as time steps 

increases, temperature value may increase or decrease into extremely high or low temperatures, 

which makes the temperature wander unrealistically too much. Some adjustment is necessary to 

make the temperature process more realistic.  

 Mean reversion, also called the Ornstein-Uhlenbeck process, is a possible process in 

which the “shock” dies out eventually. In other words, the mean reverting process forces the 

stochastic variable to not wander too far away from the starting points. The probability of the 

outcomes is not constant and the extreme values would have very low or even zero probabilities.  

 The mean reverting process is different from the Brownian motion process by adding a 

reversion term to replace the drift parameter but the usage to analyze a real option model remains 

the same. The form of mean-reverting process is 𝑑𝑥 = 𝜂(𝑥̅ − 𝑥)𝑑𝑡 + 𝜎𝑑𝑧, so the change of 

temperature is  

(3.18)  𝑑𝑊𝑡 = 𝜂(𝑤̅ − 𝑊𝑡)𝑑𝑡 + 𝜎𝑑𝑧𝑡,  

where 𝜂 is the rate of reversion, 𝑤̅ is the level that 𝑊 tends to revert to, 𝑑𝑧 is the in crement of a 

Wiener process with a drift rate of 0 and a variance rate of 1, and 𝜎 is the variance parameter 

(Dixit and Pindyck 1994). In this case, 𝑊𝑡 is expected follow the normal distribution as 

𝑊𝑡~𝑁(𝑤̅ + (𝑊0 − 𝑤̅)𝑒−𝜂𝑡,
𝜎2

2𝜂
(1 − 𝑒−2𝜂𝑡) and asymptotically, 𝑊𝑡~𝑁(𝑤̅,

𝜎2

2𝜂
). 

 We still follow three steps to calibrate the historic data in to the mean reverting process 

but there are a few adjustments on the methods (Dixit and Pindyck 1994, Guthrie 2009). For step 

one, instead of equation (3.13), we regress the temperature process as a first-order autoregressive 

(AR(1)) process (Guthrie 2009), 
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(3.19)  𝑊𝑡+1 − 𝑊𝑡 = 𝛽0 + 𝛽1𝑊𝑡 + 𝜀𝑡+1, 𝜀𝑡+1~𝑁(0, 𝜑2), 
 

where 𝑊𝑡 denotes the 𝑡th observation of the temperature, 𝛽0, 𝛽1 (𝛽0 < 0) and 𝜑 are constant and 

𝜀𝑡+1 is the stochastic term. This equation describes changes in 𝑊 as normally distributed with 

mean 𝛽0 + 𝛽1𝑊𝑡 and variance 𝜑2, from which the parameters 𝛽0, 𝛽1 and 𝜑 are related to the 

Ornstein-Uhlenbeck parameters by 𝛽0 = (1 − 𝑒−η∆𝑡)𝑤̅, 𝛽1 = −(1 − 𝑒−η∆𝑡) and 𝜑2 =

𝜎2

2𝜂
(1 − 𝑒−2η∆𝑡) (Guthrie 2009). Then we get 

(3.20)  𝜂̂ =
− ln(1+𝛽̂1)

∆𝑡𝐷
,     𝑤̅ =

−𝛽̂0

𝛽̂1
  and      𝜎̂ = 𝜑̂(

2 ln(1+𝛽̂1)

𝛽̂1(2+𝛽̂1)∆𝑡𝐷
)1/2, 

 

where 𝜂̂, 𝑤̅ and 𝜎̂ are the normalized estimators for the mean-reverting process. 

 For steps two and three, we use the same concept to estimate the temperature value and 

the probabilities for a binomial tree. For the temperature value W(𝑖, 𝑛) at node (𝑖, 𝑛), equation 

(3.15) remains the same format. For the probabilities, the format is more complicated. The 

expected change in temperature is now as (1 − 𝑒−𝜂̂∆𝑡𝑀)(𝑤̅ − W(𝑖, 𝑛)). The probabilities vary by 

node because they depend on the value of temperature at each node. Similar to the method to get 

equation (3.17), the probability of an up move at node (𝑖, 𝑛) equals 

(3.21)  λ𝑢(𝑖, 𝑛) =
1

2
+

(1−𝑒−𝜂̂∆𝑡𝑀)(𝑤̅− W(𝑖,𝑛))

2𝜎̂√∆𝑡𝑀
. 

 

Equation (3.21) may not contain complete information because W(𝑖, 𝑛) maybe too large 

or too small to make λ𝑢(𝑖, 𝑛) out of the range of [0,1]. We could reset λ𝑢(𝑖, 𝑛) as 

min{1, max[0, λ𝑢(𝑖, 𝑛)]}. In other words, we want to reset λ𝑢(𝑖, 𝑛) to zero if it is negative, which 

makes the next move certainly down due to a too large W(𝑖, 𝑛) and to one if it is greater than one, 

which makes the next move is certain to be up due to a too small W(𝑖, 𝑛).  
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In this case, some of the values in a binomial tree are not reachable when the temperature 

value moves too high or too low. Then the adjusted binomial tree is shown as in Figure 3.4, and it 

is called a truncated binomial tree. The single arrow at some nodes indicate that the next move is 

certain in those situations. The empty circles show that those points are not reachable from node 

(0,0). The two dash lines are the bounds that are equivalents to the conditions of λ𝑢(𝑖, 𝑛) ∈ [0,1]. 

n=0 n=1 n=2 n=3 n=4 

 

 

 

  

 

 

Figure 3.4 Representation of a truncated Binomial tree 

 

The biggest advantage of using the mean-reverting process is that this method avoids 

those points that the temperature would never be reached. In addition, since the probabilities are 

specified at each node instead of being constant during the process, it seems more reasonable for 

a range of temperatures conditions.  

Both Dixit and Pindyck (1994) and Guthrie (2009) have discussed the main difference 

between random walk process and mean-reverting process. In general, the variance of the random 

walk is continuous and accompanied with further time steps while that of the mean-reverting 

process tend to be stable.  

Mathematically, as shown in equations (3.13) and (3.19), the key difference is the term 

𝛽1𝑊𝑡. The choice of method is then based on a significance test of parameter 𝛽1. If 𝛽1 is tested to 
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𝜎̂√∆𝑡𝑀
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𝜎̂√∆𝑡𝑀

1 − 𝑒−𝜂̂∆𝑡𝑀
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be zero, then a regression of random walk process is preferred. From another point of view, we 

can say that equation (3.13) is a special case of equation (3.19).  

Empirical real options models have shown that the state variables are often mean 

reverting due to complicated situations for a long run (Guthrie 2009). In fact, many studies about 

weather derivatives have shown details about temperature calibration techniques; almost all have 

agreed that temperature is a mean reverting process (Bellini 2005, Benth and Šaltytė-Benth 2005, 

Dornier and Querel 2000, Roustant et al. 2004, Wang et al. 2015). They have argued that 

temperature processes are even more complex than the original AR(1) process (as equation 

(3.19)).  

Seasonality or trend exist for daily temperature. A certain seasonal pattern such as lower 

temperature in winter and higher in summer (Benth and Šaltytė-Benth 2005, Dornier and Querel 

2000), or temperature trends such as an increase in average temperature (e.g. global warming) 

(Zapranis and Alexandridis 2006, 2008, 2009), can be modeled such that daily average 

temperature is an additive time series as 

(3.22)  W𝑡 = ss𝑡 + 𝑐𝑐𝑡 + 𝜎̃𝑡, 
 

where ss𝑡 is the seasonal component, 𝑐𝑐𝑡 is the trend-cycle component, and the 𝜎̃𝑡 is the noise, 

𝑡 = 0,1,2, …. 

Usually, seasonal patterns can be presented as a cosine function, 𝑠𝑠𝑡 = c0 + 𝑐1cos (
2𝜋

𝑇
𝑡 +

𝑡𝑝), c0 and 𝑐1 are the average level and amplitude of the mean temperature, respectively, 𝑇 is the 

period, which indicates the number of time periods required to complete a single cycle of the 

cosine function and  1/𝑇 is the frequency and 𝑡𝑝 is the phase displacement.  
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Using the trigonometric identity cos(𝐴 + 𝐵) = cos A cos B − sin A sin B, then 𝑠𝑠𝑡 =

c0 + 𝑐1
𝑐 cos (

2𝜋𝑡

𝑇
) + 𝑐1

𝑠 sin (
2𝜋𝑡

𝑇
), where 𝑐1

𝑐 and 𝑐1
𝑠 are the regression parameters where 𝑐1

𝑐 =

𝑐1 cos(𝑡𝑝) and 𝑐1
𝑠 = −𝑐1 sin(𝑡𝑝), respectively.  

If more than one kind of cycle exists including regular seasonality and some irregular 

cycles, the model should include all the possible sine and cosine functions, including random 

effects in both the phase and the amplitude. Then the mean variation of the temperature with time 

patterns is 

(3.23)  𝑤̅𝑡 = ℬ0 + ∑ [ℬ1
𝑐 cos (

2𝜋𝑗𝑡

𝑇
) + ℬ1

𝑠 sin (
2𝜋𝑗𝑡

𝑇
)

𝑇/2
𝑗=1 ] + ℬ2𝑡,  

where the first term ℬ0 describes the reverting mean, the second term describes the seasonal and 

cycle variations, the third term describes the mean trend of increases or decreases over time 

(sometimes, it could be quadratic or some other forms) and the 𝓑s are the coefficients to be 

estimated.  

The spectral analysis decomposes a time series into underlying sine and cosine functions 

of different frequencies with differing periods (a full cycle) and amplitudes (maximum/minimum 

value during the cycle) as above. Besides regressions, Fast Fourier Transform (FFT) transforms 

a signal from the time domain to the frequency domain. FFT is a common method used to fit 

the data into best set of frequencies, which is available in many computer software.  

If adjustment to a mean reverting Ornstein-Uhlenbeck is necessary, the reverted mean 

and the standard deviation are not constant any more as in equation (3.18), 

(3.24)  𝑑𝑊𝑡 = 𝑑𝑤̅𝑡 + 𝜂(𝑤̅𝑡 − 𝑊𝑡)𝑑𝑡 + 𝜎𝑡𝑑𝑧𝑡, 
 

or let 𝑑𝑊𝑡 = 𝑊𝑡+1 − 𝑊𝑡 and 𝑑𝑤̅𝑡 = 𝑤̅𝑡+1 − 𝑤̅𝑡, then we get  



47 
 

(3.25)  𝑑𝑊̇𝑡 =  −𝜂𝑊̇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑧𝑡 ,  

where 𝑊̇𝑡 = 𝑊𝑡 − 𝑤̅𝑡, and 𝑊̇𝑡 follows a mean-zero Ornstein-Uhlenbeck process, where the 

reverted mean term is 𝑤̇ = 0. Then our regression model for the empirical data is, 

(3.26)  𝑊̇𝑡+1 − 𝑊̇𝑡 = 𝛽̇0 + 𝛽̇1𝑊𝑡 + 𝜀𝑡+1, 𝜀𝑡+1~𝑁(0, 𝜑2),  

where 𝛽̇0 is expected to be 0 and 𝛽̇1 (𝛽̇1 < 0) and 𝜑 are that we need to estimate the normalized 

estimators, 𝜂̂ and 𝜎̂, for the mean-reverting process from equation (3.20) and also the 

probabilities from equation (3.21). Then after that, we add the time patterns back to the process. 

 The above information will be sufficient to estimate the stochastic process for 

temperature with the assumption that it should normally distributed after removing the time-

related patterns. However, many studies have found that the residuals also contain seasonality 

(Benth and Šaltytė-Benth 2005, Zapranis and Alexandridis 2006) and that temperature process 

does not follow normal distribution very well (Richards et al. 2004, Zapranis and Alexandridis 

2006). Some studies even applied a more complicated process like a jump process (Richards et al. 

2004), Levy process (Benth and Šaltytė-Benth 2005) or wavelet analysis (Zapranis and 

Alexandridis 2006). They prompted many different forms (higher-order) of ARMA models or 

GARCH models as alternatives.  

3.5.4 Path-dependent stochastic process  

If seasonal patterns or autocorrelations exist in the variance, 𝜑2 is no longer constant but 

follows a more complicated time-dependent format. Weather data – daily temperature for 

example, is path-dependent.  

One of the important assumptions about binomial trees is that the order of moving up and 

down does not matter, which describes the Markov properties that past states do not have 
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influence on the future given the present state. Path-dependent weather does not have Markov 

properties. Therefore, the temperature values at each node cannot recombine in the binomial tree. 

