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Abstract:  

 

Allergy occurs when the immune system overreacts to allergens. Worldwide, up to 

40% of the population suffers from different types of allergies. In severe cases, allergic 

reactions can lead to death. Therefore, determining the factors that are involved in the 

development of an allergic immune response is critical. Mast cells (MCs) are the 

foremost inducers of allergic responses, but their role in the initiation of the response is 

not well understood. Due to the effect of the extracellular matrix components on the 

tissue morphogenesis and cell behavior, utilizing a tissue model that closely mimics MC 

microenvironmental conditions in vivo has greater relevance for in vitro studies. 

Therefore, our goal was to develop a tissue-engineered model to determine the role of 

MCs in orchestrating an immune response by investigating the interaction between MCs 

and monocytes in response to an allergen, and the corresponding effect on lymphocyte 

function in an IgE-independent manner. The tissue-engineered model is comprised of two 

separate modules that together recapitulate an allergic response. In the first module, MCs 

were generated from progenitor cells in the presence of fibroblasts and endothelial cells. 

Endothelial cells are involved in leukocyte recruitment during inflammation and, along 

with fibroblasts, support the development of MCs. Generated cells within the tissue 

model exhibited MC morphology, immunophenotype, and released histamine in IgE-

mediated reactions, showing typical MC functional phenotype in immediate-type 

allergenic responses. Monocytes, in response to the allergen-activated model, 

differentiated into CD1c+ cells, displaying immunophenotypic characteristics of dendritic 

cells. However, MCs mitigated the effect of the allergen on the development of CD1c+ 

cells and marginally influenced the expression of the molecules required for T cell 

activation. In the second module, monocyte-derived cells triggered the proliferation of T 

and B cells. MCs indirectly induced the emergence of IgE-producing plasma cells 

indicating that MCs can play a role in the initiation of an allergic response. In addition to 

investigating the mechanism of an allergic response, the tissue-engineered model can be 

used as a tool for personalized diagnosis of allergies, testing the effect of drugs for 

allergy treatment, and for studying other inflammatory disorders, such as asthma and 

angiogenesis. 
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CHAPTER 1 
 

 

Introduction 

 

 

 

1.1.  Background and significance  

Allergic disorders are among the most common chronic diseases. Worldwide, environmental 

factors causes sensitization in 40% of the population [1]. In the U.S., more than 50 million people 

(more than 20% of the population) suffer from allergy, which placed it as the sixth leading cause 

of chronic diseases, costing $18 billion annually for health care [2]. Furthermore, 10.3% and 

12.1% of children under age 18 suffer from respiratory and skin allergies, respectively [3]. In 

severe cases, such as in food-related anaphylaxis and asthma, allergic reactions can cause 

unconsciousness and at least hundred death annually [4, 5]. Skin and blood tests are widely used 

for allergy diagnosis but their usefulness is limited by the possibility of severe reactions and lack 

of sufficient accuracy and reliability. The common occurrence, morbidity, and health care costs 

associated with allergic reactions signify the importance of determining the key factors that 

regulate an allergic response, which can lead to better diagnostic and therapeutic strategies.  

Reaction of the immune system to certain substances known as allergens results in  the 

activation of specific white blood cells and an inflammatory response. The overreaction or 

hypersensitivity of the immune system is called allergy, which causes symptoms, such as 

coughing, sneezing, runny nose, and in sever e cases hives, dermatitis, and asthma.



2 
 

Major classes of allergens include a variety of food and non-food proteins, such as peanuts, 

wheat, latex; and environmental factors, such as dust or pollen [6]. In addition, genetic factors 

may make a person more susceptible to allergy. Previous genome screens showed linkages of 

genes on several chromosomes to atopic diseases [7]. The candidate genes on these chromosomes 

play roles in the release of mediators and cell surface receptors that are related to high IgE levels. 

For example, the genes related to interleukin (IL)-4 release are present on chromosome 5; while 

the genes for the FcεRI β chain receptor are present on chromosome 11[8].  

Currently, skin and blood tests are the only widely diagnostic tests used for evaluating 

allergies. A skin test can be performed in two ways: percutaneous (skin prick) and intracutaneous 

(intradermal). In skin prick testing, the potential allergen is seeped into the skin surface 

(epidermis) by using needles or skin scratchers. In the intradermal method, the allergen is injected 

deeper into the dermis. The skin reaction is measured by wheals and flares, and the intensity is 

compared to the controls [9, 10]. In blood tests, the total and/or specific IgE titers against a 

specific allergen is measured [11, 12].  

The existing diagnostic tests carry significant disadvantages. Skin tests are prone to false 

results due to the effect of existing medications, quality and concentration of the allergen being 

tested, season of the year, site of the test on the body (variations between the back and forearm), 

and interpretation of the results [13]. In addition, it carries a serious possibility of anaphylaxis 

[14]. Blood tests are less sensitive, prone to false results and are more expensive [15, 16]. In 

addition, blood tests merely detect the presence of an allergen-specific antibody, which may not 

coincide with an actual clinical allergic response from a skin test.  

Other tests for evaluating allergy are histamine release and basophil activation tests, which 

are not widely available. In these tests, the release of histamine or the upregulation of a cell 

surface activation marker by basophils (isolated from leukocyte preparations of the patient) is 

measured after challenge with an allergen [17, 18]. These tests are prone to false results 
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associated with the lack of sensitivity of the isolated basophils, are not predictive, and are also 

limited by the low viability and function of the basophils [19].   

Table.1.1. Differences between human and animal mast cell (MC) function [20].  

Feature Murine MCs Human MCs 

Protease content 

Several tryptase and chymases with 

different specificities (such as mouse 

MCP1-MCP14) and β-hexasaminidase 

Three tryptases (α, β and γ); 

one chymase 

Functional IL-3 receptor 

expression 
High Not detected from long cells 

IL-4 production 
Spontaneously released and to a 

greater extent after stimulation 
Not produced spontaneously 

IL-5 production 
Low or has not been studied 

quantitatively 
High 

TNF production High 
Mucosal subtype produce low 

levels 

Constitutive FcγRI 

expression 
High Low or needs activation 

CD14 expression Moderate positive expression Not detected 

Functional TLR 

expression 
High 

Not detected or low 

expression depending on the 

cell source and culture 

condition 

FcγRI: high affinity receptor for IgG; IL: interleukin; MCP: mast-cell protease; TLR: Toll-like receptor; 

TNF: tumor-necrosis factor.  

In order to have better strategies for allergy diagnosis and treatment, understanding the 

mechanism of development of the disease is necessary. Several in vivo animal models have been 

used to evaluate the dermal responses to an allergen or IgE levels in serum. Valuable information 

can be obtained from animal models about the mechanism of the disease. However, the reaction 

of animal models is not always identical to the human response. For instance, low concentrations 

of some antigens (chemicals) do not cause sensitization in some animals (like the guinea pig) as is 

the case for humans [21]. Also, the kinetics of the response might differ between human and 

animal bodies. For example, mouse models do not show spontaneous airway hyperresponsiveness 

and do not respond to histamine [22]. Furthermore, there are significant functional differences 

between human and animal cells, i.e. mast cells (MCs), as is shown in Table.1.1 [20]. For 

example, cell phenotype, cytokine release, degranulation, and response to mediators in murine 

models do not mimic human cell function [23].    
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Understanding of the difficulties associated with studying allergic inflammation in human are 

facilitated by using in vitro tissue models. Currently, there are no tissue-equivalent type model with 

the complexity of features, such as a blood endothelium, activation of MCs, monocyte 

differentiation to antigen presenting cells, and antigen presentation to lymphocytes that results in 

antibody production. Therefore, the goal of this project was to create a tissue model to mimic the 

main events of an allergic response by using human samples. The model is comprised of a collagen 

gel to mimic a layer of connective tissue and the cells that reside in connective tissue and play a 

role in the development of an allergic response (Fig. 1.1). Analyzing the cellular interactions in 

such a complex co-culture system is an improvement in studying the cellular behavior during 

allergic inflammation.   

 

Fig. 1.1. Connective tissue-equivalent model. The model is comprised of collagen gel and the 

cells that play a role in the development of an allergic response.  

1.1.1. Allergic inflammatory response development 

After first contact with an allergen, activated lymphocytes produce a specific antibody that 

recognizes a unique part of the foreign target, called an antigen. Hence, immunity is acquired by 

establishing immunological memory, which causes a more rapid and effective response after the 

subsequent exposures to the same allergen. The subsequent exposure causes the release of 

proinflammatory mediators by immune cells, leading to the cell recruitment to the site of 

Endothelium 

Connective tissue 

Endothelial cells 

Cells in collagen 

gel 

Well of a culture plate 
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challenge and ultimately redness, itchiness, swelling of the body, and other symptoms of an 

allergic inflammatory response [24].   

Multiple cell types are involved in the formation of an adaptive immune response. Activated 

endothelial cells (ECs) express chemoattractants and adhesion molecules that cause the migration 

of the immune cells to the site of challenge. Dendritic cells (DCs) process and present antigens to 

T cells that carry specific receptors for each antigen. B cells produce IgE antibody after 

interaction with the antigen and activated T cells. MCs have receptors for the IgE antibody and 

release the content of their granules after activation, which affects the function of more immune 

cells [25].   

The IgE-mediated reaction is called type-I hypersensitivity, which is divided into three major 

phases. During the sensitization phase, after the initial contact of the antigen, the IgE antibody 

associates with high-affinity IgE receptors that are expressed by MCs. In the activation phase, the 

second contact of the antigen results in cross-linking of the antigen with the IgE receptors, the 

degranulation and release of mediators, such as histamine from MCs. The response of MCs forms 

the activation phase that results in an inflammatory response in the effector phase, in which 

complex responses are caused by other cell types. Since the reaction occurs within a short time 

after the challenge, type I hypersensitivity is also called immediate hypersensitivity [25]. In this 

research, the role of MCs in the sensitization phase and in response to an allergen in the activation 

phase was studied. 

1.1.2.  Mast Cells (MCs) as central effector cells of an allergic immune response 

MCs are important cell type in pathogenesis of allergy, as these cells are among the foremost 

inducers of an allergic response [26]. MCs are derived after their progenitors, which are 

circulating in blood, migrate into the tissue, differentiate and become mature [27]. MCs are 

abundant near surfaces exposed to the external environment, including the skin, gastrointestinal 
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tracts, respiratory organs and also present in secondary lymphoid organs and adjacent to blood 

vessels and the nervous system [28, 29]. Two MC subtypes; MCT, which contains tryptase 

cytoplasmic granules and MCTC, which contains tryptase and chymase cytoplasmic granules; 

reside in intestinal mucosa, skin, and submucosa [30]. Accordingly, MCs are positioned to be 

among the first cells (like DCs and macrophages) that interact with invading pathogens or 

allergens. As shown in Fig. 1.2, activated MCs secrete diverse mediators, such as histamine, 

cytokines, and proteases, which cause rapid vascular permeability, leading to leukocyte 

recruitment to the site of challenge [20]. Although MCs are known to play a role in the formation 

of type I hypersensitivity, their role in the initiation of an adaptive immune response is not well 

understood.  

In conventional models, MC activation is dependent on IgE production, which occurs after an 

adaptive immune response is initiated. After the contact of DCs with an allergen, T cells are 

primed by antigen presentation of DCs in the lymph nodes through expression of MHC-II, co-

stimulatory and adhesion molecules, and upregulation or downregulation of mediators (IL-10 and 

IL-12), inducing T cell proliferation and differentiation to the Th2 cell subtype [25, 31, 32]. Th2 

cells release specific cytokines (IL-4, IL-5, IL-13) and express receptors (CD40L), which 

promote B cells to undergo antibody class switching to produce the IgE, eventually resulting in 

humoral immunity [25, 33, 34]. Later, the IgE binds with FcεRI receptors expressed by MCs and 

develop a stable antigen receptor, which causes MC sensitization. The subsequent exposure to the 

same allergen triggers the antigen receptor and MC activation. However, several other studies 

suggest that MCs can cooperate in the initiation of the adaptive immune response by affecting 

DCs, T or B cells, as shown in Fig. 1.3 [26]. By releasing mediators and expressing diverse 

receptors and co-stimulatory molecules, MCs can amplify and sustain the specific-IgE synthesis, 

directly through influencing T and B cells in the lymph node, or indirectly by exerting an effect 

on DCs in the connective tissue. 
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Fig. 1.2. Mast cell (MC) mediators can affect the function of various cell types [20]. FGF: 

fibroblast growth factor; IL: Interleukin; LTC4: Leukotriene C4; PGD2: Prostaglandin D2; TGFβ: 

transforming growth factor-β; TNF: tumor necrosis factor; TReg cell: CD4+ CD25+ regulatory T 

cell; VLA4: very late antigen 4.  

Several MC mediators, such as TNF, PGD2, IL-4, and mainly histamine can influence IL-10 

and IL-12 production by DCs, enhance expression of MHC-II and co-stimulatory molecules on 

DCs, favor DC migration to the lymph node, and affect T cell mediator release and polarization to 

Th1 (cell-mediate immunity) or Th2 type (humoral immunity) [31, 32, 34-40]. By expressing 

MHC-II, co-stimulatory and adhesion molecules, MCs can act like DCs, migrate to lymph node, 

and present antigens to T cells [41-43]. MCs by expression of CD40L and secretion of IL-4 and 

IL-13 can induce B cell class switching to IgE production in the absence of T cells [33, 44]. 

However, for initiating the immune response and exerting an influence on other immune cells and 

lymphocytes, MCs should become activated by an allergen before IgE production. It is 
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hypothesized that allergens can activate MCs in an IgE-independent manner. In this work, by 

determining the role of MCs in orchestrating the adaptive immune response, the validity of the 

hypothesis was evaluated.  

 

Fig. 1.3. Mast cells (MCs) can act at multiple sites to regulate adaptive immune response [26]. 

(A) MCs can be activated by an allergen and alter DC maturation and function. (B) In the lymph 

node, MCs can directly or indirectly modulate T cell fate. (C) Activated Th2 cells, in conjunction 

with the allergen, can stimulate allergen-specific B cells and promote B cell isotype switching to 

IgE. (D) Allergen specific IgE binds to MC receptors and causes MC degranulation after the 

subsequent exposure to the allergen. 

In most of the mentioned studies, the effect of MC mediators was determined after addition 

of the mediators to the immune cells in the absence of MCs. The T cell-MC and B cell-MC 

interactions were studied by using in vivo animal models or in vitro two-dimensional (2D) cell 

systems, which mostly use animal cell lines. Although valuable information is obtained from 

studying MCs in 2D culture systems, neither of the previous models mimicked the human body. 

The 2D system is adequate for showing the cell behavior under various environmental factors; 

however, the 2D system cannot be used to examine multiple cell interactions and migration that 

are observed in vivo. A 3D tissue model consisting of human cells and a collagen matrix provides 

the added dimension for the control of many cellular mechanisms, such as MC and DC 
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interaction in the connective tissue. The investigation of human MCs within a 3D environment in 

this project, which is more similar to human physiology, expands the knowledge in MC function 

and role. 

1.1.3. Mast cell (MC) origin and development 

The addition of MCs to the tissue model is key to studying the allergic immune response. 

MCs are difficult to isolate from in vivo and maintain in vitro. Since MCs do not circulate in 

blood, there is no good source for fully mature MCs. MC precursors migrate through the blood 

system to the tissue and differentiate into the MCs. MCs can be obtained from tissue sections or 

intestinal mucosa provided from patients, but the isolated cells are low in number, do not survive 

in long-term culture systems, might undergo transformation, and do not function normally [45, 

46]. In the presence of appropriate growth factors, MCs can be differentiated from their 

progenitors in vitro. MC progenitors can be isolated from various sources, such as bone marrow 

and peripheral blood [47-49]. Previous studies have investigated different cell types, such as 

mesenchymal cells, plasma cells, leukocytes, muscle cells, and T-lymphocytes as MC precursors 

[50-52]. Later, it was demonstrated that MCs can be derived from hematopoietic progenitors in 

bone marrow by developing MCs from transplanted bone marrow cells in mice [53]. 

Kirshenbaum et al. showed that CD34+/c-kit+ cells are precursors of human MCs [54].  Several 

other studies confirmed that MCs can be generated from progenitor cells in the presence of 

growth factors derived from T lymphocytes (IL-3, IL-6, IL-4, IL-9, and IL-10) and fibroblasts 

(SCF) [47, 48]. MC progenitors can also be obtained from various sources, such as bone marrow, 

fetal liver cells, umbilical cord blood, and peripheral blood. Irani et al. derived immature MCs 

after culturing fetal liver and cord blood cells with murine fibroblasts for four weeks in a 

lymphocyte conditioned media [55]. In the absence of fibroblast or lymphocyte conditioned 

media MCs cannot be developed.  
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CD34+ and CD133+ progenitor cells are chief sources for generating MCs in vitro. Saito et al. 

developed MCs from CD34+ cells isolated from cord blood and studied the effect of cytokines, 

such as SCF, IL-6, and IL-3 on MC proliferation for 8-10 weeks [56]. In the presence of SCF, IL-

6 and PGE2, MCs were mature, contained histamine and tryptase, and released histamine in 

challenge with IgE and anti-IgE. Mature MCs can also be developed from CD34+ cells isolated 

from peripheral blood in the presence of several growth factors added to the culture media at 

different time points [57]. The development of MCs from CD133+ cells, which include the CD34+ 

subset of progenitors, was performed by several researchers through isolating CD133+ cells from 

cord blood or peripheral blood [58, 59]. Comparison of the MC generation from CD133+ cells 

obtained from cord blood and peripheral blood shows that cells derived from peripheral blood 

were more mature and active because of higher histamine content and release after activation 

[60]. Several studies determined the effect of co-culture systems on the MC behavior and 

function. It was shown that direct interaction of adhesion molecules on ECs and c-kit receptor on 

MCs regulates MC development [61]. Fibroblasts can contribute to MC survival by releasing 

SCF and also through interaction of membrane SCF on fibroblasts and c-kit ligand on MCs [62-

64]. Based on the mentioned studies, for this research, MCs were generated from CD133+ cells 

isolated from peripheral blood mononuclear cells cultured for seven weeks in the presence of 

cytokines, fibroblast and ECs that contribute to MC development.  

1.1.4. Goal and specific aims 

In this project, the goal was to develop a tissue-engineered model to determine the role of 

MCs in orchestrating an immune response. The first objective was to develop a tissue model that 

mimics a layer of human connective tissue. The model comprised of diverse cell types, such as 

ECs, fibroblasts, and immune cells, which are required for investigating the factors that regulate 

inflammation. The second objectives was to determine the role of MCs in development of the 

immune response by interacting with monocyte-derived cells. The tissue model used in this 



11 
 

research, consisted of the following two separate modules that together mimic an immune 

response to an allergen: the allergen contact site (ACS) and the lymph node site (LNS). As shown 

in Fig. 1.4, after activation by an allergen in the sensitization phase of the ACS, MCs release 

mediators and interact with DCs. DCs take up the antigen and migrate to the lymph node. In the 

LNS, MCs can indirectly influence T cell response type. Activated Th2 cells interact with B cells 

and promote isotype switching to IgE. The allergen-specific IgE binds to the FcεRI receptor on 

MCs in the activation phase of the ACS. After subsequent exposure to the allergen and antigen 

receptor trigger, MCs degranulate and release proinflammatory mediators. 

 

Fig. 1.4. Advanced allergy tissue model development. Mast cells (MCs) in the allergen contact 

site (ACS) are exposed to the allergen. In the sensitization phase of the ACS, allergen-activated 

MCs interact with dendritic cells (DCs) that induce lymphocyte proliferation and polarization in 

the lymph node site (LNS). Figure adapted from Sabban, 2011 [65].  
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To achieve the goal of this research, the ACS and the LNS were created and characterized to 

measure the response of the model to an allergen. Therefore, the following aims were completed: 

1. Create the allergen contact site (ACS) and characterize the activation phase of the ACS.  

1.1.  Create the ACS: The type of media that supported MC development and ancillary 

cells was determined. Then, MC progenitors were cultured in a 3D matrix along with 

fibroblast and ECs. The samples were incubated for seven weeks in a supplemented 

media until analysis. 

1.2.  Characterize the ACS under non-inflammatory conditions: To confirm the 

development of MCs, the morphology and immunophenotype of the generated cells 

were determined under normal conditions and compared with characteristics of in 

vivo MCs.   

1.3.  Characterize the activation phase of the ACS: The MC function was examined after 

challenge with human IgE and anti-IgE, which resembles the response of the model 

to an allergen. In order to investigate the response of the model to an allergen, the 

ACS was examined after exposure to dust mite allergen in an IgE-dependent manner. 

Serum of an allergic patient was used to passively sensitize the generated MCs.  

2. Characterize the sensitization phase of the allergen contact site (ACS). The monocytes 

were added to the ACS and the immunophenotype of the monocyte-derived cells was 

determined. The model was used to test the hypothesis that an allergen can induce MC 

activation in an IgE-independent manner and MCs via interaction with monocyte-derived 

cells can play a role in the initiation of the response.   

3. Create and characterize the lymph node site (LNS) in response to monocyte-derived cells 

from the allergen contact site (ACS). T and B cells were cultured in a 3D matrix along 

with monocyte-derived cells from the ACS. The response of the model was determined 

by characterizing T cells and measuring the IgE production by B cells. The response of 
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the LNS to monocyte-derived cells defined the role of MCs in orchestrating the immune 

response. 

1.1.5. Significance and broader impact 

This study complements previous human and animal models by creating a complex 3D in vitro 

system that included multiple cell types for mimicking connective tissue. The development of MCs 

in such a complex system advances the study of MC behavior in vitro specifically in allergic 

responses. The model can be applied to determining the mechanism of initiation and development 

of allergic responses at a molecular level, as well as studying other inflammatory or inflammatory-

related diseases, such as asthma, fibrosis, and angiogenesis that involve the connective tissue-

resident cell types. Furthermore, due to including the immune cells that are responsive in the skin 

test and specific antibodies that are assessed in the blood test, the developed tissue model is a 

combination of the allergy skin test and blood test. Since the model is comprised of immune cells 

of blood samples from the patient, it can be optimized and considered as an improved patient-

specific allergy test. In addition, the model has the potential to change the way pharmaceutical 

companies test and develop therapies against allergens.  
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CHAPTER 2 
 

 

Development of Human Mast Cells from Hematopoietic Stem Cells within a 3D Collagen Matrix: 

Effect of Stem Cell Media on Mast Cell Generation 

 

2.1.  Introduction 

Release of preformed mediators and expression of diverse molecules have placed mast cells 

(MCs) among the foremost inducers of allergic responses and regulators of innate and adaptive 

immunity [66, 67]. MCs are abundant in tissue near surfaces exposed to the external environment, 

and their number and distribution change markedly during immune responses [68-70]. During 

immunoglobulin E (IgE)-dependent responses, crosslinking of the FcεRI/IgE complexes leads to 

MC activation and degranulation of a wide range of bioactive products, including histamine [67]. 

The mediators increase vascular permeability and recruit leukocytes to the site of insult, resulting 

in hyperemia and edema, the cardinal symptoms of acute inflammation [20]. MC mediators can 

exert multiple effects, such as extracellular matrix remodeling in fibrosis or degradation during 

early events of angiogenesis, giving them the potential to be involved in the pathogenesis of 

variety of disorders [71-73].  

Although MCs are not normally present in circulation, they can be obtained from progenitor 

cells in the presence of T cell-derived cytokines and fibroblast-derived stem cell factor (SCF) [47-

49]. CD133 and CD34 antigens are markers for primitive progenitor and hematopoietic stem cell 

(HSC) populations [74, 75]. Previous studies have shown that upon treatment with SCF,
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interleukin (IL)-3, and IL-6, CD133+ HSCs isolated from various sources, including cord blood 

and peripheral blood can differentiate into MCs under two-dimensional (2D) culture condition 

[59, 60]. The growth, phenotype, and function of the generated MCs can be altered by the culture 

media supplements [27, 76, 77]. As an instance, addition of serum to the media from the 

beginning of culture can result in a low number of mature MCs with reduced FcεRI expression, 

while its addition at later weeks of the culture period promotes the expression of FcεRI and 

histamine release upon activation [58, 78]. Although generation of MCs under 2D culture 

conditions provided a source for human MC studies, they have been considered as immature MCs 

or “incomplete representatives of mature MCs” due to the lack of an in vivo microenvironmental 

conditions that may affect MC phenotypic and functional characteristics [66, 79]. Since MCs 

mature and interact with other cells within tissue, providing a condition that better mimics the in 

vivo three-dimensional (3D) milieu would be of greater relevance for studying MC responses and 

immunoregulatory roles. In fact, interaction between MC and extracellular matrix components 

can affect MC behavior and influence their biological functions [80]. Therefore, the first 

objective of this study was to demonstrate the generation of MCs within a 3D collagen matrix, 

which provides the conditions for investigating the cellular interactions that is not possible to 

examine within a conventional 2D culture system. 

MCs are located near blood or lymphatic vessels in proximity to fibroblasts that are principal 

cellular component of tissue [79]. Previous studies have shown that the cross-talk between MCs, 

fibroblasts, and endothelial cells (ECs) mediates various physiological and pathological processes 

[81, 82]. Besides the release of growth factors that are essential for MC survival and maturity, 

direct interaction between fibroblasts and ECs can regulate MC development [55, 61, 64]. 

Therefore, incorporation of fibroblasts and ECs into the 3D tissue model allows the transmission 

of similar signaling molecules that HSCs may receive during differentiation into MCs from 

neighboring cells in vivo. However, for creation of such a tissue-engineered model, there is no 
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universal media that support the overall growth of MC precursors and the above-mentioned 

ancillary cells. In fact, selecting appropriate culture media is determinative to the success of a co-

culture system. Since each cell type has specific growth requirements, a suitable media that 

regulates their survival needs to be determined. Previous studies have shown the expansion of 

CD34+ HSCs or their differentiation into MCs by using cytokine-supplemented and serum-free 

media [57, 83-85]. However, most studies with fibroblasts and ECs use media with serum and not 

specific for HSC growth and differentiation [86-88]. Therefore, the second objective of the 

current study was to determine a media that would support the generation of functional MCs from 

HSCs, as well as normal characteristics of fibroblasts and ECs. Having an understanding of the 

effect of culture media on each individual cell type is an important first step needed before the 

development of a co-culture model with multiple cell interactions.  

2.2.  Material and methods 

2.2.1.  Antibodies and reagents 

M199 and StemPro®-34 SFM culture media were purchased from Life Technologies 

(Carlsbad, CA). HPGMTM and StemSpanTM SFEM cell culture media were purchased from Lonza 

(Walkersville, MD) and STEMCELL Technologies (Vancouver, Canada), respectively. Human 

SCF, IL-6, and IL-3 were purchased from ProSpec (Rehovot, Israel) or PeproTech (Rocky Hill, 

NJ). Defined HyClone fetal bovine serum (FBS) was purchased from GE Healthcare Life 

Sciences (Logan, UT). Human fibroblasts treated with mitomycin C were purchased from Merck 

Millipore (Billerica, MA), while human umbilical vein ECs were purchased from PromoCell 

(Heidelberg, Germany). Anti-human fluorochrome-conjugated CD117/c-kit (clone 104D2), 

FcεRI (clone CRA-1), CD31 (clone WM59), and their isotype controls, Ms IgG1 (clone MOPC-

21), Ms IgG2b (clone MPC-11), were purchased from BioLegend (San Diego, CA). Anti-human 

fluorochrome-conjugated CD90 (clone 5E10), its isotype, Ms IgG1 (clone MOPC-21), and mouse 

anti-human tryptase (clone AA1) were purchased from Abcam (Cambridge, MA). Mouse anti-
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human chymase (clone B7) and the secondary antibody goat anti-mouse IgG1 were from 

Chemicon (Temecula, CA) and Santa Cruz Biotechnology (Dallas, TX), respectively.  

