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CHAPTER 1
INTRODUCTION

In the field of kinematics, there exists two problems
in the design of mechanisms : synthesis and analysis. The
fundamental problem in the kinematic synthesis is to
determine the dimensions of linkages required to pass
through several specified, Tfinitely separated positions,
infinitesimally separated positions, or mixed mode positions
relative to another rigid boedy. Such specifications may
include rigid body guidance, function generation, and path.
generation. The fundamental problem in kinematic analysis
is to determine the relative motions of moving 1links where
the linkage parameters are given.

The fundamental theories of kinematic synthesis and
analysis of planar or three dimensional mechanisms appear to
have evolved with the classical investigations of a rigid
body motion. Such motion may be examined for one or more
degrees of freedom or for one or more parameter motion.
When large motion is of interest, finite motion theories for
a rigid body are generally investigated. When, however,
more precise motion in a local region 1is of interest,
instantanecus motion theories for a rigid body are

investigated.
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Significant achievements have béen made in recent years
in understanding and applying the kinematics of
one-parameter rigid body motion. For such one—-parameter
investigations, one may study a curve or a surface generated
by a point, a line; or a plane moving with the coupler-link
of a planar or a spatial mechanism. In planar motion, a
line connected to the coupler—-link of a mechanism will
generate an envelope. This line is called the tangent-line.
In space motion, a plane connected to the coupler-link of a
mechanism will envelop a surface and the plane is called the
tangent-plane.

Continuation of the study on the one-parameter motion
of a plane in space 1is requested to investigate the
kinematics of a two-parameter motion of a rigid body with a
plane being considered as & moving element. In the
following three sections,; we will examine the significant
contributions describing in a progréssive manner the
development of the key concepts lending to synthesis and
analysis of spatial mechanisms, and the curvature theory of
point, line, and plane trajectories in three-dimensional

kinematics.

1.1 Synthesis of Spatial Mechanisms

For synthesis of finitely separated positions of a
rigid body, moving relative to another rigid body, Wilsonl1]
developed an analytical procedure which used the analogy of

planar kinematic synthesis problems. He introduced the
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rigid body guidance problem in spatial synthesis and also
showed that function generation problem can be converted to
a8 rigid body guidance problem by taking inversion about the
input or ocutput link. However, his procedure can be used
only for Sphere-Sphere, Revolute-Sphere, Sphere—-Revolute,
and Revolute—-Revolute cranks.

Roth[2] used screw theory and linear transformation to
describe a rigid body through a series of finitely separated
positions in order to determine those points which lie on a
sphere, circle, plane, line or cylinder. Also, Roth applied
these results for the synthesis of mechanisms. The parallel
(plane) and intersecting (sphere) screws were presented as
special cases. However, then applications are only for very
simple mechanisms.

Roth[31 described the motion of a rigid body moving
relative to another rigid body for up to five positions. He
also extended the concepts of pole triangle and pole
gquadrangle into space. He obtained an infinite number of
C-C cranks which displaces a rigid body through four
finitely separated positions relative to another rigid body
and obtained a finite number of C-C cranks for five finitely
separated positions. These are found by intersecting the
two cubic cones corresponding to two groups of four
positions. These lines are the space analogs of the planar
Burmester points.

Sandorf4] developped procedures by applying the

quaterrions for kinematic synthesis of space mechanisms. He



presented the space mechanism as general kinematic chains
consisting of one or more loops of ball-jointed
bar-slideball members. Sandor used the spatial circle-point
theory to study four positions of a point of a rigid body
which lies on a circle and verified Roth’sl2]1 results that
there can only be a maximum of four. points on a circle in
space.

Sandor and Bishop[3] applied the stretch-rotation
tensor which is in a matrix form to present a general method
of .spatial kinematic synthesis. The method can be used to
multi—-loop. linkages and to special cases.

Bottema, Koetsier and Roth[6] presented the procedure
to find the smallest circle determined by three positions of
a rigid body in space. It is shown that the minimum radius
circle may arise when either the minimum circle is
associated with a point which lies on a screw axis or it is
associated‘with a more general point. The results can be
applied for the design of the smallest Sphere-Revolute crank
which will displace a rigid body through three finitely
separated positions.

Chen and Roth(7,83, by wusing Roth’sl2,9] results,
presented a unified theory for the kinematic synthesis of
finitely and infinitesimally separated positions of a rigid
body moving relative to another rigid body.

Soni and Harrisberger [10] presented a criterion, based
on the optimum transmission characteristics, for designing

space mechanism.
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Séni and Huang [111 extendéd the point position
reduction to design spatial four-bar mechanisms by using the
analogy of planar kinematic synthesis.

Rao, Sandor, Kohli, and Soni [12] developed a general
closed-form synthesis procedure to synthesize function
generators for the maximum number of precesion positibns.

Tsai aﬁd Roth[13] presented a procedure by using screw
triangle geometry to synthesize open-loop kinematic chain
for completely and incompletely specified positions of a
rigid body. They found the screws associated with these
displacements and gave the constraining conditions for the
design of cranks.

Rothf14] derived the constraining equations for any
combination of revolute, prismatic, and cylindrical joints
by using the screw triangle geometry method.

Tsai and Roth [135]1 presented the synthesis procedure,
based on the equivalent screw triangle method, and rederived
the constraining equation from'which the design equation can
be determined for any combinations of helical, cylindrical,
revolute, spherical, and prismatic joints for both finitely
and infinitesimally separated position problems in kinematic
synthesis. The maximum number of finitely separated

positions for each combination is shown in TABLE I.



TABLE I

MAXIMUM NUMBER OF FINITELY SEPARATED
POSITIONS(FSP) FOR ANY COMBINATION
OF BINARY LINKS DERIVED BY TSAI

Link-Combination Max.FSP Link-Combination Max.FSP
R-R 3 P-R 2
R-P 2 P-P 2
R-C 3 P-C e
R-H 3 P-H 2
R-S 4 P-S 3
C-R 3 H-R 3
C-P 2 H-P a2
c-C =] H-C 4
C-H 4 H-H 3
C-S 8 H-8 5
S-R 4 S—-H S
S-P 3 S-S 7
S-C 8

Suhl[16,17]1 used 4 x 4 matrices for synthesis of space
mechanisms where design equations are expressed as
constraint equations in order to obtainh the contrained
motion.

Suhl[181 discussed the R-R link and concluded that "the
maximum number of positions for R-R link synthesis is three
with no choice of papameter'".

Suh(191, by using the finite-screw geometry, presented
an analytical and geometrical proof establishing the duality
of R-R crank for three positions. The proof is a

geometrical one rather than an algebraic one in order to
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avoid the complexity in dealing with nonlinear algebraic
equations, - and to give it a simple and intuitive form.

Tsai and Roth [201, by using the constraining equations
derived in [141, obtained a sixth degree polynomial for
synthesis of R-R crank. The coefficients of the
constraining equation are in explicit form and whose real
roots give the direction cosines of 1lines 1in the moving
frame of reference.

Sathyadev and Soni [371 introduced a new approach to
synthesize the planar mechanism for coupler tangent-line
generation based on the modification of the planar rigid
body displacement matrix developed by Suh [381]. This leads
to the concept of a curve being considered as a line-locus,

the envelope of a set of its tangent-lines.

1.2 Analysis of Spatial Mechanisms

Kinematic analysis of space mechanisms waé initiated by
the significant contribution of Dimentbergl21,221 who
presented the dual number and screw calculus to obtain
closed-form displacement relationships of an RCCC and other
spatial mechanisms. There are some other approaches have
been applied to obtain the same closed-form displacement
relationships of RCCC mechanism:

Denavit [23] used dual Euler angles.

Yang [24]1 used dual gquaternions.

Chace [25] was the first used vector approach

Wallace and Freudenstein [26] alsoc used vector approach
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to obtain closed-form displacement relationships of RRSRR
and RRERR mechanisms.

Yang [273] presented a general formulation wusing dual
number for displacement analysis of RCRCR spatial mechanism.

Soni and Pamidi® [28]1 wused the 3 x 3 dual matrix to
obtain closed-form desplacement relations of RCCRR
mechanisms.

Yuan £221 applied sCcrew coordinates to obtain
closed-form displacement relations for RRCCR and other
spatial mechanisms.

Jenkins and Crossley [30], Sharma and Torfason (311,
Dukkipati and Soni [32) used the method of generated
surfaces applying the analysis of single-loop mechanisms
containing a spheric pair.

Hartenberg and Denavit [331 using 4 x 4 matrix for
displacement analysis of spatial mechanism.

Soni and Harrisberger [341 presented an iterative
approach for performing kinematic analysis wusing 3 x 3
matrices with dual elements.

Kohli and Soni [35,361 used finite sCrews for
displacement analysis and synthesis of single-lcop and
two—-loop space mechanisms with revolute, prismatic,

cylindrical, helical, and spherical joints.

1.3 Curvature Theory

For space point-path, Veldkamp [39,401 developed the

fundamentals of the instantaneocus invariants and applied



them to study the point-path in space.

Siddhanty and Soni {4113, Hsia and Yang [42]
investigated the curvature theory of point trajectories in
three—-dimensional kinematics.

Yangs Roth, and Kirson [43,44] described the geometric
properties of a ruled surface which generated by a line in a
moving body as it moves in space may be examined either by
applying the principle of transference to the results of the
point-path trajectories on sphere.

McCarthy and Roth [43] studied the motion of a line in
space.

Ting and Soni [46,471, and Veldkamp [481 investigated
the one-parameter, instantanecus motion of rigid body where
the moving element is a plane.

Schonemann [493 and Mannheim [50] contributed the first
theorem of instantaneous two-parameter kinematics.

Blaschke [511 investigated the first-order property of
two—-parameter motion with 1line as moving element by using
dual numbers and quarternions.

Bottema [52]1 studied the first- and second-order
properties of two-parameter spatial motion with points as
moving elements. He developed the analytical expressions

for the Gaussion curvature of the point trajectory surface.

1.4 Present Study

The survey of 1literature mentioned in the previous

three sections show that most of studies of synthesis and
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analysis of spatial mechanisms are devoted to the
one—-parameter rigid body guidence_and two-parameter motion
of a rigid body with points as a moving elements. Problems
such as generating a surface in space by using a plane as
moving element with two-paramter motion still remained
unknown.

Just as point in two-parameter motion generates a
surface, so does a plane in two-parameter motion. In
general, in space geometry, a point and a plane are dual
constructs and a line is dual to itself. For any geometric
figure consisting of points, linesy, and planes, 1its dual
configuration 1is obtained by replacing every point by a
plane, every line by a liney, and every plane by a point. In
a two—-parameter spatial kinematics the dual of a
point—-trajectory surface is the trajectory of a plane which
envelaops a surface. Since each plane corresponds toc a point
on a surface, the study of a plane motion is analogous to
the study of a point-trajectory surface.

This manner of investigation provides an insight into
the dual relationships between the trajectory of a plane and
the point-trajectory surface. The kinematic significance of
this duality and its potential applications that generally
follow in mechanism synthesis and analysis are of
fundamental importance in the mechanism science.

The two—-parameter motion of a rigid body may be
investigated further by examining the moving element which

may be a point, a line, or a plane. Because of the duality



11

between a point and a planes; a study of plane-path with
two-parameter wvariation 1is expected to provide better
insight into the two-parameter rigid body motion.

The objective of the present study is to provide a
general method of synthesizing and analyzing the spatial
mechanisms for two—-parameter tangent-plane envelope
generation. The proposed method can be used for finitely
separated positions, infinitesimally separated positions,
and mixed mode positions. The synthesis procedure is based
on the Homogenerous Transformation Matrix which developed by
Hartenberg and Denavit.

In chapter 11, the parametric discription of a surface
enveloped by tangent-plane is described. This 1is a brief
discussion how the tangent-plane envelops a given two-
parameter surface from the geometric point of view.

In chapter I1I, the Homogenerous Transformation Matrix
method, based on the Hartenberg-Denavit notation, is
derived.

In chapter IV, the synthesis and analysis procedure of
dyads for finitely separated positions generated by tangent-
plane having two—parameter motion with ény combination of
Revolute, Prismatics and Helical joints are derived.

In chapter V, the synthesis and analysis procedure of
dyads for infinitesimally and mixed mode separated positions
generated by tangent-plane having twoc—parameter motion with
any combiantion of Revolute, Prismatic, and Helical joints

are presented. Also, the first- and higher—-order motion are
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discussed in this chapter.

In chapter VI, the synthesis procedure of two-
parameter motion, two degree-of-freedom spatial mechanisms
carrying a rigid body with a tangent-plane as a moving
element having six, five, and four components of motion are
derived.

Chapter VII presents the summary, conclusions, and
recommendations for further research.

Numerical examples are presented in chapter IV, V, and
VI to illustrate the proposed synthesis and analysis
procedure. Also, the computer programs of kinematic

synthesis and analysis are presented in appendix A and B.



CHAPTER I1

PARAMETRIC DISCRIPTION OF A SURFACE

DEVELOPING BY THE TANGENT PLANE

The design specification in this category of synthesis
and analysis problems require a tangent-plane attached to
the a moving rigid body enveloping a given surface.

Generally, The surface to be enveloped is expressed in
the vector form along with the precision points which
approximate the given surface. Therefore, in this chapter,
we will simply discribe the paramatric dispription of a
two—-parameter surface enveloping by the tangent plane.

We note that the vector equation of the type
R(t) = x{(t)i + y(t) j + z(t)k {(2-1)

is in the single parameter t describe space curves.

The parametric representation of the space curves is

X = x{t), Y = y(t), 2= z(%t) (2-2)

Surfaces, in general, are described by the parametric

equations of the type

X = x{usv)s Y = y(usv)y, Z = ziu,v) (2-3)

13



14

where u and v are unique parameters.

If v is fixed ( i.e., v=C, a constant), then Eg(2-3)
becomes a one—-parameter expression, which describes a space
curve along which u varies. This is the curve designated by
v=C. Thus for each v, there exists a spacei curve.
Similarly, a space curve can be obtained when v varies along
the curve u=C. The locus of all the curves v=C and u=C
forms a surface S. The parameters u and v are called the
curvilenear coordinates of the point P on the surface, and
the u—curves and v—curves are called parametric curves as
shown in figure 1.