As shown in Figure 3.5, as time increases from 𝑛 to 𝑛 + 1, the number of outcomes, 𝑖, then 

moves from 2𝑛 to 2𝑛+1.  

n=0 n=1 n=2 n=3  

 

 

 

 

 

 

Figure 3.5 Random process with non-constant variance 

 

Monte Carlo simulation is a good method to simulate the path-dependent process of the 

state variable. Based on the mean reversion property on equation (3.24), we can get the 

continuous form of the temperature with time patterns as 

(3.27)  𝑊𝑡 = 𝑤̅𝑡 + (𝑊0 − 𝑤̅0)𝑒−𝜂𝑡 + ∫ 𝑒−𝜂(𝑡−𝜏)𝑡

0
𝜎𝜏𝑑𝑧𝜏,  or  

 𝑊̇𝑡 = 𝑊̇0𝑒−𝜂𝑡 + ∫ 𝑒−𝜂(𝑡−𝜏)𝑡

0
𝜎𝜏𝑑𝑧𝜏,  

where 0 ≤ 𝜏 ≤ 𝑡, and a time-discrete version of the temperature as 

(3.28)  ∆𝑊𝑡 = ∆𝑤̅𝑡 + 𝜂(𝑤̅𝑡−1 − 𝑊𝑡−1)∆𝑡 + 𝜎𝑡−1∆𝑧𝑡, 
 

where ∆𝑊𝑡 = 𝑊𝑡 − 𝑊𝑡−1, ∆𝑤̅𝑡 = 𝑤̅𝑡 − 𝑤̅𝑡−1 and ∆𝑡 = 1. Since an insect treatment decision is a 

discrete problem, equation (3.28) will be used for Monte Carlo simulations of temperature paths. 
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3.6 Risk-neutral probabilities 

In real option models, there is a very important term, risk neutral probabilities. It is 

closely related to how to estimate the “current price of the spanning asset”, which is 𝑍 in equation 

(3.8) or in a more general case,  

(3.29)  𝜋𝑢(𝑖, 𝑛) =
𝑍(𝑖,𝑛)∗𝑅𝑓−𝑥(𝑖+1,𝑛+1)

𝑥(𝑖,𝑛+1)−𝑥(𝑖+1,𝑛+1)
,  

 𝜋𝑑(𝑖, 𝑛) = 1 − 𝜋𝑢(𝑖, 𝑛).  

In finance, investors are usually considered as risk averse. Their behaviors require a 

premium to bear risk when expected values are riskier to achieve than the other alternatives, 

which results in greater difficulty in evaluating pricing. Imagine a risk neutral world in which an 

investor cares only about the expected return, and not risk. Then the risk premium can be averted 

with the expected return equal to risk-free rate. 

Many references such as McDonald (2006) and Guthrie (2009) have explained that 

pricing an option using real probabilities with standard discounted cash flow calculation is 

equivalent to option pricing. Rendleman (1999) even derived the relationship between the risk-

neutral and true probabilities. This approach does not require assumptions about investors’ risk 

aversion. Option pricing using risk-neutral probabilities is preferred to avoid having to make 

those assumptions. 

There are many methods to determine the risk-neutral probabilities. The methods involve 

forward or futures prices.  One of the common methods is using Capital Asset Pricing Model 

(CAPM) to adjust for risk by subtracting true probabilities and risk premium (Guthrie 2009, 

Luenberger 2002, Rendleman 1999).  
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Define 𝑍 in equation (3.8) as a hypothetical portfolio, which is composed of a holding of 

“one-period risk-free bonds and a stake in the market portfolio of risky assets”,  

(3.30)  𝑍 =
𝐸[𝑥̃]−(𝐸[𝑅̃𝑚]−𝑅𝑓)(

𝐶𝑜𝑣[𝑥̃,𝑅̃𝑚]

𝑉𝑎𝑟[𝑅̃𝑚]
)

𝑅𝑓
, 

 

where 𝑥̃ is the random state variable after one period, from which the expected market value of 

the cash flow, 𝐸[𝑥̃] = λ𝑢(𝑖, 𝑛)𝑥(𝑖, 𝑛 + 1) + (1 − λ𝑢(𝑖, 𝑛))𝑥(𝑖 + 1, 𝑛 + 1) is estimated using the 

true probabilities, 𝑅̃𝑚 is the random total return on the marked portfolio, 𝐸[𝑅̃𝑚] − 𝑅𝑓 represents 

the market risk premium, and 
𝐶𝑜𝑣[𝑥̃,𝑅̃𝑚]

𝑉𝑎𝑟[𝑅̃𝑚]
 is the coefficient that measures the quantity of risk. 

Then the probability of moving up is  

(3.31)  𝜋𝑢(𝑖, 𝑛) = λ𝑢(𝑖, 𝑛) − (
𝐸[𝑅̃𝑚]−𝑅𝑓

𝑥(𝑖,𝑛+1)−𝑥(𝑖+1,𝑛+1)
)(

𝐶𝑜𝑣[𝑥̃,𝑅̃𝑚]

𝑉𝑎𝑟[𝑅̃𝑚]
), 

 

where the second term is the adjustment from the true probabilities and the risk-neutral 

probabilities. There is much available information about the market risk premium 𝐸[𝑅̃𝑚] − 𝑅𝑓 

that can be directly adopted. Then we need to get the information for the coefficient term, 

(
𝐶𝑜𝑣[𝑥̃,𝑅̃𝑚]

𝑉𝑎𝑟[𝑅̃𝑚]
), which has the terminology called price beta in Finance literature.  

As suggested by Guthrie (2009), we can regress the residual from the regression 

(equations (3.13) or (3.19)) that estimates the binomial process on a proxy for the market 

portfolio, as 

(3.32)  𝜀𝑡̂ = 𝜔0 + 𝜔1𝑟𝑚,𝑡 + 𝜈𝑡,  

where 𝑟𝑚,𝑡 is the return on the market portfolio proxy. The estimated parameter 𝜔̂1 is the useful 

estimate of beta, which is equal to 𝜔̂1√
∆𝑡𝐷

∆𝑡𝑀
∗

1−𝑒−2𝜂̂∆𝑡𝑀

1−𝑒−2𝜂̂∆𝑡𝐷
 (Guthrie 2009).  
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The market portfolio proxy can be some broadly based stock index such as S&P500 

index (Guthrie 2009). Richards et al. (2004) pointed out that the basis risk should refer to the 

difference between a weather index for a particular location and the actual value of the same 

weather that applies to the specific firm. They also suggested a measure of aggregated economic 

activities, which reflects any contingent claim on weather. For example, they used county-based 

personal consumption expenditures.  

However, such a proxy is not available for options such as the real option to treat insects. 

Chicago Mercantile Exchange (CME) began to trade weather options for some major U.S. cities 

since 1999 but such options have lack of liquidity. Thus, it is hard to find a market portfolio for 

this incomplete market. In this situation, we can assume a scalar of the physical probabilities. 

This scalar reflects the manager risk aversion.  

In practice, one of the reasons that IPM program might not completely substitute for a 

calendar-based insect treatment because some managers are more concerned about incurring 

potential damage than incurring unnecessary treatment cost. That behavior of some managers 

shows risk aversion about insects growing in the food processing facility. As a result, in our 

problem we assume the manager is risk averse, so that the scalar is set to be a value that is greater 

than 1. 

 

3.7 Timing options model 

The next step is to establish the optimal decision model. Our problem is a timing 

problem. Real option models can be used for timing decisions as well as for measuring the value 

of the option. Time plays an important role for option decisions because the option model 

involves timing and values timing. Thus, timing option model becomes a common tool for 
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decision-making. In this section we describe the structure of timing option models and their use in 

making decisions using dynamic programming.  

The structure of the optimal timing problem is as shown in Figure 3.6. At each node, 

either the decision maker can exercise the obligation or she can wait. If she exercises the option, 

the decision tree terminates, which is a solid round in Figure 3.6. If she does not exercise the 

option and wait, she moves to the next period on the decision tree (shown as arrows). Then she 

faces the choice of the same two actions, at which this situation repeats itself until the end.  

0 1 2 … T 

 

 

Figure 3.6 Decision tree for the optimal timing problem 

 

When the decision is to exercise the option, the payoff involves the grain from the 

exercises and the cost of exercise. While if the decision is to wait at time 𝑛, usually the manger 

bears a cost of waiting immediately. At time 𝑛 + 1, the problem will be worth 𝑉𝑢,𝑛+1 if an up 

move occurs and 𝑉𝑑,𝑛+1 if a down move occurs. The option is an American type option, evaluated 

by comparing min {the cost of treating  , the cost of not treating} at each node. 

For example, we set a discrete time problem with the maturity as 𝑇, we use binomial trees 

to estimate the random walk of the variables (as in Figure 3.5). As discussed earlier, the insect 

problem is like an option to abandon. The motive to abandon is to reduce loss by eliminating the 

insect damage. 

Particularly, if the decision is to treat insects, it incurs treatment cost 𝑇𝐶 at time 0 and the 

decision tree terminates. If the choice is to wait at time 0, it bears the potential economic loss 

from insect, 𝐷0. Then the problem moves to time 1 in the decision tree. 

Last Treatment 

Not started 

Complete 
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At time 1, there are the same two choices: treat insects or wait. If the decision is to treat 

insects, it incurs treatment cost 𝑇𝐶 at time 1 and the decision tree terminates. If the decision is to 

wait at time 1, it bears the potential economic loss from insect, 𝐷1. Then the problem moves to 

time two in the decision tree and so on until time 𝑇 − 1, the last opportunity to choose. 

If the decision is to treat insects, it incurs treatment cost 𝑇𝐶 at time 𝑛 and the decision 

tree terminates. If the decision is to wait, no treatment occurs and insects keep growing 

indefinitely. Then the project bears a huge potential damage 𝐷𝑛 for all 𝑛 ≤ 𝑇 − 1. At time 𝑇, the 

option is worthless but the project bears a potential damage loss. Thus the terminal condition 

(𝑛 = 𝑇) here is 

(3.33)  𝑉(𝑖, 𝑇) =
𝐷(𝑖,𝑇)

𝑅𝑓𝑇 ,  

from which we calculate backward. According to equation (3.2), the option value for each node is  

(3.34)  𝑉(𝑖, 𝑛) = min {𝑇𝐶, 𝐷(𝑖, 𝑛) − 𝐵𝑇𝐶(. , 𝑛) +
𝜋𝑢(𝑖,𝑛)∗𝑉(𝑖,𝑛+1)+𝜋𝑑

∗𝑉(𝑖+1,𝑛+1)

𝑅𝑓
},  

for all 𝑛 = 𝑇 − 1, … ,2,1,0, where 𝑇𝐶 is the treatment cost, 𝐷(𝑖, 𝑛) is the cost of potential damage, 

𝐵𝑇𝐶(. , 𝑛) is the benefit from postponing the treatment, which is saving a long run treatment by 

reduced frequency. The two terms in equation (3.34) are the cost of treating and the cost of 

waiting.  

Valuing the option at each node is the process of making decisions. A lower cost of 

waiting means that there is a premium for waiting (the time value). In contrast, a lower cost of 

treating triggers optimal timing. By calculating backwards, the value of this option to treat insect 

from binomial pricing method is 𝑉(0,0). 

In the Monte Carlo simulation, there are no up and down movements for specific 

simulated temperature path. Equation (3.34) is adjusted for each simulated temperature path as 
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(3.35)  𝑉(𝑖, 𝑡) = min {𝑇𝐶, 𝐷(𝑖, 𝑡) − 𝐵𝑇𝐶(𝑖, 𝑡) +
𝑉(𝑖,𝑡+1)

𝑅𝑓
},  

where 𝑖 = 1, … , n represents the 𝑖𝑡ℎ simulated temperature path. By calculating backwards, the 

𝑖𝑡ℎ value of the option to treat insect is 𝑉𝑖 = 𝑉(𝑖, 𝑡𝑖
∗), where 𝑡𝑖

∗ is the trigger denoting optimal 

timing when cost of treating becomes lower than the cost of waiting. Then the  𝑖𝑡ℎ option value is 

substituted into equation (3.9) to obtain the value of the option to treat insects from Monte Carlo 

valuation. 