2.2.2. Cell Culture 

2.2.2.1. Hematopoietic stem cell (HSC) culture 

CD133+ cells were obtained from human peripheral blood mononuclear cells (PBMCs). 

PBMCs were isolated from fresh leukocyte preparations (obtained from the Oklahoma Blood 

Institute; Oklahoma City, OK) by the Ficoll-Paque density separation method (GE Healthcare; 

Pittsburgh, PA). CD133+ cells were isolated from PBMCs using a magnetic separation kit 

(MACS Miltenyi Biotec; Bergisch Gladbach, Germany).  

CD133+ cells were cultured and differentiated within a 3D collagen gel. For this, 2 mg/ml 

collagen solution was prepared by modification of a previous protocol [89] using 64.5 vol% of 

3.1 mg/ml type-1 bovine collagen (Advanced BioMatrix, Carlsbad, CA), 8.1 vol% 10X M199, 

13.3 vol% 0.1 N NaOH, and 14.1 vol% PBS. CD133+ cells were mixed with the collagen solution 

(5.1 ×105 cells/ml) and added to the cell culture plates. Following gel formation (45 min), media 

were added to the samples and the samples were incubated for seven weeks with media changes 

once a week. Media were supplemented with human SCF (100 ng/ml), IL-6 (50 ng/ml), and IL-3 

(1 ng/ml) for the first three weeks of culture. The CD133+ cells were monitored weekly and 

characterized on the seventh week of culture. In order to study the effect of serum on the growth 

and differentiation of CD133+ cells, FBS (10%, v/v) was added at three different time points: (i) 

from the day of seeding until the end of the seventh week (Ser1-7), (ii) on the seventh week only 

(Ser7), and (iii) the first, second, and seventh week (Ser1,2,7). In all cases, media was changed 

once a week.  

2.2.2.2. Fibroblast and endothelial cell (EC) culture 
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Cell culture plates (24-well, area 1.9 cm2, Greiner BioOne, Monroe, NC) were coated with 

fibronectin (25 µg/ml in phosphate-buffered saline, PBS) for 2 h before cell seeding. Fibroblasts 

and ECs were cultured separately in serum-free StemSpan, StemPro, and HPGM. M199 

containing 1 vol% PSG (penicillin, streptomycin, and L-glutamine) was used as the “standard 

media” [86, 87, 90]. ECs were cultured in media with and without the addition of FBS. Fibroblast 

and ECs were cultured at 35,000 cell/cm2 and 12,000 cell/cm2 density respectively, at 37°C, 5% 

CO2 (defined here as “standard conditions”) with media changes on every other day until 

confluent and ready for testing.  

2.2.3. Characterization of mast cells (MCs) 

2.2.3.1. Yield and granule formation 

In order to determine the number of generated viable cells, the collagen matrix was digested 

after incubation with 2 mg/ml of collagenase D (Roche Applied Science; Indianapolis, IN). The 

harvested cells in the digested solution were counted by a hemocytometer and the number of 

viable cells was determined by trypan blue exclusion. The cell yield was calculated as the ratio of 

the number of viable cells harvested to the number of cells seeded. Cytosolic granule formation 

was determined by Wright-Giemsa staining using an automated stainer (Ames HemaTek Stainer).  

2.2.3.2. Expression of phenotypic markers 

Expression of c-kit and FcεRI was assessed by flow cytometry. After seven weeks of culture, 

the expression of FcεRI was stabilized by incubating the cells for 24 h with myeloma IgE (2 µg/ml, 

Merck Millipore). Following collagenase D digestion of the matrix, the cells were collected, stained 

using anti-c-kit and anti-FcεRI antibodies or relevant isotype controls, and analyzed by flow 

cytometry. Dead cells were excluded by PI staining.  

For immunocytochemical staining of tryptase and chymase granules, the cells were collected 

from the matrix and fixed by using fixation/permeabilization solution kit (BD Biosciences; CA). 
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After incubation with a blocking solution containing 10% goat serum (v/v%, Gibco; CA) for 1 h, 

the cells were incubated with primary antibodies against tryptase or chymase or isotype control. 

Following this, secondary antibody was added, and incubated for 30 min at room temperature. The 

cells were incubated for at least 1 h in the staining buffer containing 0.2% bovine serum albumin 

(BSA), prior to staining with anti-c-kit antibody and analysis by flow cytometry. 

2.2.3.3. Activation and histamine release 

At seven weeks post seeding, the function of the generated cells was examined by crosslinking 

the FcεRI receptors by IgE and anti-IgE antibodies. Activation was performed for cells within the 

matrix and for cells removed from the matrix. Cells were sensitized with 15 µg/ml myeloma IgE 

(Athens Research & Technology; Athens, GA) in complete media for 24 h and rinsed three times 

prior to activation with various concentrations of anti-IgE antibody (Chemicon International; 

Temecula, CA) in Tyrode’s solution (Boston BioProducts; Ashland, MA) supplemented with SCF 

and IL-6 for 1 h. For measuring the cellular histamine, cells were lysed by freeze-thaw cycles in 

water and sonicated for 5 min. Histamine was quantified using a commercial ELISA kit (Labor 

Diagnostika Nord; Nordhorn, Germany). The percentage of histamine release is determined by 

taking the ratio of the total amount of histamine released by the cells to the total histamine content 

initially in the cells. In addition, the spontaneous amount of histamine released by the cells under 

normal conditions was subtracted from the total amount released. For the samples activated within 

the matrix, the total amount of histamine released by the cells is determined by measuring the 

amount of histamine in the media and the gel solution.  

2.2.4. Characterization of fibroblast and endothelial cells (ECs) 

2.2.4.1. Proliferation 

To measure cell proliferation, fibroblasts and ECs were fluorescently labeled with CellTrace 

or CellTracker (Life Technologies) prior to culture. The stained cells were harvested by 
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trypsinization, and the fluorescent intensities were measured by flow cytometry. As cells divide, 

the fluorescent probe is split evenly between the daughter cells and the mean fluorescent intensity 

(MFI) per cell decreases. As a control for non-dividing cells, fibroblasts were stained with 

CellTrace and analyzed before seeding. Dead cells were stained with propidium iodide (PI, Life 

Technologies) [91]. All the cell dyes were used following the manufacturer’s protocols. 

2.2.4.2. Expression of surface receptors and secretion of mediators 

Expression of CD90 by fibroblasts and CD31 by ECs was determined by flow cytometry. 

Trypsinized cells were collected and stained with anti-CD90 or anti-CD31 antibodies or their 

isotype controls (45 min, 4°C). Dead cells were excluded by PI staining. To determine the 

secretion of SCF and IL-6 by fibroblasts and ECs, culture supernatants were collected and 

analyzed by commercial enzyme-linked immunosorbent assay (ELISA) kits (PeproTech).  

2.2.5. Statistical analysis 

Experimental results are expressed as mean ± SD of triplicate samples of one representative 

experiment. One-way analysis of variance (ANOVA) was selected to determine significant 

differences between groups. Tukey or Student’s t-Test was used for pairwise comparison of groups 

or between two groups, respectively. A value of p < 0.05 was considered significant.  

2.2.6. Possible hazard and safety precautions 

All animal- and human-derived materials were purchased from commercial vendors that 

prescreen the products for biological hazards. The personnel conducted the research completed a 

training program for handling the biohazardous materials and working in a biosafety level 2 (BSL-

2) laboratory. Prior to the experiments, all biohazards were identified and biosafety plans were 

prepared and followed. All procedures associated with the work followed “Universal Precautions”. 

Biohazardous materials were disposed according to the guidelines for each waste category. 
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2.3.  Results and discussion 

2.3.1. Effect of culture media on the generation of mast cells (MCs) from CD133+ 

hematopoietic stem cells (HSCs) 

M199, our standard media EC culture that was also used for fibroblasts, either with serum 

added from the beginning or in the last week of culture, did not support MC generation and 

survival, as verified by microscopy, viability, and flow cytometry analyses. From the first week, 

most cells in all the media, except for HPGM (Ser7), formed colonies as a sign of cell generation.  

During differentiation, the morphology of MC progenitors sequentially change, until they 

mature into MCs. Initially, progenitor cells (blasts) have a high nuclear to cytoplasm ratio, and 

then gradually acquire granules that can be stained to form metachromatic blasts. The atypical 

type II MCs (called the promastocytes) have bi- or poly-lobed nuclei, which are oval or 

eccentrically located, and often possess hypogranulated cytoplasm. At the end of the 

developmental stage, the mature, typical MCs are formed, which are round or oval with 

granulated cytoplasm, low nuclear to cytoplasm ratio, and a centrally-positioned, round nucleus 

[92-94]. As shown in Fig. 2.1A, in the seventh week of culture for all the test media, the cells 

were mostly round or oval. Except for a few larger cells in the StemPro (Ser1-7) media, the size 

of the generated cells in all the test media were in range of in vivo MCs (8 – 20 µm) [80, 95]. As 

shown in Fig. 2.1B, the generated cells exhibited metachromatic cytoplasmic granules following 

Wright-Giemsa staining, which is a morphological characteristic of MCs [59]. In StemPro (Ser1-

7), 30% of the cells were hypo-granulated, as shown by the black arrow in Fig. 2.1B. The results 

indicate that the cells generated from the MC precursors in the collagen matrix had the 

morphology of typical, mature and immature MCs, with distinct promastocytic characteristics.  

As shown in Fig. 2.1C, there was no significant difference in cell yields for the media tested 

with serum from the first week of culture. For the media with serum added in the last week, there 

was a significantly greater cell yield in StemSpan compared to StemPro (3.1 ± 0.8-fold, p < 0.05). 
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For StemSpan (Ser7), the number of cells at termination of culture were 2.2 ± 0.1-fold higher 

than that of CD133+ cells initially seeded in the collagen matrix, which is similar to a 2D culture 

system that used the same culture medium and generated 3.2 ± 1-fold that of the seeded cells 

[59]. 

 

Fig. 2.1. Effect of culture media on the morphology, cell yield and granule formation of the 

cells generated from CD133+ hematopoietic stem cells (HSCs) in a matrix after seven weeks in 

culture. A) Micrographs showing the morphology of generated cells in the test media. White 

arrows highlight typical MCs. Black arrow highlights the larger sized MCs found in StemPro 
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(Ser1-7). B) Metachromatic staining of cytoplasmic granules in the generated cells. A few typical 

MCs are highlighted by white arrows. In StemPro, some cells were hypo-granulated, as shown by 

the black arrow. C) Cell yields in the culture media. Cell yield is defined as the ratio of the cells 

collected at the end of the culture period to the seeded cells. D) Histamine granule formation in 

the generated cells. Data are represented as mean ± SD; n=3. * indicates p < 0.05. 

The histamine content of MCs in vivo depends on their anatomic location and subtype. The 

histamine level in MCs varies from 0.8 – 12.5 pg/cell to 0.8 – 5 pg/cell in lung and skin, 

respectively [95-97]. In this work, the differentiated cells in all but StemPro (Ser1-7) and HPGM 

media had similar histamine content to that of in vivo MCs, and varied between 0.6 to 2.3 pg/cell. 

Cells cultured in StemPro (Ser1-7) had lower histamine content (0.28 ± 0.21 pg/cell), as verified 

by the presence of some hypogranulated cells in Wright-Giemsa stained sample. MCs generated 

in StemSpan (Ser7) had significantly greater histamine content compared to all other test media 

(Fig. 2.1D, p < 0.05). The histamine content of the MCs generated in a 2D culture system using 

StemSpan medium was 15.5 ± 5.3 pg/cell [59], which is higher than the histamine content 

observed in the in vivo MCs. However, this was not the case for the MCs generated within the 

collagen matrix using StemSpan medium in this study, with histamine content within the range of 

in vivo observations. 

In addition to morphology and granule formation, immunophenotypical markers are used to 

distinguish MCs from other cell types. MCs, basophils, eosinophils, dendritic cells, macrophages, 

and ECs are known to have common precursor cells [98-101], but these cell types vary in their 

immunophenotype and expression of other markers. MCs, progenitor and HSCs, and ECs all 

express c-kit [102]. HSCs, ECs, eosinophils and cells of monocytic lineages lack histamine 

granules and possess significantly different morphology [103]. Basophils express histamine and 

FcεRI, but previous studies have shown that they do not express c-kit [104, 105]. Out of these cell 
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populations, only mature MCs possess histamine granules and express both FcεRI and c-kit 

receptors, making these the markers useful to define the MC phenotype.  

 

Fig. 2.2. Expression of c-kit and FcεRI by generated cells from CD133+ hematopoietic stem 

cells (HSCs) in a collagen matrix after seven weeks in culture. The figure shows the gating 

scheme (top panel) and representative density plots of the isotype control and expression of 

phenotypic markers (middle and bottom panel, respectively). More than 90% of the cells are 

gated in the bottom left corner of the isotype density plots. The bar graphs show the percentage of 

c-kit expression. Data are represented as mean ± SD; n=3. * indicates p < 0.05. 
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As shown in Fig. 2.2, in the media where serum was added at the first week of culture, there 

was no significant difference in c-kit expression; however there was a 1.6 ± 0.1- and 1.8 ± 0.1-

fold increase in c-kit density (MFI, p < 0.05) for StemSpan and HPGM compared to StemPro, 

respectively. Similarly, for media with serum added in the last week of culture, there was no 

significant difference in c-kit expression, with 1.3 ± 0.2 times more c-kit density (MFI, p < 0.05) 

in StemSpan compared to StemPro. A 2D culture method that used StemSpan media also showed 

a high percentage of c-kit positive cells (88.3 ± 2.2%) [59]. The expression of FcεRI was similar 

for all the test media (10 – 23% on average); however, the FcεRI density (MFI) was 1.4 – 2.3 

times higher (p < 0.01) in StemSpan (Ser1-7) than for the other media. The expression of FcεRI 

was lower in comparison with 2D culture systems that used StemSpan or StemPro media [59, 

106]. Other reports have shown that incubation with IgE antibody modulates the expression of 

FcεRI and can contribute to its detection [107, 108]. For all the test media, IgE was added to the 

cells in the collagen matrix, prior to collecting the cells and measuring FcεRI expression. The 

lower expression could be due to the binding of IgE with the matrix, resulting in less IgE 

available to interact with the matrix-embedded cells, compared to the other system with cells in 

suspension.  

2.3.2. Effect of serum on mast cell (MC) development 

Our results shows that the addition of serum to the culture conditions affected various 

characteristics of the HSC-derived cells, such as morphology, proliferation of HSCs, cell surface 

marker expression, and histamine content of the generated cells (Fig. 2.1 – 2.3). Other studies 

have shown that MCs in serum-supplemented media had multi-lobed nuclei or macrophage-like 

morphology, in contrast with the cells in serum-free media [58, 109]. The results from our work 

also indicate that the timing of adding serum to the culture media can affect the morphology and 

internal structure of the generated cells, which could be related to the stage of cellular 

development. When serum was added in the first two and last weeks of culture, more cells had bi- 
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(30%) or multi-nucleated (10%) morphology in comparison to when serum was added only in the 

last week of culture, with 8% and 2% bi- and multi-nucleated cells, respectively (Fig. 2.3A). 

Furthermore, similar to other serum-supplemented cell cultures [110, 111], the proliferation of 

progenitor cells increased (by 72% for StemSpan media) when serum was added from the 

beginning of culture, compared to the last week, for a seven-week culture period (Fig. 2.3B, p < 

0.05). The results indicate that although serum induces cell proliferation, the addition of serum in 

the beginning of culture can delay the morphologic change from promastocytes to mature MCs.  

 

Fig. 2.3. Effect of serum on cell yield, granule formation, and marker expression of the 

generated MCs in the matrix after seven weeks of culture. A) Metachromatic staining of 

cytoplasmic granules in the cells generated with serum added in the first two and last weeks of 

culture. Some of the generated cells were bi- or multi-nucleated, as highlighted by a white arrow. 

B) Cell yield of generated cells with serum added at different time points. The ratio of cells 
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collected at the end of the culture period to the cells seeded at the beginning of culture was 

reported as relative cell yield. C) Histamine granule formation in the generated cells. D) 

Expression of c-kit by generated cells. In all cases, StemSpan medium was used. Data are 

represented as mean ± SD; n=3. * indicates p < 0.05 between the media tested.  

Moreover, serum appeared to have an inhibitory effect on histamine content. For MCs 

generated in StemSpan and StemPro, the histamine content was more than two-fold higher when 

serum was added in the last week of culture, compared to the beginning of culture (p < 0.05, Fig. 

2.1C). As shown in Fig. 2.3C, when serum was excluded from the culture media after the second 

week, the inhibitory effect of the serum on the formation of histamine granules was mitigated.  

As shown in Fig. 2.3D, compared to samples that contained serum throughout culture, 

excluding serum after the second week enhanced the c-kit expression, verifying that serum 

suppressed MC development. Although the effect of serum on FcεRI expression was not significant 

(p > 0.05), there was a significant increase in the receptor density (1.6 ± 0.2-fold, p < 0.05) on the 

surface of cells cultured in StemSpan (Ser1,2,7) compared to StemSpan (Ser1-7). These results 

show that not only does serum affect the cellular immunophenotype, but the timing of its addition 

can also alter the expression and the density of the cell surface receptors. Previous studies have 

shown that the addition of serum to the media from the beginning of culture reduces the expression 

or the density of c-kit, while increasing the expression of myeloid markers (such as, CD14, CD11b, 

and CD13) [58, 109]. These studies suggested that serum factors can induce the generation of other 

cell types and delay the development of MCs. However, a serum-free media could also result in 

lower FcεRI expression and abolish MC activation [58]. 

2.3.3. Effect of culture media on fibroblasts 
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Fig. 2.4. Effect of serum-free media on fibroblast growth and characteristics. A) Morphology of 

fibroblasts at six days post-seeding in serum-free media. Arrows show some of the typical 

fibroblasts. The rest of the experiments were performed ten days post-seeding. B) Fibroblast yield 

in the culture media. The ratio of the number of collected cells to the number of seeded cells is 

shown as relative cell yield. C(i) and (ii)) Proliferation of fibroblasts in the culture media. Solid 

histogram shows the cells analyzed on the day of seeding (non-dividing cells). D(i) and (ii)) 

Expression of CD90 by fibroblasts in the culture media. Expression of CD90 (open histogram) was 

compared to an isotype control (solid histogram). E) Release of SCF and IL-6 by fibroblasts. In all 

cases, serum-supplemented M199 was taken as the standard cell culture medium. Data are 

represented as mean ± SD; n=3. * indicates p < 0.05 between M199 and the test media. † indicates 

p < 0.05 between the test culture media. 

As shown in Fig. 2.4A, fibroblasts displayed normal, elongated morphology in all the test 

media. The test media are typically not used to culture fibroblasts, but our results indicate that the 

cells show normal morphology in all the media. 

The cell yields varied across the test media (Fig. 2.4B). StemSpan showed a higher cell yield 

(more than two-fold) than StemPro and HPGM (p < 0.05, Fig. 2.4B). As shown in Fig. 2.4C(i), 

cells in all the media divided at least once in comparison with the control, non-dividing cells. The 

MFI of the CellTrace CFSE-stained cells in the test media were higher than M199 (p < 0.05), 

showing lower proliferation. StemPro did not support the proliferation of fibroblasts as much as 

the other test media, as specified by the higher MFI of stained cells (p < 0.05, Fig. 2.4C(ii)). 

Therefore, fibroblasts were more proliferative and higher in number in StemSpan than other 

media tested.  

Fibroblasts cultured in all the test media expressed CD90 (a phenotypic marker of fibroblasts 

[112]), as shown in Fig. 2.4D(i) and (ii). CD90 expression was higher for fibroblasts in StemPro 
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compared to StemSpan and HPGM (p < 0.05). Before seeding, almost all fibroblasts were 

positive for CD90. The lower expression after culture shows that the culture media affected CD90 

expression, which has been shown to be related to their phenotypic heterogeneity [113].  

The release of the cytokines IL-6 and SCF, which are involved in the differentiation of HSCs 

to MCs, was measured for fibroblasts. As shown in Fig. 2.4E, the fibroblasts released IL-6 in a 

media-dependent manner, with more than two-fold higher release for the cells cultured in 

StemSpan, compared to the release from fibroblasts cultured in StemPro and HPGM (p < 0.05). 

The expression of SCF gene by fibroblasts has been shown in previous studies [114] and in this 

work, SCF was released similarly by fibroblasts in all the test media (Fig. 2.4E). These data show 

that fibroblasts can release growth factors, which are necessary for the development and survival 

of MCs. The concentrations of IL-6 and SCF in the fibroblast culture media were not as high as 

the concentrations in the HSC media used for MC generation. However, the co-culture of 

fibroblasts with MCs has been shown to upregulate the IL-6 release [115] and may have the same 

effect on SCF secretion. Besides the effect of soluble factors in the medium, the direct interaction 

of fibroblasts with MCs was reported to be necessary for MC maturity, inhibition of apoptosis, 

and generation of MC subtypes specifically found in the connective tissue [116, 117]. Overall, 

considering the results from testing all of the media, StemSpan was superior for fibroblasts 

culture in a stem cell media.  

2.3.4. Effect of culture media on endothelial cells (ECs) 

In contrast with the fibroblasts, ECs failed to survive beyond three days in any of the serum-

free media (Fig. 2.5A). As shown in Fig 5B, for the serum-supplemented media, ECs showed 

their characteristic, cobblestone-like morphology. The cell yield of ECs was the lowest in HPGM 

among the all media tested, shown in Fig. 2.5C. When measuring cell proliferation, the ECs 

divided at least once in all the culture media in comparison with the control, non-dividing cells 

(solid histogram, Fig. 2.5D(i)). ECs cultured in HPGM showed the highest MFI among the other 
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test media, indicating the lowest cell proliferation, (p < 0.05, Fig. 2.5D(ii)). Therefore, HPGM did 

not support the survival and proliferation of ECs to the extent seen with the other culture media. 
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Fig. 2.5. Effect of culture media on endothelial cell (EC) growth and characteristics. A) 

Micrographs depicting poor survival of ECs at three days post-seeding in serum-free media. Typical 

detached or dead ECs are highlighted by arrows. B) Micrographs depicting survival of ECs at six 

days post-seeding in serum-supplemented media. Typical cells are highlighted by arrows. The rest 

of the experiments were performed 12 days post-seeding. C) EC yields in the serum-supplemented 

media. Ratio of the number of collected cells to the number of seeded cells is shown as relative cell 

yield. D(i) and (ii)) Proliferation of ECs in the serum-supplemented media. Solid histogram shows 

the non-dividing cells. E(i) and (ii)) Expression of CD31 by ECs in the serum-supplemented media. 

The expression of CD31 (open histogram) was compared to an isotype control (solid histogram). F) 

Release of IL-6 by ECs. In all cases, serum-supplemented M199 was taken as the standard cell 

culture medium. Data are represented as mean ± SD; n=3. * indicates p < 0.05 between M199 and 

test media. † indicates p < 0.05 between test culture media. 

The EC phenotypic marker, CD31 [118], was highly expressed for all cells in all the media 

tested (Fig. 2.5E(i) and (ii)), indicating that culture media did not affect the typical EC phenotype.  

The release of IL-6 and SCF was also measured for ECs. The release of IL-6 from ECs cultured in 

StemPro was higher than ECs cultured in StemSpan (p < 0.05, Fig. 2.5F) and it was not detected 
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from ECs cultured in HPGM (with the ELISA detection limit of 24 pg/ml). Higher levels of IL-6 in 

StemSpan and StemPro compared to the control media (M199) might be the effect of the media 

contents or supplements. IL-6 is a cytokine that facilitates the survival and maturation of MCs [56, 

119]. In addition to the effect of soluble factors, the direct interaction of adhesion molecules on ECs 

and c-kit receptors on MCs have been shown to regulate MC survival and the development of 

connective tissue-type MCs [61]. Although, previous studies have reported the expression of the 

SCF gene by ECs [120], SCF was not detected in any of the media tested (with the ELISA detection 

limit of 16 pg/ml). Other studies have shown that SCF was either not released from ECs, or was 

released at low levels (e.g. 24.5 ± 1.5 pg/ml) [61, 121]. Taken together, our data suggests that both 

StemSpan and StemPro supplemented with serum supported EC proliferation and characteristic 

phenotype. 

2.3.5. Mast cell (MC) morphological phenotype and function  

Considering all the media tested for this study, and specifically focusing on histamine content 

and immunophenotype of the generated cells, we believe that StemSpan with serum added in the 

last week of culture is the most suitable media for MC development from HSCs. Also, StemSpan 

supported the ancillary cells. Therefore, the morphological phenotype and function of the cells 

generated within the matrix in this media after seven weeks in culture were examined. Human MCs 

are heterogeneous and on the basis of the expression of serine proteases have been classified to 

tryptase-positive (MCT), chymase-positive (MCC), and tryptase and chymase-positive (MCTC) MCs 

[66]. As shown in Fig. 2.6, almost all the generated c-kit positive cells were expressing tryptase 

(99.5 ± 0.2%) and chymase (97.1 ± 0.9%) granules, exhibiting the MCTC phenotype predominant 

in the skin and small intestinal submucosa [80]. However, when StemSpan was used to generate 

MCs from CD133+ HSCs in a 2D culture system, MCT subtype was observed [59]. This highlights 

the influence of the microenvironments or culture conditions on the MC phenotype.   
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Fig. 2.6. Expression of tryptase and chymase by generated cells from CD133+ hematopoietic stem 

cells (HSCs) in a collagen matrix after seven weeks in culture. StemSpan with serum in the 

seventh week of culture was used as culture media. Representative density plots and histograms 

of the marker expression are shown. Expression of tryptase and chymase by c-kit positive cells 

(gray histogram) is compared with the isotype control (black histogram).  

Histamine is one of the vasoactive amines in MC granules released upon activation. 

Sensitization with IgE and activation of the cells with various concentrations of anti-IgE antibody 

induced substantial degranulation of the cells upon FcεRI crosslinking (Fig. 2.7). The activation of 

cells removed from the matrix and cells in the matrix resulted in the release of up to 45 ± 3% and 

35 ± 3% of the histamine content, respectively, which was about 19-fold higher than the 

spontaneous histamine release (p < 0.05). Also, Wright-Giemsa staining showed that cells partially 

or completely lost the metachromatic granules after activation (Fig. 2.7).  

