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NOMENCLATURE 

A - dimensionless diffusion parameter 

- coefficients of series expansion 

c - dimensionless concentration of reactant = c/o 
0 

-c - dimensionless integral average concentration of 

reactant 

c -concentration of reactant at (z,r), mole/ft3 

c 0 - inlet concentration of reactant, mole/ft3 

D - molecular diffusivity, ft2;sec 

F - difference equations vector 

f - scalar function values of difference equations 

H - progress vector 

I - integer 

i one of the chemical components undergoing 

reaction 

J - Jacobian 

j subscript for grid station in radial direction 

K - homogeneous reaction constant, (mole/ft3 }l-n 

sec-1 

K - consistency index, lbm secs-2 ft-1 

K' - dimensionless homogeneous first order rate 

parameter as defined by KR2;n 

K" - heterogeneous first order rate constant, sec-1 
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k subscript for grid station in axial direction 

L - length of tubular reactor, ft 

M - dimensionless heterogeneous first order rate 

parameter as defined by K"R/D 

m - iteration index 

N - radial grid number 

n - chemical reaction order 

P - pressure, lbf/ft2 

R - reactor radius, ft 

Rn - rate of chemical reaction, sec-1 (mole/ft3 ) 

r - radial position in reactor measured from reactor 

axis 

s - rheology index (flow behavior index) 

~ - shear stress, lbf/ft2 

t - time, sec 

t 0 - time of contact of central stream line, sec 

~ - viscosity, lbm/ft sec 

U - dimensionless radial coordinate measured from 

reactor axis = r/R 

vz - axial velocity of fluid within reactor, ft/sec 

v0 - velocity of central streamline, ft/sec 

<v> - average velocity of fluid within reactor, ft/sec 

wn - eigenvalues 

x - axis of rectangular coordinates 

y - axis of rectangular coordinates, perpendicular to 

x axis 

z - dimensionless time of contact =Kzc0 n-l;v0 
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Z' - dimensionless time of contact =Kzc0 n-l;<v> 

z - distance coordinate measured from reactor inlet, 

ft 

' 1' - eigenfunctions ~n 
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CHAPTER I 

INTRODUCTION 

In a tubular reactor in which a given chemical 

reaction takes place in a continuous manner, the reactants 

flow in steadily at one end and the products out at the 

other. Thus, the composition varies with both axial and, 

to a lesser extent, radial direction, due to the radial 

velocity gradient, assuming the fluid flows in the laminar 

flow region. Under constant conditions of flow the 

composition at any point in the, tube will usually approach 

a stationary, time-independent value. This type of system 

is thus characterized by changes of composition in the 

space coordinates. 

To solve the chemical conversion of a reacting fluid 

flowing inside a circular tube, three factors determine 

the difficulty and complexity of obtaining an analytical 

solution. These include diffusion effects, reaction 

kinetics and fluid characteristics (rheology index). All 

of the previous works dealing with these concerns were 

limited to specified conditions when either analytical or 

numerical solution were sought. 

The purpose of this research is to develop a 

~onv~nient computer program, which is capable of handling 

1 
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all kinds of problems by keying in those characteristic 

parameters at the beginning of computer execution. A 

major drawback of the traditional numerical techniques is 

that they have been developed for large computer systems. 

Therefore, they are expensive to-run and can be difficult 

to access. The program in this work is designed to run on 

IBM compatible Personal Computers, which are inexpensive 

and widely available. This user-friendly and interactive 

package can be easily used by a chemical engineer to 

obtain all the data required for the design of an 

isothermal tubular reactor where entrance effects can be 

ignored. The Crank-Nicolson finite difference method is 

the main tool applied in this paper in solving the partial 

differential equations. The results have been compared 

with some cases for which analytical solutions or 

experimental data exist. 

Appendix E shows a brief survey about what has been 

and what has not been done in this field. It is clear 

that almost nothing has been studied for non-Newtonian 

fluids with chemical reaction other than first order. The 

program developed in this study has almost no restrictions 

on the fluid characteristics or the reaction order. This 

generality makes it possible to obtain data for non­

Newtonian fluids undergoing a non-first order chemical 

reaction as easy as for other systems. 



CHAPTER II 

LITERATURE REVIEW 

For isothermal laminar flow inside a circular tube, 

it is well known that different annular elements of the 

stream travel at different speeds. The different sections 

of the fluid will therefore have different reactor 

resid~nce times, i.e. different chemical conversion if a 

chemical reaction is involved. The problem of the 

distribution of reactor residence times includes both the 

velocity distribution and the problem of diffusion effects 

that results from radial and axial concentration 

gradients. 

Modeling work by previous investigators have taken a 

number of different approaches which have produced 

limited solutions to the problem. Some investigators have 

presented advanced analytical solutions for first order 

chemical reactions. However, only a few papers have 

considered the non-Newtonian fluids as their flowing media 

and even fewer have attempted to resolve the problem for 

non-first-order chemical reactions. 

Reactors built on different scales will not give 

comparable results unless they show the same distribution 

gurv~ tor r~action residence times. Generally it is not 

3 
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sufficient to use the mean reaction time for all cases. 

The distribution of residence times for Poiseuille 

flow in unpacked cylindrical reactors was first dealt 

with systematically by Bosworth in 1946 {1). Both axial 

and radial diffusion were taken into account separately in 

his work. For laminar flow and in the absence of 

molecular diffusion, the distribution curve of residence 

time varies as an inverse cube with a sharp cut-off at the 

minimum residence time. Criteria to decide if radial or 

axial diffusional effects could be neglected {within 1.0 

percent range of distribution time variation) were 

developed: 

Neglect radial diffusion if R > 18{Dt0 ) 1/ 2 

Neglect axial diffusion if L > 360{Dt ) 1/ 2 
0 

Thus, the modifying effect of diffusion on the 

reaction time distribution cu·rve is most pronounced in 

the smallest vessels. Use of these inequalities applies 

principally in the area of liquid flow systems. Even in 

modest size gaseous reaction systems, turbulent flow 

exists and it is not necessary to use this criteria since 

the radial velocity and concentration profiles are 

uniform. 

In chemical engineering practice, it is almost always 

true that if the first condition is satisfied then the 

second is satisfied automatically, sinoe reactor length is 



typically at least twenty times the radius. 

A complete investigation involving both calculated 

and experimental results was presented by Cleland and 

Wilhelm in 1956 (2). This study considered Newtonian 

5 

fluid flow with irreversible first order chemical reaction 

in an isothermal tubular reactor with radial diffusion. A 

finite difference method was used to solve the continuity 

equation. This equation was of the form of a partial 

differential equation involving axial and radial 

coordinates. Accuracy of the numerical method was checked 

with the analytical solution neglecting radial diffusion.J 

The criterion for neglecting radial diffusion derived in 

the paper agreed quite well with that of Bosworth (1). 

They also concluded that radial diffusion was negligible 

when the unconverted fraction was less than one percent 

lower than it would be in the absence of diffusion. A 

diffusion parameter, A, for fixed contact time, Z, which 
-decreases average concentration, C, by one percent from 

its value at A = 0 was introduced. The product of Z and 

A were calculated and found to be nearly constant at 

0.00195 {Table I). Converted to Bosworth's notation, 

radial diffusion may be neglected when 

Ax Z = Dt0 /R2 < 0.00195 

A criterion that the plug flow assumption is valid 

was also derived when Ax Z > 1.0 ; appreci~ble errors are 

in~~§~u~ea enly at high conversions. Their experimental 
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TABLE I 

VALUES OF Dt0 /R2 REQUIRED TO LOWER C BY 1% 

-C at A=O _ A ~hen 
z C=.B9*(C at A=O) 

0.2 0.7037 0.00977 1. 95 
0.5 0.4432 0.00382 1. 91 
0.8 0.2887 0.00244 1. 95 
1.0 0.2194 0.00195 1. 95 
1.5 0.1135 0.00128 1. 92 
2.0 0.0603 0.000955 1. 91 

I I 



work bring out three factors that separate the real world 

from an ideal one: first, the entrance effect, where the 

parabolic velocity profile is not well developed ; the 

second, the existence of a non-isothermal situation { 

which violates their previous assumption used to derive 

the overall partial differential equation); third, natural 

convection caused by density gradients within the reactor. 

Density gradients may be due to a temperature gradient, a 

concentration gradient, or a combination of the two. The 

convective processes always increase mass and heat 

transfer rates, so that, in effect, conductivities and 

diffusivities are increased. According to Cleland and 

Wilhelm, two factors that may cause a radial density 

gradient within the reactors are: 

1. Concentration gradients due to greater depletion 

of reactant near the wall compared with that at 

the center of the reactor, 

2. Radial temperature gradients caused by heat 

released during reaction. 

