
SYNTHESIS AND ANALYSIS OF SPATIAL 

MECHANISMS FOR TWO-PARAMETER 

TANGENT-PLANE ENVELOPE 

GENERATION 

By 

FOO-MING FU n 
Bachelor of Science 

Ming-Chi Institute of Technology 

Taishan, Taipei, Taiwan 

1982 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

in partial fulfillment of the requirements 
for the Degree of 
MASTER OF SCIENCE 

May, 1987 



~' 
·· UNtVER.· S!T'y . ~.().>.\ 

~~! BRAF1~y _,,:l 1 

SYNTHESIS AND ANALYSIS OF SPATIAL ::-.. __________ .. ,;;;.;;::••·" 

MECHANISMS FOR TWO-PARAMETER 

TANGENT-PLANE ENVELOPE 

GENERATION 

Thesis Approved: 

Thesis Adviser 

~~ 

Dean of the Graduate Colleg e 

i i 
l 

-~ 



ACKNOWLEDGEMENTS 

I wish to take the oportunity to express my sincere 

appreciation and gratitude to all who have help~d in any 

way to make this study possible. In particular, I am 

grateful to my adviser, Dr. A. H. Soni, for his continuous 

concern, guidance, and assistance in the success of my 

research; to my advisory committee members, Dr. J. K. Good 

and Professor H. E. Conlon, for their valuable counsel and 

suggestions throughout this study. 

The success of this study was in part due to an 

excellent group of "mechanisms mem": Dr. Nagi G. Naganathan, 

Dev Sathyadev, Ram Gudavalli, Mohammad Dado, Jim Jones, 

Enoch Mylahathula, and Amir Shirkhodaie. 

I am grateful to Dr. Wen-Shen Chou, President of My 

Alma-Mater, for his finacial support which made it possible 

for me to come to the United States and also for his 

constant encouragement throughout my career. 

I also thank Mr. and Mrs. Weng and their lovely son 

Jim, for their taking care of me so well. 

I want to give my special thanks to my dearest fiancee 

Ngoc Anh Tieu and her family for their whole-hearted support 

and encouragement during the final days of my master 

program. 

Finally, I thank my familly, in particular, my parents, 

for their support and encouragement thourghout my entire 

education. 

i i i 



TABLE OF CONTENTS 

Chapter 

I . INTRODUCTION 

1 . 1 
1 • 2 
1. 3 
1. 4 

Synthesis Of Spatial Mechanisms • 
Analysis Of Spatial Mechanisms 
Curvature Theory 
Present Study . 

II. PARAMATRIC DISCRIPTION OF A 
SURFACE DEVELOPING BY TANGENT-PLANE 

III. HOMOGENEOUS TRANSFORMATION MATRIX METHOD 

IV. SYNTHESIS AND ANALYSIS OF DYADS FOR FINITELY 
SEPARATED POSITIONS GENERATED BY 
TANGENT-PLANE 

4.1 Synthesis Of Dyads For Any Combination 
Of Revolute, Prismatic, And 
He l i c a 1 J a i n t s 

4.2 Analysis Of Dyads For Any Combination 
Of Revolute, Prismatic, And 
Helical Joints 

4.3 Numerial Examples . 

V. SYNTHESIS OF DYADS FOR INFINITESIMALLY 
AND MIXED MODE SEPARATED POSITIONS 
GENERATED BY TANGENT-PLANE . . . . 

5.1 First Order Infinitesimally And l',ixed 
Mode Separated Positions 

5.2 Higher Order Infinitesimally and Mixed 
Mode Separated Positions 

5.3 Numerial Examples .. 

VI. SYNTHESIS OF TWO-PARAMETER-MOTION, TWO-DEGREE­
OF-FREEDOM MECHANISMS CARRYING A RIGID 
BODY WITH A TANGENT-PLANE AS A MOVING 
ELEMENT HAVING SIX, FIVE, AND FOUR 
COMPONENTS OF MOTION 

Page 

2 
7 
8 
9 

13 

19 

29 

33 

45 
47 

55 

57 

62 
64 

67 

6.1 RRSS Spatial Four-Link Mechanism 67 
6.2 RHCRC Spatial Five-Link Mechanism Having 

Four Components Of Motion . 72 
6.3 RCCRR Spatial Five-Link Mechanism Having 

Five Components Of Motion . 75 
6.4 RCCCR Spatial Five-Link Mechanism Having 

Six Components Of Motion 75 
6.5 Numerical Examples 77 

iv 



Chapter 

VII. SUMMARY AND CONCLUSIONS 

A SELECTED BIBLIOGRAPHY 

APPENDIXES 

APPENDIX A - COMPUTER PROGRAMS FOR FINITELY, 
INFINITESIMALLY, AND MIXED MODE 
SEPARATED POSITIONS . . . . . 

APPENDIX B - IRIS GRAPHIC COMPUTER PROGRAM 

v 

Page 

80 

84 

90 

90 

• 105 



LIST OF TABLES 

Table 

I. Maximum Number of Finitely Separated Positions 
for Any Combination of R,C,P,H, and S Joint 
Derived by Tsai and Roth 

II. Joint Motion Parameters for R, P, H, C 
and S Joints 

III. Two Degrees of Freedom Binary Link with 
Any Combination Of R, P, And H Joints . 

IV. Synthesis Procedure of R-R Crank For Nine 
Positions . 

V. Procedure of Analysis of R-R Crank 

VI. Numerical Example of Synthesis of R-R Crank 
for Six Finitely Separated Positions 
<Closed-Form Solution> 

VII. Numerical Example of Synthesis of R-R Crank 
for Nine Finitely Separated Positions . 

VIII. Numerical Example of Synthesis of R-R Crank 
for Six Finitely Separated Positions 
<Surface Is Given as a Sphere> 

IX. Numerical Example of Synthesis of R-R Crank 
for Nine Finitely Separated Positions 
<Surface Is Given as a Sphere) 

X. Numerical Example of Analysis of R-R Crank 

XI. Numerical Example Of Analysis Of R-R Crank 

XII. Nine Synthesis Positions With One, Two, Three, 

Page 

6 

25 

30 

38 

48 

49 

50 

51 

52 

53 

54 

and Four First-Order Motions 59 

XIII. Numerical Example of Synthesis of R-R Crank 
for First-Order Infinitesimally Separa~ed 
Positions <PP-PP-PP-PP-P> 

XIV. Numerical Example of Synthesis of R-R Crank 
for Higher-Order Infinitesimally Separated 
Positions <P-PPP-PP-PPP> 

XV. Numerical Example of Synthesis of RCCCR 
Mechanism for Eight Finitely 
Separated Positions . 

vi 

65 

66 

79 



LIST OF FIGURES 

Figure 

1 • 

2. 

3. 

4. 

5. 

6. 

7. 

B. 

9. 

10. 

1 1 • 

Parametric Discription of a Surface 
(Two-Parameter Surface) 

Vector Expression of the Tangent Plane 

Notation of Homogeneous Transformation Matrix . 

Joint Motion Parameter of Revolute, Prismatic, 
and Helical Joints 

Binary Link with a Plane Attached on the Moving 
Joint Tangential to a Surface . 

Finite Displacement of Binary Link 

RRSS Spatial Mechanism 

RHCRR Spatial Mechanism Having Four 
Components of Motion 

RCCRR Spatial Mechanism Having Five 
Components of Motion 

RCCCR Spatial Mechanism Having Six 
Components of Motion 

Two Tangent Plane Attached to Two Two­
Degree-of-Freedom Robot . 

Vll 

Page 

15 

17 

20 

26 

31 

34 

69 

73 

76 

78 

82 



CHAPTER I 

INTRODUCTION 

In the field of kinematics, there exists two problems 

in the design of mechanisms : synthesis and analysis. The 

to fundamental problem in the kinematic synthesis is 

determine the dimensions of linkages required to pass 

through several specified, finitely separated positions, 

infinitesimally separated positions, or mixed mode positions 

relative to another rigid body. Such specifications may 

include rigid body guidance, function generation, and path. 

generation. The fundamental problem in kinematic analysis 

is to determine the relative motions of moving 

the linkage parameters are given. 

1 inks where 

The fundamental theories of kinematic synthesis and 

analysis of planar or three dimensional mechanisms appear to 

have evolved with the classical investigations of a rigid 

body motion. Such motion may be examined for one or more 

degrees of freedom or for one or more parameter motion. 

When large motion is of interest, finite motion theories for 

a rigid body are generally· investigated. When, however, 

interest, more precise motion in a local region is of 

instantaneous motion theories for a rigid body are 

investigated. 

1 
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Significant achievements have been made in recent years 

in understanding and applying the kinematics of 

one-parameter rigid body motion. For such one-parameter 

investigations, one may study a curve or a surface generated 

by a point, a line, or a plane moving with the coupler-link 

of a planar or a spatial mechanism. In planar motion, a 

line connected to the coupler-link of a mechanism will 

generate an envelope. This line is called the tangent-line. 

In space motion, a plane connected to the coupler-link of a 

mechanism will envelop a surface and the plane is called the 

tangent-plane. 

Continuation of the study on the one-parameter motion 

of a plane in space is requested to investigate the 

kinematics of a two-parameter motion of a rigid body with a 

plane being considered as a moving element. In the 

following three sections, we will examine the significant 

contributions describing in a progressive manner the 

development of the key concepts lending to synthesis and 

analysis of spatial mechanisms, and the curvature theory of 

point, line, and plane trajectories in three-dimensional 

kinematics. 

1.1 Synthesis of Spatial Mechanisms 

For synthesis of finitely separated positions of a 

rigid body, moving relative to another rigid body, Wilson[lJ 

developed an analytical procedure which used the analogy of 

kinematic synthesis problems. He introduced the 
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rigid body guidance problem in spatial synthesis and also 

showed that function generation problem can be converted to 

a rigid body guidance problem by taking inversion about the 

input or output link. However, his procedure can be used 

only for Sphere-Sphere, Revolute-Sphere, Sphere-Revolute, 

and Revolute-Revolute cranks. 

Roth[2J used screw theory and linear transformation to 

describe a rigid body through a series of finitely separated 

positions in order to determine those points which lie on a 

sphere, circle, plane, line or cylinder. Also, Roth applied 

these results for the synthesis of mechanisms. The parallel 

<plane) and intersecting (sphere) screws were presented as 

special cases. However, then applications are only for very 

simple mechanisms. 

Roth[3J described the motion of a rigid body moving 

relative to another rigid body for up to five positions. He 

also extended the concepts of pole triangle and pole 

quadrangle into space. He obtained an infinite number of 

C-C cranks which displaces a rigid body through four 

finitely separated positions relative to another rigid body 

and obtained a finite number of C-C cranks for five finitely 

separated positions. These are found by intersecting the 

two cubic cones corresponding to two groups of four 

positions. These lines are the space analogs of the planar 

Burmester points. 

Sandor[4J developped procedures by applying the 

quaterrions for kinematic synthesis of space mechanisms. He 
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presented the space mechanism as general kinematic chains 

consisting of one or more loops of ball-jointed 

bar-slideball members. Sandor used the spa~ial circle-point 

theory to study four positions of a point of a rigid body 

which lies on a circle and verified Roth's[2J results that 

there can only be a maximum of four. points on a circle in 

space. 

Sandor and Bishop[5J applied the stretch-rotation 

tensor which is in a matrix form to present a general method 

of .spatial kinematic synthesis. The method can be used to 

multi-loop linkages and to special cases. 

Bottema, Koetsier and Roth[6J presented the procedure 

to find the smallest circle determined by three positions of 

a rigid body in space. It is shown that the minimum radius 

circle may arise when either the minimum circle is 

associated with a point which lies on a screw axis or it is 

associated with a more general point. The results can be 

applied for the design of the smallest Sphere-Revolute crank 

which will displace a rigid body through three finitely 

separated positions. 

Chen and Roth[7,8J, by using Roth's[2,9J results, 

presented a unified theory for the kinematic synthesis of 

finitely and infinitesimally separated positions of a rigid 

body moving relative to another rigid body. 

Soni and Harrisberger [10J presented a criterion, based 

on the optimum transmission characteristics, 

space mechanism. 

for designing 
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Soni and Huang [ 1 1 ] extended the point position 

reduction to design spatial four-bar mechanisms by using the 

analogy of planar kinematic synthesis. 

Rao, Sandor, Kohli, and Soni [12J developed a general 

closed-form synthesis procedure to synthesize function 

generators for the maximum number of precesion positions. 

Tsai and Roth[13J presented a procedure by using screw 

triangle geometry to synthesize open-loop kinematic chain 

for completely and incompletely specified positions of a 

rigid body. They found the screws associated with these 

displacements and gave the constraining conditions for the 

design of cranks. 

Roth[14J derived the constraining equations for any 

combination of revolute, prismatic, and cylindrical joints 

by using the screw triangle geometry method. 

Tsai and Roth [15] presented the synthesis procedure, 

based on the equivalent screw triangle method, and rederived 

the constraining equation from which the design equation can 

be determined for any combinations of helical, cylindrical, 

revolute, spherical, and prismatic joints for both finitely 

and infinitesimally separated position problems in kinematic 

synthesis. The maximum number of finitely separated 

positions for each combination is shown in TABLE I. 



TABLE I 

MAXIMUM NUMBER OF FINITELY SEPARATED 
POSITIONS<FSP> FOR ANY COMBINATION 

OF BINARY LINKS DERIVED BY TSAI 

Link-Combination Max.FSP Link-Combination Max.FSP 

R-R 3 P-R 2 
R-P 2 P-P 2 
R-C 3 P-C 2 
R-H 3 P-H 2 
R-S 4 P-S 3 
C-R 3 H-R 3 
C-P 2 H-P 2 
c-c 5 H-C 4 
C-H 4 H-H 3 
c-s 8 H-S 5 
S-R 4 S-H 5 
S-P 3 s-s 7 
s-c 8 

6 

Suh[16,17J used 4 x 4 matrices for synthesis of space 

mechanisms where design equations are expressed as 

constraint equations in order to obtai~ the contrained 

motion. 

Suh[18J discussed the R-R link and concluded that "the 

maximum number of positions for R-R link synthesis is three 

with no choice of papameter". 

Suh[19J, by using the finite-screw geometry, presented 

an analytical and geometrical proof establishing the duality 

of R-R crank for three positions. The proof is a 

geometrical one rather than an algebraic one in order to 
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avoid the complexity in dealing with nonlinear algebraic 

equations, and to give it a simple and intuitive form. 

Tsai and Roth [20J, by using the constraining equations 

derived in [14J, obtained a sixth degree polynomial for 

synthesis of R-R crank. The coefficients of the 

constraining equation are in explicit form and whose real 

roots give the direction cosines of 

frame of reference. 

lines in the moving 

Sathyadev and Soni [37J introduced a new approach to 

synthesize the planar mechanism for coupler tangent-line 

generation based on the modification of the planar rigid 

body displacement matrix developed by Suh [38]. This leads 

to the concept of a curve being considered as a line-locus, 

the envelope of a set of its tangent-lines. 

1.2 Analysis of Spatial Mechanisms 

Kinematic analysis of space mechanisms was initiated by 

the significant contribution of Dimentberg[21,22J who 

presented the dual number and screw calculus to obtain 

closed-form displacement relationships of an RCCC and other 

spatial mechanisms. There are some other approaches have 

been applied to obtain the same closed-form displacement 

relationships of RCCC mechanism: 

Denavit C23J used dual Euler angles. 

Yang [24] used dual quaternions. 

Chace [25] was the first used vector approach 

Wallace and Freudenstein [26J also used vector approach 
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to obtain closed-form displacement relationships of RRSRR 

and RRERR mechanisms. 

Yang E27J presented a general formulation using dual 

number for displacement analysis of RCRCR spatial mechanism. 

Soni and Pamidi. [28J used the 3 x 3 dual matrix to 

obtain closed-form desplacement relations of RCCRR 

mechanisms. 

Yuan [29] applied screw coordinates to obtain 

closed-form displacement relations for RRCCR and other 

spatial mechanisms. 

Jenkins and Crossley [30], Sharma and Torfason E31J, 

the method of generated Dukkipati and Soni [32J used 

surfaces ap~lying the analysis of single-loop mechanisms 

containing a spheric pair. 

Hartenberg and Denavit [33] using 4 x 4 matrix for 

displacement analysis of spatial mechanism. 