In vivo MCs can release less than 10% to more than 40% of total histamine content in response 

to anti-IgE antibody [122-124]. In this work, the generated cells released up to 48% of histamine 

content in an anti-IgE concentration-dependent manner, which is comparable to the histamine 

release from generated MCs in a 2D culture system [60].  

The response from the generated cells that were activated either after the removal from the 

matrix or within the matrix was different with respect to anti-IgE concentration. For the cells that 

were activated after removal from the matrix, the maximum response was measured for 8 µg/ml 
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anti-IgE, and any further increase of the anti-IgE concentration resulted in a decreased response. 

For the cells that were activated within the matrix, increasing the anti-IgE concentration up to 200 

µg/ml resulted in increased responses, but never reached a maximum response as seen for the 

cells removed from the matrix. The lower response from the cells within the matrix may be due to 

the matrix interfering with the binding of IgE and/or anti-IgE with the cells, either due to 

transport limitations and/or nonspecific binding. In fact, previous studies have shown that other 

proteins, like monocyte chemoattractant protein-1 (MCP-1), can bind with the matrix and 

establish a concentration gradient [125, 126]. Therefore, higher concentration of the IgE antibody 

was needed to overcome any loss due to the matrix. Nevertheless, the results show that MCs 

generated within the matrix are functional and release histamine in an IgE-mediated reaction. 

 

Fig. 2.7. Histamine release by the generated MCs after seven weeks in culture. The cells were 

activated either within the matrix or after removed from the matrix. The micrograph shows a few of 

the degranulated cells activated within the matrix. The white arrow highlights a degranulated MC. 

In all cases, StemSpan medium with serum in the seventh week of culture was used. Data are 

represented as mean ± SD; n=3. All the data are significantly higher than the non-activated samples 

(p < 0.05).   
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2.4.  Conclusion  

 In this work, we have established that MCs can be generated from HSCs isolated from 

peripheral blood within a 3D collagen matrix, based on the morphology of the CD133+-derived 

cells, the formation of cytoplasmic granules (histamine), and the expression of MC phenotypic 

markers (especially c-kit). In addition, according to the same criteria mentioned above, StemSpan 

with serum added in the last week of culture was the best media to generate functional MCs. 

StemSpan was also suitable for fibroblast and EC culture. Therefore, we established StemSpan as 

the ideal media, since it supports the differentiation of HSCs to MCs and phenotypic characteristics 

of ancillary cells. Furthermore, we determined that serum was not required for fibroblasts, but was 

required for EC survival and MC maturation during the last week of culture. As a result, to develop 

the 3D tissue model with all three cells types, fibroblasts and CD133+ cells would be seeded in the 

collagen matrix for six weeks using the serum-free media, then ECs would be added to the apical 

surface of the matrix in a serum-supplemented media during the seventh week of culture. This work 

demonstrates the possibility of creating the tissue model that could be used to study the effect of the 

microenvironmental factors with ancillary cells on MC development and function. However, this 

study shows that under the influence of microenvironmental factors the morphological and 

functional characteristics of the cells generated in 3D culture conditions can be altered, as 

evidenced by differences in their subtype and response to an activating agent when compared with a 

2D culture system. The possibility of studying the effect of microenvironmental factors can be 

considered as the main advantage of utilizing the 3D matrix-embedded cells in elucidating MC 

ontogeny, biological profile, and immunoregulatory roles.  
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CHAPTER 3 
 

 

Development of Human Mast Cells from Hematopoietic Stem Cells within a Connective Tissue-

Equivalent Model 

 

3.1.  Introduction 

Since the discovery of mast cells (MCs) by Paul Ehrlich in 1878 [127], researchers have 

attempted to understand the biological and functional characteristics of MCs to elucidate their 

role in the pathogenesis of innate and adaptive immune responses [67]. MCs are localized in 

tissues exposed to the external environment, accordingly positioned to be among the first immune 

cells that interact with invading pathogens and allergens [79]. Upon activation, MCs can 

selectively release the contents of their secretory granules and vesicles, including preformed 

mediators, such as histamine and neutral proteases, lipid mediators, and an array of de novo 

synthesized cytokines and chemokines [128]. Through the expression of such diverse molecules 

and receptors, MCs exert their effector and immunomodulatory functions on other immune and 

non-immune cells, such as fibroblasts and endothelial cells (ECs). For example, the MC 

histamine, tryptase, and leukotrienes can induce vascular permeability, collagen synthesis, and 

the influx of effector cells to the inflamed areas [129]. However, the local microenvironmental 

factors and the signals they receive from neighboring cells and molecules within the extracellular 

matrix (ECM) can alter their secretory profile and magnitude. For example, the epithelial cell-

derived thymic stromal lymphopoietin, only in synergy with interleukin (IL)-1 and  
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tumor necrosis factor, induces the release of Th2 cytokines by MCs [130, 131]. Therefore, to 

fully understand the multifaceted roles of MC, they should be examined within the context of 

microenvironmental conditions that closely recapitulates the in vivo physiology.  

MCs are derived from circulating stem and progenitor cells that migrate to tissues, 

differentiate, and mature into MCs under the regulation of the specific tissue milieu [80, 132]. 

Based on their protease contents, human MCs have been traditionally classified into two main 

subtypes: MCTC, which contains both tryptase and chymase, and MCT containing only tryptase 

[67, 80]. Altered site-specificity of MC subpopulations when infiltrated during inflammatory 

reactions along with their intrinsic differences in cytokine content and response to secretagogues 

and pharmacological agents indicate their distinct pathological roles [133, 134]. Although it is not 

clear whether certain factors direct the heterogeneous commitment of MC precursors, it is 

postulated that local and systemic environmental factors define MC phenotype and specialize 

them for particular biological and pathological functions [135, 136]. Furthermore, MCs express 

certain integrins and receptors for extracellular components of connective tissue, including 

laminin, fibronectin, and vitronectin that can regulate their localization, distribution, and 

proliferation in specific tissues [80]. Consequently, establishing a tissue-equivalent matrix has 

greater relevance for studying MC ontogeny and plasticity in vitro. 

Due to the pivotal roles of in vivo microenvironmental factors, it has been challenging to 

define a method or approach to study MCs. Although murine models provide valuable 

information, fundamental differences between human and animal anatomy, cellular biology, and 

functions limit the applicability of the findings from murine models to human [20]. For example, 

murine MCs constitutively express FcγRI, while its expression by human MCs requires 

interferon-γ preincubation [137]. Also, in contrast to rodents, human MCs are plentiful in the 

alveolar parenchyma [138]. Due to difficulties in isolating human MCs ex-vivo, researchers have 

shown that the synergy of essential growth factors, including stem cell factor (SCF) and Th2-
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derived cytokines or the presence of a layer of feeder cells, such as fibroblasts render human stem 

and progenitor cell differentiation into MC lineage in vitro [27, 47, 77]. However, due to the 

phenotypic and functional plasticity of MCs governed by tissue milieu, the generalization of the 

findings from a particular population that has been examined under conventional conditions in 

suspension (2D models) can be misleading and requires further investigation. Therefore, in this 

study, the objective was to establish a new culture condition for MC precursors that mimics their 

microlocalization within the connective tissue. MC precursors reside in proximity to fibroblasts 

and ECs in tissue, where they receive signaling molecules that contribute to their maturation and 

emergence of their distinct phenotype [55, 61]. Consequently, their incorporation into the tissue 

model would be a step toward replicating the MC in vivo microenvironment. Utilizing such a 

tissue model for MC characterization in vitro would shed more light on MC ontogeny, and 

physiological and pathological roles.  

3.2.  Material and methods 

3.2.1. Antibodies and reagents 

StemSpan media was purchased from STEMCELL Technologies (Vancouver, Canada). 

Human recombinant SCF, IL-6, and IL-3 were from PeproTech (Rocky Hill, NJ). Defined HyClone 

fetal bovine serum (FBS) was purchased from GE Healthcare Life Sciences (Logan, UT). Human 

dermal fibroblasts treated with mitomycin-C was purchased from Merck Millipore (Billerica, MA), 

while human umbilical vein ECs were from Promocell (Heidelberg, Germany). Anti-human 

fluorochrome-conjugated CD117/c-kit (clone 104D2), FcεRI (clone CRA-1), CD31 (clone 

WM59), CD90 (clone 5E10) and the isotype controls, Ms IgG1 (clone MOPC-21), Ms IgG2b 

(clone MPC-11) were from BioLegend (San Diego, CA). Anti-human fluorochrome-conjugated 

CD133/2 (clone 293C3) was purchased from MACS Miltenyi Biotec (San Diego, CA). For 

immunocytochemical staining, mouse anti-human tryptase (clone AA1) was purchased from 

Abcam (Cambridge, MA), mouse anti-human chymase (clone B7) was from Chemicon 
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International (Temecula, CA), and the secondary antibody goat anti-mouse IgG1 (polyclonal) was 

from Santa Cruz Biotechnology (Dallas, TX).    

Fig. 3.1. Generation of mast cells (MCs) from stem cells within a connective tissue-equivalent 

matrix. 

3.2.2. Cell culture  

Preparation of samples is shown in Fig. 3.1. Briefly, MC progenitors, CD133+ cells, were 

obtained from peripheral blood mononuclear cells (PBMCs) using density gradient centrifugation 

method and magnetic separation technology (MACS Miltenyi Biotec). A type I collagen (Type-1 

bovine, Advanced BioMatrix, CA) was used to prepare the gel solution [139]. Isolated cells from 

peripheral blood (70,000-75,000 cell/ml) and fibroblasts (40,000-70,000 cell/ml, mitomycin-C 

treated to prevent proliferation), were mixed with the collagen solution and added to the wells of a 

48-solid well plate (Greiner Bio-One; NC) at 220 µl/cm2. After 45 min incubation at 37°C, 5% CO2 

(defined as “standard conditions”) for the collagen to gel, StemSpan media (300 µl/well) was added 

to the top of the matrix. Media was supplemented with 100 ng/ml SCF, 50 ng/ml IL-6, and 1 ng/ml 

IL-3 for the first 3 weeks of culture. Samples were incubated for seven weeks to allow for the cell 

differentiation, proliferation, and maturation. Six weeks post seeding, spent media was aspirated 

and the gel was coated with 200 µl/cm2 mixture of type IV collagen (Advanced BioMatrix; CA) 

and fibronectin (Alfa Aesar; MA) with final concentrations of 50 and 20 µg/ml, respectively, in 

media. After at least 2 h incubation and aspiration of the fibronectin solution, 45,000-55,000 
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cell/cm2 of ECs were mixed with the described medium supplemented with FBS (20%, v/v) and 

seeded on top of the matrix. From day 1 of seeding, media was changed weekly and the morphology 

of the cells was monitored by microscopy. 

3.2.3. Cell characterization 

3.2.3.1. Cytology, histology, and immunohistochemistry 

Metachromatic staining of MC cytoplasmic granules was evaluated cytologically following 

Giemsa stain using an automated stainer (Ames HemaTek 2000 Stainer). Histological evaluation 

for spatial observations of the tissue model was performed following careful removal of the 3D 

matrix from the well and fixation in 10% neutral buffered formalin. Following 24 h fixation, the 

matrix were routinely processed, paraffin-embedded and sectioned at 4 μm. Sections were either 

stained with hematoxylin:eosin or submitted of immunohistochemistry for identification of CD117 

and CD31. Immunostains were performed on a fee-for-service basis by the Histology Laboratory 

at North Carolina State University, College of Veterinary Medicine (Raleigh; NC).  

3.2.3.2. Immunophenotype and proliferation  

Expression of CD117/c-kit and FcεRI by the generated MCs was determined by 

immunofluorescence staining and flow cytometry (BD Accuri C6, BD Biosciences; CA). Cells 

were collected from the matrix after gel digestion by using 2.2 mg/ml collagenase D (Roche 

Applied Science; IN) and stained with appropriate antibodies or isotype controls. To sensitize MCs, 

15 µg/ml human myeloma IgE (Athens Research & Technology; Athens, GA) was added to the 

culture media for 24 h prior to assessing FcεRI expression. In order to identify MCs, fibroblasts 

and ECs or progenitor cells that did not differentiate were excluded by using their phenotypic 

markers, CD90 and CD31, respectively [139]. Cell numbers were determined after applying gates 

to the cell scatters based on the expression of phenotypic markers. 

3.2.3.3. Immunocytochemistry 
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Intracellular tryptase and chymase were identified by immunocytochemical staining and flow 

cytometry. The cells were collected from the collagen matrix after gel digestion, added to a V-

bottom 96-well plate (Greiner Bio-One; NC) and fixed/permeabilized using a commercial kit (BD 

Bioscience; CA). Cells were blocked with a buffer containing 1% bovine serum albumin (BSA, 

Sigma-Aldrich; MO) and 10% goat serum (v/v, Gibco; CA) in permeabilization solution for 1 h.  

Then, the samples were incubated with the primary antibodies against tryptase and chymase prior 

to the secondary antibody all 10 µg/ml in the blocking buffer for 30 min at room temperature. For 

microscopy, the cells were added to a glass slide and labeled with DAPI (Life Technologies; CA). 

After 1 h incubation in staining buffer containing 0.2% BSA and 0.09% sodium azide in phosphate-

buffered saline (PBS), the cells were stained with anti-CD117, anti-CD90, and anti-CD31 

antibodies or appropriate isotype controls for 45 min at 4°C and analyzed by the flow cytometer.  

3.2.3.4. Cell activation 

Generated cells were sensitized with 15 µg/ml human myeloma IgE for 24 h at 37°C. The free 

IgE was removed after three rinses with warm Tyrode’s solution (Boston BioProducts; MA) 

supplemented with 100 µg/ml SCF and 50 µg/ml IL-6 prior to addition of 40 µg/ml monoclonal 

anti-human IgE (clone G7-18, BD Biosciences; CA) in Tyrode’s supplemented solution for 1 h at 

37°C. The Tyrode’s solution consisted of 10 mM Hepes, 135 mM NaCl, 2.8 mM KCl, 1 mM 

MgCl2, 2 mM CaCl2, 12 mM NaHCO3, 0.4 mM NaH2PO4, 5.5 mM Glucose, and 0.25% BSA. The 

supernatant and the digested collagen gel were collected, and cellular histamine was measured after 

cell lysis in water by three freeze and thaw cycles and sonication for 5 min. Commercial ELISA kit 

(Labor Diagnostika Nord, Nordhorn; Germany) was used for quantifying histamine. Identical 

samples, but without IgE and anti-IgE was used as negative control. Release percentage was 

calculated as the ratio of histamine in the media and the digested gel to the total histamine content. 

In addition, the spontaneous amount of histamine released by the cells in the control group was 

subtracted from the total amount released. 
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To investigate the response of the generated MCs to an antigen, Dermatophagoides 

pteronyssinus (Der p) was selected. Non-allergic and allergic patients with a positive skin prick or 

intradermal test to Der p extract were included in this part of the study. A wheal of 3 mm or more 

in diameter developed within 15 min was considered positive with saline and 1% histamine as 

negative and positive control, respectively. The study protocol was approved by Oklahoma State 

University Institutional Review Board and written informed consent was obtained from each 

subject. MCs were generated by using the leukocyte preparations of the patients according to the 

protocol mentioned above. The cells were passively sensitized with 20% (v/v) serum of allergic 

(Phadia; MI) or non-allergic individuals (PlasmaLab International; WA) for 2 h at 37°C. The 

specific IgE in the allergic and non-allergic serum was 18-35 and 0.021 kU/l, respectively, validated 

by ImmunoCAP analysis done by the vendors. The same procedure as mentioned above for 

activation of the cells with anti-IgE was followed afterward, except that the Tyrode’s solution used 

for rinses was not supplemented with cytokines and the Der p extract of mite (HollisterStier; WA) 

at various concentrations was added to the supplemented Tyrode’s solution to induce cell 

activation. The concentrations and incubation times of the serum and allergen were selected based 

on the studies done on passive sensitization of MCs and leukocytes shown in Table 3.1 - 3.3 [140, 

141]. A quantitative histamine plate kit (RefLab ApS, Copenhagen N; Denmark) was used to 

determine the concentration of histamine in the samples. Group of samples sensitized with the 

serum, but not activated with the allergen served as a negative control.  

3.2.4. Statistical analysis 

Experimental results are expressed as mean ± SD of triplicate samples from three independent 

experiments unless otherwise stated. Student’s t-test or Tukey-Kramer method was applied to 

determine significant difference among the groups. A value of p < 0.05 was considered significant. 

GraphPad Prism (GraphPad Software; CA) was used for nonlinear regression (curve fit) for 

histamine measurements and statistical analyses. 
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Table 3.1. Protocols for mast cell (MC) passive sensitization and activation. 

  Source Cell type Stimuli Passive sensitization 
Stimuli 

incubation time 

Allergen 

concentration 
Ref. 

1 Human Intestinal MC 
Der p, Grass 

pollen 
30% plasma, 2 h 1 h 0.1, 100, 1000 U/ml [141] 

2 Human  Lung MC DMA 2 h 30 min 0.1,1,10,100 µg/ml [142] 

3 Human Lung fragment Der p  12 h, 25°C  - 10,000 U/ml  [143] 

4 Human Lung fragment Grass pollen  5% or 10%, 16-18 h, 20°C  15 min  1 µg/ml  [144] 

5 Human Lung fragment Grass pollen 
1%, over night at room T  

and 1 h at 37°C 
15 min 100 µg/ml [145] 

6 Human Lung fragment Ragweed  40%, 90 min 13 min 100 PNU/ml [146] 

7 Human Lung MC or fragment Anti-IgE 2%, 2 h 10 min - [147] 

8 Human 
Skin fragment, 

 basophils 

Anti-IgE or 

Anti-FcεRI 

50%, 20 min for skin fragments, 

40 min for leukocytes 
- - [148] 

9 Human  Lung MC Anti-IgE Undiluted, overnight, room T - - [149] 

10 Human Skin fragment Anti-IgE 10%, 2 h 15 min - [150] 

11 Human Skin MC Anti-IgE 10%, overnight, 23 or 37°C? 30 min - [151] 

12 Human Skin MC Anti-IgE 10%, 16 h, 22°C  15 min - [97] 

13 Human Lung fragment Anti-IgE 50%, 18 h, 4°C 45 min - [152] 

14 Human Bronchoalveolar lavage Der p - 30 min 0.03, 0.3, 3 BU/ml  [153] 

15 Mice BMMC Der f - 1-48 h 0.1-1 mg/ml [154] 

16 
Mice, 

human 

Mouse BMMC, 

human lung fragments 
Grass ~11%, overnight 4 h 1:100, 1:20, 1:10, 1:2 [155] 

BMMC: Bone marrow-derived mast cell; Der f: Dermatophagoides farinae; Der p: Dermatophagoides pteronyssinus; DMA: Dust mite allergen; MC: 

Mast cell. For passive sensitization and activation, the temperature is 37°C unless otherwise mentioned.  
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Table 3.2. Protocols for leukocyte (basophil) passive sensitization and histamine release test (HRT).  

  Source Cell type Stimuli Passive sensitization 
Stimuli incubation 

time 
Allergen concentration Ref 

1 Human Leukocyte Der p, cat, grass 50% EDTA plasma, 2 h 1 h 1, 100, 1000 BU/ml  [156] 

2 Human Leukocyte HDM, cat, dog 50%, 2 h 1 h 0.05, 0.5, 5 HEP/ml [157] 

3 Human Leukocyte HDM - 1 h 1, 10, 100, 1000 U/ml [158] 

4 Human Leukocyte Der p, cat, dog - 1 h 500-0.5 BU/ml [159] 

5 Human Leukocyte Der p - - Following [160] [161] 

6 Human Leukocyte Der p  - 15 min 2822-0.28 UBE/ml [162] 

7 Human Basophil Der p  - 15 min  0.16-16 µg/ml [163] 

8 Human Basophil Der p - 1 h 0.8, 8, 80, 800 ng/ml [164] 

9 Human Leukocyte Der p - 40 min 1.4 and 0.35 mg/ml [165] 

10 Human Leukocyte Der p - 40 min  2, 20 ng/ml [166] 

11 Human Leukocyte Der p  - 40 min 0.01-1 µg/ml [167] 

12 Human Basophil HDM 20%, 2 h 45 min - [168] 

13 Human Leukocyte Ragweed  - 10-60 min 10-5-10 µg/ml [160] 

14 Human Leukocyte Ragweed  10% 5-60 min 0.1-2.5 ng/ml [169] 

15 Human Leukocyte Ragweed  10% 60 min 10-5-1 µg/ml [170] 

16 Human Leukocyte Ragweed  5-20%, 1-4 h 1 h 0.025-100 ng/ml [171] 

17 Human Leukocyte Ragweed  <1-10%, 15-240 min 1 h 1-100 ng/ml [140] 

18 Human Leukocyte Ragweed  1.25-5%, 1-2 h 1 h 10 or 15 ng/ml  [172] 

19 Human Leukocyte Ragweed 16 or 10%, 1 or 2 h 30-45 min To cause 50% release [173] 

20 Human Leukocyte Ragweed  50-10%, 60-90 min 40 min  0.1 µg/ml [174] 

21 Human Leukocyte Ragweed ~16%, 90 min 40 min  Following [160] [175] 

22 Human Leukocyte Grass pollen - 1 h 0.2, 2, 20, 200 PNU/ml [176] 

23 Human Leukocyte Grass pollen 9%, 1 h 1 h 1:1 M-1:10000 [177] 

24 Human Basophil Birch pollen profilin - - 0.01-1000 ng/ml [178] 

25 Human Leukocyte  - 50%, 40 min - - [179] 

26 Human Leukocyte Peanut  - 20 min 0.01-100 µg/ml [180] 

27 Rat RBL Egg 1%, 16 h 3 h 10-1000 ng/ml [181] 

28 Rat RBL Der p, pollen 2%, 48 h 1 h for anti-IgE 10-2-10-6 dilution  [182] 

29 Rat RBL Pollen 5-2.5%, overnight - 1:100-1:10-9 [183] 

Der p: Dermatophagoides pteronyssinus; Der f: Dermatophagoides farinae; HDM: House dust mite; RBL: Rat basophilic leukemia cell line. 
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Table 3.3. Protocols for passive sensitization and cell activation using purified allergens.  

  Source Cell type Stimuli Passive sensitization 

Stimuli 

incubation time 

Allergen 

concentration Ref 

1 Human 
Lung and skin MC,  

MC line, Basophils 

rDer p1, HDM medium, 

Bee venom, Der p 3 
- 2 h 10 µg/ml [184] 

2 Human Nasal MC rDer f 2 - 48 h 10 µg/ml [44] 

3 Human CD133-derived MC rDer p 2 80 U/ml rIgE 30 min 0.0001-100 ng/ml  [185] 

4 Human PB-derived MC  rDer p 2 
0.8-800 U/ml rIgE,  

2 weeks 
30 min 0.0001-100 ng/ml  [186] 

5 Human Basophil rDer f 1, rDer p 1 - 1 h? 0.1-100 ng/ml [187] 

6 Human Basophil Der p 1 - - 0.01, 0.1, 1 µg/ml [188] 

7 Human Basophil 
r or nDer p 1  

r and nDer f 1 
- 1 h? 0.18, 1.8, 18, 180 ng/ml [189]  

8 Human Basophil r and nDer p 1 - 30 min 0.001-1000 ng/ml [190] 

9 Human Leukocytes Der p 1 Not mentioned - 0.1 ng/ml-10 µg/ml [191] 

10 Human  Leukocytes Der p 1, 2, Lol p 1, 5, Fel d 1 - 45 min Following [160] [192] 

11 Human Leukocytes Der f 1 1:3 dilution, 90 min   - 10-10-10-5 g/ml  [193] 

Der f: Dermatophagoides farinae; Der p: Dermatophagoides pteronyssinus; Fel d: Felis domesticus; Lol p: Lolium perenne; MC: Mast cell; n: Natural; 

PB: Peripheral blood; r: Recombinant. 
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3.2.5. Possible hazard and safety precautions 

All animal- and human-derived materials were purchased from commercial vendors that 

prescreen the products for biological hazards. The personnel conducted the research completed a 

training program for handling the biohazardous materials and working in a biosafety level 2 (BSL-

2) laboratory. Prior to the experiments, all biohazards were identified and biosafety plans were 

prepared and followed. All procedures associated with the work followed “Universal Precautions”. 

Biohazardous materials were disposed according to the guidelines for each waste category. 

3.3.  Results 

3.3.1. Morphology of the generated cells within the connective tissue-equivalent model 

After seeding, the cells were evenly distributed within the matrix, while the MC precursors 

formed colonies as early as the first week of culture (Fig. 3.2A). The generated cells remained in 

colonies and spread within the matrix as the cell proliferation progressed. The cells were round or 

oval as well as tailed, showing their mobility within the matrix, as highlighted in Fig 3.2A, week 

1. Seven weeks post seeding, around 80% of the round cells were 9 – 15 µm in diameter, which is 

in the range of in vivo MC size (data from four independent experiments, n = 230 cells) [95, 97]. 

Furthermore, the ECs formed a confluent layer on the matrix within 36 h post seeding (Fig. 3.2B). 

The histologic analysis of the collagen matrix confirmed a connective tissue-equivalent matrix 

(CTEM), with a monolayer of CD31+ ECs on the apical surface and the CD117+ cells along with 

the fibroblasts spread within the subendothelium (Fig. 3.2C-E). Although progenitor cells are not 

granular, the generated cells exhibited granular morphology with 70 – 90% of the granular cells 

mononucleated, as is the normal morphology of mature MCs (Fig. 3.2F, data from two 

independent experiments, n = 700 cells).  

 



48 
 

 

B C 

D E 

F 

A 

Day 2 Week 1 Week 4 Week 7 



49 
 

Fig. 3.2. Morphology of the seeded cells within the connective tissue-equivalent matrix. (A) The 

generated cells and fibroblasts 2 days and 1-7 weeks post seeding within the matrix. (B) The 

seeded matrix with ECs. Histologic analysis of the matrix stained with (C) hematoxylin and eosin 

(D) anti-CD117/c-kit (E) anti-CD31 antibodies. (F) Wright-Giemsa staining of (left) freshly 

isolated cells from peripheral blood and (right) generated cells after seven weeks in co-culture. 

Some of the MC precursors and fibroblasts are highlighted by black and white arrows, 

respectively and ECs are highlighted by the arrowheads. 

3.3.2. Immunophenotype of the generated cells within the connective tissue-equivalent 

model 

CD133 antigen has been used as a marker of hematopoietic progenitor and stem cells [194]. 