 

3.8 Optimal stopping model 

Another important thing about timing is the maturity 𝑇. As we list in Table 3.1, the 

decision to exercise or to wait is based on two factors: the option state and the time value. The 

time value equals the value of the option minus the intrinsic value. Intrinsic value is the value of 

exercising the option (minimum of zero).  

The decision maker would prefer to wait until the time value becomes zero to exercise an 

option that is “in-the-money”. Thus, the conclusion must be one of the three situations: 1) 

exercise at any point before maturity and the problem ends then, 2) exercise at maturity, and 3) 

never exercise during the period. 

It is possible that the third situation would occur if the maturity is incorrectly set earlier 

than the optimal treatment date. If the maturity is extended until a long time later, even 

approaching infinity (as in Figure 3.7), it could be valuable to hold the option until  the time value 

reaches zero at some point. On the other hand, if the optimal treatment date has been reached, the 

extended maturity will not change the decision.  
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Figure 3.7 Diagram for the optimal timing problem 

 

With an infinite time period, we can use the decision tree above to solve an empirical 

timing option for a decision making. By setting a range of different levels of operating flexibility, 

the option value, V𝑇𝑛(0,0) for each 𝑇𝑛 varies. Since this option is to save a cost, we are looking 

for the break-even threshold where it reaches the maximum of the option value,  

(3.36)   V∗ = max
𝑛

𝐸(min (𝑇𝐶𝛾, 𝐷𝑇𝑛
) ∗ 𝑒−𝑟𝑡),  

where V∗ is the optimal solution, the maximum option value and the conducted  𝑇𝑛∗ may be the 

optimal time to wait. The optimal stopping time (maturity) is the point at which extending the 

maturity will not change any result. 

Most previous real options studies related to pest management follow Dixit and Pindyck 

(1994)’s, using Ito’s lemma to complete this accomplishment (Anderson and Weersink 2014, 

Carlson 1970, Ndeffo-Mbah et al. 2010, Saphores and Shogren 2005). Assuming the starting date 

is when the last fumigation occurs, back to equation (3.36), the value of the option to treat insect 

is gives the differential form of 𝑑𝐹 by applying Ito’s Lemma to solve the following free boundary 

values (Dixit and Pindyck 1994, Mun 2002, Ndeffo-Mbah et al. 2010), 

… 𝑇𝑛−1 𝑇𝑛 𝑇2 

Last Treatment 

𝑇1 
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(3.37)  
𝜕𝑉

𝜕𝑇𝑛
+ 𝐴(𝐷(𝐼𝑡), 𝑡)

𝜕𝐹

𝜕𝐷
+

1

2
𝐵2(𝐷(𝐼𝑡), 𝑡)

𝜕2𝐹

𝜕𝐷2 − 𝜌𝐹 = 0,  

where 𝜌 is an exogenous instantaneous rate of return from the Bellman equation 𝜌𝐹𝑑𝑡 = 𝐸(𝑑𝐹).  

The solution is expected to show the trigger value for which maturity is optimal, 𝑉∗, and the 

optimal maturity (stopping time), 𝑇𝑛∗. 

Since an insect treatment decision is a time-discrete problem, the equivalent problem 

turns to using dynamic programming to solve equation (3.36) by setting 𝑖 = 1, … , 𝑛 where 𝑖 = 𝑛 

means to set up the maturity as 𝑛 times from last treatment. Then the optimal solution is V∗ =

max (V𝑇1 , … , V𝑇𝑛) and the optimal timing to treat, 𝑇𝑛∗, is from which the V𝑇𝑛 is maximum. 

The timing option concept can be adopted to solve the insect treatment optimal timing 

problem. The discrete binomial process can be used to simulate an empirical problem. An option 

to abandon provides a theoretical framework to evaluate the value of option and the time option. 

The concept of geometric Brownian motion process provides a guideline to build a general model 

for insect treatment timing. Based on the above theories, we construct several real option models 

of insect treatment problem, from a straightforward single-decision framework to a more difficult 

sequential decision framework. 
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CHAPTER IV 
 

 

PROCEDURES AND METHODOLOGY 

 

4.1 Data 

Daily temperature data (oF) from 1999 October to 2017 in Alva, Oklahoma is used. Alva, 

Oklahoma was selected because its variable weather is likely to reflect a larger range of insect 

growth condition than locations that are consistently cool or consistently warm. The data is 

downloaded from the Oklahoma Mesonet website mesonet.org, which is a world-class network of 

environmental monitoring stations in Oklahoma. The descriptive statistics of the temperature (in 

Fahrenheit) data are shown in Table 4.1.  

Table 4.1 Descriptive Statistics of Daily Temperature (oF) in Alva, Oklahoma from 1999 to 

2017 

Temperature (F) N Mean Std Dev Minimum Maximum 

Daily Maximum 6,935 71.99 20.15 9.01 113.52 

Daily Minimum 6,935 46.18 19.00 -15.45 84.29 

Daily Average 6,935 58.79 19.13 4.17 97.74 

 

In practice, the managers usually collect insect information and make the decision about 

insect management biweekly or monthly. Therefore, the data is reorganized from daily into 

biweekly to show the biweekly temperature trend and the changes of the temperature trend in a 

one-year period (Figure 4.1 and Figure 4.2, respectively). In the figures, the starting point is 

selected to be October for each calendar year from 1999 to 2017. Since the insect population  
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model by Flinn et al. (2010)used temperatures as Celsius (oC) instead of Fahrenheit (oF), the units 

of the data values are converted from F to C for empirical estimation. 

 
Figure 4.1 Biweekly temperature (oC) from October 1999 to 2017 in Alva, Oklahoma 

 

 

Figure 4.2 Biweekly temperature (oC) changes from October 1999 to 2017 in Alva, Oklahoma 
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Daily average temperatures are still used to estimate the parameters when calibrating the 

data to fit a stochastic process because a large number of smaller steps provides more 

information. Prior to estimating the stochastic process, normality, seasonality and trend for daily 

average temperature in Alva, Oklahoma was tested. February 29 was removed from the sample in 

each leap year to make years with equal size. 

Table 4.2 Data Analysis of Daily Temperature (oC) in Alva, Oklahoma from 1999 to 2017 

 Statistic Values P-value 

Normality test   

Pearson chi-square χ2 946.46 0.00*** 

Jarque-Bera  297.44 0.00*** 

Anderson-Darling 57.23 0.00*** 

   

skewness -0.22  

kurtosis 2.08  

   

Time patterns test   

Trend 1.74 0.08 

Quadratic Trend 2.18 0.11 

Seasonality (dummies) 6,847 0.00*** 

 

In Table 4.2, the values of the χ2-statistics of Pearson’s criteria of goodness-of-fit with 

the corresponding P-value indicates non-normality of the empirical distributions. The P-value of 

χ2-statistics is significant at the 1%. The negative skewness and kurtosis values also show 

asymmetry of the empirical distributions. The Jarque-Bera test also shows evidence of non-

normality, significant at the 1% level. The histogram shows the non-normality (Figure 4.3). 
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Figure 4.3 Histogram of daily average temperature from 1999 to 2017 in Alva, Oklahoma 

 

Figure 4.4 displays a seasonal-trend decomposition of daily temperatures based on Loess 

regression (Cleveland et al. 1990), which is a nonparametric technique that uses local weighted 

regression to fit a smooth curve through points in a scatter plot. The seasonal and trend lines show 

strong seasonality within a period of year, as well as some strong cyclical behavior over a period 

of about 3-8 years. There is no apparent trend for a long run increase or decrease in the data over 

this period. 
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Figure 4.4 Daily average temperature with time series patterns from 1999 to 2017 in Alva, 

Oklahoma 

 

 

Figure 4.5 Histogram of seasonal-trend decomposed daily average temperature 

from 1999 to 2017 in Alva, Oklahoma 
 

The graph in Figure 4.5 presents a histogram of the data adjusted by removing 

seasonality from seasonal-trend decomposition. Compared to the histogram of daily average 

temperature in Figure 4.3, the shape looks closer to a normal distribution. However, it shows 
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some asymmetry in the form of skewness. In the next section, more details about testing 

normality, seasonality and cyclicity are discussed in the procedure for weather process. 

 

4.2 Procedures 

4.2.1 Weather process 

Seasonality and cyclicity 

 Since seasonality may exist, appropriate adjustments are made before calibrating the data. 

We model the daily average data using spectral analysis with a period of 365, a frequency of 

1/365. This seasonality indicates that the best predictor of the temperature on a particular date is 

the temperature one year earlier. Thus the annual cycle of temperature is a simple cosine as 𝑇 =

365. 

In addition, some irregular cycles may exist.  As shown in Figure 4.4, there might be 

some cycles lasting longer than one year. Zapranis and Alexandridis (2006) suggested an 

unusually warm or cold year might occur every few years. They also noted that there is a long run 

cycle of about 20 years, but that range is beyond our data availabilities.  

The Fast Fourier Transform (FFT) procedure provides some basic information about the 

seasonal components. Figure 4.6 shows that the 20th and 39th positions along the frequency array 

may have significantly high values. Those positions represent cycle periods of 1 year and 0.5 

year, respectively. There are some other potential cycles such as 4.75 or 6.33 years. This study 

will mainly focus on the high frequency patterns. 
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Figure 4.6 Fourier transforms for daily average temperature from 1999 to 2017 in Alva, 

Oklahoma 

 

Then the seasonal mean is estimated as 

(4.1)  𝑤̅𝑡 = 𝑏̂0 + 𝑏̂1 cos (
2𝜋

365
𝑡 + 𝑡̂𝑝1) + 𝑏̂2 cos (

2𝜋

(0.5)∗365
𝑡 + 𝑡̂𝑝2).  

where 1/365 indicates daily frequency per year. Since the step of the binomial tree in this study is 

for two weeks, it necessary to convert the frequency from daily data to the biweekly data as 1/26. 

Table 4.3 displays the results of the coefficient of cyclicity and seasonality for the daily average 

temperature in Alva, Oklahoma for equation (4.1). The first two columns are the coefficients 

from the identity cosine and sine regression model. The last two columns are the estimated 

amplitude and phases from the coefficients. The numbers match the Fast Fourier Transform 

procedures. 

Table 4.3 Spectral Model for Daily Average Temperature (oC) in Alva, Oklahoma from 1999 

to 2017 

Cycles 
Coefficient of 

cosine term 

Coefficient of 

sine term 
Amplitude Angle phase 

Mean 14.96      

One year -3.77  -12.78 13.32 2.85 

Half of a year 0.44 0.81 1.06 -2.27 
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ARMA model 

 After removing the seasonal and cyclical components from the daily average temperature 

in Alva, Oklahoma, the AR(1) process following equation (3.26) is estimated. Table 4.4 displays 

the results of the coefficient of the AR(1) model for the deseasonalized and detrended weather 

data. The constant 𝛽̇0 is close to zero, as expected. 𝛽̇1 describes the rate of change for the 

deseasonalized and detrended weather. 

Table 4.4 AR(1) Model for The Deseasonalized and Detrended Daily Average Temperature 

in Alva, Oklahoma from 1999 to 2017 

Variable Coefficient Std. Error t-statistic P-value 

𝛽̇0 -0.08 0.12 0.65   0.52   

(1 + 𝛽̇1) 0.66  0.01 73.65 0.00*** 

     

Normality test for residual     

Pearson chi-square χ2   280.23 0.00*** 

Jarque-Bera    425.18 0.00*** 

skewness -0.33    

kurtosis 4.02    

 

With the estimated coefficients, the normality of the residuals is tested. The values of the 

χ2-statistics of Pearson’s criteria indicates non-normality of the residuals. The P-value of χ2-

statistics is significant at the 1%. The skewness is negative and kurtosis value is greater than 

three, which show asymmetrical empirical distributions. The Jarque-Bera test also shows 

evidence of non-normality at the 1% level of significance. 

Autocorrelation functions (ACF) and the partial autocorrelation functions (PACF) of both 

the residual and the square of residual are used to determine the existence of any significant lag 

correlations or seasonality exist (Benth and Šaltytė-Benth 2005, Zapranis and Alexandridis 2006). 

In Figure 4.7, the autocorrelation of the residual is significant for the first several lags. The 
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autocorrelation of the squared residuals shows a time dependency in the variance of the residuals, 

where it can observe a seasonal variation.  