If the terminal point of the position vector R
generates the surface §, then Eq(2-3) can be rewritten as

S{u,v) x{usv)i + ylu,v)j + z(u,v)k (2-4)

let Su = &5 / du and Sv = &8 / &v represent the tangent

vectors to the curve u and v respectively.

Hence,
§S &% Sy dz
Su E - = = ] 4 ———— 4+ ———= Kk (2-5)
du Su Su Su
&8 ¥ Sy . dz
§, = ———=-——- i+ —= j+ ——— k (2-6)

Sv Sv Sv Sv

A point P(u,v) on a surface § 1is called a singular

point if Su X Sv = 03 otherwise, it is called a non-singular

point. Therefore,if Su and SV are continuous, the plane



Figure 1.

Surface 3

Parametric Discription of a
Surface (Two-Parameter Surface)

15
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through P parallel to Su and SV at point P is call the
tangent plane to surface 8§ at point P. Thus, the tangent
planes exist only at the nonsingular points and can be
defined by those two tangent vectors Su and SV. Also, every
nonzero vector linearly dependent upon SU and Sv is the
tangent vector of some curve through point P.

In order to derive the tangent plane equation, we need

to define the unit normal vector of the tangent plane as:

N = “mmmmme e (2-7)

In figure 2, it is shown that point P (xo, Yor zo) is a
point on the tangent-plane tangents to the surface.
Therefore, the tangent—-plane equation can be obtained by
taking the dot product of the vector from an arbitrary point
A (note that point A is also called a connecting point of
tangent plane and mechanism) to P and unit normal vector of
the tangent-plane.

Hences we obtain

(X—XO; Y_YO’ Z-Zo)'N = 0 (2-8)

Since N can be expressed as (Ny,Ny,Nz), by taking dot

product and rearranging Egq(2-8), yields



A : Connecting Point

P : Tangential Point

N : Unit Normal Vector

Figure 2. Vector Expression of the Tangent
Plane

17
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NXX + NyY + NZZ = C (2-9)

where C = Nxxo + NyyO + szo

The tangent-plane equation Eg{(2-8) or Eq{(2-9) can be
used to derive the synthesis equation for spatial mechanisms
with the tangent-plane as a moving element carried by the

rigid body of a mechanisms.



CHAPTER III
HOMOGENEOUS TRANSFORMATION MATRIX METHOD

For synthesis of planar mechanisms, Suh [531 derived
the planar displacement matrix which expressed the
orientation and position of the moving 1link in (3 x 3)
matrix. For synthesis of spatial mechanisms,; Wilson [1]1 was
the fifst developed (3 x 3) matrix to define the motion of a
body in space. Roth [23 also derived the (3 x 3) screw
matrix by using the linear transformation and screw algebra.
Denavit and Hartenbergl38] developed a new symbolic notation
and derived ( 4 x 4 ) matrix for spatial mechanism based on
the homogeneous transformation. This notation 1is called
Denanit-Hartenberg notation (D-H notation) and the matrix is

called D-H matrix. Because of the sufficient for the

description of the complete kinematic properties of
lower—-pair mechanisms, D-H notation can be used for
kinematic synthesis and analysis problems of spatial

mechanisms to obtain the result which is more compact.
There are four parameters defined in D-H notation as

shown in figure 3 and stated in the following:

a, = link length, the common normal along Xi+l between
o
Zi and :..i+1.
x: = link twist angle, relative orientation of the

19
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~ Xi+1

Z; (Joint i) 0is

=

'

Figure 3. Notation of Homogeneous Transformation
Matrix
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kinematic pair, obtained by rotating Zi to Zi+1

about X.

i+l " The sign of rotation is given by the

right-hand screw rule.

d. = offset distance, the common normal along Zi between

Xi and Xi+1. The sign of distance can be positive

or negative. c!.l is positive when measured to the
positive Zi direction.

9. = link angle, obtained by rotating X.1 to Xi+1 about
Zi' The sign of rotaticon is given by the
right—-hand screw rule.

Also, the coordinates are defined as : The Zi axis is
along the axis of motion or rotation of the (i+l1) joint. The
Xi axis in the direction of normal +to both Zi and Z.1+1
axisspoint away from the Zi axis. The Yi axis is chosen so
as to make the coordinate Xi’ Yi s and Zi following the
Right-Hand screw.

Once the D-H coordinate system for each 1link is
established, a homogeneous transformation matrix can be
developed relafing the i+1th coordinate frame toc the ith
coordinate frame as shown in fig(3). It is clear that a
point P expressed in the i+1th coordinate system may be
expressed in the ith coordinate system by performing the
following successive transformations:

1. Rotate about the 2i axis by an angle ei to align the

X. and X.

i 1417 Rot(Zi,ei).

2. Translate along the Zi axis a distance di to bring

the Xi and Xi+1 axes into coinc1dence,Tran(Zi,di).
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3. Translate along the Zi axis a distance a; to bring
the two origins into coincidence, Tran(Xi,ai).

4., Rotate about the X

j+1 2%1s an angle &5 to bring the

two coordinate systems to completely coincides

Rot (X sa;) .

Let the coordinates of a point P expressed in- the ith

coordinate system be (pxi’pyi’pzi) and in the '1+1th

coordinate system be (p Then the vectors

xi+1’Pyi+1°Pzi+1 -

P. and Pi+ can be written in the (4 x 1) matrix forms as

i 1

follows:

g - - -
Pyi Pyi+l
Pi = Pyi Piv1 = Pyi+l (3-1)
Pzi Pzi+t
1 1
5 - L o

The complete transformation of link i+l with respect to
link i or joint i+!1 with respect to joint i1 can be expressed

as :
Al = Rot(Zi,ei) Tran(Zi,di) Tran(Xi,ai) Rot(Xi,ai) (3-2)

Thus, we can obtain the homogenerous tramsformation

matrix CAiJ from i+1th frame to the ith frame



23

" o 1
cei —SeiCozi SeiSO(i aiCGi
[Ai] = sei CeiCai -—CeiSoci aisei (3-3)
0] Sai Cai d1
O 0 0 1
L i
where
Cei = cosei, Sei = sinei,
Cai = Cosai, Sui = sinai.

Also, the transformation of coordinate frome the i+lth

system to the ith system will be

F’i = EAi] Pi+1 (3-4)

and the inverse transformation exists :

— -1 '
Piep = ER31 7 Py (3-5)
where
- -
Ce.1 Se.1 0 —ay
_1 _ _ _ _
[ﬁi] = SeiCai CeiCai Sai diScxi {3-&)
0] . Sx. Cx. -d.Cu.
i i i i
(o] 0 0 1
L -

By applying the matrix transforamtion to each joint of
coordinate frame from the last joint coordinate frame to the

first joint coordinate frame, we yield

P, = [Allﬁé ]"'[An]Pn+1 = [Aeqv]Pn+1 (3-7)

1 2
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The egquivalent transformation matrix [Aequ] defines the
relationship between the coordinates of any point in the

last frame Pn and that of the same point expressed in the

+1
first frame, P1

Denavit and Hartenberg [38]1 developed a kinematic
notatiocn for lower—-pair mechanisms including revolute,
prismatic, Eylindrical, helical, and spherical joints based
on (4 x 4) matrices. For a revolute joint, di’ a;» and &5
are all constant, while ei varies as link i rotates about
the axis of joint i. For a prismatic joint ei, a; and oy
are congtant while di varies as link i translates along the
axis of joint 1. For a <cylindrical joint, it can be
considered as equivalent to a coaxial revolute and presmatic
joints. therefore, the joint variables are : ei varies as
link 1 rotates about the axis of joint i and di varies as
link 1 translates along the axis of joint i. For a helical

joint, both parameters ei and d.1 vary, being related by the

lead L.1 as

50 Sd
= ' (3-8)
r=hi) L. where € : radian
When Li is constant, either ei or c!.1 varies. Once Sdi
is obtained, di can be solved by
d. = d. + Sdi (3-9)
where dO : original link distance

The spherical joint is equivalent to a combination of
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three revolute joints whose axes are mutually perperdicular
at a common point of intersection (i.e., the joint variable
© become 91, ea, and 63). The joint motion parameters are

summarized as shown in TABLE II and in figure 4.

TABLE II

JOINT MOTION PARAMETERS FOR R,P,
H,C,AND S JOINTS

Type of Joint Motion Parameter
1. Revolute joint ei
2. Prismatic joint dj
3. Helical joint ©; or dy
4. Cylindrical joint ©; and dj
3. Sphgrical joint 3-revolute joint(©;,05,

and 63, and di=ai=0)

In order to synthesize and analyze spatial mechanisms
by using homogeneous transformation matrix method, we can
separate the transformation matrix [An] into two
submatrices: one is called joint-motion matrix EAV] in terms
of joint motion and the other is called 1linkage-parameter
matrix [QCJ in terms of linkage parameters. When synthesis

procedure is used, the joint-motion matrix [AVB becomes a



(A) Revolute joint (B) Prismatic Joint

(C) Helical Joint

Figuré 4. Joint Motion Parameter of Revolute,
Prismatic, and Helical Joints.
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constant and the linkage-parameter matrix CAC] becomes an

unknown matrix and vice versa when analysis procedure is

used. Therefore, we obtain
CAiJ = [Avi]EACi] (3-10)
where
'- Co. -86. 0 O
i i
[Avi Sei Cei 0O O (for revolute and (3-11)
Q O Q spher{cal joint)
0 0 O 1
R ;
—
Ce.1 —sei o 0
Sse. Ce o 0 {for cylindrical, (3—-12)
Q 0 c!.1 and helical joint)
0 0 o 1
-
F 1 0 0O 1
O 1 O (for prismatic joint (3-13)
O O 1 di
O O O
__J -l
— -
Fi11 %112 2113 %14
LA, 3ip1 %imE2 2ip3 2igs (3-14)
2331 %i32 2i33 2i34
(0] 0 0 1
3 [
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-
0] 6] a4 )
Cui —Sai 0 (for revolute and (3—-15)
Smi Cai di spherical joint)
0 0} 1
-
-
0 0 a.
i
Cai —Sui 0 (for cylindrical (3-16)
Sui Cai 0 and helical joint)
0 0 1

Cei —Sei C:o<i sei Sai a; cei

= Sei CeiCai —CeiSO(i
0] Sai Cai
) 0 0
__ 2
. -1
and expressing [Asij as :
.
Bi11 Py Py
.—l _
LA ;3 = I bipy bipp bipg
biz1 Piza Pias
0 ) )
N

where [a

T

‘j] and [bni,j]

0

1

-

are in

iSGi (for prismatic joint)

(3-17)

{3-18)

terms of linkage

parameters. Once the coordinate systems are established, the

synthesis and

analysis procedure of spatial mechanisms can

be obtained by using the transformation matrix with the help

of the tangent-

plane equation.



CHAPTER 1V

SYNTHESIS AND ANALYSIS OF DYADS FOR
FINITELY SEPATATED POSITIONS

GENERATED BY TANGENT-PLANE

In this chapter,; a new synthesis and analysis procedure
is developed, based on the tangent plane equation presented
in chapter II and the homogeneous transformation matrix
method presented in chapter 111, for Ffinitely separated
position with any combination of revolute, prismatic, and
helical joints to envelop a given surface by a tangent plane
carried by the moving rigid body.

The advantages of the proposed procedure can be briefly
stated as:

1. Taking a plane as the tracing element for path-

generation to envelop a surface.

2. Solving for any combination of binary links with R,

P, and H joints.

3. Obtaining the closed-form sclution.

47 Increasing the number of precesion positions.

The term "dyad" wused in this thesis refers to a two-
link chain ( a fixed link and a moving binary coupling link)
which is used to guide a third member through several design

positions. With two-parameter motion, we can investigate a

29
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mechanism having two degrees of freedom (i.e. a dyad).
There are nine combinations of dyads composed of mixed
revolute, prismatic, and helical joints as shown in
TABLE III.

In the next section,; we will examine the synthesis and

analysis procedure for each combination of binary links.

TABLE III

TWO DEGREES OF FREEDOM BINARY LINKS
WITH AND COMBINATION OF R, P,
AND H JOINTS

(1) R-R (4) P-R (7) H-R
(2) R-P (3) P-P (8) H-P
(3) R-H (&) P-H (?) H-H

Figure 35 shows a binary 1link kinematically connects a
moving rigid body which carries the tangent-plane to a fixed
coordinate frame. The joint connecting to the tangent plane
is called the moving joint and the joint connecting to the
fixed frame is called the fixed joint. P is the point where
the plane tangent to the surface. In figure 35, we establish
four coordinates frame as :

{ XY : fixed coordinate frame.
{(X1,Y1,21> : coordinate frame on the fixed joint J1.

X2,Y¥2,228% : coordinate frame on the moving joint Ja.



Surface

Tangent plane

Ficure 5. Binary Link with a Plane Attached
To the Moving Joint Tangential to
to a Surface

31
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{X3,Y¥3,23> : coordinate frame on the given tangent
plane at connecting point P.

Also, the parameters involve in fig(3) are:

{al,aa,qa} : the twist angles between the pair axes.

{al,aa,aa} : the link length.

(51,52,53} : the offset distances.

{61,68,63} : the rotation angles at each joint.

P. : the vector measured from origin of ith

i
coordinate frame to the point P.
where i1 = 1..4.

Since the origin of (X3,Y3,23) coordinate frame is on

connecting point of tangent plané and moving joint.

Thus, we obtain the matrix transformation measured from the

origin of (X3,Y3:23) coordinate frame to the fixed

coordinate frame as :

- - - €T
P O
1=
Ply = EQI]EAE][ABJ 0 {(4—1)
P12 o]
1 1
L o . d
-
0
= EﬁvlJ[ACl][AVE][ACE][AVBJEACBJ O (4—-2)
o]
1
L.
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Figure & shows that the finite displacement of a
tangent plane attached to a moving rigid body displaces from
. th . . th <y
i to 1ts j position. We note that the number of
possible synthesis positions .depends on the number of
unknown parameters and the constraint equations. Once the
constraint equations are derived, we can determine the
maximum number of allowable synthesis positions.