Soni and Harrisberger [34] presented an iterative 

approach for performing kinematic analysis using 3 x 3 

matrices with dual elements. 

Kohli and Soni [35,36] used finite screws for 

displacement analysis and synthesis of single-loop and 

two-loop space mechanisms with revolute, prismatic, 

cylindrical, helical, and spherical joints. 

1.3 Curvature Theory 

For space point-path, Veldkamp [39,40] developed the 

fundamentals of the instantaneous invariants and applied 



them to study the point-path in space. 

Siddhanty and Soni [41], Hsia 

investigated the curvature theory of point 

three-dimensional kinematics. 

9 

and Yang [42] 

trajectories in 

Yang, Roth, and Kirson [43,44] described the geometric 

properties of a ruled surface which generated by a line in a 

moving body as it moves in space may be examined either by 

applying the principle of transference to the results of the 

point-path trajectories on sphere. 

McCarthy and Roth [45] studied the motion of a line in 

space. 

Ting and Soni [46,47], and Veldkamp [48] investigated 

the one-parameter, instantaneous motion of rigid body where 

the moving element is a plane. 

Schonemann [49] and Mannheim [50] contributed the first 

theorem of instantaneous two-parameter kinematics. 

Blaschke [51] investigated the first-order property of 

two-parameter motion with line as moving element by using 

dual numbers and quarternions. 

Bottema [52] studied the first- and second-order 

properties of two-parameter spatial motion with points as 

moving elements. He developed the analytical expressions 

for the Gaussian curvature of the point trajectory surface. 

1.4 Present Study 

The survey of literature mentioned in the previous 

three sections show that most of studies of synthesis and 
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analysis of spatial mechanisms are devoted to the 

one-parameter rigid body guidence and two-parameter motion 

of a rigid body with points as a moving elements. Problems 

such as generating a surface in space by using a plane as 

moving element with 

unknown. 

two-paramter motion still remained 

Just as point in two-parameter motion generates a 

surface, 

general, 

so does a plane in two-parameter motion. In 

in space geometry, a point and a plane are dual 

constructs and a line is dual to itself. For any geometric 

figure consisting of points, lines, and planes, its dual 

configuration is obtained by replacing every point by a 

plane, every line by a line, and every plane by a point. In 

a two-parameter spatial kinematics the dual of a 

point-trajectory surface is the trajectory of a plane which 

envelops a surface. Since each plane corresponds to a point 

on a surface, the study of a plane motion is analogous to 

the study of a point-trajectory surface. 

This manner of investigation provides an insight into 

the dual relationships between the trajectory of a plane and 

the point-trajectory surface. The kinematic significance of 

this duality and its potential applications that generally 

follow in mechanism synthesis and analysis are of 

fundamental importance in the mechanism science. 

The two-parameter motion of a rigid body may be 

investigated further by examining the moving element which 

may be a point, a line, or a plane. Because of the duality 
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between a point and a plane, a study of plane-path with 

two-parameter variation is expected to provide better 

insight into the two-parameter rigid body motion. 

The objective of the present study is to provide a 

general method of synthesizing and analyzing the spatial 

mechanisms for two-parameter tangent-plane envelope 

generation. The proposed method can be used for finitely 

separated positions, infinitesimally separated positions, 

and mixed mode positions. The synthesis procedure is based 

on the Homogenerous Transformation Matrix which developed by 

Hartenberg and Denavit. 

In chapter II, the parametric discription of a surface 

enveloped by tangent-plane is described. This is a brief 

discussion how the tangent-plane envelops a given two­

parameter surface from the geometric point of view. 

In chapter III, the Homogenerous Transformation Matrix 

method, 

derived. 

based on the Hartenberg-Denavit notation, is 

In chapter IV, the synthesis and analysis procedure of 

dyads for finitely separated positions generated by tangent­

plane having two-parameter motion with any combination of 

Revolute, Prismatic, and Helical joints are derived. 

In chapter V, the synthesis and analysis procedure of 

dyads for infinitesimally and mixed mode separated positions 

generated by tangent-plane having two-parameter motion with 

any combiantion of Revolute, Prismatic, and Helical joints 

are presented. Also, the first- and higher-order motion are 
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discussed in this chapter. 

In chapter VI, the synthesis procedure of two-

parameter motion, two degree-of-freedom spatial mechanisms 

carrying a rigid body with a tangent-plane as a moving 

element having six, five, 

derived. 

and four components of motion are 

Chapter VII presents the summary, conclusions, and 

recommendations for further research. 

Numerical examples are presented in chapter IV, v, and 

VI to illustrate the proposed synthesis and analysis 

procedure. Also, the computer programs of kinematic 

synthesis and analysis are presented in appendix A and B. 



CHAPTER II 

PARAMETRIC DISCRIPTION OF A SURFACE 

DEVELOPING BY THE TANGENT PLANE 

The design specification in this category of synthesis 

and analysis problems require a tangent-plane attached to 

the a moving rigid body enveloping a given surface. 

Generally, The surface to be enveloped is expressed in 

the vector farm along with the precision points which 

approximate the given surface. Therefore, in this chapter, 

we will simply discribe the paramatric dispription of a 

twa-parameter surface enveloping by the tangent plane. 

We note that the vector equation of the type 

R< t ) = X ( t ) i + y ( t ) j + z ( t ) k <2-1) 

is in the single parameter t describe space curves. 

The parametric representation of the space curves is 

X= x(t), y = y(t), Z = z<t> <2-2) 

Surfaces, in general, are described by the parametric 

equations of the type 

X= x<u,v>, Y = y(u,v), Z = z(u,v) (2-3) 

13 
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where u and v are unique parameters. 

If v is fixed i . e. , v=C, a constant>, then Eq(2-3> 

becomes a one-parameter expression, which describes a space 

curve along which u varies. 

v=C. Thus for each v, 

This is the curve designated by 

there exists a space curve. 

Similarly, a space curve can be obtained when v varies along 

the curve u=C. The locus of all the curves v=C and u=C 

forms a surface S. The parameters u and v are called the 

curvilenear coordinates of the point P on the surface, and 

the u-curves and v-curves are called parametric curves as 

shown in figure 1. 

If the terminal ptiint of the position vector R 

generates the surfaceS, then Eq<2-3) can be rewritten as 

S< u ' v } = X ( u ' v } i + y ( u ' v ) j + z ( u ' v ) k (2-4) 

let su = oS I ou and sv = oS I ov represent the tangent 

vectors to the curve u and v respectively. 

Hence, 

oS ox oy oz 
su = = i + j + k (2-5) 

ou ou ou ou 

85 ox oy oz 
sv = = i + j + k (2-6} 

ov ov ov ov 

A point P<u,v) on a surface S is called a singular 

point if Su x Sv = O; otherwise, it is called a non-singular 

point. Therefore, if Sv are continuous, the plane 



-N = :T X T u v 

z 

u=C Surface S 

y 

Figure 1. Parametric Discription of a 
Surface (Two-Parameter Surface) 

15 
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through P parallel to Su and Sv at point Pis call the 

tangent plane to surface S at point P. Thus, the tangent 

pla-nes exist only at the nonsingular points and can be 

defined by those two tangent vectors Su and Sv. Also, every 

nonzero vector linearly dependent upon Su and Sv is the 

tangent vector of some curve through point P. 

In order to derive the tangent plane equation, we need 

to define the unit normal vector of the tangent plane as: 

N = ------------------ (2-7) 

In figure 2, it is shown that point P <x 0 , y 0 , z 0 > is a 

point on the tangent-plane tangents to the surface. 

Therefore, the tangent-plane equation can be obtained by 

taking the dot product of the vector from an arbitrary point 

A <note that point A is also called a connecting point of 

tangent plane and mechanism> to P and unit normal vector of 

the tangent-plane. 

Hence, we obtain 

Since N can be expressed as (N ,N ,N ), 
X y Z 

product and rearranging Eq<2-8), yields 

(2-8) 

by taking dot 



z 

Tangent Plane 

A Connecting Point 

P Tangential Point 
-N Unit Normal Vector 

Figure 2. Vector Expression of the Tangent 
Plane 

1 7 

y 
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NX+NY+NZ=C 
X y Z 

(2-9} 

where c = 

The tangent-plane equation Eq(2-B> or Eq(2-9> can be 

used to derive the synthesis equation for spatial mechanisms 

with the tangent-plane as a moving element carried by the 

rigid body of a mechanisms. 



CHAPTER III 

HOMOGENEOUS TRANSFORMATION MATRIX METHOD 

For synthesis of planar mechanisms, Suh [53] derived 

the planar displacement matrix which expressed the 

orientation and position of the moving link in (3 X 3) 

matrix. For synthesis of spatial mechanisms, Wilson [1] was 

the first developed <3 x 3) matrix to define the motion of a 

body in space. Roth [2] also derived the <3 x 3> screw 

matrix by using the linear transformation and screw algebra. 

Denavit and Hartenberg[38J developed a new symbolic notation 

and derived ( 4 x 4 ) matrix for spatial mechanism based on 

the homogeneous transformation. This notation is called 

Denanit-Hartenberg notation <D-H notation> and the matrix is 

called D-H matrix. Because of the sufficient for the 

description of the complete kinematic properties of 

lower-pair mechanisms, D-H notation can be used for 

kinematic synthesis and analysis problems of spatial 

mechanisms to obtain the result which is more compact. 

There are four parameters defined in D-H notation as 

shown in figure 3 and stated in the following: 

ai = link length, the common normal along Xi+l between 

z. and z. 1. 
1 1 + 

oc. =link 
l 

twist angle, relative orientation of the 

19 
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Zi+1 (Joint i+1) 

Qj f 

link i+1 

Link i 
y 

Figure 3. Notation of Homogeneous Transformation 
f·1atrix 

20 



kinematic pair, obtained by rotating zi 
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to z_ 1 
l+ 

about xi+1. The sign of rotation is given by the 

right-hand screw rule. 

di = offset distance, the common normal along Zi between 

X i and X i + 1. The sign of distance can be positive 

or negative. di is positive when measured to the 

positive zi direction. 

8- = link angle, 
l 

obtained by rotating Xi to Xi+ 1 about 

The sign of rotation is given by the 

right-hand screw rule. 

Also, the coordinates are defined as : The Z- axis is 
l 

along the axis of motion or rotation of the ( i + 1 ) joint. The 

X i axis in the direction of normal to both z_ and zi+1 l 

axis,point away from the z_ 
l 

axis. The y_ 
l 

axis is chosen so 

as to make the coordinate X i' yi ' and z_ following the 
l 

Right-Hand screw. 

Once the D-H coordinate system for each link is 

established, a homogeneous transformation matrix can be 

developed relating the - 1th l+ coordinate frame to the ith 

coordinate frame as shown in fig(3). lt is clear that a 

point P expressed in the - 1th - t t 1+ coord1na e sys em may be 

expressed in the i th coordinate system by performing the 

following successive transformations: 

1. Rotate about the Zi axis by an angle ei to align the 

2. Translate along the zi axis a distance di to bring 

axes into coincidence,Tran<Z- ,d_). 
l l 



3. Translate along the Zi axis a distance a. 
l 
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to bring 

the two origins into coincidence, Tran(Xi ,ai >. 

4. Rotate about the Xi+ 1 axis an angle ~i to bring th~ 

two coordinate systems to completely 

Rot (X . , ~ . > • 
l . l 

coincide, 

L t th d . t f . t p d . th - th e e coor 1na es o a po1n expresse ln· e 1 

coordinate system be <pxi ,pyi 'Pzi > and 

coordinate system be <pxi+ 1 ,pyi+ 1 ,pzi+1 >. 

in the i+lth 

Then the ve~tors 

Pi and Pi+ 1 can be written in the <4 x 1) matrix forms as 

follows: 

p Xi P xi+1 

P. = Pyi pi+1 = Pyi+1 (3-1) 
l 

p z i P zi+1 

1 1 

The complete transformation of link i+1 with respect to 

link i or joint i+1 with respect to joint i can be expressed 

as : 

(3-2) 

Thus, we can obtain the homogenerous tramsformation 

matrix [Ai~ from i+l th frame to the i th frame 
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ce. 
l 

-se. Coc. 
l l 

se. soc. 
l l ai cei 

I:Ai J = se. 
l 

ce. coc. 
l l -cei Soci ai sei <3-3) 

0 Soci Coc. 
l di 

0 0 0 1 

where 

cei = case i, se i = sine i' 

Coc i = cosoc i' Soc i = s i noc .• 
1 

Also, the transformation of coordinate frome.the i+lth 

system to the ith system will be 

(3-4) 

and the inverse transformation exists 

pi+1 = EA.J- 1 pi (3-5) 
l 

where 

ce i se. 
l 

0 -a. 
1 

[A. J -1 = -se icoc i ce icoc i Soc i -d i Soc i (3-6} 
l 

0 Soc. Coc. -d.Coc. 
l 1 1 1 

0 0 0 1 

By applying the matrix transforamtion to each joint of 

coordinate frame from the last joint coordinate frame to the 

first joint coordinate frame, we yield 

(3-7) 
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The equivalent transformation matrix [AequJ defines the 

relationship between the coordinates of any point in the 

last frame Pn+l and that of the same point expressed in the 

first frame, P1 

Den?vit and Hartenberg [38] developed a kinematic 

notation for lower-pair mechanisms including revolute, 

prismatic, cylindrical, helical, and spherical joints based 

on (4 x 4) matrices. For a revolute joint, d. ' l 

are all constant, while ei varies as link i rotates about 

the axis of joint i. For a prismatic joint ei, 

are constant while di varies as link i translates along the 

axis of joint i. For a cylindrical joint, it can be 

considered as equivalent to a coaxial revolute and presmatic 

joints. therefore, the joint variables are : ei varies as 

link i rotates about the axis of joint i 

link i translates along the axis of joint i. 

and d. 
l 

varies as 

For a helical 

joint, both parameters e. and d. vary, being related by the 
l l 

lead L. 
l 

as 

oe 

2TI 
= 

L· l where e radian 

When Li is constant, either ei or di varies. 

is obtained, d. can be solved by 
l 

d i = d 0 + od i 

(3-8) 

Once od. 
l 

(3-9) 

where d 0 : original link distance 

The spherical joint is equivalent to a combination of 
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three revolute joints whose axes are mutually perperdicular 

at a common point of intersection (i.e., the joint variable 

e become el ' and e 3 >. The joint motion parameters are 

summarized as shown in TABLE II and in figure 4. 

TABLE II 

JOINT MOTION PARAMETERS FOR R,P, 
H,C,AND S JOINTS 

Type of Joint 

1. Revolute joint 
2. Prismatic joint 
3. Helical joint 
4. Cylindrical joint 
5. Spherical joint 

Motion Parameter 

ei 
di 

ei or di 
ei and di 

3-revolute joint<e1 ,e2 , 
and e3 , and di=ai=O> 

In order to synthesize and analyze spatial mechanisms 

by using homogeneous transformation matrix method, we can 

separate the transformation matrix into two 

submatrices: one is called joint-motion matrix [A J in terms v 

of joint mot.ion and the other is called linkage-parameter 

matrix [AcJ in terms of linkage parameters. When synthesis 

procedure is used, the joint-motion matrix [A J becomes a 
v 



Zn 

(A) Revolute j6int (B) Prismatic Joint 

(C) Helical Joint 

Figure 4. Joint ~otion Parameter of Revolute, 
Prismatic, and Helical Joints. 
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constant and the 1 i nkage-parameter matrix_ EAc J beco~es an 

unknown matrix and vice versa when analysis procedure is 

used. Therefore, we obtain 

where 

EA . J = 
Vl 

= 

= 

EA . J 
C1 = 

EA. J = EA .][A .J 
V1 C1 1 

ce. -se. 0 0 
1 l 

se. ce. 0 0 
1 1 

0 0 1 0 

0 0 0 1 

ce. 
1 

-se. 
l 

0 0 

se. ce. 0 0 
l 1 

0 0 1 d. 
1 

0 0 0 1 

1 0 0 0 

0 1 0 0 

0 0 1 

0 0 0 

a i 11 a i 12 

ai21 ai22 

ai31 ai32 

0 0 

d. 
1 

1 

ai13 

ai23 

ai33 

0 

(3-10) 

<for revolute and (3-11) 

spherical joint) 

(for cylindrical, (3-12) 

and helical joint) 

(for prismatic joint (3-13) 

ai14 

ai24 (3-14) 

ai34 

1 



1 0 0 a. 
1 

= 0 Ccx. -Scx. 
1 1 

0 (for revolute and 

0 Scx. Ccx. di spherical joint) 
1 1 

0 0 0 1 

1 0 0 a. 
1 

= 0 Ccx. 
1 

-Scx. 
1 

0 (for cylindrical 

0 Scx. 
1 

Ccx . 
1 

0 and helical joint> 

0 0 0 1 

ce. -sei ccxi se. scx. ai cei 1 1 1 

= se. ce. ccx. -ce. Scx. 
1 1 1 

0 Scx. 
1 

0 0 

and expressing [A . J-l 
51 

bill bi12 

[A .]-1 = bi21 bi22 Cl 

bi31 bi32 

0 0 

1 1 

Ccx. 
1 

0 

as 

bil3 

bi23 

bi33 

0 

a. se. 
1 1 

(for prismatic 

0 

1 

bi14 

bi24 

bi34 

1 

28 

(3-15) 

(3-16} 

joint) 

(3-17) 

(3-18} 

where [a .. J and [b .. J are in terms of linkage 
n1~J n1~J 

parameters. Once the coordinate systems are established, the 

synthesis and analysis procedure of spatial mechanisms can 

be obtained by using the transformation matrix with the help 

of the tangent-plane equation. 