Instead of using numerical methods, Lauwerier {3) 

treated the same problem and partial differential 

equation, by using separation of variables. He was the 

first to recognize that a separation of variables was 

possible and that the resulting characteristic value 

P:t:"oblem was of the confluent hypergeometric type. The 

7 
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solution is expressed as 

where ~n form an orthogonal set of eigenfunctions with 

eigenvalues wn. 

A drawback of this solution is that when Z is small, 

a tremendous number of eigenfunctions must be taken into 

account. A simplified model was therefore considered 

where the cylindrical wall is replaced by a flat wall. In 

this case, an explicit power series solution for the 

concentration at the wall was obtained by means of Laplace 

transformation. 

The analysis of Lauwerier was extended by Wissler and 

Schechter(4) in 1960 to cover the case of consecutive 

irreversible, first order reactions. Wissler and 

Schechter also completed Lauwerier's formal solution by 

performing the numerical labor of computing the 

eigenvalues which Lauwerier had approximated only for 

limited cases. 

The work of Cleland and Wilhelm (2) was extended to 

include homogeneous second order chemical reactions by 

Vignes and Trambouze (5) using a similar approach in 1961. 

Krongelb and Strandberg (6) used numerical methods 

similar to those of Cleland and Wilhelm (2) to investigate 

specific examples of second-order homogeneous reaction 

with first-order wall reaction but neglecting axial 

4iffYI1en. A~1al and radial diffusion with first-order 

lflfnd 



homogeneous and heterogeneous reaction in Poiseuille flow 

were investigated by Walker (7). A velocity profile 

feature coupled with wall reaction creates radial 

concentration gradients; the magnitude of these gradients 

will depend on the flow rate and the diffusion 

coefficient. Investigators who have included 

heterogeneous wall reaction always include the additional 

wall chemical reaction in the boundary conditions and 

leave the original equation unchanged. 

The identical case was studied by Soloman and Hudson 

(8) in 1967, but they did not consider axial diffusion in 

their equation. The eigenvalues and eigenfunctions were 

determined using Galerkin's method to solve an ordinary 

differential equation of the Sturm-Liouville form after 

separation of variables. Cosine functions were used as 

the trial function in Galerkin's method. Results of 

limited cases agree well with those of Brown (9) and Hsu 

(10) for no homogeneous reaction and no heterogeneous 

reaction, respectively. Having calculated accurate 

eigenvalues and eigenfunctions they give a criteria to 

determine whether homogeneous reaction can be neglected 

compared to the heterogeneous reaction or the converse. 

Their conclusions are: 

1. Homogeneous reaction is the controlling factor 

when K'> 10 and M < 0.1 

2. Heterogeneous reaction is the controlling factor 

9 



when K'< 0.1 and M > 10 

3. When both K'and M lie between 0.1 and 10 

individual concentration profiles must be 

computed to prevent extreme error. 

10 

The dimensionless heterogeneous rate parameter, M, is 

defined as RK"/D and K'is the dimensionless homogeneous 

rate parameter KR2;n~ · 

Neglecting diffusional effects Johnson (11) related 

chemical conversion to some known factors such as the rate 

constant, initial concentrations, etc. for general n-th 

order chemical reactions and first-order consecutive 

reactions. 

Though some profound work has been done in this field 

as stated above, none of them has considered a non­

Newtonian fluid as their reacting media. Wein and 

Ulbrecht (12) first discussed the residence time 

distribution for non-Newtonian laminar flow in tubes 

without mass transport by diffusion. The extent of 

applicability of the results obtained for the 'power law' 

behavior was estimated for those cases where the power-law 

failed to interpret the shear stress-shear rate 

relations. 

Homsy and Strohman (13) extended the theoretical 

treatment of the problem involving an irreversible, first­

order chemical reaction in an isothermal, laminar flow, 

~u~ula~ reaetor to include the flow of non-Newtonian 
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fluids. They used zero-order Bessel's function as their 

trial solution for Galerkin's method in solving the Sturm­

Liouville characteristic ordinary differential equation, 

which was derived after the separation of variables of the 

continuity equation. Both Ostwald-de Waele and Prandtl­

Eyring models were used to describe non-Newtonian fluid 

behavior. The curves they obtained relating the logarithm 

of bulk average concentration C with the Damkohler Group 

I, Kz/<v>, show a slight deviation from linearity for the 

various non-Newtonian fluids. In fact, they are all 

bracketed by envelope bounded by Poiseuille flow ,for 

which s=l.O, and plug flow, for which s=O. It was also 

found that near the center of the tube the concentration 

of reactant decreases with increasing pseudoplasticity, 

while near the wall the situation is reversed. 

Mihail and Tausch (14) also dealt with non-Newtonian 

fluids neglecting diffusional effects. They derived three 

integrals and used a numerical method (Simpson's rule} to 

evaluate the average concentrations for first-order 

chemical reactions. These were categorized into 

irreversible, reversible and consecutive reactions. 

To partially eliminate the difficulties involved in 

the calculation of chemical conversions in laminar flow 

tubular reactors, the axial dispersion model is often 

used. The axial dispersion model with radial and 

longitudinal mixing effects are incorporated into a single 

~ff~~~ive axial dispersion coefficient. This approach has 



the advantage of allowing the actual two dimensional 

complex system to be approximated by a simple one­

dimensional system. The effect is to reduce a partial 

differential equation to an ordinary differential 

equation. Though simple, it has certain limitations, 

because the model gives some kind of cross sectionally 

averaged description of the reaction without precise two­

dimensional calculations. It is obvious that this model 

will not predict concentration over a extended range of 

variables. For this reason, most of the efforts using 

axial dispersion model have also been primarily concerned 

on specifying quantitatively the region in which the model 

will accurately describe the actual process. 

Workers (15)-(18) before Mashelkor (19) have 

concentrated their efforts on laminar flow tubular 

reactors handling Newtonian liquids only. Mashelker 

applied the axial dispersion model to power-law fluids 

flowing through tubular reactor, in which the flowing 

reactant undergoes a first-order chemical reaction. A 

linear second-order ordinary differential equation was 

solved and the average concentrations were examined with 

the exact values for both Newtonian and non-Newtonian 

fluids to obtain the range in which the axial dispersion 

model is applicable. 

In spite of so much work which has been done on this 

topic, no one seems to have attempted to make a general 

~n~lY~1~ for non-Newtonian fluids with any order of 

12 



chemical reaction. This is what has been sought in this 

study. 

13 



CHAPTER III 

REVIEW OF BASIC THEORY 

The concept of bulk contact time loses meaning for 

isothermal chemical reaction in the liquid phase in a 

tubular reactor in the laminar flow region. There is a 

distribution of contact or residence times brought about 

by the velocity profile. A radial concentration gradient 

is caused by the velocity profile, i.e. the distribution 

of contact time. The concentration gradient then in turn 

tends to be smoothed by molecular diffusion. Thus 

chemical reaction, flow regime, and diffusional effects 

are interrelated. 

Review of non-Newtonian Fluids 

A Newtonian fluid is one for which a linear relation 

exists between stress and the spatial variation of 

velocity. If changes in fluid density are not important, 

the constant of proportionality is the viscosity, a 

characteristic constant of the material at a given 

temperature and pressure. Non-Newtonian fluids are those 

for which the linear relation does not exist. The non­

Newtonian fluids classification covers an extremely wide 

range or different materials. The only common features 

1~ 



are fluidity and a failure to obey Newton 1 s law of 

friction. 

15 

Consider a shear force acting on a fluid in a certain 

plane as shown in Figure 1. The velocity gradient or 

shear rate~ dv/dy~ is directly proportional to the shear 

stress~ Tyx~ where the proportionality constant ~ is the 

viscosity. The viscosity is independent of shear rate and 

affected only by temperature for a given fluid system. A 

plot of shear stress Tyx against shear rate dv/dy in 

laminar flow is known as a 1 flow curve~. Typical flow 

curves are shown in Figure 2. 

All fluids for which the flow curve is not linear and 

through the origin at a given temperature and pressure are 

said to be non-Newtonian. These materials can be divided 

into three genera groups: time-independent; time­

dependent~ and viscoelastic fluids. Here we will discuss 

a little about time-independent non-Newtonian fluids. In 

this class 1 a convenient preliminary classification may be 

made into those which exhibit a yield stress and those 

which do not. 