4.1. Synthesis of Dyads For Any
Combination of Revolute,

Prismatic, and Helical
Joints

{1) Synthesis of R-R crank:

It has been shown by Suh[1931 and Tsail203 that, for
rigid body guidance problems, the maximum number of design
positions for R-R cranks is three with no free choice of
design parameters. However, by using the tangent-plane
envelope generatioﬁ presented in this thesis, the maximum
number of synthesis positions can be obtained is nine.

By substituting Eq(4-2) into Eg(2-9), we obtain the
synthesis equation of R-R crank with tangent-plane attached

on the moving joint.

(nxCG1 + nySGl) (CeEaBCGB - SeeCaaaBSGB + SeESQEdS + aECGE)

+ (ny061Cq1 + nZSal - nx861Ca1)(SGEaBCGB + CeachaaBSS:3 -

CeaSotad3 + aaSOE) + (nxselsal - nyCGISal + nZCal)(SaaaBSGB

+ CO(Ed:3 + dE) + nxalcel + nyalsel + nzd1
Py

+ +
x n_,p n

Y Y sz



Figure 6.

position

Finite Displacement of Binary Link

34
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We note that the fundamental problem in the kinematic
synthesis 1is to determine the dimensions of linkages

required to pass through a series of points in space.

Therefore, the unknown variables in Eg(4-3) will be :

8. 33
dy» dp» dg
Xy > Gas &g

Since 61 is a fixed angle in this configuration, we can
assume 61 as an unknown variable rather than as a known
joint motion variable. Also, & is free Tfrom Eq(4-3).

Hence, the unknown linkage parameters are :

1’ 2’ 3
0(1, CXE’
o4

Let N be the maximum number of finitely separated
positions. There are nine unknowns in Eq(4-3). Thus, we

obtain

N =29 (4—4)

Therefore, the maximum number of finitely separated
positions for R-R crank can be obtained by given nine joint

motions. Then Eq{(4-3) can be rewritten as:

(nxnce1 + nynsel> (Cea aace - se CuEaBSOB +

56 Saad3 + aacean> + (nynC61Ca1 + nanal -

nxn561Ca1>(seEna3C93n + CeenCaeaBSean -
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CeenSaEdB + aESOEn) + (nxnselsal - nyncelsal (4-3)
+ nanal)(SuaaBSGBn + Caad3 + dE) + Xnalcel
+ nynalse1 + nzndl
=n P +n P +n_, B,
*n *n Yn  Yn “n  “n
where
(=] = 9 + &9
an En—-l an—l
S = + &6 n=1..9
3n Bn—l Bn—l
From Egt4-4), if el, &y and & are chosen as knouwn
value, Thus, we yield a linear equation in six unknowns.
Kla3 + KEaE + Kaa1 + K4d3 + KSdE + Kbdl = K (4—-6)
where
K1 = (nxnce1 + nynSel) (ceancean - SeanCaESGBn) +
(nynC61Co<1 + hanal - nxn591Ca1)(SeEnCGBn +
CGEnCaESGBn) + (nx 5915a1 - ny C615a1 + nZ‘Cal)
n n n
(Saesean)
KE = (nx cel + ny 561) CeEn +
n n
(nynCGICal + nanal - nxn561Cal) SeEn
Ke = {n, CO, + n, 56,)
3 X0 1 Y 1
Kq = (nxnce1 + nynsel> SeEnSaE +
(n C61Co<1 + n, Sal - n, Selca1>(—cean5aa)
n n n
+ (n 86150(1 -n (',‘el‘E;oc1 + n, Cal) Caa
n n n
Ke = (n_ 59,80, — n_ CO® .S, + n_ Ca,)
3 n 1 1 Yn 1 1 z, 1
K, = n
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Hence, the closed-form solution of R-R crank for six
finitely separated positions can be obtained by assuming 61,
aland aE.However,_ because of nonlinearity and complication,
the solution of nine synthesis positions of R-R crank can
not be obtain easily. The proposed synthesis procedure
provide an effective way to solve for nine separated
positions by first cobtaining the closed-form solution for
six finitely separated positions and assuming 61, %y and xo
as arbitrary values. O0Once the closed-form solution for six
finitely seaprated positions is obtained, we can proceed to
solve for seven, eight, and nine positions.

In TABLE IV, we summarize the synthesis procedure of

R-R crank for nine finitely separated positions.
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TABLE IV

SYNTHESIS PROCEDURE OF A R—-R CRANK
FOR NINE POSITIONS

Given :

1) The parametric equation of the surface to be
enveloped by a tangent-plane attached to the moving
joint of R-R cranks and nine precision points which
approximate the surface.

2) the rotational angle (joint motion) of each joint

Objective : Design a R-R crank, a tangent-plane attached to
a moving jo;nt in which envelopes a given surface
at the precision points.
(i.e., determine the linkage parameters a ;s 8o
ags Oy 0o 61, S Sp» 53.)
Procedure :
1) Calculate the normal vector of each precision

points fram

N_ =8 ®x 8 where n = 1..9

2) Establish the synthesis equations with the help

of the tangent-plane equations



(Cn - Pn) N_ =0

where

Y
o - -
X1 ¢)
C= Y = [Qljtﬂa][ABJ V)
Zz 0
t 1 1
- _J -l

3) Obtain the closed-form solution for &6 positions
by taking el,al, and %y as a guessing value.

4) Obtain the numerical solution of seven, eight,
and nine positions by using the synthesis

equation of R-R crank :

(nxnce1 + nynsel> (ceanaacean - SeanCaaaasean +
SeanSaad3 + aecean) + (nyncelf_‘,al + nanal -
nxn891Ca1)(SeEna3C63n + CeanCaEaBSOBn—CGEnSaEdB
+ aasean) + (nanGISul—nyncelsal + nZnCal)
(Saaa3863n+(:ocad3+da)+nxna1C61+nyna1861+nznd1

= Mg Py _*nm P N, Py

39
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Similarly, the synthesis procedure for the other cranks
with any combination of R, P, and H joints can be derived by

using the proposed procedure.

(2) Synthesis of R-P crank:
Number of Unknowns = 9 (ul,aa,a1,aa,aa,dl,da,el,ea)

Given joint motion = ©,5. ,d

21’31

Maximum number of positions'= 9
Maximum number of positions for closed-form soclution= 5
The synthesis equation is :

(nx Ce, + ny S0.) (Ce5 a Lo, — SO

Cx-a
n 1 n 1 2n 3773 2n 273

SeEnSaEdan + aECGEn) + (nYnCGlCO(l + nanal -

nanGICal)(SeanaBCGB + CeanCaEaa anSO(EdBn

+ a- 9590 ) + (nx Selsal—ny Celsa + n Cal)

563 +

SGB—CG

2" 2n n n 1 z_

(Sozaaase3 + Caad3 + dE) + nxna1C61+nynalsel+nznd1
=n p + n p +n p (4-7)

n=1..9

(3) Synthesis of R-H crank:

Number of Unknowns 9 (al,aa,al,aa,aa,dl,da,da,el)

Given joint motion = eai,eai( or dBi) (Also, L3 lead of
helical joint is provided)
Maximum number of positions = 9

Maximum number of positions for closed-form sclutions= &

{Note : for helical joint the joint motion variable can
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be ©. or d.)
i i

The synthesis equation is :

(nxnce1 + nynsel> (ceEnasceBn - SeanCaeaBSGBn +
‘E‘:ea‘_“é‘m(‘,_zd:3 + aacean) + (nyn661Co<1 + nana1 -
nanSICal)(SeEnaBCGEn + CeanCaEaBSOBn—CGEnSaEdB
+ aesean> + (nx SelSal—ny CGISO(1 + n, Cal)
n n n
(Saaa3563n+Cocad3+da)+nxnalcel+nyna1561+nznd1
= n B + n p + n_, p, (4-8)
*n o *n Yn  Yn “n “n
where
e = 6 + &6
En En—l En-l
S) = 6, + &6 n=1..9
3n 3n—l Bn—l
d3= do+ 6‘d3

(4) Synthesis of P-R crank:

]

Number of Unknowns 9 ‘“1’“a’al’ae’aa’d1’d3’91’ea’

Given joint motion = dE’GB

Maximum number of positions = 9
Maximum number of positions for closed-form solutions= 35
The synthesis equation is :

(nxncel + nynsel> (CeEaBCGBn - SGECaEaBSGBn +

SGESaEdB + aaCea) + (nynCGICal + nZnSa1 -

nxn561Cal)(Seaa3C63n + CeaCaEaBSGBH—CeaSaEdB

+ as590,) + (n, S59,5x,-n_ €O ,Sa, + n_ C«x,)
2 "2 T e N A z "1
(Saaa3563n+(3aad3+dan)+nxna1C61+ny a1591+nZ d

n n 1

where (4-9)
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63 = 93 + 663 n=1..9

(3) Synthesis of P-P crank:

Number of Unknowns

9 (0(1 ,O(E,,al ,aayaaydl ,91 568,93)
Given joint motion = t:iF_,,ci,\3
Maximum number of positions = 9

Maximum number of positions for closed-form solutions= 4

The synthesis equation is :

(nxncel + nynsel) (Ceaa3063 - SeeCo:EaBSe3 +
SOESaEdBn + aECGE) + (nyn0615a1 + nanul -
nxn561Ca1)(SeEa3C93 + CeECo(EaBSGB—CeESO(EdBn
+ a 59, + (n_ S9.8x,-n. C8,5«, + n_ Ca,)
2 2 % 1771 YA 1 1 z, 1
(Sotaa3863+Cozad3n+d8n)+nxna1C61+nyna1561+nznd1
= n p + n u] + n B (4-10)
*n  *n Yn  7n e N
where
d = d + &d
an En—l En—l
d = d + &d n=1..9
3n 3n-l 3n—l

{6) Synthesis of P-H crank:

Number of Unknowns Q (al,aa,al,aa,aa,dl,da,el,ea)

d

Given joint motion e,ea

Maximum number of positions = 9

Maximum number of positions for closed-form soclutions= 35

The synthesis equation is :

X 2 3 " 3n 2 23 3n

in, €6, + n_ S56.,) (Coa-LHO ~ 59 Lo a-56 +
n ! Yo o1

SGESaEdB + aECGE) + (nynCGICO(1 + nanal -
) (S8,a,CO + CGECaaaasean—CeaSaEda

n SGICal o 84

X

n 3n



43

+ aasea> + (nx Selsal—n CGISal + n, Cal)

n Yn n
(5a2a3593n+Co<Ed3+dan)+nxna1C61+nyna1561+nznd1
=n P + n p + n p. (4-11)
n *n Yn Yn Zn 7n
where
d = d + &d
En En—l En—l
S} = 6, + &6 n=1..9
Bn Bn—l Bn—l
d3= do+ <§‘cl3

(7) Synthesis of H-R crank:

I

Number of Unknowns 9 (“1’“2’31’aa’aa’d1’da’d3’ei)

Given joint motion = 68,63

Maximum number of positions = 9

Maximum number of positions for closed-form solutions= 6

The synthesis equation is :

(nxnCG1 + nynsel) (Ceanaacean - SeanCaEaBSGBn +
SeanSOtEd3 + aacean) + (nynCelCal + nanal -
n, 86 c«1><sea

%A 1

+ aaseEn) + (nx Selsal—ny Celsal + n, Cal)
n n n
SGBn+C0(Ed3+dE)+nx a1(361+ny a1861+nz cl1
n n n
=n, p, *n Ta) + n P, (4-12)

naBCGBn + CeEnCaaaBSGBn—CGEn8aad3

(Saaa3

63 = 93 + &6 n=1..9

(8) Synthesis of H-P crank:

Number of Unknowns = @ (a1,ua,al,aa,aB,dl,dE,el,ea)
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Given joint motion = ea,d3

Maximum number of positions = 9

Maximum number of positions for closed-form solutions= 5
The synthesis equation is :

(nX cel + n 561) (C a6, — 50, Ca @56, +

o o'
n Yn 2n 3773 2n 2 373

SeEnSaEdBn + aECGEn) + (ny C91Ca1 + n_ Sul -

n “n
nxnselCal)(SeanaBCOB + CGEnCaEaB

+ a 850, ) + (n_ S9,5«x,—n  C6,S5a, + n_ C«
2 " 2n xe 1771 Yn 1771 z
E_,.5:13863+(20(E_,cl:3]_1+d,‘__,)+nmna1Cel+nyﬁe.1561+r'|zﬂc11

=n p + n p +n P. (4-13)

Yn “n n

SGB—CeEnSQEdBH

l)

(S«

n=1..9

{9) Synthesis of H-H crank:

Number of Unknowns = @ (“1’“2’31’ae’aa’d1’da’da’el)

Given joint motion ea,ea
Max imum number of positions = 9

Maximum number of positions for closed-form solutions= &

The synthesis equation is :

(nxncel + nynSel) (CeanaBCGBn - SeanCaaagsean +
SeenSozad3 + aECean) + (nynCGICal + nZnSal -
nxn561Ca1)(Seana3C63n + CeanCuaaBSGBH—CGEnSaEdB
+ aESGEn) + (nx Selsal—ny celsal + n, Cal)

m n n

(Sa233593n+C0(8d3+d2)+nxnalcel+nynalsel+nznd1

=n P + n ) + n_ p (4-14)
*n *n Yn  Yn Zn  Zn
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where
o =.9 + &6
En En--l En—l
<) = © + &9 n=1..9
3n 3n—l Bn—l
da= do+-6da
d3= do+ Sda

4.2. Analysis of Dyads For Any
Combination of Revolute,
Prismatic, and Helical
Joints
{1) Arnalysis of R-R crank:

The fundamental problem in the kinematic analysis is to
datermine the relative motions of moving 1links where the
linkage parameters are given. Therefore, the unknown
variables in this category are ee and 63 while the 1linkage
parameters 813855835%; 5050335 1S 35 » and 61 are provided
as known values.

The point P on which plane tangential to the surface

can be expressed in the fixed coordinate frame as:

n— q — L
Plx qu
Ply = [A1][AE]EABJ qu (4-19)
Plz P#z
1 1
- - - -

Let the X—-axis of the (X34Y3,23) coordinate frame
]

normal to the tangent-plane (i.e., in the same direction of

unit normal vector of tangent plane), then we obtain
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qu = 0 (4-16)
Hence, from Eq(4-15), we yield four unknowns (i.e., GE,
63, qu and qu) in three equations.
Plx = EAeunIPQx (4—-17)
Ply = [Aequjapay (4—18)
P12 = EAeunBPQZ (4—-19)

where [Aequ]i is the ip Tow of Eﬁequ].