CHAPTER IV 

SYNTHESIS AND ANALYSIS OF DYADS FOR 

FINITELY SEPATATED POSITIONS 

GENERATED BY TANGENT-PLANE 

In this chapter, a new synthesis and analysis procedure 

is developed, based on the tangent plane equation presented 

in chapter II and the homogeneous transformation matrix 

method presented in chapter III, for finitely separated 

position with any combination of revolute, prismatic, and 

helical joints to envelop a given surface by a tangent plane 

carried by the moving rigid body. 

The advantages of the proposed procedure can be briefly 

stated as: 

1. Taking a plane as the tracing element for path­

generation to envelop a surface. 

2. Solving for any combination of binary links with R, 

P, and H joints. 

3. Obtaining the closed-form solution. 

4. Increasing the number of precesion positions. 

The term ,;dyad" used in this thesis refers to a two­

link chain ( a fixed link and a moving binary coupling link> 

which is used to guide a third member through several design 

positions. With two-parameter motion, we can investigate a 

29 
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mechanism having two degrees of freedom (i.e. a dyad) . 

There are nine combinations of dyads composed of mixed 

revolute, prismatic, and helical joints as shown in 

TABLE III. 

In the next section, we will examine the synthesis and 

analysis procedure for each combination of binary links. 

TABLE III 

TWO DEGREES OF FREEDOM BINARY LINKS 
WITH AND COMBINATION OF R, P, 

AND H JOINTS 

<1> R-R 
<2> R-P 
<3> R-H 

<4> P-R 
<5> P-P 
(6) P-H 

<7> H-R 
<8> H-P 
<9> H-H 

Figure 5 shows a binary link kinematically connects a 

moving rigid body which carries the tangent-plane to a fixed 

coordinate frame. The joint connecting to the tangent plane 

is called the moving joint and the joint connecting to the 

fixed frame is called the fixed joint. P is the point where 

the plane tangent to the surface. In figure 5, we establish 

four coordinates frame as : 

{X, Y ,Z} fixed coordinate frame. 

{Xl,Yl,Zl} coordinate frame on the fixed joint Jf. 

{X2,Y2,Z2} coordinate frame on the moving joint J2. 



z 

X 

Figure 5. 

/ 
/ 

I' 

I 
I 

r ....... 
/ 

____ z2 

Binary Link with a Plane Attached 
To the floving Joint Tangential to 
to a Surface 
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CX3,Y3l'Z3) coordinate frame on the given tangent 

plane at connecting point P. 

Also, the parameters involve in fig(5) are: 

p. 
1 

the twist angles between the pair axes. 

the 1 ink 1 ength. 

the offset distances. 

the rotation angles at each joint. 

the vector measured from origin of ith 

coordinate frame to the point P. 

where i = 1 •. 4. 

Since the origin of <X3,Y3,Z3> coordinate frame is on 

the connecting point of tangent plane and moving joint. 

Thus, we obtain the matrix transformation measured from the 

origin of <X3,Y3,Z3> coordinate frame to the fixed 

coordinate frame as : 

p 
lx 0 

ply = [A 1 J [A2J CA3J 0 (4-1) 

plz 0 

1 1 

0 

= 0 (4-2) 

0 

1 
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Figure 6 shows that the finite displacement of a 

tangent plane attached to a moving rigid body displaces from 

i th to its .th 
J position. We note that the number of 

possible synthesis positions .depends on the number of 

unknown parameters and the constraint equations. Once the 

constraint equations are derived, we can determine the 

maximum number of allowable synthesis positions. 

4.1. Synthesis of Dyads For Any 
Combination of Revolute, 

Prismatic, and Helical 
Joints 

(1) Synthesis of R-R crank: 

It has been shown by Suh[19J and Tsai[20J that, for 

rigid body guidance problems, the maximum number of design 

positions for R-R cranks is three with no free choice of 

design parameters. However, by using the tangent-plane 

envelope generation presented in this thesis, the maximum 

number of synthesis positions can be obtained is nine. 

By substituting EqC4-2) into EqC2-9), we obtain the 

synthesis equation of R-R crank with tangent-plane attached 

on the moving joint. 

<nxce 1 + nyse 1 > cce 2a 3ce 3 - se 2cQ( 2a 3se 3 + se 2soc 2d 3 + a 2ce 2 > 

+ < n Yce 1 Cq( 1 + n 2 Soc 1 - n xse 1 Coc 1 > < se 2a 3ce 3 + ce 2coc 2a 3se 3 -

ce 2soc 2d 3 + a 2se 2 > + <nxse 1soc 1 - nyce 1soc 1 + n 2 Coc 1 ><soc 2a 3se 3 

+ C0< 2d 3 + d 2 > + nxa 1ce 1 + nya 1se 1 + nzdl 

= n p + n p + n p 
X X y y Z Z 

(4-3) 
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Figure 6. Finite Displacement of Binary Link 
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We note that the fundamental problem in the kinematic 

synthesis is to determine the dimensions of linkages 

required to pass through a series of points in space. 

Therefore, the unknown variables in Eq<4-3) will be : 

Since e 1 is a fixed angle in this configuration, we can 

assume e 1 as an unknown variable rather than as a known 

joint motion variable. Also, is free from Eq<4-3>. 

Hence, the unknown linkage parameters are 

a 1' a2' a3 

d 1' d2' d3 

()( 1' ()( 2' 

e1 

Let N be the maximum number of finitely separated 

positions. There are nine unknowns in Eq(4-3>. Thus, we 

obtain 

N = 9 (4-4) 

Therefore, the maximum number of finitely separated 

positions for R-R crank can be obtained by given nine joint 

motions. Then Eq(4-3) can be rewritten as: 

< n x ce 1 + n se 1 > < ce 2 na 3ce 3 n - se 2 nc()( 2a 3se 3 n + 
n Yn 

se 2 nscx 2d 3 + a 2ce 2 nl + <ny ce 1ccx 1 + n 2 scx 1 
n n 

nx se1 ccx 1 > < se2 n a3 ce3 n + ce2 n ccx2 ~ se3 n -
n 
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ce2 n Sa2 d3 + a2 se2 n ) + < nx se1 Sa1 - n ce1 Sa1 
n Yn 

(4-5) 

+ n 2 ca 1 ><sa 2a 3se 3 n + ca 2d 3 + d 2 > + nx a 1ce 1 
n n 

+ n a 1 se1 + n2 d 1 
Yn n 

where 

e2 = e + &e2 
n 2 n-1 n-1 

e3 = e3 + oe3 n = 1.. 9 
n n-1 n-1 

From Eq<4-4), and a 2 are chosen as known 

value, Thus, we yield a linear equation in six unknowns. 

<4-6) 

where 

(ny ce 1ca 1 + n 2 Sa 1 - nx se 1ca 1 ><se 2 nce 3 n + 
n n n 

ce2 n Ca2 se3 n > + < nx se1 Sa1 - ny ce1 Sa1 + n Ca1 > 
n n z~ 

< sa2 se3 n > 

K2 = <nx ce1 + ny se1 > C~n + 
n n 

I< 6 

<n ce 1ca 1 + n~ Sa 1 nxnse 1ca 1 > se 2 n 
Yn 4n 

<n ce 1ca 1 + n 2 Soc 1 - nx se 1coc 1 ><-ce 2 nsoc 2 > 
Yn n n 

+ <nxnse1 sa1 - nYnce1 soc1 + n 2 nCa1 ) Ca2 

<nxnse 1soc 1 - n ce 1soc 1 + n Ca 1 > 
Yn zn 

= n 
zn 
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K = 

Hence, the closed-form solution of R-R crank for six 

finitely separated positions can be obtained by assuming e1 , 

because of nonlinearity and complication, 

the solution of nine synthesis positions of R-R crank can 

not be obtain easily. The proposed synthesis procedure 

provide an effective way to solve for nine separated 

positions by first obtaining the closed-form solution for 

six finitely separated positions and assuming e 1 , a 1 , and a 2 

as arbitrary values. Once the closed-form solution for six 

finitely seaprated positions is obtained, we can proceed to 

solve for seven, eight, and nine positions. 

In TABLE IV, we summarize the synthesis procedure of 

R-R crank for nine finitely separated positions. 



Given 

TABLE IV 

SYNTHESIS PROCEDURE OF A R-R CRANK 
FOR NINE POSITIONS 

1) The parametric equation of the surface to be 

38 

enveloped by a tangent-plane attached to the moving 

joint of R-R cranks and nine precision points which 

approximate the surface. 

2) the rotational angle (joint motion> of each joint 

e2 = e2 + se2 
n n-1 n-1 

e3n = e3n-1 + oe3n-1 

Objective Design a R-R crank, a tangent-plane attached to 

a moving joint in which envelopes a given surface 

at the precision points. 

(i.e., determine the linkage parameters a 1 , a 2 , 

Procedure 

1> Calculate the normal vector of each precision 

points from 

where n = 1 .. 9 

2> Establish the synthesis equations with the help 

of the tangent-plane equations 



(Cn - P ) N = 0 n n 

where 

p = 

c = 

i k Px + Py j + Pz 

X 0 

y = 0 

z 0 

1 1 

3) Obtain the closed-form solution for 6 positions 

by taking e 1 ,~ 1 , and ~2 as a guessing value. 

4) Obtain the numerical solution of seven, eight, 

and nine positions by using the synthesis 

equation of R-R crank 

+ a2se2n) + (nx se1s~1-ny ce1s~l + nz c~1) 
n n n 

<S~2a3Se3n+C~2d3+d2 )+nxn al eel +nYn al sel +nzn dl 

= nx n Px n + ny n Py n + nz n Pz n 

39 
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Similarly, the synthesis procedure for the other cranks 

with any combination of R, P, and H joints can be derived by 

using the proposed procedure. 

<2> Synthesis of R-P crank: 

Given joint motion = e 2 i ,d3 i 

Maximum number of positions = 9 

Maximum number of positions for closed-form ~olution= 5 

The synthesis equation is : 

<n ce 1coc 1 + nz Soc 1 -
Yn n 

se2nsoc2d3n + a2ce2n> + 

nx n se1 Coc1 > ( se2 n a 3 ce3 + ce2 n Coc2 a 3 se3 -ce2 n Soc2 d3 n 

= n Px + n Py + n Pz (4-7) 
xn n Yn n zn n 

where 

e2 = e + o-e 2 
n 2n-l n-1 

d3 = d3 + od3 n=1 •• 9 
n n-1 n-1 

<3> Synthesis of R-H crank: 

Number of Unknowns = 9 <oc1 ,oc2 ,a1 ,a2 ,a3 ,d1 ,d2 ,d3 ,e1 ) 

Given joint motion = e 2 i ,e3 i ( or d3 i > <Also, L3 lead of 

helical joint is provided) 

Maximum number of positions = 9 

Maximum number of positions for closed-form solutions= 6 

<Note : for helical joint the joint motion variable can 



The synthesis equation is 

<nxneel + nYnsel> <ee2na3ee3n- se2ne0(2a3se3n + 

se 2 ns0( 2d 3 + a 2ee 2 n> + <n ee 1e0( 1 + n s0( 1 -
Yn zn 

nx n sel eQ(l ) < se2n a3 ee3n + ee2n e0(2 a3 se3n -ee2n 50(2 d3 

+ a2se2n) + <nxnselsQ(l-nyneelsal + nzneQ(l) 

<Sa2 a3 se3n+e~d3 +d2 >+nx a 1 ee1 +ny a 1 se1 +nz d 1 
n n n 

41 

= n p + n p + n p 2 <4-8) 
xn xn Y n Y n zn n 

where 

e3 = e3 + 8e3 
n n-1 n-1 

n=l •• 9 

d 3 = d 0 + 8d 3 

(4) Synthesis of P-R crank: 

Given joint motion= d2 ,e3 

Maximum number of positions = 9 

Maximum number of positions for closed-form solutions= 5 

The synthesis equation is : 

<nxneel + 

se 2sQ( 2d 3 

nYnse 1 > <ee 2a 3ee 3n- se 2e0( 2 a 3se 3 n + 

+ a 2ee 2 > + (n ee 1e0( 1 + n~ Sa 1 -
Yn ~n 

nx se1 e0(1 > < se2 a3 ee3 n + ce2 e0(2 a3 se3 n -ee2 s0(2 d3 
n 

+ a 2se 2 > + <nxnse 1sQ( 1-nYnee 1sa 1 + nznc0( 1 > 

< SQ(2 a3 se3 n +e0(2 d3 +d2 n > +nx a 1 ee1 +ny a 1 se1 +n2 d 1 
n n n 

= n 
xn + n Py 

Yn n 
P~ 

'-n 

where (4-9) 
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n=l .. 9 

<5> Synthesis of P-P crank: 

Given joint motion= d2 ,d3 

Maximum number of positions = 9 

Maximum number of positions for closed-form solutions= 4 

The synthesis equation is : 

+ a 2se 2 > + <n se 1sa 1-n ce 1sa 1 + n~ ca 1 > 
xn Yn ~n 

( Sa2 a3 se3 +C~ d3 n +d2 n > +nx n a 1 ce1 +ny n a 1 se1 +n2 n d 1 

= n p x + n p Y + n z p z ( 4-10 > 
xn n Yn n n n 

where 

d2 = d2 + od 2 
n n-1 n-1 

d3 = d3 + od3 n=l .. 9 
n n-1 n-1 

(6) Synthesis of P-H crank: 

Given joint motion= d2 ,e3 

Maximum number of positions = 9 

Maximum number of positions for closed-form solutions= 5 

The synthesis equation is : 
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= nxn Px + n Py + nzn Pz (4-11) 
n Yn n n 

where 

d2 = d + od 2 
n ~-1 n-1 

e3 = e3 + o-e3 
n n-1 n-1 

n=1 .. 9 

d 3 = d 0 + od 3 

<7> Synthesis of H-R crank: 

Given joint motion= e 2 ,e3 

Maximum number of positions = 9 

Maximum number of positions for closed-form solutions= 6 

The synthesis equation is : 

<n ce 1 + n se 1 > 
xn Yn 

se2nS<X2d3 + a2ce2n) + <nYnce1C<Xl + nznS<Xl-

nx se1 C<Xl > ( se2 n a3 ce3 n + ce2n C<X2 a3 se3 n -ce2 n S<X2 d3 
n 

= nxn 

where 

e 2 = e + 
n 2n-1 

e3 = e3 
n n-1 

d 2 = d 0 + od 2 

(8) Synthesis of H-P crank: 

(4-12} 

n= 1 .. 9 
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Given joint motion = e2 ,d3 . 