  

  

Figure 4.7 ACF and PACF for the residual and the squared residual of the AR(1) model of the 

deseasonalized and detrended daily average temperature 

 

Since seasonality exists, Generalized Autogressive Conditional Heteroskedastic 

(GARCH) model is considered to deal with the non-normality in the variance. The GARCH(m,n) 

model describes the variance at time t is conditional on observations at the previous m times and 

n past variances, as well as some external form such as seasonal patterns.  
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Fast Fourier transform is used to estimate the significant cycle periods. There are 

potentially cycles within squared residual, the 0.2 year, half year, one year and 2.7 years. From 

the linear regression on the squared residuals and those cycles, only the one year cycle is 

significant. The Amplitude and the Angel phase are displayed in Table 4.5.  

Table 4.5 Spectral Model for Daily Average Temperature (oC) in Alva, Oklahoma from 1999 

to 2017 

Cycles 
Coefficient of 

cosine term 

Coefficient of 

sine term 
Amplitude Angle phase 

Mean 11.71      

One year 2.70  6.03 6.60 -0.42 

 

Then to identify the GARCH model, the ARCH test has been done. The statistics tests for 

changes in variance across time by using lag windows that range from 1 through 12, the p-values 

for the test statistics strongly indicate Heteroscedasticity with p < 0.0001 for the first two lag 

windows. Since the kurtosis value shows an asymmetric, the model also includes a dummy for a 

negative value in the error term. Then the full AR(1)-GARCH(2,1) model that we estimate is: 

(4.2)  𝑊̇𝑡 = 𝛽̇0 + (1 + 𝛽̇1)𝑊̇𝑡−1 + 𝜀𝑡̇, 
 

 𝜀𝑡̇|Θ𝑡−1~𝑁(0,  ℎ𝑡),  

 

 ℎ𝑡 = α0 + α1𝜀𝑡̇−1
2 + α2𝜀𝑡̇−2

2 + α3𝐽𝑡−1𝜀𝑡̇−1
2 + α4𝐽𝑡−2𝜀𝑡̇−2

2 + β1 ℎ𝑡−1 +

𝛾1,𝑞
𝑐 cos (

2𝜋𝑞𝑡

365
) + 𝛾1,𝑞

𝑠 sin (
2𝜋𝑡

365
), 

  

 𝐽𝑡−1 = {
0   if 𝜀𝑡̇ ≥ 0
1   if 𝜀𝑡̇ < 0

,  

where Θ𝑡−1 is information available in time t-1, the term α2𝐽𝑡−1𝜀𝑡̇−1
2  show the reaction from a 

negative impact is stronger than a positive impact, and the conditional variance contains 

GARCH(2,1) and seasonal patterns and α1 ≥ 0, β1 ≥ 0 and α1 + β1 < 1. 

Binomial tree 
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The problem starts after last insect treatment, when insect population was eliminated and 

starts to rebound since then. The managers estimate the insect population based on weather 

information every other week since last treatment. Two starting dates are picked: April 21 and 

October 21, which respectively represented warm and cool weather environments for insect 

growth. 

Three steps to simulate the binomial process and the corresponding probabilities of the 

weather are as following:  

1. Estimate the AR(1) model and estimate the normalized Ornstein-Uhlenbeck (OU) 

parameters for the detrended and deseasonalized weather. 

The rate of mean reversion per annum is 𝜂̂ =
− ln(1+𝛽̂1)

∆𝑡𝐷
and the variance is  𝜎𝑡̂ =

ℎ𝑡̂ (
2 ln(1+𝛽̂1)

𝛽̂1(2+𝛽̂1)∆𝑡𝐷
)

1

2
. Since this is daily data, then ∆𝑡𝐷 =

1

365
. Since the volatility is not constant 

through all time, the 𝜎𝑡̂ is a series of numbers. At each time 𝑡, the temperature value is 

conditionally normally distributed based on the information of previous temperature. For each 

time, steps 2 and 3 are used to estimate the up and down movements and the corresponding 

probabilities. The structure of the binomial tree will be like in Figure 3.5 

2. Fill in the binomial tree for the for the detrended and deseasonalized weather using the 

normalized estimation and add the time patterns back to the estimation; 

The detrended and deseasonalized weather at node (𝑖, 𝑛) is 𝑊̇(𝑖, 𝑛) = 𝑊̇0 +

(𝑛 − 2𝑖)𝜎𝑡̂√∆𝑡𝑀 , the estimated weather is then 𝑊(𝑖, 𝑛) = 𝑊̇(𝑖, 𝑛) + 𝑤̅(. , 𝑛), where 𝑤̅(. , 𝑛) is 

the time pattern that vary by time but will be constant for all the up and down movement during 

time 𝑛. The up movement is  𝑊(𝑖, 𝑛 + 1) = 𝑊(𝑖, 𝑛) + 𝜎𝑡̂√∆𝑡𝑀 + 𝑤̅(. , 𝑛 + 1) and the down 

movement is 𝑊(𝑖 + 1, 𝑛 + 1) = 𝑊(𝑖, 𝑛) − 𝜎𝑡̂√∆𝑡𝑀 + 𝑤̅(. , 𝑛 + 1).  The time steps in the 
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binomial tree is two weeks, ∆𝑡𝑀 = 1/26. The starting values are the true weather on April 21, 

2018 and October 21, 2018.  

3. Estimate the probability and risk-neutral probability of an up move at each node for the OU 

process. 

The probability of an up move at each node for weather is the same as the probability of 

an up move at each node for detrended and deseasonalized weather, the probability is  λ𝑢(𝑖, 𝑛) =

1

2
+

(1−𝑒−𝜂̂∆𝑡𝑀)(− Ẇ(𝑖,𝑛))

2𝜎𝑡̂√∆𝑡𝑀
=

1

2
+

(1−𝑒−𝜂̂∆𝑡𝑀)(𝑤̅− W(𝑖,𝑛))

2𝜎𝑡̂√∆𝑡𝑀
.  As mentioned earlier, this study assumes the 

manager is risk aversion that he will strengthen the problem of an increasing possible of the 

potential damage. The risk-neutral probability of moving up is π𝑢(𝑖, 𝑛) = 𝑧 λ𝑢(𝑖, 𝑛), where z is a 

scalar that is greater than 1, for example, 1.05. 

Monte Carlo simulation 

 Besides just up and down movements along the binomial tree, Monte Carlo simulation is 

also considered to sample the temperature process. Based on equation (3.28), the sample path 

simulation equation for 𝑊𝑡 is using the discrete-time expression as 

(4.3)  𝑊𝑡 =  𝑊𝑡−1𝑒−𝜂̂Δ𝑡 + 𝑤̅𝑡(1 − 𝑒−𝜂̂Δ𝑡) + 𝜎̂𝑡√
1−𝑒−𝜂̂Δ𝑡

2𝜂̂
𝑁(0,1), 

 

where 𝜎̂𝑡 is vary by time from the GARCH model on equation (4.2) and  𝑁(0,1) is a random 

number that follows a normal distribution with mean zero and variance of one (Dixit and Pindyck 

1994).  

Since the historic data is daily temperature while the decision-making time interval is 

every two weeks, the time intervals for the mean return rate and the volatility where adjusted. 

According to equation (3.20), the mean return rate is annualized. Thus, the Δ𝑡 in equation (4.3)  is 



69 
 

set as the value of Δ𝑡𝑚 = 1/26, which is the biweekly rate. However, since the variance is not a 

constant, we cannot use the same method to scale the volatility.   

One of the methods is to simulate the daily data using daily volatilities. Then we pick up 

weather information from the dates of interest. For a binomial process, the variance is 

conditionally normally distributed along the path-dependent process tree. Thus, we can just pick 

up the simulated variance for the interested day and scale that into biweekly volatility using 

equation (3.20). The estimated variance describes the volatility for the following two weeks based 

on what has happened so far. Moving forward in time step by step, we repeat the estimation 

process until the end of the data. In addition, one of the advantages of this method is that we have 

full information about weather so that we can pick any date as a starting day of the problem. 

 50,000 samples of weather paths were drawn. Then insect populations were simulated 

and the associated potential damages were calculated based on each weather information. Under 

each individual temperature path, the results of the option value are calculated using equation 

(3.9). Each individual weather path represents different possible outcomes of potential damage 

loss. The expected option value is the mean value from the large sample size of individual 

estimations for different scenarios. The expected option value describes general information 

about the insect pattern and potential damages. Some individual paths from the sample size were 

also used for some empirical analysis. 

4.2.2 Insect population  

The insect population is the growth from a previous population, 𝐼𝑡 = 𝑓(𝐼𝑡−1, 𝑊𝑡), from 

Flinn et al’s (2010) insect model, which means different previuos insect population results in 

different insect growth with the same weather. Therefore, a general insect population function is 

used that has a growth pattern similar as the path-dependent insect growth model 
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(4.4)  𝐼𝑡 = {
𝐼0 ∗ (1 + 𝛼𝑒∆𝑡𝑀𝑡𝛽𝑊𝑡)

𝑡
∗ (1 − 𝛿),   if 𝑊𝑡 < 20

𝐼0 ∗ (1 + 𝛼𝑒∆𝑡𝑀𝑡𝛽𝑊𝑡)
𝑡
,                     if 𝑊𝑡 ≥ 20

,  

where 𝐼𝑡 is the insect population at time 𝑡, 𝑊𝑡 is the weather value at time 𝑡, 𝛼 and 𝛽 are 

parameters for insect growth model, ∆𝑡𝑀 is the discrete time interval in terms of one year. 𝛿 is the 

insect death rate due to a low temperature when the weather value 𝑊𝑡 goes below the criteria 20 

oC, if 𝑊𝑡 ≥ 20, 𝛿 = 0, otherwise, 𝛿 is set to be 0.8. Then insect population only bases on the 

initial insect population, time steps and the weather information at time 𝑡, and it is deterministic 

function of weather. 

4.2.3 Insect damage cost  

The insect damage cost is the monetary loss from potential live insect infestation onto the 

food product. While insect damage in grain storage can be measured with insect damaged kernels 

and other grade and non-grade characteristics, it is hard to develop a direct equation to estimate 

economic damage based on insect population in processed food products because there are few, if 

any, market-determined discounts. In addition, it is difficult to determine the true insect 

infestation level.  

Rather, the economic damage is likely a function of consumer perceptions, the breadth of 

insect infestation (e.g., one package or an entire lot), and the intensity of insect infestation (e.g., 

many insects, one insect, or insect fragments). Sometimes, insect-infested products may still be 

acceptable with a discounted price. More often, an entire lot is rejected, or products already 

distributed may be recalled. Moreover, it is highly speculative to put a dollar value on indirect 

losses due to insect infestation, such as loss of goodwill. Little information is available to help 

model this loss, so a damage loss function with somewhat arbitrary, though subjectively 

reasonable, parameters is specified, and a range of alternative specifications is tested to determine 

the effect of these assumptions on the results. 
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There might be a very high cost associated with a live insect in the final product, but 

perhaps a low probability of it occurring. However, that probability would be a function of the 

total insect population, as well as other factors that might influence how likely an insect would 

enter the product. The following insect damage loss function is specified: 

(4.5)  𝐷(𝑆𝑡) = 𝐿 ∗ 𝜗(𝐼𝑡),  

where 𝐿 is the cost of a recall, or public relations damage or both and 𝜗(𝐼𝑡) is the probability of 

loss, which is a function of insect population at time t, 𝐼𝑡.  

We propose that the probability of loss increases with time, since individual insects will 

be more likely to infest the product if they stay in the facility longer. As a result, the probability 

of economic loss increases nonlinearly with time. 

To simplify, this model assumes 𝜗(𝐼𝑡) = 𝑡 ∗ (𝜃𝐼𝑡)2, where 𝜃 is the probability of one 

insect entrance into the product during unit of time. Here, 𝜃 is set equal to 0.008 and 0.00008 to 

determine how the result is sensitive to the insect damage. 

For most recalls, the direct recall cost can be calculated by multiplying the number of 

units of the recalled batch that are in distribution channels by the wholesale price of the product 

as reported in the appropriate year (Jarrell and Peltzman 1985). In addition, there are some 

indirect recall costs, such as the loss of goodwill and the loss of processing profit for a period in 

the event that an insect infestation forces the facility be shut down.   

To keep it simple, the direct recall cost is considered. The recall cost should be a fixed 

number as,  

(4.6)  𝐿 = 𝑝 ∗ 𝑄, 
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where 𝑝 is the price of the product ($/lb) and 𝑄 is the amount of the recalled products (lb). 