Fluids with A Yield stress 

Fluids in this category are capable of preventing 

movement for values of shear stress less than the yield 

value. Some of the empirical models which have been 

proposed for relating shear stress to shear rate in these 

jYb~~•noe• are given in Table II. Among these models, the 



Surface area = A 

F__.. --+ dv 
" - . -

Fluid 
dy 

Stationary 

LX 
Figure 1. Steady Laminar Shearing Motion Between Two Parallel Plates. 

f-' 
0\ 



Ty 

~ 
I-' .. 
Cll 

~ Ty 
1-1 
+J 
Cll 

1-1 
co 
(l) 

,.c: 
1'.1) 

Ty 

Fluids with a yield stress 
and a nonlinear flow curve 

Bingham plastic 

Pse~oplastic ~ 

N:~~ C./) 
Dilatayi 

!?' 

0,~ 
I 

0 

Shear rate, dv/dy 

Figure 2. Flow Curves on Arithmetic Coordinates for 
Various Types of Time-Independent Fluids 

1-' 
-....J 



Model 
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plastic 

TABLE II 

MODELS RELATING ~~ TO dv/dy FOR FLLUIDS 
WITH A YIELD STRESS 

Form(for 'Tyx > 'Ty ) 
( dv /dy=O for Tyx <:-ry ) 

Empirical Constants 

'Ty lbf/ft2 
n lbm/ft sec 

I.Herschel­
Bulkley 

1 I 
-r yx--r y = [ ( n Y g ) C d vI dy ) J _. , m 

'T lbf/ft.2 
~'( lb!1m-ll~m 

ft 1 Zmsec 1 

m dimensionless 

II. no/g -rylbf/ft2 
=-----------(dv/dy) no lbm/ft sec 

1+c( )n C (lbf/ftG)-n 'Ty£ 'Ty 
n dimensionless 
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Bingham plastic model describes a linear flow curve with 

positive intercept, and has been widely used for its 

simplicity and negligible departure from real fluids. 

Fluids without ~ Yield Stress 

19 

Pseudoplastic fluids. The majority of non-Newtonian 

materials are found in this category. The flow curve is 

sketched in Figure 2 and is characterized by linearity at 

very low and very high shear rates. Some of the empirical 

models which have been proposed for relating shear stress 

to shear rate in pseudopastic fluids are listed in Table 

III. Usually a logarithmic plot of shear stress versus 

shear rate for these materials is found to be linear over 

a wide range of shear rate. This accounts for the 

widespread use of the power law model to characterize 

fluids of this type. The 'flow behavior index', s, is the 

slope of this logarithmic plot. Values of s range from 

unity towards zero with increasing pseudoplasticity. The 

'consistency index', K, is calculated from the intercept 

on the shear stress axis at unit shear rate. Examples of 

pseudoplastic fluid behavior are usually found in the 

following materials: rubber solutions, adhesives, polymer 

solutions or melts, greased, starch suspensions, soap, 

detergent slurries, paper pulp, napalm, paints,dispersion 

media in certain pharmaceuticals, biological fluids. 

Dilatant fluids. The flow curve for dilatant fluids, 

Figure 2, is characterized by zero yield stress and may 



TABLE III 

MODELS RELATING TyxTO dv/dy FOR FLUIDS 
WITHOUT A YIELD STRESS 

Model Form 

Power law or Tyx=(K/g) (dv/dy)n 
Ostwald-deWaele 

Ellis 

DeHaven 

Prandl­
Eyring 

Powell­
Eyring 

Sisko 

1 
T =------(dv/dy) 

yx A B a-1 + Tyx 

llo/g 
Tyx=------(dv/dy) 

l+CTYx 

1 
T -A sinh- 1 [-(dv/dy)] yx- B 

Tyx=C(dv/dy)+(l/B) 

sinh-1 [(1/A)(dv/dy)] 

Tyx=A(dv/dy)+B(dv/dy)n 

Empirical Constants 

K lbm secn-2ft- 1 
n dimensionless 

llo lbm/ft ~ec 
C (lbf/ft )-n 
n dimensionless 

A ""ee-l 
B ft~/lbf 
C lbf sec/ft2 

A lbf sec/ft2 
B lbf secn/ft2 
n dimensionless 

20 
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usually be fitted by one of the models in Table III. The 

power law is often applicable, but with s greater than 

unity. 

Velocity Profile 

The velocity profile for a power-law fluid flowing 

inside a circular tube in the laminar flow region can be 

derived from a momentum balance (APPENDIX A) and expressed 

as: 

( 3. 1) 

and 

v0 =[{3s+1)/(s+1)]<v> (3.2) 

where vz is the axial velocity, <v> is the average 

velocity, v0 is the velocity at the center line, i.e. the 

maximum axial velocity. 

Figure 3 shows the limiting velocity profiles for 

several extreme s values. 

Derivation of Differential Equation 

The derivation of a general model for a laminar flow, 

isothermal, tubular chemical reactor starts with the 

assumptions of steady state and axial symmetry. The 

material balance equation for each components contains 

radial diffusion and reaction terms and models 

concentration changes with respect to axial and radial 

21 
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position: 

with boundary conditions: 

z=O, ci = cio (3.3-1) 

r=R, 
aci 

0 = (3.3-2) 
ar 

If axial diffusion is negligible compared with radial 

diffusion, and the velocity profile is replaced by 

Equation (3.1), then Equation (3.3) becomes: 

(3.4) 

Further, if the chemical reaction rate, Rni, is 

replaced by Kcin, the equation is: 

(3.5) 

For convenience the subscript i is dropped and 

Equation (3.5) can be transformed to dimensionless form 

3c a2c 1 ac 
-(1-U(s+l)/s)-- + A(--- + --) - en = 0 

az au2 u au 
(3.6) 

23 



where: 

Kzc 0 
n-1 

z = -------
vo 

c 
c = 

co 

D 
A = --------

Kc n-1R2 
0 

r 
u = 

R 

with boundary conditions also be translated to: 

z = 0, c = 1 

u = 1, 
ac 

au 
= 0 

Equation (3.6), (3.6-1) and (3.6-2) are the 

characteristic equations solved in later chapters. 

24 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.6-1) 

(3.6-2) 



CHAPTER IV 

REVIEW AND EXTENSION OF NUMERICAL METHOD THEORY 

(There are many numerical methods for solving partial 

differential equations . Of these, only one stands out as 

being universally appplicable to both linear and nonlinear 

problems, this is the method of finite differences.) In 

this work, only the finite difference method will be 

considered. Since, the partial differential equation 

derived in last chapter is characterized as a_parabolic 
"-_._.-<'·--~-'4'>,.c_,..4<f"" ...... _'-

partial differential equation, the methods which are 

considered will naturally be restricted in this category. 
] 

( The approach to solving a parabolic partial 

differential equation by a numerical method is to replace 

the partial derivatives by finite-difference 

approximations.) The simplest form for the approximations 

are: 
/ 

ac C{U,Z+6Z)-C(U,Z) 
ili 

az 

ac ~ C{U+~U,Z)-C(U,Z) 

= ----------------au 

( 4. 1) 

(4.2) 
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a2c C(U+6U,Z)-2C(U,Z)+C(U-6U,Z) 
= ---------------------------

au2 (6U)2 
(4.3) 

If these expressions are substituted into 

differential equation (3.6) and the boundary values 

specified in Equations (3.6-1) and (3.6-2) are applied, 

the values of Cat the grid points Z=Z, Z=Z+~Z, ... , can 

be successively calculated provided 6Z/(AU) 2 is less than 

or equal to one half. If 6Z/(AU) 2 is greater than one 

half, the difference equation becomes unstable. The 

method presented here is an explicit method because 

concentration at a new position can be immediately 

calculated from quantities that are already known (either 

from boundary conditions or previous calculations). It is 

a simple and economical method of calculation, but has a 

severely limited upper value for the ratio AZ/(AU) 2 . 

Note that a mixed order of errors was involved in Equation 

(4.1) to Equation (4.3) , a forward difference was used to 

approximate a C/ az and ac;au while a central 

difference was used for the second derivative a2c;au2 

This restriction forces the computer to use very small 

steps in the Z direction. There is therefore, 

considerable interest in the so-called implicit difference 

methods, where stability for all 6Z/(~U) 2 greater than 

zero is ensured, but at the price of greater computational 

complexity. Such implicit methods s;.eem to have been used 
~·- ·-- ···-·-··-··-----.~~.- .. -,. .. _. ·~" ··-~ ---····-· ·- . 

for the first time by Crank and Nicolson in 1974. The 



method is briefly illustrated below. 