Maximum number of positions = 9 

Maximum number of positions for closed-form solutions= 5 

The synthesis equation is : 

< n xn ce 1 + n Yn se 1 > < ce 2 na 3ce 3 - se 2 nc0< 2a 3se 3 + 

se 2 nSO< 2d 3 n + a 2ce 2 n > + < n Y ce 1 CO< 1 + n z SO< 1 -
n n 

nx se1 C0<1 > < se2 n a3 ce3 + ce2 n C0<2 a3 se3 -ce2 n S<X2 d 3 n 
n 

+ a 2se 2 n> + <nx se 1S<X 1-ny ce 1s0< 1 + nz C<X 1 > 
n n n 

< 50<2 a3 se3 +C0<2d3n +d2 > +nx n a1 eel +ny n a1 561 +nz n dl 

+ n Py 
Yn n 

(4-13) 

where 

e2n = e2n-1 + oe2n-1 

e3 = e3 + oe3 
n n-1 n-1 

n= 1 •• 9 

d 2 = d 0 + od 2 

<9> Synthesis of H-H crank: 

Given joint motion= e2 ,e3 

Maximum number o~ positions = 9 

Maximum number of positions for closed-form solutions= 6 

The synthesis equation is : 

(nxnCe1 + nYn561) <Ce2na3Ce3n- se2nC0<2a3563n + 

se 2 nS<X 2d 3 + a 2ce 2 n> + <ny ce 1c0< 1 + nz S0< 1 -
n n 

nx se1 C0<1 > < se2 n a3 ce3 n + ce2 n C0<2 a3 se3 n -ce2 n S0<2 d 3 
n 

+ a2Se2n> + <nxnse1S0<1-nynce1S0<1 + nznCO<l) 

( 80<2 ~ se3 n +C0<2 d3 +d2 > +nx a 1 ce1 +ny a 1 se1 +nz d 1 
n n n 

+ n~ p z 
"-n n 

(4-14) 



where 

n=l .• 9 

4.2. Analysis of Dyads For Any 
Combination of Revolute, 
Prismatic, and Helical 

Joints 

(1) Analysis of R-R crank: 

45 

The fundamental problem in the kinematic analysis is to 

datermine the relative motions of moving links where the 

linkage parameters are given. Therefore, the unknown 

variables in this category are e2 and e3 while the linkage 

and e1 are provided 

as known values. 

The point P on which plane tangential to the surface 

can be expressed in the fixed coordinate frame as: 

plx p 
4x 

ply = [A1J[A2J[A3J p 4y (4-15) 

plz p 4z 

1 1 

Let the X-axis of the 
• 

<X3,Y3,Z3> coordinate frame 

normal to the tangent-plane (i.e., in the same direction of 

unit normal vector of tangent plane), then we obtain 
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(4-16) 

Hence, from Eq<4-15), we yield four unknowns (i.e., e 2 , 

e3' p4y and p4z) in three equations. 

plx = [A J p (4-17) 
equ 1 4x 

ply = [A equJ 2 P 4y (4-18) 

Plz = [A equJ 3 p 4z (4-19) 

where [ Aequ J i is the ith row of [ Aequ J. 

With the help of tangent-plane, we obtain the 

tangent-plane equation as 

( X-x O' Y-y0 , Z-z 0 > N = 0 (4-20) 

where 

X 0 

y = 0 (4-21> 

z 0 

1 1 

by rearranging Eq(4-20), yields 

< n xce 1 + n Yse 1 > < ce 2a 3ce 3 - se 2coc 2a 3se 3 + se 2soc 2d 3 + a 2ce 2 > 

+ ( n yce l Coc 1 + n zSoc l - n xse l Coc 1 ) < Se 2a 3ce 3 + Ce 2coc 2 a 3se 3 -

ce 2soc 2d 3 + a 2se 2 > + <nxse 1soc 1 - nyce 1soc 1 + nzcoc 1 > <soc 2a 3se 3 

+ coc 2d 3 + d 2 > + nxa 1ce 1 + nya 1se 1 + nzd 1 
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p + n p + n 
X • y y Z 

(4-22) 

Thus, from Eq<4-17) to Eq<4-19), and Eq<4-22>,we obtain 

four unknowns in four equations. The analysis procedure of 

R-R crank is summarize in TABLE V. 

4.3. Numerical Examples 

In this section, numerical examples of synthesis of R-R 

crank for six and nine finitely separated positions 

generating different surfaces are presented in TABLE VI, 

VII, V I I I , and I X . Also, numerical examples of analysis of 

R-R crank by using the given parameters which derived in 

TABLE VI and VIII are presented in TABLE X and XI. 



TABLE V 

PROCEDURE OF ANALYSIS OF R-R CRANK 

Given :1) The parametric equation of the surface to be 

enveloped by a tangent-plane attached to the 

moving joint of R-R cranks and precision points 

which on the surface. 

2) the linkage parameters of R-R links : 

Objective 

Procedure 

a i' d i' ex i' and e 1 where i= 1 .. 3 

Determine the joint motion of R-R links. 

(i.e., calculate e2 and e3 

1> Calculate the normal vector of each precision 

points from 

2) Derive the analysis equations for the tangent-

plane 

plx 

ply 

Plz 

(C 

motion 

= [Aequ J 1 p4x 

= [Aequ]2 p4y 

= [Aequ]3 P4z 

- p) N = 0 

where P = p xi + p yj + p 2 k 

X 

c = y 

z 

1 

= 

• 

0 

0 

0 

1 
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TABLE VI 

NUMERICAL EXAMPLE OF SYNTHESIS OF R-R 
CRANK FOR SIX FINITELY SEPARATED 
POSITIONS<CLOSED-FORM SOLUTION> 

49 

Given:l) The surface is given as a torus : 

Result 

S = {20+10cosV)cosU i + (20+10cosV>sinU j + lOsinV k 

2) the six finitely separated positions is given as 

3) 

4) 

pl = (30, o, 0} p2 = (24.82, 14.33, 5} 

p3 = ( 12.5, 21.65, 8.66} p4 = ( 0' 20, 1 0) 

P5 = (-7.5, 12.99, 8.66} p6 = (-9.82, 5.67, 5) 

the joint motion is given as 

8621 = 30°, 8631 = 30° 

8623 = 30°' 8633 = 30° 

8625 = 30°, 8635 = 30° 

8622 = 30°' 8632 = 30° 

8624 = 30°' 8634 = 30° 

the choice of 1 i nkage parameters 

61 = oo 
' <Xl = 90°, oc2 = 90° 

al = 28.583969, a2 = 13.956359, a3 = -12.540329 

sl = -3.956347, 52 = -3.344426, 53 = -15.720272 



[Given] 

Result 

TABLE VII 

NUMERICAL EXAMPLE OF SYNTHESIS OF R-R 
CRANK FOR NINE FINITELY 

SEPARATED POSITIONS 

: 1 ) The surface is the same as in TABLE 

2) the six finitely separated positions 

pl = (30, o, 0) 

p2 = (29.8479~ 2.6113, 0.8715) 

p3 = <29.3946, s. 1831 ' 1.7365) 

p4 = (28.6486, 7.6764, 2.5882) 

Ps = (27.6241~ 10.0543, 3.4202) 

p6 = (26.3401, 12.2826, 4.2262) 

p7 = (24.8205, 14.3301, S> 

P8 = <23.0932, 16. 1700' S.736) 

p9 = ( 21 . 1891 ' 17.7798, 6.4279) 
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VI. 

is given as 

3) the joint motion is given as ( 6 . degree) . 
621 = oo, 631 = oo 

0621 = so, 0631 = so 0622 = so, 0632 = 50 

0623 = so, 0633 = so 0624 = so, 0634 = 50 

062S = so, 063S = 50 0626 = 50' 0~36 = so 

o627 = so, 0637 = 50 0628 = so, 0638 = so 

61 = 45°, C<l = 30°, .C<2 = 27.662° 

al = 6.26973343, a2 = 22.5S064S83, a3 = -6.S4820347 

51 - 1.39241803, 52 = -45.4885788, 53 = 50.77313232 



TABLE VIII 

NUMERICAL EXAMPLE OF SYNTHESIS OF R-R 
CRANK FOR SIX FINITELY SEPARATED 

POSITIONS ( SURFACE IS GIVEN 
AS A SPHERE> 

51 

[Given] : 

Result 

1> The surface is given as a sphere 

S = 20cosUsinV i + 20sinUsinV j + 20cosV k 

2> the six finitely separated positions is given as 

3> 

pl = (8.66, 5.0, 17.32) 

p2 = (9.848, 8.26, 15.321> 

p3 = <9.848, 11.736, 12.856) 

p4 = (8.66, 15.0, 10.0) 

p5 = (6.428, 17.66, 6.84) 

p6 = <3.42, 19.4, 3.473> 

the joint motion is given as 

oe21 = 10°, oe31 = 10° 

oe23 = 10°, oe33 = 10° 

4> the choice of linkage parameters 

a 1 = 1.40560913, a 2 = 39.28113174, a 3 = -3.97064018 

51 = 45.46696472, 52= 13.25787354, 53= -73.80399323 



[Given] : 

1 ) 

2> 

TABLE IX 

NUMERICAL EXAMPLE OF SYNTHESIS OF R-R 
CRANK FOR NINE FINITELY SEPARATED 

POSITIONS <SURFACE IS GIVEN 
AS A SPHERE) 

The surface is the same as in TABLE VI I I. 

the six finitely separated positions is given 

pl = <3.42, 0.6031, 19.6962) 

p2 = (5.0, 1 . 3397' 19.3185) 

p3 = (6.4279, 2.3396, 18.7939) 

p4 = <7.6604, 3. 5721' 18. 1262) 

p5 = (8.6603, 5.0, 17.3205) 

p6 = (9.3969, 6.5798, 16.383) 

p7 = (9.8481, 8.2635, 15.3209) 

P8 = ( 10.0, 10.0, 14.1421) 

p9 = (9.8481, 11.7365, 12.8558) 

52 

as 

3) the joint motion is given as . 6 degree> . 
621 = 10 °' 631 = 10° 

o621 = 50, o631 = 50 o622 = 5o, o632 = 50 

o823 = 5o, 8633 = 50 8824 = 5o, 8634 = 50 

8825 = 50, 0835 = 50 8626 = 50, 8836 = 50 

8627 = 5o, o637 = 50 0828 = 50, 8838 = 50 

Result 

81 = 30.0°, ()(1 = 45.0°, ()(2 = 33.2497° 

al = -8.63857841, a2 = 16.09467697, a3 =-0.94676548 

51 = 33.69320679, 52 = -13.00296783, 53=-22.09254456 



[Given]: 

1 ) 

2) 

3) 

[Result]: 

The 

The 

p 

TABLE X 

NUMERICAL EXAMPLE 1 OF ANALYSIS 
OF R-R CRANK 

surface is given in the TABLE 

point on the surface is given 

= (30,0,0) 

VI. 

as 

The linkage parameters are given as: 

al = 28.584, a2 = 13.956, a3 = -12.540 

51 = -3.956, 52 = -3.344, 53 = -15.720 

al = oo, ()(1 = 90°' <X2 = 90° 

a2 = 30.0351° a3 = 29.9664° 

53 



EGivenJ: 

1) 

2) 

3> 

EResultJ: 

The 

The 

p 

The 

TABLE XI 

NUMERICAL EXAMPLE 2 OF ANALYSIS 
OF R-R CRANK 

surface is given in the TABLE 

point on the surface is given 

= (0,0,20) 

VI I I. 

as 

1 i nkage parameters are given as: 

a 1 = 35.468, a 2 = 61.683, 

52 = -130.773, 53 = -186.392 

e 1 = 45°, Q( 1 = 30 0 ' 

e 2 = 30 • oo2 1 o 
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CHAPTER V 

SYNTHESIS OF DYADS FOR INFINITESIMALLY 

AND MIXED MODE SEPATATED POSITIONS 

GENERATED BY TANGENT-PLANE 

Generally, motion of a rigid body can be described in a 

number of ways. Sometimes, it is required of the tangent 

plane to move with a given velocity, acceleration, jerk, 

etc. (higher-order properties of motion) which generate the 

given surface. Design methods to satisfy such requirements 

will be developed in this chapter. Such design procedures 

are also referred to as design for infinitesimally separated 

position or mixed mode position synthesis. Infinitesimally 

separated positions synthesis procedure differ from mixed 

mode separated position in that only one position of the 

tangent-plane is considered or we have only one finitely 

separated position involved in the design. Infinitesimally 

separated position design can be considered as a degenerate 

case of mixed position design. 

In the previous chapter, we developed the synthesis 

procedures for finitely separated positions of dyads 

composed of Revolute, 

this chapter, 

higher-order 

we will 

synthesis 

Prismatic, 

develop 

procedures 

55 

and Helical joints. In 

the first-order and 

for infinitesimally 
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separated and mixed mode positions of dyads with any 

combination of Revolute, Prismatic, and Helical joints. 

The infinitesimally separated displacements of a rigid 

body tangential to any surface, is described by the 

properties of the rigid body as 'it approaches the surface at 

the tangential point. These properties may be the velocity, 

acceleration, jerk, time rate of change of jerk(kerk) etc. 

Hence, the instantaneous angular motion of the tangent plane 

involving infinitesimal changes in angular displacements can 

be described with respect to changes in time by specifying 

2 2 3 3 3 3 d6/dt, d 9/dt , d 6/dt ' d 9/dt ( or e, 9, 9)etc. 

Mixed mode position synthesis is more in touch with 

reality involving concepts familiar to a mechanical 

eangineer rather than· the esoteric ideas of theoretical 

kinematics. In general it has two or more finitely 

separated positions with the design requirements being 

velocity, acceleration etc. at each finite position. A 

different way of describing mixed position synthesis would 

be define it as designing for finitely separated positions 

with having to satisfy infinitesimal position requirements 

at one or more of the finite positions. 

The synbolic notation proposed by Tesar for mixed 

position synthesis will be made use of in this study to 

represent the design situation. The symbol P represents a 

single position of the tangent-plane. The combination P-P 

represents two finitely separated positions, and pp 

represents tow infinitesimally separated positions. The 
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combination P-P-P-P-P represnets a five finitely separated 

position (five precisions point> problem. The combination 

P-PP-PPP-PP-P represents a five finitely separated position 

problem with higher order motion requirements at the second, 

third, and fourth positions. 

5.1. First Order Infinitesimally and 
Mixed Mode Separated Positions 

The synthesis equations derived in the previous chapter 

wi 11 be used here to derive the synthesis equations for the 

first order infinitesimally and any combination of mixed 

mode separated positions. 

<1> R-R Crank 

<A> Synthesis of R-R Crank for Infinitesimally And 
Mixed Mode Separated Positions 

The synthesis equation for the first 

infinitesimal separated position is obtained 

order 

by 

differentiating the basic form of the synthesis equation 

(4-3) for finitely separated positions. Therefore, for 

synthesis of infinitesimally separated positions of R-R 

crank, we need to take the rate of change of joint motion 

variables e2 and e3. 

By taking the derivative of Eq<4-3) with respect to time 

t, we obtain 
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• • • nxse1 C<X1 > <-se2 a3 ce3 e2 + ce2 a 3 se3 e3 - se2 c<X2 a 3 se3 e2 + 

• . nyce1 S<X 1 + n2 C<X1 > <S<X2 a3 ce3 e3 > = o (5-1) 

Hence, by adding Eq(4-3), we yield two synthesis 

equations of R-R crank for each infinitesimally separated 

position. 

<B> Synthesis of One First Order Mixed Mode Separated 
Positions 

Since the maximum number of synthesis positions for 

finitely separated positions is nine, the possible 

combinations of synthesis of mixed mode separated positions 

with the first order motion requirement can be listed as in 

TABLE XII. The procedure can be best explained by example. 