Usually, the number of recalled batches is large and the economic loss is significant. 

For example, on May 31, 2016, General Mills Inc. initiated a nationwide recall of three 

brands of flour, totaling about 10 million pounds, in response to a 20-state E. coli outbreak that 

sickened 38 people. This would cause about $9 million loss. Moreover, on July 8, General Mills 

Inc. tripled the size of its flour recall at 30 million pounds. As a benchmark, suppose the price of 

a 2 lb. bag of Gold Medal All Purpose Flour is $1.84. If the recall size is 10 million pounds, the 

recall loss would be $9.2 million.  

4.2.4 Treatment cost 

An economic-engineering model developed by Adam et al. (2010a) is adopted for 

estimating costs of insect control treatments with sulfuryl fluoride (ProFume®) for fumigating 

food processing facilities to calculate the treatment cost, 𝑇𝐶, including fumigation cost, 𝐶𝐹, and 

opportunity cost of shutting down, 𝐶𝑆ℎ, 

(4.7)  𝑇𝐶 = 𝐶𝐹 + 𝐶𝑆ℎ, 
 

where 𝐶𝐹 includes fumigant, labor, training, electricity and equipment cost, and 𝐶𝑆ℎ is due to loss 

of productivity.  

Table 4.6 illustrates the possible types of treatment costs that may be incurred. The 

magnitude of each possible cost depends on the specific approach. Variable costs include labor, 

chemical and material costs, and value of product loss, since those costs depend on the amount of 

grain treated or the number of treatments. Fixed costs, those not varying with frequency of 

treatment, include equipment costs, liability insurance, and training costs.  
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Table 4.6 Insect Treatment Cost Components 
Possible costs Formula 

Fumigation cost 

Labor cost (various kinds) Wage ($/hr)*hours*number of workers 

  

Costs paid to vendors (e.g. training 

workshop fees) 

(Training hours per worker*hourly labor cost + 

registration fee)*number of workers 

  

Electricity cost Electricity cost ($/kwh)*operation time 

(hr)*power (kw) 

  

Equipment cost Amortized equipment cost ($/yr) + maintenance 

cost (% of equipment cost, $/yr) 

  

Chemical cost Chemical price ($/unit)*units used 

  

Shut-down opportunity cost 

Value of product loss  Shutting down time (hr)*productivity ($/hr) 

 

According to Adam et al. (2010a), the treatment cost is $ 21,711 for fumigating with 

sulfuryl fluoride (ProFume®), following the Dow Agroscience average field test dose of 40 g/m3 

at price of 15.34 $/Kg, in a 28,317 m3 food processing facility (Table 4.7). 

Table 4.7 Cost of Fumigations in a 28,317 m3 Food Processing Facility for Profume  

Item Cost per Job ($) 

Equipment 58 

Labor 4,134 

Training 19 

Fumigant  17,500 

Total Cost 21,711 

Source: Adam et al. (2010a) 

  

As emphasized in previous chapters, postponing treatment can reduce the frequency of 

treatment, and thus the total number of treatments over time. To calculate the potential savings 

from reducing frequency of treatments, a frequency scalar is used to adjust the value of 𝑇𝐶:  

(4.8)  𝑇𝐶𝑡
𝛾

= 𝑇𝐶/𝛾𝑡,  
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where 𝛾 = 1 + ∆𝑡𝑀 is a scalar used to adjust the value of 𝑇𝐶, ∆𝑡𝑀 is the discrete time interval 

between potential treatment dates. If insect treatment is postponed t times, treatment cost savings 

are B𝑡
𝑇𝐶 = 𝑇𝐶 − 𝑇𝐶𝑡

𝛾
. In the option model, this is a benefit of waiting to treat. For example, if the 

treatment occurs 14 weeks after the previous treatment, that treatment cost is divided by 

(1+1/26)7 to get a treatment cost per year, since there are 26 two-week intervals in a 52-week 

year, and 7 two-week intervals in 14 weeks. 

4.2.5 Economic threshold  

The economic threshold 𝐸𝑇 can be defined as the insect population at which the 

economic loss caused by this population exceeds the cost of control: treatment cost, 𝑇𝐶, is 

compared to expected economic loss from insect infestation, E[𝐷(𝐸𝑇)]. If TC ≤ E[𝐷(𝐸𝑇)], 

treatment is conducted. If 𝑇𝐶 > E[𝐷(𝐸𝑇)], treatment is not conducted. Hence 

(4.9)  𝑇𝐶 = E[𝐷(𝐸𝑇)] = 𝐿 ∗ 𝜗(𝐸𝑇) = 𝑝 ∗ 𝑄 ∗ 𝜃𝑡𝐸[𝐸𝑇2],  

 𝐸𝑇 = √
𝑇𝐶

𝜃𝑡𝑝𝑄
. 

 

 To find the static economic optimal treatment time, the 𝐸𝑇 is compared with estimated 

daily insect population. The date at which insect number 𝐸(𝐼𝑡) exceeds the threshold 𝐸𝑇 is the 

optimal treating date.   

4.2.6 Real option models 

 Several scenarios with alternative specifications of real option models are described 

below in order to meet the following objectives:  
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Objective 1).  Determine the value of deferring insect treatment using a real option 

approach instead of making an immediate decision by economic threshold criteria. 

Option to defer insect treatment  

In this scenario, insects grow from the last treatment until the time at which it reaches the 

economic threshold. The economic threshold treatment date is the selected at current time that 

conventionally managers make an instant decision about insect treatment. The result of the 

decision includes treat or not to treat by economic threshold.  

Nevertheless, instead of making that instant decision, the option model uses a single step 

binomial tree to forecast the possible outcomes two weeks later. With this option, the results then 

include treating insect at current time, treating insect later or not to treat at all. This option is an 

opportunity but not an obligation for an insect treatment. Holding this option allows us to keep 

the opportunity to treat, waiting until a later time when we can make a better decision based on 

the information available then about possible later outcomes.    

Last treatment t0  t1  

 

 

 

 

 

 

Figure 4.8 Binomial model for a single-step option model of the insect treatment problem 

 

April 21 

October 21 
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Binomial trees (Figure 4.8) will be mainly used to accomplish this objective because a 

binomial tree displays alternative possible outcomes. The trees can provide sufficient information 

because the weather path before the selected starting point is objective, and the potential up and 

down moves to the next time is conditionally normally distributed. Assuming the last treatment 

occurs on April 21 or on October 21. Individual temperature paths from the Monte Carlo 

simulations, where each individual path represents one particular possible weather movement, are 

randomly chosen. 

 

Objective 2). Determine the value and optimal time to treat insects. 

Optimal timing to treat insects  

In this scenario, we collect information about weather and insect population as early as 

immediately after the last treatment until an appropriate ending time. We hold an option to treat 

insects, which can be exercised at any step during this given time interval. Once we exercise the 

option, the option is no longer available and the problem ends. If we do not exercise the option 

and hold it, this option become useless at maturity. This is a multi-time American (Bermudan) 

option with which the decision to treat or not can occur at any of the discrete time steps. The 

decision is made by comparing the cost of waiting and the cost of treating of each time step (as in 

Figure 3.5). The value of the option is defined by equation (3.33) and equation (3.34). 

The maturity is set up as two weeks after the treatment date from the economic threshold 

model, which allows it to exercise insect treatment at any time from last treatments to the 

economic threshold treatment date. In addition, the maturity is set up as one year from last 

treatment, which allows it to make a decision about treatment during a whole year. 
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In this procedure, both binomial tree and Monte Carlo simulations are used. Binomial 

process allows it to trace all the possible outcomes along the tree. Monte Carlo simulations 

simulate a large sample size of weather paths. The methods as described above are used to value 

the option by comparing the cost of waiting and the cost of treating at each time step. The mean 

result from all the individual estimations is the expected option value among all possible 

outcomes (equation (3.9)).  

 

Objective 3). Determine the effect of timing flexibility on the value of an option for insect 

treatment. 

Optimal stopping model (for expiration date) 

This scenario relaxes the assumption about the fixed maturity time to determine the effect 

of timing flexibility on the value of option for insect treatment. Imagine managers can choose the 

optimal expiration date of an option to treat insects that they own. This optimal expiration date is 

the date when the option has the highest value based on equation (3.36). From the time this 

expiration date is chosen, the manager evaluates every two weeks whether to exercise the option 

or not, using equations (3.33) through (3.35). This represents the optimal time to treat. 

Figure 3.7 shows several possible points of maturity. For each maturity 𝑇𝑛, insect 

treatment decision must be completed by 𝑇𝑛 or the opportunity is lost forever. Thus, for each 

maturity, the option is an American option in which the manager can treat insects by comparing 

the cost of waiting and the cost of treating at each time step from the last treatment until the end. 

𝑇𝑛∗ is the optimal expiration date, this date is chosen by comparing the cost of treatment 

and the cost of  waiting, which are calculated using equations (3.33) and (3.34). Among the 

different maturities, dynamic programming is used to determine the maximum value among the 
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option values, as in equation (3.36) that determines 𝑇𝑛∗. Once 𝑇𝑛∗ is chosen, the method described 

under objective 2, “optimal timing to treat insects”, is used to determine the optimal exercise, or 

treatment date.  

The difference between the optimal stopping model and the timing option model is that 

the optimal stopping model determines the optimal maturity, while the timing option model 

determines the optimal time to treat insects before maturity. For a European option, the optimal 

stopping model and the timing option may be the same. However, since the option to treat insects 

is an American option and it allows early exercise, the optimal stopping model and the timing 

option model are different and both models can work together to make a decision. After the 

optimal maturity date from optimal stopping model is chosen, the optimal time to treat insects can 

be estimated using the timing option model from time zero up the optimal maturity date.  

In order to test the sensitivity of these results to initial damage cost specification, the 

same procedures are conducted for probabilities of damage equal to 1/100 of the initial 

probability, and for probabilities 100 times the initial probability.  

4.2.7 Total costs for the optimal decisions 

Based on the treatment decisions from optimal timing real option models and the 

economic threshold model, total costs, including treatment cost and damage loss, are evaluated 

from equation (3.1). The cost from real option models and the cost from the economic threshold 

model are compared to determine which model results in lowest cost decisions. 

This study focuses on the timing decision of only one treatment. There will be zero or 

one treatment during the time period, based on an optimal timing option model. Since reducing 

frequency of treatments can reduce total treatment costs over a period of time, this savings is 

calculated by adjusting the treatment cost according to how soon after the previous treatment a 
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new treatment is required. This is done by multiplying the treatment cost times a scalar that 

normalizes the treatment frequency, as in equation (4.8).  

The potential damage is measured four different ways. First, damage is based on insect 

population at the optimal expiration date from the optimal stopping model. This insect population 

reflects growth after the optimal treatment and before expiration. The damage cost is calculated 

using the damage loss equation, equation (4.5), and annualized using equation (4.8). A second 

way is to estimate the potential damage immediately after treatment. In this situation, the 

potential damage should be zero because insect treatment can kill almost all the adult insects. A 

third way is to estimate the maximum damage that has occurred during the time from the last 

treatment to the optimal expiration date. A fourth way is to estimate the maximum damage that 

has occurred during the time from the last treatment to the optimal treatment. The damage costs 

and treatment costs under each method are annualized by multiplying the costs by 26/t, where t is 

the number of two-week time intervals between the last treatment and the optimal treatment. 
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CHAPTER V 
 

 

RESULTS 

 

5.1 Weather process 

Table 5.1 displays the results of the coefficient estimation from the AR(1)-

gjrGARCH(2,1) model for the deseasonalized and detrended daily average temperature in Alva, 

Oklahoma.  The deseasonalized and detrended weather is assumed to be a zero-mean Ornstein-

Uhlenbeck (OU) process, and the intercept is zero as expected. The coefficient of the AR(1) term 

is 0.7 and is statistically significant. The heteroscedasticity and ARCH terms in the variance are 

significant. The variance is significantly autocorrelated in first and second lags.  