The frequency of isolated cells from human PBMCs was 0.7 ± 0.4% (from 20 buffy coats) and 

was comparable with other studies, as shown in Table 3.4. The purity of CD133+ cells within the 

magnetically isolated cells was less than 50%. As shown in Fig. 3.3A, the CD133+ cells before 

culture were more than 80% and around 40% positive for CD31 and CD117, respectively, while 

only less than 10% were expressing FcεRI. As shown in Table 3.5, the expression levels were in 

agreement with other studies. For better use of Table 3.5, the expression of CD34 by CD133+ 

cells are shown in Table 3.6. After 7 weeks in co-culture, the majority of the seeded progenitor 

cells lost the CD31 and expressed CD117 receptors. After excluding fibroblasts and ECs or non-

differentiated progenitor expressing CD31 (Fig. 3.3B), the CD117+ CD31- CD90- cells were 3.2 ± 

1.3 to 8.4 ± 0.1 folds higher in number than the seeded cells. Also, the expression of FcεRI was 

enhanced after 24 h incubation with the IgE antibody with 5.8 ± 1.3-folds higher mean 

fluorescence intensity (MFI, p < 0.01), which reflects the upregulation of the surface receptor 

density. In fact, IgE incubation resulted in the expression of FcεRI by 31.9 ± 3.6% of CD117+ 

cells (Fig. 3.3B, data selected from three independent experiments, n = 3). Furthermore, almost 
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all the generated CD117+ cells were stained for tryptase and chymase granules (98.7 ± 0.8% and 

96.7 ± 2.6%, respectively), exhibiting MCTC phenotype (Fig. 3B).  

 

C 

A 

B 
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Fig. 3.3. Expression of mast cell (MC) phenotypic markers by the generated cells within the 

connective tissue-equivalent matrix. (A) Representative density plots of the expression of the 

markers used to identify MCs by CD133
+
 cells isolated from peripheral blood before co-culture. 

(B) Gating scheme and representative density plots of marker expressions by the generated cells 

after co-culture. In order to identify the CD117 expressing cells, anti-CD90 and CD31 antibodies 

were used to gate out fibroblasts and ECs or progenitor cells, respectively. The expression of 

FcεRI, tryptase, and chymase (gray histogram) by the CD117 positive cells is compared with the 

fluorescence minus one (FMO) control (black histogram). (B) Expression of (top) CD117 and 

(bottom) tryptase determined by immunofluorescence staining. Cells were stained with anti-

tryptase or CD117 and PE-secondary antibody. Nuclei were stained with DAPI. 

3.3.3. Activation of the generated cells within the connective tissue-equivalent model in an 

IgE-mediated challenge 

After seven weeks in co-culture, the histamine content of the generated cells was 4.4 ± 0.8 

pg/cell and their histamine spontaneous release was 2.3 ± 0.9 % of their total histamine content. 

Function of the generated MCs was examined after challenge with IgE and anti-IgE, which is 

known to cause histamine release upon FcεRI trigger [30]. Upon sensitization and activation with 

IgE and anti-IgE, the cells released 31.2 ± 2.0 % of their total histamine content, which was 13.3 

± 5.3-folds higher than the spontaneous release of histamine (p < 0.001). Around 80-90% of the 

released histamine was detected within the matrix. When passively sensitized with allergic serum, 

the cells dose-dependently released histamine in response to Der p allergen (Fig. 3.4). Since the 

extract of the allergen contained glycerol as a preservative, identical concentrations of the 

glycerol were also tested, but did not induce histamine release (data not shown). The histamine 

release in response to 15 AU/ml of the allergen, which showed the highest average, was 18.09 ± 

4.10-folds higher than the control group that was not activated with the allergen (p < 0.001). In 
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contrast, the cells did not respond to the allergen when serum from a non-allergic individual that 

did not contain specific IgE to Der p allergen was used.  
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Fig. 3.4. Histamine release by the generated mast cells (MCs) in response to Der p allergen within 

the connective tissue-equivalent matrix. The cells were passively sensitized with human serum 

prior to activation with the allergen. All the data from allergic serum are significantly higher than 

the non-activated samples (p < 0.01). Data are mean ± SD. * indicates p < 0.05.  

3.4. Discussion 

CD34+ and CD133+ stem cells or mononuclear cells have been previously used to generate 

MCs under 2D culture conditions for in vitro studies [60, 195, 196]. Depending on the cell source 

and culture conditions, specifically the culture media supplements, the characteristics of the 

obtained MCs varied [27, 60, 77], e. g., in contrast to IL-10, IL-4 enhanced IgE receptor 

expression and cell function [60, 197]. Given that the cells within a matrix are surrounded with 

the ECM components that can alter the distribution, morphological, and physiological 

characteristics of the cells [198-200], 2D models may lack the needed geometry and components 

to mimic the in vivo. A 3D matrix can regulate commitment of stem cells to a specific lineage 

* 
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Table 3.4. CD34+ and CD133+ cell isolation yields.   

  Source Donor Isolated MNC number/volume % of MNC Ref 

1 PB H CD133  0.035±0.011 

(0.023-0.057) 
[201] 

2 PB H CD34   
0.057±0.029 

(0.031-0.133) 
[201] 

3 PB H and UH CD34 109 0.05 [202] 

4 mPB H CD133 1.3(0.7-3.8)×1010 0.75 (0.39-2.03) [203] 

5 mPB  UH CD133  1.37±0.27 [204] 

6 mPB UH CD34   1.75±0.31 [204] 

7 mPB H CD34  0.8±0.5 (0.4-1.6) [205] 

8 mPB UH CD34   1.2±0.3-3.7±0.8 [206] 

9 mPB UH CD34 17.05(3.86-67)×109/L  [207] 

10 BM H CD133   0.52±0.11 [204] 

11 BM H CD34  1.47±0.23 [204] 

12 BM UH CD34   1.43 (0.26-4.11) [207] 

13 mBM UH CD34  1.06 (0.15-5.89) [207] 

14 FBM H CD34   10.5±3.2 (6.6-17.2) [205] 

15 ABM H CD34  1.7±1.2 (0.5-3.6) [205] 

16 CB H CD133 208.2 (99-294)×106/45±4 ml 
~0.19, 

[0.4 (0.2-1.18)×106] 
[208] 

17 CB H CD133  0.71 (0.3-2.4) [209] 

18 CB H CD133   0.16±0.03 [204] 

19 CB H CD34 244 (77.5-700)×106/46±3 ml 
~0.29, 

[0.7 (0.14-4.8)×106] 
[208] 

20 CB H CD34 6 (4-10)×108/75 ml 0.4±0.1 [210] 

21 CB H CD34 (66-90)×106/(30-32) ml 0.78 (0.4-2.7) [209] 

22 CB H CD34   0.8±0.7 (0-2.6) [205] 

23 CB H CD34  0.8-2.9 [211] 

24 CB H CD34   0.32±0.06 [204] 

25 FL H CD34   11.4±7.5 (2.3-25.8) [205] 

26  PB H CD133 1190 (440-2500)×106/46 (37-52)ml 0.73±0.43 (0.26-1.55) Our work† 

ABM: Adult Bone Marrow; BM: Bone Marrow; CB: Cord Blood; FBM: Fetal Bone Marrow; FL: Fetal Liver; H: Healthy; mBM: Mobilized Bone 

Marrow; MNC: Mononuclear cells; mPB: Mobilized Peripheral Blood; PB: Peripheral Blood; UH: Unhealthy. † Data from 20 buffy coats. The purity of 

the cells for every batch was not evaluated. 
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Table 3.5. Expression of CD90, CD117/c-kit, CD31, and FcεRI by CD133+ and CD34+ stem and progenitor cells. 

  Source Donor Marker PB mPB FBM BM ABM  mBM CB FL Ref 

1 CD34+ CD38- Lin- flt-3- H CD90    46.1         [212] 

2 CD34+ UH CD90   Pos             [213] 

3 CD34+ UH CD90  Pos       [214] 

4 CD34+CD38- H CD90   1.2±0.4  3.1-2.3   0.8±0.6   3.2±1.8 19.7±13.4 [205] 

5 CD34+CD38+ H CD90  ~40 ~10  ~20  ~30 ~15 [205] 

6 CD34+ H CD90             Pos   [215] 

7 CD34+ UH CD90  18.1±1.1  

(4.7-29.1) 
      [206] 

8 CD34+ UH CD90       16.9-48.5         [216] 

9 CD34+ UH CD90  8.2±4       [217] 

10 CD34+ UH CD90     5-25           [218] 

11 CD34+ UH CD90    ~11(3-27)   3-41    [207] 

12 CD34+ CD45RA- CD71- H CD90             5   [211] 

13 CD34+Lin- H CD90     5-20    [219] 

14 CD34+ H CD90       25 (12-41)     32 (10-54) 30 (18-38) [220] 

15 MNC H CD90 
0.2-1, 

1.5 FPB 
  1.4-2   <0.1-0.5     <0.1-0.2 [221] 

16 CD34+ H c-kit       75±30         [222] 

17 CD133+ H c-kit       93.3±1.1  [223] 

18 CD34+ H c-kit         Pos       [224] 

19 CD133+ and CD34+ H c-kit    Pos     [225] 

20 CD34+ 
H PB, UH 

BM 
c-kit Pos     Pos         [106] 

21 CD34+ UH c-kit  20.6±7.5       [226] 

22 CD34+ UH c-kit       ~71(44-90)  0-88      [207] 

23 CD34+ H and UH c-kit 50        [202] 

24 CD34+ 
UH mPB  

and H BM 
c-kit 

45±8 

(34-60) 
10±3-35±17 

46±5 

(35-69) 
        [227] 

25 CD34+ H c-kit    Pos   Pos Pos [220] 

26 CD34+ UH c-kit 12.6±3.2 4.6±1.2   32.2±3.3         [228] 

27 CD34+ H c-kit    71±5     [229] 

28 CD34+ H c-kit       77±12         [230] 

29 CD133+ H CD31 Pos               [231] 

30 CD133+ H CD31 Pos               [232] 

31 CD45- CD34- CD133low H CD31       Neg         [233] 

32 CD34+ H and UH FcɛRI Neg        [202] 

ABM: Adult Bone Marrow; BM: Bone Marrow; CB: Cord Blood; FBM: Fetal Bone Marrow; FL: Fetal Liver; FPB: Fetal Peripheral Blood; H: Healthy; 

Lin: Lineage; MNC: Mononuclear cells; mPB: Mobilized Peripheral Blood; Neg: Negative; PB: Peripheral Blood; Pos: Positive; UH: Unhealthy. 
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Table 3.6. Expression of CD34 and CD133 by isolated CD133+ and CD34+ stem and progenitor cells, respectively.  

  Donor 
Isolated  

population 

Marker 

expression  
PB mPB BM ABM CB FL Ref 

1 H CD133+ CD34 69±3      [231] 

2 H CD133+ CD34         90.8±5.3   [222] 

3 H CD133+ CD34  100  

(90% of donors) 
    [203] 

4 H CD133+ CD34 27.6           [232] 

5 H CD133+ CD34     78.8±3.9  [208] 

6 H CD133+ CD34 99           [201] 

7 UH CD133+ CD34  99.08     [101] 

8 H CD133+ CD34         100   [209] 

9 H CD34+ CD133 28.6      [232] 

10 H CD34+ CD133         26.5±11.5   [208] 

11 H CD34+ CD133 55±9 (41-73) 89 48  83±9 (68-95)  [201] 

12 H CD34+ CD133         78.7 (56.3-88.1)   [209] 

13 UH CD34+ CD133     60-80   [225] 

14 H CD34+ CD133         50   [210] 

15 H CD34+ CD133  75±1 36±2  51±2  [204] 

16 H CD34+ CD133   54.9 31.6 70 35.16 29.88 [74] 

ABM: Adult Bone Marrow; BM: Bone Marrow; CB: Cord Blood; FL: Fetal Liver; H: Healthy; mPB: Mobilized Peripheral Blood;  

PB: Peripheral Blood; UH: Unhealthy.  
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and enhance their maturity [234, 235]. Therefore, in this study, we have established a novel 

culture method for the generation of functional MCs from peripheral blood progenitor cells 

within a CTEM. We have used type I collagen, which is the most predominant fibrillar 

component of the ECM found in the dermis and interstitial tissue, to create a matrix [236, 237]. 

The matrix was coated with type IV collagen and fibronectin in order to mimic the basement 

membrane, enhancing the EC growth and attachment to the matrix [238-240]. The 

microarchitecture of the matrix allowed the cell motility within the collagen matrix, as evidenced 

by colony formation and tailed-like cells (Fig. 3.2A). We have previously determined that 

StemSpan medium supports the generation of MCs and growth of fibroblasts and ECs [139]. 

Serum was a prerequisite for EC survival, while its addition to the media from the beginning of 

culture suppressed MC development [139]. When added in the seventh or eighth week of culture, 

serum induced FcεRI expression and histamine release by the generated cells [58, 59]. Therefore 

for the co-culture model in this work, ECs were added in the seventh week, which was the same 

time that media was supplemented with serum.  

MCs are distributed near blood or lymphatic vessels and fibroblasts that are abundant in 

connective tissue. Both fibroblasts and ECs release growth factors, such as SCF and IL-6 that 

support MC survival and growth [49, 115, 139]. When 3T3 fibroblasts were in co-culture with 

human cord blood and human or mice bone marrow-derived MCs the differentiation and 

proliferation of MC precursors were enhanced [63, 241, 242]. In addition, ECs promoted MC 

proliferation more effectively than SCF-supplemented media through interaction between CD117 

and very late antigen (VLA)-4 on MCs and membrane form of SCF (mSCF) and vascular cell 

adhesion protein-1 (VECAM-1) on ECs, respectively [61]. When compared with the 3D tissue 

model without ancillary cells [139], even with seven times lower progenitor cell seeding 

concentration, in co-culture with fibroblasts and ECs not only the cell yield was significantly 

higher, but the histamine content was also augmented (p < 0.01). The same has been measured for 
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mice bone marrow-derived MCs when co-cultured with 3T3 fibroblasts in a culture medium 

containing IL-3 [241]. Although fibroblasts were shown to support the survival of MCs, even 

when separated, the direct cellular interactions induced the maturity and regulated the effector 

functions of MCs [64, 132, 243, 244]. As an example, activated MCs isolated from the human 

lung in co-culture with fibroblasts released elevated levels of histamine in a cell contact-

dependent manner [244]. The results in this work were similar to the previous findings as the 

generated cells in co-culture released approximately two-fold higher histamine compared with the 

3D model in the absence of ancillary cells [139] in response to anti-IgE (p < 0.001). Soluble SCF 

in synergy with mSCF expressed by fibroblasts and other fibroblast-derived proteins, such as IL-

33 may modulate MC maturity and function [64, 132, 245]. The mSCF also induce MC 

attachment to fibroblasts, ECs, and basement membrane proteins and may play a role in MC 

migration and localization of progenitor cells bearing its agonist, CD117, in connective tissue 

[246-248]. Furthermore, when in direct contact with fibroblasts, MCs were responsive to 

eosinophil major basic protein and increased eotaxin, an eosinophil chemotactic factor, all of 

which indicating the importance of cellular interactions in leukocyte infiltration during 

inflammatory responses and utilizing co-culture models for in vitro studies [243, 244].  

In vitro studies have shown that stem cells can differentiate into MCT or MCTC phenotype 

based on the chymase expression. When human or mice cord blood- and mice fetal liver-derived 

MCs were in co-culture with fibroblasts they appeared as MCTC and MCT, respectively [55, 66, 

249], suggesting that progenitor cells might be committed to a specific MC phenotype. However, 

human cord blood and peripheral blood CD34+ cells in the presence of SCF, IL-6, and IL-3 was 

shown to differentiate into both subtypes [57, 250, 251], while the presence of fibroblasts and IL-

4 favored the generation of MCTC [49, 116, 252], indicating that cell microenvironment and 

specific growth factors can influence the phenotype of the generated MCs. Therefore, the ultimate 

MC phenotype in vivo may be regulated under the influence of local tissue milieu that specializes 
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the generated MCs to perform certain functions. For example, the proliferation of mucosal MCs 

in mice, which are mainly chymase negative (MMC) caused by helminth infection suggests their 

role in defense against parasites [253] or appearance of MCT in cutaneous lesions of patients with 

atopic dermatitis implies their role in skin inflammation [133]. In our previous work, in the 

absence of ancillary cells, the developed MCs within the 3D matrix appeared as MCTC subtype 

[139]. In this work, in co-culture with fibroblasts and ECs, their phenotype was preserved, 

indicating that factors besides the cellular interactions, such as ECM proteins can determine the 

fate of MC phenotype. In addition, previous findings suggest that human MC subtypes are not 

restricted to a specific anatomical location and may be developed, recruited, or dynamically 

change as a result of inflammation, infection, interaction with neighboring cells, and released 

cytokines [66]. As an example, MCs in the respiratory system are site-specifically heterogeneous 

[254] and in asthmatic patients recruitment of MCs particularly of chymase positive phenotype to 

airway smooth muscle and small airway has been observed [69, 255]. Furthermore, human MCs 

generated from cord blood after co-culture with epithelial cells was shown to undergo a transition 

from MCTC to MCT type [256], while isolated intestine MCs in co-culture with ECs upregulated 

the expression of chymase, indicating the development of MCTC [61]. This transition matches 

with the population of MCs located in proximity to epithelial cells in alveoli and bronchi (MCT) 

and around blood vessels (MCTC) [257]. The result of our study is also in line with these findings 

as the morphological phenotype of the developed cells within the CTEM matched with their 

counterparts in skin and submucosa (MCTC) [67]. This has also been confirmed in vivo where 

MMCs generated from bone marrow were transferred into the peritoneal cavity of mice and 

acquired the features of resident connective tissue MCs. Also, when intravenously injected, 

MMCs could develop into both subtypes in MC-deficient mice in accordance with their 

anatomical location [258]. All of which signifies the complexity of MC ontogeny and plasticity 

that requires to be clarified within the context of in vivo tissue-equivalent models.  
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In order to compare the characteristics of the cells obtained in this study with previous 

protocols, a 2D culture method that generated MCs in a more similar condition than other studies 

(Table 3.7) to our 3D model was selected [59, 60]. In this study, considering that the cells were 

not expanded and maintained within a matrix, by using more than seven times lower 

concentration of progenitors, the yield for generation of CD117+ MCs (4.6 ± 2.4) was higher in 

average than the selected 2D method with yield of 3.2 ± 1 for granular cells and CD117 

expression of 88.3 ± 2.2%. The size and the histamine content of MCs developed within the 

CTEM were within the range of in vivo MCs isolated from human skin, intestine or lung with 

around 2-5 pg histamine/cell (Table 3.8) [97, 124, 259-261], while it was higher for the selected 

2D culture method (23.3 ± 3.3 pg/cell). This indicates that the cells in 3D culture condition can be 

morphologically different from cells in 2D and a more representative of in vivo cells. Although 

FcεRI has been considered as a phenotypic marker of MCs, human MC subtypes can express IgE 

receptor at different levels [254]. Given that IgE antibody upregulates the expression of FcεRI, as 

has also been observed in this work, it can facilitate the detection of IgE receptors [107, 108]. 

Due to the possible binding of IgE antibodies to the matrix or transport limitations, a higher 

concentration of it than what has been typically used for the cells in 2D culture [57, 59, 262] was 

needed to mitigate the effect of the collagen matrix. Furthermore, because of the matrix volume, 

the actual concentration of the antibodies within the matrix is lower than the concentration in the 

media before addition to the samples. Regardless of whether the concentration of IgE antibody 

used for stabilization of the receptors was optimal or not, the expression of FcεRI for the 

generated cells within the CTEM was comparable with the selected 2D model. In order to 

examine the function of the generated cells, the release of histamine in an anti-IgE-mediated 

reaction was measured. As shown in previous studies (Table 3.8 and 3.9), the response of MCs 

depends on the concentration of anti-IgE used for their activation and the activation protocol [58-

60, 142, 262, 263]. For this study, the response of the generated cells to a selected concentration 

of anti-IgE (40 µg/ml) is shown. According to our previous observation [139], the selected 
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concentration of anti-IgE is not high enough to induce the maximum histamine they can release 

within a matrix. Therefore, the histamine released (31.2 ± 2.0%) seems to be lower than the 

selected 2D model (52.9 ± 2.5%) that utilized an optimal concentration of anti-IgE to obtain the 

maximum histamine release. It is of great importance to highlight that when we examined the 

function of the cells that were generated within the matrix but removed from it prior to activation, 

the histamine degranulation was comparable to the cells developed and activated under 2D 

culture conditions [139]. This indicates that the reduced histamine release in the matrix was not 

because the generated cells were functionally impaired but rather the effect of anti-IgE was 

attenuated by the cell microenvironment. Reduced levels of histamine release in response to anti-

IgE for MCs in lung fragments compared with dispersed cells from the same tissue has also been 

observed [261, 264]. Furthermore, the response varies with the tissue type that MCs were isolated 

from possibly due to their functional heterogeneity [124, 265, 266]. Therefore one cannot expect 

the same level of histamine release from MCs tested ex vivo or generated in vitro, besides the 

discrepancies in the activation protocols (Table 3.8 and 3.9). Nevertheless, our main objective 

was to demonstrate that the generated cells can also degranulate in an immediate hypersensitivity 

reaction. In contrast with serum of a non-allergic patient, the MCs, regardless of whether they 

were generated from peripheral blood of allergic or non-allergic individuals, were passively 

sensitized with allergic serum and released histamine in response to Der p allergen. The response 

curve is analogous to the response of passively sensitized MCs isolated from human tissue to dust 

mite or grass pollen allergen [142, 267]. With increasing the concentration of the antigen the 

histamine release reaches its maximum level and afterward due to the saturation of antibody-

binding sites or formation of clusters of crosslinked receptors swept to the tail of the cells 

(patching and capping) decreases, therefore forming a bell-shaped response curve [268, 269]. It is 

noteworthy that in the control group that was also sensitized with the serum but not activated with 

the allergen when the allergic serum was used the histamine release was marginally higher than 

non-allergic serum (p <0.01). In fact, previous studies have shown that some type of IgEs called 
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cytokinergic IgEs can induce histamine and cytokine release [270-272] and the results of this 

study indicate that human allergic serum can activate MCs in the absence of an antigen.  

3.5.  Conclusion 

MCs can play a role in the pathogenesis of IgE and non-IgE mediated immune responses, as 

well as host defense against parasites, bacteria, and viruses [66, 67]. Here, we have created a 

CTEM with monolayer of ECs that supported the development of MCs from their precursors. The 

generated cells were granular and exhibited MC phenotypic markers. In addition, the stem cell-

derived MCs within the CTEM were able to respond in IgE-mediated reactions, specifically to an 

allergen, therefore may serve as a novel tool in clinical settings for diagnosis of allergic diseases 

[273] or pharmacological studies. Indeed, previous studies on immunotherapy had shown that 

cells in 3D culture conditions exhibit a more similar resistance to drugs seen in human than 2D 

culture [274]. Therefore, 3D models may be widely used in clinical trials due to a higher potential 

in predicting in vivo cellular responses. Furthermore, the developed tissue model can be 

administered in researches on the mechanism of allergic diseases and other inflammatory 

disorders. As an example, MC histamine and tumor necrosis factor-α (TNF-α) can stimulate ECs 

to release proinflammatory cytokines and express adhesion molecules [275-277], suggesting the 

role of MCs in the late phase of inflammatory reactions, which can be demonstrated using the 

developed tissue model in this work. Furthermore, the release of fibrogenic, fibrolysis, and 

proangiogenic factors, such as tryptase, transforming growth factor-β (TGF-β), heparin, basic 

fibroblastic growth factor (bFGF), and vascular endothelial growth factor (VEGF) suggest MC 

role in fibrosis, tissue remodeling, and vascular diseases [81, 278]. MC co-culture with fibroblasts 

was shown to induce collagen synthesis as well as collagen contraction mediated by the 

expression of matrix metalloproteinases (MMPs), which may modulate the infiltration of 

inflammatory cells in asthmatic airways and fibrotic tissues [115, 279-281]. ECs alone or in co-

culture with fibroblasts can also induce collagen contraction [282, 283]. Likewise, we have 
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observed the contraction of the collagen matrix depending on the number of seeded fibroblasts 

and generated MCs, especially after the gel was seeded with ECs. Therefore, the co-culture of all 

three cell types may be required for a more comprehensive study of the mechanism of tissue 

remodeling and wound healing. Many of the findings in this area have not been demonstrated by 

using primary human cells or direct cellular interactions, which occurs continuously in the human 

body. Therefore, with the advent of 3D culture method, which provides the condition for cell 

motility and migration, interaction with multiple cells types and ECM proteins, numerous 

hypothesis that remained unanswered or controversial can be examined.   
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Table 3.7. Characteristics of progenitor-derived mast cells (MCs). 

  

Cell Source Yield (fold) 

Histamine  

content 

(pg/cell) 

Tryptase/ 

chymase 

content 

(pg/cell) 

Tryptase %/ 

chymase % 
c-kit % FcεRI % 

Media 

cytokine 

Culture 

time 

(weeks) 

Ref. 

1 CD34 PB 32±29 - - Pos/Pos 55-90 55-90 
SCF, IL-3, 

LDL 
3 [284] 

2 CD133 PB, CB 
3.2±1 PB,  

101±20 CB 

23.3±3.3 PB,  

5.9±1 CB 
- 75/ND 

88.3±2.2 PB 

91.5±1.1 CB 

31.4±3.3 PB 

33.9±6.6 CB 

SCF, IL-3, 6, 

FCS last week, 

tested: IL-4 

7 [60] 

3 CD133 PB 3.3±0.5 15.5±5.3 - 80±5/Neg 88.3±2.2 31.4±3.3 
SCF, IL-6, 3, 

FCS on week 6 
7-11 [59] 

4 CD34 PB 40±2.2 7.6±1.8 16.1±1.2/ND Pos/95 ~100 92 
SCF, IL-3, 4, 

9, LDL 
9 [57] 

5 CD34 PB 0.06±0.03 4.3±0.7 - Pos/20-30 - - SCF, IL-6, 3 12-14 [251] 

6 

MNC 

w/o 

Lym 

PB - 4.5±0.3 - Pos/10 - - 
SCF, IL-6, 3, 

FCS 
12 [262] 

7 CD133 CB >80, week 8 3.8±1.1 - 
97±2/32±6 

 week 12 
Pos 33.8±10.9 

SCF, IL6, FCS 

on week 8 
8-12 [58] 

8 MNC CB - - 2/ND >95/<20 - - 
SCF, IL-6, 

PGE2, FBS 
6 [285] 

9 CD34 
BM, 

CB 

11.1±4.5 

week 8, 

6.8±1.8 week 

12 

3.1±1.9 BM, 

4.5±4 CB 

 week 8 

5.1±1.3 BM & 

9.5±13.5 CB/ 

3.8±1.4 BM & 

1.6±0.7 CB 

week 8 

Pos/Pos 
93.2 BM 

week 12 

82.2 BM 

week 12 
SCF, IL-6, 3 8-12 [286] 

10 CD34 PB, CB 

100 CB cells  

gave 9.6±2.4 

colonies, each 

9580±179 

cells 

13.8±8.4 

CB,  

~9-30 CB 

week 10 

8-50/0.7-21 

week 10 

>96/11-47 or 

/4-98 week 

10-11 

- - 
SCF, IL-6, 

tested: IL-4 

8-13 CB, 

10-12 PB 
[250] 

11 MNC CB - - - 98/12 - - 
SCF, IL-6, 

FBS 
12 [287] 

12 

MNC, 

CD34 

CB 

PB, CB 

807±115 PB,  

15440±3000 

CB per 

colony on 

week 5-6 

CB 8.6±0.7, 

PB 9.3±2.2 

week 12-14 

- 
Pos/Pos 

mRNA 
- 

Pos PB, Neg 

w/o IgE CB 

SCF, IL-6, 3,  

FCS on week 6 
6-25 [196] 

13 
Lin- 

MNC 
PB ~0.13 - - >95/ND - - 

SCF, IL-6, 3, 

tested: IL-4 
6 [288] 
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14 
MNC, 

CD34 
CB 

1.9±0.2 MNC 

 week 4 

5.62±1.88  

week >10 

3.46±0.89/ND 

 week >10 
99/18 - - 

SCF,FCS, 

tested: IL-6, 3 

PGE2, GM-

CSF 

4-12 [56] 

15 MNC CB - - - 92/80 80 6 SCF, FCS 10 [289] 

16 MNC CB - 3.6 3.5±0.9/ND 99/18 - - 
SCF, IL-6, 

PGE2, FBS 
10 [290] 

17 CD34 PB, BM 8 PB 5±0.45 - Pos/3 Pos Pos 
SCF, IL-3, 

Human serum 
6 [202] 

18 MNC FL, CB - 
0.9±0.5 FL,  

1.1±1 CB 

1.7±0.4 FL, 

 1.9±1.2 

CB/ND 

Pos/9-84 CB, 

Pos/Neg FL 
- - 

FCS,  

Lym cultured 

media or 

fibroblasts 

4 [55] 

19 MNC BM, PB - Po 
2-70/ND week 

6 
Pos/ND - - 

SCF, tested: 

IL-3, 4, M-

CSF NGF, 

FCS 

8 [48] 

20 MNC CB - 
1.8-2 week 

11 
- 

Pos/84-94 in 

T cell media 
- - 

FBS or T cell 

media 
7-14 [291] 

21 CD133 PB 4.6±2.4 4.4 ± 0.8 - 99±1/97±3 Pos 31.9±3.6 
SCF, IL-6, 3, 

FBS on week 6 
7 

Our 

work 

BM: Bone marrow; CB: Cord Blood; FBS: Fetal bovine serum; FCS: Fetal calf serum; FL: Fetal liver; GM-CSF: Granulocyte-macrophage colony-

stimulating factor; IL: Interleukin; LDL: Low-density lipoprotein; Lin: Lineage; Lym: Lymphocyte; M-CSF: Macrophage colony-stimulating factor; MNC: 

Mononuclear cells; ND: Not determined; Neg: Negative; NGF: Nerve growth factor; PB: Peripheral Blood; PGE2: Prostaglandin E2; Pos: Positive; SCF: 

Stem cell factor. 
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Table 3.8. Activation of mast cells (MCs) isolated from human tissue. 