If the second derivative with respect to U is 

replaced by the second difference quotient, not at the 

level Z as in Equation (4.3) , but at Z+~Z/2. Then the 

second derivative with respect to U can be approximated by 

averaging the difference quotient at the beginning and at 

the end of the Z-step. 

1 C(U+b.U, Z)--2C(U, Z)+C(U-b.U, Z) 
- [--------------------------- + 
2 (b.U)2 

C(U+~U,Z+b.Z)-2C(U,Z+AZ)+C(U-~U,Z~Z) 

------------------------------------] 
. ( ~U) 2 

In that case, we do consider the difference 

expression Equation (4.1) as a central difference 

approximation. 

Similarly, Equation (4.2) must be replaced by 

ac · 1 
'l! 

au 2 

C(U+~U,Z)-C(U-b.U,Z) 

[------------------- + 
2b.U 

C(U+~U.Z+b.Z)-C(U-~U,Z+~Z) 

-------------------------] 
2~U 

to show central difference approximation. 

(4.4) 

(4.5) 

After substituting these expressions [Equation (4.1) 
~n•"-••-o------••"'"'....---•·•-'""'~'"" 

(4.4) and (4.5)] into the differential equation ~-~§J, it 

is seen that the unknowns can no longer be solved for 

explicitly. This is unsuitable for problems in which 
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infinite U-regions appear. But for problems with a finite 

U-interval, like what we have in this work, can be handled 

by means of an implicit method. To that end, we can 

write the difference equation for each grid point and 

interpret them as a system of simultaneous algebraic 

equations. The number of unknowns will be equal to the 

number of equations, which is equal to the number of grid 

points in each Z-step; If values of C at the grid points 

of the level Z are already known, the values for Z+ t::.Z can 

be found by solving this algebraic system, provided the 

determinant is not equal to zero. The numerical solution 

of systems of algebraic equations is a large and widely 

studied subject and will not be discussed here. 

Fortunately, the system of equations created by this 

implicit difference method is such that the matrix of the 

system has zeros everywhere except on the main diagonal 
.. , .. -···-,.,0 

and on the two diagonals parellel to it on either side. 
'--.-.-·-··-.. .-- . ... . . 

Such a matrix is sometimes called tridiagonal. This 

special situation saves a great deal of computation work 

when solving the equation set. 

The convergence of the solution C(U,Z) of the 

implicit difference equation can be proved by the Fourier 

series method under reasonably weak hypotheses. 

Another central topic of numerical techniques is the 

question as to how well a solution of a difference 

equation approximates the solution of a related 

differential equation problem. The appraisals obtained 
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have usually been either uniformly valid for all values of 

U and Z in the domain under consideration or at least 

uniformly with respect to U, when Z is given. Since a 

full description of the ideas and results of this topic 

would require too much space. Readers are recommended to 

refer to Lax and Richtmyer (20). 

Calculational Procedures 

The grids obtained by dividing in both U and Z 

dimensions (radial and axial respectively) for this 

derivation are shown in Figure 4. The difference equation 

is derived by substituting the following expressions into 

the partial differential equation (3.6): 

()C C . k 1-C . k 
~ -~~-:_1::---~~-

()Z f'..Z 

()C "-' 1 

au 2 

cj+l,k-cj-1,k cj+l,k+1-cj-1,k+l 
(------------- + ·-----------------) 

2~U 2 f'..U 

Cj+l,k-2Cj,k+Cj-l,k ( __________ .,.,.._,_______ + 

( f'..U) 2 

cj+l,k+l-cj,k+l+cj-l,k+l 
------------------------) 

(f'..U)2 

(4.6) 

(4.7) 

(4.8) 

where the first subscript denotes radial position, and the 

second the axial position. This is the so called Crank-

Nicolson method, which is not only unconditionally stable 
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k+1 C; k+1 
z 
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Figure 4. Reference Grid for Difference-Equation Derivation. 
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but also second order correct. 

The difference equation becomes: 

(1-Uj(S+1)/S)(Cj,k+1-Cj,k) 
-------------------------- = 

IJ.Z 

Cj+1,k+1+Cj-1,k+1-2Cj,k+1+Cj+1,k+Cj-1,k-2Cj,k A[--------------------------------------------- + 
2(~U) 2 

with boundary conditions: 

z = o, cj,k = o 
( i.e. for all j when k=O) 

u = 1, 
ac 

au 
= 0 

Equation (4.9-2) is equivalent to: 

1 

(4.9) 

(4.9-1) 

(4.9-2) 
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---(C· k 1-C·-1 k 1+C· k-C·-1 k) = O 
2 ~u J ' + . J ' + J ' J ' 

(4.9-3) 

At the centerline we can use dC/dU=O as the boundary 

condition equation and get our difference equation by 

forward differencing instead of backward differencing, or 

we can follow Cleland's {2) approach by substituting the 

{1/U)(oC/aU) term in Equation (3.6) with a2c;au2 (applying 
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L'Hospital's rule as U->0). After substituting the 

approximation expressions for each term and incorporating 

the relationship that concentration distribution is 

symmetric about the tube axis, the following equation is 

derived: 

2A 

!J.Z 
= -----<c1 k 1-c k 1+C1 k-c k>-

< b.U ) 2 ' + o ' + ' o' 

Co,k+1+Co,k n 
(-----------) (4.10} 

2 

Applying the Crank-Nicolson's method requires us to 

solve a set of simultaneous nonlinear algebraic equations 

at each Z-step progress. A Newton-Raphson's iteration is 

applied to solve these equations because an explicit 

expression for the Jacobian can be derived. As a matter 

of fact, the derivatives for the difference equations will 

also form a tridiagonal matrix. 
+ 

If C denotes the solution vector with dimensionless 

concentration as its elements, and fj are the scalar 

functions set up from the difference equations at each 
+ + 

grid nodes and form a vector F{C), then: 

2A 
-----<c1 k 1-c k 1+C1 k-c k> 2 ' + o, + J o, 
{ !J.U) 

Co,k+l+Co,k n 
+(-----------) 

2 
(4.11} 
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{1-u{s+1)/s)(Cj,k+1-cj,k) 
= ------------------------- -

llZ 

Cj+1,k+1+Cj-1,k+1-2Cj,k+1+Cj+1,k+Cj-1,k-2Cj,k A[--------------------------------------------- + 
2(1lU) 2 

1 . cj,k+1+cj,k 
-----(C·+1 k+1-C'-1 k+1+C·+1 k-C·-1 k)+(-----------)n 
4U · t:lJ J ' J ' J ' J ' 2 

J 

( j = 1, 2, . . . , N-1 ) (4.12) 

+ 
fN(C) = [1/(2&J)]{CN,k+1-CN-1,k+1+CN,k-CN-1,k) 

(4.13) 

Note : C(k+l)'s are unknowns, while C(k)'s are known from 

boundary conditions or previous results. 

Let: 

(4.14) 

+ 
If a matrix J(C) is introduced whose determinant is 

+ 
the Jacobian of the functions fj{C), where j = 0,1, .. N. 

then: 



afo -------
aco,k+1 

af1 
-------
aco, k+1 

+ 
F'(C) = 

+ 

afo af0 ------- I I I I I I I I I I I I -------
ac1,k+l acN,k+l 

af1 af1 ------- I I I I I I I I I I I I -------
acl, k+1 acN,k+l 

------­• I I I I I I I I I I I I I I I I I I I I 

acN, k+l 

' 

( 4. 15) 

Here F'(C) is a tridiagonal matrix since there are at 

most three consecutive variables in each difference 

equation. 

Let H be the correction vector of each iteration so that 

+ + + 
C(m+1}=C(m)+H ( 4. 16) 

+ + + + 
H=-[F'(C}]-l F(C) (4.17) 

In this problem, it is almost impossible to have 

initial guesses that are close enough to the roots to get 

convergence in each iteration. A damped method is thus 

introduced to force, or at least encourage, convergence. 

This is accomplished by testing norms in each pseudo 

progress to decide if the progress is too much. An 

exponential power index, I,is chosen to decide how far to 
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go in each step. The integer I must satisfy the following 

criteria: 

+ + + . + + 
I = min {j, 0 <= j, IIF(Cm+H/2J) II < IIF(Cm) II} 

(4.18) 

The successful correction for every iteration will be 
+ . 
H/2J. 

