```
SYNTHESIS AND ANALYSIS OF SPATIAL
    MECHANISMS FOR TWO-PARAMETER
            TANGENT-PLANE ENVELOPE
                GENERATION
```

```
                        By
                FOO-MING FU
        Bachelor of Science
Ming-Chi Institute of Technology
    Taishan, Taipei, Taiwan
                            1982
```

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE
May, 1987

SYNTHESIS AND ANALYSIS OF SPATIAL
MECHANISMS FOR TWO-PARAMETER
TANGENT-PLANE ENVELOPE
GENERATION

Thesis Approved:

ii

ACKNOWLEDGEMENTS

I wish to take the oportunity to express my sincere appreciation and gratitude to all who have helped in any way to make this study possible. In particular, I am grateful to my adviser, Dr. A. H. Soni, for his continuous concern, guidance, and assistance in the success of my research; to my advisory committee members, Dr. J. K. Good and Professor H. E. Conlon, for their valuable counsel and suggestions throughout this study.

The success of this study was in part due to an excellent group of "mechanisms mem": Dr. Nagi G. Naganathan, Dev Sathyadev, Ram Gudavalli, Mohammad Dado, Jim Jones, Enoch Mylahathula, and Amir Shirkhodaie.

I am grateful to Dr. Wen-Shen Chou, President of My Alma-Mater, for his finacial support which made it possible for me to come to the United States and also for his constant encouragement throughout my career.

I also thank Mr. and Mrs. Weng and their lovely son Jim, for their taking care of me so well.

I want to give my special thanks to my dearest fiancee Ngoc Anh Tieu and her family for their whole-hearted support and encouragement during the final days of my master program.

Finally, I thank my familly, in particular, my parents, for their support and encouragement thourghout my entire education.

TABLE OF CONTENTS
Chapter Page
I . INTRODUCTION 1
1.1 Synthesis Of Spatial Mechanisms 2
1.2 Analysis Of Spatial Mechanisms 7
1.3 Curvature Theory 8
1.4 Present Study 9
II. PARAMATRIC DISCRIPTION OF A
SURFACE DEVELOPING BY TANGENT-PLANE 13
III. HOMOGENEOUS TRANSFORMATION MATRIX METHOD 19
IV. SYNTHESIS AND ANALYSIS OF DYADS FOR FINITELY SEPARATED POSITIONS GENERATED BY TANGENT-PLANE 29
4.1 Synthesis Of Dyads For Any Combination Of Revolute, Prismatic, And Helical Joints 33
4.2 Analysis Of Dyads For Any Combination Of Revolute, Prismatic, And Helical Joints 45
4.3 Numerial Examples 47
V. SYNTHESIS OF DYADS FOR INFINITESIMALLYAND MIXED MODE SEPARATED POSITIONSGENERATED BY TANGENT-PLANE55
5.1 First Order Infinitesimally And Mixed Mode Separated Positions 57
5.2 Higher Order Infinitesimally and Mixed Mode Separated Positions o己
5.3 Numerial Examples 64
VI. SYNTHESIS OF TWO-PARAMETER-MOTION, TWO-DEGREE-OF-FREEDOM MECHANISMS CARRYING A RIGIDBODY WITH A TANGENT-PLANE AS A MOVINGELEMENT HAVING SIX, FIVE, AND FOURCOMPONENTS OF MOTION67
6. 1 RRSS Spatial Four-Link Mechanism 67
6.2 RHCRC Spatial Five-Link Mechanism Having
Four Components Of Motion 72
6.3 RCCRR Spatial Five-Link Mechanism Having Five Components Of Motion 75
6.4 RCCCR Spatial Five-Link Mechanism Having Six Components of Motion 75
6. 5 Numerical Examples 77
Chapter Page
VII. SUMMARY AND CONCLUSIONS 80
A SELECTED BIBLIOGRAPHY 84
APPENDIXES 90
APPENDIX A - COMPUTER PROGRAMS FOR FINITELY,INF INITESIMALLY, AND MIXED MODESEPARATED POSITIONS 90
APPENDIX B - IRIS GRAPHIC COMPUTER PROGRAM 105
I. Maximum Number of Finitely Separated Positions for Any Combination of R, C, P, H, and S Joint Derived by Tsai and Roth 6
II. Joint Motion Parameters for R, P, H, C and 5 Joints 25
III. Two Degrees of Freedom Binary Link with Any Combination Of R, P, And H Joints 30
IV. Synthesis Procedure of $R-R$ Crank For Nine Positions 38
V. Procedure of Analysis of R-R Crank 48
VI. Numerical Example of Synthesis of R-R Crank for Six Finitely Separated Positions (Closed-Form Solution)49

VII. Numerical Example of Synthesis of R-R Crank
for Nine Finitely Separated Positions 50
VIII. Numerical Example of Synthesis of R-R Crank for Six Finitely Separated Positions (Surface Is Given as a Sphere) 51
IX. Numerical Example of Synthesis of R-R Crank for Nine Finitely Separated Positions (Surface Is Given as a Sphere) 52
X. Numerical Example of Analysis of R-R Crank 53
XI. Numerical Example Of Analysis Of R-R Crank 54
XII. Nine Synthesis Positions With One, Two, Three, and Four First-Order Motions 59
XIII. Numerical Example of Synthesis of R-R Crank for First-Order Infinitesimally Separated Positions ($P P-P P-P P-P P-P$) 65
XIV. Numerical Example of Synthesis of R-R Crankfor Higher-Order Infinitesimally SeparatedPositions (P-PPP-PP-PPP)66
XV. Numerical Example of Synthesis of RCCCR
Mechanism for Eight FinitelySeparated Positions 77

LIST OF FIGURES

Figure Page

1. Parametric Discription of a Surface (Two-Parameter Surface) 15
2. Vector Expression of the Tangent Plane 17
3. Notation of Homogeneous Transformation Matrix 20
4. Joint Motion Parameter of Revolute, Prismatic, and Helical Joints 26
5. Binary Link with a Plane Attached on the Moving Joint Tangential to a Surface 31
6. Finite Displacement of Binary Link 34
7. RRSS Spatial Mechanism 69
8. RHCRR Spatial Mechanism Having FourComponents of Motion 73
9. RCCRR Spatial Mechanism Having FiveComponents of Motion 76
10. RCCCR Spatial Mechanism Having Six Components of Motion 78
11. Two Tangent Plane Attached to Two Two- Degree-of-Freedom Robot 82

CHAPTER I

INTRODUCTION

Significant achievements have been made in recent years in understanding and applying the kinematics of one-parameter rigid body motion. For such one-parameter investigations, one may study a curve or a surface generated by a point, a line, or a plane moving with the coupler-link of a planar or a spatial mechanism. In planar motion, a line connected to the coupler-link of a mechanism will generate an envelope. This line is called the tangent-line. In space motion, a plane connected to the coupler-link of a mechanism will envelop a surface and the plane is called the tangent-plane.

Continuation of the study on the one-parameter motion of a plane in space is requested to investigate the kinematics of a two-parameter motion of a rigid body with a plane being considered as a moving element. In the following three sections, we will examine the significant contributions describing in a progressive manner the development of the key concepts lending to synthesis and analysis of spatial mechanisms, and the curvature theory of point, line, and plane trajectories in three-dimensional kinematics.

1.1 Synthesis of Spatial Mechanisms

For synthesis of finitely separated positions of a rigid body, moving relative to another rigid body, Wilson[1] developed an analytical procedure which used the analogy of planar kinematic synthesis problems. He introduced the
rigid body guidance problem in spatial synthesis and also showed that function generation problem can be converted to a rigid body guidance problem by taking inversion about the input or output link. However, his procedure can be used only for Sphere-Sphere, Revolute-Sphere, Sphere-Revolute, and Revolute-Revolute cranks.

Roth[2] used screw theory and linear transformation to describe a rigid body through a series of finitely separated positions in order to determine those points which lie on a sphere, circle, plane, line or cylinder. Also, Roth applied these results for the synthesis of mechanisms. The parallel (plane) and intersecting (sphere) screws were presented as special cases. However, then applications are only for very simple mechanisms.