Table 5.1 AR(1)-GARCH(2,1) Model for The Deseasonalized and Detrended Daily Average 

Temperature in Alva, Oklahoma from 1999 to 2017 

Variable Coefficient Std. Error t-statistic P-value 

Mean      

Interception -0.00 0.13 -0.01   0.99  

AR(1) 0.70 0.01 76.07 0.00*** 

Variance     

Constant 4.66 1.11 4.20 0.00*** 

ARCH(1) 0.17 0.03 6.37 0.00*** 

ARCH(2) 0.16 0.05 3.37 0.00*** 

GARCH(1) 0.46 0.11 4.41 0.00*** 

Asymmetry term (1) -0.14 0.03 -4.61 0.00*** 

Asymmetry term (2) -0.16 0.04 -3.65 0.00*** 

Sine of one year cycle 0.85 0.14 3.19 0.00*** 

Cosine of one year cycle 2.61 0.63 4.13 0.00*** 
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 Figure 5.1 to Figure 5.3, shows the simulated temperature paths, the resulting simulated 

insect numbers and potential damage costs. The left graphs are from April 21 and the right graphs 

are from October 21. The dotted line is the mean of all the simulations. The temperature values 

(Figure 5.1) vary around the seasonal mean, especially so at the coldest temperatures.  

  

Figure 5.1 Simulated mean reverting biweekly temperature from April 21 and October 21 

  

Figure 5.2 Simulated insect population based on simulated mean reverting biweekly temperature 

 

Figure 5.3 Simulated potential damage based on simulated mean reverting biweekly temperature 
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 After a treatment on April 21, simulated insect population (Figure 5.2) expands rapidly 

around the middle of July. If no treatment is conducted, the rapidly expanding population results in 

large potential damage (Figure 5.3). Insect population starts to decline when temperatures become 

cool in October. However, the population declines only to about 40 insects/floor. Thus, potential 

damage stays high until it starts to drop around December. Then when temperatures start warming, 

insect population again expands rapidly. 

After a treatment on October 21, insect population begins to expand rapidly around the end 

of March, which is a more delayed expansion compared to the period after treatment on April 21 

due to the cooler weather. Accordingly, potential damage expands around the same time. Since the 

temperature stays high for the rest of the year, insect population expands to very high values and 

does not decrease. Therefore, potential damage keeps increasing without any treatment.  

Treating insects at the time of rapid population expansion is likely too late to avoid 

substantial economic damage.  Given the model parameters assumed here, insect population above 

10 insects/floor may potentially cause significant loss. Typically, managers would have treated 

before that, avoiding substantial damage loss. 

 

5.2 Economic threshold 

Following an economic threshold model, the treatment date is where the expected damage 

first exceeds the treatment cost. From equation (4.9), the economic threshold (ET) varies with 

time. Figure 5.4 presents the relationship between time and the economic threshold insect number. 

The graph is the simulated ET without considering the benefit from decreasing treatment 

frequency. 
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Figure 5.4 Economic threshold (ET) insect number with and without considering benefit from 

decreasing treatment frequency  

 

The value of ET decreases with time as expected. Since the time interval considered here 

is two weeks, depending on the rate of growth of insect population, the gap between insect 

population from one observation until two weeks later can be large, so the economic threshold 

condition 𝑇𝐶 ≤ 𝐸[𝐷(𝐸𝑇)] holds but it may not lay in the trigger where 𝑇𝐶 ≈ 𝐸[𝐷(𝐸𝑇)] 

empirically. 

Table 5.2, shows the average optimal result using empirical historic temperatures in the 

economic threshold model. After the last treatment on April 21, the temperatures are potentially 

high during the summer. As a result, the next treatment is necessary on July 28, which is 14 weeks 

after the last treatment. The weather reaches 27.870C on July 28 and the insect population is 90 

insects/floor, averaging over the time period 1999-2017. The calculated ET is 2.34 insects/floor, 

which indicates that damage just exceeds the treatment cost on July 28. 
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Table 5.2 Results from Economic Threshold Model 

Categories Values 

Last treatment April 21 Oct 21 

Treatment date July 28 March 23 

Weeks after last treatment 14 22 

Weather (oC) 27.87 10.16 

Insect population (insects/floor) 90 10 

ET (insects/floor) 2.34 2.01 

 

If the last treatment occurred on October 21, temperatures fall through the winter, staying 

low until late spring the following year.  As a result, the next treatment is not required until 22 

weeks after last treatment, on March 23. The temperature reaches 10.16oC and the insect 

population is 10 insects/floor, averaged over the time period. The calculated ET is 2.01 

insects/floor, which indicates that damage just exceeds the treatment cost on March 23. 

The temperature and insect population at the time of treatment when the last treatment 

occurred on October 21 is lower than the values of temperature and insect population at the time of 

treatment when the last treatment occurred on April 21, as expected. Treatment is required even 

though both values are low because the longer insects stay in the facility the higher the probability 

that damage will occur. As a result, although insect population is low, it causes a large potential 

loss due to its duration. 

Figure 5.5 summarizes the results of identifying each year’s optimal date of insect 

treatment based on the economic threshold using historical data. The arrows point out the week of 

the of treatment date averaged over the 19 years.  
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Figure 5.5 Empirical counts for the treatment dates based on economic threshold 

 

When the last treatment occurred on April 21, the date of insect treatment varies across 

years, with a range from July 14 to July 28. The average over all years was July 28, although, less 

than half of the years had a treatment date before July 28. When the last treatment occurred on 

October 21, the date range is even wider, from February 24 to April 20, with an average date of 

March 23. This shows the possibility that in any given year the economic threshold treatment date 

might differ from the average. This suggests the possibility that a real option approach might be 

valuable because it takes into account probabilities of differences in temperature and insect 

population outcomes.  

 

Objective 1).  Determine the value of deferring insect treatment using a real option approach 

instead of making an immediate decision by economic threshold criteria. 

 

5.3 Option to defer insect treatment 

The starting points, t0, as shown in Figure 4.8, are selected based on the information on 

the optimal treatment date from the conventional economic threshold models. When the last 
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treatment occurred on April 21, the starting points of interest are July 14 and 28, while when the 

last treatment occurred on October 21, the starting points of interest are March 9 and March 23. t1 

is one step (two weeks) later. The comparison of the results from the economic threshold model 

and a single period real option model can answer the following questions: 

1) If insect population in a particular year does not reach the economic threshold 

criterion (ET) at the historical average economic threshold treatment date, instead of 

making a decision to not treat insects, is there any incentive to hold this opportunity as 

an option to wait until later to make the decision? 

At the economic threshold treatment date, if insect number does not reach the ET, the 

economic threshold approach does not signal treatment.  A real option model, however, gives other 

possibilities. Figure 5.6 displays a temperature path under which the insect population does not 

reach to the ET. 

 

  

  

 

  

Figure 5.6 Weather path in which insect population does not reach the ET (10 insects/floor) on 

March 23 from last treatment on October 21 

 

Under this particular temperature path starting from the last treatment on October 21, 

insect population grows to 1.41 insects/floor on March 23. The potential damage is $1,608.46. 

Compared to the treatment cost on March 23, which is $ 21,711, the economic threshold approach 

indicates that no treatment should occur. If the problem were to end here, the cost would be a 

damage cost of $1,608.46. However, if the problem continues, by not treating, potential damage 

Weather 7.20 

Rn Prob. 8.93% 

Insect 0.45 

Damage 1608.46 
Weather Insect Number Damage 

25.37 2.54*1013 5.69*1030 

-5.49 0.00 0.00 
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cost might increase if insect population grows before the next decision point two weeks later, on 

April 6. 

With a real option approach, though, the manager can be thought of as holding an option to 

treat at a future time, say two weeks later on April 6, instead of the problem ending on March 23. 

In the example presented in Figure 5.6, the temperature increases to 25.37oC with a risk-neutral 

probability 8.93% and decreases to -5.49oC with a probability 91.07%. If temperature increases, 

the result would be significant potential damage that exceeds the treatment cost on April 6, so the 

decision indicated is to treat with a cost of $21,711. If temperature decreases, the potential damage 

does not exceed the treatment cost, and the decision concludes with a decision to not treat, with a 

cost of zero.  

Thus, an option to treat later results in an expected cost of 
21711

𝑅𝑓
∗ 8.93% +

0

𝑅𝑓
∗

(1 − 8.93%) = $1,762.54, taking into account the potential damage cost two weeks later. In 

contrast, the expected cost without an option to treat insects on April 6 is 
𝟓.𝟔𝟗∗𝟏𝟎𝟑𝟎

𝑅𝑓
∗ 8.93% +

0

𝑅𝑓
∗

(1 − 8.93%) + 1,608.46 = $4.61 ∗ 1029, a very large loss.  Thinking of the decision in this way 

– holding an option to treat later, compared to making a decision on March 26 and not considering 

later treatments – helps to illustrate the value of holding an option to treat later. If insect population 

does not reach the ET at a particular evaluation date, the economic threshold model may 

underestimate the cost of not treating, whereas a real option model may suggest treating at that 

time because the probabilities of future damage loss are evaluated. Therefore, a real option 

approach may help to protect from a huge potential loss. 

2) If insect population exceeds the ET earlier than the historical average economic 

threshold treatment date, should insect treatment occur immediately based on the 

economic threshold concept, or is there any incentive to wait until later to make the 

decision? 
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When insect population reaches to ET, it indicates that insect treatment should occur. 

However, the real option model may provide other possibilities if the temperature drops in the 

following days and the insect population is thus reduced significantly by nature. Figure 5.7 

displays a temperature path under which insect population reaches the ET earlier than the 

economic threshold treatment date. 

 

 

  

  

 

  

 

 

 

 

 

 

Figure 5.7 Weather paths under which insect population reaches the ET (10 insects/floor) 

earlier than the economic threshold treatment date 

 

The upper graph in Figure 5.7 shows a temperature path from last treatment on April 21. 

Temperature increases continually so that insect population grows to 2.49 insects/floor on July 14. 

The potential damage is $27,273.94. Compare to the treatment cost on July 14, which is $ 21,711, 

the economic threshold model indicates that treatment should occur, and the problem ends with a 

total cost of $21,711, the treatment cost.  

Weather Insect Number Damage 

38.47 3.38*104 5.88*1012 

20.17 1.69 14,656.80 

Weather 29.06 

Rn Prob. 0.49% 

Insect 2.49 

Damage 27,273.94 

Weather Insect Number Damage 

29.20 6.96*1012 3.92*1029 

-2.04 0.00 0.00 

Weather 10.96 

Rn Prob. 11.32% 

Insect 2.09 

Damage 32,140.94 



89 
 

With a real option approach, the manager can consider treating two weeks after July 14 

instead of on July 14. In effect, the manager can be modeled as having an option to treat on July 

28. The temperature may increase to 38.47oC with a very low risk-neutral probability 0.49% and it 

may decrease to 20.17oC with the probability 99.51%. If temperature increases, it may result in 

significant potential damage that exceeds the treatment cost on July 28. The manager chooses to 

treat with a cost of $21,711. If temperature decreases, the potential damage is lower than the 

treatment cost on July 28, so the manager chooses to not treat insects, incurring a damage cost of 

$14,565.80 on July 28.  

The cost of waiting to treat later (holding an option to treat later) results in an expected 

cost of 
$21,711

𝑅𝑓
∗ 0.49% +

$14,565.80

𝑅𝑓
∗ (1 − 0.49%) = $32,295.42. This is a higher cost than 

treating the insects on March 28 ($21,711), so holding the option to treat later is not worthwhile. 

The lower graph in Figure 5.7 shows a weather path from last treatment on October 21. 

Insect population grows to 2.09 insects/floor by March 9. The potential damage is $32,140.94. 

Compared to the treatment cost on March 9, which is $21,711, the economic threshold model 

indicates that insects should be treated, with a total cost of $21,711. 

If there is an option to treat two weeks later on March 23, the temperature increases to 

29.20oC with a risk-neutral probability 11.32% and it decreases to -2.04oC with a probability 

78.68%. If temperature increases, it causes significant potential damage that exceeds the treatment 

cost on March 23. The problem concludes with a decision to treat at a cost of $21,711. If 

temperature drops, the potential damage does not exceed the treatment cost, so the problem 

concludes with a decision to not treat insects, with a cost of zero.  

The expected cost of waiting to treat later (holding an option to treat later) is 
$21,711

𝑅𝑓
∗

11.32% +
0

𝑅𝑓
∗ (1 − 11.32%) = $2,234.26. Compared to treating on March 28 at a cost of 
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$21,711, holding the option to treat later saves some cost because there is a chance that treatment 

will not be required.  

From the results, we conclude that an option to defer insect treatment may be worthwhile 

because it might save treatment cost. If the optimal timing is located in a season when temperatures 

are increasing, the occurrence of potential damage is more certain. Deferring insect treatment 

increases the total cost due to likely future damage. If the optimal timing is located in a season with 

decreasing temperatures, there are chances that potential damage may not occur and that treatment 

will not be required. Therefore, total expected cost may be reduced. 