  Source 
Sensitization 

(µg/ml), time  

Anti-IgE (µg/ml), 

time 

Histamine 

content 

(pg/cell) 

Min histamine release % Max histamine release % Ref 

1 Carcinoma lung  1, 1 h 
1:10-10000,  

10 min  
- 

~9, 

 ~5 in co-culture 

46 fresh isolated w/o sensitization,  

43±2.4 after 1 week in co-culture 
[62] 

2 
Lung surgery 200, 4 h 10, 30 min - ~33 w/o SCF 

~64 w/SCF 100 ng/ml 

~63 w/SCF 3days culture [142] 

Foreskin  NM 1, 4 h - ~10 w/o SCF ~16 w/SCF 100 ng/ml 

3 Lung and uterus 2, 3-6 h 1-10, 30 min - ~6 Spon, ~16±4 ~22±5 [48] 

4 Carcinoma kidney 1, 3 h 0.1-10, 30 min 0.9±0.7 
1.5-10 Spon, 

~37±10 
~54±5 [292] 

5 Children foreskin  
10% atopic 

serum, 2 h 
0.1-1% 15 min - 

2.4-9.4 Spon, 

9.2±1.8 
19.6±6.1 [150] 

6 
urticaria foreskin  

 

2-fold serum 

dilution, 

20 min 

1:250, - - <3 Spon 
19.8±13.1, 

~2-28 donor dependent 
[148] 

7 Foreskin 2, 2 h 0.25-25, 30 min  - 4.8±1.1 Spon, 1.1±0.5 16.4±4.3 [293] 

8 Foreskin NM 10%, 5 min - 5.6±1.3 Spon, 10.2±1.7  - [294] 

9 

Foreskin 

NM 

25, - - 

- 

13.9±2.2 

[265]  
Lung  75, - - 39.4±4.8 

Colon mucosa 2.5, -  - 16.7±8.4 

Colon muscle 2.5, - - 16.6±5.7 

10 Breast skin NM  1:300, 30 min - - 
~21±3 w/o SCF, 

27±3 w/SCF 
[295] 

11 Foreskin 

10% atopic 

serum, 16 h, 

22°C 

<1-10%, 15 min  4.6±0.4 
5±0.9 Spon, 

~8.5±0.2 
17.5±1.5 [97] 

12 Foreskin 3 h 0.1-10, 30 min - 

0.8-2.8 Spon donor dep 

wo/SCF, 9.6-23.5 Spon 

w/SCF, ~10 w/o SCF, ~43 

w/SCF 

~36 w/o SCF,  

~47 w/SCF,  

20.3±8.8 to 1 µg/ml X-IgE w/o SCF 

[296] 

13 

Foreskin 

10% human 

atopic 

serum, 24 h 

0.01-10, 30 min 

3.5±0.5 

~6±1 ~20.5±1.5 

[151] 

Breast skin  like foreskin w/ or 

w/o sensitization 
~4 ~32±7 

14 Breast skin NM 3, 30 min - <10 Spon ~26±7 [297] 

15 Breast skin NM 3, 30 min - <10 Spon ~34±5 or ~15 donor dependent [298] 

16 Foreskin IgE 2.5-250, 30 min  - 8.6-10.3 13.9±2.3 to 25 µg/ml X-IgE [299] 

17 Foreskin NM 1:100, 30 min - <8 Spon 15-20 [300] 

18 Carcinoma Lung  NM 1-10, 30 min  3.2±0.3 ~4±1 ~23±5 [301] 

19 Lung NM 1:10-1000, 15 min - ~16±4 
38±7.6, 

30.4±8.4 to 1 mg/ml 
[302] 
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20 Lung NM 
2 or 0.001-10, 45 

min  
-  - 

25±9 to 2 µg/ml vs time, 44±19 vs 

dose 
[263] 

21 Carcinoma lung NM 0.45-18, 20 min 
2.7±0.3 - 

4.8±0.7 
<5 Spon, ~3±1 ~31±7 [259] 

22 Lung tumor 6 2, 5-45 min - <5 Spon ~40 [123] 

23 

Carcinoma lung 

dispersed cells 

and fragment 

NM 0.03-10, 5-45 min 3.6±0.5 ~2 Donor dependent ~50 donor dependent [303] 

24 

Carcinoma lung 

dispersed cells 

and fragment 

24 h 

1:100-10000 of 36 

µg/ml, 

 2-60 min or 30 min 

- 
1.1±1.6 

 

22.8±8.2 

 
[304] 

25 Carcinoma lung NM 0.001-10, 45 min  

2.5±0.5 - 

10.1±2.5  

cell size 

dependent 

~3 ~50 [95] 

26 Carcinoma lung NM 0.3-3, 20 min  - ~3.5±1.5 Spon, ~22±10 32.1±8.5, ~37.5±9 [305] 

27 Carcinoma lung NM 
1:100, 10 min or 2-

60 min 
- 

6.7±1.6 Spon, 23±3.6 

 
28.8±4.5 w/SCF 

[306] 

 

28 

Carcinoma lung 

dispersed cells 

and fragment 

4-6, 15 min 0.03-10, 45 min 

2.7-12.4 

cell size 

dependent 

2-8 Spon, ~7±1 ~34 [45] 

29 

Foreskin 

10% atopic 

serum, 16 h, 

22°C 

0.1-10%, 15 min  

4.6±0.4 4.3±0.6 Spon, ~4.5  17.5±1.5 

[124] 
Breast skin 

 

3.34 8.4±1.1 Spon, ~12 27.2±2.6 

Lung 5.43±1.09 4±1.3 Spon, ~2 26.7±4.1 

Adenoid  4±0.6 Spon, ~2 19.5±3.9 

Tonsil  6.9±1.3 Spon, ~20 30.6±6.8 

Carcinoma colon 2.81±0.22 5.5±1 Spon, ~6 15±1.1 

30 Uterine  NM 0.01-10, 30 min 2.1±0.2 ~5 30±4 [307] 

31 

Bronchoalveolar 

lavage of 

asthmatic patients 

NM 
1:7000-1:30, 15 min 

or 1-30 min 
1±0.53 ~11±1.5 ~25±4 [308] 

32 Tonsillar 3 h 0.1-10, 30 min 2.2±0.7 <10 Spon, ~45±12 ~57±22, ~82±4 w/SCF [309] 

33 

Carcinoma or 

inflam bowel 

disease intestinal 

mucosal 

NM 
0.001-10, 40 min or 

1-20 min 
2.8±0.2 7±3.8 Spon, ~2±1 30±2.8 [310] 

34 Carcinoma lung NM 20, 30 min 1-5.5 

14 Non-sensitized 

fragments,  

33 dispersed cells 

31 from sensitized fragments, 38 

from dispersed cells 

 

[264] 
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35 Cardiac 10, 3 h 0.1-1, 30 min 4.6±1.4 <6% Spon, ~10±4 52, ~29±5 w/SCF [311] 

36 

Skin 
200 IU/ml 

atopic serum 

 1.2±0.3 

<6.7 Spon 

13.2±1.3 

[266] Uterus NM 1.8±0.5 21.1±3.5 

Lung  2.6±0.1 27.7±1.9 

37 

Carcinoma 

mucosal of large 

intestine NM 
0.03-10, 15 min or 

<1-15 min 

2.81±0.22 5±0.83 Spon, ~2±0.5 15.1±1.1 

[260] 

Carcinoma 

muscle intestine 
3.46±0.36 4.99±1.21 Spon, ~5±1 16.5±4.4 

38 Lung 

Undiluted serum 

or IgE, over 

night 

0.2-6, - - <1.5 Spon, 3.7±1.1 22.4±20 [149] 

39 

Lung fragment 

and dispersed 

cells 

1:50 serum, 2 h 1:50-5000, 10 min 4.23±0.49 6.8±1 Spon, ~6±3 ~46±7 [261] 

40 Lung fragment 
50% allergic 

serum, 18 h, 4°C 
1:100-10000, 45 min - 1.8±0.4 Spon, ~4±1 21±1.6 [152] 

NM: Not mentioned or not clear; SCF: Stem cell factor; Spon: Spontaneous; X-IgE: anti-IgE. 
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Table 3.9. Activation of human progenitor-derived mast cells (MCs).     

  Cell Source 

IgE (µg/ml), 

time (h) 

Anti-IgE (µg/ml), 

time (min) 

Histamine 

Content 

( pg/cell) 

Spontaneous 

histamine release % Histamine release % 

Culture 

time 

(weeks) Ref 

1 CD133 PB, CB 1-16, 24  5, 30 

23.3±3.3 PB,  

5.9±1 CB 

1.3±0.1 PB, 

2.9±0.7 CB, 

~42 - 52.9±2.5 PB, 

~12 - 17.5±2.1 CB 7  [60] 

2 CD34 PB 1, 24 2, 30 7.6±1.8  ~36±5  9  [57] 

3 CD133 CB 2, 24 100-4287, 30 3.8±1.1 ~3±2 34.6±8.9 - ~26±4 8-12  [58] 

4 CD133 PB 2, 24 1-7, 30 15.5±5.3 1.3±0.1 53.5±3 or 8.9±1.4 pg/cell 7-11  [59] 

5 CD34 PB 1, 2 1:105-1:100, 30 4.3±0.7  8±1.2 ~10±3 - 50±5 12-14  [262] 

6 MNC CB 1, 1 10, ~ 4 - - 40.4±7.8 12 [287] 

7 

MNC 

w/o 

Lym PB 0.1, 1 

1:105-1:100, 

30 4.5±0.3 6.9±1.1 ~9±3 - 48±4.7 12 [251] 

8 

MNC, 

CD34 

CB CB, PB 1, 48 1.5, 30 

CB 8.6±0.7, 

PB 9.3±2.2 

12-14 week - 

1.7±0.6 CB, 9.5±3.3 (w/IL-4) CB,  

16.1±2.4 PB, 38.9±5.2 (w/IL-4) PB 

12-14 week 6-25  [196] 

9 

Lin- 

MNC PB 5, 48 1.5, 30  - - 15.9±2.8, 38.8±6.3 (w/IL-4) 6 [288] 

10 

MNC, 

CD34 CB 1, 24 0.15-15, 30 

5.62±1.88  

>10 week 3.70 ~27±5-52.9, 10>week 4-12  [56] 

11 MNC CB 1, 2 1, 30  3.6 3.7±1.2 58.5±10.4  10  [290] 

12 CD34 PB 1, 24 0.1 & 1, 60 - - ~25±3 - ~38±4 3 [284] 

13 CD133 PB 15, 24 40, 60 4.4±0.8 2.3±0.9 31.2±2.0 7 
Our 

work 

CB: Cord Blood; PB: Peripheral Blood; Lin: Lineage; Lym: Lymphocyte; MNC: Mononuclear cells. 
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CHAPTER 4 
 

 

Monocyte Trafficking and Differentiation in Response to Allergen-Activated Peripheral Blood-

Derived Mast Cells within an Allergy Tissue Model 

 

4.1.  Introduction  

Since the early 1960s, the prevalence of allergic and atopic disorders has risen rapidly, which 

has placed allergy as one of the leading causes of chronic diseases, costing billions of dollars in 

healthcare per year [1, 312]. In the U.S., approximately 50 million people suffer from allergies, 

with skin allergy affecting more than eight million children [313]. Almost 50% of the allergic 

patients are sensitive to house dust mite (HDM) [314] and nearly 50% of the total 

immunoglobulin E (IgE) accounts for specific IgE to group 1 and 2 of the Dermatophagoides 

pteronyssinus (Der p) of HDM [315]. Der p can rupture the epithelial layer tight junctions, induce 

leukocyte infiltration, and IgE production [316]. An IgE-mediated response includes a concerted 

effort of multiple cell types. Dendritic cells (DCs) process the allergen, migrate to the lymph node 

(LN), and present them to T cells. The T cells, upon stimulation, proliferate, polarize into helper 

cells (Th), and induce the immunoglobulin (Ig) class switching to specific IgE by B cells. 

Subsequent exposure to the allergen crosslinks the IgE receptors expressed by mast cells (MCs) 

and release of an array of de novo synthesized cytokines, lipid and preformed mediators that lead 

to the responses in the effector phase [136]. In the early phase of the reaction, happening 
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within minutes after the MC activation, MCs release factors, such as histamine, leukotriene C4, 

prostaglandin D2, tumor necrosis factor (TNF), which immediately causes bronchoconstriction, 

vascular permeability, vasodilation, mucus production, and neuron signals [66]. The late phase of 

the reaction, which peaks after a few hours, is a consequence of the slow-release of mediators, 

such as leukotriene B4 (LTB4), interleukin (IL)-8, TNF, and chemokines that initiates the 

infiltration of leukocytes including, monocytes, eosinophils, neutrophils, and Th2 cells [317]. 

Activated endothelial cells (ECs) express chemoattractants and adhesion molecules and elicit the 

migration of immune cells to the site of challenge. The recruitment of the immune cells along 

with the dysregulation of the tissue cells results in the symptoms of allergy [20]. Therefore, MCs 

have been considered as the central effector cells of an allergic inflammatory response.  

Although the role of MCs in the effector phase of the response is well established, their 

ability to directly interact with a pathogen, DCs, and lymphocytes suggests that they may regulate 

the response prior to IgE production in the sensitization phase [79, 136]. MCs express various 

pattern recognition receptors (PRRs) and other molecules that may directly or indirectly associate 

with a pathogen. This includes Toll-like receptor (TLR)4, TLR2, Dectin-1, Fc receptors, and 

protease-activated receptor 2 (PAR-2) [136]. ECs, eosinophils, DCs, and other immune cells can 

interact with HDM or the allergen-derived peptides, through e.g. PAR-2 or TLR4 and it is 

possible that MCs can also respond to an allergen directly in the absence of specific IgE [318-

320]. MCs by expressing integrins and adhesion molecules can communicate with other cells and 

transfer the endocytosed antigens to DCs, as well as their granules to e.g. fibroblasts and ECs in a 

process termed transgranulation [321, 322]. Not only that MC cellular interactions and mediators 

can influence DC co-stimulatory molecule and cytokine expression but they also can present 

antigens to T cells and induce IgE production by B cells [31, 33, 40, 41]. Therefore, MCs can 

uptake an antigen and similar to antigen presenting cells (APCs) shape the immune response. 

Previous studies on MC-DC interactions were dependent on MC activation in IgE-mediated 
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responses [323, 324]. Although the mechanism of direct interaction of MCs with an allergen is 

currently undefined, in this work the goal was to investigate the interaction between MC and 

monocytes-derived cells in response to an allergen in the sensitization phase of the response. The 

antigen uptake or presentation capability of MCs can be regulated by the tissue milieu where they 

interact with other cell types and released cytokines. For example, FcγRI expression that 

modulates MC activation requires interferon (IFN)-γ treatment [136]. Therefore, we utilized a 

tissue-engineered model that mimics MC microenvironmental conditions in connective tissue to 

determine their role in the initiation of an allergic inflammatory response.  

DCs are a heterogeneous type of APCs. The ontogeny of different human DC subsets are still 

under investigation. Granulocyte-macrophage progenitors (GMP) and multi-lymphoid progenitors 

(MLP) originated from bone marrow can give rise to DCs [325]. Monocytes, which are also a 

progeny of GMP can be precursors of DCs in vivo and differentiate into DCs in vitro [326-328]. 

Immature or quiescent DCs similar to macrophages (MФ) interact with peripheral cues, take up, 

and process the antigen. When DCs present the fragment of the processed antigen on major 

histocompatibility complex (MHC) molecules, they migrate to draining lymph nodes (dLN), lose 

their antigen processing capability while becoming immunogenic. Functionally mature DCs 

present the antigen to antigen-specific T cells causing substantial clonal expansion and 

polarization of T cells into effector cells, e.g. Th1, Th2, and Th17. Phenotypically mature DCs 

express high levels of MHC, co-stimulatory (CD80, CD86, and CD83), and adhesion molecules, 

such as integrin lymphocyte function-associated antigen 1 (LFA 1) [329]. Several factors can 

affect the development of an immune response, such as the density and affinity of MHC 

molecules, level of co-stimulatory molecule expression, the ratio of DC to T cells, duration of 

contact, and, more importantly cytokines released in the microenvironment [330]. Therefore, 

multiple factors can play a role in priming a specific class of immune response. In this work, 

monocytes were used as a source for developing DCs, while unlike other in vitro two-
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dimensional (2D) models for DC development, no exogenous factors, such as IL-4 and 

granulocyte-macrophage colony-stimulating factor (GM-CSF) were added to the tissue model 

[331, 332]. Consequently, this work demonstrates the influence of allergen-activated model on 

monocyte trafficking and differentiation to DCs. Within only 48 h, the monocytes in the model 

differentiated to MФ-like and dermal DCs (dDCs), with different characteristics, while the 

presence of MCs in the model influenced monocyte differentiation and promoted the phenotypic 

maturity of monocyte-derived cells. The monocyte-derived cells were capable of priming T cells 

and inducing IgE production specifically when MCs were included in the model. The findings of 

this study not only can be applied to clarify the ontogeny of different DC subsets that may be 

found under inflammatory conditions in vivo but can also elucidate the capability of MCs in 

orchestrating non-IgE mediated responses.   

4.2.  Materials and methods 

4.2.1. Antibodies and reagents 

StemSpan media was from STEMCELL Technologies (Vancouver, Canada). Human 

recombinant stem cell factor (SCF), IL-6 and IL-3 were purchased from PeproTech (Rocky Hill, 

NJ). Defined HyClone fetal bovine serum was from GE Healthcare Life Sciences (Logan, UT). 

Human dermal fibroblasts treated with mitomycin C and human umbilical vein ECs were from 

Merck Millipore (Billerica, MA) and Promocell (Heidelberg, Germany), respectively. The 

following antibodies for the flow cytometry analysis were from BioLegend (San Diego, CA): 

anti-human Brilliant Violet (BV)785 human leukocyte antigen (HLA)-DR (clone L243), 

PE/Dazzle 594 CD1c (clone L161), BV421 CD206 (clone 15-2), APC/Fire 750 CD14 (clone 

63D3), PerCP/Cy5.5 CD64/FcɣRI (clone 10.1), APC CD83 (clone HB15e), BV605 CD86 (clone 

IT2.2), PE CD252/OX40L (clone 11C3.1), BV711 CD16/FcɣRIII (clone 3G8), PE/Cy7 thymic 

stromal lymphopoietin receptor (TSLPR) (clone 1B4), APC CD117/c-kit (clone 104D2), FITC 

CD31 (clone WM59), Alexa Fluor 700 CD45 (clone HI30), and the isotype controls, 
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fluorochrome-conjugated Ms IgG1 (clone MOPC-21), Ms IgG2a (clone MOPC-173), and Ms 

IgG2b (clone MPC-11). Zombie Aqua fixable viability kit and human TruStain FcX (Fc receptor 

blocking solution) were also from BioLegend. BB515 anti-human CD197/CCR7 (clone 3D12), 

its isotype control Rat IgG2a (clone R35-95), Brilliant Stain Buffer, and CompBead 

compensation particle set were purchased from BD Biosciences (San Jose, CA).  

4.2.2. Cell culture 

Leukocyte preparations were obtained from Oklahoma Blood Institute (Oklahoma City, OK). 

MC progenitors, CD133+ cells, and autologous CD14+ monocytes were positively isolated from 

human peripheral blood mononuclear cells by magnetic cell separation technology following the 

manufacturer’s protocols (MACS Miltenyi Biotec; San Diego, CA). MCs were generated within a 

collagen matrix in co-culture with fibroblasts and ECs, as explained before in the Methods 

section of chapter 3. Briefly, the CD133+ cells (70,000 cells/ml) and fibroblasts (40,000 cells/ml) 

mixed with a type I collagen gel solution were seeded in 48-solid well plates (Greiner Bio-One; 

NC) and incubated for six weeks. The StemSpan culture media supplemented with SCF, IL-6, 

and IL-3 (first three weeks) was refreshed weekly. At the end of the sixth week, following the 

coating of the gel with a fibronectin solution, the top of the matrix was seeded with ECs (50,000 

cells/cm2) in the described media supplemented with serum (20%, v/v). After total seven weeks, 

Der p extract of mite (HollisterStier; WA) at 300 AU/ml in the described serum-supplemented 

media was added to the samples and incubated for 24 h, as shown in Fig. 4.1. The concentration 

and incubation time of the allergen was selected based on studies on leukocyte activation (Table 

4.1) [333, 334]. Then, the top media was removed and monocytes at 1.5 × 105 cells/cm2 in 0.3 

ml/well complete media were added to the endothelium layer, which formed a confluent layer on 

top of the collagen gel and incubated for 3 h. The monocyte concentration was according to a 

transendothelial model and our previous unpublished studies [335]. Furthermore, previous studies 

done on monocyte migration in the absence of MCs and fibroblasts have shown that monocytes 
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adhere and extravasate to the subendothelial layer in around 2 h [89, 336]. The top layer was 

gently rinsed three times with warm phosphate buffer saline (PBS) to remove any non-adherent 

cells. The adherent cells were incubated for 48 h to allow monocyte migration and differentiation 

to DCs that may reverse-transmigrate and traverse the endothelium monolayer, representing their 

migration from tissue to lymphatic vessels [337]. It was previously shown that after 48 h no 

significant reverse-transmigration occurs [336]. Cells that were loosely adherent or transmigrated 

back to the apical surface were collected by three gentle rinses with warm PBS, counted by a 

hemocytometer and trypan blue exclusion. The remaining cells within the matrix were also 

collected after digesting the gel using 2.2 mg/ml collagenase D (Roche Applied Science; IN). The 

test group was referred to as group AM and identical samples without MC progenitors (group A) 

or allergen (group M) served as controls for determining the influence of allergen-activated MCs 

and allergen on the phenotype of the collected cells, respectively.    

4.2.3. Immunophenotyping and flow cytometry  

The phenotype of the collected cells was identified by immunofluorescence staining and 

multi-color flow cytometry for the expression of the cell surface markers. The cells were stained 

with the viability dye prior to incubation with the Fc receptor blocking solution. The cells 

collected from the apical and subendothelial layer were stained separately using different 

antibody cocktails. For the cells collected from the apical layer, the CCR7 antibody or its isotype 

control in a staining buffer containing 0.2% bovine serum albumin (BSA; Sigma-Aldrich; MO) 

was added to the cells and incubated for 30 min at 37°C. After rinsing, the cells were stained with 

the cocktail of antibodies or isotype controls in the staining buffer containing 0.2% BSA, 0.09% 

sodium azide, and Brilliant Stain Buffer in PBS for 45 min at 4°C. Data were acquired on a BD 

LSR II flow cytometer using the acquisition software BD FACSDiva (BD Biosciences) and 

analyzed using FlowJo software (Ashland, OR). Spectral overlap was calculated using single-

color compensation beads. 
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Table 4.1. Protocols for cell activation using extract or purified allergens. 

  Source Cell type Stimuli Allergen incubation time Allergen concentration Ref. 

1 Human T cell Der p  48-72 h or 8-11 days 200 AU/ml [338] 

2 Human T and B cell Der p 1 24 h 10 µg/ml [339] 

3 Human PBMC (T cell) rDer p 1 6, 24, 48, 72 h 0.2, 1, 5 µg/ml [340] 

5 Human T cell rDer p 1 1 h or 6-72 h 0.6, 2.5, 5, 10 µg/ml [341] 

6 Human PBMC Der p, Der p 1, Der p 2 7 days 0.1, 1, 10 µg/ml [342] 

7 Human PBMC Der p 1 5 days 10 µg/ml [35] 

8 Human PBMC Der p  6-7 days 10 µg/ml [343] 

9 Human PBMC Der p  6 days 100 µg/ml [344] 

10 Human PBMC Der p  3 days-? Weeks 250 AU/ml† [333] 

11 Human Spleen cells rDer p 1 72 h 20 µg/ml [345] 

12 Human B cell line Der p 1  1 h 5 µg/ml  [346] 

13 Human DC Der p 1 24 h 0.2, 1, 5 µg/ml [339]  

14 Human DC Der p  48 h 10 µg/ml [347] 

15 Human Mon-derived DC Der p 1  6, 24 h 10, 100, 1000 ng/ml [348] 

16 Human Mon-derived DC Der p 1  24 h 10, 100 ng/ml [334] 

17 Human Eosinophil Der p  19-60 h 100 µg/ml [349] 

18 Human Eosinophil Der f 1 4 h 25, 100 µg/ml [319] 

19 Human Epithelial  Der p 1 3-24 h 0.2-2000 ng/ml [350] 

20 Human 
Epithelial cells  

or cell line 
Der p 1, Der p 9 24 h, or 2,4,8,24 h 0.01-4 µg/ml [351] 

21 Human Keratinocytes rDer f 1, rDer p 1 3-48 h 0.25 and 2.5 µg/ml [352] 

22 Mice Spleen T cell  rDer p 1 1 h 10 µg/ml [353] 

DC: Dendritic cell; Der f: Dermatophagoides farinae; Der p: Dermatophagoides pteronyssinus; Mon-derived: Monocyte-derived;  

PBMC: Peripheral blood mononuclear cells; r: Recombinant.  