TABLE XII 

NINE SYNTHESIS POSITIONS WITH ONE, 
TWO, THREE, AND FOUR FIRST 

ORDER MOTIONS 

One First Order 

PP-P-P-P-P-P-P-P 
P-PP-P-P-P-P-P-P 
P-P-PP-P-P-P-P-P 
P-P-P-PP-P-P-P-P 
P-P-P-P-PP-P-P-P 
P-P-P-P-P-PP-P-P 
P-P-P-P-P-P-PP-P 
P-P-P-P-P-P-P-PP 

Four First Order 

PP-PP-PP-P-PP 
PP-PP-P-PP-PP 
PP-P-PP-PP-PP 
P-PP-PP-PP-PP 
PP-PP-PP-PP-P 

Tow first order 

PP-PP-P-P-P-P-P 
PP-P-PP-P-P-P-P 
PP-P-P-PP-P-P-P 
PP-P-P-P-PP-P-P 
PP-P-P-P-P-PP-P 
PP-P-P-P-P-P-PP 

P-PP-PP-P-P-P-P 
P-PP-P-PP-P-P-P 
P-PP-P-P-PP-P-P 
P-PP-P-P-P-PP-P 
P-PP-P-P-P-P-PP 

P-P-PP-PP-P-P-P 
P-P-PP-P-PP-P-P 
P-P-PP-P-P-PP-P 
P-P-PP-P-P-P-PP 
P-P-P-PP-PP-P-P 
P-P-P-PP-P-PP-P 
P-P-P-PP-P-P-PP 
P-P-P-P-PP-PP-P 
P-P-P-P-PP-P-PP 
P-P-P-P-P-PP-PP 

Three First Order 

PP-PP-PP-P-P-P 
PP-PP-P-PP-P-P 
PP-PP-P-P-PP-P 
PP-PP-P-P-P-PP 
PP-P-PP--PP-P-P 
PP-P-PP-P-PP-P 
PP-P-PP-P-P-PP 
PP-P-P-PP-PP-P 
PP-P-P-PP-P-PP 
PP-P-P-P-PP-PP 
P-PP-PP-PP-P-P 
P-PP-PP-P-PP-P 
P-PP-PP-P-P-PP 
P-PP-P-PP-P-PP 
P-PP-P-P-PP-PP 
P-P-P-PP-PP-PP 
P-P-PP-P-PP-PP 
P-P-PP-PP-PP-P 
P-P-PP-PP-P-PP 

etc. 
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Consider a nine position problem. The design equation 

for a nine position finitely separated problem is given by 

Eq<4-3). Also, the first-order infinitesimally separated 

equation is obtained from Eq<S-1>. Supposed we are 

synthesizing for a PP-PP-PP-PP-P type of problem. They are 

five finitely separated positions with a first-order 

<velocity) requirement at four of the finite position. With 

the five finite position, five synthesis equations can be 

formed. A nine-position requires nine equations to solve 

for the nine unknowns. The remaining four equations of 

synthesis are the first order infinitesimal synthesis 

equations at the first, second, third, and fourth finite 

positions. Hence, Eq<S-1> can be rewritten as 

• 
a2se2ne2n> + <nYncelC<Xl + nznS<Xl- nxnselC<Xl) 

• • • 
( -se2n a3 ce3n 92n + ce2n a3 593n 93n 592n C<X2 a3 593n 92n + 

• • 
ce2n C<X2 a3 ce3n e3n - se2n S<X2 d3 e2n 

- n.,... ce l S<X 1 
·n 

where 

and 

• 
+ nz C<Xl ) ( S<X2 a3 ce3n e3n ) = 0 

n 1.. 4 

(5-2) 
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and the other five equations can be obtained from 

Eq(4-3) when n=1 .• 5. 

Similarly, the synthesis procedure for first-order 

infinitesimally and mixed mode separated positions of the 

other types of dyads composed of revolute, prismatic, and 

helical joint can be obtained by using the proposed 

synthesis procedure of R-R crank. 

5.2. Higher-Order Infinitesimally, Mixed 
Mode Separated Positions 

Recapitulating, a tangent-plane can be designed for a 

maximum of nine positions for R-R crank. With the help of 

Eq<4-3) it is now possible to design satisfying higher order 

motion requirements at certain position. For example, 

P-PP-PPP-PP-P, PPP-PPPP-PP, PP-PPP-PPP-P-P, etc. The second 

order synthesis equation in obtained by differentiating 

Eq<4-3) twice or diffenentiating Eq<5-1) once. The basic 

form of the second order synthesis equation is given by 

;; n xce 1 +n ..,..5e 1 > < -ce 2a 3ce i:; 2 2 + 59 2a 35e 3e iJ 3 - 5e 2a 3ce 3e 2 

ce 2a 3cei:j 32 + 5e 2a 35ei, 3e2 ce 2a 35e;e 3 + ce 2c(X 2a 3cei; 2e3 
• 2 •• • • 

58 2c(X 2a 35e 3e 2 + C8 2c(X 2a 3se 3e 2 + C8 2c(X 2a 3c8 3e 38 2 -

se2 Czy,2 a 3 593 e3 2 + 5e2 Czy,2 a3 ce3 e3 - 592 5zy,2 d3.~2 2 + ce2 5zy,2 d3 e2 -

a 2ce 2e2 2 + a 25e 2e2 > + <nyce 1czy, 1 + n 2 5a 1 nx5e 1ca 1 1 

• 2 • • •• • :J 

< -ce2 a 3 ce3 e 2 + 5e2 a3 583 e 2 e 3 - 5e2 a 3 ce3 e 2 + ce2 a 3 ce3 e 3 ..... 

• • 5e2 a 3 5e3 e 2 e 3 + 

• • se2 Czy,2 a3 ce3 e 2 e 3 

c8 2c(X 2a 358 3e 3 2 

•• ce2 a3 5e3 e 3 
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• 2 .. 
a 2se 2e 2 + a 2ce 2e 2 > + (nxse 1soc 1 - nyce 1soc 1 + nzcoc 1 ) 

< -soc 2a 3se 3e32 + soc 2a 3ce 3e3 > = o (5-3) 

A second order design requirement is to specify the 

acceleration of the tangent-plane. A second-order 

infinitesimally separated position synthesis the 

simultaneous solution of two equation - the first order and 

the second order synthesis equation, that is Eq\5-1) and 

Eq<S-3>. It is now possible to synthesis for design 

requirements of the types P-PPP-P-P-P-P-P, P-PPP-PP-PPP, 

PPP-PPP-PPP, etc. 

Considering a nine position problem - PPP-PP-PPP-P. 

There are four finitely separated positions with a 

first-order (velocity) requirement at one of the finite 

position and with a second-order <acceleration) requirement 

at two . of the finite position. With the four finite 

position, four synthesis equations can be formed. We know 

that a nine-position requires nine equations to solve for 

the nine unknowns. The remaining five equations of 

synthesis are the first infinitesimal synthesis equations at 

the first, second, and third finite positions, and the 

second infinitesimal synthesis equations at the first and 

third finite positions. 

The synthesis equation of third-order infinitesimally 

and mixed mode separated positions can be obtained by 

differentiating Eq<5-3). 
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1 n xce 1 +nyse 1 ) \ se 2a 3ce ij 2 
3 + ce 2a 3s8 ij 2 

2e 3 - 2ce 2 a 3ceiJ 2e 2 

• ~· - ! ! 2 ••• 
+ ce2 a 3 563 6 2 '- 6 3 + Si:i2 a 3 C83 i:i2 i:i3 + 582 a 3 s63 82 8 3 + 

• •• •• • •• • • •• 
562 a 3 563 62 6 3 - C62 a 3 C63 62 62 + 562 a 3 583 62 6 3 - 562 a 3 C63 62 + 

56 2a 3c6 3e2e3 
2 + c8 2a 356iJ 3 

3 - 2C6 2 a 3c8iJ 3e3 + 

•• • 
s62 a 3 s83 e 3 e2 

• ::::>• • • 2 ••• 
se 2cr:x 2a 3ce 36 2 '-e 3 - ce 2 cr:x 2 a 358 3e 2e 3 + ce 2cr:x 2 a 3ce 3e 2e 3 + 

• •• ! 3 - ! 2! 
c62 C<X2 a 3 C63 62 63 - C62 C<X2 a 3 563 i:i2 - s62 c()(2 a 3 Cld3 i:i2 i:i3 

• •• • •• • •• 
- 2562 C<X2 a 3 S63 62 62 - 562 ccx2 a 3 563 62 62 + C62 ccx2 a 3 C63 62 6 3 + 

• •• • •• 
C62 Cr:x2 a 3 C83 8 3 62 + C62 Co:2 a 3 C83 83 e2 -

• •--=i • •• • •• 

S6 2c(x 2 a 3c8 36 3 ~ - 258 2co: 2 a 3s8 36 36 3 + C8 2co: 2 a 3ce 3c1 2e 3 -

S82 Co:2 a 3 se3 e3 e3 + 562 Cr:x2 a 3 C83•e; - C82 5r:x2 d 3 e2 
3 

• •• •• • • •• •• • 
se 2a 3se 3e 2e 3 + 5e 2a 35e 38 28 3 - c8 2a 3ce 38 2 8 2 + se 2 a 3se 38 2 e 3 -

se2 a 3 ce3 e~ - 582 a 3 C83 e2 e3 
2 - ce2 a 3 S83 e3 

3 + 2C82 a 3 ce3 e3 e3 
• 2• • • s ••• 

- C8 2a 3s8 38 2 e 3 - S6 2a 3ce 38 2e 3 ,___ - 58 2a 35e 38 2e 3 -

• •• • •• • •• • •• 
S6 2a 3s6 3e 2e 3 - se 2a 3s6 36 2 e 3 + ce 2 a 3ce 3e 36 3 + c6 2 a 3s6 38 3 + 

•• • • •• • •• 
56 2cr:x 2 a 3c6 3e 26 3 - C6 2cr:x 2a 3s6 36 2e 2 - S6 2ccx 2 a 3c6 3e 26 3 -

••• • :::::i. • • :J 

5e2 cr:x2 a 3 se3 e2 - C62 ccx2 a 3 ce3 62 ._ e3 + 562 co:2 a 3 C83 e 2 e3 ._ -
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• •• ce2 ccx2 a3 se3 e3 e3 

• •• • •• • •• 
2ce2 scx2 d3 e2 82 - c82 s~ d3 e2 82 + se2 scx2 d3 82 -

• ·-=t 
a2ce2e2 ~ 

. .. . .. .. .. 
2a 2SiiJ 2e 2e 2 - a 2se 2e 2e 2 + a 2ce 2e 2 > + <nxse 1so: l 

- ny ce1 S<X1 
• 3 • •• 

+ n 2 C<X l ) ( -So:2 a3 C83 83 2S<X2 a 3 S83 83 83 

(5-4) 

Similarly, the synthesis procedure for higher-order 

infinitesimally and mixed mode separated positions of the 

other types of dyads composed of revolute, prismatic, and 

helical joint can be obtained by using the 

synthesis procedure of R-R crank. 

5.3. Numerical Examples 

In this section, numerical examples of synthesis of R-R 

crank for first-order and higher-order infinitesimally 

separated positions are presented in TABLE .XIII and XIV. 



TABLE XIII 

NUMERICAL EXAMPLE OF SYNTHESIS OF R-R 
CRANK FOR FIRST-ORDER INFINITESIMALLY 

SEPARATED POSITIONS<PP-PP-PP-PP-P) 

65 

Given:l> The surface is given the same as in TABLE VI. 

2) the five finitely separated positions are given as 

p 1 ( 30' 0' 0) 

p2 = (24.82, 14.33, 5) 

p3 = ( 12.5, 21.65, 8.66) 

p4 = ( 0' 20, 10) 

Ps = (-7.5, 12.99, 8.66) 

3) the joint motion is given as : (6:degree, 6:rad/sec) 

621 = oo, 631 = oo 621 = 1 ' 631 = 1 

8621 = 30 °' 8631 = 30° 622 = 1 ' 632 1 

8622 = 30°, 8632 = 30° 623 = 1 ' 633 = 1 

8623 = 30°, 8633 = 30° 624 = 1 ' 634 = 1 

8624 = 3()0, 8634 = 30° 

Result 

el = 67.31°, ()(1 = 23.56°' ()(2 = 147.58° 

al = 18.3476, a::~ ._ = 113.349, a3 = -62.329 

sl = -243.637, 52 = -13.346, 53 = -14.202 



Given:!) 

TABLE XIV 

NUMERICAL EXAMPLE OF SYNTHESIS OF R-R 
CRANK FOR HIGHER-ORDER MIXED MODE 

SEPARATED POSITIONS 
<P-PPP-PP-PPP> 

The surface is given as the same as in TABLE VI. 

2> the four finitely separated positions is given as 

p1 = (30, o, 0) 

p2 = (24.82, 14.33, 5) 

p3 = (12.5, 21.65, 8.66) 

p4 = ( 0' 20, 10) 

3) the joint motion is given as : 

<e : degree, e : rad/sec, and e red/sec2 > 

6 21 = oo, 6 31 = oo 

8621 = 30°, 8631 = 30° 6 22 = 1 ' 6 32 = 1 

8622 = 30°, 8632 = 30° 6 23 = 1 ' 6 33 = 1 

8623 = 30°, 8633 = 30° 6 24 = 1 ' 6 34 = 1 

6 22 = o, 6 32 = 0 

6 24 = o, 6 34 = 0 

Result 

61 = 132.86°, ()(1 26.27°, ()(2 = 48.56° 

al = 21.376, a2 = 14.59, a3 = 12.29 

51 = 23.37, 52 = 23.46, 53 = 17.42 
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CHAPTER VI 

SYNTHESIS OF TWO-PARAMETER-MOTION TWO­

DEGREE-OF-FREEDOM SPATIAL MECHANISMS 

CARRYING A RIGID BODY WITH A TANGENT 

PLANE AS MOVING ELEMENT TO HAVE SIX, 

FIVE, AND FOUR COMPONENTS OF MOTION 

In the previous chapters, the synthesis procedures of 

finitely, infinitesimally, and mixed mode separated 

positions are derived by using the tangent plane equations 

and homogeneous transformation matrix for open loop chains 

<dayds composed of mixed revolute, prismatic, and helical 

joints) with two degrees of freedom. It is desired that the 

synthesis procedures can be made use of in the synthesis of 

closed-loop spatial mechanisms. One of the singificant 

advantage of the proposed synthesis procedures is that it 

also can be applied for two degree-of-freedom spatial 

closed-loop mechanisms with two-parameter motion having six, 

five, and four components of motion. 

In this chapter, 

spatial mechanisms by 

we will synthesize closed-loop 

using the proposed synthesis 

procedures developed in Chapter IV. 
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6.1. RRSS Spatial Four-Link Mechanism 

The synthesis procedure of spatial closed-loop 

mechanism can be obtained by using the similar precedures 

presented in chapter IV. A RRSS spatial four-link mechanism 

is shown in figure 7. Since the tangent plane attached to 

the coupler link connecting R2 and s 2 joints, we can 

synthesize RRSS mechanism by separating it into two 

open-loop chains: right hand side open-loop chain and left 

hand side open-loop chain. From figure 7, the right hand 

side open-loop chain is SS crank and the left hand side 

open-loop chain is RR crank. From RR crank, we establish 

four coordinate frames presented in chapter IV. From SS 

crank, we establish another four coordinate frames. 

Therefore, the linkage parameters involve in this mechanism 

are 

RR crank ss crank 

al '~ '~ a4 'a5 'a6 

dl ,d2 ,d3 d4 ,d5 ,d6 

ocl '()(2 '()(3 ()(4 '()(5 ' ()(6 

el 'e2 'e3 e4 ,e5 ,e6 

For a spherical joint, Denavit and Hartenberg presented 

a notation which can be considered as three revolute joints 

intersect 

Hence, 

in one point and perpendecular to each other. 

become three 

Also, 

joint motion parameters 

Since RRSS 

mechanism is a two degrees of freedom mechanism, we can 
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N 

y 

Figure 7. RRSS Spatial Mechanism 
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assume joints R1 and R2 as two driving input. Hence, e2 and 

are given as the input motion parameters. Also, 

equal to a6 . ~6 can be assumed as 90 from figure 7. 

a 3 is 

Hence, 

there are 14 unknowns in right hand side and 10 unknowns in 

left hand side. 

In order to derive the synthesis equations of RSSR 

mechanism, we know that we can obtain two tangent plane 

equations from R-R crank and S-S crank. 

0 (6-1) 

(6-2) 

where {x 0 , y 0 , z 0 ) = a point tangential to the surface. 

N 

XL 

'y' 
L 

ZL 

1 

= 

= unit normal vector. 

0 

0 

= transformation of the right hand 

side open-loop mechanism 

0 

= CA4J [A5J [A6J 0 

0 

1 

(6-3) 

(6-4) 
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= transformation of the left hand 

side open-loop mechanism 

Since we establish the connecting point as the origin 

of coordinate frame on the tangent plane and the X-axis is 

normal to the tangent plane, then the point on the tangent 

plane can be expressed as P = { 0, p ' p }. 
y z The constraint 

equation can be obtained by equating both side and by using 

transformation matrix. 