Roth[3] described the motion of a rigid body moving relative to another rigid body for up to five positions. He also extended the concepts of pole triangle and pole quadrangle into space. He obtained an infinite number of C-C cranks which displaces a rigid body through four finitely separated positions relative to another rigid body and obtained a finite number of $C-C$ cranks for five finitely separated positions. These are found by intersecting the two cubic cones corresponding to two groups of four positions. These lines are the space analogs of the planar Burmester points.

Sandor[4] developped procedures by applying the quaterrions for kinematic synthesis of space mechanisms. He
presented the space mechanism as general kinematic chains consisting of one or more loops of ball-jointed bar-slideball members. Sandor used the spatial circle-point theory to study four positions of a point of a rigid body which lies on a circle and verified Roth's[2] results that there can only be a maximum of four points on a circle in space.

Sandor and Bishop[5] applied the stretch-rotation tensor which is in a matrix form to present a general method of spatial kinematic synthesis. The method can be used to multi-loop. linkages and to special cases.

Bottema, Koetsier and Roth[6] presented the procedure to find the smallest circle determined by three positions of a rigid body in space. It is shown that the minimum radius circle may arise when either the minimum circle is associated with a point which lies on a screw axis or it is associated with a more general point. The results can be applied for the design of the smallest Sphere-Revolute crank which will displace a rigid body through three finitely separated positions.

Chen and Roth[7,8], by using Roth's[2,9] results, presented a unified theory for the kinematic synthesis of finitely and infinitesimally separated positions of a rigid body moving relative to another rigid body.

Soni and Harrisberger [10] presented a criterion, based on the optimum transmission characteristics, for designing space mechanism.

TABLE I
MAXIMUM NUMBER OF FINITELY SEPARATED
POSITIONS(FSP) FOR ANY COMBINATION OF BINARY LINKS DERIVED BY TSAI

Link-Combination Max.FSP Link-Combination Max.FSP

$R-R$	3	$P-R$	2
$R-P$	2	$P-P$	2
$R-C$	3	$P-C$	2
$R-H$	3	$P-H$	3
$R-S$	4	$H-R$	3
$C-R$	3	$H-P$	2
$C-P$	2	$H-H$	4
$C-C$	5	$H-S$	5
$C-H$	4	$S-H$	5
$C-S$	4	$S-S$	7
$S-R$	3		
$S-P$	8		
$S-C$			

Suh[16,17] used 4×4 matrices for synthesis of space mechanisms where design equations are expressed as constraint equations in order to obtain the contrained motion.

Suh[18] discussed the $R-R$ link and concluded that "the maximum number of positions for R-R link synthesis is three with no choice of papameter".

Suh[19], by using the finite-screw geometry, presented an analytical and geometrical proof establishing the duality of $R-R$ crank for three positions. The proof is a geometrical one rather than an algebraic one in order to

1.2 Analysis of Spatial Mechanisms

```
    Kinematic analysis of space mechanisms was initiated by
the significant contribution of Dimentberg[21,22] who
presented the dual number and screw calculus to obtain
closed-form displacement relationships of an RCCC and other
spatial mechanisms. There are some other approaches have
been applied to obtain the same closed-form displacement
relationships of RCCC mechanism:
    Denavit [23] used dual Euler angles.
    Yang [24] used dual quaternions.
    Chace [25] was the first used vector approach
    Wallace and Freudenstein [26] also used vector approach
```

```
to obtain closed-form displacement relationships of RRSRR
and RRERR mechanisms.
    Yang [27] presented a general formulation using dual
number for displacement analysis of RCRCR spatial mechanism.
    Soni and Pamidi [28] used the 3 < 3 dual matrix to
obtain closed-form desplacement relations of RCCRR
mechanisms.
    Yuan [29] applied screw coordinates to obtain
closed-form displacement relations for RRCCR and other
spatial mechanisms.
    Jenkins and Crossley [30], Sharma and Torfason [31],
Dukkipati and Soni [32] used the method of generated
surfaces applying the analysis of single-loop mechanisms
containing a spheric pair.
    Hartenberg and Denavit [33] using 4 }4\times4\mathrm{ matrix for
displacement analysis of spatial mechanism.
    Soni and Harrisberger [34] presented an iterative
approach for performing kinematic analysis using 3 < 3
matrices with dual elements.
    Kohli and Soni [35,36] used finite screws for
displacement analysis and synthesis of single-loop and
two-loop space mechanisms with revolute, prismatic,
cylindrical, helical, and spherical joints.
```


1.3 Curvature Theory

```
For space point-path, Veldkamp [39,40] developed the fundamentals of the instantaneous invariants and applied
```

them to study the point-path in space.
Siddhanty and Soni [41], Hsia and Yang [42] investigated the curvature theory of point trajectories in three-dimensional kinematics.

Yang, Roth, and Kirson [43,44] described the geometric properties of a ruled surface which generated by a line in a moving body as it moves in space may be examined either by applying the principle of transference to the results of the point-path trajectories on sphere.

McCarthy and Roth [45] studied the motion of a line in space.

Ting and Soni [46,47], and Veldkamp [48] investigated the one-parameter, instantaneous motion of rigid body where the moving element is a plane.

Schonemann [49] and Mannheim [50] contributed the first theorem of instantaneous two-parameter kinematics.

Blaschke [51] investigated the first-order property of two-parameter motion with line as moving element by using dual numbers and quarternions.

Bottema [52] studied the first- and second-order properties of two-parameter spatial motion with points as moving elements. He developed the analytical expressions for the Gaussion curvature of the point trajectory surface.

1.4 Present Study

The survey of literature mentioned in the previous three sections show that most of studies of synthesis and
analysis of spatial mechanisms are devoted to the one-parameter rigid body guidence and two-parameter motion of a rigid body with points as a moving elements. Problems such as generating a surface in space by using a plane as moving element with two-paramter motion still remained unknown.

Just as point in two-parameter motion generates a surface, so does a plane in two-parameter motion. In general, in space geometry, a point and a plane are dual constructs and a line is dual to itself. For any geometric figure consisting of points, lines, and planes, its dual configuration is obtained by replacing every point by a plane, every line by a line, and every plane by a point. In a two-parameter spatial kinematics the dual of a point-trajectory surface is the trajectory of a plane which envelops a surface. Since each plane corresponds to a point on a surface, the study of a plane motion is analogous to the study of a point-trajectory surface.

This manner of investigation provides an insight into the dual relationships between the trajectory of a plane and the point-trajectory surface. The kinematic significance of this duality and its potential applications that generally follow in mechanism synthesis and analysis are of fundamental importance in the mechanism science.

The two-parameter motion of a rigid body may be investigated further by examining the moving element which may be a point, a line, or a plane. Because of the duality
between a point and a plane, a study of plane-path with two-parameter variation is expected to provide better insight into the two-parameter rigid body motion.

The objective of the present study is to provide a general method of synthesizing and analyzing the spatial mechanisms for two-parameter tangent-plane envelope generation. The proposed method can be used for finitely separated positions, infinitesimally separated positions, and mixed mode positions. The synthesis procedure is based on the Homogenerous Transformation Matrix which developed by Hartenberg and Denavit.

In chapter II, the parametric discription of a surface enveloped by tangent-plane is described. This is a brief discussion how the tangent-plane envelops a given twoparameter surface from the geometric point of view.

In chapter III, the Homogenerous Transformation Matrix method, based on the Hartenberg-Denavit notation, is derived.

In chapter IV, the synthesis and analysis procedure of dyads for finitely separated positions generated by tangentplane having two-parameter motion with any combination of Revolute, Prismatic, and Helical joints are derived.