With the help of tangent-plane, we obtain the

tangent-plane equation as

(X—xo, Y—yo, Z—zO)N =0 (4—20)
where
-
B X ] i 0
Y = LA, 1TA;10A5] 0 (4-21)
2 0
L - I
-

by rearranging Egq(4-20), yields

<nxcel + nySGl) (C‘,eEaBC,G:3 - SeachaaBSe3 + SeaSaadB + aECGE)

+ (nyCelCul + nzSal - nx561Cul)(Se ato, + CO_ Lo

223t05 ob* o2 359

5 -
CeaSaEdB + aESGE) + (nxSelsal - nyC918a1 + nZCal)(SO(EaBSG3

+ CO(Ed3 + da) + nxalce1 + nyalsel + nzdl
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~
)
]

Thus, from Eq{(4-17) to Eq(4-19), and Eg(4-22),we obtain
four unknowns in four equations. The analysis procedure of

R-R crank is summarize in TABLE V.

4.3. Numerical Examples

In this section, numerical examples of synthesis of R-R
crank for six and nine finitely separated positions
generating different surfaces are presented in TABLE VI,
vii, VIII, and IX. Also, numerical examples of analysis of
R-R crank by using the given parameters which derived in

TABLE VI and VIII are presented in TABLE X and XI.



TABLE V

PROCEDURE OF ANALYSIS OF R-R CRANK

Given :1) The parametric equation of the surface to be
enveloped by a tangent—p}ane attached to the
moving joint of R-R cranks and precision points
which on the surface.

2) the linkage parameters of R-R links :

a: d

i? o

i? i? and el where i=1..3

Objective : Determine the joint motion of R-R links.
(i.e., calculate € and €5 )
Procedure :
1) Calculate the normal vector of each precision
points from N =95, x §,
2) Derive the analysis equations for the tangent-
plane motion

Pix = [Acquly Py

% equ -1 % , .

Piy = [Agqula Pay

Piz = [Rgquis Pyz

where P = p, i + pyj + pk

c=] v | = tajitAzitAzl | O
z 0
1 1

o - L -




49

TABLE VI

NUMERICAL EXAMPLE OF SYNTHESIS OF R-R
CRANK FOR SIX FINITELY SEPARATED
POSITIONS(CLOSED-FORM SOLUTION)

Given:1) The surface is given as a torus :
S = {(20+10cosV)cosU i + (20+10cosVYisinUd j + 10sinV k

2) the six finitely separated positions is given as :

P, = (30, 0, 0) Pp = (24.82, 14.33, 5)
Py = (12.5, 21.65, 8.66) P, = (0, 20, 10)
Pg = (-7.5, 12.99, 8.66) P, = (-9.82, 5.67, 5)

3) the joint motion is given as :

S21 = 0%  ©3; = 0°

§654 = 309, 664y = 30° §0np = 30°, 865, = 30°
§6pg = 30°, 8655 = 30° 605, = 30°; 864, = 30°
6§65 = 30°; 8655 = 30°
4) the choice of linkage parameters
8, = 0° xy = 90°, axo = F0°
Result :
a; = 28B.383969, agy = 13.956339, ag = —-12.340329
sy = —3.936347, s5 = -3.344426, s4 = —-13.720272
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TABLE VII

NUMERICAL EXAMPLE OF SYNTHESIS OF R-R
CRANK FOR NINE FINITELY
SEPARATED POSITIONS

[Bivenl :1) The surface is the same as in TABLE VI.

2) the six finitely separated positions is given as

L
[
]

{30, 0, O)
Pp = (29.8479, 2.6113, 0.8715)

Py = (29.3946, 35.1831, 1.7363)

P, = (28.6486, 7.6764, 2.5882)
Pg = (27.6241, 10.0343, 3.4202)
Py = (26.3401, 12.2826, 4.2262)

P = (24.8203, 14.3301, 3)
Pg = (23.0932, 16.1700, 5.736)

Pg = (21.1891, 17.7798, 6.4279)

3) the joint motion is given as : ( © : degree)
621 = 0% 633 = 0°
6§65 = 3%, 6§65, = 3° §00n = 59, §O0gn = 3°
§0p5 = 5%, 6699 = 3° 8§65, = 3%, 8§65, = 3B°
§O0ng = 35°%, §03g5 = 35° §6o, = 3°, 5936 = 3°
8§00 = 5%, §6g9~ = 3° §0pg = 3%, §03g = 5°
Result :
&4 = 43°%, xy = 30°, Lop = 27.662°
a| = 6.26973343, apy = 22.350643583, an = —6.54820347

30.77313232

Sy 1.39241803, sp -45.4883788, sqg
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TABLE VIII

NUMERICAL EXAMPLE OF SYNTHESIS OF R-R
CRANK FOR SIX FINITELY SEPARATED
POSITIONS ( SURFACE IS GIVEN
AS A SPHERE)

[Givenl :
1) The surface is given as a sphere :
§ = 20cosUsinV i + 20sinUsinVY j + 20cosV k

2) the six finitely separated positions is given as :
Py = (8.665 5.0, 17.32)
Po = (9.848, B.26, 15.321)
Py = (9.848, 11.736, 12.836)
Py = (B.665 15.0, 10.0)
Pg = (6.428, 17.66, 6.84)
Py = (3.42, 19.4, 3.473)

3) the joint motion is given as :

981 = 309, 631 = 30°

605y = 10°, 865, = 10° 8655 = 10°%,; 8655 = 10°
6653 = 10°, 8635 = 10° 805, = 10°, 864, = 10°
§0og = 10°, 8635 = 10°

4) the choice of linkage parameters

&, = 43°, &y = 30°, ap = 30°
Result :
aqg = 1.40560913, ag = 39.28113174, ag = —3.97064018
Sy = 45.46696472, s, = 13.25787354, s5 = -73.80399323
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TABLE IX

NUMERICAL EXAMPLE OF SYNTHESIS OF R-R
CRANK FOR NINE FINITELY SEPARATED
POSITIONS (SURFACE IS GIVEN
AS A SPHERE)

[Givenl :
1) The surface is the same as in TABLE VIII.

2) the six finitely separated positions is given as :

P, = (3.42, 0.6031, 19.6962)
Pp = (5.0, 1.3397, 19.3185)
Pé = (b6.4279, 2.3396, 18.7939)
P, = (7.6604, 3.5721, 18.1262)
Ps = (8.6603, 5.0, 17.3205)
Py = (9.3969, 6.5798, 16.383)
P, = (9.8481, 8.2635, 15.3209)
Pg = (10.0, 10.0, 14.1421)

Pg = (9.8481, 11.7365, 12.8358)
3) the joint motion is given as : ( © : degree)

981 = 1005 631 = 10°

§65; = 5°, §6g; = 5° §0pp = 5°, 6050 = 5°
§603 = 5°, §6g5 = S° 8§05, = 5°, §6g, = 5°
8605 = 5°, 86g5 = 5° 8§65, = 5%, 865, = S°
8§05 = 59, 8§65, = S° §0ag = 5°, §63g = 5°
Result :
o, = 30.0°, %, = 45.0°, xp = 33.2497°
a; = —B.638578B41, ag = 16.09467697, ag =-0.944676548
s, = 33.69320679, s5 = -13.00896783, s5=—22.09254456




TABLE X

NUMERICAL EXAMPLE 1 OF ANALYSIS
.OF R-R CRANK

[Givenl:
1) The surface is given in the TABLE QI.
2) The point on the surface is given as
P = (30,0,0)
3) The linkage parameters are given as:
a, = €8.584, ap = 13.956, ag = -12.540
sy = —-3.936, s = —3.344, sg5 = -13.720
©, = 0%, xy = 90°, xo = F0°
[Resultl:

©p = 30.0331° ©5 = 29.9664°




TABLE XI

NUMERICAL EXAMPLE 2 OF ANALYSIS
OF R-R CRANK
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[Givenl:

1)

a)

3) The linkage parameters are given as:

[Resultl:

The surface is given in the TABLE VIII.

The point on the surface is given as

P = (0,0,20)

al = 35-(‘?68,

51=0’

o, = 45°,

©5 = 30.0021°

ag
Sa=

O(1=

61.683,

-130.773,

30°,

30.3053°

az
3

%a

1

0

-186.392

30°




CHAPTER V

SYNTHESIS OF DYADS FOR INFINITESIMALLY
"AND MIXED MODE SEPATATED POSITIONS

GENERATED BY TANGENT-PLANE

Generally, motion of a rigid body can be described in a
number of ways. Sometimes, it is required of the tangent
plane to move with a given velocity,; acceleration, jerk,
etc. (higher—-order properties of motion) which generate the
given surface. Design methods to satisfy such requirements
will be developed in this chapter. Such design procedures
are also referred to as design for infinitesimally separated
position or mixed mode position synthesis. Infinitesimally
separated positions synthesis procedure differ from mixed
mode separated position in that only one position of the
tangent-plane is considered or we have only one finitely
separated position involved in the design. Infinitesimally
separated position design can be considered as a degenerate
case of mixed position design.

In the previous chapter,; we developed the synthesis

procedures for finitely separated positions of dyads
composéd- of Revolute, Prismatic, and Helical joints. In
this chapter, we will develop the first-order and
higher—-order synthesis procedures for infinitesimally

35
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separated and mixed mode positions of dyads with any
combination of Revolute, Prismatic, and Helical joints.

The infinitesimally separated displacements of a rigid
body tangential to any surface, is described by the
properfies of the rigid body as it approaches the surface at
the tangential point. These properties may be the velocity,
acceleration, jerk, time rate of change of jerk(kerk) etc.
Hence, the instantaneous angular motion of the tangent plane
involving infinitesimal changes in angular displacements can
be described with respect to changes in time by specifying
dea/dt, dae/dtap dae/dta, dae/dt3 { or ©, 9, Q@)etc.

Mixed mode position synthesis 1is more in touch with
reality involving concepts familiar to a mechanical
eangineer rather than the esoteric ideas of theoretical
kinematics. In general it has two or more finitely
separated positions with the design requirements being
velocitys, acceleration etc. at each finite position. A
different way of describing mixed position synthesis would
be define it as designing for finitely separated positions
with having to satisfy infinitesimal position requirements
at one or more of the finite positions.

The synbolic notation proposed by Tesar for mixed
position synthesis will be made use of in this study to
represent the design situation. The symbol P represents a
single position of the tangent-plane. The combination P-P
represents two finitely separated positions, and PP

represents tow infinitesimally separated positions. The
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combination P-P-P-P-P represnets a five finitely separated
position (five precisions point) problem. The combination
P-PP-PPP-PP-P represents a five finitely separated position

problem with higher order motion reguirements at the second,

third, and fourth positions.

5.1. First Order Infinitesimally and
Mixed Mode Separated Positions

The synthesis equations derived in the previous chapter
will be used here to derive the synthesis equations for the

first order infinitesimally and any combination of mixed

mode separated positions.
(1) R-R Crank

(A) Synthesis of R-R Crank for Infinitesimally And
Mixed Mode Separated Positions

The synthesis equation for the first order
infinitesimal separated position is cbtained by
differentiating the basic form of the synthesis eguation
(4-3) for finitely separated positions. Therefore, for
synthesis of infinitesimally separated positions of R-R
crank, we need toc take the rate of change of joint motion
variables GE and 93.

By taking the derivative of Egq(4-3) with respect to time

t, we obtain

[ ] ) [ 3
(nxCel+ny961)( —Seaa366398 - Ceaaaseaea + C@ECQEBBSGBQE +

® L4 o
- [ons — —_
SGECaEaBCGBGB + Ceaaaedaeg aESGEea) + (nyC@lCO(l + nESO(1
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[ [ ] [ ]
nxSGICal)(—SUEaBCOBOE +‘Ceaa356393 - SeECaEaBSGBGE +

Co,Cu

[ ] L4 ®
- 833C636 S6,50,d,6, + aECGEGE) + (ﬁX‘SGISO(;l -

3 2°%253%2
[ J
)(Soea_Co_0_) = O (5-1)

.nycelsul + nEch1 - a5L050,

Hence, by adding EqQ(4-3), we yield two synthesis
equations of R-R crank for each infinitesimally separated
position.

{B) Synthesis of One First Order Mixed Mode Separated
Positions

Since the maximum number of synthesis positions for
finitely separated positions is nine, the possible
combinations of synthesis of mixed mode separated positions

with the first order motion requirement can be listed as in

TABLE XII. The procedure can be best explained by example.