(6-5) 

Eq(6-3) can be rewritten as three component equations 

[Aequ right]l p4 = [Aequ 1 eft Jl p4 (6-6) 

[Aequ rightJ2 p4 = EA leftJ2 p4 (6-7) equ 

EA rightJ3 P, = EA left J3 p4 (6-8) equ '-+ equ 

where EA - ._t]. =the ith rov-J of EA Jon the equ r 1 9•' 1 equ 

right hand side. 

For each separated position, we can obtain two umknowns 

from P 4 y and P 42 , and five synthesis equations. Hence 

Number of synthesis equations = SN 

Number of unknown = 10 + 14 + 2f\l 

Maximum number of positions == 8 
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Number of free choice parameter = 0 

Thus, the maximum number of positions of RRSS spatial 

mechanism is eight with no free choise of parameter. The 

result derived here is consistent with eight synthesis 

finitely separated positions for path-generation of RRSS 

mechanism presented by Suh[59J. 

6.2. RHCRC Spatial Five-Link Mechanism 
Having Four Components Of Motion 

From the synthesis procedure of RRSS mechanism, we can 

derive the similar procedure for RHCRC spatial five-link 

mechanism having four components of motion. A RHCRC spatial 

five-link mechanism having four components of motion is 

shown in figure 8. By separating RHCRC mechanism into two 

open loop chains, we obtain RH link on the left hand side 

and RRC link on the right hand side. the total linkage 

parameters of RHCRC are 

RH link CRC 1 ink 

al,a2,a3 a4 'a5 'a6 ' a7 

dl 'd2 'd3 d4 'd5 'd6 'd7 

el , e2 'e3 e 4 ' e5 , e 6 ' e7 

()(1 '()(2 '()(3 ()(4 ' ()(5 '()( 6 '()(7 

The procedures of obtaining the synthesis equation of 

RHCRC mechanism is similar to RRSS mechanism. 

From Eq(6-l) and Eq(6-2), we obtain two synthesis 



Figure 8. RHCRR Spatial Mechanism Having 
Four Components of Motion 
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equations. 

<XR-xO,YR-yO,zR-zO) N = 0 

<XL-xO,YL-yO,zL-zO) N = 0 
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where <x 0 , Yo• z 0 } = a point tangential to the surface. 

N = unit normal vector. 

= 

0 

0 

= transformation of the right hand 

side open-loop mechanism 

= 

0 

0 

0 

1 

= transformation of the left hand 

side open-loop mechanism 

(6-9) 

(6-10) 

The constraint equation can be obtained by equating 

both side and by using transformation matrix. 
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(6-11) 

Eq<6-9) can be rewritten as three component equations 

the same as Eq<6-6>-Eq<6-8). Hence 

Number of synthesis equations = 5N 

Number of unknown = 10 + 15 + 2N 

Maximum number of positions = 8 

Number of free choice paramete~ = 1 

6.3. RCCRR Spatial Five-Link Mechanism 
Having Five Components Of Motion 

From the synthesis procedure of RRSS mechanism, we can 

derive the similar procedure for RCCRR spatial five-link 

mechanism having five components of motion. A RCCRR spatial 

five-link mechanism having four components of motion is 

shown in figure 9. By separating RCCRR mechanism 

parts, we obtain RC link and CRR link. Hence, 

Number of synthesis equations = 5N 

Number of unknown = 10 + 15 + 2N 

Maximum number of positions = 8 

Number of free choice parameter = 1 

6.4. RCCCR Spatial Five-Link Mechanism 
Having Six Components Of Motion 

into two 

From the synthesis procedure of RRSS mechanism, we can 

derive the similar procedure for RCCCR spatial five-link 



Figure 9. RCCRR Spatial Mechanism Having 
Five Components of Motion 
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mechanism having six components of motion. A RCCCR spatial 

five-link mechanism having four components of motion is 

shown in figure 10. By separating RCCCR mechanism into two 

parts, we obtain RC link and CCR link. Hence, 

Number of synthesis equations 

Number of unknown 

Maximum number of positions 

= 5N 

= 10 + 15 + 2N 

= 8 

Number of free choice parameter = 1 

6.5. Numerical Example 

In this section, numerical example of synthesis of 

RCCCR mechanism for three finitely separated positions is 

presented. 



Figure 10. RCCCR Spatial Mechanism Having Six 
Components of Motion 
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TABLE XV 

NUMERICAL EXAMPLE OF SYNTHESIS OF RCCCR 
MECHANISM FOR EIGHT FINITELY 

SEPARATED POSITIONS 

79 

Given:l) The surface is given as the same in TABLE VI. 

2> the three finitely separated positions is given as 

( 30' 0' 0) p2 = ( 24. 82' 14. 33' 5) 

p3 = (12.5,21.65,8.66) (28.65,7.68,2.59) 

p5 = (27.62,10.05,3.42) p6 = (26.34,12.28,4.22) 

p7 = (24.82,14.33,5) (21.19,17.78,6.43) 

3) the joint motion is given as 

8821 = 30°, 8831 = 30° 8822 = 30°, 8832 = 30° 

8823 = 30°' 8833 = 30° 8824 = 30°, 8834 30° 

8825 = 30°' 8835 = 30° 8826 = 30°, 8836 = 30° 

8827 = 30°, 8837 = 30° 

4) the choice of linkage parameters 

Result 

a 1 8.839, a 2 = 3.539, a 3 = 112.409, 126.649, 

a 5 = 27.249,a 6 12.509, d 1 ~ 3.347, d:J .... 45.446, 

d3 = 18.569, d4 = 53.639, d5 = -8.64, d6 = 23.62, 

d7 = -2.24, ()(1 = 33.346°, ()(2 = 15.722°, ()(4 = 48.379°' 

()(5 = 123.559°, ()(6 = 172.329°, ()(7 = -32.26°' 

84 = 43.647°, 85 = 75.226°' 86 = 217.36°, 87 -25.45° 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

Based on the traditional approach to path-generation 

problems, the coupler-curve is viewed as a set of discribe 

points. From the geometric points of view, a curve or a 

surface may be generated in general by a point, a line, or a 

plane embedded in a moving rigid body. It is known that a 

point and a plane are dual concept in space geometry as well 

as a point and a line are considered as dual elements in 

planar projective geometry. This leads to a new concept of 

a surface being considered as plane-envelop which is a set 

of its tangent plane, i.e., the surface is considered to be 

defined by a set of tangent planes. 

For the dyads with any combination of R, H, and P 

joints having two-parameter motion, the synthesis procedures 

are derived for nine finitely separated positions. Also, 

the synthesis procedures of first-order and higher-order 

infinitesimally and mixed mode separated positions are 

presented in chapter 

closed-loop spatial 

components of motion, 

IV. For two degree-of-freedom 

mechanism having four, five, and six 

the synthesis procedure is derived by 

separating it into two open-loop chains. We located on the 

coupler link the locus of points or the family of planes 
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which generate surfaces with the desired local properties. 

This thesis presents the extension study on the spatial 

mechanism having two-parameter motion. It extends the 

synthesis procedure from the tranditional one-parameter 

point-path motion and rigid-body guidance to two-parameter 

tengent-plane envelop. The synthesis and analysis procedure 

is based on the homogeneous transformation matrix method. 

The proposed theoretical developments of the two- parameter 

motion study followed their applications demonstrating 

synthesis of two degrees of freedom mechanisms carrying a 

rigid body with a plane as moving element and having six, 

five, and four components of motion. The proposed research 

on two-parameter motion of a plane in space motion 

contribute significantly in advancing the fundamentals of 

kinematic synthesis of rigid body motion having two degrees 

of freedom. 

One of the important applications of present study is 

the robot hand with multiple fingers. There are two or 

three ,degrees of freedom for each finger. 

to catch an arbitrary object by using the 

It is desirable 

robot hand. the 

motion of each finger to touch the surface of object can be 

related to a two to three degrees of freedom mechanism 

carries a tangent plane as a moving element as shown in 

figure 11. Therefore, the present study provide the insight 

of kinematics for synthesis problems. 

For the future study, the present study is expected to 

provide a significant contribution for the tangent plane 



TWO D REE-
0 F- FREE ~1 
ROBOT F 4GER 

X 

Figure 11. Two Tangent Plane Attached to Two 
Two-Degree-of-Freedom Robot Fingers 
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envelope generation with more than two-parameter motion. 

A general computer program is developed to carry out 

the synthesis and analysis procedure of open-loop and 

closed-loop mechanisms for finitely, 

mixed mode separated positions. 

infinitesimally, and 
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APPENDIX A 

COMPUTER PROGRAMS FOR FINITELY, 

INFINITESIMALLY, AND MIXED 

MODE SEPARATED POSITIONS 
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c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 

c 

c 

c 

*************************************************** 
* * SYNTHESIS OF SIX FINITELY SEPARATED POSITIONS OF 
* R-R CRANK 
* 
*************************************************** 

*************************************************** 
* 
* 
* 
* 
* 
* 

THIS PROGRAM IS SOLVE FOR THE LINEAR SOLUTION OF 
LI N K A G E P A R At~ E T E R S a 1 , a 2 , a 3 , d 1 , d 2 , d 3 

Synthesis of six positions 

*************************************************** 

dimension a(40,41),x(40) 
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rea 1 n x ( 6 ) , ny ( 6 ) , n z ( 6 ) , theta 2 ( 6 ) , theta 3 ( 6 ) , p x ( 6 ) , p y ( 6 ) , 
- pz ( 6) 
pi =3.!L',159/180. 

theta1=45.*pi 
alphal=30.*pi 
alpha2=30.*pi 
theta2(1)=30.*pi 
theta3(1)=30.*pi 
theta2(2)=40.*pi 
theta3(2)=40.*pi 
theta2(3)=50.pi 
theta3(3)=50.*pi 
theta2(4)=60.*pi 
theta3(4)=60.*pi 
theta2(5)=70.*pi 
theta3(5)=70.*pi 
theta2(6)=80.*pi 
theta3(6)=80.*pi 

nx(1)=300. 
nx(2)=297.3435364 
nx(3)=239.4804993 
nx(4)=276.7246704 
nx(5)=259.5814209 
nx(6)=238.7224121 
ny(1)=0. 
ny(2)=24.0141697 
ny ( 3) =51. 0431862 
ny(4)=74.1481018 
ny(5)=94.4798431 
ny(6)=111.3179932 



c 

nz(1t=-173.2050018 
nz(2)=-196.9615021 
nz(3)=-196.9615936 
nz(4)=-173.2052612 
nz(5)=-128.5578156 
nz(6)=-68.4044037 

px(l)=8.6602507 
px(2)=9.8480759 
px(3)=9.8480797 
px(4)=8.6602621 
px(5)=6.4278908 
px(6)=3.4202201 
py(1)=4.9999933 
py(2)=8.2635078 
py(3)=11.7364693 
py(4)=14.9999857 
py(5)=17.6604328 
py(6)=19.3969193 
pz(1)=17.3205128 
pz(2)=15.3208952 
pz(3)=12.8557625 
pz(4)=10.0000143 
pz(5)=6.8404207 
pz(6)=3.4729831 
data n,eps/6,1.e-5/ 
m=n+1 
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c print*, 1 input the coefficienrt 1 

c do 1 i = 1, n 
c do 1 j=1,n+1 
c 1 read*,a(i,j) 

do 100 i=1,6 
a(i ,l)=(nx(i )*cos(theta1)+ny(i )*sin(theta1)) 

*(cos (theta2(i) )*cos (theta3(i)) 
-sin(theta2(i ))*cos(alpha2)*sin(theta3(i ))) 

+(-sin(theta1)*cos(alpha1)*nx(i )+cos(theta1)* 
cos(alpha1)*ny(i )+sin(alpha1)*nz(i ))* 
(sin (theta2(i) )*cos (theta3(i) )+cos (theta2(i) )* 
cos(a1pha2)*sin(theta3(i )))+(sin(theta1)* 
s i n (a 1 ph a 1 ) *n x ( i ) -cos (theta 1 ) *s i n (a 1 ph a 1 ) 

*ny(i )+cos(alpha1)*nz(i ))*(sin(a1pha2)* 
sin (theta3(i))) 

a(i ,2)=(nx(i )*cos(thetal)+ny(i )*sin(theta1))* 
cos(theta2(i ))+(-sin(theta1)*cos(alpha1)*nx(i) 

+cos(theta1)*cos(a1pha1) 
*ny ( i ) +s i n (a 1 ph a 1 ) *n z ( i ) ) *s i n (theta 2 ( i ) ) 

a(i ,3)=nx(i )*cos(theta1)+ny(i )*sin(theta1) 
a(i ,4)=(nx(i )*cos(thetal)+ny(i )*sin(theta1)) 

*(sin(theta2(i ))*sin(alpha2)) 
+(-sin(thetal)*cos(alpha1)*nx(i )+cos(thetal)* 
cos (a 1 ph a 1) *ny ( i ) +sin (a 1 ph a 1) *n z ( i ) ) * ( -cos 
(theta2(i ))*sin(alpha2)+(sin(thetal)*sin 
(alphal)*nx(i )-cos(theta1)*sin(alphal) 

*ny(i )+cos(a1phal)*nz(i ))*cos(a1pha2) 



a ( i , 5 ) = s i n (theta 1 ) * s i n (a 1 ph a 1 ) * n x ( i ) -cos (theta 1 ) * 
sin(a1pha1)*ny(i )+cos(a1pha1)*nz(i) 

a(i ,6)=nz(i) 
10 0 a ( i , 7) =p x ( i ) *n x ( i ) +py ( i ) *ny ( i ) +p z ( i ) *n z ( i ) 

do 111 i i = 1, 6 
p r i n t * , 1 n x = 1 , n x ( i i ) , 1 ny = 1 , ny ( i i ) , 1 n z = 1 , n z ( i i ) 
print*, 1 pX= 1 ,px(ii ), 1 py= 1 ,py(ii ), 1 pZ= 1 ,pz(ii) 
theta2(ii )=theta2(ii )/pi 
theta3(ii )=theta3(ii )/pi 

111 print*, 1 theta2= 1 ,theta2(ii ), 1 theta3= 1 ,theta3(ii) 
kk=O 
jj=O 
do 10 i=1,n 
jj=kk+1 
11 =j j 
k k =k k + 1 

20 if(abs(a(jj,kk))-eps)21,21,22 
21 jj=jj+1 

go to 20 
22 if(11-jj}23,24,23 
23 do 25 mm=1,m 

atemp=a(11 ,mm) 
a ( 11 , mm) =a ( j j , mm) 

25 a(jj,mm)=atemp 
24 div=a(i,i) 

do 11 j=1,m 
11 a ( i , j ) =a ( i , j ) I d i v 

k =i + 1 
i f ( k -m ) 12 , 13 , 13 

12 do 10 1 =k,n 
amu1t=a(1 ,i) 
do 10 j=1,m 

10 a(1 ,j)=a(1 ,j)-a(i ,j)*amu1t 
13 x ( n ) =a ( n, m) 

1 =n 
do 30 j=2,n 
sum=O. 
i =m+1-j 
do 31 k=1,n 

31 sum=sum+a (i -1,k )*x.(k) 
1 =1 -1 

30 x(1 )=a(i -1,m)-sum 
do 40 ii=1,n 

40 print*, 1 root( 1 ,ii,') = ',x(ii) 
stop 
end 
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c 
c ********************************************************* 
c * 
C * SYNTHESIS OF NINE SYNTHESIS POSITIONS 
c * 
c ********************************************************* 
c 

c 

c 

c 

c 
c 

c 
c 

rea 1 x ( 9), f ( 9), de 1 ta, xto 1 , fto 1 
integer n,maxit,i 
external fen 
data i ,n,maxit,delta/0,9,800,0.001/ 
data xtol ,ftol/1.e-4,1.e-4/ 

x(1)=6.26973343 
x(2)=22.55064583 
x(3)=-6.54820347 
x(4)=1.39241803 
x(S)=-45.4835788 
x(6)=50.77313232 
pi=3.14159/180. 
X ( 7) =0. 48279029 
x(8)=0.52359837 
print*, •;nput x(9) =· 
read*,x(9) 
x(9)=x(9)*pi 
call nlsyst(fcn,n,maxit,x,f,delta,xtol ,ftol ,i) 

do 1 i = 1, 9 
1 print*,•xc•,;,•) = •,x(i),• f(•,;,•) = •,f(i) 

stop 
end 

subroutine fcn(x,f) 

real x(9),f(9),nx1,nx2,nx3,nx4,nx5,nx6,nx7,ny7,nz7, 
-ny1,ny2,ny3,ny4,ny5,ny6,nz1,nz2,nz3,nz4,nx8,ny8,nz8, 
-nz5,nz6,nx9,ny9,nz9 
pi=3.14159/180. 