To conserve storage usage in the computer, the 
+ 

tridiagonal matrix of coefficients F'(C) is compressed, 
+ + 

together with the constant terms F(C), into anN x 4 

matrix. Column 1 holds the coefficients to the left of 

the diagonal, column two holds the diagonal terms, column 

three holds the coefficient to the right of the diagonal, 

and column four holds the constant terms. The j and (j-1) 

rows of the compressed matrix corresponding to elements 

in the uncompressed matrix are shown: 

*** *** 0 0 ......... . 
*** *** *** 0 .......... . 

0 *** *** *** 0 ....... . 

(lf. 1 ()f. 1 (lf. 1 J- J- J-
0 --------- --------- -------... 

acj-2,k+1 dC j-1' k+1 ac j, k+1 

af. af j" 
0 .......... 0 

J --------- -------
ac j-1, k+1 acj,k+1 

0 ... 

()f. J ---------
ac j+1, k+1 

0 *** *** *** 
.... 0 *** *** 

f. 1 J-

f. J 
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We can eliminate 3fj/aCj-1,k+1 by subtraction of 

(3fj/8Cj-1,k+1 )/(afi_1;acj-1,k+1 > times the (j-1) row from 

the j row. Since we know a zero will replace 8fj/8Cj-1, 

k+1 we don't need actually to perform the arithmetic. The 

values of 8fj/~j,k+ 1 and fj change as follows: 

af · af · 8fj/8Cj-1,k+1 J J ------- = ------- - ---------------
ac j, k+1 acj,k+1 af j-1/ ()8 j-1, k+1 

afj;acj-1,k+1 
fj = fj - --------------- X fj-1 

af j-1;ac j-1, k+1 

afj_1 

* -------
acj,k+l 

When the j row is reduced, af j;ac j+1, k+1 is 

unaffected because there is a zero above it. After 

(4.19) 

(4.20) 

reduction, a backsubstitution is performed. The elements 

of the solution vector replace the constant vector in the 

fourth column of the matrix. 

The equations for back substitution are: 

(4.21) 

af. af. 
fj = [fj - fj+1(-----~---)]/(----~--) 

acj+1,k+1 acj,k+l 
(4.22) 

where j=N-1, N-2, .... , 1, 0 

In addition to the concentration distribution the 

bulk average concentration is desired which can be derived 
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by an integral expression. 

J R2nrvCdr 
- 0 c = _R _______ _ 

f 0 2nrvdr 

6s+2 

s+l 
1; U(l-u(s+l)/s)CdU (4.23) = -----

Simpson's rule is used to evaluate the integral. 

An interactive Fortran program was developed to 

execute the above numerical jobs. The package is designed 

to run on IBM personal computers which are inexpensive and 

widely available. The results are presented in next 

Chapter. 



CHAPTER V 

RESULTS AND DISCUSSION 

Numerical solutions for concentrations of reacting 

species under a certain set of conditions was obtained as 

function of position in a circular tube, both axial and 

radial. 

It is necessary to discuss the accuracy of the 

numerical results that have been obtained. The error 

incurred in a finite difference method depends upon both 

the grid sizes in axial and radial directions, and the 

tolerance specified in computer iterations. The price for 

accuracy is computer calculation time. 

Comparisons of the dimensionless bulk concentration 

along the axial direction and dimensionless axial 

concentration profiles for Newtonian fluids undergoing 

first order chemical reaction were made with the results 

obtained by Cleland and Wilhelm (2}. 

Tabulated concentrations, C, for analytical and 

numerical solutions derived by Cleland and Wilhelm (2) are 

compared in Table IV with results of this work with A=O (a 

value of A=O means no diffusion is considered). The data 

in the fourth column was derived by specifying an axial 

grid number of fifty, an axial increment size, Z, of 0.02 
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TABLE IV 
-

COMPARISON OF AVERAGE CONCENTRATIONS, C, FROM 
NUMERICAL AND ANALYTICAL INTEGRATIONS 

FOR A = 0 

---------------------.-------------------------------

z 
0.01 
0.05 
0.20 
1. 00 
2.00 

Analytical 
Solution 

c 

0.9806 
0.9098 
0.7039 
0.2194 
0.0603 

Numerical Solutions 
Ref~(2) Current Model 

c c 

0.9810 
0.9105 
0.7037 
0.2194 
0.0603 

0.9807 
0.9098 
0.7036 
0.2195 
0.0603 
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or 0.01 and a dimensionless concentration tolerance of 

0.0001. (Refer to Appendix C.) A very slight deviation 

from analytical solution was observed when Z=0.20 and 

1.00. The rest of the results show even better estimation 

than that of Cleland and Wilhelm. Specifying stricter 

calculating conditions will certainly result in closer 

solutions, however, Table IV shows crudly how close we can 

get with a fixed degree of specification. 

Table V and Table VI list the theoretical and 
-

calculated values of C as a function of Z for various 

values of A, based on the work of Cleland and Wilhelm. 

Agreement to the fourth significant figure is apparent. 

Theoretical radial concentration profiles for A=O.l 

along the tube axis (different Z values) are shown in 

Figures 5 - 7. The bulk dimensionless concentration 

profiles along Z with A as a parameter are illustrated in 

Figure 8. The curve for plug flow (A= 00 ) is not shown on 

the same graph, but obviously that the curves for A=O and 

A= oo form the upper and lower boundary of the curve band. 

The fraction unconverted is highest when radial diffusion 

is negligibe and lowest when A approaches infinity. 

Concentration profiles for various A values at a 

definite axial position are shown in Figure 9. This plot 

demonstrates that the concentration profiles are 

"straightened" by the effect of radial diffusion. 

In the case of non-Newtonian fluids an additional 

parameter, s, is introduced. The dimensionless group Z 



TABLE V 

THEORETICAL VALUES OF C AS A FUNCTION OF Z FOR 
VARIOUS VALUES OF A, REF(2) 

-------------------------------------------------z A=O A=.01 A=.1 
-------------------------------------------------

. 00 1.0000 1.0000 1.0000 

. 01 .9810 .9800 .9806 

. 02 .9625 .9608 .9615 

. 03 .9447 .9424 .9428 

.04 .9273 .9246 . 9247 

. 05 .9105 .9073 .9071 

.07 .8780 .8743 .8731 

.10 .8328 .8282 .8251 

.15 .7645 .7585 .7520 

.20 .7037 .6965 .6963 

.25 .6491 .6409 .6270 

.30 .5999 .5906 .5733 

. 40 .5145 .5037 . 4803 

.50 .4432 . 4316 . 4033 

.60 .3831 .3711 .3392 

.70 .3321 .3201 .2856 

.80 .2887 .2768 . 2407 

.90 .2514 .2397 .2030 
1. 00 .2194 .2082 .1709 
1.10 .1918 .1809 . 1446 
1. 20 .1679 .1576 .1222 
1. 30 .1472 .1372 .1031 
1.40 .1211 .1199 .0871 
1. 60 .0998 . 0917 . 0621 
1. 80 . 0774 . 0702 . 0443 
2.00 .0603 .0540 .0316 

·--------------------------------------------------
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TABLE VI 
-

MODELED VALUES OF c AS A FUNCTION OF z FOR 
VARIOUS VALUES OF A 

-------------------------------------------------z A=O A=.01 A=.1 
-------------------------------------------------

.00 1.0000 1.0000 1.0000 

.01 .9807 .9805 .9809 

. 02 .9621 .9621 .9619 

. 03 .9441 .9442 .9435 

.04 .9267 .9268 .9259 

. 05 .9098 .9095 .9083 

. 07 .8776 .8764 .8748 

.10 .8325 .8298 .8266 

. 15 .7645 .7610 .7530 

.20 .7036 .6983 .6968 

.25 .6492 .6427 .6273 

.30 .6000 .5928 .5734 

.40 .5145 .5040 . 4838 

.50 . 4432 . 4316 . 4069 

.60 .3831 .3711 .3427 

.70 .3322 .3199 .2888 

.80 .2887 .2765 .2436 

.90 .2515 .2395 .2055 
1.00 .2195 .2078 .1736 
1. 10 .1918 .1806 . 1466 
1. 20 .1679 .1572 .1238 
1. 30 .1472 .1370 .1047 
1. 40 .1292 .1195 .0884 
1. 60 . 0998 .0913 .0631 
1. 80 .0775 . 0699 .0451 
2.00 .0603 . 0537 .0322 

-------------------------------------------------
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when dealing with Newtonian fluids does not have much 

physical meaning if applied in non-Newtonian systems. A 

similar dimensionless group z~ can be defined for reacting 

systems with non-Newtonian fluids as flowing media. 

kzc n-1 
Z'=---~--­

<v> 

Note that there is a relationship between Z and Z' which 

is: 

3s+1 
Z'= Z 

s+1 

Figure 10 shows the concentration profiles for A=O.Ol 

and Z'=5.0 for Ostwald-deWaele fluids with different 

rheology index values. It is apparent that the 

concentration is a maximum at the center~ as expected, and 

decreases with increasing pseudoplasticity. However, a 

reversed situation occurs near the wall. 