TABLE XII

NINE SYNTHESIS POSITIONS WITH ONE,
THREE, AND FOUR FIRST

TWG,

ORDER MOTIONS
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One First Order

PP-P-P-P-P-P-P-P
P-PP-P-P-P-P-P-P
P-P-PP-P-P-P-P-P
P-P-P-PP-P-P-P-P
P-P-P-P-PP-P-P-P
P-P-P-P-P-PP-P-P
P-P-P-P-P-P-PP-P
P-P-P-P-P-P-P-PP

Four First Order

PP-PP-PP-P-PP
PP-PP-P-PP-PP
PP-P-PP-PP-PP
P-PP-PP-PP-PP
PP-PP-PP-PP-P

Tow first order

Three First Order

PP-PP-P-P-P-P-P
PP-P-PP-P-P-P-P
PP-P-P-PP-P-P-P
PP-P-P-P-PP-P-P
PP-P-P-P-P-PP-P
PP-P-P-P-P-P-PP

P-PP-PP-P-P-P-P
P-PP-P-PP-P-P-P
P-PP-P-P-PP-P-P
P-PP-P-P-P-PP-P
P-PP-P-P-P-P-PP

P-P-PP-PP-P-P-P
P-P-PP-P-PP-P-P
P-P-PP-P-P-PP-P
P-P-PP-P-P-P-PP
P-P-P-PP-PP-P-P
P-P-P-PP-P-PP-P
P-P-P-PP-P-P-PP
P-P-P-P-PP-PP-P
P-P-P-P-PP-P-PP
P-P-P-P-P-PP-PP

PP-PP-PP-P-P-P
PP-PP-P-PP~P-P
PP-PP-P-P-PP-P
PP-PP-P-P-P-PP
PP-P-PP-PP-P-P
PP-P-PP-P-PP-P
PP-P-PP-P-P-PP
PP-P-P-PP-PP-P
PP-P-P-PP-P-PP
PP-P-P-P-PP-PP
P-PP-PP-PP-P-P
P-PP-PP-P-PP-P
P-PP-PP-P-P-PP
P-PP-P-PP-P—PP
P-PP-P-P-PP-PP
P-P-P-PP-PP-PP
P-P-PP-P-PP-PP
P-P-PP-PP-PP-P
P-P-PP-PP-P-PP

etc.
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Consider a nine position problem. The design eguatiaon
for a nine position finitely separated problem is given by
Eq(4-3). Also, the first—-order infinitesimally separated
equation 1is obtained from Egq(5-1). Supposed we are
synthesizing for a PP-PP-PP-PP-P type of problem. They are
five finitely separated positions with a first-order
(velocity) reqguirement at fgur of the finite position. With

the five finite positions five synthesis equations can be

formed. A nine-position requires nine equations to solve
for the nine unknowns. The remaining fTour equations of
synthesis are the first order infinitesimal synthesis
equations at the first, second, third, and fourth finite
positions. Hence, Eq{(3—-1) can be rewritten as
. .
(anC61+nyn591)( —Seanaaceanean - Ceanaaseanean +
CO CogagS05 0p, * 505 Cupagloy Og + CO5 Sagdgbs -
aESGEnéEn) + (nynCGICul + nZnSO(1 - nanGICul)
(~505,35C05, &5 + COp 25505 O - Sean‘:“aaaseanéan *
Co, CopagCoy 8. = S0, Sandy®y  + a5Coy 6, ) + (n, S8, Say
- nynCSlSal + nzCal)(SaEaBCGBHéBn) = 0 (5-2)
where
ean ) ean—l - 6ean—l
eBn B 63n—l ’ aean—l
and
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and the other five equations can be obtained from
Eg(4-3) when n=1..5.

Similarly, the synthesis procedure for first-order
infinitesimally and mixed mode separated positions of the
other types of dyads composed of revolutes prismatic, -and
helical jeint can be obtained by wusing the proposed

synthesis procedure of R-R crank.

5.2. Higher-0Order Infinitesimally, Mixed
Mode Separated Positions
Recapitulating, a tangent-plane can be designed for a
maximum of nine positions for R—R crank. With the help of
Egq(4-3) it is now possible to design satisfying higher order
motion requirements at certain position. For example,
P-PP-PPP-PP-P, PPP-PPPP-PP, PP-PPP-PPP-P-P, etc. The second
order synthesis equation in obtained by differentiating
Eq(4-3) twice or diffenentiating Eg(5-1) once. The basic

form of the second order synthesis equation is given by

- - - . 2 b
XCal ny Ul) —L@EaBCaBea + SeaaBSHBvEea 56233C6362
- e 2 - - . - 2
CHE BP 25 + aeaaBSaae eE CeaaBSeaea + CeaCaaaaceauaea
s 2 _ . e
=1} Caaaas ea + 92 aaaaeBHa + CeECme 3L§393ﬁ2 -
E E o9

S@ECOE 38H3 5+ S@ECaEa3C9393 - SGESaadBEE + C@ESaadBGE

- 2 2 - = =
aaC$aﬁa + aaseaee + (nyCGICal + n Sy —A nxad1Cul)
o’

- . * 2 . 2 e _ .o - A=
(—CeaaBC@aea + Seaaaseaeaea - SaaaBCaaae + CdaaBCHBHB

& e o - . 22
— 5858558385083 + UO;835638, — CosCosa550508, -
[ 4
SGECaeaaceaeaea — 565Cx, 356368 - S65Cx, BCGBGEGB

L J
_ e - _ o - 2 i »
CHECaEaBSSBHB - CBECaEa356353 - CuaSaEdaea - SHESQEdBdE -

n
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[ 1]
(—bmeaabe &3 + Saaaabeaas) = 0 (5-3}

A second order design requirement 1is to specify the
acceleration of the tangent-plane. A second-order

infinitesimally separated position synthesis requires the

simultaneous solution of two equation — the first order and
the second order synthesis equation, that is Eqi(3-1) and
Eq(5-3). It 1is now possible to synthesis for design

requirements of the types P-PPP-P-P-P-P-P, P-PPP-PP-PPP,
PPP-PPP-PPP, etc.

Considering a nine position problem - PPP-PP-PPP-P.

There are four finitely separated positions with a
first—-order (velocity) requirement at one of the finite
position and with a second-order (acceleration) requirement

at two . of the finite position. With the four finite
position, four synthesis equations can be formed. Ne know
that &a nine-position requires nine equations to solve for
the nine unknowns. The remaining five equations of
synthesis are the first infinitesimal synthesis equations at
the first, seconds, and third finite positions, and the
second infinitesimal synthesis equaticons at the Tfirst and
third finite positions.

The synthesis equation of third-order infinitesimally
and mixed mode separated positions can be obtained by

differentiating Eg(5-3).
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Similarly, the synthesis procedure for higher-—order
infinitesimally and mixed mode separated positions of the
other types of dyads composed of revolute; prismatic, and
helical joint can be obtained by wusing the proposed

synthesis procedure of R-R crank.

5.3. Numerical Examples

In this section, numerical examples of synthesis of R-R
crank for first-order and bhigher-order infinitesimally

separated positions are presented in TABLE XIII and XIV.



TABLE XIII
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NUMERICAL EXAMPLE OF SYNTHESIS OF R-R
CRANK FOR FIRST~ORDER INFINITESIMALLY
SEPARATED POSITIONS(PP-PP-PP-PP-P)

Given:1)

Result

2)

The surface is given the same as in TABLE VI.

the five finitely separated positions are given as

(30, O,

(24.82,

(12.5,

= (09 EO,

= (_7.5’

the joint moti

21 = 0%
§6p; = 30°,
§6o5 = 30°,
8655 = 309,
8§65, = 30°,
= £7.319,
= 18.3476,
= -243.637,

o)
14.33, 3)
21.65, B.&66)

10D

12.99, 8.66)

on is given as

©31
865,
8§65
S04

§034

%

an

Sa

= 0° 21
= 30° .
= 30° 95
= 30° Oa,
= 30°

23.56°, ap =
113.349, ag =
-13.346, sg =

:(©:degree, 9:rad/sec)

=1, 6g; = 1
= 1, 655 = 1
=1, 635 = 1
= 1, 634 = 1
147.58°
~62.329
-14.202
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TABLE XIV

NUMERICAL EXAMPLE OF SYNTHESIS OF R-R
CRANK FOR HIGHER-ORDER MIXED MODE
SEPARATED POSITIONS
(P-PPP-PP-PPP)

Given:1l) The surface is given as the same as in TABLE VI.

2) the four finitely separated positions is given as :

P, = (30, 0, O)
Po = (24.82, 14.33, 5)
Py = (12.5, 21.65, B.66)
P, = (0, 20, 10)

3) the joint motion is given as :
(& : degree, © : rad/sec, and © : red/seca)

©g) = 0% O34 = O°

8§65, = 30°, 864, = 30° Oon = 1 045 = 1
8055 = 30°, 655 = 30° Opg = 15 055 = 1
§655 = 30°, 8055 = 30° Og4 = 15 054 = 1
g2 = 0» 932 = O B
a4 = 05 834 = O
Result :

o, = 132.86°, o« = 26.27°, op = 48.56°

a, = 21.376, ap = 14.59, ag = 12.29

s, = 23.37, S5 = 23.46, sg = 17.42




CHAPTER VI

SYNTHESIS OF TWO-PARAMETER-MOTION TWO-
DEGREE-OF-FREEDOM SPATIAL MECHANISMS
CARRYING A RIGID BODY WITH A TANGENT
PLANE AS MOVING ELEMENT TO HAVE SIX,

FIVE, AND FOUR COMPONENTS OF MOTION

In the previous chapters, the synthesis procedures of
finitely, infinitesimally, and ~ mixed mode separated
positions are derived by using the tangent plane equa£ion5
and homogeneous transformation matrix for open loop chains
(dayds composed of mixed revolute, prismatic, and helical
joints) with two degrees of freedom. It is desired that the
synthesis procedures can be made use of in the synthesis of
closed-loop spatial mechanisms. 0One of the. singificant
advantage of the proposed synthesis procedures is that it
also can be applied for two degree—of—fré;dom spatial
closed—loop mechanisms Qith two—-parameter motion having six,
five, and four components of motion.

In this chapter, we will synthesize closed-loop
spatial mechanisms by using the proposed synthesis

procedures developed in Chapter 1IV.

&7
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6.1. RRSS Spatial Four-Link Mechanism

The synthésis procedure of spatial closed-loop
mechanism can be obtained by using the similar precedures
presented in chapter IV. A RRSS spatial four-link mechanism
is shown in figure 7. Since the tangent plane attached to
the coupler 1link connecting RE and Sa joints, we can
syntheéize RRSS mechanism by separating it into two
ocpen—loop chains: right hand side open-loop chain and left

hand side open—-loop chain. From figure 7, the right hand

side open-locop chain is 885 crank and the left hand side

open—loop chain is RR crank. From RR crank, we establish
four coordinate frames presented 1in chapter IV. From 5SS
crank, we establish another four coordinate frames.

Therefore, the linkage parameters involve in this mechanism

are :
RR crank 85 crank
21°%2°9%3 8428528
dl’dE’dB d4’d5’d6
®Ry 3 Oo 9 Oy O, 3 O 3 K
0,505,064 26519,

For a spherical joint, Denavit and Hartenberg presented
a notation which can be considered as three revolute joints
intersect in one point and perpendecular to each other.
Hence, 65 will become three joint wmotion parameters
eSl,esa,esa. Also, eé .becomes 961’662’663' Since RRSS

mechanism is a two degrees of freedom mechanism, we can



Figure 7.

RRSS Spatial

Mechanism
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assume joints Rl and RE as two driving input. Hence, GE and

e are given as the input motion parameters. Also, asg is

3
equal to a,- &g can be assumed as 90 from figure 7. Hence,
there are 14 unknowns in right hand side and 10 unknowns in
left hand side.

In order to derive the synthesis eguations of RSSR

mechanism, we know that we can obtain two tangent plane

equations from R-R crank and S-S crank.

(XR—XOgYR_yO,ZR_ZO) N =0 (6—-1)
(XL-—XC”YL—YO"L_ZO) N = O (b_a)
where (xo, Yo 20} = a point tangential to the surface.
N = unit normal vector.
'l - -
XR r 0
YR = [Alltﬁaltﬁaj O (6—-3)
< O
1 1
h -l _J [

= transformation of the right hand

side open-loop mechanism

L
YL = [AQJEAEJEAé] 0O (&6—4)
ZL O
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= transformation of the left hand

side open—loop mechanism

Since we establish the connecting point as fhe origin
of coordinate ffame on the tangent plane and the X-axis is
normal to the tangent plane, then the point on the tangent
plane can be expressed as P = ( 0, Py’ Pz}. The censtraint

equation can be obtained by equating both side and by using

transformation matrix.

itA, 3 P

EAIJCAEJEABJ F’q = EQQJCA5 5 4 {(6-3)

Eq(6—-3) can be rewritten as three component equations

LAoqy rightdt Pa = DhAoqu 1eftt Py (6-6)
EAequ rightja Py = [Aequ 1eft iz Pu (6=7)
[Aequ rightJB Py = [Aequ 1eft 13 Py (6-87

where [Aequ right]i = the ith row of [gequ] on the

right hand side.

P, = (0, P P

4 4y’ T4z’

For each separated position, we can obtain two umknowns

from qu and qu, and five synthesis eguations. Hence

Number of synthesis equations = SN
Number of unknown = 10 + 14 + 2N
Maximum number of positions = a8



Number of free choice parameter = 0
Thus, the maximum number of positions of RRSS spatial
mechanism is eight with no free choise of parameter. The

result derived here is consistent with eight synthesis
finitely separated positions for path-generation of RRSS

mechanism presented by Suhl{S591.

&.2. RHCRE Spatial Five-Link Mechanism
Having Four Components Of Motion
From the synthesis procedure of RRSS mechanism, we can
derive the similar procedure for RHCRC spatial five-link
mechanism having four components of motion. A RHCRC spatial
five-link mechanism having four components of motion is
shown 1in Tfigure 8. By separating RHCRC mechanism into two
cpen loop chains; we obtain RH link on the left hand side
and RRC 1ink on the right hand side. the total linkage

parameters of RHCRC are

RH link CRC 1link
algaa,aa 34535936937
dl,da,dg dq’dS’dé’d7
91’68’63 eq;95;96,97
0(150(850(3 GQ,O(S;O(é)0(7

The procedures of obtaining the synthesis equation of

RHCRC mechanism is similar to RRSS mechanism.

From Eq(é—-1) and Egi(é-2)s we obtain two synthesis
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: H]
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Figure 8. RHCRR Spatial Mechanism Having
Four Components of Motion
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equations.

(X R"')’\ ‘:)’ YH“VO’ ZR—’Z

O)

N

(XL—xO,YL—yO,ZL*ZO) N

where {xo, Yo

N
r -
R
Yo =
<R
1
- -

r . -
X
Y, =
2L
1
3 -

0} = a point tangential to the surface.
= unit normal vector.
r -
0
[Al]EAaJ[ABJEAq] 0 (6-9)
0
1
- -

transformation of the right hand

side open—-loop mechanism

o -
0
[95][96][97] O {6-10)
0
1
_J [

= transformation of the left hand

side open—-loop mechanism

The constraint

equation can be obtained by equating

both side and by using transformation matrix.
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[AIJ[AEJEAEJEAq] F"+ = [ASJCA6]EA7] .Pq (6-11)

Eq{(6-%2) can be rewritten as three component equations

the same as Eg(6—-6)-Eq(6-8). Hence

Number of synthesis equations = 3N

10 + 15 + 2N

Number of unknown

Maximum number of positions =8

Number of free choice parameter 1

6.3. RCCRR Spatial Five-Link Mechanism

Having Five Components Of Motion
From the synthesis procedure of RRSS mechanism, we can
derive the similar procedure for RCCRR spatial five-link
mechanism having five components of motion. A RCCRR spatial
five-link mechanism having four components of motion is
shown in figure ?. By separating RCCRR mechanism into two

parts, we obtain RC link and CRR link. Hence,

Number of synthesis equations = 5N

Number of unknown 10 + 15 + 2N

Maximum number of positions = 8

Number of free choice parameter 1

&6.4. RCCCR Spatial Five-Link Mechanism
Having Six Components Of Motion

From the synthesis procedure of RRSS mechanism, we can

derive the similar procedure for RCCCR spatial five-link



Figure 9.