c theta1=45.*pi 
c alpha1=90.*pi 
c alpha2=90.*pi 

theta2l=O.*pi 
theta31=0.*pi 
theta22=5.*pi 
theta32=5.*pi 



theta23=10.*pi 
theta33=10.*pi 
theta24=15.*pi 
theta34=15.*pi 
theta25=20.*pi 
theta35=20.*pi 
theta26=25.*pi 
theta36=25.*pi 
theta 2 7-= 3 0 . *pi 
theta37=30.*pi 
theta28=35.*pi 
theta38=35.*pi 
theta29=40.*pi 
theta39=40.*pi 
nx2=297.3435364 
nx3=289.4804993 
nx4=276.7246704 
nx5=259.5814209 
nx6=238.7224121 
nx7=214.9520264 
nx8=189.1680756 
ny8=132.4567719 
nz8=161. 6998138 
nx1=300. 
ny 1 =0. 
nz1=0. 
nx9=162.3182983 
ny9=136. 2010956 
nz9=177.7979363 
ny2=26.0141697 
ny3=51.0431862 
ny4=74.1481018 
ny 5 = 9 4. 4 7 9 8 4 31 
ny 6 = 111. 31 7 9 9 3 2 
ny7=124.1024857 
nz2=26.1135387 
nz3=51.8306084 
nz4=76.7637558 
nz5=100.5433426 
nz6=122.825798 
nz7=143.3011627 
p2x=29.8479328 
p3x=29.3946190 
p4x=28.6486454 
p5x=27.6240768 
p6x=26.3400993 
p7x=24.8205147 
p 2y = 2 • 6 11 3 5 3 9 
p3y=5.1830606 
p4y=7. 6763749 
p5y=10.0543346 
p6y=12. 2825794 
p7y=14. 3301182 
p2z=0.8715568 
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c 

c 
c 

c 
c 

c 
c 
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p3z=1.7364806 
p4z=2.5881884 
p5z=3.4201992 
p6z=4.2261796 
p7z=4.9999967 
p8x=23.0931511 
p8y=16.1699829 
p8z=5.7357602 
plx=30. 
ply=O. 
plz=O. 
p9x=21.1891422 
p9y=17.7797832 
p9z=6.4278722 

f(l)=(nxl*cos(x(9))+nyl*sin(x(9)))*(cos(theta2l)*x(3)* 
-cos(theta31)-sin(theta2l)*cos(x(7))*x(3)*sin(theta31)+ 
-sin(theta2l)*sin(x(7))*x(6)+x(2)*cos(theta21))+(-sin 
-(x(9))*cos(x(8))*nxl+cos(x(9))*cos(x(8))*nyl+sin 
-(x(8))*nzl)*(sin(theta2l)*x(3)*cos(theta3l)+cos 
-(theta2l)*cos(x(7))*x(3)*sin(theta31)-cos(theta21)* 
-sin(x(7))*x(6)+x(2)*sin(theta21))+(sin(x(9))*sin(x(8)) 
-*nxl-cos(x(9))*sin(x(B))*nyl+cos(x(8))*nzl)*(sin(x(7)) 
-*x(3)*sin(theta3l)+cos(x(7))*x(6)+x(5))+x(l)*cos(x(9)) 
-*nxl+x(l)*sin(x(9))*nyl+x(4)*nzl-(plx*nxl+ply*nyl+plz* 
-nzl) 

f(2)=(nx2*cos(x(9))+ny2*sin(x(9)))*(cos(theta22)*x(3)* 
-cos(theta32)-sin(theta22)*cos(x(7))*x(3)*sin(theta32)+ 
-sin(theta22)*sin(x(7))*x(6)+x(2)*cos(theta22))+(-sin 
-(x(9))*cos(x(8))*nx2+cos(x(9))*cos(x(8))*ny2+sin 
-(x(8))*nz2)*(sin(theta22)*x(3)*cos(theta32)+cos 
-(theta22)*cos(x(7))*x(3)*sin(theta32)-cos(theta22)* 
-sin(x(7))*x(6)+x(2)*sin(theta22))+(sin(x(9))*sin(x(8)) 
-*nx2-cos(x(9))*sin(x(8))*ny2+cos{x(8))*nz2)*(sin(x(7)) 
-*x(3)*sin(theta32)+cos(x(7))*x(6)+x(5))+x(l)*cos(x(9)) 
-*nx2+x(l)*sin(x(9))*ny2+x(4)*nz2-(p2x*nx2+p2y*ny2+p2z* 
-nz2) 

f(3)=(nx3*cos(x(9))+ny3*sin(x(9)))*(cos(theta23)*x(3)* 
-cos(theta33)-sin(theta23)*cos(x(7))*x(3)*sin(theta33)+ 
-sin(theta23)*sin(x(7))*x(6)+x(2)*cos(theta23))+(-sin 
-(x(9))*cos(x(8))*nx3+cos(x(9))*cos(x(8))*ny3+sin 
-(x(8))*nz3)*(sin(theta23)*x(3)*cos(theta33)+cos 
-(theta23)*cos(x(7))*x(3)*sin(theta33)-cos(theta23)* 
-sin(x(7))*x(6)+x(2)*sin(theta23))+(sin(x(9))*sin(x(8)) 
-*nx3-cos(x(9))*sin(x(8))*ny3+cos(x(8))*nz3)*(sin(x(7)) 
-*x(3)*sin(theta33)+cos(x(7))*x(6)+x(5))+x(l)*cos(x(9)) 
-*nx3+x(l)*sin(x(9))*ny3+x(4)*nz3-(p3x*nx3+p3y*ny3+p3z* 
-nz3) 



c 
c 

c 
c 

c 
c 

c 
c 
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f(4)=(nx4*cos(x(9))+ny4*sin(x(9)))*(cos(theta24)*x(3)* 
-cos(theta34)-sin(theta24)*cos(x(7))*x(3)*sin(theta34)+ 
-sin(theta24)*sin(x(7))*x(6)+x(2~*cos(theta24}}+(-sin 
- ( x ( 9) ) *cos ( x ( 8) } *n x 4 +cos ( x ( 9) ) *cos ( x ( 8) ) *ny 4 +s i n 
-(x(8))*nz4)*(sin(theta24)*x(3)*cos(theta34)+cos 
-(theta24)*cos(x(7))*x(3)*sin(theta34}-cos(theta24)* 
-sin(x(7)}*x(6)+x(2)*sin(theta24))+(sin(x(9))*sin(x(8)) 
- *n x 4 -cos ( x ( 9) ) *s i n ( x ( 8) ) *ny 4 +cos ( x ( 8) ) *n z 4) * ( s i n ( x ( 7) ) 
-*x(3)*sin(theta34)+cos(x(7})*x(6)+x(5))+x(l)*cos(x(9)) 
-*nx4+x(l}*sin(x(9}}*ny4+x(4}*nz4-(p4x*nx4+p4y*ny4+p4z*· 
-n z 4) 

f(5}=(nx5*cos(x(9)}+ny5*sin(x(9))}*(cos(theta25)*x(3)* 
-cos(theta35)-sin(theta25}*cos(x(7)}*x(3)*sin(theta35}+ 
-sin(theta25)*sin(x(7))*x(6}+x(2)*cos(theta25)}+(-sin 
- ( x ( 9) ) *cos ( x ( 8) } *n x 5+c o s ( x ( 9) ) *cos ( x ( 8) ) *ny 5 +s i n 
-(x(8)}*nz5)*(sin(theta25)*x(3)*cos(theta35)+cos 
-(theta25)*cos(x(7))*x(3)*sin(theta35}-cos(theta25)* 
-sin(x(7))*x(6)+x(2)*sin(theta25))+(sin(x(9))*sin(x(8)) 
- *n x 5 -cos ( x ( 9) ) *sin ( x { 8) ) *ny 5 +cos ( x ( 8) ) *n z 5) * (sin ( x ( 7) ) 
-*X(3)*sin(theta35)+cos(x(7))*x(6)+x(5))+x(l)*cos(x(9)) 
-*nx5+x(l)*sin(x(9))*ny5+x(4)*nz5-(p5x*nx5+p5y*ny5+p5z* 
-n z 5) 

f(6)=(nx6*cos(x(9))+ny6*sin(x(9)))*(cos(theta26)*x(3)* 
-cos(theta36)-sin(theta26)*cos(x(7))*x(3)*sin(theta36)+ 
-sin(theta26)*sin(x(7))*x(6)+x(2)*cos(theta26))+(-sin 
- ( x ( 9) ) *cos ( x ( 8) ) *n x 6 +cos ( x ( 9) ) *cos ( x ( 8) ) *ny 6 +s i n 
-(x(8))*nz6)*(sin(theta26)*x(3)*cos(theta36)+cos(theta26) 
-*cos(x(7))*x(3)*sin(theta36)-cos(theta26)*sin(x(7))* 
-x(6)+x(2)*sin(theta26))+(sin(x(9))*sin(x(8))*nx6-cos 
- ( x ( 9) ) *sin ( x ( 8) ) *ny 6 +cos ( x ( 8) ) *n z 6) * (sin ( x ( 7) ) * 
-x(3)*sin(theta36)+cos(x(7))*x(6)+x(5))+x(l)*cos(x(9)) 
-*nx6+x(l)*sin(x(9))*ny6+x(4)*nz6-(p6x*nx6+p6y*ny6+p6z* 
-nz 6) 

f(7)=(nx7*cos(x(9))+ny7*sin(x(9)))*(cos(theta27)*x(3)* 
-cos(theta37)-sin(theta27)*cos(x(7))*x(3)*sin(theta37)+ 
-sin(theta27)*sin(x(7))*x(6)+x(2)*cos(theta27))+(-sin 
- ( x ( 9) ) *cos ( x ( 8) ) *n x 7 +cos ( x ( 9) ) *cos ( x ( 8) ) *ny 7 +sin 
-(x(8))*nz7)*(sin(theta27)*x(3)*cos(theta37)+cos(theta27) 
-*cos(x(7))*x(3)*sin(theta37)-cos(theta27)*sin(x(7))* 
-x(6)+x(2)*sin(theta27))+(sin(x(9))*sin(x(8))*nx7-cos 
- ( x ( 9) ) *s i n ( x ( 8) ) *ny 7 +cos ( x ( 8) ) *n z 7) * (sin ( x ( 7) ) * 
- x ( 3) *s i n (theta 3 7) +cos ( x ( 7) ) * x ( 6) +x ( 5) ) +x ( 1 ) *cos ( x ( 9) ) 
-*nx7+x(l)*sin(x(9))*ny7+x(4)*nz7-(p7x*nx7+p7y*ny7+p7z* 
-nz 7) 

f(8)=(nx8*cos(x(9))+ny8*sin(x(9)))*(cos(theta28)*x(3)* 
-cos(theta38)-sin(theta28)*cos(x(7))*x(3)*sin(theta38)+ 



c 
c 

c 

c 
c 
c 
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-sin(theta28)*sin(x(7))*x(6)+x(2)*cos(theta28))+(-sin 
- ( x ( 9) ) *cos ( x ( 8) ) *n x 8 +cos ( x ( 9) ) *cos ( x ( 8) ) *ny 8+s i n 
-(x(8))*nz8)*(sin(theta28)*x(3)*cos(theta38)+cos(theta28) 
-*cos(x(7))*x(3)*sin(theta38)-cos(theta28)*sin(x(7))* 
-x(6)+x(2)*sin(theta28))+(sin(x(9))*sin(x(8))*nx8-cos 
- ( x ( 9) ) *s i n ( x ( 8) ) *ny 8+c o s ( x ( 8) ) *n z 8) * ( s i n ( x ( 7) ) * 
-x(3)*sin(theta38)+cos(x(7))*x(6)+x(5))+x(1)*cos(x(9)) 
-*n x 8+x ( 1) *sin ( x ( 9) ) *ny 8+x ( 4) *n z 8- ( p 8x *n x 8+p By *ny 8+p 8z * 
-nz8) 

f(9)=(nx9*cos(x(9))+ny9*sin(x(9)))*(cos(theta29)*x(3)* 
-cos(theta39)-sin(theta29)*cos(x(7))*x(3)*sin(theta39)+ 
-sin(theta29)*sin(x(7))*x(6)+x(2)*cos(theta29))+(-sin 
-(x( 9) )*cos (x(8) )*nx9+cos (x( 9) )*cos (x( 8) )*ny9+sin 
-(x(8))*nz9)*(sin(theta29)*x(3)*cos(theta39)+cos(theta29) 
-*cos(x(7))*x(3)*sin(theta39)-cos(theta29)*sin(x(7))* 
-x(6)+x(2)*sin(theta29))+(sin(x(9))*sin(x(8))*nx9-cos 
- ( x ( 9) ) *s i n ( x ( 8) ) *ny 9 +cos ( x ( 8) ) *n z 9) * (sin ( x ( 7) ) * 
-x(3)*sin(theta39)+cos(x(7))*x(6)+x(5))+x(1)*cos(x(9)) 
- *n x 9+x ( 1) *sin ( x ( 9) ) *ny 9+x ( 4) *n z 9- ( p 9x *n x 9+p 9y *ny 9 +p 9z * 
-n z 9) 

return 
end 

SUBROUTINE nlsyst(fcn,n,maxit,x,f,delta,xtol,ftol,i) 
c 
c ********************************************************* 
c * 
C * SUBROUTINE NLSYST : 
C * SOLVE FOR NINE NONLINEAR EQUATIONS 
c * 
*********************************************************** 

c 
c 

real x(n),f(n),delta,xtol,ftol 
integer n,maxit,i 
real a(10,11),b(7),xsave(10),fsave(10) 
integer np,it,ivbl,itest,ifcn,irow,jcol 

c --------------------------------------------------------
c 
c check validity of value of n 
c 

c 

if (n.lt.2 .or. n.gt.10) then 
i =- 3 
print*, •n=• ,n 
print* 
return 

endif 

c -------------------------------------------------------



c 
c begin iterations - save x values, then get f values 
c 

c 

np = n + 1 
do 100 it = 1,maxit 

do 10 ivbl = 1,n 
xsave(ivbl) = x(ivbl) 

10 continue 
call fcn(x,f) 

c ------------------------------------------------------
c 
c test f values and save them 
c 

c 

itest = 0 
do 20 ifcn = 1,n 

if (abs(f(ifcn)) .gt. ftol) itest = itest + 1 
fsave(ifcn) = f(ifcn) 

20 continue 
if ( i.eq.O) then 

print*, 1 it= 1 ,it, 1 x= 1 ,X 
print* 
print*, 1 f= 1 ,f 
print* 

endif 

c -------------------------------------------------------
c 
c see if ftol is met. if not, continue. if so, set i=2 
c and return. 
c 

c 

if (itest.eq.O) then 
i=2 
return 

endif 
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c ---------------------------------------------------------
c 
c this double loop computes the partial derivatives of each 
C function for each varivable and stores them in a 
C coefficient array. 
c 

c 
c 

do 50 jcol = l,n 
x(jcol) = xsave(jcol) +delta 
call fcn(x,f) 
do 40 ir0\'1 = l,n 

a(irow,jcol) = (f(irow) - fsave(irow))/delta 
40 continue 

c reset x values for nest column of partials 
c 

x(jcol )=xsave(jcol) 
50 continue 



100 

c 
c --------------------------------------------------------
c 
c now we put negative of f values as right hand sides 
C and call elim 
c 

c 

do 6 0 i r o \'I = 1 , n 
b(irow)=-fsave(irow) 

60 continue 
call elim(a,b,n,1.e-6) 

c --------------------------------------------------------
c 
c be sure that the coefficiertt matrix is not too ill­
C conditioned 
c 

c 
c 

do 70 irow = 1,n 
if(abs(a(irow,irow)).le.1.e-10) then 
i = -2 
print*, •cannot solve system,matrix nearly singular• 
return 
endif 