The effect of different order kinetics is shown in 

Figure 11. 

Figure 5 shows that chemical conversion is initially 

radially distributed by differences in residence time. 

When the concentration profile is more profound, chemical 

reaction and diffusion effects predominate and tend to 

smooth out concentration differences as shown in Figure 6-

7. Figure 11 shows the same trend. The higher conversion 

curve contributes to a deeper concentration bend near the 
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tube wall in the beginning of the reaction. 

Table VII lists the criterion for neglecting the 

effects of radial diffusion. Radial diffusion can be 

neglected when the unconverted fraction is less than one 

percent lower than it would be in the absence of 

diffusion. The product of Z' and A was not found to be 

constant for non-Newtonian fluids as it was for Newtonian 

fluids. 
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TABLE VII 

VALUES OF [D/(R<v>)]*(z/R) REQUIRED TO LOWER C BY 1% 

-~---------=----------------------------------------------

s Z' 

0.2 0.2 
0.4 
0.6 
0.8 
1.0 
1.6 
2.0 

0.4 0.2 
0.4 
0.6 
0.8 
1.0 
1.6 
2.0 

0.6 0.2 
0.4 
0.6 
0.8 
1.0 
1.6 
2.0 

0.8 0.2 
0.4 
0.6 
0.8 
1.0 
1.6 
2.0 
3.0 

C at A=O _ A when 

0.8262 
0.6881 
0.5756 
0.4831 
0.4064 
0.2444 
0.1752 

0.8260 
0.6904 
0.5885 
0.4972 
0.4215 
0.2639 
0.1956 

0.8363 
0.6980 
0.5958 
0.5039 
0.4337 
0.2773 
0.2069 

0.8262 
0. 7040 
0.5952 
0.5137 
0.4387 
0.2825 
0.2139 
0.1088 

C=.99*(C at A=O) 

0.0837 
. 0. 0108 

0.00552 
0.00342 
0.000986 
0.000754 

0.0387 
0.00803 
0.00498 
0.00354 
0.00165 
0.00121 

0.00786 
0.00499 
0.00372 
0.00228 
0.00197 

0.0329 
0.00746 
0.00490 
0.00357 
0.00204 
0.00169 
0.000930 

A*Z'= 
[D/(R<v>)J*(z/R) 

0.0335 
0.00648 
0.00442 
0.00342 
0.00158 
0.00151 

0.0158 
0.00478 
0.00399 
0.00356 
0.00265 
0.00242 

0.00468 
0.00403 
0.00372 
0.00363 
0.00393 

0.0131 
0.00451 
0.00389 
0.00357 
0.00328 
0.00338 
0.00279 

---------------------------------------------------------
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The program derived in this work is interactive and 

user friendly. It provides a solution for chemical 

conversion problems for laminar flow in a tubular reactor. 

Non-Newtonian fluids and non-first order reactions have 

been taken into account in one single program. A 

concentration profile or an area average concentration can 

be displayed and saved in data files to produce 

demonstrative graphs, if numerical data are not 

illustrative enough. The accuracy of the results can be 

specified by the user in advance depending on the users 

requirements. The results are precise to at least the 

fourth significant figure (chemical conversion} under 

reasonable accuracy specifications. Tedious quasi­

analytical solutions are eliminated by using this program. 

Overall, the program is simple and user friendly. It 

can be used as an effective design tool to predict the 

concentration distribution for an existing tubular reactor 

or for a future design. The accuracy of the results it 

generates and the wide range of availability make it one 
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of the few powerful and economical tools available for 

tubular reactor design. 

Recommendations 

There are always limitations implied when assumptions 

are made. The same is true for this work. The following 

recommendations are listed to improve the power of this 

program if one desired. 

1. If an energy balance equation is incorporated and 

solved simultaneously1 the utility of the program can be 

extended to solve problems for a non-isothermal system. 

2. Replacing the concentration of one specific reactant in 

the characteristic equation by a chemical reaction 

coordinate (reaction extent} can make this program 

applicable for any kinetic expression. 

3. The boundary condition on the tube wall does not have 

to be oC/or=O as used traditionally. If C=O is used 

instead1 the predicted results will be more close to the 

actual oonditions 1 considering that fluid is 1adhered' to 

the tube wall and has infinite residence time. 
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4. The maximum of the radial grid number in this program1 

N1 is limited to fifty due to the consideration of saving 

array memory usage for Personal Computers. If more 

accurate results are desired1 the user can either increase 

the grid density near the tube wall region by decreasing 

the density near the center or change the array 

declaration at the beginning of the program. 
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Select a cylindrical shell of thickness ~r and length 

L as the system (see Figure 12), the momentum balance in 

the z-direction is listed below: 

(rate of momentum in across cylindrical surface at r) -

(rate of momentum out across cylindrical surface at r+~r) 

+ (rate of momentum in across annular surface at z=O) -

(rate of momentum out across annular surface at z=L) + 

(gravity force acting on. cylindrical shell) + 

(pressure force acting on annular surface at z=O) -

(pressure force acting on annular surface at z=L) = 0 

That is: 

(AA-1) 

Because the fluid is assumed to be incompressible, v 

is the same at z=O and z=L, hence the third and fourth 

terms cancel one another. Divide Equation (AA-1) by 2rrL~r 

and take the limit as ~r goes to zero; this gives 

(r~rz>r+~r-<r~rz>r 
lim [------------------] = 

~r+O ~r 

d 
--(r~ ) rz 
dr 

Po-PL = (-----)r 
L 

Po-PL 
( ----- + P g} r 

L 
(AA-2) 

(AA-3) 

in which P=p-pgz. Equation (AA-3) may be integrated to 

give: 



Flow in Pressure Po 

f:,r 

Flux 
out __,.. 

wall 

L or t:,·z 

Figure 12. Cylindrical Shell of 
Fluid 
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'r rz 
P0 -PL C1 = (-----)r + -

2L r 
(AA-4) 

The constant C1 must be zero if the momentum flux is not 

to be infinite at r=O. Hence the momentum flux 

distribution is 

Po-PL = (-----)r 
2L 

Power-law of shear-stress and shear-rate for this 

situation is 

dv 
-r rz = -f~ ( --) s 

dr 

dv 

dr 

PL-Po 1/ 1/ = (-----) s r s 
2l'\"L 

{AA-5) 

(AA-6) 

(AA-7) 

Integration of this and application of boundary condition 

that v=O at r=R give 

s 
v = (AA-8) 

s+1 

The maximum velocity v0 occurs at r=O and has the value 

s P -Pr 
-~--_: R(s+l)/s (AA-9) 

s+l 2Ll< 

The average velocity <v> is calculated by summing up all 

the velocities over a cross section and then dividing by 
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the cross-sectional area: 

R 
f 21rrvdr 

<v> = 0 __ If ______ 

f 21rrdr 
0 

s Po-PL R(s+l)/s = ----- (AA-10) 
3s+l 2U;· 

Compare with Equation (AA-10) 

3s+1 
vo = <v> 

s+1 
(AA-11) 

Combine Equation (AA-8) through (AA-11) and change into 

dimensionless form 

v/v = [1-u(s+1)/s] 
0 

(AA-12) 
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Referring to the same annular shell shown in Figure 12 

we can make a material balance with respect to component 

i under following conditions and assumptions: 

1. Laminar flow in axial direction only, i.e. z-direction. 

2. Neglect axial diffusion. 

3. Undergoing an n-th order chemical reaction w.r.t. 

component i. 