RCCRR Spatial Mechanism Having
Five Components of Motion
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mechanism having six companents of motion. A RCCCR spatial
five-link mechanism having four components of motion is
shown 1in figure 10. By separating RCCCR mechanism into two

parts, we obtain RC link and CCR link. Hence,

Number of synthesis equations = 5N

10 + 15 + 2N

Number of unknown

Maximum number of poesitions = 8

Number of free choice parameter 1

6.5. Numerical Example

In this section, numerical example of synthesis of
RCCCR mechanism for three finitely separated positions is

presented.



Figure 10.

RCCCR Spatial Mechanism Having Six
Components of Motion
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TABLE XV

NUMERICAL EXAMPLE OF SYNTHESIS OF RCCCR

MECHANISM FOR EIGHT FINITELY
SEPARATED POSITIONS

Given:

Result

1)

2)

3)

4)

a9

The surface is given as the same in TABLE VI.

the three finitely separated positions is given as :

1

Py = (30, 0, 0O) Po = (24.82, 14.33, 3)
Pz = (12.5,21.65,8.66) Py = (28B.65,7.68,2.59)
Pg = (27.62,10.053,3.48) Py = (26.34,12.28,4.22)
Pr = (24.82,14.33,3) Pg = (281.19,17.78,6.43)

the joint motion is given as :

©p1 = 0% ©3, = 0°

6§05, = 30°, 6§05, = 30° 6§05 = 30°, 6035 = 30°
§0o5 = 309, §8g5 = 30° 605, = 30°, 8845, = 30°
§0o55 = 309, 6055 = 30° §0o, = 30°%, 80645, = 30°
6055 = 30°, 6§05~ = 30°

the choice of linkage parameters

el = Q°

8.839, ag = 3.3539, ag = 112.409, a, = 126.64%,
27.849,86 = 12.309, d = 3.347, do = 45.446,
18.569, dgy = 53.639, d5~= -8.64, d, = 23.62,

-2.24, oy = 33.346°, ap = 153.7228°, «, = 48.379°,
123.359%, a, = 172.329°%, a5 = -32.26°,

43.647°, 85 = 75.226°%, 8, = E17.36°, ©5 = -25.45°




CHAPTER VII
SUMMARY AND CONCLUSIONS

Based on the traditional approach to path-generation
problems, the coupler—-curve is viewed as a set of discribe
points. From the geometric points of view, a curve or a
surface may be generated in general by a point, a line, or a
plane embedded in a moving rigid body. It is known that a
point and a plane are dual concept in space geometry as well
as a point and a line are considered as dual elements 1in
planar projective geometry. This leads to a new concept of
a surface being considered as plane-envelop which is a set
of its tangent plane; 1i.e., the surface is considered to be
defined by a set of tangent planes.

For the dyads with any combination of R, H, and P
joints having two—-parameter motion, the synthesis procedures
are derived for nine finitely separated positions. Also,
the synthesis procedures of first-order and higher—-order
infinitesimally and mixed mode separated positions are
presented in chapter Iv. For two degree-of-freedom
closed-loop spatial mechanism having four, five, and six
components of motion, the synthesis procedure is derived by
separating 1t into two open—-loop chains. We locaped on the

coupler link the locus of points or the family of planes
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which generate surfaces with the desired local properties..

This thesis presents the extension study on the spatial
mechanism having two-parameter motion. It extends the
synthesis procedure from the tranditional one—parameter
point—-path motion and rigid-bedy guidance to two—parameter
tengent-plane envelop. The synthesis and analysis procedure
is based on the homogenecus transformation matrix method.
The proposed theoretical developments of the two- parameter
motion study followed their applications demonstrating
synthesis of two degrees of freedom mechanisms carrying a
rigid body with a plane as moving element and having six,
five, and four components of motion. The proposed research
on two-parameter motion of a plane in space motion
contribute significantly in advancing the fundamentals of
kinematic synthesis of rigid body motion having two degrees
of freedaom.

One of the important applications of present study is
the robot hand with multiple fingers.‘ There are two or
three )degrees of freedom for each finger. It is desirable
to catch an arbitrary object by using the robot hand. the
motion of each finger to touch the surface of object can be
related to a two to three degrees of freedom mechanism
carries a tangent plane as a moving element as shown in
figure 11. Therefore, the present study provide the insight
of kinematics for synthesis problems.

For the future study, the present study is expected to

provide a significant contribution for the tangent plane



TWO D
OF-FREEOPM
ROBOT F

Figqure 11. Two Tangent Plane Attached to Two
Two-Degree-of-Freedom Robot Fingers
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envelope generation with more than two-parameter motion.

A general computer program is developed to carry out
the synthesis and analysis procedure of open-leocop and
closed—-loop mechanisms for finitely, infinitesimally, and

mixed mode separated positions.
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APPENDIX A

COMPUTER PROGRAMS FOR FINITELY,
INFINITESIMALLY, AND MIXED

MODE SEPARATED POSITIONS
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* SYNTHESIS OF SIX FINITELY SEPARATED POSITIOMNS OF
* R-R CRANK

* .
FhA A KA AR AKRKAIIRAA A ANk Ak hkhkhkhkhhhhhkhkhkhhhhhhhhbkkkkk

khkkkhkhkkkhkkhkhkhkkhkkhkhkkhkkhkhkhkkhkkhhkhkkhkhhhkhkkhkhkhkkhhkhkhkkhhkhkhkhkhkkhkdhkkkhkdkkkhhkxk

THIS PROGRAM IS SOLVE FOR THE LINEAR SOLUTION OF
LINKAGE PARAMETERS al, a2, a3, dl, d2, d3

* % o X X %

Synthesis of six positions

kkhkkkkhkkkkkhkhkhkkhkkhkhkhkkhkkhkhkhkkhkhkhkkhkhhkhkhkkhhhkkhhkhkhkkhkhkhkkhkhkhkhkkhhkkkhhrxkkx

dimension a(40,41),x(40)

real nx(6),ny(6),nz(6),theta2(6),theta3(6),px(6),py(6),
- pz(6)
pi=3.14159/180.

thetal=45.*pi
alphal=30.*pi
alpha2=30.*pi
theta2(1)=30.*pi
theta3(1)=30.*pi
theta2(2)=40.*pi
theta3(2)=40.*pi
theta2(3)=50.pi
theta3(3)=50.*pi
theta2(4)=60.*pi
theta3(4)=60.*pi
theta2(5)=70.*pi
theta3(5)=70.*pi
theta2(6)=80.*pi
theta3(6)=80.*pi

nx(1)=300.
nx(2)=297.3435364
nx(3)=289.4804993
nx(4)=276.7246704
nx(5)=259.5814209
nx(6)=238.7224121
ny(1l)=0C.
ny(2)=24.0141697
=51.0431862
=74.1481018
=94.4798431
=111.3179932
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nz(1)=-173.2050018
nz(2)=-196.9615021
nz(3)=-196.9615936
nz(4)=-173.2052612
nz(5)=-128.5578156
nz(6)=-68.4044037

px(1)=8.6602507
px(2)=9.8480759
px(3)=9.8480797
px(4)=8.6602621
px(5)=6.4278908
px(6)=3.4202201
py(1)=4.9999933
py(2)=8.2635078
py (3)=11.7364693
py(4)=14.9999857
py(5)=17.6604328
py(6)=19.3969193
pz(1)=17.3205128
pz(2)=15.3208952
pz(3)=12.8557625
pz(4)=10.0000143
pz(5)=6.8404207
pz(6)=3.4729831
data n,eps/6,1.e-5/
m=n+1

print*, 'input the coefficienrt '

do 1 1=1,n

do 1 j=1,n+1
1 read*,a( »3)
do 100 i=1,6
a(i,1)=(nx(i)*cos(theta1)+ny(i)*sin(thetal))
*(cos(theta2(i))*cos(theta3(i))
-sin(theta2(i))*cos(alpha2)*sin(theta3(i)))
+(-sin(thetal)*cos(alphal)*nx(i)+cos(thetal)*
cos(alphal)*ny(i)+sin(alphal)*nz(i))*
(sin(theta2(i))*cos(theta3(i))+cos(theta2(i))*
cos(alpha2)*sin(theta3(i)))+(sin(thetal)*
sin(alphal)*nx(i)-cos(thetal)*sin(alphal)
*ny (i )+cos(alphal)*nz(i))*(sin(alpha2)*
sin(theta3(i)))
a(1,2) (nx(i)*cos(thetal)+ny(i)*sin(thetal))*
cos(theta2(i))+(-sin(thetal)*cos(alphal)*nx (i)
- +cos (thetal)*cos(alphal)
*ny (i)+sin(alphal)*nz(i))*sin(theta2(i))
a(1,3) nx(i)*cos(thetal)+ny(i)*sin(thetal)
a(i,4)=(nx(i)*cos(thetal)+ny(i)*sin(thetal))
*(sin(theta2(i))*sin(alpha2))
+(-sin(thetal)*cos(alphal)*nx(i)+cos(thetal)*
cos(alphal)*ny(i)+sin(alphal)*nz(i))*(-cos
(theta2(i))*sin(alpha2)+(sin(thetal)*sin
(alphal)*nx(i)-cos(thetal)*sin(alphal)
*ny (i )+cos(alphal)*nz(i))*cos(alpha2)



100

111

25
24

11

12

10

31
30
40

a(i,5)=sin(thetal)*sin(alphal)*nx(i)-cos(thetal)*
sin{alphal)*ny(i)+cos(alphal)*nz(i)

a(i,6)=nz(i)

a(i,7)=px(i)*nx(i)+py (i)*ny(i)+pz(i)*nz (i)

do 111 1i=1,6

print*, 'nx="' ,nx(1),

print*, 'px="',px(ii),

theta2(ii)=theta2(ii

theta3(ii)=theta3(ii

print*, 'theta2=",the

kk=0

ji=0

do 10 i=1,n

Ji=kk+1

11=3]

kk=kk+1

if(abs(a(jj,kk))-eps)21,21,22

ji=jj+1

go to 20

if(11-jj)23,24,23

do 25 mm=1,m

atemp=a(11,mm)

a(11,mm)=a(jj,mm)

a(jj,mm)=atemp

div=a(i,i)

do 11 j=1,m

a(i,j)=a(i,j)/div

k=1+1

if(k-m)12,13,13

do 10 1=k,n

amult=a(1,1)

do 10 j=1,m

a(1,j)=a(1,j)-a(i,j)*amult

x(n)=a(n,m)

",nz(ii)
(1

=',pz(ii)

(-"VV-

ii), 'theta3=",thetal3(ii)

1=n
do 30 j=2,n
sum=0.
i=m+1l-j
do 31 k=1,n
sum=sum+a (i -1,k )*x(k)
1=1-1
x{1)=a(i-1,m)-sum
do 40 ii=1,n

print*, 'root(',ii,"') = ',x(ii)
stop

end
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*
*
*

SYNTHESIS OF NINE SYNTHESIS POSITIONS

khkkkkhkhkhkkkhkkkhkkhkhkhkhkkhkhkhkkkhkhkkkhkhkkkhkkkhkhkkkhkkkkkkkkkkkkhkkkkkkkkkkk

1

real x(9),f(9),delta,xtol,ftol
integer n,maxit,i

external fcn

data i,n,maxit,delta/0,9,800,0.001/
data xtol,ftol/l.e-4,1.e-4/

6.26973343
22.55064583
-6.54820347
1.39241803
-45.,4835788
50.77313232
.14159/180.
=0.48279029
y=0.52359837
print*, "input x(9) ='
read*,x(9)
x(9)=x(9)*pi

call nlsyst(fcn,n,maxit,x,f,delta,xtol,ftol,i)

x (
X (
x
x (
x (
x (
p1

x (

@ ll DOoOAPHPWNR
vavvvvv

do 1 i=1,9 _
print*,'x(',i,') = ",x(i)," f(',i,"') = ',f(i)

stop
end

subroutine fcn(x,f)

real x(9),f(9),nx1l,nx2,nx3,nx4,nx5,nx6,nx7,ny7,nz7,
-nyl,ny2,ny3,ny4,ny5,ny6,nzl,nz2,nz3,nz4,nx8,ny8,nz8,
-nz5,nz6,nx9,ny9%,nz9
pi=3.14159/180.
thetal=45,*pi
alphal=90.*pi
alpha2=90.*pi
theta21=0.*pi
theta31=0.*pi
theta22=5.*pi
theta32=5.*pi



theta23=10.*pi
theta33=10. *pi
theta24=15.*pi
theta34=15.*pi
theta25=20. *pi
theta35=20.*pi
theta26=25.*pi
theta36=25.*pi
theta27=30.*pi
theta37=30.*pi
theta28=35.*pi
theta38=35.*pi
theta29=40.*pi
theta39=40.*pi
nx2=297.3435364
nx3=289.4804993
nx4=276.7246704
nx5=259.5814209
nx6=238.7224121
nx7=214.9520264
nx8=189.1680756
ny8=132.4567719
nz8=161.6998138
nx1=300.

nyl=0.