In chapter V, the synthesis and analysis procedure of dyads for infinitesimally and mixed mode separated positions generated by tangent-plane having two-parameter motion with any combiantion of Revolute, Prismatic, and Helical joints are presented. Also, the first- and higher-order motion are

```
discussed in this chapter.
    In chapter VI, the synthesis procedure of two-
parameter motion, two degree-of-freedom spatial mechanisms
carrying a rigid body with a tangent-plane as a moving
element having six, five, and four components of motion are
derived.
Chapter VII presents the summary, conclusions, and recommendations for further research.
Numerical examples are presented in chapter IV, \(V\), and VI to illustrate the proposed synthesis and analysis procedure. Also, the computer programs of kinematic synthesis and analysis are presented in appendix \(A\) and \(B\).
```


PARAMETRIC DISCRIPTION OF A SURFACE
 developing by the tangent plane

The design specification in this category of synthesis and analysis problems require a tangent-plane attached to the a moving rigid body enveloping a given surface.

Generally, The surface to be enveloped is expressed in the vector form along with the precision points which approximate the given surface. Therefore, in this chapter, we will simply discribe the paramatric dispription of a two-parameter surface enveloping by the tangent plane.

We note that the vector equation of the type
$R(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) k$
(2-1)
is in the single parameter t describe space curves.
The parametric representation of the space curves is

$$
\begin{equation*}
X=x(t), \quad Y=y(t), \quad Z=z(t) \tag{2-2}
\end{equation*}
$$

Surfaces, in general, are described by the parametric equations of the type

$$
\begin{equation*}
X=x(u, v), \quad Y=y(u, v), \quad Z=z(u, v) \tag{2-3}
\end{equation*}
$$

where u and v are unique parameters.
If v is fixed (i.e., $v=C$, a constant), then $E q(2-3)$ becomes a one-parameter expression, which describes a space curve along which u varies. This is the curve designated by $v=C$. Thus for each v, there exists a space curve. Similarly, a space curve can be obtained when v varies along the curve $u=C$. The locus of all the curves $v=C$ and $u=C$ forms a surface 5 . The parameters u and v are called the curvilenear coordinates of the point P on the surface, and the u-curves and v-curves are called parametric curves as shown in figure 1.

If the terminal point of the position vector R generates the surface 5 , then $E q(2-3)$ can be rewritten as
$\mathbf{S}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) k$
let $\mathbf{S}_{u}=\delta 5 / \delta u$ and $\mathbf{S}_{v}=\delta \mathbf{S} / \delta v$ represent the tangent vectors to the curve u and v respectively.

Hence,

$$
\begin{align*}
& \mathbf{S}_{u}=\frac{\delta \mathbf{S}}{\delta u}=\frac{\delta x}{\delta u} \mathbf{i}+\frac{\delta y}{\delta u} \mathbf{j}+\frac{\delta z}{\delta u} \mathbf{k} \tag{2-5}\\
& \mathbf{S}_{v}=-\frac{\delta \mathbf{S}}{\delta v}=\frac{\delta x}{\delta v} \mathbf{i}+\frac{\delta y}{\delta v} \mathbf{j}+\frac{\delta z}{\delta v} \mathrm{k} \tag{2-6}
\end{align*}
$$

A point $P(u, v)$ on a surface 5 is called a singular point if $\mathbf{S}_{u} \times \mathbf{S}_{V}=0$; otherwise, it is called a non-singular point. Therefore,if \mathbf{S}_{u} and \mathbf{S}_{V} are continuous, the plane

Figure 1. Parametric Discription of a
Surface (Two-Parameter Surface)
through P parallel to S_{u} and S_{V} at point p is call the tangent plane to surface 5 at point P. Thus, the tangent planes exist only at the nonsingular points and can be defined by those two tangent vectors S_{u} and S_{V}. Also, every nonzero vector linearly dependent upon 5_{u} and 5_{V} is the tangent vector of some curve through point P.

In order to derive the tangent plane equation, we need to define the unit normal vector of the tangent plane as:

$$
\begin{gather*}
S_{u} \times S_{v} \\
\left\|S_{u} \times S_{v}\right\| \tag{2-7}
\end{gather*}
$$

In figure $2, i t$ is shown that point P ($\left.x_{0}, y_{0}, z_{0}\right)$ is a point on the tangent-plane tangents to the surface. Therefore, the tangent-plane equation can be obtained by taking the dot product of the vector from an arbitrary point A snote that point A is also called a connecting point of tangent plane and mechanism) to P and unit normal vector of the tangent-plane.

Hence, we obtain

$$
\begin{equation*}
\left(X-x_{0}, Y-y_{0}, z-z_{0}\right) \cdot N=0 \tag{2-8}
\end{equation*}
$$

Since N can be expressed as $\left(N_{X}, N_{y}, N_{z}\right)$, by taking dot product and rearranging Eq(2-8), yields

Figure 2. Vector Expression of the Tangerit

$$
\begin{equation*}
N_{x} X+N_{y} Y+N_{z} Z=C \tag{2-9}
\end{equation*}
$$

$$
\text { where } \quad c=N_{x} x_{0}+N_{y} y_{0}+N_{z} z_{0}
$$

[^0]
CHAPTER III

HOMOGENEOUS TRANSFORMATION MATRIX METHOD

For synthesis of planar mechanisms, Suh [53] derived the planar displacement matrix which expressed the orientation and position of the moving link in (3 $\times 3$) matrix. For synthesis of spatial mechanisms, Wilson [1] was the first developed (3×3) matrix to define the motion of a body in space. Roth [2] also derived the (3 $\times 3$) screw matrix by using the linear transformation and serew algebra. Denavit and Hartenberg[38] developed a new symbolic notation and derived $\{4 \times 4$) matrix for spatial mechanism based on the homogeneous transformation. This notation is called Denanit-Hartenberg notation (D-H notation) and the matrix is called $D-H$ matrix. Because of the sufficient for the description of the complete kinematic properties of lower-pair mechanisms, $D-H$ notation can be used for kinematic synthesis and analysis problems of spatial mechanisms to obtain the result which is more compact.

There are four parameters defined in $D-H$ notation as shown in figure 3 and stated in the following:

```
ai}=\mathrm{ link length, the common normal along }\mp@subsup{X}{i+1}{
    Z i
\alpha}\mp@subsup{i}{}{\prime}=link twist angle, relative orientation of the
```


Figure 3. Notation of Homogeneous Transformation Matrix
kinematic pair, obtained by rotating z_{i} to z_{i+1} about X_{i+1}. The $s i g n$ of rotation is given by the right-hand screw rule.
$d_{i}=$ offset distance, the common normal along z_{i} between X_{i} and X_{i+1}. The sign of distance can be positive or negative. d_{i} is positive when measured to the positive Z_{i} direction.
$\theta_{i}=$ link angle, obtained by rotating X_{i} to X_{i+1} about z_{i}. The sign of rotation is given by the right-hand screw rule.

Also, the coordinates are defined as : The Z_{i} axis is along the axis of motion or rotation of the (i+1) joint. The X_{i} axis in the direction of normal to both Z_{i} and Z_{i+1} axis,point away from the Z_{i} axis. The Y_{i} axis is chosen so as to make the coordinate X_{i}, Y_{i}, and Z_{i} following the Right-Hand screw.

Once the $D-H$ coordinate system for each link is established, a homogeneous transformation matrix can be developed relating the $i+1^{\text {th }}$ coordinate frame to the $i^{\text {th }}$ coordinate frame as shown in fig(3). It is clear that a point P expressed in the $i+1^{\text {th }}$ coordinate system may be expressed in the $i^{\text {th }}$ coordinate system by performing the following successive transformations:

1. Rotate about the Z_{i} axis by an angle θ_{i} to align the x_{i} and $x_{i+1}, \operatorname{Rot}\left(z_{i}, \theta_{i}\right)$.
2. Translate along the z_{i} axis a distance d_{i} to bring the X_{i} and X_{i+1} axes into coincidence, $\operatorname{Tran}\left(Z_{i}, d_{i}\right)$.
3. Translate along the z_{i} axis a distance a_{i} to bring the two origins into coincidence, $\operatorname{Tran}\left(X_{i}, a_{i}\right)$.
4. Rotate about the X_{i+1} axis an angle α_{i} to bring the two coordinate systems to completely coincide, $\operatorname{Rot}\left(X_{i}, \alpha_{i}\right)$.
Let the coordinates of a point P expressed in. the $i^{\text {th }}$ coordinate system be ($p_{x i}, p_{y i}, p_{z i}$) and in the $i+1^{\text {th }}$ coordinate system be ($p_{x i+1}, P_{y i+1}, P_{z i+1}$). Then the vectors P_{i} and P_{i+1} can be written in the (4×1) matrix forms as follows:

$$
P_{i}=\left[\begin{array}{c}
P_{x i} \tag{3-1}\\
P_{y i} \\
P_{z i} \\
1
\end{array}\right] \quad P_{i+1}=\left[\begin{array}{c}
P_{x i+1} \\
P_{y i+1} \\
P_{z i+1} \\
1
\end{array}\right]
$$