† The allergen is purchased from Hollister-Stier. 
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4.2.4. Statistical analysis 

Experimental results are from five independent experiments (donors). Statistical analyses 

were performed using GraphPad Prism (GraphPad Software; San Diego, CA). Box plots present 

the minimum to maximum of the data. Student’s t-test with Welch’s correction was applied to 

determine significant difference between two groups. A p-value < 0.05 was considered 

significant.  

4.2.5. Possible hazard and safety precautions 

All animal- and human-derived materials were purchased from commercial vendors that 

prescreen the products for biological hazards. The personnel conducted the research completed a 

training program for handling the biohazardous materials and working in a biosafety level 2 

(BSL-2) laboratory. Prior to the experiments, all biohazards were identified and biosafety plans 

were prepared and followed. All procedures associated with the work followed “Universal 

Precautions”. Biohazardous materials were disposed according to the guidelines for each waste 

category. 

 

Fig. 4.1. Development of monocyte-derived cells within the connective tissue-equivalent model. 
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4.3.  Results and discussion  

MCs and other APCs are co-localized in the dermis in proximity to fibroblasts, where they 

interact with invading pathogens. A substantial information can be found in literature about the 

phenotypic and functional characteristics of different human DC subsets being tested ex vivo or in 

vitro. However, not much is known about the interaction of DCs with human MCs, while both are 

considered as sentinels of the immune system. The direct interaction of DCs with MCs was only 

discussed subsequent to the MC sensitization with IgE antibody [323, 324]. It is unclear how non-

IgE-dependent MC activation that may be modulated by the tissue milieu affect the DC function 

and ultimately the immune response. Here in this work, we examined the influence of MCs on 

monocyte transendothelial migration and differentiation to DCs in response to an allergen in an 

IgE-independent manner. We have used a three-dimensional (3D) tissue model that supported the 

development of mature MCs in co-culture with fibroblasts and ECs within a connective tissue-

equivalent matrix. The features of the model allow investigating cell migration and cellular 

interactions, which is not possible to examine in a 2D system. After addition of the monocytes to 

the model following activation with Der p extract of mite, the collected cells from the apical and 

subendothelial layer were analyzed and compared with the control groups (A or M).  

4.3.1. Monocytes differentiated into dendritic and macrophage-like cells in the connective 

tissue-equivalent model 

After excluding doublets and dead cells, the collected cells from the apical layer, regardless 

of the addition of MC progenitors or allergen to the model, were highly HLA-DR positive (Fig. 

4.2A). As shown in Fig. 4.3A, for the cells collected from the digested gel, ECs and MCs were 

excluded by using their phenotypic markers, CD31 and CD117, respectively [139]. CD45, which 

is a leukocytes marker was used to exclude fibroblasts [354]. Monocyte-derived cells from the 

apical layer in all the groups and also from the subendothelial layer from group A were all 

CD206+ (Fig. 4.2A and 4.3A). Therefore, for the subendothelial cells in group AM and M, the 



78 
 

MC precursors that were CD45+ but not expressing CD31 or CD117 were excluded by gating out 

CD206- cells (Fig. 4.3A). The monocyte-derived cells in the subendothelial layer were also highly 

expressing HLA-DR (Fig. 4.3A). CD1c, also known as blood DC antigen (BDCA)-1, which is a 

human tissue and blood DC marker [355] was absent on monocytes, while it was expressed by 

the monocyte-derived cells at variable levels (Fig. 4.2B and 4.3B). Interestingly, the cells 

upregulated the density of the expression of CD14 in comparison with the monocytes (Fig. 4.4 

and 4.5). One possibility might be that some of the CD14 surface receptors were saturated by the 

isolation beads on peripheral blood-isolated CD14+ monocytes and they were not detectable. 

Immature monocyte-derived-DCs (moDCs) developed in vitro under the influence of 

differentiating cytokines, such as IL-4 and GM-CSF were mainly CD14low/- [331, 356]. While, the 

reverse-transmigrated cells developed within a transendothelial model created by Randolph et al. 

were CD14+ under steady-state condition and upregulated HLA-DR compared with monocytes 

[336], similar to our connective tissue-equivalent model shown in Fig. 4.4 and 4.5. However, 

when stimuli, such as lipopolysaccharide (LPS) or zymosan were incorporated into the collagen 

matrix, CD14 expression was highly downregulated by the reverse-transmigrated cells [336], 

which is not the case in our work that an allergen was used for stimulation. Besides monocytes, 

CD14 is expressed by a subset of dDCs and interstitial MФ [357, 358]. As shown in Fig. 4.2A 

and 4.3A, the cells were highly expressing macrophage mannose receptor (MMR/CD206), 

characteristic of moDCs, dDCs, inflammatory dendritic epithelial cells (IDECs), and MФ, but not 

monocytes, blood DCs, and Langerhans cells (LCs) [359, 360]. CD206 provides the ability to 

capture mannosylated proteins in a receptor-mediated endocytosis [360]. It was shown that 

CD206 can modulate the allergen uptake and the development of a Th2 response [361, 362]. The 

expression of both CD1c and CD206 by the monocyte-derived cells, which are uncharacteristic of 

monocytes along with the upregulation of HLA-DR indicated that the monocytes have 

differentiated.  
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The collected cells were gated based on the expression of CD1c and CD14 into three 

populations: CD1c- CD14+, CD1c+ CD14+, and CD1c+ CD14- cells (Fig. 4.2B and 4.3B), as these 

two markers can be helpful in identifying different DC subsets and MФ. The CD1c vs CD14 

distribution of the human HLA-DR+ cutaneous cells is similar to the results of our study except 

with the existence of a population of CD1c+ CD14- cells that includes CD141+ DCs [327]. 

Therefore, the developed cells in our model might be homologous to dDCs. The cells were also 

expressing CD64 and CD16 IgG receptors, at variable levels, as shown in Fig. 4.4 and 4.5. 

Expression of CD64 is characteristic of monocytes and MФ, but also detected on steady-state 

moDCs developed in the transendothelial model and dDCs [336, 358]. In mice, CD64 has been 

considered as a marker of moDCs to distinguish them from conventional DCs [363], however, 

this may not be applied to human moDCs, specifically to lung residents [328]. CD16, which is 

not expressed by classical monocytes was also shown to be absent on human moDCs developed 

in vitro in IL-4 and GM-CSF-supplemented media [332, 364]. This receptor is neither expressed 

by CD1c+ blood DCs nor dDCs and LCs, whereas a population of blood DCs (SlanDCs) and MФ 

are CD16 positive [358, 365]. In our model, the highest expression of CD16 belonged to group M 

that was not activated with the allergen with a higher expression level on CD1c- cells (p < 0.01, 

Fig. 4.4 – 4.7). Analyzing the HLA-DR CD11c-expressing cells collected from two inflammatory 

fluids from human samples demonstrated two populations of CD1c+ CD16low/- and CD1c- CD16+ 

cells [366]. Both populations were expressing CD14 and CD206, but the CD1c+ cells had 

dendrites, whereas the CD1c- cells were exhibiting MФ-like morphology and were poor 

stimulators of CD4+ T cells. Interestingly, the gene signature analysis suggested that the CD1c+ 

CD14+ cells were derived from monocytes. Similar CD1c+ CD14+ CD206+ DCs were also found 

in the spleen of patients with gastric cancer associated with chronic inflammation indicating that 

CD1c+ CD14+ cells can appear under inflammatory conditions [366]. Therefore, the CD1c+ 

CD14+ cells were referred to as inflammatory (inf) DCs [366]. Indeed, in our model, the 

percentage of CD1c+ CD14+ cells were higher in group A and AM that were stimulated with the 
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allergen than group M (p < 0.0001, Fig. 4.2B and 4.3B). Therefore, comparison of the 

characteristics of the developed cells in our connective tissue-equivalent model with human DC 

subsets and MФ mentioned above implies that the CD1c+ CD14+ cells could be counterparts of a 

subset of in vivo dDCs or infDCs, while the CD1c- CD14+ cells with higher density of expression 

of CD14, CD64, and CD16 but lower HLA-DR might be MФ-like cells or dermal dendritic-

appearing MФ (p < 0.01, Fig. 4.6 and 4.7). Further evidence is a study that demonstrated 

monocytes as precursors of CD1clow/- CD14+ cells in the skin with similarities in gene expressions 

to tissue MФ [327]. The CD14+ dermal cells were not as potent as CD1c+ CD14- cells in 

stimulating allogenic naïve T cells, consequently functioning more like MФ than efficient 

antigen-presenting DCs [327]. However, this does not rule out the possibility of the development 

of CD1c- dDCs homologous to CD1c- CD14+ dDCs described by Klechevsky et al. [357], 

specifically in group A and AM with lower CD16 expression. More importantly, the contour plot 

of expression of CD14 vs CD1c in Fig. 4.2B and 4.3B, clearly shows that the CD1c+ CD14+ cells 

were being developed from the CD1c- CD14+ MФ-like population. In turn, under the influence of 

the allergen, the CD1c+ CD14+ cells were in transition to CD1c+ CD14- cells, meaning that CD1c+ 

CD14+ cells were not terminally differentiated cells. This transition became more evident in 

another experiment that samples were stimulated for the second time with the allergen and a 

higher percentage of them were CD1c+ CD14- (Fig. A.2B). This is not in agreement with 

Randolph et al.’s conclusion assuming that DCs arise from reverse-transmigrating monocytes 

[336]. The CD14+ dDCs in the skin express CD1c at a very low level, whereas CD1a+ dDCs or 

LCs that are almost negative for the expression of CD14 are CD1c+ [357]. Considering that the 

CD14+ cells in our model were in transition to CD14- cells under inflammatory condition, it is 

possible that with further incubation or stimulation they differentiate into another subset like LCs. 

Indeed, dermal CD14+ cells can be LC precursors [367]. On the other hand, Lin- CD1c+ IDECs 

also being referred to as myeloid inflammatory DCs that unlike LCs are Langerin- CD206+ cells 

appear in the lesional skin of patients with atopic dermatitis to amplify the allergic inflammation 
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and are among the cell types that can be differentiated from monocytes and dDCs [358, 368, 

369]. Each subset of DCs may have a specific role in the initiation, development, and even 

suppression of a humoral response. More investigation is required to fully define the phenotypic 

and functional characteristics of the monocyte-derived cells developed in the connective tissue-

equivalent model in this study to elucidate their mission in an allergic response. 

 

Fig. 4.2. Characterizing the monocyte-derived cells collected after 48 h from the apical layer of 
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the connective tissue-equivalent model. (A) Gating scheme and representative pseudocolor plot 

and histogram overlays of the expression of the markers used to define dendritic cells (DCs) in 

the test (AM) and control groups (A and M). Monocytes (Mon) before culture are also shown for 

comparison. (B) Representative contour plot of CD14 vs CD1c across the groups. HLA-DR
+
 cells 

were gated based on the expression of CD1c and CD14 and the percentage of the cells in each 

population in group AM was compared with group A and M. Data are from 5 independent 

experiments; n = 2 - 3. *, **, ***, and **** indicate p < 0.05, 0.01, 0.001, and 0.0001, 

respectively. 

4.3.2. Allergen promoted the development of CD1c+ dendritic cells (DCs) 

To compare the influence of the allergen on the characteristics of the monocyte-derived cells, 

group AM was compared with group M that was not activated with the allergen (Fig. 4.5 and 

4.6). In group M, CD1c- MФ-like cells could spontaneously differentiate into CD1c+ CD14+ cells 

(Fig. 4.2B and 4.3B). As described in the previous section, under the inflammatory condition, a 

higher percentage of CD1c+ CD14+ and CD1c+ CD14- cells were developed in group AM than 

group M (p < 0.0001, Fig. 4.2 and 4.3). Addition of the allergen to group AM did not allow the 

upregulation of CD64, CD16, and CD14 to the extent seen on the cells in group M (p < 0.0001, 

Fig. 4.4 and 4.5). Higher expression of CD64 has been implicated as a more efficient uptake of an 

antigen, which is mainly a MФ phenotypic characteristic [370]. CD16 signals following IgG-

immune complex ligation was shown to induce the upregulation of IL-33 by APCs and 

contribution to the development of a Th2 response in a mice model of airway inflammation [371]. 

However, this may not be applied to human dDCs as they appear not to express CD16 and 

indeed, may be a good marker to discriminate human dDCs from MФ [359]. In Fig. 4.4, CD16 

expression on the apical CD1c- cells in group AM, as well as A, was also low, suggesting that 

these cells may be phenotypically different from CD1c- MФ-like cells in group M, and possibly 

counterparts of CD1c- CD14+ dDCs described by Klechevsky et al. [357].  



83 
 

 

 

 

 

AM A 

AM 

A 

AM 

Overlayed 
Isotype 

A 

AM A 

A 



84 
 

Fig. 4.3. Characterizing the monocyte-derived cells collected after 48 h from the subendothelial 

layer of the connective tissue-equivalent model. (A) Gating scheme and representative 

pseudocolor plot and histogram overlays of the expression of the markers used to define dendritic 

cells (DCs) in the test (AM) and control groups (A and M). Endothelial cells (ECs) and mast cells 

(MCs) were excluded by gating out CD31 and CD117 positive cells, respectively. CD45 was also 

used to gate out any contaminating fibroblasts. MC precursors that were not expressing CD31 nor 

CD117 were excluded by using CD206 in group AM and M. Monocytes (Mon) before culture are 

also shown for comparison in the histograms. (B) Representative contour plot of CD14 vs CD1c 

across the groups. HLA-DR
+
 cells were gated based on the expression of CD1c and CD14 and the 

percentage of the cells in each population in group AM was compared with group A and M. Data 

are from 5 independent experiments; n = 2-3. *** and **** indicate p < 0.001 and 0.0001, 

respectively.  

We have also determined the expression of TSLPR and OX40L, linked to Th2 responses. The 

monocyte-derived cells collected from both the apical and subendothelial layer were positive for 

the expression of both TSLPR and OX40L, which was not the case for the monocytes before 

addition to the model (Fig. 4.4 and 4.5). In atopic lesions, high expression of TSLPR mRNA has 
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been reported [372] and blockade of TSLPR could lead to impaired maturation and migration of 

airway DCs and diminished Th2 response [373]. In addition, in asthmatic airways, TSLP release 

was correlated with the disease severity [374] and TSLP-stimulated myeloid DCs induced the 

production of Th2 cytokines by CD4+ naïve T cells [375]. However, the expression of a receptor 

can be affected by many factors, including the cytokines being released in the microenvironment 

and signals from neighboring cells. In our model, in response to the allergen stimulation, TSLPR 

density was not as high as group M on both apical and subendothelial cells (p < 0.05, Fig. 4.4 and 

4.5). One explanation can be a higher production of TSLP in response to the allergen, possibly by 

fibroblasts and MCs [374] and internalization of TSLPR following the interaction with its 

agonist. Furthermore, TSLP can upregulate the expression of MHC-II and co-stimulatory 

molecules, as well as OX40L, by myeloid DCs [375, 376]. OX40L expression was shown to be 

required for naïve T cells to produce the Th2 cytokines. However, in the presence of IL-12, it can 

lead to polarization of Th1 cells by enhancing the production of TNF-α and IFN-γ but not IL-10 

[375]. Therefore, OX40L expression is not per se an indicator of the development of a Th2 

response. Under the influence of the allergen, the expression of OX40L was not necessarily 

upregulated in both CD1c+ and CD1c- populations (Fig. 4.4 and 4.5). Indeed, in the 

subendothelial layer, fewer number of CD1c+ cells in group AM were expressing OX40L than 

group M (p < 0.05, Fig. 4.5). With this data, we cannot link the expression level of TSLPR to 

OX40L by assuming that endogenous TSLP could have internalized the TSLPR, but upregulated 

OX40L. OX40L expression may not be modulated only through TSLP and expression of other 

factors may have led to the downregulation of OX40L. Moreover, on migratory LCs, TSLP 

treatment did not induce the upregulation of OX40L implying that different DC subsets may have 

different mechanisms to promote a T helper response [377]. Nevertheless, the expression level of 

OX40L by the developed cells was not high in agreement with the response of mice moDCs from 

lungs after dust mite sensitization [363]. Regardless of the expression level, OX40L may be 

required for the development of Tfh cells and their migration to B cell follicular zones [378].  
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Fig. 4.4. Effect of the allergen and mast cells (MCs) on the characteristics of the monocyte-

derived cells collected after 48 h from the apical layer of the connective tissue-equivalent model. 

Representative histogram overlays of the expression of the markers used to define dendritic cells 

(DCs) in the test (AM), control groups (A and M), and monocytes (Mon) before culture are 

shown for comparison. Gating scheme and representative contour or pseudocolor plot of CD16, 

OX40L, and CD83 expression are also shown. For comparing group AM with the control group 

A or M, the fluorescence intensity (FI) of the marker was normalized to the control group in each 

experiment. Data are from 5 independent experiments; n = 2-3. *, **, ***, and **** indicate p < 

0.05, 0.01, 0.001, and 0.0001, respectively.  

Under the influence of the allergen, HLA-DR and CD86 co-stimulatory molecule were only 

marginally upregulated by the monocyte-derived cells collected from the apical layer (p < 0.001 

and 0.05, respectively, Fig. 4.4), while this was not the case for CD86 expression on the 

subendothelial cells (Fig. 4.5). Activation with the allergen also did not have a major effect on the 

CD83 expression level by the apical-collected cells and surprisingly induced a lower density of it 

on CD1c+ cells (p < 0.001, Fig. 4.4). We have not determined the expression of CD83 by the 

subendothelial cells. This is not in agreement with Randolph et al.’s transendothelial model with 

upregulation of both CD86 and CD83 on the reverse-transmigrated cells upon stimulation [336]. 

However, CD86 was downregulated on the subendothelial cells and CD83 was not expressed 

[336]. GM-CSF and IL-4, DC differentiating factors, were shown to keep the cells in the mature 

state, while IL-10 can suppress their maturation and render loss of CD83 [370]. Transforming 

growth factor beta (TGF-β) can also downregulate CD86 and CD83 [379]. Therefore, the balance 

of proinflammatory and immunosuppressive agents produced by the cells can have an effect on 

the phenotypic maturity of DCs and ultimately the type of response. Furthermore, the allergen 

was removed from the model prior to the addition of the monocytes, keeping in mind that it could 

have diffused into the subendothelial layer and remained in the matrix. In a mice model of 
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allergic inflammation, the response of different DC subsets was dependent on the dose of the dust 

mite allergen [363]. In the absence of sufficient stimulating factors, DCs may remain immature or 

semi-mature and induce tolerance [380]. Although the tolerogenic DCs can present an antigen to 

T cells, they are not able to deliver enough co-stimulatory signals for T cell activation. On the 

other hand, a weak T cell receptor signal may promote a Th2 response [381]. MФ have a poor T 

cell antigen-presenting capability and are low on co-stimulatory molecules, whereas only a subset 

of dDCs (CD1a+ cells) express CD83 [382, 383]. Notably, in the presence of DC maturation 

cytokines, such as IL-1β, IL-6, and TNF-α dermal CD1c+ cells isolated enzymatically from 

human skin did not upregulate CD83 receptors [383]. Even stimulating CD14+ dDCs through 

TLR ligands did not induce the upregulation of co-stimulatory molecules [384]. However, when 

LPS was added to our model, both CD86 and CD83 were upregulated, which is in contrast to the 

direct stimulation of the monocyte-derived cells with the allergen (Fig. A.3). This means that the 

moDCs in our model under certain circumstances can exhibit a mature phenotype. Our data 

indicate that the remaining allergen in the model or the indirect effect of the allergen through 

other cell types in the model, along with the cytokines in the microenvironment, did not induce 

the upregulation of CD83 on CD14+ cells. Whether this is due to the dose, the incubation time of 

the allergen, the cell types in the model, or an intrinsic property of the allergen, CD14+ cells, or 

the connective tissue-equivalent model, requires further investigation. In fact, skin APCs are 

more resistant to maturation in response to intradermal vaccine administration in comparison with 

in vitro cells, suggesting that tissue milieu may maintain tolerance [384, 385]. In conclusion, 

regardless of the maturation status of the monocyte-derived cells, the cells within the model 

responded to the allergen and influenced the characteristics of the monocyte-derived cells.  
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Fig. 4.5. Effect of the allergen and mast cells (MCs) on the characteristics of the monocyte-

derived cells collected after 48 h from the subendothelial layer of the connective tissue-

equivalent model. Representative histogram overlays of the expression of the markers used to 

define dendritic cells (DCs) in the test (AM), control groups (A and M), and monocytes (Mon) 

before culture are shown for comparison. Gating scheme and representative contour or 

pseudocolor plot of CD16 and OX40L expression are also shown. For comparing group AM 

with the control group A or M, the fluorescence intensity (FI) of the marker was normalized to 

the control group in each experiment. Data are from 5 independent experiments; n = 2-3. *, **, 

***, and **** indicate p < 0.05, 0.01, 0.001, and 0.0001, respectively.  
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Fig. 4.6. Comparison between CD1c
+
 CD14

+
 and CD1c
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 CD14
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 monocyte-derived cells collected 

after 48 h from the apical layer of the connective tissue-equivalent model. For comparison, the 

fluorescence intensity (FI) of the marker on CD1c
+
 population was normalized to the CD1c

-
 

A AM M

0 .0

0 .5

1 .0

1 .5

C D 1 4

F
I 

R
a

ti
o

**** **** **** 

A AM M

0 .0

0 .5

1 .0

1 .5

2 .0

H L A -D R

F
I 

R
a

ti
o

**** *** **** 

A AM M

0

2 0

4 0

6 0

8 0

1 0 0

C D 1 6

%

** 

*** **** 

A AM M

0 .0

0 .5

1 .0

1 .5

C D 6 4

F
I 

R
a

ti
o

**** **** * 

A AM M

0 .0

0 .5

1 .0

1 .5

2 .0

T S L P R

F
I 

R
a

ti
o

* 

A AM M

0

2 0

4 0

6 0

8 0

1 0 0

O X 4 0 L
%

** **** **** 

A AM M

0 .0

0 .5

1 .0

1 .5

C D 8 6

F
I 

R
a

ti
o

** ** * 

A AM M

0 .5

1 .0

1 .5

C D 8 3

F
I 

R
a

ti
o

C D 1 c
-
C D 1 4

+
C D 1 c

+
C D 1 4

+

*** ** 

A AM M

0 .5

1 .0

1 .5

C D 8 3

F
I 

R
a

ti
o

C D 1 c
-
C D 1 4

+
C D 1 c

+
C D 1 4

+



93 
 

population in each group from each experiment. Data are from 5 independent experiments; n = 2-

3. *, **, ***, and **** indicate p < 0.05, 0.01, 0.001, and 0.0001, respectively.  
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Fig. 4.7. Comparison between CD1c
+
 CD14

+
 and CD1c

-
 CD14

+
 monocyte-derived cells collected 

after 48 h from the subendothelial layer of the connective tissue-equivalent model. For 

comparison, the fluorescence intensity (FI) of the marker on CD1c
+
 population was normalized to 

the CD1c
-
 population in each group from each experiment. Data are from 5 independent 

experiments; n = 2-3. ** and **** indicate p < 0.01 and 0.0001, respectively.  

4.3.3. Mast cells (MCs) mitigated the effect of the allergen on the development of CD1c+ 

dendritic cells (DCs) 

To determine the influence of MCs on the characteristics of monocyte-derived cells, group 

AM was compared with group A, which did not contain MCs in the matrix. As shown in Fig. 

4.2B and 4.3B, the percentage of the cells expressing both CD1c and CD14 was lower in group 

AM than group A, indicating that the presence of MCs in the matrix mitigated the effect of the 

allergen on the development of CD1c+ cells (p < 0.05 for the apical and <0.001 for the 

subendothelial layer). The difference is more intense for the cells within the subendothelial layer, 

where MCs resided (Fig. 4.3B). Main growth factors for the development of different DC subsets 

are IL-4, GM-CSF, TGF-β, and TNF-α, all among MC mediators [79, 386, 387]. However, MCs 

can also produce M-CSF and IL-6, which are MФ-inducing agents [387, 388]. Histamine was 

also shown to promote the development of CD14+ DCs [389]. This does not rule out the indirect 

effect of MCs through fibroblasts and ECs on attenuating the allergen-induced CD1c+ DC 

development. The overall characteristics of the developed cells in the presence of MCs in the 

model shown in Fig. 4.4 and 4.5, such as higher expression of CD14 and CD64 but lower HLA-

DR (p < 0.05), implies that the cells have exhibited slightly more MФ-like phenotype than group 

A, meaning that the cells might have been more efficient in antigen uptake, even though the 

changes on the apical cells were marginal. Assuming that in response to the allergen the CD1c- 

CD14+ cells were in transition to CD1c+ CD14- cells with a higher HLA-DR and lower CD64 
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expression, the characteristics of the cells in group A were more similar to the CD14- cells than 

group AM. This suggests that MCs may have alleviated the effect of the allergen on this 

transition or influenced the kinetics of the transition. Importantly, CD1clow/- CD14+ dDCs were 

shown to favor the humoral immunity in contrast to LCs or CD1a+ dDCs, which are CD1c+ 

CD14- cells, by inducing the production of immunoglobulins by B cells [357]. MCs, by 

attenuating the development of CD14- DCs, may play a role in the initiation of a humoral 

response. This is confirmed by our preliminary data on the production of IgE by B cells in a 

mixed leukocyte reaction (Fig. A.6). Therefore, the CD14+ dDCs (Fig. 4.4 and 4.5) might be 

involved in the polarization of naïve T cells to Th2 or Tfh cells that enhance the development of 

antibody-producing plasma cells.  

CD16 and TSLPR expression remained unchanged when MCs were incorporated into the 

model (Fig. 4.4 and 4.5, AM comparison with A). Even though it is not clear whether TSLPR 

expression is correlated with TSLP production in the system, MCs express TSLP mRNA and 

release it upon FcεRI aggregation in the presence of IL-4 [376, 390]. TSLP release in response to 

the allergen could have led to a higher percentage of OX40L+ cells in the model with MCs (p < 

0.05, Fig. 4.4 and 4.5), as TLSP-stimulated DCs were shown to upregulate OX40L [375]. 