(component i flow in across annular surface at z=z) -

(component i flow out across annular surface at z=z+6z) 

+(component i diffuses in across cylindrical surface at r) 

-(component i diffuses out across cylindrical surface at 

r+6r) - (component i consumed due to chemical reaction)=O 

That is: 

-2 nr6rllzKoi n = 0 (AB-1) 

Divide above equation by 2n6rllz and take the limit as llr 

and llz go to zero; this gives 

d ci d aci 
-rv--- + D--(r---) - rKcin = 0 (AB-2) 

d z ar d r 

Rearrange above equation and substitute into the velocity 

profile derived in Appendix A and dimensionless variables, 

Equation (AB-2) becomes 
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ac a2c 1 ac 
-(t-u<s+l)/s)-- + A(--- + --) - en = o 

az au2 u au 
(AB-3) 
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INPUT SPECIFICATIONS 

n s N A Xtol dlamda 
-----------------------------------------------------
TABLE IV 

z < 0.20 
z => 0.20 

TABLE VI 

z <= 0.25 
z > 0.25 
z <= 0.30 

z > 0.30 

TABLE VII 

Figure 5 

Figure 6,7 

Figure 8,9 

Figure 10 

Figure 11 

1 
1 

1 
1 
1 

1 

1 
1 

1 
1 
1 

1 

50 
50 

50 
50 
50 

50 

1 {.2-.8) 50 

1 

1 

1 
1 

1 

1 

1 
1 

50 

50 

50 
50 

1 1 50 
1 (.2-.8) 50 

1 0.6 50 
0.5 0.6 50 

( 1. 5) 
(2.0) 

0. 
0. 

0. 
0. 
0. 1 

(0.01) 
0.1 

(0.01) 

0.001 0.01 
0.0001 0.02 

0.001 0.01 
0.0001 0.02 
0.001 0.01 

0.0001 0.02 

0. 0.0001 0.01* 
{0.0001) 
(0.001) 
(0.01) 
( 0. 1) 

0. 1 

0.1 

0. 
0.1 

(0.01) 

·o. 01 
0.01 

0.01 
0.01 

0.001 0.01 

0.001 0. 1 

0.0001 0.02 
0.001 0.1 

0.001 0.1 * 
0.00001 0.03 

0.00001 
0.0001 

* 0.03* 
0.02 

*Converted to Z': Z'=[(3s+1)/(s+1)](dlamda) 
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LISTING OF FORTRAN PROGRAM 
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
c c 
c c 
C NOMENCLATURE C 
c c 
C A(50,4) Compressed Matrix C 
C ALPHA Diffusion Parameter C 
C C(50,2) Concentration C 
C COLD(50,2): Temporary Concentration C 
C DLAMDA Step Size in Axial dir. C 
C F(50) Function Values of Difference C 
C Equations C 
C FOLD(50) Temporary Function Values of C 
C Difference Equations C 
C FP(50,50) Jacobian Matrix C 
c c 
C GUESS Initial Guess of Concentration C 
C at the tube center C 
C H(50) Progress in Newton-Raphson's C 
C Iterations C 
C I,II,J,JJ Do Loop Index C 
C L Axial Step Number, C 
C Tube Length=L*DLAMDA C 
C LAMDA Axial Coordinate C 
c c 
C N Number of Grid Nodes in Radial C 
C Derection C 
C ORDER Chemical Reaction Order C 
C S Rheology Index C 
C U(50) Radial Position C 
C XTOL Tolerance of Concentration C 
c c 
c c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

PROGRAM THESIS 
DIMENSION FOLD(50),COLD(50,2) 
COMMON C(50,2),F(50),A(50,4),H(50),U(50),FP(50,50), 

-ORDER 
DATA GUESS/.95/ 

C READ INPUT DATA FROM KEYBOARD OR ANY DEFAULT DEVICE 
WRITE (*,*) 'Rxn Order=' 
READ (*,*) ORDER 
WRITE (*,*) 'Rheology Index?' 
READ (*,*) S 
WRITE (*,*) 'Subdivided into N Grid, N=?' 
READ (*,*) N 
WRITE (*,*) 'ALPHA=?' 
READ(*,*) ALPHA 
WRITE (*,*) 'Xtolerence=?' 



READ (*,*) XTOL 
WRITE (*,*)'dlamda' 
READ (*,*) DLAMDA 
WRITE (*,*) 'LENGTH NEEDED (LENGTH=L*DLAMDA)?' 
READ (*,*) L 

C END OF INPUT 

OPEN (6, FILE='PLOT.DAT', STATUS='NEW') 

C BOUNDARY (INITIAL) CONDITION 
C SET INLET DIMENSIONLESS CONC. TO BE UNIFORM,1. 

DO 10 I=1,N 
C(I,O)=l. 

10 CONTINUE 

DO 100 K=O, L 
C 'K' IS AXIAL STEP INDEX 

C INITIAL GUESS: 
C A LINEAR CONC. PROFILE IS OBTAINED FOR THE FIRST STEP. 
C FOR THE REST AXIAL STEPS, PREVIOUS CONC. PROFILE IS 
C USED AS THE INITIAL RADIAL CONC. PROFILE. 

IF (K .EQ. 0) THEN 
DO 20 I=1,N 

C(I,1)=GUESS-I*.001 
20 CONTINUE 

ELSE 
DO 60 I=1,N 

C(I,O)=C(I,1) 
60 CONTINUE 

END IF 

GOTO 41 

C TEST IF TOLERANCE IS MET 
.40 ITEST=O 

DO 25 I=1,N 
IF (ABS(H(I)/(2**jj)) .GT. XTOL) ITEST=ITEST+1 

25 CONTINUE 
IF (!TEST .EQ. 0) GOTO 150 

C EVALUATE FUNCTION VALUES OF EACH DIFFERENCE EQN. 
41 CALL FCNVALUE (N,K,DLAMDA,S,ALPHA) 

C EVALUATE EACH PARTIAL DERIVATIVE OF EVERY FUNCTION 
C W.R.T. EVERY INDEPENDENT VARIABLE, I.E. JACOBIAN. 

CALL DERIVATIVE (N,K,DLAMDA,S,ALPHA) 

C COMPRESS JACOBIAN MATRIX, FP, AND FUNCTION VALUE 
C VECTOR, F, INTO AN N x 4 MATRIX 

CALL FPTOA (N) 
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C SOLVE FOR H VECTOR, THE PROGRESS STEP 
CALL TRIDG (N) 

C EVALUATE THE NORM FOR OLD CONC. PROFILE 
CALL NORM (N,FNORM) 
FONORM=FNORM 

C SAVE RESULTS BEFORE MAKING PROGRESS 
DO 27 I=1,N 

COLD(I,1)=C(I,1) 
FOLD(I)=F(I) 

27 CONTINUE 

C TEST IF THERE IS ANY NEGATIVE VALUE OF CONC. PRESENT 
C AFTER PROGRESSING 

JJ=O 
31 IJTEST=O 

DO 30 I=1,N 
C(I,1)=COLD(I,1)-H(I)/(2**JJ) 
IF (C(I,1) .LT. 0.) THEN 

IJTEST=IJTEST+1 
ELSE 
END IF 

30 CONTINUE 
C CHECK THE TEST RESULT 

IF (IJTEST .NE. 0) THEN 
JJ=JJ+1 
GOTO 31 

ELSE 
END IF 

C REEVALUATE FUNCTION VALUES AND NORM USING NON-NEGATIVE 
C SOLUTION 

CALL FCNVALUE (N,K,DLAMDA,S,ALPHA) 
CALL NORM (N,FNORM) 

C DECIDE IF THIS IS AN DESIRED PROGRESS BY CHECKING 
C NORMS 

IF (FONORM .LT. FNORM) THEN 
IF (JJ .LT. 100) THEN 

JJ=JJ+1 
GOTO 31 

ELSE 
WRITE(*,*) 'SUA',JJ 
STOP 

END IF 
ELSE 

GOTO 40 
END IF 

C PRINT OUT THE RESULTS 
150 DO 60 I•l,N 

LAMDA=(K+1)*DLAMDA 
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U (I)= (I -1. ) I ( N-1. ) 
WRITE (6,1000) LAMDA,U(I),C(I,1),0RDER,S,ALPHA 