The complete transformation of link $i+1$ with respect to link i or joint $i+1$ with respect to joint i can be expressed as:

$$
\left[A_{i}\right]=\operatorname{Rot}\left(z_{i}, \theta_{i}\right) \operatorname{Tran}\left(z_{i}, d_{i}\right) \operatorname{Tran}\left(x_{i}, a_{i}\right) \operatorname{Rot}\left(x_{i}, \alpha_{i}\right)(3-2)
$$

Thus, we can obtain the homogenerous tramsformation matrix $\left[A_{i}\right]$ from $i+1^{\text {th }}$ frame to the $i^{\text {th }}$ frame

where

$$
\begin{aligned}
& c \theta_{i}=\cos \theta_{i}, \operatorname{s\theta }{ }_{i}=\sin \theta_{i}, \\
& c \alpha_{i}=\cos \alpha_{i}, \operatorname{s} \alpha_{i}=\sin \alpha_{i} .
\end{aligned}
$$

Also, the transformation of coordinate frome the $i+1^{\text {th }}$ system to the $\mathrm{i}^{\text {th }}$ system will be

$$
\begin{equation*}
P_{i}=\left[A_{i}\right] P_{i+1} \tag{3-4}
\end{equation*}
$$

and the inverse transformation exists:

$$
\begin{equation*}
P_{i+1}=\left[A_{i}\right]^{-1} P_{i} \tag{3-5}
\end{equation*}
$$

where

$$
\left[A_{i}\right]^{-1}=\left[\begin{array}{cccc}
c \theta_{i} & S \theta_{i} & 0 & -a_{i} \tag{3-6}\\
-5 \theta_{i} C \alpha_{i} & c \theta_{i} C \alpha_{i} & 5 \alpha_{i} & -d_{i} \mathrm{~S} \alpha_{i} \\
0 & S \alpha_{i} & C \alpha_{i} & -\alpha_{i} C \alpha_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

By applying the matrix transforamtion to each joint of coordinate frame from the last joint coordinate frame to the first joint coordinate frame, we yield

$$
\begin{equation*}
P_{1}=\left[A_{1}\right]\left[A_{2}\right] \ldots\left[A_{n}\right] P_{n+1}=\left[A_{e q v}\right] P_{n+1} \tag{3-7}
\end{equation*}
$$

The equivalent transformation matrix $\left[A_{\text {equ }}\right]$ defines the relationship between the coordinates of any point in the last frame P_{n+1} and that of the same point expressed in the first frame, P_{1}

Denavit and Hartenberg [38] developed a kinematic notation for lower-pair mechanisms including revolute, prismatic, cylindrical, helical, and spherical joints based on (4×4) matrices. For a revolute joint, d_{i}, a_{i}, and α_{i} are all constant, while θ_{i} varies as link i rotates about the axis of joint i. For a prismatic joint θ_{i}, a_{i}, and α_{i} are constant while d_{i} varies as link i translates along the axis of joint i. For a cylindrical joint, it can be considered as equivalent to a coaxial revolute and presmatic joints. therefore, the joint variables are : θ_{i} varies as link i rotates about the axis of joint i and d_{i} varies as link i translates along the axis of joint i. For a helical joint, both parameters θ_{i} and d_{i} vary, being related by the lead L_{i} as

$$
\begin{equation*}
\frac{\delta \theta}{2 \pi}=\frac{\delta d_{i}}{L_{i}} \quad \text { where } \theta: \text { radian } \tag{3-8}
\end{equation*}
$$

When L_{i} is constant, either θ_{i} or d_{i} varies. Once δd_{i} is obtained, d_{i} can be solved by

$$
\begin{equation*}
d_{i}=d_{0}+\delta d_{i} \tag{3-9}
\end{equation*}
$$

where d_{0} : original link distance
The spherical joint is equivalent to a combination of
three revolute joints whose axes are mutually perperdicular at a common point of intersection \&i.e., the joint variable θ become θ_{1}, θ_{2}, and θ_{3}). The joint motion parameters are summarized as shown in TABLE II and in figure 4.

TABLE I I
JOINT MOTION PARAMETERS FOR R,P, H,C,AND 5 JOINTS

Type of Joint	Motion Parameter
1. Revolute joint	θ_{i}
2. Prismatic joint	d_{i}
3. Helical joint	θ_{i} or d_{i}
4. Cylindrical joint	θ_{i} and d_{i}
5. Spherical joint	3-revolute joint $\left\langle\theta_{1}, \theta_{2}\right.$ and θ_{3}, and $d_{i}=a_{i}=0$)

In order to synthesize and analyze spatial mechanisms by using homogeneous transformation matrix method, we can separate the transformation matrix $\left[A_{n}\right]$ into two submatrices: one is called joint-motion matrix $[A \vee]$ in terms of joint motion and the other is called linkage-parameter matrix $\left[A_{c}\right]$ in terms of linkage parameters. When synthesis procedure is used, the joint-motion matrix $\left[A_{V}\right]$ becomes a

(C) Helical Joint

Figure 4. Joint Rotion Parameter of Revolute, Prismatic, and Helical Joints.
constant and the linkage-parameter matrix $\left[A_{c}\right]$ becomes an unknown matrix and vice versa when analysis procedure is used. Therefore, we obtain

$$
\begin{equation*}
\left[A_{i}\right]=\left[A_{V i}\right]\left[A_{c i}\right] \tag{3-10}
\end{equation*}
$$

where

$$
\begin{aligned}
& {\left[A_{\vee i}\right]=\left[\begin{array}{cccc}
c \theta_{i} & -S \theta_{i} & 0 & 0 \\
S \theta_{i} & c \theta_{i} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text { (for revolute and } \begin{array}{c}
\\
\text { spherical joint) } \\
\text { (3-11) }
\end{array}} \\
& =\left[\begin{array}{cccc}
c \theta_{i} & -5 \theta_{i} & 0 & 0 \\
5 \theta_{i} & c \theta_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right] \text { (for cylindrical, } \quad \text { and helical joint) } \\
& =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \text { (for prismatic joint (3-13) } \\
& {\left[A_{C i}\right]=\left[\begin{array}{cccc}
a_{i 11} & a_{i 12} & a_{i 13} & a_{i 14} \\
a_{i 21} & a_{i 22} & a_{i 23} & a_{i 24} \\
a_{i 31} & a_{i 32} & a_{i 33} & a_{i 34} \\
0 & 0 & 0 & 1
\end{array}\right]} \\
& \text { (3-14) }
\end{aligned}
$$

$$
\begin{align*}
& =\left[\begin{array}{cccc}
1 & 0 & 0 & a_{i} \\
0 & C \alpha_{i} & -S \alpha_{i} & 0 \\
0 & S \alpha_{i} & C \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right] \quad \text { (for revolute and } \quad \text { spherical joint) } \\
& =\left[\begin{array}{cccc}
1 & 0 & 0 & a_{i} \\
0 & C \alpha_{i} & -5 \alpha_{i} & 0 \\
0 & 5 \alpha_{i} & C \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text { (for cylindrical } \quad \text { and helical joint) } \\
& =\left[\begin{array}{cccc}
c \theta_{i} & -S \theta_{i} c \alpha_{i} & S \theta_{i} S \alpha_{i} & a_{i} c \theta_{i} \\
S \theta_{i} & C \theta_{i} C \alpha_{i} & -c \theta_{i} S \alpha_{i} & a_{i} S \theta_{i} \\
0 & S \alpha_{i} & C \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text { (for prismatic joint) } \\
& \text { and expressing }\left[A_{s i}\right]^{-1} \text { as : } \\
& {\left[A_{C i}\right]^{-1}=\left[\begin{array}{cccc}
b_{i 11} & b_{i 12} & b_{i 13} & b_{i 14} \\
b_{i 21} & b_{i 22} & b_{i 23} & b_{i 24} \\
b_{i 31} & b_{i 32} & b_{i 33} & b_{i 34} \\
0 & 0 & 0 & 1
\end{array}\right]} \tag{3-18}\\
& \text { where }\left[a_{n i, j}\right] \text { and }\left[b_{n i, j}\right] \text { are in terms of linkage } \\
& \text { parameters. Once the coordinate systems are established, the } \\
& \text { synthesis and analysis procedure of spatial mechanisms can } \\
& \text { be obtained by using the transformation matrix with the help } \\
& \text { of the tangent-plane equation. }
\end{align*}
$$