Interestingly, CD86 density was also upregulated on CD1c+ cells collected from the apical and 

subendothelial layer (p < 0.0001, Fig. 4.4 and 4.5). In addition, although the number of CD83+ 

cells did not significantly change, the density of its expression was also marginally upregulated 

by monocyte-derived cells in group AM than A (p < 0.05, Fig. 4.4). MCs activated in IgE-

mediated reactions in co-culture with DCs were shown to promote the co-stimulatory molecule 

and HLA-DR expression and alter the cytokine profile of DCs [323, 324]. In our work, we have 

shown that MCs can influence DC development and their characteristics in an IgE-independent 

manner. MC crosstalk with DCs or other cell types within our model in response to the allergen 

led to upregulation of co-stimulatory molecules and OX40L by the monocyte-derived cells. 
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Expression of these molecules may have equipped the DCs in group AM to favor a different type 

of T cell response than group A. A higher expression of CD14 and CD64, which could be 

implicated as a more antigen uptake ability and a higher co-stimulatory molecule expression, 

which suggests a more mature phenotype may not necessarily be contradictory. This may occur 

because when immature DCs begin to become more immunogenic, the antigen processing 

functions increase transiently [329]. Activation of human lung and skin MCs with an allergen in 

the absence of allergen-specific IgE resulted in histamine and IL-4 release [184]. MC histamine 

could abolish IL-12p70 synthesis by DCs leading to a Th2 response [31]. The same response was 

obtained when MC-derived PGD2-treated DCs were injected into a mouse [32]. However, the 

direct interaction of activated peritoneal MCs from mice with bone marrow-derived DCs favored 

a Th1 and Th17 response [323]. In contrast, activated human bone marrow-derived MCs in co-

culture with moDCs promoted IL-4-producing T cells in response to LPS/IFN-γ stimulation 

[324]. MCs can release an array of stimulatory as well as suppressive cytokines. The balance of 

these mediators may provide a microenvironment that can, indirectly through DCs, contribute to 

the development of Th1, Th2, or another type of response [136]. Overall, the allergen directly or 

indirectly by stimulating other cells types in the model, e. g. ECs, altered MCs and induced the 

development of cells from monocytes with different characteristics in an IgE-independent 

manner. 

4.3.4. CD1c+ CD14+ cells in the tissue model were not phenotypically more mature than 

CD1c- CD14+ cells  

As shown in Fig. 4.6 and 4.7, the CD1c+ cells that were mainly developed in response to the 

allergen, downregulated the expression level or the density of CD14, CD64, and CD16, while 

HLA-DR was upregulated (p < 0.05, with an exception for CD64 expression in group M). The 

differences in the expression level of the above-mentioned markers between CD1c+ and CD1c- 

cells were greater on the subendothelial cells (Fig. 4.7). The changes highlight the previous 
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conclusion that CD1c- CD14+ cells may phenotypically be more similar to MФ in terms of the 

expression of molecules related to the uptake an antigen. CD83 expression remained the same, 

but CD86 was surprisingly downregulated on CD1c+ cells on both the apical and subendothelial 

cells (p < 0.05, Fig. 4.6 and 4.7). One explanation can be that the CD1c+ CD14+ cells were in 

transition to another subset and during this transition the co-stimulatory molecules were 

downregulated. This may be tied to the phenotypic characteristics of the population that they 

were differentiating to, besides the influence of the cytokines in the microenvironment on the 

expression of co-stimulatory molecules. For example, LC precursors migrate as immature cells 

and similar to the regulatory DCs release IL-10 and TGF-β that can sustain an anti-inflammatory 

microenvironment and prevent their maturation [330, 370, 379]. Unlike the subendothelial cells 

with a variable expression of TSLPR and OX40L (Fig. 4.6), the OX40L+ cells collected from the 

apical layer were more in the CD1c+ population than the CD1c- population (p < 0.01, Fig. 4.6). 

This suggests that OX40L expression may involve signaling pathways independent of co-

stimulatory molecules. Overall, regardless of the addition of the allergen or MCs to the model, the 

CD1c+ cells were not phenotypically more mature than CD1c- cells based on the expression of co-

stimulatory molecules.  

4.3.5. Monocyte-derived cells may not be ready for migration to lymphatics after 48 h 

incubation 

To compare the characteristics of the cells collected from the apical layer with the cells 

collected from the subendothelial layer, group AM with the allergen and MCs in the model is 

selected. The percentage of CD1c- CD14+ cells collected from the apical layer was significantly 

lower than the subendothelial cells (p < 0.0001, Fig. 4.8A). On the contrary, the percentage of 

CD1c+ cells was higher in the collected cells from the apical layer (p < 0.0001). In accordance 

with Randolph et al.’s transendothelial model [336], which has not incorporated MCs and 

fibroblasts in the matrix, after 3 h incubation of the monocytes, around half of the monocytes 
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attached to or diapedesed into the subendothelial layer. This occurred regardless of whether the 

cells were activated or not (Fig. 4.8B). In contrast, after 48 h incubation, only a very low 

percentage of the cells were loosely attached to the endothelium and were collected from the 

apical layer (Fig. 4.8B). This indicates that the majority of the cells were not migratory, 

confirmed by no expression of CCR7. These findings suggest that some of the monocytes 

migrated across the endothelium, while a few of them remained attached to the ECs. The cells 

remaining on the apical layer differentiated into the CD1c+ cells at a faster pace than the 

subendothelial monocytes. In general, the cells in 3D culture conditions are slower in 

proliferation and differentiation than 2D systems and we have also observed a slower 

differentiation of MCs in the matrix [274]. This may be due to the intrinsic property of the 

connective tissue in sustaining homeostasis. Consequently, after 48 h, the collected cells that 

were, at that time, loosely attached to the endothelium were more CD1c+ than the subendothelial 

cells (p < 0.0001, Fig. 4.8A). These cells never migrated into the subendothelial layer and were in 

direct contact with the ECs the whole time. Therefore, their characteristics were slightly different 

from the subendothelial cells (Fig. 4.8A). Monocytes in co-culture with human umbilical vein 

ECs were shown to acquire the morphological characteristics of CD14+ skin cells, whereas with 

dermal fibroblasts, monocytes exhibited a slightly higher autofluorescence and expression of 

CD16, indeed, a more MФ-like phenotype [327]. This indicates that the direct contact with ECs 

and fibroblasts may favor the development of DCs with different characteristics that may lead to 

differences in the phenotype of the cells collected from the apical and subendothelial layers in our 

model (Fig. 4.8A). Furthermore, dermal fibroblasts were shown to promote the maturation of 

human moDCs by upregulating the expression of co-stimulatory molecules and HLA-DR in TNF-

α and ICAM-1-dependent manner [391]. In our model, the monocytes that migrated across the 

endothelial layer first differentiated into CD1c- CD16+ MФ-like cells and then, into CD1c+ 

CD16low cells. Possibly, due to the interaction with other cell types in the subendothelial layer, 

they expressed a different level of co-stimulatory molecules, as well as TSLPR and OX40L (Fig. 
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4.8A). After 48 h, monocyte-derived cells either from the apical or subendothelial layers that 

were in transition to CD1c+ CD14+ and then to CD1c+ CD14- cells were not set for migration to 

lymphatic vessels. The kinetics of migration of different dDC subsets may not be the same [392]. 

When injected subcutaneously into a mouse, migration of DCs to the dLN peaked after two days 

[393], whereas LCs arrive in the LN around 72-98 h after stimulation [394]. In addition, moDCs 

may require a stronger stimulation than conventional DCs to become capable of migration [395]. 

Therefore, the allergen dose may not have been sufficient to induce full maturation and migration 

of the cells, considering that CD14+ moDCs in our model may not be a migratory type of DCs. 

Indeed, although moDCs could efficiently uptake the dust mite allergen and were the main 

population in the lungs of sensitized mice, they were the smallest population in the LN, implying 

that they are poor migratory cells [363]. Furthermore, MФ, even upon stimulation, do not express 

CCR7 and remain fixed in the tissues, whereas CCR7- CD14+ MФ-like cells could migrate 

spontaneously without entering afferent lymphatic vessels [327, 382]. Therefore, CD14+ cells in 

our model may not be migratory type or not in a state to migrate to the LN.  
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Fig. 4.8. Comparison between the cells collected after 48 h from the apical (AP) and 

subendothelial (SE) layers of the connective tissue-equivalent model from group AM. (A) For 

comparison, the fluorescence intensity (FI) of the marker on the AP cells was normalized to the 

SE cells in each experiment. Data are from 5 independent experiments; n = 2-3. ** and **** 

indicate p < 0.01 and 0.0001, respectively. (B) The percentage of the monocytes and monocyte-

derived cells collected from the apical layer after 3 and 48 h, respectively. Monocytes were added 

at 150,000 cells/well. Data are from 7 and 5 independent experiments for 3 and 48 h, respectively. 
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4.3.6. Mast cells (MCs) indirectly promoted the development of a humoral response 

Due to a low expression of CD83 by the monocyte-derived cells and a low number of 

migrating cells, for the mixed leukocyte reaction (MLR), the samples were stimulated with the 

allergen for the second time. Even though the second stimulation promoted the development of 

CD1c+ CD14- cells, it did not induce the upregulation of CD83 expression by CD1c+ cells in 

group AM (Fig. A.3). The second stimulation of the model also diminished the number of cells 

collected from the apical layer, confirming that the cells in our model were either not migratory 

or not ready for migration, even after a direct stimulation with the allergen. Previous studies have 

incubated B cells for 12-14 days for to produce immunoglobulins, however, this timing may not 

be ideal for characterizing T cells [347, 357]. Also, after the addition of IL-2, the media of the 

samples with APCs remained yellowish in color the entire time, indicating that the lymphocytes 

were proliferating. In the control group without APCs, the change in the color of the media 

happened after the seventh day of culture, meaning that the addition of IL-2 ultimately induced 

the proliferation of the cells in the control group and a background signal. In fact, IL-2 can act as 

a T and B cell growth factor and induce B cell proliferation and activation [396]. After 12 days, T 

cells in all the groups highly proliferated, as evidenced by the downregulation of the CFSE signal 

and formation of at least six generations (Fig. A.4B). T cells in group M were marginally less 

proliferating (p < 0.001, Fig. A.4B), possibly because of higher CD1c- CD14+ MФ-like cells. B 

cells also proliferated in all the groups with lower proliferating cells in group AM (no statistical 

analysis is available for the preliminary data). Due to the differences in the proliferation of the 

cells in the control group without APCs and the test groups, the APCs collected from all three A, 

AM, and M groups induced T and B cell proliferation (Fig. A.4B). Twelve days post seeding, 

more than 90% of the CD4+ T cells were CD45RO+ memory cells (Fig. A.5). Interestingly, as 

shown in Fig. A.5, FOXP3+ population in the CD45RO+ CD4+ T cells were more in the absence 

of MCs in the ACS (group A, p < 0.05). The percentage of the cells that were expressing IFN-γ 
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but not IL-4 and IL-13 was also higher in group A (p <0.01, Fig. A.5), suggesting that the APCs 

collected from group A favored the development of Treg and IFN-γ-producing T cells (Th1 or 

Th1 Th17 cells). As shown in Fig. A.2B, since the percentage of the CD1c+ CD14- cells in group 

A was higher than group AM, the data implies that CD1c+ CD14- cells may have characteristics 

of regulatory DCs or Th1-inducing DCs (DC1). A higher percentage of Th1 and Treg cells in 

group A resulted in no IgE production by B cells (was below 1.7 ng/ml the sensitivity of the 

assay, Fig. A.6). On the other hand, T cells in group M in both GATA3+ and GATA3- populations 

were more IL-4 and IL-13-producing cells than group AM (p < 0.01. Fig. A.5). Since the 

percentage of CD1c- CD14+ cells were more in group M than group AM, the CD1c- CD14+ cells 

may be required for Th2 polarization (Fig. A.2B). Notably, the total IgE measurements showed 

that the cells in group AM have promoted the development of IgE-producing plasma cells 

compared with group A (Fig. A.6, p < 0.01). In fact, Th2 cells can elicit isotype switching of B 

cells to IgE and IgG1, whereas IFN-γ-producing T cells can promote IgG2a production [357]. 

Therefore, a higher level of Th2 cytokines and lower IFN-γ in the microenvironment may have 

favored the production of IgE in group AM. The background in the control group without APCs 

might have been caused by the exogenous IL-2. Nevertheless, as shown in the previous sections, 

the characteristics of the CD1c+ and CD1c- cells were not the same across the groups. Therefore, 

when MCs were included in the model, the balance between different DC populations and their 

cytokine profile, along with the cytokines produced by T cells, led to the emergence of IgE-

producing plasma cells.  

4.4.  Conclusion  

In this work, we have used a 3D tissue model to study the effect of allergen-activated MCs on 

monocyte migration and differentiation in an IgE-independent manner. The monocytes within the 

model with MCs spontaneously differentiated into CD1c+ cells. Addition of the allergen to the 

model promoted the development of the CD1c+ cells. Overall, the characteristics of the CD1c+ 
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cells were not the same as CD1c- cells and they were not phenotypically more mature. 

Furthermore, allergen-activated MCs attenuated the effect of the allergen on development of 

CD1c+ cells. Ultimately, the monocyte-derived cells from the ACS with MCs in co-culture with 

lymphocytes could elicit the isotype class switching to IgE. This implies that CD1c- CD14+ 

monocyte-derived cells can regulate humoral immunity. Considering that the findings from our 

preliminary study on the T and B cell response need to be confirmed, our preliminary data 

suggest that MCs can play a role in the development of a humoral response through influencing 

the characteristics of the monocyte-derived cells in an IgE-independent manner. Therefore, MCs 

besides orchestrating the effector phase of an allergic response can contribute to the initiation of 

the response.  
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CHAPTER 5 
 

 

Conclusion and Future Work 

 

 

In this research, a novel 3D tissue-engineered model was developed, in order to study the 

main events of an allergic response. The cross-talk between the immune cells, such as T and B 

cells, and antigen presenting cells (APCs) regulates an immune response [397]. Mast cells (MCs), 

a key effector cell of inflammatory reactions, arise from hematopoietic stem cells that mature 

within vascularized tissues. Recent findings suggest that MCs may interact with an allergen and 

contribute to shaping the immune response [79]. The main objective of this study was to utilize 

the tissue-engineered model for testing the hypothesis that an allergen can activate MCs in an 

IgE-independent manner. Since MCs are tissue-resident cells, the development of a tissue-

engineered model with ancillary cells that more closely mimics the 3D in vivo microenvironment 

would provide greater relevance for MC studies. The model comprised of a collagen matrix to 

mimic the connective tissue, and fibroblasts and endothelial cells (ECs) that play a role in the 

maturation of progenitor cells in the tissues. 

To mimic an inflammatory response to an allergen, the tissue model was comprised of two 

separate modules. The first module, which was called an allergen contact site (ACS), was used to 

investigate two phases of an allergic immune response. In the sensitization phase of the ACS, 
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MCs that were developed from progenitor cells come into contact with an allergen and interact 

with monocyte-derived cells in an IgE-independent manner. In the activation phase of the ACS, 

IgE-sensitized MCs were exposed to the allergen. In the second module, which was called lymph 

node site (LNS), monocyte-derived cells from the ACS interacted with T and B cells to induce 

production of IgE.  

Before the co-culture of the cell types included in the model, the type of media, which would 

support the growth of all the cell types was investigated. Media were selected based on the 

specificity for the growth and expansion of hematopoietic cells. Fibroblasts and ECs were 

cultured separately and characterized for cell proliferation, surface marker expression, and 

cytokine secretion. For MC generation, CD133+ progenitor cells were isolated from peripheral 

blood and cultured for seven weeks in a collagen matrix with different media. Differentiation of 

CD133+ cells to MCs was verified by metachromasia, histamine granule formation, and 

expression of MC phenotypic markers. The following are the findings from this study: 

 Progenitor cells within the collagen matrix cultured in StemSpan media with serum added 

the last week yielded a greater number of cells exhibiting MC phenotypic markers and 

amount of histamine granules compared to other media tested.  

 Timing of the addition of serum to the culture media influenced the cell yield and MC 

characteristics. Serum addition from the beginning of culture promoted cell proliferation, 

while exerting an inhibitory effect on MC development.  

 The generated MCs were phenotypically from the type mainly found in human skin and 

submucosa.  

 The developed cells released histamine in response to sensitization with IgE and 

activation with anti-IgE. The response of the cells that embedded in the matrix was 

different from when removed from the matrix, possibly due to the interaction of the 

antibodies with the matrix.   
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 Media supplemented with serum were necessary for EC survival, while fibroblasts 

survived irrespective of serum with a higher cell yield in StemSpan.  

 Fibroblasts released interleukin (IL)-6 and stem cell factor (SCF), and ECs secreted IL-6, 

all of which are cytokines necessary for the survival and maturation of MCs.  

 StemSpan medium with serum in the last week of culture was chosen for the co-culture 

of MC progenitors, fibroblasts, and ECs. Since serum was required for EC survival for 

the co-culture model, they were included in the in the last week of culture, which was the 

time that serum was added to the media.  

For creating the ACS, CD133+ progenitors isolated from human peripheral blood were 

cultured with human primary dermal fibroblasts in the collagen matrix to represent the connective 

tissue. The matrix was coated with type IV collagen and fibronectin prior to seeding with primary 

human ECs, representing the capillary wall. Samples were incubated for seven weeks to allow the 

proliferation, differentiation, and maturation of MC precursors. To confirm the development of 

MCs, the expression of MC cytoplasmic granules and phenotypic markers were determined. The 

response of the developed MCs was investigated in IgE-mediated reactions by measuring the 

histamine release upon degranulation. To our knowledge, this was the first study that showed the 

development of human MCs within a matrix in co-culture. Creating the ACS and characterizing 

the activation phase of the ACS led to the following findings: 

 Histological analysis confirmed the development of a connective tissue-equivalent matrix 

(CTEM) with the generated MCs and fibroblasts distributed in the subendothelial layer.  

 The generated cells in the CTEM expressed MC phenotypic markers and granules. The 

size and histamine content of the cells were within the range of in vivo MCs. The cells 

exhibited the phenotype of the human MCs mainly found in skin and submucosa in 

accordance with their microenvironment in the CTEM.  
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 Crosslinking the IgE receptors on the developed MCs resulted in their degranulation. 

There was a significant amount of histamine released by the cells in response to Der p 

allergen after passive sensitization with serum of an allergic patient, showing the function 

of the cells in the activation phase of the ACS. The histamine release was not dependent 

on whether the MCs were derived from allergic or non-allergic individuals, but rather 

dependent on whether the serum used for passive sensitization contained specific IgE or 

not.   

 The co-culture of MC progenitors with ancillary cells in the CTEM promoted cell 

proliferation, formation of histamine granules, as well as histamine release in response to 

IgE/anti-IgE. The phenotype of the cells in co-culture was similar to those in the model 

without ancillary cells.  

 Together with the findings of the media study, the 3D tissue-engineered model supported 

the development of granular and functional MCs. MC histamine content and release were 

different in the CTEM than 2D culture methods and the model without ancillary cells, 

signifying the importance of using an in vivo-like microenvironment for in vitro studies.   

The ACS was used to test the hypothesis that an allergen can stimulate MCs in an IgE-

independent manner. Therefore, Der p allergen was added to the CTEM that was not sensitized 

with IgE. Autologous monocytes were added to the model after removal of the media containing 

the allergen. The cells were collected after 48 h from both the apical and subendothelial layer to 

define and characterize the monocyte-derived cells. The characteristic of the cells in the test 

group (AM) was compared to the following two control groups: one without allergen (M) and one 

without MCs (A), to determine the influence of the allergen and MC on the monocyte-derived 

cells, respectively. The following are the concluding remarks from the sensitization phase of the 

ACS:  



108 
 

 Monocytes that were CD1c- CD14+ CD206- differentiated into CD206+ HLA-DRhigh cells 

that were CD1c- CD14+, CD1c+ CD14+, and a few CD1c+ CD14– in the CTEM. The 

CD1c- population might be macrophage (MФ)-like cells homologous to in vivo MФ or 

human CD14+ dermal DCs (dDCs). The CD1c+ cells could be inflammatory DCs 

(infDCs).  

 Monocytes first differentiated into CD1c- CD14+ cells with higher expression of CD64 

and CD16 in accordance with a MФ-like phenotype and then into CD1c+ CD14+ cells. 

Under the influence of the allergen, a higher percentage of CD1c+ CD14+ cells were 

developed. These cells were also in transition to CD1c+ CD14- cells. Therefore, under 

inflammatory conditions, monocytes can be the precursors of CD1c+ CD14- cells.   

 The CD1c+ cells that were developed in response to the allergen did not upregulate the 

co-stimulatory molecules CD83 and CD86 in comparison with CD1c- cells, which might 

be due to the effect of cytokines produced by the cells in the model, the phenotype of the 

cells they were differentiating to, or a property of transient cells.  

 The monocyte-derived cells expressed TSLPR, OX40L, and CD86 required for priming 

T cells at variable levels. The cells in response to the allergen-activated model only 

marginally upregulated CD86, while CD83 expression was not altered. This indicates that 

factors, such as the intrinsic property of the allergen and the balance between 

inflammatory and suppressive mediators produced in the model sustained the immature 

or semi-immature phenotype of the cells.  

 Allergen-activated MCs mitigated the influence of the allergen on the differentiation of 

CD1c- to CD1c+ cells. MCs induced a higher expression of CD14 and CD64 by the 

monocyte-derived cells, suggesting that they were more efficient in antigen uptake. MCs 

also promoted the maturity of the cells by upregulating the density of expression of co-

stimulatory molecules as well as OX40L+ cells. Therefore, the allergen-activated MCs in 
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the model affected the characteristics of monocyte-derived cells in an IgE-independent 

manner.  

 The cells collected from the apical layer were not migratory as they were not expressing 

CCR7, implicating that these cells never migrated into the matrix and remained loosely 

attached to the endothelium. The monocytes that migrated across the endothelial layer 

were exposed to a different microenvironment, and consequently were different from the 

cells collected from the apical layer. The cells remaining on the apical layer differentiated 

into CD1c+ cells at a faster pace than the subendothelial monocytes. Therefore, a higher 

percentage of the cells on the apical layer were CD1c+. Furthermore, HLA-DR and CD86 

expression levels were higher on the subendothelial cells, suggesting that factors in the 

matrix promoted the maturity of the cells. Whereas, higher expression of CD14 and 

CD64 by the subendothelial cells indicate their capability for antigen uptake and along 

with CD16 expression aligned with a more MФ-like phenotype.  

For creating the LNS, the cells in the ACS were activated for a second time with the allergen, 

to allow the monocyte-derived cells to interact with the allergen. The cells from the apical layer 

were collected and co-cultured with autologous T and B cells for 12 days in a collagen matrix. 

The following are the main findings from the preliminary study of the LNS:  

 Monocyte-derived cells collected from the apical layer of the ACS could prime T and B 

cells to proliferate. When allergen was not added to the model, the proliferation of T cells 

was marginally lower, probably due to a higher percentage of CD1c- CD14+ MФ-like 

cells.  

 Twelve days post seeding, more than 90% of the cells were CD45RO+ memory T cells.   

 Allergen-primed APCs reduced the percentage of IL-4 and IL-13 producing T cells, 

indicating that the allergen stimulation did not promote a Th2 response. Furthermore, this 
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can be implicated as CD1c+ DCs that were generated in response to the allergen 

diminished the development of Th2 cells.  

 When MCs were not included in the ACS, a higher percentage of cells were FOXP3+ and 

IFN-γ producing, implicating that the presence of MCs in the ACS diminished the 

development of APCs that may trigger the polarization of Treg and Th1 cells. Indeed, IL-

4 and IL-13 producing T cells were more when APCs were collected from the model with 

MCs. The data suggest that MCs, by alleviating the influence of the allergen on the 

development of CD1c+ DCs, elevated the percentage of T cells that were producing Th2 

cytokines.  

 APCs collected from the ACS with MCs induced IgE production by B cells in the LNS, 

probably due to a lower percentage of FOXP3+ and IFN-γ producing T cells and higher 

Th2 cytokines in the microenvironment.  

To answer the hypothesis, by utilizing a tissue-engineered model it was shown that MCs can 

be activated by an allergen in an IgE-independent manner and influence the development of 

APCs from monocytes that can facilitate the production of IgE by B cells to induce a humoral 

response. These findings are significant as they suggest that MCs, in addition to orchestrating the 

effector phase, can play a role in shaping the sensitization phase of an allergic inflammatory 

response.  

In the preliminary work of this project, we have shown that a stem cell medium can support 

the growth of fibroblasts, ECs, and MCs. Therefore, this medium can be used for any other study 

that aims to co-culture the mentioned cell types. This research contributes to understanding the 

mechanism of development of allergic reactions. We have shown that MCs can play a role in the 

development of an allergic response even in the absence of IgE. Therefore, targeting MCs and 

neutralizing or blocking the factors that MCs release or express to interact with other cell types or 

an allergen might be a promising strategy for treatment and prevention of allergic responses. The 
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model can also be used for understanding the interactions that can lead to the reactions in the 

effector phase of an allergic inflammatory response. The developed model in this work can be 

applied to other research and used for understanding the mechanism of other inflammatory or 

inflammatory-related diseases, such as asthma, fibrosis, and angiogenesis that MCs also play a 

role in their development. Determining the factors that are involved in the development of the 

disease can lead to better therapeutic strategies. Furthermore, the model can be used as a tool for 

testing the effect of various drugs on the cell behavior for the treatment of the disease. The model 

also has the potential to be used for the diagnosis of allergies as an alternative to current clinical 

tests. 

Still, further investigation is required to fully understand the role of each cell type in the 

model and the mechanisms modulating the immune response. Consequently, it is recommended 

that the future work should be directed toward addressing the following points:  

i. Determine the mechanisms underlying the influence of the matrix, fibroblasts, and ECs 

on MC development, immunophenotype, and function within the tissue-engineered 

model. Extracellular component of connective tissue can regulate the proliferation and 

commitment of stem cells [80, 235]. We have also observed that the function of MCs can 

be different in a matrix by an unknown mechanism. Furthermore, previous studies have 

shown that fibroblast-derived proteins and membrane molecules may modulate the 

maturity and function of MCs [64, 132]. ECs can also promote MC growth and influence 

their morphological phenotype [61]. However, it is not clear whether the interaction of 

MCs with the fibroblasts and ECs within the CTEM was through soluble proteins or cell-

contact dependent, and which factors were playing a role in the enhanced cell 

proliferation and function that we have observed in the co-culture model. The interaction 

of MCs with the extracellular matrix proteins may also influence the cross-talk with other 

cell types and explain the differences between the characteristics of the cells in 2D and 
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3D cell culture models. The findings of this study can contribute to a better understanding 

of the molecular signals that regulate the hematopoietic stem cell differentiation in 

tissues. It can also be applied to studies on MC disorders, such as mastocytosis and MC 

activation syndrome, which is caused by the abnormal proliferation of MCs and an 

excessive release of MC mediators, respectively [398].  

ii. Investigate the mechanism of allergen interaction with the developed MCs within the 

tissue-engineered model. The findings of this study suggested that MCs interact with an 

allergen in an IgE-independent manner. ECs express pattern recognition receptors that 

can bind with an allergen [318] and it is possible that the allergen exerted its influence on 

MCs by stimulating ECs. However, MCs also express various pattern recognition 

receptors that an allergen may trigger directly or indirectly through complement receptors 

[136]. Blocking the pathway that an allergen interacts with MCs or the other cell types in 

the model can lead to better therapeutic strategies for allergic diseases.  

iii. Investigate the conditions under which a humoral response is developed and the 

mechanism of monocyte differentiation in the tissue-engineered model. In this research, 

the allergen was added to the model prior to the addition of the monocytes. It is not clear 

whether changing the dose, incubation time, timing of the addition of the allergen, or 

incubation time of the monocytes could affect monocyte migration, differentiation, 

characteristics of the monocyte-derived cells, and ultimately the type of response. MCs 

may contribution to the development of a humoral response only under certain 

circumstances and understanding those conditions may be important for the therapy of 

the disease. Furthermore, this study provided preliminary data on the interaction of APCs 

from the ACS in the LNS. Therefore, additional experiments need to be performed in 

order to confirm the results. In this work, the IgE produced in the LNS was not specific to 

the allergen. Therefore, priming the LNS with the allergen may be required for inducing a 
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specific response to the allergen. The ratio of the APCs to lymphocytes can also change 

the type of the response [399] and may affect the IgE production level, which needs to be 

further investigated. Studying the influence of the above mentioned factors may define 

the circumstances under which a humoral response is developed. Consequently, 

controlling the number of APCs in the lymph node and their characteristics may lead to 

better therapeutic strategies for allergic responses.  