 

Objective 2). Determine the value and optimal time to treat insects. 

 

5.4 Optimal timing to treat insect 

The timing option is an American option model which allows the early exercise at each 

node between the starting time and maturity. The problem is assumed to start from the last 

treatment, either April 21 or October 21, through multiple steps along time to the end. The steps 

are biweekly. Based on the result from the economical threshold, the maturity, T𝑛 is set to be T𝑛 =

8 steps (16 weeks) from the last treatment on April 21, to be T𝑛 = 12 steps (24 weeks) from the 

last treatment on October 21, and to be T𝑛 = 26 steps (52 weeks), one year from either treatment 

date.  

Table 5.3 summarizes the result of the option values based on different maturity settings, 

with the methods of both binomial pricing model (BP) and Monte Carlo valuation (MC). The 

option values are $11,798.84 for binomial pricing and $21,711 for Monte Carlo valuation from last 

treatment on April 21. The maturity time August 11 allows any treatment after April 21 until July 
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28. The option values are -$4,140 for binomial pricing and $20,194.53 for Monte Carlo valuation 

from last treatment on October 21. The negative number means there is some benefit of postponing 

treatment. The maturity time on April 6 the next year allows any treatment after October 21 until 

March 28. 

Table 5.3 Option Values Based on Different Maturities 

No. 

Option 

Value 

Last 

treatment t Maturity date Decision 

Estimation 

methodc 

1 $11,798.84 April 21 8 August 11 June 30 to end BP 

2 $21,711.00 April 21 8 August 11 b MC 

3 -$4,410.00 October 21 12 April 6a  December 16 to end BP 

4 $20,194.53 October 21 12 April 6a b MC 

5 $21,711.00 April 21 26 April 19a  b MC 

6 $21,711.00 October 21 26 October 19a b MC 
a. It goes to the next year. b. These are the mean results, results from individual paths vary. c. BP is binomial pricing model and MC is Monte Carlo 

valuation 

 

Extension of the maturity means that the opportunity to treat insects lasts longer. When the 

maturity time is extended until one year later, the option values are $21,711 for both cases 

(compare No. 2 and No. 5 in Table 5.3). Compared with the results when the maturity dates are set 

to the date selected by the economic threshold model for last treatment on April 21, the option 

value does not change. This result indicates that the decision about insect treatment would likely 

have already been made before the economic threshold selected date. Therefore, no matter how 

long the maturity is extended, the results are the same. In contrast, when the last treatment date is 

October 21, and maturity is extended to one year, the option value increases from $20,194.53 to 

$21,711 (compare No. 4 and No. 6 in Table 5.3). This indicates that holding the option until up to 

one year is more valuable than holding the option until up to 12 weeks. 

Comparing the option values between the two starting points, the value of holding insect 

treatment starting from April 21 is higher than when starting from October 21, as expected. The 

weather from April to September is warmer than from October to March, and is more likely to 
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result in damage. Holding an option after April 21 can potentially save more damage cost than 

holding the option after October 21. 

Figure 5.8 shows intrinsic value, timing value and the option value on the timing options 

for those given time ranges based on the mean from the simulated weather paths. Since the values 

vary over a wide range, the lines are plotted on a logarithmic scale. The dotted lines are the 

intrinsic values, which indicate the cost of exercising the option. The solid lines are the option 

values. The arrows between the two lines show the time values. As both intrinsic and the option 

value increases, time value decreases. When time value becomes zero, there is no difference 

between the intrinsic and the option value. Therefore, it is time to treat insects. 

  
 

a.  April 21 – August 11                                                       b. October 21 – April 6 next year 

 

 

  
 

c.  April 21 – April 19 next year                                   d. October 21 – October 19 next year 

 

Figure 5.8 Intrinsic and time value for timing options for different given time ranges.  
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If we compare the left two graphs (a and c), time value goes to zero at the same market 

value; the difference between them is that the option value and intrinsic value are the same for a 

longer time period in a one year range. This corresponds with the option values from Table 5.3, in 

which No. 2 and No. 5 have the same values, but No. 5 has a maturity date several months later, 

April 19 of the following year. Comparing the right two graphs (b and d), time value is retained 

longer in d because there may be economic reason to treat insects later than with the economic 

threshold treatment date. If we compare the left graphs with the right graphs, the option retains 

time value longer when the last treatment was on October 21 than when the last treatment was on 

April 21. The time value of the option to treat insects may last longer from October 21 than from 

April 21, because temperatures stay lower after October 21, giving more possibility that no 

treatment is needed. 

Table 5.4 and Table 5.5 show the parts of the results from binomial pricing model from the 

mean reverting binomial process of temperature. The horizontal separation line in each column 

indicates that above the lines are the upward moves from values in the previous column (the 

column to the left) and below the lines are the downward movements. The cells with shades and 

light color are the outcomes that will not be reached by the properties of mean reversion. The cells 

in bold font show that there is no time value remaining, indicating the optimal time to treat insects.   
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Table 5.4 Binomial Process of the Option Value from Last Treatment on April 21 
21-Apr 5-May 19-May 2-Jun 16-Jun 30-Jun 14-Jul 28-Jul 11-Aug 

0 1 2 3 4 5 6 7 8 

11798.84 11811.91 13195.57 16046.74 21711.00 21711.00 21711.00 21711.00 2.81E+58 
 11781.04 12585.15 13800.40 19187.25 21711.00 21711.00 21711.00 1.79E+47 
  12500.03 13458.88 18873.22 21711.00 21711.00 21711.00 2.33E+45 
  13306.05 14884.49 17208.58 21711.00 21711.00 21711.00 7.24E+33 
   14774.01 20075.59 21711.00 21711.00 21711.00 1.73E+49 
   14473.74 16797.83 21711.00 21711.00 21711.00 1.14E+37 
   15658.26 17982.35 21711.00 21711.00 21711.00 6.88E+33 
   12611.27 14935.36 17977.49 21711.00 21711.00 6.00E+20 
    18369.30 21711.00 21711.00 21711.00 3.91E+44 
    16124.40 21711.00 21711.00 21711.00 2.61E+33 
    15239.42 20548.78 21711.00 21711.00 3.45E+31 
    14935.35 17977.47 21711.00 21711.00 1.50E+20 
    17097.95 21711.00 21711.00 21711.00 2.49E+35 
    14935.56 17977.68 21711.00 21711.00 2.03E+23 
    14935.35 17977.47 21711.00 21711.00 1.43E+20 
    10535.92 13578.05 17311.61 21711.00 3.05E+06 
     21711.00 21711.00 21711.00 5.01E+45 
     21711.00 21711.00 21711.00 3.32E+34 
     21711.00 21711.00 21711.00 4.38E+32 
     17977.51 21711.00 21711.00 1.80E+21 
     21711.00 21711.00 21711.00 3.17E+36 
     17977.94 21711.00 21711.00 2.50E+24 
     17977.51 21711.00 21711.00 1.71E+21 
     13578.05 17311.62 21711.00 9.01E+08 
     21271.28 21711.00 21711.00 7.41E+31 
     17345.10 21711.00 21711.00 6.64E+20 
     13663.13 17396.67 21711.00 9.83E+18 
     13578.05 17311.61 21711.00 7.81E+06 
     17977.61 21711.00 21711.00 5.78E+22 
     13578.10 17311.67 21711.00 1.63E+11 
     13578.05 17311.61 21711.00 7.48E+06 
     -13173.51 -9439.95 -5040.55 1.53E-02 
      21711.00 21711.00 3.42E+46 
      21711.00 21711.00 2.25E+35 
      21711.00 21711.00 2.96E+33 
      21711.00 21711.00 1.17E+22 
      21711.00 21711.00 2.15E+37 
      21711.00 21711.00 1.66E+25 
      21711.00 21711.00 1.12E+22 
      17311.62 21711.00 4.69E+09 
      21711.00 21711.00 5.01E+32 
      21711.00 21711.00 4.32E+21 
      21711.00 21711.00 6.30E+19 
      17311.62 21711.00 1.38E+09 
      21711.00 21711.00 3.80E+23 
      17311.72 21711.00 9.17E+11 

continued… 
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Table 5.5 Binomial Process of the Option Value from Last Treatment on October 21 
21-Oct 4-Nov 18-Nov 2-Dec 16-Dec 30-Dec 13-Jan 27-Jan 10-Feb 24-Feb 9-Mar 23-Mar 6-Apr 

0 1 2 3 4 5 6 7 8 9 10 11 12 
-4140.38 -4327.49 935.50 2921.38 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 2.02E+289 

 -3890.93 -3339.27 -3102.75 3312.40 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 1.47E+262 
  -4625.57 -2290.29 645.88 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 1.35E+243 
  -930.12 648.32 3590.89 3967.18 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 2.33E+208 
   2513.94 -29.43 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 2.40E+231 
   -841.49 1734.60 5166.93 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 5.01E+198 
   -4779.35 -2455.26 -65.93 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 3.93E+183 
   9023.16 11347.25 14389.38 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 4.49E+153 
    5245.06 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 2.09E+225 
    -778.68 1284.32 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 5.81E+197 
    -137.41 4584.12 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 1.93E+187 
    -128.49 2913.63 5936.17 21711.00 21711.00 21711.00 21711.00 21711.00 1.57E+161 
    6643.70 12528.83 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 2.34E+192 
    -499.78 2542.35 5384.32 21711.00 21711.00 21711.00 21711.00 21711.00 7.15E+166 
    -7153.51 -4111.38 -377.82 5043.18 21711.00 21711.00 21711.00 21711.00 8.60E+155 
    1730.70 4772.83 8506.39 12905.79 21711.00 21711.00 21711.00 21711.00 4.77E+120 
     21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 1.30E+232 
     6318.21 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 1.76E+198 
     3685.61 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 6.08E+181 
     8031.10 13080.58 21711.00 21711.00 21711.00 21711.00 21711.00 2.88E+150 
     3009.98 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 2.51E+177 
     4528.63 8262.20 21711.00 21711.00 21711.00 21711.00 21711.00 5.56E+148 
     1977.08 5710.65 11608.23 21711.00 21711.00 21711.00 21711.00 2.56E+137 
     -3280.58 452.98 4852.38 10437.87 21711.00 21711.00 21711.00 5.12E+110 
     8254.58 21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 8.77E+184 
     2839.35 6288.38 21711.00 21711.00 21711.00 21711.00 21711.00 1.71E+159 
     -1957.31 1776.25 6841.08 21711.00 21711.00 21711.00 21711.00 8.69E+149 
     1926.88 5660.44 10059.84 16819.36 21711.00 21711.00 21711.00 6.29E+122 
     -134.41 3599.16 8600.30 21711.00 21711.00 21711.00 21711.00 2.67E+144 
     6780.75 10514.32 14913.71 21711.00 21711.00 21711.00 21711.00 4.61E+109 
     -6222.92 -2489.35 1910.04 6950.61 21711.00 21711.00 21711.00 1.03E+92 
     -5236.94 -1503.37 2896.02 7936.59 13594.58 21711.00 21711.00 2.27E+59 
      21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 1.27E+222 
      21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 1.46E+192 
      21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 5.34E+179 
      7439.49 21711.00 21711.00 21711.00 21711.00 21711.00 1.48E+152 
      21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 2.27E+182 
      7944.18 21711.00 21711.00 21711.00 21711.00 21711.00 1.84E+156 
      1094.24 6168.41 21711.00 21711.00 21711.00 21711.00 5.97E+146 
      1442.71 5842.10 11649.54 21711.00 21711.00 21711.00 1.82E+121 
      21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 2.79E+194 
      2538.79 21711.00 21711.00 21711.00 21711.00 21711.00 1.55E+159 
      5563.81 11612.66 21711.00 21711.00 21711.00 21711.00 4.43E+140 
      10294.01 14693.41 21711.00 21711.00 21711.00 21711.00 5.97E+106 
      14479.08 21711.00 21711.00 21711.00 21711.00 21711.00 9.52E+130 
      12271.11 16670.50 21711.00 21711.00 21711.00 21711.00 4.51E+99 
      4291.31 8690.70 13731.27 21711.00 21711.00 21711.00 8.58E+85 
      -1540.78 2858.62 7899.18 13557.17 21711.00 21711.00 2.02E+57 
      21711.00 21711.00 21711.00 21711.00 21711.00 21711.00 8.30E+175 
      9946.27 21711.00 21711.00 21711.00 21711.00 21711.00 1.66E+149 
      3452.16 8779.21 21711.00 21711.00 21711.00 21711.00 2.24E+139 

continued… 

 

One of the advantages of the binomial process is the ability to trace all the outcomes over 

time. Starting from the last treatment on April 21 (Table 5.4), the first treatment time is June 30 if 

temperatures continually increase, indicated by the bold cost of treatment, $21,711. Starting from 

the last treatment on October 21, the first treatment time is December 30 if temperatures 

continually increase, again indicated by the bold cost of treatment, $21,711. If temperatures remain 

very low, no treatment is necessary until the option is expired. If temperatures are between the two 

possible, some nodes show a possible treatment and some do not.   
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Objective 3). Determine the effect of timing flexibility on the value of an option for insect 

treatment. 