SYNTHESIS AND ANALYSIS OF DYADS FOR FINITELY SEPATATED POSITIONS generated by tangent-plane

```
In this chapter, a new synthesis and analysis procedure is developed, based on the tangent plane equation presented in chapter II and the homogeneous transformation matrix method presented in chapter III, for finitely separated position with any combination of revolute, prismatic, and helical joints to envelop a given surface by a tangent plane carried by the moving rigid body.
The advantages of the proposed procedure can be briefly stated as:
1. Taking a plane as the tracing element for pathgeneration to envelop a surface.
2. Solving for any combination of binary links with \(R\), \(P\), and \(H\) joints.
3. Obtaining the closed-form solution.
4. Increasing the number of precesion positions.
The term "dyad" used in this thesis refers to a twolink chain ( a fixed link and a moving binary coupling link) which is used to guide a third member through several design positions. With two-parameter motion, we can investigate a
```

mechanism having two degrees of freedom (i.e. a dyad). There are nine combinations of dyads composed of mixed revolute, prismatic, and helical joints as shown in TABLE III.

In the next section, we will examine the synthesis and analysis procedure for each combination of binary links.
table III

```
TWO DEGREES OF FREEDOM BINARY LINKS
WITH AND COMBINATION OF R, P,
                AND H JOINTS
```

(1) $R-R$	(4) $P-R$	(7) $H-R$
(2) $R-P$	(5) $P-P$	(8) $H-P$
(3) $R-H$	(6) $P-H$	(9) $H-H$

Figure 5 shows a binary link kinematically connects a moving rigid body which carries the tangent-plane to a fixed coordinate frame. The joint connecting to the tangent plane is called the moving joint and the joint connecting to the fixed frame is called the fixed joint. P is the point where the plane tangent to the surface. In figure 5 , we establish four coordinates frame as :
$\{X, Y, Z\} \quad: \quad f i \times e d$ coordinate frame.
$\left\{X_{1,}, Y 1, Z 1\right\}$: coordinate frame on the fixed joint Ji.
$\{X 2, Y 2, Z Z\}$: coordinate frame on the moving joint J2.

Figure 5. Binary Link with a Plane Attached To the lloving Joint Tangential to to a Surface
$\{X 3, Y 3,23\}$: coordinate frame on the given tangent plane at connecting point P.

Also, the parameters involve in fig(5) are: $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$: the twist angles between the pair axes. $\left\{a_{1}, a_{2}, a_{3}\right\}$: the link length. $\left\{s_{1}, s_{2}, 5_{3}\right\}$: the offset distances.
$\left\{\theta_{1}, \theta_{2}, \theta_{3}\right\}$: the rotation angles at each joint.
$P_{i} \quad$: the vector measured from origin of $i^{\text {th }}$ coordinate frame to the point P. where i $=1 . .4$.

Since the origin of ($X 3, Y 3, Z 3$) coordinate frame is on the connecting point of tangent plane and moving joint. Thus, we obtain the matrix transformation measured from the origin of $(X 3, Y 3, Z 3)$ coordinate frame to the fixed coordinate frame as :

$$
\left.\begin{array}{rl}
{\left[\begin{array}{c}
P_{1 \times} \\
P_{1 y} \\
P_{1 z} \\
1
\end{array}\right]=} & {\left[A_{1}\right]\left[A_{2}\right]\left[A_{3}\right]} \\
1 \\
1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0 \\
\\
\end{array}\right]\left[\begin{array}{l}
{\left[A_{V 1}\right]\left[A_{c 1}\right]\left[A_{v 2}\right]\left[A_{c 2}\right]\left[A_{v 3}\right]\left[A_{c 3}\right]}
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
0 \\
1
\end{array}\right](4-2)
$$

Figure 6 shows that the finite displacement of a tangent plane attached to a moving rigid body displaces from $i^{\text {th }}$ to its $j^{\text {th }}$ position. We note that the number of possible synthesis positions depends on the number of unknown parameters and the constraint equations. Once the constraint equations are derived, we can determine the maximum number of allowable synthesis positions.

```
4.1. Synthesis of Dyads For Any
    Combination of Revolute,
    Prismatic, and Helical
        Joints
```

(1) Synthesis of R-R crank:

It has been shown by Suh[19] and Tsai[20] that, for rigid body guidance problems, the maximum number of design positions for $R-R$ cranks is three with no free choice of design parameters. However, by using the tangent-plane envelope generation presented in this thesis, the maximum number of synthesis positions can be obtained is nine.

By substituting Eq(4-2) into Eq(2-9), we obtain the synthesis equation of $R-R$ crank with tangent-plane attached on the moving joint.

$$
\begin{align*}
& +\left(n_{y} C \theta_{1} C \alpha_{1}+n_{z} S \alpha_{1}-n_{x} S \theta_{1} C \alpha_{1}\right)\left(S \theta_{2}{ }_{3} C \theta_{3}+C \theta_{2}^{C \alpha_{2}}{ }_{3} S \theta_{3}-\right. \\
& \left.c \theta_{2} S \alpha_{2} d_{3}+a_{2} S \theta_{2}\right)+\left(n_{x}^{\left.S \theta_{1} S \alpha_{1}-n_{y} C \theta_{1} S \alpha_{1}+n_{z}^{C \alpha_{1}}\right)\left(S \alpha_{2}{ }_{3} S \theta_{3}, ~\right.}\right. \\
& +C \alpha_{z}{ }^{d}{ }_{3}+{ }^{d}{ }_{2}{ }^{\prime}+n_{x}{ }^{a}{ }_{1} C \theta_{1}+n_{y}{ }_{1} S \theta_{1}+n_{z}{ }^{d} \\
& =n_{x} P_{x}+n_{y} P_{y}+n_{z} P_{z} \tag{4-3}
\end{align*}
$$

Figure 6. Finite Displacement of Binary Link

We note that the fundamental problem in the kinematic synthesis is to determine the dimensions of linkages required to pass through a series of points in space. Therefore, the unknown variables in Eq(4-3) will be :

$$
\text { Since } \theta_{1}\left\{_{i s}\left\{\begin{array}{ccc}
a_{1}, & a_{2}, & a_{3} \\
d_{1}, & d_{2}, & d_{3} \\
\alpha_{1}, & \alpha_{2}, & \alpha_{3}
\end{array}\right\}_{i \times e d}\right. \text { angle }
$$

assume θ_{1} as an unknown variable rather than as a known joint motion variable. Also, α_{3} is free from Eq(4-3). Hence, the unknown linkage parameters are :

$$
\left\{\begin{array}{lll}
a_{1}, & a_{2}, & a_{3} \\
d_{1}, & d_{2}, & a_{3} \\
a_{1}, & a_{2}, & \\
\theta_{1} & &
\end{array}\right\}
$$