70 continue 

c -------------------------------------------------------
c 
c apply the corrections to the x values, also see if xtol 
C is met 
c 

c 
c 

itest = 0 
do80ivbl=1,n 

x(ivbl )=xsave(ivbl) + b(ivbl) 
if(abs(b(ivbl )).gt. xtol) itest = itest + 1 

80 continue 

~ --------------------------------------------------------
c 
c if xtol is met, print last values and return, else do 
C another iteration 
c 

c 

if(itest .eq. 0) then 
f=1 
if(i .eq.O) print*, •it=• ,it, • 
return 

endif 
100 continue 

X= I' X 

c -------------------------------------------------------~ 
c 
c when we have done maxit iterations , set i=-1 and return 

i = -1 
return 



c 
c 

c 

end 

subroutine e1im(a,b,n,eps) 

dimension a(10,10),b(10) 
do 1 i = 1, n 
k =1 
if ( i -n ) 21, 7, 21 

21 if(abs(a(i,i))-eps)6,6,7 
6 k =k + 1 

b ( i ) =b ( i ) +b ( k ) 
do 23 j=1,n 

2 3 a ( i , j ) =a ( i , j ) +a ( k , j ) 
go to 21 

7 d i v =a ( i , i ) 
b ( i ) =b ( i ) I d i v 
1 =i + 1 
do 9 j =1 , n 

9 a(i,j)=a(i,j)/div 
do 1 m=1,n 
de1t=a(m,i) 
if (a b s (de 1 t ) -e p s ) 1, 1, 16 

16 if(m-i )10,1,10 
10 b(m)=b(m)-b(i)*de1t 

do 11 j =1 , n 
11 a(m,j)=a(m,j)-a(i ,j)*de1t 

1 continue 
return 
end 
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c 
c 
c 
c 
c 
c 
$ 
$ 
c 

************************************************* 
** ** 
** ANALYSIS OF R-R CRANK GENERATING A SURFACE ** 
** ** 
************************************************* 

INCLUDE /usr/include/fgl.h 
INCLUDE /usr/include/fdevice.h 

REAL dummy(4,4),a1(4,4),a2(4,4),a3(4,4),aeq(4,4), 
-theta2(200),theta3(200),p4(4,4),pl(4,4),acoorl(4,4), 
-acoor2(4,4) 

INTEGER I,J,kj,loopl,loop2 

OPEN(unit=9,file='data ') 
OPEN(unit=8,file='datal') 
OPEN(unit=7,file='data2') 
loopl = 45 
loop2 = 30 

102 

c ******************* 
c * 
c * Point on the tangent-plane and the surface 
c * 
c ******************* 

print*,'--------------------------------------------' 
print*, 'input Y from tangent point to connect point' 
print*,'--------------------------------------------' 
read*,p4(2,1) 
print*,'--------------------------------------------' 
print*, 'input Z from tangent point to connect point' 
print*,'--------------------------------------------' 
read*,p4(3,1) 
print*,'--------------------------------------------' 
print*, 'input hlist angle alpha(i)' 
print*,'--------------------------------------------' 
print*,'alpha(l) =' 
read*,alfal 
print*, 'alpha(2) = 
read*,alfa2 
print*, 'alpha(3) = 
read*,alfa3 
print*,'-------------------------------------------' 
print*, 'input link length a(i)' 
print*,'-------------------------------------------' 
print*,'a(l) =' 
read*,aal 
print*, 'a(2) = ' 



read*,aa2 
print*, 'a(3) = • 
read*,aa3 
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print*, '--------------------------------------------• 
print*, 'input link distane s(i)' 
print*,'--------------------------------------------' 
print*,'s(l) =' 
read*,sl 
print*, 's(2) = 
read*,s2 
print*, 's(3) = 
read*,s3 
print*, '---------------------------------------------• 
print*,'input theta(!)' 
print*, '---------------------------------------------• 
print*,'theta(l) =' 
read*,thetal 
p4(4,1)=1. 
pi=3.14159/l80. 
thetal=thetal*pi 
theta2(1)=-90. 
theta3(1)=-90. 
alfal=alfal*pi 
a 1 fa 2 =a 1 fa 2*p i 
alfa3=alfa3*pi 
on = 1 
CALL amatrix(alfal,aal,thetal,sl,al) 
call multi (4,al,p4,acoorl) 
x2=acoorl(l,l) 
y 2 =a coo r 1 ( 2, 1) 
z2=acoor1(3,1) 
write (8,101) x2,y2,z2 

101 format (f12.6,f12.6,f12.6) 
DO 1 i=l,loopl 
theta2(i )=theta2(i )*pi 
CALL amatrix(alfa2,aa2,theta2(i ),s2,a2) 
c a 11 mu 1 t i ( 4, a 1 , a 2, dummy ) 
c a 11 mu 1 t i ( 4, dummy, p 4, a coo r 2) 
x3=acoor2(1,1) 
y3=acoor2(2,1) 
z3=acoor2(3,1) 
write (7,102) x3,y3,z3 

102 format (f12.6,f12.6,f12.6) 
do 2 kj=l,loop2 
theta3(kj )=theta3(kj )*pi 
CALL amatrix(alfa3,aa3,theta3(kj),s3,a3) 
C A L L m u 1 t i ( 4 , a 1 , a 2 , d u m my ) 
CALL multi (4,dummy,a3,aeq) 
CALL multi (4,aeq,p4,pl) 
duml= pl(l,1)*80.0 
dum2= p1(2,1)*80.0 
dum3= p1(3,1)*80.0 
write (9,100) duml,dum2,dum3 

100 format (f12.6,f12.6,f12.6) 



C· 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 

theta3(kj)=theta3(kj)/pi 
theta3(kj+1)=theta3(kj)+16. 

2 CONTINUE 
theta3(1)=-90. 
p4(1,1)=0. 
theta2(i )=theta2(i )/pi 
theta2(i+1)=theta2(i )+8. 

1 CONTINUE 
stop 
end 

************************** 
* 
* 
* 

subroutine Multiply 

************************** 

SUBROUTINE amatrix(a,b,c,d,tt) 
dimension tt(4,4) 
t t ( 1 , 1 ) =cos ( c ) 
t t ( 1, 2) =-sin ( c ) *cos (a ) 
tt(1.,3)=sin(c)*sin{a) 
tt(1,4)=b*cos(c) 
tt(2,1)=sin(c) 
tt(2,2)=cos(c)*cos(a) 
t t ( 2, 3 ) =-cos ( c ) * s i n (a ) 
tt(2,4)=b*sin(c) 
tt(3,1)=0. 
tt(3,2)=sin(a) 
tt(3,3)=cos(a) 
tt(3,4)=d 
tt(4,1)=0. 
tt(4,2)=0. 
tt(4,3)=0. 
tt(4,4)=1. 
return 
end 
************************** 
* 
* 
* 

subroutine Multiply 

************************** 

SUBROUTINE multi (n,a,b,c) 
dimension a(4,4),b(4,n),c(4,n) 
do 1 i=1,4 
do 2 j=1,n 
c (i ,j )=0. 
do 3 k=1,n 

3 c ( i , j ) =c ( i , j ) +a ( i , k ) * b ( k , j ) 
2 continue 
1 continue 

return 
end 
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APPENDIX 8 

ISIS GRAPHIC COMPUTER PROGRAM 



c ***************************** 
c * 
c * SURFACE GENERATION 
c * 
c * IN THIS PROGRAM, THE SURFACE IS GENERATED 
c * FOR TWO-DEGREE-OF-FREEDOM OPEN LOOP MECHANISM 
c * BY USING IRIS COMPUTER PROGRAM 
c * 
c * 
c ***************************** 

$include /usr/include/fgl.h 
$include /usr/include/fdevice.h 

c 

integer*2 i ,j,aal,ss1,twist,thetal,alfal 
twist = 0 
aal = 0*80 
·ssl = 2*80 
call ginit( ) 
call color(O) 
call clear( ) 
call cursof( ) 
call color (7) 
call recti(50,50,1000,700) 
call color(5) 
call rectfi (51,51,999,699) 
call color(?) 
call recti(l00,100,950,650) 
call color(4) 
call rectfi (101,101,949,649) 

c ****************************** 
c * 
c * object(2) --­
c * 
c * make the first page 
c * 
c * 
c ****************************** 
c 

call makeob (2) 
call ortho2(50.0,1000.0,50.0,700.0) 
call color (7) 
call recti (190,510,850,560) 
call color (2) 

106 



call rectfi (191,511,849,559) 
call color (1) 
call cmovi (210,530,0) • 
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call chars t ( • S i mu 1 at i on of Spat i a 1 ~1 e chan i s m s for Tang 

c 

-ent-Plane Envelope Generation ',72) 
call color (3) 
call recti (250,390,460,460) 
call color (1) 
call rectfi (251,391,459,459) 
call color (2) 
call crnovi (270,430,0} 
call charst('Part I Analysis',18) 
call cmovi (270,410,0) 
call charst('Part II: Synthesis',l9} 
call color (7) 
call crnovi (310,320,0) 
call charst('Foo-Ming Fu',ll) 
call crnovi (290,300,0) 
call charst('Graduate Student',l6) 
call cmovi (310,270,0} 
call charst( 1 A. H. Soni 1 ,10) 
call crnovi (290,250,0) 
call charst( 1 Regents Professor',!?) 
call crnovi (250,200,0) 
call charst( 1 0klahorna State University',25) 
call crnovi (270,180,0} 
c a 1 1 chars t ( 1 S t i 11 water, 0 k 1 a h o rna 1 , 2 0) 
call closeo(2) 

c ***************************** 
c * 
c *close object(2) 
c * 
c ***************************** 
c 

call callob(2) 
c 
c ****************************** 
c * 
c * object(!) ---
c * 
c * make a surface on the first page 
c * 
c ****************************** 
c 

call ortho (-1600.0,800.0,-900.0,1500.0,-1200.0,1200.0) 
open (unit=9, file= 1 datafile 1 ) 

call rotate {400,'x 1 ) 

call rotate (-400,'y'} 
c a 1 1 a-xi s ( ) 
do 70 i=l,45 
do 70 j=l,30 
read (9,*)duml,dum2,dum3 
if(j.eq.l)then 



dum4=duml 
dum 5=dum2 
dum6=dum3 
endif 
call color (2) 
call move (dum4,dum5,dum6) 
call draw (duml,dum2,dum3) 
dum4=duml 
dum5=dum2 
dum6=dum3 

70 continue 
close(unit=9,status=•keep•) 

c 
c ************************** 
c * 
c *close object(!) 
c * 
c ************************** 
c 

c 
call gexit( ) 

do 60 i =1,39 
do 60 j =1,39 
a= cos(1.57) 

60 continue 
do 30 k=l,36 
open (unit=9, file=•data•) 
open (unit=8, file=•datal•) 
open (unit=7, file=•data2 1 ) 

call ginit( ) 
call color(O) 
call clear( ) 
call cursof( ) 
call color(?) 
call recti(50,50,1000,700) 
call color(4) 
call rectfi (51,51,999,699) 
call color(?) 
call recti (600,600,1000,700) 
call color(!) 
c~ll rectfi (601,601,999,699) 
call color(2) 
call cmovi (660,680,0) 
call charst( 1 SURFACE GENERATION OF R-R CRANK',31) 
call color(6) 
call cmovi (660,655,0) 
call charst(• by FOO-tHNG FU 1 ,31) 
call color(3) 
c a 1 1 c mo vi ( 6 6 0, 6 3 0 , 0 ) 
call charst( 1 alphal=90, alpha2=90, alpha3=0 1 ,3l) 
c a 1 1 c mo vi ( 6 50, 610, 0) 
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call charst( 1 al=O, a2=0, a3=2, s1=2, s2=2, s3=2 1 ,35) 
call ortho (-600.0,600.0,-600.0,600.0,-600.0,600.0) 
call rotate (40o,•x 1 ) 



call rotate (-400+t\'dst,•y•) 
call axis ( } 
read (8,*}x2,y2,z2 
x2=x2*80~ 
y2=y2*80. 
z2=z2*80. 
nthetal=O 
nalfa1=900 
call axis! (x2,y2,z2,nthetal,nalfal) 
call color(6) 
call move (0.0,0.0,0.0} 
call draw (x2,y2,z2} 
call move (0.0,0.0,0.0} 
call draw (x2,y2,z2} 

c c a 11 rna k eo b ( 1} 
c call rotate (90o,•x•) 
c call circf(O.O,y2,20.0} 
c call closeo() 
c call makeob(l} 

c 
c 

do 10 i=l,45 
do 10 j=l,30 
read (9,*}duml,durn2,dum3 
if(j.eq.l}then 
dum4=duml 
dum5=dum2 
dum6=dum3 
endif 
call color (2} 
call move (dum4,dum5,dum6) 
call drav~ (duml,dum2,dum3) 
dum4=dum 1 
dum5=dum2 
di.lm6=dum3 

10 continue 
close(unit=9,status=•keep•) 
close(unit=8,status=•keep•} 
close(unit=7,status=•keep •} 
hli st=t\·li st+lOO 
do 50 i =1,99 
do 50 j =1,99 
a= cos(1.57} 

50 continue 
30 continue 

call gexit( ) 
do 20 i =1,1199 
do 20 j =1,1199 
a= cos(1.57} 

20 continue 
stop 
end 

c ******************** 
c * 
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c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 

* sub axis 
* 
******************** 

subroutine axis ( 
call color(3) 
call rna v e i ( 0, 0, 0 ) 
ca 11 dravd (550,0,0) 
ca 11 cmovi {560,0,0) 
ca 11 color ( 2} 
ca 11 charst ('X',l} 
ca 11 color(3} 
ca 11 rna ve i ( 0, 0, 0) 
ca 11 dravli (0,550,0} 
ca 11 cmo vi (0,560,0} 
call color ( 2} 
ca 11 charst ('Y',l} 
ca 11 color(3) 
ca 11 movei (0,0,0) 
ca 11 drawi (0,0,550} 
ca 11 cmovi (0,0,570) 
ca 11 color ( 2) 
ca 11 charst ('Z',l) 
ca 11 color ( 3) 
call mo vei (300,0,0} 
call drawi (270,-25,25) 
ca 11 mo vei ( 3 1 5 ' 0 ' 0 ) 
ca 11 dravd (285,-25,25) 
call movei (330,0,0} 
ca 11 drawi (300,-25,25) 
c a 11 movei (345,0,0} 
ca 11 dra\'li (315,-25,25) 
ca 11 mo vei (360,0,0) 
ca 11 drawi (330,-25,25) 
call movei (375,0,0) 
call dravd (345,-25,25) 
c a 11 movei (390,0,0) 
ca 11 dravli (360,-25,25) 
return 
end 

******************** 
* 
* sub axis! 
* 
******************** 

subroutine axis! (x2,y2,z2,thetal,alfal) 
integer*2 thetal,alfal 
call color(!} 
call move (x2,y2,z2) 
call draw (x2+150.0,y2,z2) 
call move (x2,y2,z2) 
call dra~1 (x2+150.0,y2,z2) 
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call move {x2+60.0,y2,z2) 
call draw (x2+80.0,y2,z2+30.0) 
c a 11 move (x2+70.0,y2,z2) 
call draw (x2+90.0,y2,z2+30.0) 
ca 11 move (x2+80.0,y2,z2) 
call draw (x2+100.0,y2,z2+30.0) 
c a 11 move (x2+90.0,y2,z2) 
ca 11 draw (x2+110.0,y2,z2+30.0) 
ca 11 move (x2+100.0,y2,z2) 
call draw (x2+120.0,y2,z2+30.0) 
c a 11 move (x2+110.0,y2,z2) 
ca 11 dra\tl (x2+130.0,y2,z2+30.0) 
ca 11 cmov {x2+160.0,y2,z2) 
c a 11 color (7) 
c a 11 charst (•x1•,2) 
c a 11 color(!) 
call move (x2,y2,z2) 
ca 11 dra\'J (x2,y2,z2+150.0) 
c a 11 cmov (x2,y2,z2+160. O) 
ca 11 color (7) 
ca 11 cl1a rst c·v1·,2) 
ca 11 color(!) 
c a 11 move (x2,y2,z2) 
c a 11 draw (X 2 ,y 2-15 0. 0, Z 2) 
call cmov (x2,y2-160.0,z2) 
call color (7) 
ca 11 charst c·z1•,2) 
return 
end 
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