nzl1=0.
nx9=162.3182983
ny9=136.2010956
nz9=177.7979363
ny2=26.0141697
ny3=51.0431862
ny4=74.1481018
ny5=94.4798431
ny6=111.3179932
ny7=124.1024857
nz2=26.1135387
nz3=51.8306084
nz4=76.7637558
nz5=100.5433426
nz6=122.825798
nz7=143.3011627
p2x=29.8479328
p3x=29.3946190
p4x=28.6486454
p5x=27.6240768
p6x=26.3400993
p7x=24.8205147
p2y=2.6113539
p3y=5.1830606
pdy=7.6763749
p5y=10.0543346
pby=12.2825794
p7y=14.3301182
p2z=0.8715568
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p3z=1.7364806
pdz=2.5831884
p5z=3.4201992
p6z=4.2261796
p7z=4.9999967
p8x=23.0931511
p3y=16.1699829
p8z=5.7357602
plx=30.

ply=0.

plz=0.
p9x=21.1891422
pOy=17.7797832
p9z=6.4278722

f(

1 s(theta2l)*x(3)~*
-cos

n

(

3)*sin(theta3l)+

(nx1l*cos(x(9))+nyl*sin(x *(co
) *x (
os(theta2l))+(-sin
(x(8
the

heta3l)-sin(theta2l)*cos

S (

t (
-si ?hetaZl)*s1n(x( ))*x (6)+ §
)

9)))

x(7)

2)*c
-(x )*ros(x(8))*nx1+cos(x(9) *cos )Y*nyl+sin
-(x(8))*nzl)*(sin(theta2l)*x(23)*cos( ta3il)+cos
-(theta2l)*cos(x(7))*x(3)*sin(theta3l)-cos(theta2l)*
-sin(x(7))*x(6)+x(2)*sin(theta2l))+{(sin(x(9))*sin(x(

8
-*nxl-cos(x(9))*sin(x(8 ))*ny1+cos(x(8))*nzl)*(s1n(x(7
9
1

)
(
(
9
8

-*x(3)*sin(theta3l)+cos(x(7))*x(6)+x(5))+x(1)*cos (x|
-*nx%+x(l)*sin(x(9))*nyl+x(4)*nzl (plx*nx1l+ply*nyl+p
-nzl

))
))
))
z*

f(2)=(nx2*cos(x(9))+ny2*sin(x(9)))*(cos(theta22)*x(3)*
-cos(theta32)-sin(theta22)*cos(x(7))*x(3)*sin(theta32)+
-sin(theta22)*sin(x(7))*x(6)+x(2)*cos(theta22))+(-sin
-(x(9))*cos(x(8))*nx2+cos(x(9))*cos(x(8))*ny2+sin
-{(x(8))*nz2)*(sin(theta22)*x(3)*cos(theta32)+cos
-(theta22)*cos(x(7))*x(3)*sin(theta32)-cos(theta22)*
-sin(x(7))*x(6)+x(2)*sin(theta22))+(sin(x(9))*sin(x(
-*nx2-cos(x(9))*sin(x(8))*ny2+cos(x(&))*nz2)*(sin(x(
~*x(3)*sin(theta32)+cos(x(7))*x(6)+x(5))+x(1)*cos (x(
-*nx§+x(1)*sin(x(9))*ny2+x(4)*n22-(p2x*nx2+p2y*ny2+p
-nz?2

8))
7))
9))
2z%

f(3)=(nx3*cos(x(9))+ny3*sin(x(9)))*(cos(theta23)*x(3)*
-cos(theta33)-sin(theta23)*cos(x(7))*x(3)*sin(thetal33)+
-sin(theta23)*sin(x(7))*x(6)+x(2)*cos(theta23))+(-sin
-(x{(9))*cos(x(8))*nx3+cos(x(9))*cos(x(8))*ny3+sin
-(x{8))*nz3)*(sin(theta23)*x(3)*cos(theta33)+cos
-(theta23)*cos(x(7))*x(3)*sin(theta33)-cos(theta23)~*
-sin(x(7))*x(6)+x(2)*sin(theta23))+(sin(x(9))*sin(x(8))
-*nx3-cos(x(9))*sin(x(8))*ny3+cos(x(8))*nz3)*(sin(x(7))
-*x(3)*sin(theta33)+cos(x(7))*x(6)+x(5))+x(1)*cos(x(9))
—*nx?+x(1)*sin(x(9))*ny3+x(4)*nz3-(p3x*nx3+p3y*ny3+p32*
-nz3



O

97

f(4)=(nx4*cos(x(9))+nyd*sin(x(9)))*(cos(theta24)*x(3)*
-cos(theta34)-sin(theta24)*cos(x(7))*x(3)*sin(theta34d)+
-sin(theta24)*s1n(x( ))*x(6)+x(2)*cos (theta24))+(-sin
-(x(9))*cos(x(8))*nx 4+cos(x(9))*cos(x(8))*ny4+sin
-(x(8))*nzd4)*(sin(theta24)*x(3)*cos(theta34)+cos
-(theta24)*cos(x(7))*x(3)*sin(theta34)-cos(theta24d)*
-sin(x(7))*x(6 )+x(2)*s1n(theta24)) (sin(x(9))*sin(x(8))
-*nx4-cos(x(9))*sin(x (8))*ny4+cos( (8))*nzd)*(sin(x(7))
-*x(3)*sin(theta34)+cos(x( Y)*x(6)+x(5))+x(1)*cos(x(9))
=*nx4+x(1)*sin(x(9))*nyd+x(4)*nzd- (p4x*nx4+p4y*ny4+p4z*

-nz4)

f(5)=(nx5*cos(x(9))+ny5*sin(x(9)))*(cos(theta25)*x(3)*
-cos(theta35)-sin(theta25)*cos(x(7))*x(3)*sin(theta35)+
-sin(theta25)*sin(x(7))*x(6)+x(2)*cos(theta25))+(-sin
-(x(9))*cos(x(8))*nx5+cos(x(9))*cos(x(8))*ny5+sin
-(x(8))*nz5)*(sin(theta25)*x(3)*cos(theta35)+cos
-(theta?25)*cos(x(7))*x(3)*sin(theta35)-cos(theta25)*
-sin(x(7))*x(6)+x(2)*sin(theta25))+(sin(x(9))*sin(x(8)
-*nx5-cos(x(9))*sin(x(8))*ny5+cos(x(8))*nz:)*(s1n(x(7)
-*X(3)*sin(theta35)+cos(x(7))*x(6)+x(5))+x(1)*cos(x{(9)
-*nx§+x(1)*sin(x(9))*ny5+x(4)*n25 (pSx*nx5+p5y*ny5+p52
-nz5

)
)
)
*

f(6)=(nx6*cos(x(9))+ny6*sin(x(9)))*(cos(theta26)*x(3)*
-cos(theta36)-sin(theta26)*cos(x(7))*x(3)*sin(theta36)+
-sin(theta26)*sin(x(7))*x(6)+x(2)*cos(theta26))+(-sin
-(x (9))*cos(x(S))*nx6+cos(x(9))*cos(x(8))*ny6+sin
-(x(8))*nz6)*(sin(theta26)*x(3)*cos(theta36)+cos(theta26)
~*cos(x(7))*x(3 )*s1n(theta36)-c s(theta26)*sin(x(7))*
-x(6)+x(2)*sin{theta26))+(sin(x(9))*sin(x(8))*nx6-cos
-(X(9))*s1n(x(8))*ny6+cos(x(8))*n26)*(s1n(x(7))*
-x(3)*sin(theta36)+cos (x (7))*x(6)+x(5))+x(1)*COS(X(9))
-*nx?+x(l)*s1n(x(9))*ny6+x(4)*n -(pbx*nx6+p6y*ny6+pbz*
-nzb

f(7)=(nx7*cos(x(9))+ny7*sin(x(9)))*(cos
-cos{theta37)-sin(theta27)*cos(x(7))*x(3)*sin(theta37)+
-sin(theta27)*sin(x(7))*x(6)+x(2)*co (theta27))+(-sin
-(x(9))*cos(x(8))*nx7+cos(x(9))*cos(x(8))*ny7+sin
-(x(8))*nz7)*(sin(theta27)*x(3)*cos(theta37)+cos(theta27)
-*cos (x(7))*x(3)*sin(theta37)-cos(theta27)*sin(x(7))*
-x(6)+x(2)*sin(theta27))+(sin(x(9))*sin(x(8))*nx7-cos
-(x(9))*sin(x(8))*ny7+cos(x(8))*nz7)*(sin(x(7))*
-x(3)*sin(theta37)+cos(x(7))*x(6)+x(5))+x(1)*cos(x(9))
S*x7+x(1)*sin(x(9))*ny7+x(4)*nz7-(p7x*nx7+p7y*ny7+p7z*
-nz7)

s(theta27)*x(3)*

(c
*
s
X

theta’e)*x(?)

f(8)=(nx8*cos(x(92))+ny8*sin{x(9) s (
( 3)*sin(thetall)+

*(co
-cos(thetal38)-sin(theta28)*cos (x )*x (

))
7)
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-sin(theta28)*sin(x(7))*x(6)+x(2)*cos(theta28))+(-sin
-(x(9))*cos(x(8))*nx8+cos (x(9))*cos(x(8))*ny8+sin
-(x(8))*nz8)*(sin(theta28)*x(3)*cos(theta38)+cos(theta28)
-*cos(x(7))*x(3)*sin(theta38)-cos(theta28)*sin(x(7))*
-x(6)+x(2)*sin(theta28))+(sin(x(9))*sin(x(8))*nx8-cos
-(x(9))*sin(x(8))*ny8+cos(x(8))*nz8)*(sin(x(7))*
-x(3)*sin(theta38)+cos(x(7))*x(6)+x(5))+x(1)*cos(x(9))
-*nx?+x(1)*sin(x(9))*ny8+x(4)*n28-(p8x*nx8+p8y*ny8+p82*
-nz8

f(9)=(nx9*cos(x(9))+ny9*sin(x(9)))*(cos(theta29)*x(3)*
-cos(theta39)-sin(theta29)*cos(x(7))*x(3)*sin(theta3?)+
-sin(theta29)*sin(x(7))*x(6)+x(2)*cos(theta29))+(-sin
-(x(9))*cos (x(8))*nx9%+cos(x(9))*cos(x(8))*ny9+sin
-(x(8))*nz9)*(sin(theta29)*x(3)*cos(theta39)+cos(theta29)
-*cos(x(7))*x(3)*sin(theta39)-cos(theta29)*sin(x(7))*
-x(6)+x(2)*sin(theta29))+(sin(x(9))*sin(x(8))*nx%-cos
=(x(9))*sin(x(8))*ny9+cos(x(8))*nz9)*(sin(x(7))*
-x(3)*sin(theta39)+cos(x(7))*x(6)+x(5))+x(1)*cos(x(9))
-*nx?+x(1)*sin(x(9))*ny9+x(4)*n29-(p9x*nx9+p9y*ny9+p9z*
-nz9

~— ~—

return
end

OO0

SUBROUTINE nlsyst(fcn,n,maxit,x,f,delta,xtol,ftol,i)

khkhkkkhkhkhkkhhkhkhkkhkhkhkkhkkhkhhkhkkhkhkhkhkkhhkhkkhkkhkhkhkhkkhkhkkhkkhkhkhkkhkkhkhkkhkkhkhkkkhhkhkkkhkhkkkkkk

*
*
* SUBROUTINE NLSYST :

* SOLVE FOR NINE NONLINEAR EQUATIONS
*

*

*OOOOOO

hhkkkhkhkkhkhkhkkhkkhkhkhkkhkhkhkhkkhkhkhkhkkhkkhkhkhkhkkhkhkhkhkkhkhkhhkkhkhkkkhkhhkhkkhkkhkhhkkhhkkkhkhkhkkkhkkkkkk

real x(n),f(n),delta,xtol,ftol

integer n,maxit,i

real a(10,11),b(7),xsave(10),fsave(10)
integer np,it,ivbl,itest,ifcn,irow,jcol

O

O

check validity of value of n

O 00

if (n.1t.2 .or. n.gt.10) then
-3
print*,'n="',n
print*
return
endif
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begin iterations - save x values, then get f values

np =n + 1
do 100 it = 1l,maxit
do 10 ivbl = 1,n
xsave(ivbl) = x(ivb1)
10 continue
call fcn(x,f)

test f values and save them

itest = 0

do 20 ifcn = 1,n
if (abs(f(ifcn)) .gt. ftol) itest = itest + 1
fsave(ifcn) = f(ifcn)

20 continue
if ( i.eq.0) then
print*, 'it="',it,' x= ',x
print*
print=*,' f=',f
print*
endif

see if ftol is met. if not, continue. if so, set i=2
and return.

if (itest.eq.0) then
i=2
return

endif

this double loop computes the partial derivatives of each
function for each varivable and stores them in a
coefficient array.

do 50 jcol = 1,n
x(jcol) = xsave(jcol) + delta
call fen(x,f)
do 40 irow = 1,n
a{irow,jcol) = (f(irow) - fsave(irow))/delta
40 continue

reset x values for nest column of partials

x(jcol)=xsave(jcol)
50 continue
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- ew e m rm e e e e e e E NS SR e = e e em e em m M =R MR e e e L e N em e A e G e me e e e = e e

now we put negative of f values as right hand sides
and call elim

do 60 irow = 1,n
b(irow)=-fsave(irow)
60 continue
call elim(a,b,n,1.e-6)

- m e em m e e e e T e R R e S wm e e e e e e e S e e = em 4R B TR B N M em R e e e G = = e -

be sure that the coefficient matrix is not too il11-
conditioned '

do 70 irow = 1,n
if(abs(a(irow,irow)).le.1l.e-10) then
i = -2
print*,'cannot solve system,matrix nearly singular'
return
endif
70 continue

apply the corrections to the x values, also see if xtol
is met

itest = 0

do 80 ivbl=1,n
x(ivbl)=xsave(ivbl) + b(ivbl)
if(abs(b(ivbl)).gt. xtol) itest = itest + 1