Let N be the maximum number of finitely separated positions. There are nine unknowns in Eq(4-3). Thus, we obtain

$$
\begin{equation*}
N=9 \tag{4-4}
\end{equation*}
$$

Therefore, the maximum number of finitely separated positions for R-R crank can be obtained by given nine joint motions. Then Eq(4-3) can be rewritten as:

$$
\begin{aligned}
& \left.S \theta_{2 n} S \alpha_{2} d_{3}+a_{2} C \theta_{2 n}\right\rangle+\left\langle n_{y_{n}} C \theta_{1} C \alpha_{1}+n_{z_{n}} S \alpha_{1}-\right. \\
& \left.n_{x_{n}} S \theta_{1} C \alpha_{1}\right)\left(S \theta_{2 n} a_{3} C \theta_{3 n}+C \theta_{2 n} C \alpha_{2} a_{3} S \theta_{3 n}-\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.C \theta_{2 n} S \alpha_{2} d_{3}+a_{2} S \theta_{2 n}\right)+\left(n_{x_{n}} S \theta_{1} S \alpha_{1}-n_{y_{n}}{ }^{C \theta_{1} S \alpha_{1}}\right. \\
& \left.+n_{z_{n}} C \alpha_{1}\right)\left(S \alpha_{2}{ }_{3} S \theta_{3 n}+C \alpha_{2} d_{3}+d_{2}\right)+n_{x_{n}}{ }^{a}{ }_{1} C \theta_{1} \\
& +n_{y_{n}}{ }^{a_{1} S \theta_{1}}+n_{z_{n}} d_{1} \\
& =n_{x_{n}} P x_{n}+n_{y_{n}} P_{y_{n}}+n_{z_{n}} P z_{n}
\end{aligned}
$$

where

$$
\begin{array}{ll}
\theta_{2_{n}}=\theta_{Z_{n-1}}+\delta \theta_{Z_{n-1}} \\
\theta_{3_{n}}=\theta_{3_{n-1}}+\delta \theta_{3_{n-1}} & n=1.9
\end{array}
$$

From Eq(4-4), if θ_{1}, α_{1}, and α_{2} are chosen as known value, Thus, we yield a linear equation in six unknowns.

$$
\begin{equation*}
k_{1} a_{3}+k_{2} a_{2}+k_{3} a_{1}+k_{4} d_{3}+k_{5} d_{2}+k_{6} d_{1}=k \tag{4-6}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left(n_{y_{n}} \mathrm{C} \theta_{1} \mathrm{C} \alpha_{1}+n_{z_{n}} \mathrm{~S} \alpha_{1}-n_{x_{n}} \operatorname{S\theta }{ }_{1} \mathrm{C} \alpha_{1}\right)\left(S \theta_{2 n} \mathrm{C} \mathrm{\theta} 3 n+\right. \\
& C \theta_{2 n}\left[\alpha_{2} S \theta_{3 n}\right)+\left(n_{x_{n}} S \theta_{1} S \alpha_{1}-n_{y_{n}} C \theta_{1} S \alpha_{1}+n_{z_{n}} C \alpha_{1}\right) \\
& \left(S \alpha_{2} S \theta_{3 n}\right) \\
& K_{z}=\left(n_{x_{n}} c \theta_{1}+n_{y_{n}} s \theta_{1}\right) c \theta_{2 n}+ \\
& \left(n_{y_{n}}^{C \theta_{1}} \mathrm{C} \alpha_{1}+n_{z_{n}}^{S \alpha_{1}}-n_{x_{n}}^{S \theta} \theta_{1} \mathrm{C} \alpha_{1}\right) S \theta_{2 n} \\
& k_{3}=\left(n_{x_{n}} c \theta_{1}+n_{y_{n}} s \theta_{1}\right) \\
& K_{4}=\left(n_{x_{n}} \mathrm{C} \theta_{1}+n_{y_{n}} S \theta_{1}\right) 5 \theta_{2 n^{S \alpha}}+
\end{aligned}
$$

$$
\begin{aligned}
& +\left(n_{x_{n}} S \theta_{1} S \alpha_{1}-n_{y_{n}} C \theta_{1} S \alpha_{1}+n_{z_{n}} C \alpha_{1}\right) C \alpha_{2} \\
& k_{5}=\left(n_{x_{n}} S \theta_{1} S \alpha_{1}-n_{y_{n}} C \theta_{1} S \alpha_{1}+n_{z_{n}} C \alpha_{1}\right) \\
& k_{b}=n_{z}
\end{aligned}
$$

$K=n_{x} P_{x_{n}}+n_{y_{n}} P_{y_{n}}+n_{z_{n}} P_{z_{n}}$

Hence, the closed-form solution of R-R crank for six finitely separated positions can be obtained by assuming θ_{1}, α_{1} and α_{2}.However, because of nonlinearity and complication, the solution of nine synthesis positions of R-R crank can not be obtain easily. The proposed synthesis procedure provide an effective way to solve for nine separated positions by first obtaining the closed-form solution for six finitely separated positions and assuming θ_{1}, α_{1}, and α_{2} as arbitrary values. Once the closed-form solution for six finitely seaprated positions is obtained, we can proceed to solve for seven, eight, and nine positions.

In TABLE IV, we summarize the synthesis procedure of R-R crank for nine finitely separated positions.

TABLE IV
SYNTHESIS PROCEDURE OF A R-R CRANK FOR NINE POSITIONS

Given :

1) The parametric equation of the surface to be enveloped by a tangent-plane attached to the moving joint of $R-R$ cranks and nine precision points which approximate the surface.
2) the rotational angle (joint motion) of each joint

$$
\begin{aligned}
& \theta_{2_{n}}=\theta_{2} n_{n-1}+\delta \theta_{2} 2_{n-1} \\
& \theta_{3_{n}}=\theta_{3_{n-1}}+\delta \theta_{3_{n-1}}
\end{aligned}
$$

Objective : Design a $R-R$ crank, a tangent-plane attached to a moving joint in which envelopes a given surface at the precision points.
(i.e., determine the linkage parameters a_{1}, a_{2} "

$$
\left.a_{3}, \alpha_{1}, \alpha_{2}, \theta_{1}, s_{1}, s_{2}, s_{3},\right)
$$

Procedure :

1) Calculate the normal vector of each precision points from

$$
N_{n}=5_{u_{n}} \times 5_{v_{n}} \quad \text { where } n=1 . .9
$$

2) Establish the synthesis equations with the help of the tangent-plane equations

$$
\left(C_{n}-P_{n}\right) N_{n}=0
$$

where

$$
\begin{aligned}
& \mathbf{P}=p_{x} \mathbf{i}+p_{y} \mathbf{j}+p_{z} k \\
& \mathbf{C}=\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[A_{1}\right]\left[A_{2}\right]\left[A_{3}\right]\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

3) Obtain the closed-form solution for 6 positions by taking θ_{1}, α_{1}, and α_{2} as a guessing value.
4) Obtain the numerical solution of seven, eight, and nine positions by using the synthesis equation of $R-R$ crank :

$$
\begin{aligned}
& \left(n_{x_{n}} C \theta_{1}+n_{y_{n}} S \theta_{1}\right)\left(C \theta_{2 n} a_{3} C \theta_{3 n}-S \theta_{2 n} C \alpha_{2} a_{3} S \theta_{3 n}+\right. \\
& \left.S \theta_{2 n} S \alpha_{2} d_{3}+a_{2} C \theta_{2 n}\right)+\left(n_{y_{n}} C \theta_{1} C \alpha_{1}+n_{z_{n}} S \alpha_{1}-\right. \\
& \left.n_{x_{n}} S \theta_{1} C \alpha_{1}\right)\left(S \theta_{2 n} a_{3} C \theta_{3 n}+C \theta_{2 n} C \alpha_{2} a_{3} S \theta_{3 n}-C \theta_{2 n} S \alpha_{2} d_{3}\right. \\
& \left.+a_{2} S \theta_{2 n}\right)+\left(n_{x_{n}} S \theta_{1} S \alpha_{1}-n_{y_{n}} C \theta_{1} S \alpha_{1}+n_{z_{n}} C \alpha_{1}\right) \\
& \left(S \alpha_{2} a_{3} S \theta_{3 n}+C \alpha_{2} d_{3}+d_{2}\right)+n_{x_{n}} a_{1} C \theta_{1}+n_{y_{n}} a_{1} S \theta_{1}+n_{z} d_{1} \\
& =n_{x_{n}} P P_{n}+n_{y_{n}} P y_{n}+n_{2} P P_{z}
\end{aligned}
$$