Cytokines, such as IL-4, GM-CSF, and TGF-β can induce monocyte differentiation 

in vitro [359, 387]; however, the source of these cytokines, other differentiating factors, 

and cellular interactions that may have been involved in this process in the CTEM are not 

known. In addition, the presence of MCs in the model affected the characteristics of the 

monocyte-derived cells. In order to gain a better insight into the role of MCs in the 

disease initiation, the mechanism of MC cross-talk with the cell types in the model needs 

to be investigated. Moreover, the monocyte-derived cells did not express the migration 

marker CCR7 after 48 h. It is possible that each type of monocyte-derived cells has a 

specific time for migration and consequently a certain role in the initiation, exacerbation, 

or regulation of the immune response. Therefore a kinetic study is required to fully 

understand the mission of each type of APCs that were developed in the CTEM. 

Investigating the factors that modulate the monocyte differentiation and migration of the 

monocyte-derived cells can contribute to elucidating the pathophysiological mechanisms 

underlying the early stages of the development of an allergic inflammatory response.  

iv. Determine the direct effect of MCs on the response of the LNS. Previous studies suggest 

that MCs, by expressing MHC-II, co-stimulatory, and adhesion molecules similar to 

APCs, can present an antigen to T cells and release mediators to induce B cell isotype 

class switching [41, 44]. The response of the LNS to allergen-primed MCs in synergy 

with monocyte-derived cells from the ACS would show the direct influence of MCs on 
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leukocyte function and response type. The findings of this study will expand our 

understating of MC immunomodulatory functions in the development of an allergic 

inflammatory response.  

v. Validate the model with clinical data and utilize the model as a tool for allergy diagnosis. 

In this study, we have used samples from patients with positive and negative skin 

reactions to Der p allergen to develop the model. Serum samples with or without specific 

IgE to Der p were used for passive sensitization. When serum of an allergic patient was 

used, the cells degranulated in response to the allergen, regardless of whether the cells 

were generated from an allergic or non-allergic patient. Therefore, the activation phase of 

the ACS can be used as a tool for allergy diagnosis by testing a sample from the serum of 

the patient. If the serum of a patient contains specific IgE to the allergen of interest the 

cells would respond to the corresponding allergen. Furthermore, the LNS can also be 

used as a complementary allergy test. Since the blood sample of an allergic patient 

contains allergen-specific lymphocytes, it is expected that B cells produce specific IgE in 

response to the APCs. The histamine release level from the ACS and the produced 

specific IgE from the LNS can be used together for allergy diagnosis. However, the 

model requires optimization and validation with clinical data. The model can also be used 

for testing the response to allergens other than the dust mite.  

vi. Use the tissue-engineered model for studying other inflammatory diseases. The tissue 

model includes the cell types that reside in connective tissue. Therefore, it can be used for 

studying the mechanism of skin inflammatory disorders, specifically with MCs as the 

modulator of the disease, such as fibrosis and angiogenesis. The components of the 

model, such as the collagen gel and the cells can be substituted with a different type to be 

applied to other diseases e.g. cells from asthmatics along with lung-resident cells for 

studying the pathophysiology of the disease. 
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APPENDIX A 
 

 

Create and Characterize the Lymph Node Site 

 

 

A.1. Materials and methods 

A.1.1. Antibodies and reagents 

RPMI 1640 medium, penicillin-streptomycin, L-glutamine, MEM non-essential amino acids 

solution, sodium pyruvate, and 2-mercaptoethanol (2-ME) were all from Gibco (Carlsbad, CA). 

StemSpan medium was purchased from STEMCELL Technologies (Vancouver, Canada). Human 

recombinant SCF, IL-6, IL-3, and IL-2 were from PeproTech (Rocky Hill, NJ). Defined HyClone 

fetal bovine serum (FBS) was purchased from GE Healthcare Life Sciences (Logan, UT). Human 

dermal fibroblasts treated with mitomycin-C was purchased from Merck Millipore (Billerica, 

MA), while human umbilical vein ECs were from Promocell (Heidelberg, Germany). CellTrace 

CFSE cell proliferation kit was purchased from Life Technologies (Carlsbad, CA). The following 

antibodies for cell staining and flow cytometry were purchased from BioLegend (San Diego, 

CA): anti-human Alexa Fluor (AF)700 CD3 (clone UCHT1), PE CD19 (clone HIB19), APC/Fire 

750 CD45RA (clone HI100), brilliant violet (BV)786 CD45RO (clone UCHL1), PerCP/Cy5.5 

CD4 (clone OKT4), PE/Dazzle 594 FOXP3 (clone 206D), BV711 T-bet (clone 4B10), BV421 

GATA3 (clone 16E10A23), PE IL-4 (clone 8D4-8), APC IL-13 (clone JES10-5A2), PE/Cy7 IL-

10 (clone JES3-9D7), BV605 IFN-γ (clone 4S.B3), and the isotype controls, fluorochrome-
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conjugated Ms IgG1(clone MOPC-21), Ms IgG2b (clone MPC-11), Ms IgG2a (clone MOPC-

173), and Rat IgG1 (clone RTK2071). Zombie Aqua fixable viability kit and cell activation 

cocktail with Brefeldin A were also from BioLegend. Brilliant Stain Buffer and CompBead 

compensation particle set were purchased from BD Biosciences (San Jose, CA). 

A.1.2. Cell culture  

Leukocyte preparations were obtained from Oklahoma Blood Institute (Oklahoma City, OK). 

CD133+ cells, autologous CD14+ monocytes, CD3+ T cells, and CD19+ B cells were sequentially 

isolated from human peripheral blood mononuclear cells by magnetic cell separation technology 

following the manufacturer’s protocols (MACS Miltenyi Biotec; CA). MCs were generated 

within the connective tissue-equivalent matrix, as explained in chapter 3. After seven weeks, Der 

p extract of mite (HollisterStier; WA) at 300 AU/ml was added to the samples and incubated for 

24 h (Fig. A.1). Monocytes were added to the samples following the protocol explained in chapter 

4. After 48 h, the samples were stimulated by 100 AU/ml of the allergen for the second time in 

the complete medium without IL-6. A group of samples that were stimulated with the allergen 

were primed with lipopolysaccharide (LPS; Sigma-Aldrich; MO) at 0.15 µg/ml (Table A.1) 

[324]. The samples were incubated for 24 h prior to three gentle rinses of the apical layer with 

warm phosphate buffer saline (PBS). The collected cells were counted by a hemocytometer and 

trypan blue exclusion. For immunophenotyping, the remaining cells within the matrix were also 

collected after digesting the gel using 2.2 mg/ml collagenase D (Roche Applied Science; IN). For 

determining the influence of the allergen-activated MCs and allergen on the phenotype of the 

collected cells, identical samples without MC progenitors (group A) or allergen (group M) served 

as controls, respectively. The samples that were considered for characterizing the monocyte-

derived cells were stained for flow cytometry, according to the Methods section of chapter 4.  
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Table A.1. Protocols for activation of dendritic cells by lipopolysaccharide (LPS).  

  Type LPS strain Concentration (µg/ml) Incubation time (h) Ref. 

1 Human Salmonella abortus equi 0.1 <1-48  [400] 

2 Human Escherichia coli serotype 0111:B4 1 48 [399] 

3 Human Escherichia coli O26:B6 0.5 
15-20 min before adding fresh media and 

incubation for 3 days 
[356] 

4 Human Escherichia coli serotype 0111:B4 0.5 for 1 M cell/ml 6 hr after stimulation with TNF for 2 days [332] 

5 Human  0.01 3 days [336] 

6 Human  Escherichia coli serotype 0111:B4 0.1 24 [324] 

7 Human Salmonella minnesota  0.1 for 1 M cell/ml 24 [31] 

8 Human   0.2 24 [339] 

9 Human  1 24 [334] 

10 Mice   0.1 24 [323] 

11 Mice Escherichia coli O26:B6 1 24 [401] 

12 Mice Escherichia coli O26:B6 0.05 18 [402] 

13 Human  Salmonella enterica  0.05 or 1 48 [403] 

14 Mice Escherichia coli serotype 0111:B4 1 24 [404] 

15 Mice Escherichia coli serotype 0111:B4 1 14 [405] 

16 Human Escherichia coli serotype 0111:B4 10 24 [406] 

17 Human Escherichia coli serotype 0111:B4  20 [407] 

18 Human   3 24 [408] 

19 Human  0.1 36 [389] 

20 Human Escherichia coli O26:B6 0.05 24-48 [409] 
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Fig. A.1. Preparation of the lymph node side (LNS) to study the indirect effect of mast cells 

(MCs) on lymphocyte response.  

RPMI medium containing 1 vol% PSG, 1 vol% non-essential amino acids, 1 vol% sodium 

pyruvate, 0.1 vol% 2-ME, and FBS (10%, v/v) was used for preparation and culture of samples 

with lymphocytes (Table A.2). T and B cells at 5 M cells/ml were stained with working 

concentration of 5 µM CFSE dye in PBS for 10 min at room temperature [410]. Collected antigen 

presenting cells (APCs) from the apical layer were mixed with 10 M cells/ml CFSE-stained T and 

B cells at the ratio 1: 50: 50 of APCs: T cells: B cells. The cells were mixed with the type I 

collagen gel solution and added to a 96-solid well plate (Greiner Bio-One; NC) at 50 µl/well. 

After 45 min incubation at 37°C, 5% CO2 for the collagen to gel, complete RPMI medium (130 

μl/well) was added to the top of the matrix. Three days post seeding, 20 µl/well complete media 

supplemented with IL-2 with the final concentration of 10 ng/ml (assuming 150 µl/well total 

media and 40 µl/well of gel) was added to the samples to expand the T cells [324]. The samples 

were incubated for 12 days with media changes every other day. The samples were incubated 

based on the time required for the B cells to produce IgE [31, 33]. A Group of samples without 

APCs was considered as a control for the spontaneous response of T and B cells. 
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Table A.2. T cell culture media protocols.  

  Cells Serum ɩ-glutamine 
Antibiotic 

(U/ml) 

HEPES 

(mM) 
Other supplements Ref. 

1 T cells 10% FCS 2 mM Pen/Str 10 - [324]  

2 T cells 
5% Heat inactivated  

human serum 
2 mM 50 Pen/Str - 1% Non-essential amino acids, 1% sodium pyruvate [411] 

3 PBMC 10% Human serum - 100 Pen/Str - 0.25 µg/ml Amphotericin [412] 

4 T cells 5% Human serum 2 mM 100 Pen/Str - - [413] 

5 T cells 
10% FCS or 5% 

Human serum 
2 mM 

50 µg/ml 

kanamycin 
- 

1% Non-essential amino acids, 1% sodium pyruvate, 0.05 

mM 2-ME 
[400] 

6 T cells  10% FBS 2 mM 100 Pen/Str - - [414] 

7 T cells  10% FCS 2 mM 100 Pen/Str 10 - [399] 

8 B cells 10% FCS 
RPMI-

Glutamax 
Pen/Str - 

Non-essential amino acids, 1 mM sodium pyruvate, 0.025 

mM 2-ME 
[415] 

9 PBMC 5% Human AB serum Glutamax Kanamycin - 
Non-essential amino acids, 1% sodium pyruvate, 0.1% 2-

ME 
[416] 

10 PBMC 5% Human serum 
1 mM 

glutamax 

100 µg/ml 

Kanamycin 
10 Non-essential amino acids, 1 mM sodium pyruvate [417] 

11 PBMC 10% FBS -  PSG 10 2-ME [418] 

12 T cells 5% Human serum 1% 1% Pen/Str 
25 for 

rinses 

1% Non-essential amino acids, 1% sodium pyruvate, 

0.1% 2-ME 
[419] 

Only protocols that used RPMI media and human cells are listed. FBS: Fetal bovine serum; FCS: Fetal calf serum; PBMC: Peripheral blood 

mononuclear cells; Pen/Str: Penicillin and streptomycin; PSG: Penicillin- streptomycin- glutamine; 2-ME: 2-Mercaptoethnol. 
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A.1.3. IgE quantification  

On day 12, the media of the samples were collected for measuring the IgE produced in the 

samples. The matrix was also digested and combined with the corresponding top media after 

removal of the cells. The samples were stored at -80°C until analyzed. IgE-QBA assay (Indoor 

Biotechnologies, Inc.; VA) was used for measuring the total and specific IgE.  

A.1.4.  Immunophenotyping and flow cytometry  

For intracellular detection of cytokines, the collected cells from the matrix at 1.5 M cells/ml 

were stimulated with an activation cocktail containing PMA, ionomycin, and Brefeldin A at 2 

µl/ml for 5 h at 37°C in a 96-round-bottom well plate. The cells were stained with the viability 

dye prior to staining for surface markers. The eBioscience FOXP3/Transcription factor staining 

buffer set (Invitrogen; CA) was used for the intracellular staining of the cytokines and the 

transcription factors with the cocktail of antibodies or isotype controls following the 

manufacturer’s protocol. Data were acquired on a BD LSR II flow cytometer using the 

acquisition software BD FACSDiva (BD Biosciences) and analyzed using FlowJo software 

(Ashland, OR). Spectral overlap was calculated using single-color compensation beads. 

A.1.5. Statistical analysis 

Statistical analyses were performed using GraphPad Prism (GraphPad Software; San Diego, 

CA). One-way ANOVA and Tukey’s multiple comparison test were applied to determine 

significant difference among the groups. A p-value < 0.05 was considered significant. 

A.1.6. Possible hazard and safety precautions 

All animal- and human-derived materials were purchased from commercial vendors that 

prescreen the products for biological hazards. All procedures associated with the work followed 

“Universal Precautions”.  
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A.2. Results  

Fig. A.2. Characteristics of the cells collected from the apical layer of the connective tissue-

equivalent model after the second stimulation with the allergen. (A) Gating scheme for excluding 

doublets and dead cells. HLA-DR
+
 cells on viable cells were gated. (B) The HLA-DR

+
 cells were 

gated into 3 main populations based on the expression of CD1c and CD14. (C) CD1c
-
 CD14

+
 

cells were gated into CD206
+
 and CD206

-
 cells. (D) Gating scheme and representative 

pseudocolor plot of OX40L, CD83, and CD16 expression. A: with allergen without MC; AM: 

with allergen and MC; M: without allergen with MC; LPS: Lipopolysaccharide. 
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Fig. A.3. Characteristics of the monocyte-derived cells collected from the apical layer of the 

connective tissue-equivalent model after the second stimulation. (A) Histogram overlays and (B) 

expression of the markers used to define dendritic cells (DCs). For TSLPR, CD86, and CD64 

expression, the fluorescence intensity (FI) of the marker in group AM was normalized to the 

control group (A or M). Samples activated with LPS were normalized to group A. Data are from 

one experiment; n = 1. 
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Fig. A.4. Analyses of the T and B cells after 12 days in co-culture with the collected cells from 

the apical layer of the connective tissue-equivalent model. (A) Gating scheme and representative 

pseudocolor plot of the expression of the markers used to characterize T cells. (B) Representative 

histogram overlay of the CFSE-stained CD3
+
 T cells and CD19

+
 B cells. The fluorescence 

intensity (FI) of the CFSE-stained cells is shown in the graph. Data are mean ± SD from one 

experiment; n = 3-4 except CD19
+
 CFSE FI graph with n = 1. *** and **** indicate p < 0.001 

and 0.0001, respectively. A: with allergen without MC; AM: with allergen and MC; M: without 

allergen, with MC; T + B: T and B cells without antigen presenting cells (APCs). 
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Fig. A.5. T cell characteristics after 12 days in co-culture with B cells and the collected cells from 

the apical layer of the connective tissue-equivalent model. Data are mean ± SD from one 

experiment; n = 3-4. *, **, and **** indicate p < 0.05, 0.01, and 0.0001, respectively. A: with 

allergen without MC; AM: with allergen and MC; M: without allergen, with MC; T + B: T and B 

cells without antigen presenting cells (APCs). 

 

Fig. A.6. IgE production by B cells after 12 days in co-culture with T cells and the collected cells 

from the apical layer of the connective tissue-equivalent model. Data are mean ± SD from one 

experiment; n = 3-4. ** indicates p < 0.01. A: with allergen without MC; AM: with allergen and 

MC; M: without allergen, with MC; T + B: T and B cells without antigen presenting cells 

(APCs).
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APPENDIX B 
 

 

Dust Mite Allergen Cysteine Activity Restore 

 

 

 

B.1. Introduction 

Nearly 50% of allergic patients are sensitive to house dust mite (HDM) allergen, which is a 

risk factor of asthma in children [314, 315]. Dermatophagoides pteronyssinus and Farinae of 

HDM are the most causative agents of allergy among indoor allergens [420, 421]. Group 1 and 2 

are the main content of dust mite (DM) and patients are more frequently allergic to them [316, 

422]. The prevalence is age and location dependent, for example, in adults, the prevalence to Der 

p 1 and 2 is lower than children and more people in France responded to rDerp 2 than Sweden 

[316]. Group 1 binds with specific IgE (sIgE) in sera of 80-100% of DM-allergic patients at high 

strength [423]. Der p 1 can affect more than 80% of DM-allergic patients and 70% of allergic 

patients with either bronchial asthma and/or atopic dermatitis [188, 316, 424]. Nearly 50% of IgE 

accounts for sIgE to Der p 1 and 2 [315, 425]. 

Group 1 allergens are papain-like proteins belonging to cysteine proteases [188, 421]. The 

allergenicity of the group 1 allergens is associated with its cysteine protease activity and play a 

role in pathogenesis of allergy [341]. Der p 1 cleaves the serine protease inhibitor, which protects 

the airway mucosa against proteolytic damage. Also, it increases the permeability of the epithelial 

cells and bronchial mucosa, consequently promoting the passage of macromolecules across the  
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mucosa [426, 427]. Der p 1 and 2 can induce the release of proinflammatory mediators from 

epithelial cells, which play a role in eosinophil infiltration and bronchial hyperresponsiveness as 

well as dendritic cell (DC) development, recruitment, and maturation [316, 351, 428]. Der p 1 can 

affect DC function to produce more interleukin (IL)-6 and IL-10, while reduces Th1-inducing 

cytokine IL-12 [316, 339], in addition to triggering the release of IL-4 by mast cells and basophils 

[184]. It can also modulate a Th2 response by inducing the release of IL-4 and decrease of 

interferon (IFN)-γ by T cells [316, 340]. Additionally, it can cleave CD23 receptors on B cells 

that mediates IgE production, therefore, promote a humoral response [316, 346]. Group 2 

allergens can also prime T cells and affect their cytokine release [423]. 

HDM extracts are made from aqueous extraction of variable mixture of whole mites, nymphs, 

faecal pellets, eggs, and mite culture media and can contain more than 30 different proteins [342, 

423]. Approximately 50 to 100% of allergenicity to DM extract is due to Der p allergen [342]. 

Although the main content of the extract is group 1 and 2, the concentration of each group of 

allergen is unknown and can consist of non-allergic proteins and low molecular weight 

substances [429]. The quality of the extract can be affected by the quality of raw material, 

extraction procedure, protease content, contamination by other allergens, and presence of 

proteolytic enzymes that might be allergenic or cause degradation and loss of potency [429]. 

Therefore, the use of purified and recombinant allergens has become prevalent. The reagents used 

in the procedure of allergen purification, such as benzamidine can suppress the enzymatic activity 

of the allergen [188]. Thiol is the functional group of amino acid cysteine that contains carbon-

bonded sulfhydryl (R-SH group). During allergen purification, the thiol group becomes oxidized 

and results in the loss of the activity of the allergen [340]. Therefore, the allergen needs treatment 

to restore the enzymatic activity. The thiol group can be generated by reducing cysteine disulfides 

using dithiothreitol (DTT) or glutathione degradation, and L-cysteine, as shown in Table B.1-2. 
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In this work, the cysteine activity of the purified Der p 1 allergen was restored by using DTT and 

it was validated. After restoration of the activity, the purified allergen can be used for cell 

activation as well as in an assay for measurement of sIgE.  

B.2. Materials and methods 

To restore the cysteine activity of the allergen, the reaction buffer was made by using 1 mM 

ethylenediaminetetraacetic acid (EDTA) and 50 mM sodium phosphate (pH = 7). Natural Der p 1 

allergen (Indoor Biotechnologies, VA) was added to the DTT buffer with the final concentration 

of 600 µg/ml (25 µM) of the allergen in 1 mM DTT (Fisher Bioreagents, PA). The allergen was 

incubated for 20 min at 37ºC [430, 431]. A sample without DTT was considered as a negative 

control.  

For the allergen activity restore validation, Boc-Gln-Ala-Arg-AMC substrate (Enzo Life 

Sciences, Inc, NY) was used. The activated allergen and the control nonactivated allergen were 

added to the substrate to have 0.24 µg/ml (10 nM) of the allergen in 0.25 mM substrate in the 

reaction buffer and incubated at 37ºC. The fluorescence was measured at Ex: 380 nm/ Em: 460 

nm for 60 min. As a positive control, 7-amino-4-methylcoumarin-AMC (Alfa Aesar, MA) was 

diluted in the reaction buffer and the fluorescence was also measured. The difference between the 

fluorescence of the sample and the substrate in the reaction buffer was reported as the mean 

fluorescence intensity (MFI).  

B.3. Results  

As shown in Fig. B.1, the cysteine activity of the allergen was successfully restored. The 

allergen after reaction with DTT cleaved the substrate to a fluorescence product. The MFI of the 

sample was at every time point more than 25-folds higher than the nonactivated control group. 

However, further investigation is required to confirm that the cysteine activity of the allergen was 

fully restored. The reaction between the substrate and the allergen follows Michaelis-Menten 
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equation [426]. The positive control reagent can be used to make a standard curve for AMC 

concentration and by using the reaction equation, concentration of the allergen at each time point 

can be calculated. 

 

Fig. B.1. Validation of the cysteine activity restore of natural Der p 1 allergen after reaction with 

dithiothreitol (DTT). MFI is mean fluorescent intensity. 

Table B.1. Cysteine proteases activity restore protocols. 

 Reagent Concentration Time 
Temperature 

(°C) 
Ref 

1 Acid or DTT 1 mM DTT - - [432] 

2 Acid, L-cysteine 5 mM cysteine 30 min 37 [187] 

3 L-cysteine 5 mM 24 h 4 [342] 

4 Sodium acetate pH=5.7 
50 mM acid,  

20 mM cysteine 
- - [188] 

5 DTT 1mM 5 min 37 [430]† 

6 DTT, L-cysteine 
1 mM DTT 

2.5 mM cysteine 

5 min DTT, 

10 min cysteine 
37 [422]† 

7 L-cysteine 5 mM 30 min 37 [319] 

8 Cysteine 5 mM - - [350] 

9 
Sodium acetate pH=4, 

 cysteine 

100 mM acid,  

20 mM cysteine 
- - [190] 

10 
Sodium acetate pH=4, 

cysteine 

50 mM acid,  

20 mM cysteine 
1.5 h 60  [191] 

11 Sodium acetate pH=4 100 mM acid 
3 h acid- 

24-48 h 
RT-4 [433] 

12 Cysteine 5 mM - - [339] 

13 Acetate buffer pH=4 100 mM 48 h 4  [421] 

14 Cysteine 5 mM - - [340] 

0

5

10

15

20

25

20 30 40 50 60

M
F

I

x
 1

0
0

0
0

0

Time (min)

with DTT

without DTT



155 
 

15 
Sodium acetate pH=4, 

cysteine 

50 mM acid,  

20 mM cysteine 
- 60 [434] 

16 Sodium acetate pH=4.5 25 mM 5 ml/min - [435] 

17 Cysteine 5 mM - - [353] 

18 DTT 1 mM - 25 [426] 

19 Ammonium bicarbonate 0.05 M - - [436] 

20 Cysteine 5 mM 1 min - [184] 

21 Glutathione or DTT 0.5 mM or 1 mM - - [427] 

22 Glutathione 5 mM - - [437] 

† The natural allergen was purchased from Indoor Biotechnologies.  

Table B.2. Cysteine proteases activity restore validation protocols. 

 Method† Substrate  
Concentration 

(mM) 

Time 

(min) 

T 

(°C) 
Inhibitor Ref. 

1 330/ 410 ADZ 50, 059 - 0-40 30 ADZ [432] 

2 365/ 465 Boc-Gln-Ala-Arg-AMC 0.1 - - E-64, 0.1 mM [188] 

3 
Not 

mentioned 
Boc-Gln-Ala-Arg-MCA  0.1 0-60 37 

E-64 (50 µM),  

AEBSF (500 

µM), 15 min 

[430] 

4 

Sp for DTT,  

Abs (490) 

for cysteine 

Boc-Gln-Ala-Arg-MCA 

for DTT, Azocoll for 

cysteine 

0.1 
10  

for DTT 
- E-64, 15 min [422] 

5 
Not 

mentioned 
Azocoll - - 37 E-64, 10 µM [350] 

6 380/ 460 Boc-Gln-Ala-Arg-AMC 0-0.1 - 25 E-64, 10 µM [190] 

7 355/ 460 Boc-Gln-Ala-Arg-AMC 0.1 0-25 37 - [433] 

8 
Not 

mentioned 
Boc-Gln-Ala-Arg-AMC  - - - E-64 [339] 

9 380/ 460 
Su-APAY-MCA or 

 Boc-VLA-MCA  
20  30 37 - [421] 

10 380/ 460 Boc-Gln-Ala-Arg-AMC 0-1 
20-160 

sec 
25 E-64 [340] 

11 380/ 460 
Cbz-Phe-Arg-AMC and 

Boc-Gln-Ala-Arg-AMC 
0.1 -  - [434] 

12 
Not 

mentioned 
Boc-Gln-Ala-Arg-AMC - 

0-160 

sec 
 E-64 [353] 

13 380/ 460 Boc-Gln-Ala-Arg-AMC 0-1 
20-160 

sec 
25 - [426] 

14 520 Azocoll - - - 
E-64, 0.1-100 

mM 
[427] 

† Spectrophotometry (Sp) Excitation/ Emission (nm) or absorbance (Abs) are mentioned. 
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