80 continue

if xtol is met, print last values and return, else do
another iteration

if(itest .eq. 0) then
i=1
if(i.eq.0) print*,'it="',it,"' x=',x
return
endif
100 continue

when we have done maxit iterations , set i=-1 and return
i = -1 :
return



16
10

end

subroutine elim(a,b,n,eps)

dimension a(10,10),b(10)
do 1 i=1,n

k=1

if(i-n)21,7,21
if(abs(a(i,i))-eps)6,6,7
k=k+1

b(i)=b(i)+b(k)

do 23 j=1,n
ali,j)=a(i,jl+a(k,J)

go to 21

div=a(i,i)

b(i)=b(i)/div

T=i+1

do 9 j=1,n
a(i,jl=a(i,j)/div

do 1 m=1,n

delt=a(m,i)
if(abs(delt)-eps)l,1,16
if(m-i)10,1,10
b(m)=b(m)-b(i)*delt

do 11 j=1,n
a(m,jl=a(m,j)-a(i,j)*delt
continue

return

end
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* % * %
** ANALYSIS OF R-R CRANK GENERATING A SURFACE **
* % * %

kkhkkkkkhkhkkhkkhkkkhkkhkkhkkhkhkhkhkhkkhkkhkhkhkkkhkhkhkkhkkhkkkhkkhkkkkkhkhkkkkkxk

INCLUDE /usr/include/fgl.h
INCLUDE /usr/include/fdevice.h

D earaernrOOOO0OO0O

REAL dummy(4,4),al(4,4),a2(4,4),a3(4,4),aeq(4,4),
-theta2(200),theta3(200),p4(4,4),pl(4,4),acoorl(4,4),
-acoor2(4,4)

INTEGER I,d,kj,loopl,l00p2

OPEN(unit=9,file="data')
OPEN(unit=8,file="datal')
OPEN(unit=7,file="data2"')
loopl 45
lToop2 30

hkhkkkkhkhkkkhkkkkhkkkkkhkkk

c*
c‘k
¢ * Point on the tangent-plane and the surface
c *
c kkhkkkkhkkhkkhkkkkkkkkkx

print*, ' mee et e e e -
print*, 'input Y from tangent point to connect point'
Print*, e e e e '
read*,p4(2,1)

Print*, ' mcm e e e e '
print*,'input Z from tangent point to connect po1nt'
Print*,  emmm e e
read*,p4(3,1)

print*, —mee e e -
print*, 'input twist angle alpha(i)'

Print*, ' me e e e e e '
print*, 'alpha(l) = '

read*,alfal

print*, 'alpha(2) '

read*,alfa?2

prigt*,{g]gha(3) !

read*,alfa

Print*, e e e e ee ol '
print*, 'input 1ink length a(i)'

print*, ' sccc e e e
print¥*,
read*,aal
print*,'

s3]
—_
(A%
~
L]
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read*,aa?2

print*,'a(3) '

read*,aa3

Print*, e e '
print*, 'input 1ink distane s(i)'

Print*, ' =cccmmm e ol '
print*,'

read*,sl

print*,'s(2) = '

read*,s2

print*,'s(3) =

read*,s3

Print®, ' e e e e e d e dee oo '
print*, 'input theta(l)'

Print*, ' e cm e em e '
print*, 'theta(l) = '

read*,thetal

pd(4,1)=1.

pi=3.14159/180.

thetal=thetal*pi

theta2(1)=-90.

theta3(1)=-90.

alfal=alfal*pi

alfaz2=alfa2*pi

alfa3=alfa3*pi

on =1

CALL amatrix(alfal,aal,thetal,sl,al)
call multi (4,al,péd,acoorl)
x2=acoorl(1l,1)
y2=acoorl(2,1)
z2=acoorl(3,1)
write (8,101) x2,y2,22

101 format (fl2.6,f12.6,f12.6)

DO 1 i=1,700pl
theta2(i)=theta2(i)*pi
CALL amatrix(alfa2,aa2,theta2(i),s2,a2)
call multi (4,al,a2,dummy)
call multi (4,dummy,pé4,acoor?2)
x3=acoor2(1,1)
y3=acoor2(2,1)
z3=acoor2(3,1)
write (7,102) x3,y3,z3
102 format (fl12.6,f12.6,f12.6)
do 2 kj=1,To00p2
theta3(kj)=theta3(kj)*pi
CALL amatrix(aifa3,aa3,theta3(kj),s3,a3)
CALL multi(4,al,a2,dummy)
CALL multi(4,dummy,a3,aeq)
CALL multi(4,aeq,péd,pl)
duml= pl1(1,1)*8C.0

dum2= pl1(2,1)*80.0

dum3= p1(3,1)*80.0

write (9,100) duml,dum2,dum3
100 format (fl2.6,f12.6,f12.6)
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theta3(kj)=theta3(kj)/pi
theta3(kj+1)=theta3(kj)+16.
CONTINUE

theta3(1)=-90.

p4(1,1)=0

theta2(i)=theta2(i)/pi
theta2(i+1)=theta2(i)+8
CONTINUE

stop

end

*hkkkkhkhkkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkkhkkkkkkk
*

* subroutine Multiply

*
khkkhkkkkhkkkhkkkkkkhkkkkkkkkkkkkk

SUBROUTINE amatrix(a,b,c,d,tt)

dimension tt(4,4)
tt(1,1)=cos(c)

tt(1,2)=-sin(c)*cos(a)

tt(1,3)=sin(c)*sin(a)

tt(1,4)=b*cos(c) :

tt(2,1)=sin(c)

tt(2,2)=cos(c)*cos(a)

tt(2,3)——cos(c)*sin(a)
t(2,4)=b*sin(c)

tt(3,1)=0.

tt(3,2)=sin(a)

tt(3,3)=cos(a)

tt(3,4)=d

tt(4,1)=0.

tt(4,2)=0.

tt(4,3)=0.

tt(4,4)=1.

return

end

hkhkkkkkkhkkkkkkhkkkkkhkkkhkkkkkkk
*

* subroutine Multiply
*

kkkkkkkhkkkkkhkkkhkhkkhkhkkhkhkhkhkkk

SUBROUTINE multi(n,a,b,c)

dimension a(4,4),b ( n),c(4,n)

do 1 1—1 4

continue
return
end

i,J)+a(i,k)*b(k,j)
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APPENDIX B

ISIS GRAPHIC COMPUTER PROGRAM
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khkkkkkkkhkkkkhkhkhkhkkhkhkrhkhkhkkkhkhrxkkixk

SURFACE GENERATION -

IN THIS PROGRAM, THE SURFACE IS GENERATED
FOR TWO-DEGREE-OF-FREEDOM OPEN LOOP MECHANISM
BY USING IRIS COMPUTER PROGRAM

* % % ok % F % X %

kdkkhkhkkkkhkhkkkkkhkkkkkhkhkkirkkhkkkkkk

nclude /usr/include/fgl.h
nclude /usr/include/fdevice.h

integer*2 1i,j,aal,ssl,twist,thetal,alfal

twist = 0
aal = 0*890
'ssl = 2*80

call ginit( )

call color(Q)

call clear( )

call cursof( )

call color (7)

call recti(50,50,1000,700)
call color(5)

call rectfi(51,51,999,699)
call color(7)

call recti(100,100,950,650)
call color(4)

call rectfi(101,101,949,649)

hkkkkkhkkkkhkkhkkhkkhkkhkkhkhkkkkkkkkkkkkkk

object(2) ---

*
*
* make the first page
*
*
*

khkkhkkkkkhkkkkhkkhkhkkkkhkhkkkkhkhkkhkkhkkkkkx

call makeob (2)

call ortho2(50.0,1000.0,50.0,700.0)
call color (7)

call recti (190,510,850,560)

call color (2)
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call rectfi (191,511,849,559)

call color (1)

call cmovi (210 530,0)

call charst(' S1mu1at1on of Spat1a1 Mechan1sms for Tang
-ent-Plane Envelope Generation',72)

call color (3)

call recti (250,390,460,460)

call color (1)

call rectfi (251,391,459,459)

call color (2
call cmovi (270,430,0)

call charst('Part I : Analysis',18)
call cmovi (270,410,0)
(
(

~

call charst 'Part IT : Synthesis',19)
call color (7)

call cmovi (310,320,0)

call charst('Foo-Ming Fu',11)

call cmovi (290,300,0)

call charst('Graduate Student',16)
call cmovi (310,270,0)

call charst('A. H. Soni',10)

call cmovi (290,250,0)

call charst('Regents Professor',17)
call cmovi (250,200,0)

call charst('Oklahoma State University',25)
call cmovi (270,180,0)

call charst('Stillwater, Oklahoma',20)
call closeo(2)

kkhkkhkkkhkkkkhkhhkkhkhkkkhkkkkkkkhkkkkkkk
*

* close object(2)
*

kkhkhkkkhkkhkkkkkhkhkkhkhkkhkhkhkhkkkhkkkkkhkhkhkkkk

call callob(2)

khkhkhkkkhkkkhkkhkkhkkkhkkhkkkkkhkkhkkkkhkkkdxkhkk

object(l) ---

* % ok * *

make a surface on the first page

khkkkhkhkkhkhkkhkkhkkhkhkhkkhkkhkkkhkkkhkhkhhkhhkkkk

call ortho (-1600.0,800.0,-900.0,1500.0,-1200.0,1200.0)
open (unit=9, f11e='datafi1e')

call rotate (400, 'x"')

call rotate (- 400 'v')

call axis ( )

do 70 i=1,45

do 70 j=1,30

read (9,*)duml,dum2,dum3

if(j.eq.l)then
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dumé4=duml
dum5=dum?
dumé6=dum3

endif

call color (2)
call move (dumé4,dum5,dumé6)

call

draw (duml,dum2,dum3)

dumd4=duml

dumb=

dum?2

dum6=dum3
continue
close(unit=9,status="'keep"')

kkhkkhkkkhkkkkhkhkkkhkkhkhkkkkhkkkkkkkxkkx

*

* close object(1)

*

kkkhkkkhkhkkkhkkhkkkhkhkkkkhkhkkkkxkkk

60

call

gexit( )

do 60 i =1,39
do 60 j =1,39

a =

cos(1.57)

continue
do 30 k=1,36

open
open
open
call
call
call
call
call
call
call
call
call
call
call

call

call
call
call
call
call
call
call
call
call
call
call
call
call

(unit=9, file='data')

(unit=8, file='datal')

(unit=7, file="'data2')

ginit( )

color(0)

clear( )

cursof( )

color(7)

recti(50,50,1000,700)

color(4)

rectfi(51,51,999,699)

color(7)

recti(600,600,1000,700)

color(1l)

rectfi(601,601,999,699)

color(2)

cmovi(660,680,0)

charst('SURFACE GENERATION OF R-R CRANK',31)
color(6)

cmovi(660,655,0)

charst(' -- by FOO-MING FU -- ',31)
color(3)

cmovi(660,630,0)

charst(' alphal=20, alpha2=90, alpha3=0',31)
cmovi(650,610,0)

108

charst(' al=0, a2=0, a3=2, sl=2, s2=2, s3=2"',35)

ortho (-600.0,600.0,-600.0,600.0,-600.0,600.0)

rotate (400, 'x")
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call rotate (-400+twist,'y"')
call axis ( )

read (8,*)x2,y2,z2

x2=x2*80.
y2=y2*80.
22=22*80.
nthetal=0
nalfal=900
call axisl
call color(

( 2,z2,nthetal,nalfal)

6
call move (0.

X

0.

X

X2,
)

‘<v
- o~«momo <

call draw (
call move (
call draw
call makeob
call rotate
call circf(O.
call closeo()

call makeob(1)

do 10 i=1,45

do 10 j=1,30

read (9,*)duml,dum2,dum3
if(j.eq.1l)then

dum4=duml

dumb5=dum?

dum6=dum3

endif

call color (2)

call move (dumé4,dum5,dumé)
call draw (duml,dum2,dum3)
dumé4=duml

dum5=dum?2

dum6=dum3

continue
close(unit=9,status="'keep')

close(unit=8,status="keep')

close(unit=7,status="keep')
twist=twist+100

do 50 i =1,99

do 50 j =1,99

a = cos(1.57)

continue

continue

call gexit{ )

do 20 i =1,1199

do 20 j =1,1199

a = cos(1.57)

continue

stop

end

0
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c * sub axis

c*

c khkkhkkhkXkhkkkkhkkkkhkhkhkkkk

c
subroutine axis ( )
call color(3)
call movei(0,0,0)
call drawi(550,0,0C)
call cmovi (560,0,0)

call color (2)

call charst ('X',1)
call color(3)

call movei(0,0,0)

call drawi(0,550,0)
call cmovi (0,560,0)
call color (2)

call charst ('Y',1)
call color(3)

call movei(0,0,0)

call drawi(0,0,550)
call cmovi (0,0,570)
call color (2)

call charst ('Z',1)
call color (3)

call movei (200,0,0)
call drawi (270,-25,25)
call movei (315,0,0)
call drawi (285,-25,25)

(
(
(
(
(
call movei (
call drawi (300,-25,25)
call movei (
call drawi (
call movei (
call drawi (
call movei (
call drawi (345,-25,25)
call movei (390,0,0)
call drawi (360,-25,25)

330, -25,25)
375,0,0)

kkhkkkkkkkkkkhkkkkkkkkk

return
end
c
C *hkkhkkhkhhkhkkhhkhkkhkkhkxkhkkkikk
C *
c * sub axisl
C *
c
c

subroutine axisl (x2,y2,z2,thetal,alfal)
integer*2 thetal,alfal

call color(1l)

call move (x2,y2,z2)

call draw (x2+150.0,y2,z2)

call move (x2,y2,z2)

call draw (x2+150.0,y2,z2)



call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call

end

move
draw
move
draw
move
draw
move
draw
move
draw
move
draw
cmov
color

(x2+60.0,y2,22)
(x2+80.0,y2,22+30.0)
(x2+70.0,y2,22)
(x2+90.0,y2,22+30.0)
(x2+80.0,y2,22)
(x2+100.0,y2,2z2+30.0)
(x2+90.0,y2,z2)
(x2+110.0,y2,22+30.0)
(x2+100.0,y2,22)
(x2+120.0,y2,z2+30.0)
(x2+110.0,y2,22)
(x2+130.0,y2,2z2+30.0)
(x2+160.0,y2,z2)

(7)

charst ('X1',2)

color
move
draw
cmov

(1)

(x2,y2,22)
(x2,y2,z2+150.0)
(x2,y2,22+160.0)

color (7)
charst ('Y1l',2)
color(1l)

move
draw
cmov
color

(x2,y2,22)

(x2,y2-150.0,22)

(x2,y2-160.0,z2)
(7)

charst ('Z1',2)
return
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