1000 FORMAT (1X,F6.2,2F10.6,2F6.2,F8.4)) 
50 CONTINUE 

C CALCULATE THE AREA AVERAGE CONC. BY SIMPSON'S 
C METHOD 

CALL SIMPSON (N,S,K,TOT) 
C MAKE A FLAG MARK IN OUTPUT TO IDENTIFY AVERAGE 
C CONC. FROM OTHER RADIAL CONC. PROFILE 

FLAG=2.0 
WRITE (6,1000) LAMDA,FLAG,TOT,ORDER,S,ALPHA 

100 CONTINUE 

END 

SUBROUTINE FCNVALUE(N,K,DLAMDA,S,ALPHA) 
COMMON C(50,2),F(50),A(50,4),H(50),U(50),FP(50,50), 

-ORDER 
DU=1. /(N-1. ) 
F(1)=(C(1,1)-C(l,O))/DLAMDA-2.*ALPHA*(C(2,1)-C(l,l 

-l)+C(2,0)-C(1,0))/DU**2+((C(l, 1)+C(l,0))/2)**0RDER 
DO 10 I=2,N-1 

U(I)=(I-1. )/(N-1) 
FIRST=(l-U(I)**((S+l)/S))*{C(I,1)-C(I,O))/DLAMDA 
SECOND=(C(I+1,1)+C(I-1,1)-2*C(I,l)+C(I+l,O)+C(I 

--1,0)-2*C(I,0))/(2*DU**2) 
THIRD=(C(I+1,1)-C(I-1, 1)+C(I+1,0)-C(I-1,0))/(4* 

-U{I)*DU) 
FOURTH=((C(I,1)+C(I,0))/2)**0RDER 
F(I)=FIRST-ALPHA*(SECOND+THIRD)+FOURTH 

10 CONTINUE 
F(N)={C(N,l)-C{N-l,l)+C(N,O)-C(N-1,0))/(2*DU) 

RETURN 
END 

SUBROUTINE DERIVATIVE (N,K,DLAMDA,S,ALPHA) 
COMMON C(50,2),F(50),A(50,4),H(50),U(50),FP(50,50), 

-ORDER 
DU=1./(N-1) 
FP(1,1)=1./DLAMDA+(2*ALPHA)/DU**2+(0RDER/2. )*(( 

-C(l, 1)+C(1,0))/2)**(0RDER-1) 
FP(1,2)=(-2*ALPHA)/DU**2 
DO 10 I=2,N-1 

U(I)=(I-1. )/(N-1) 
FP(I,I-1)=-ALPHA/(2*DU**2)+ALPHA/(4*U(I)*DU) 
FP(I,I)=(1-U(I)**((S+l)/S))+ALPHA/DU**2+0RDER* 

-0.5*((C(I,l}+C(I,0))/2)**<0RDER-l) 
FP(I,I+1)=-ALPHA/(2*DU**2)-ALPHA/(4*U(I)*DU) 
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10 CONTINUE 
FP(N,N-1)=-1./(2*DU) 
FP(N,N)=1./(2*DU) 
RETURN 
END 

SUBROUTINE FPTOA (N) 
COMMON C(50,2),F(50),A(50,4),H(50),U(50),FP(50,50), 

-ORDER 
A(1,2)=FP(1,1) 
A(1,3)=FP(1,2) 
A(1,4)=F(1) 
DO 10 I=2,N 

DO 20 J=1,3 
A(I,J)=FP(I,I+J-2) 

20 CONTINUE 
A(I,4)=F(I) 

10 CONTINUE 
A(N, 1)=-1. 
A(N,2)=1. 
A(N,4)=F(N) 
RETURN 
END 

SUBROUTINE TRIDG (N) 
COMMON C(50,2),F(50),A(50,4),H(50),U(50),FP(50,50), 

-ORDER 
DO 10 I=2,N 

A ( I, 1) =A ( I, 1 ) I A ( I -1, 2 ) 
A(I,2)=A(I,2)-A(I,1)*A(I-1,3) 
A(I,4)=A(I,4)-A(I,1)*A(I-1,4) 

10 CONTINUE 

C BACK SUBSTITUTING 

NM1=N-1 
A(N,4)=A(N,4)/A(N,2) 
DO 20 I=NM1,1,-1 

C THE INDEX M WILL COUNT UP THE ROWS 

A(I,4)=(A(!,4)-A(I,3)*A(I+1,4))/A(I,2) 
20 CONTINUE 

DO 30 I=1,N 
H(I)=A(I,4) 

30 CONTINUE 
RETURN 
END 
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SUBROUTINE NORM (N 1 FNORM) 
COMMON C(50~2),F(50),A(50,4),H(50),U(50),FP(50 1 50), 

-ORDER 
FNORM=O 
DO 10 I=1,N 
FNORM=FNORM+F(I)**2 

10 GONTINUE 
RETURN 
END 

SUBROUTINE SIMPSON (N,S,K,TOT) 
COMMON C{50,2),F{50),A(50,4),H(50),U{50),FP{50,50), 

-ORDER 
DIMENSION VF (50}· 
COE=(6*S+2)/(S+l) . 
DU=l./(N-1) 
TOT=O. 
DO 10 I=1,N 

VF(I)=U(I)*{1-U(I)**{(S+1)/S))*C{I,l) 
10 CONTINUE 

MA=MOD(N,2) 
IF (MA .EQ. 0) THEN 

DO 20 I=1,N-5,2 
TOT=TOT+(DU/3)*(VF(I)+4*VF(I+1)+VF(I+2)) 

20 CONTINUE 
TOT=TOT+(3*DU/8)*(VF(N-3)+3*VF(N-2)+3*VF(N-1)+ 

-VF(N)) 
ELSE 

DO 30 I=1,N-2,2 
TOT=TOT+(DU/3)*(VF(I)+4*VF(I+1)+VF(I+2)) 

30 CONTINUE 
END IF 

TOT=COE*TOT 
RETURN 
END 
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APPENDIX E 

BRIEF LITERATURE SURVEY 

7'-fJ 



TUBULAR 
REACTOR 

Newtonian 
Fluids 

non­
ewtonian 

Fluids 

1-st· 
order 
Homo. R. 

non-1st 
--order 

osworth {1} 

leland & 
Wilhelm (2) 

alker ( 7) ---11 

Soloman & 
Hudson (8) 

o Diff.~ 

Johnson 

[

No Diff. J 
Homo. R. -{Krongelb (6) 1 

iff. 
. Vignes (5} 

1-st 
order 
Homo. R. 

Diff.-Homsy & 
Strohman (13) 

No Diff.--Mihail & 
Tausch {14) 

Axial 

1-st 
order 
Heter. 
Rxn. 

Dispersion - Mashelkar {19) 
Model 

non-1st 
·-order 

Homo. R. 
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APPENDIX F 

INSTRUCTIONS FOR PROGRAM INPUTS AND OUTPUTS 



PROGRAM INPUT 

C> THE2 
Rxn Order = 

[Input order of chemical reaction, e.g. 0, .5, 1, etc.] 

Rheology Index ? 

[Input rheology index 's' for power-law fluids 

0.< s < 1. 
s = 1.0 
s > 1.0 

==> pseudoplastic non-Newtonian fluids 
==> Newtonian fluids 
==> dilatant non-Newtonian fluids] 

Subdivided into N Grid, N=? 

[Input the number of nodes along radial direction, i.e. 
from tube center to tube wall. 
Maximum is 50] 

ALPHA = ? 

[Input the dimensionless diffusion parameter 'A'. 

For A = 0 ==> Neglecting radial diffusion effect] 

xtolerence=? 

[Input dimensionless potential concentration tolerance, 
e.g .. 001, .0001, etc.] 

dlamda 

[Input the step length in tube axial direction, Z. 
For example, .1, .01, etc.] 

LENGTH NEEDED (LENGTH=L*DLAMDA)? 

[Input the number of steps needed in tube axial 
direction. Tube length is equal to the product of Z 
and the number of steps specified here. 
e.g. 10, 50, 200, etc.] 
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PROGRAM OUTPUT 

(SAMPLE) 

. 01 .000000 .988121 1. 00 1. 00 .1000 

. 01 .020408 .990125 1. 00 1. 00 .1000 

.01 .040816 .990364 1. 00 1. 00 .1000 

.01 .061224 .990368 1. 00 1. 00 .1000 

. 01 .081633 .990326 1. 00 1.00 .1000 

. 01 .102041 .990277 1. 00 1. 00 .1000 
'01 .122449 .990225 1. 00 1. 00 .1000 
'01 .142857 .990168 1. 00 1. 00 .1000 
'01 .163265 .990102 1. 00 1. 00 .1000 

. 01 2.00000 .980024 1.00 1.00 .1000 

The output data will be saved in an automatically created 
file named PLOT.DAT. Each column shows different 
information as follows: 

Column 1 

Column 2 

Column 3 

Column 4 

Column 5 

Column 6 

Shows Z values 

Dimensionless radial position, U values. 

Dimensionless concentration, C values. 
Note that when U > 1.0, this column shows 

the average dimensionless concentration 
at a specified Z in stead of potential 
concentration. 

The order of chemical reaction. 

Rheology Index 

Dimensionless diffusion parameter 'A'. 
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