 

5.5 Optimal stopping model  

Figure 5.9 shows the effect of timing flexibility on the value of an option for insect 

treatment. The dotted line represents option values with different maturities from last treatment on 

April 21. The solid line represents option values with different maturities from last treatment on 

October 21.  

 

 

Figure 5.9 The effect of timing flexibility on the value of option for insect treatment 

 

The results show that the optimal length of time to hold an option to treat insects is until 

July 28 when starting from the last treatment on April 21, which is the same as the optimal 

treatment date from the economical threshold model. The results from the binomial pricing model 

shown in Table 5.4 suggest that insect treatments could start June 30, depending on the weather 

path. Holding the option until July 28 permits June 30 as a possible exercise date. It does not allow 
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exercise on July 28, which is the last possible treatment date shown in the binomial model in Table 

5.4. 

Starting from the last treatment on October 21, the results show that the optimal length of 

time to hold an option to treat insects is until May 18, which is two months later than the economic 

threshold treatment date. This result, as part of the procedure for choosing optimal maturity date, 

means that on average, treatments that need to occur will happen before May 18. Thus, there is no 

need to hold this option later than May 18.  

Comparing these results to the economic threshold treatment date, when the last treatment 

occurred on April 21, the optimal stopping model indicates holding the option to treat insects for a 

shorter time, to an earlier date than the economic threshold treatment date, July 28. This drives the 

treatment earlier, primarily because of the very high cost of the potential damage. When the last 

treatment was on October 21, though, the optimal stopping model indicates holding the option for 

a longer time, to a later date than the economic threshold treatment date, March 23. The lower 

temperatures may result in lower potential damage, increasing the value of holding the option 

longer.  

When starting from the last treatment on October 21, the optimal stopping model indicates 

holding the option to treat insect to a later date than the economic threshold optimal treatment time. 

Treatments may be necessary after March 23 (the economic threshold treatment date), up until 

May 4. As a result, the economic threshold model may indicate to treat too early, which 

unnecessarily increases treatment cost.  

Figure 5.10 shows the effect of timing flexibility on the value of an option for insect 

treatment with different potential damage values. The upper graph shows the case in which 

potential damage is increased by increasing the probability of the occurrence from 0.008 to 0.8 and 
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the lower graph is the case in which the potential damage is decreased by decreasing the 

probability of the occurrence from 0.008 to 0.00008.  

 

 

 

a. Increase the potential damage by increasing the probability of the occurrence 

 

 

 

b. Decrease the potential damage by decreasing the probability of the occurrence 

Figure 5.10 The effect of timing flexibility on the value of option for insect treatment with 

different potential damage values 

 

 Increasing the potential damage cost pushes the opportunity of insect treatment expired 
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the potential damage cost results in a later optimal expiration date. However, the magnitudes of the 

date shifts are different. During a high temperature range, the optimal time to hold the opportunity 

extends until six weeks if the potential damage decreases, since a treatment is more likely to be 

needed if it has not already occurred, while during a low temperature range, the optimal time to 

hold this opportunity extends only two weeks because a treatment is less likely to be needed.  

 

5.6 Total costs for the optimal decisions 

Table 5.6 displays the annualized total cost for the insect treatment decisions from optimal 

timing option models and the economic threshold model. The costs of treatment decisions from 

optimal timing option models are lower than or equal to the costs of treatment decisions from the 

economic threshold model, under both warm and cool temperature trends, under several alternative 

ways of measuring damage cost.  

Table 5.6 Annualized Total Cost for the Insect Treatment Decisions from Optimal Timing 

Option Models and the Economic Threshold Model 

Damage 

Last 

treatment 

Economic 

threshold model 

Real option 

model 

Insect rebound ending 

time 

Rebound damage April 21 66,033 66,033 14 weeks from last treatment 

October 21 18,105 15,371 30 weeks from last treatment 

Zero damage April 21 66,033 66,033 Immediately after treatment 

October 21 24,689 19,071 Immediately after treatment 

Maximum  damage April 21 776,515 732,967 14 weeks from last treatment 

October 21 155,407,674,210 590,242,575 30 weeks from last treatment 

April 21 776,515 732,967 Immediately after treatment 

October 21 211,919,555,741 657,125,668 Immediately after treatment 

 

 The “Rebound damage” way calculates insect damage cost based on insect population 

after it rebounds from the optimal treatment up until the date specified by the optimal stopping 

model, which is 14 weeks from the last treatment on April 21 and 30 weeks from the last treatment 

on October 21. From last treatment on April 21, the costs of threatment decisions from real option 
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models and the economic threshold model are the same, which indicates that both models lead to 

similar decisions about the treatment dates. From last treatment on October 21, the costs of 

treatment decisions from the real option models are lower by $2,734 ($18,105 minus $15,371).  

The “Zero damage” way calculates insect damage cost based on insect population 

immediately after the optimally-timed treatment. Since the treatment has just occurred, there 

should be no measurable economic damage loss from the remaining insect population. Using this 

calculation, from the last treatment on April 21, the costs of treatment decisions from real option 

models and the economic threshold model are the same. From the last treatment on October 21, 

however, the costs of treatment decisions from the real option models are lower by $5,618 

($24,689 minus $19,071). 

For both of these ways of calculating insect damage loss, the calculated damage loss is 

relatively low, and the difference in cost between the economic threshold model and option models 

results from a savings in treatment costs using the option models. Option models make better 

decisions in that some treatments may be later than those indicated by the economic threshold 

model, without risking much damage loss.  

A third way of calculating damage loss is to base it upon the maximum insect population 

that occurs during the entire time of the decision, from a starting date of April 21 or October 21 

until the problem stops, whether this maximum population occurs before the optimal treatment or 

after.  

Concerning about the maximum damage that has reached during the given time, the cost 

increases due to the damages, especially under the cool weather. The maximum damage could be 

whichever is greater from the potential damage before conducted treatment, which indicates too 

late to treat insects or could be the rebound damage after the treatment at the ending point, which 

indicates early treatments.  
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The damage information in the costs of real option decisions may be mainly from an insect 

rebound because real options may conduct early treatments than the economic threshold decisions. 

The increasing value of the total cost according the insect rebound ending time changes from on 30 

weeks to immediately after treatment confirms this result because the increasing annualized scalar 

results in a higher total cost. 

The damage information in the costs of economic threshold decisions may contain both the 

insect rebound and the too late to treat. In some years (temperature paths), early treatments allow 

insect rebound afterwards until the ending points while in some other years, too late treatments 

foregoes a significant damage loss. Therefore, the costs are so high compare to the costs from real 

option decisions. 
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CHAPTER VI 
 

 

CONCLUSIONS AND DISCUSSION 

 

6.1 Conclusions  

This study evaluated the value of an option for insect treatment to help managers make 

decisions about the optimal timing to treat insects. Daily temperature, which is the main source of 

uncertainty about insect population and the corresponding potential damage loss, was used as the 

stochastic variable. 

A real option model measures the value of an opportunity but not the obligation to treat 

insects, and can help in several ways. First, an option to defer insect treatment can protect from 

the cost of failing to control insects. When the static decision indicates to not treat according to 

the economic threshold concept, results show that a high potential damage loss may occur later. 

An option to defer treatment (treat later) measures the value of having the opportunity to treat 

later, which protects from this potential loss.  

Second, an option to defer insect treatment can help make a better decision and reduce 

treatment cost. When the static decision indicates that it is necessary to treat insects according to 

the economic threshold concept, options measure the value of other possibilities. If temperature 

drops at a later time, insects may die and the potential damage will decrease, and no treatment is 

needed because insects are controlled by nature.
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This conclusion reflects one of the benefits of adopting a real options framework for 

decision making. The option models consider future states and these future states may influence 

the current decision. Since it contains more information, the decision from the option model may 

be better and give different or even contrasting decisions than a static model.  

 Third, for decisions about optimal timing, a real option model to treat insects suggests 

that the best treatment time may be earlier or later than the economic threshold treatment date. If 

temperature tends to increase after the last treatment, the option model suggests that it is best to 

hold the option for to treat insects until the same week as the economic threshold treatment date. 

Within that time period, the optimal treatment date may be 2 weeks earlier than the date indicated 

by the economic threshold model.  

If temperature remains low after the last treatment, the option model suggests that it is 

best to hold the option to treat insects to a later date than the economic threshold treatment date. 

Within that longer time period, the optimal treatment time may be 2 weeks earlier or 4 weeks 

later than the economic threshold date. The total cost of the decisions based on real option models 

are less than or equal to the cost of the decisions based on economic threshold models. 

In the models used here, the hypothetical potential damage loss is very high even though 

the probability of the occurrence is low. Since a real option model values the opportunity to treat 

insects later, future high potential damage cost increases the current value of the option.  

High potential damage cost is a major factor that drives the optimal treatment date earlier 

than the economic threshold results. With lower potential damage costs, the optimal date moves 

later especially under warm weather. With higher potential damage cost, the optimal date moves 

earlier  

Binomial trees list many possible paths when temperature goes up or down.  Results from 

the binomial pricing models and the results from the Monte Carlo valuations are similar but not 
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completely the same. Monte Carlo integration simulates a large number of samples, so that 

average results are based on many probability-adjusted possible outcomes. Therefore, Monte 

Carlo integration may be a more appropriate method to evaluate the value of options for insect 

treatment. However, it is hard to trace the information about the decisions on insect treatment at 

each time step when using Monte Carlo integration. In contrast, binomial trees display the 

possible early exercise dates, although it simplistically considers only two possible movements, 

up or down for each node. Therefore, although it might give different option valuations, the 

binomial process may be more appropriate for decision making about timing of insect treatment. 

In addition, we found a real option model may provide better decisions about insect 

treatment than an economic threshold model under conditions including risk. To the extent that 

possible outcomes are more certain, the advantage option models may be smaller. The cost 

advantage of a real option decisions over an economic threshold decision is larger under cooler 

temperature trends, and smaller under warmer temperature trends. 

 

6.2 Discussion 

This study used temperature as the stochastic variable and assumed a deterministic 

relationship between temperature and insect population and as well as between insect population 

and damage cost. However, in practice the situation may be more complicated. A future extension 

of this study can relax the deterministic relationships for a more complex structural model. One 

way to do this is to add a stochastic relationship between temperature and insect population. 

Thus, even if temperature is constant, insect population could vary, conditional on some 

distribution. Similarly, immigration rate could vary, or there could be a stochastic relationship 

between insect population and the probability of the occurrence of potential damage. 
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 This study used a published computer simulation model (Flinn et al. 2010) to estimate 

the insect population. The advantage of this method is that the primary data input to the model is 

temperature, data for which can be easily obtained, and the growth model has been calibrated to 

empirical data. However, there may be other ways, including empirical data from insect 

monitoring, to model insect population and its relationship to measures of insect cost.  

 In addition, this study mainly focused on one insect treatment decision after the previous 

treatment. However, additional insect treatments may be necessary because of insect rebound. 

Thus, further studies could build a sequential timing option model, where the decision about first 

insect treatment timing will consider the possibility of subsequent treatments. Then, with a 

sequential timing option model, the decision about the frequency of insect treatment may be more 

reliable. 

 A difficulty with building a sequential timing option model is that the potential damage 

rebound from treatment may not be linearly related to time. Option values are calculated 

backwards using dynamic programming. However, the rebound damage for the later treatment 

decision will determined by the optimal timing from the last treatment. Few studies have 

considered this kind of application using a real option model. Successfully completing that will 

be provide a more useful tool for decision making in insect control problems, and would 

contribute to the literature.  
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