Similarly, the synthesis procedure for the other cranks with any combination of R, P, and H joints can be derived by using the proposed procedure.
(2) Synthesis of R-P crank:

Number of Unknowns $=9\left(\alpha_{1}, \alpha_{2}, a_{1}, a_{2}, a_{3}, \alpha_{1}, d_{2}, \theta_{1}, \theta_{3}\right)$
Given joint motion $=\theta_{2 i}, d_{3 i}$
Maximum number of positions $=9$
Maximum number of positions for closed-form solution= 5
The synthesis equation is :

$$
\begin{align*}
& \left(n_{x_{n}} C \theta_{1}+n_{y_{n}} S \theta_{1}\right)\left(C \theta_{2 n} a_{3}^{C \theta_{3}}-S \theta_{2 n}^{C \alpha_{2}{ }_{3} S \theta_{3}+}\right. \\
& \left.S \theta_{2 n} S \alpha_{2} d_{n}+a_{2} C \theta_{2 n}\right)+\left\{n_{y_{n}} C \theta_{1} C \alpha_{1}+n_{z_{n}} S \alpha_{1}-\right. \\
& \left.n_{x_{n}} S \theta_{1} C \alpha_{1}\right)\left(S \theta_{2 n} a_{3} C \theta_{3}+C \theta_{2 n} C \alpha_{2} a_{3} S \theta_{3}-C \theta_{2 n} S \alpha_{2} d_{3 n}\right. \\
& \left.+a_{2} S \theta_{2 n}\right)+\left(n_{x_{n}} S \theta_{1} S \alpha_{1}-n_{y_{n}} C \theta_{1} S \alpha_{1}+n_{z_{n}} C \alpha_{1}\right) \\
& \left(S \alpha_{2} a_{3} S \theta_{3}+C \alpha_{2} \alpha_{3}+d_{2}\right)+n_{x_{n}} a_{1} C \theta_{1}+n_{y_{n}} a_{1} S \theta_{1}+n_{z_{n}} d_{1} \\
& =n_{x_{n}} P_{x_{n}}+n_{y_{n}} P y_{n}+n_{z_{n}} P_{z_{n}} \tag{4-7}
\end{align*}
$$

where

$$
\begin{aligned}
& \theta_{\sum_{n}}=\theta_{\sum_{n-1}}+\delta \theta_{\sum_{n-1}} \\
& d_{3}=d_{3}+\delta d_{n-1} \quad n=1 . .9
\end{aligned}
$$

(3) Synthesis of R-H crank:

Number of Unknowns $=9\left\langle\alpha_{1}, \alpha_{2}, a_{1}, a_{2}, a_{3}, d_{1}, d_{2}, d_{3}, \theta_{1}\right)$
Given joint motion $=\theta_{2 i}, \theta_{3 i}\left(\right.$ or $\left.d_{3 i}\right)\left(A l s o, L_{3}\right.$ lead of helical joint is provided)

Maximum number of positions $=9$
Maximum number of positions for closed-form solutions=6 <Note : for helical joint the joint motion variable can

$$
\text { be } \theta_{i} \text { or } d_{i} \text {) }
$$

The synthesis equation is :
where

$$
\begin{aligned}
& \theta_{2_{n}}=\theta_{2}+\delta \theta_{2-1}+\delta \theta_{n-1} \\
& \theta_{3}=\theta_{3}+\delta \theta_{n-1} \\
& d_{3}=d_{0}+\delta d_{3}
\end{aligned}
$$

$$
\theta_{3}=\theta_{3}+\delta \theta_{3_{n-1}} \quad n=1 . .9
$$

(4) Synthesis of P-R crank:

Number of Unknowns $=9\left\langle\alpha_{1}, \alpha_{2}, a_{1}, a_{2}, a_{3}, d_{1}, d_{3}, \theta_{1}, \theta_{2}\right)$
Given joint motion $=d_{2}, \theta_{3}$
Maximum number of positions $=9$
Maximum number of positions for closed-form solutions= 5
The synthesis equation is :

$$
\begin{aligned}
& \left(n_{x_{n}} C \theta_{1}+n_{y_{n}}^{\left.S \theta_{1}\right)}\left(C \theta_{2} a_{3} C \theta_{3 n}-S \theta_{2} C \alpha_{2} a_{3} S \theta_{3 n}+\right.\right. \\
& \left.S \theta_{2} S \alpha_{2} d_{3}+a_{2} C \theta_{2}\right)+\left(n_{y_{n}} C \theta_{1} C \alpha_{1}+n_{2} S \alpha_{1}-\right. \\
& \left.n_{x_{n}} S \theta_{1} C \alpha_{1}\right)\left(S \theta_{2} a_{3} C \theta_{3 n}+C \theta_{2} C \alpha_{2} a_{3} S \theta_{3 n}-C \theta_{2} S \alpha_{2} \alpha_{3}\right. \\
& \left.+a_{2} S \theta_{2}\right)+\left(n_{x_{n}} S \theta_{1} S \alpha_{1}-n_{y_{n}} C \theta_{1} S \alpha_{1}+n_{z_{n}} C \alpha_{1}\right) \\
& \left(S \alpha_{2} a_{3} S \theta_{3 n}+C \alpha_{2} d_{3}+d_{2 n}\right)+n_{x_{n}} a_{1} C \theta_{1}+n_{y_{n}} a_{1} S \theta_{1}+n_{2} d_{1} \\
& =n_{x_{n}} P_{x_{n}}+n_{y_{n}} P_{y_{n}}+n_{z_{n}} P_{2} \\
& \text { where } \\
& d_{2}=d_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(n_{x_{n}} C \theta_{1}+n_{y_{n}} S \theta_{1}\right)\left(C \theta_{2 n^{a}}{ }^{c \theta} \theta_{3 n}-S \theta_{2 n^{C}} \alpha_{2}{ }_{3}{ }_{3} \theta_{3 n}+\right. \\
& \left.S \theta_{2 n}{ }^{S \alpha_{2} d_{3}}+a_{2} C \theta_{2 n}\right)+\left(n_{y_{n}}^{C \theta_{1} C \alpha_{1}}+n_{z_{n}} S \alpha_{1}-\right. \\
& \left.n_{x_{n}} S \theta_{1} C \alpha_{1}\right)\left(S \theta_{2 n} a_{3} C \theta_{3 n}+C \theta_{2 n} C \alpha_{2} a_{3} S \theta_{3 n}-C \theta_{2 n} S \alpha_{2} d_{3}\right. \\
& \left.+a_{2} S \theta_{2 n}\right)+\left(n_{x_{n}} S \theta_{1} S \alpha_{1}-n_{y_{n}} C \theta_{1} S \alpha_{1}+n_{z_{n}} \mathrm{C} \alpha_{1}\right) \\
& \left(S \alpha_{2} a_{3} S \theta_{3 n}+C \alpha_{2} d_{3}+d_{2}\right)+n_{x_{n}} a_{1} C \theta_{1}+n_{y_{n}} a_{1} S \theta_{1}+n_{z_{n}} d_{1} \\
& =n_{x_{n}} P_{x_{n}}+n_{y_{n}} P_{y_{n}}+n_{z_{n}} P_{z_{n}} \quad \text { (4-8) }
\end{aligned}
$$

$$
\theta_{3_{n}}=\theta_{3_{n-1}}+\delta \theta_{3_{n-1}} \quad n=1 . .9
$$

(5) Synthesis of $P-P$ crank:

Number of Unknowns $=9\left(\alpha_{1}, \alpha_{2}, a_{1}, a_{2}, a_{3}, a_{1}, \theta_{1}, \theta_{2}, \theta_{3}\right)$
Given joint motion $=d_{2}, d_{3}$
Maximum number of positions $=9$
Maximum number of positions for closed-form solutions= 4
The synthesis equation is :

$$
\begin{align*}
& \left(n_{x_{n}} C \theta_{1}+n_{y_{n}} S \theta_{1}\right)\left(C \theta_{2}{ }_{3} C \theta_{3}-S \theta_{2} C \alpha_{2}{ }_{3} S \theta_{3}+\right. \\
& \left.S \theta_{2} S \alpha_{2} d_{3 n}+a_{2} C \theta_{2}\right)+\left(n_{y_{n}} C \theta_{1} C \alpha_{1}+n_{z_{n}} S \alpha_{1}-\right. \\
& \left.n_{x_{n}} S \theta_{1} C \alpha_{1}\right)\left(S \theta_{2} a_{3} C \theta_{3}+C \theta_{2} C \alpha_{2} a_{3} S \theta_{3}-C \theta_{2} S \alpha_{2} d_{3 n}\right. \\
& \left.+a_{2} S \theta_{2}\right)+\left(n_{x_{n}} S \theta_{1} S \alpha_{1}-n_{y_{n}}^{\left.C \theta_{1} S \alpha_{1}+n_{z_{n}} C \alpha_{1}\right)}\right. \\
& \left(S \alpha_{2} a_{3} S \theta_{3}+C \alpha_{2} d_{3 n}+d_{2 n}\right)+n_{x_{n}} a_{1} C \theta_{1}+n_{y_{n}} a_{1} S \theta_{1}+n_{z_{n}} d_{1} \\
& =n_{x_{n}} P x_{n}+n_{y_{n}} P_{y_{n}}+n_{z_{n}} P z_{n} \tag{4-10}
\end{align*}
$$

where

$$
\begin{aligned}
& d_{z_{n}}=d_{\Sigma_{n-1}}+\delta d_{z_{n-1}} \\
& d_{3_{n}}=d_{3_{n-1}}+\delta d_{3_{n-1}} \quad n=1.9
\end{aligned}
$$

(6) Synthesis of $\mathrm{P}-\mathrm{H}$ crank:

Number of Unknowns $=9\left\langle\alpha_{1}, \alpha_{2}, a_{1}, a_{2}, a_{3}, d_{1}, a_{3}, \theta_{1}, \theta_{2}\right)$
Given joint motion $=d_{2}, \theta_{3}$
Maximum number of positions $=9$
Maximum number of positions for closed-form solutions= 5
The synthesis equation is :

$$
\begin{aligned}
& \left(n_{x_{n}} C \theta_{1}+n_{y_{n}} S \theta_{1}\right)\left(c \theta_{2}{ }_{3}{ }^{c \theta} \theta_{3 n}-S \theta_{2} C \alpha_{2}{ }^{a} 3^{S \theta}{ }_{3 n}+\right. \\
& \left.S \theta_{2} S \alpha_{2}{ }_{3}+a_{2} C \theta_{2}\right)+\left\langle n_{y_{n}}{ }^{C \theta_{1} C \alpha_{1}}+n_{z_{n}} S \alpha_{1}-\right. \\
& \left.n_{x_{n}} S \theta_{1} C \alpha_{1}\right)\left(S \theta_{2} a_{3} C \theta_{3 n}+C \theta_{2} C \alpha_{2} a_{3} S \theta_{3 n}-C \theta_{2} S \alpha_{2} d_{3}\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+a_{2} S \theta_{2}\right)+\left(n_{x_{n}} S \theta_{1} S \alpha_{1}-n_{y_{n}} c \theta_{1} S \alpha_{1}+n_{z_{n}}\left[\alpha_{1}\right)\right. \\
& \left(S \alpha_{2}{ }^{a} 3^{S \theta_{3 n}+C \alpha_{2}{ }^{d}{ }_{3}+d} \sum_{n}\right)+n_{x_{n}}{ }_{1} C \theta_{1}+n_{y_{n}}{ }_{1} S \theta_{1}+n_{z_{n}}{ }^{d}{ }_{1} \\
& \quad=n_{x_{n}} P_{x_{n}}+n_{y_{n}} P_{y_{n}}+n_{z_{n}} P_{z_{n}} \tag{4-11}
\end{align*}
$$

where

$$
\begin{aligned}
& d_{2}=\partial_{n} \partial_{n-1}+\delta d_{n-1} Z_{n-1}+\delta \theta_{3_{n-1}} \\
& \theta_{3_{n}}=\theta_{3}+1 \ldots 9 \\
& d_{3}=d_{0}+\delta d_{3}
\end{aligned}
$$

(7) Synthesis of $H-R$ crank:

Number of Unknowns $=9\left(\alpha_{1}, \alpha_{2}, a_{1}, a_{2}, a_{3}, d_{1}, d_{2}, d_{3}, \theta_{1}\right)$
Given joint motion $=\theta_{2}, \theta_{3}$
Maximum number of positions $=9$
Maximum number of positions for closed-form solutions= 6
The synthesis equation is :

$$
\begin{align*}
& \left(n_{x_{n}}^{C \theta_{1}}+n_{y_{n}} S \theta_{1}\right)\left(c \theta_{2 n^{a}} C \theta_{3 n}-S \theta_{2 n}^{C \alpha_{2}{ }_{3} S \theta_{3 n}+}\right. \\
& \left.S \theta_{2 n} S \alpha_{2} d_{3}+a_{2} C \theta_{2 n}\right)+\left(n_{y_{n}} C \theta_{1} C \alpha_{1}+n_{z_{n}}^{S \alpha_{1}}-\right. \\
& \left.n_{x_{n}} S \theta_{1} C \alpha_{1}\right)\left(S \theta_{2 n} a_{3} C \theta_{3 n}+C \theta_{2 n} C \alpha_{2} a_{3} S \theta_{3 n}-C \theta_{2 n} S \alpha_{2} d_{3}\right. \\
& \left.+a_{2} S \theta_{2 n}\right)+\left(n_{x_{n}} S \theta_{1} S \alpha_{1}-n_{y_{n}} C \theta_{1} S \alpha_{1}+n_{z_{n}}^{C \alpha_{1}}\right) \\
& \left(S \alpha_{2} a_{3} S \theta_{3 n}+C \alpha_{2} d_{3}+d_{2}\right)+n_{x_{n}} a_{1} C \theta_{1}+n_{y_{n}} a_{1} S \theta_{1}+n_{z_{n}} d_{1} \\
& =n_{x_{n}} P x_{n}+n_{y_{n}} P y_{y_{n}}+n_{z_{n}} P z_{n} \tag{4-12}
\end{align*}
$$

where

$$
\begin{aligned}
& { }_{2} \Sigma_{n}=\theta_{\Sigma_{n-1}}+\delta \theta_{\Sigma_{n-1}} \\
& \theta_{3}=\theta_{3}+\delta \theta_{n-1} \\
& \partial_{n}=\partial_{0}+\delta d_{2}
\end{aligned} \quad n=1 \ldots 9
$$

(8) Synthesis of $H-P$ crank:

Number of Unknowns $=9\left(\alpha_{1}, \alpha_{2}, a_{1}, a_{2}, a_{3}, d_{1}, a_{2}, \theta_{1}, \theta_{3}\right)$

Given joint motion $=\theta_{2}, d_{3}$.
Maximum number of positions $=9$
Maximum number of positions for closed-form solutions= 5
The synthesis equation is :

$$
\begin{align*}
& \left(n_{x_{n}} C \theta_{1}+n_{y_{n}} S \theta_{1}\right)\left\langle C \theta_{2 n^{a}{ }_{3} C \theta_{3}-S \theta_{2 n} C \alpha_{2}{ }^{a}{ }_{3} S \theta_{3}+}\right. \\
& \left.S \theta_{2 n^{S}} S \alpha_{2}{ }^{d} 3 n+a_{2} C \theta_{2 n}\right\rangle+\left\langle n_{y_{n}} C \theta_{1} C \alpha_{1}+n_{z_{n}} S \alpha_{1}-\right. \\
& \left.n_{x} S \theta_{1} C \alpha_{1}\right)\left(S \theta_{2 n} a_{3} C \theta_{3}+C \theta_{2 n} C \alpha_{2} a_{3} S \theta_{3}-C \theta_{2 n} S \alpha_{2} \alpha_{3 n}\right. \\
& \left.+a_{2} S \theta_{2 n}\right)+\left(n_{K_{n}} S \theta_{1} S \alpha_{1}-n_{y_{n}} C \theta_{1} S \alpha_{1}+n_{z_{n}} C \alpha_{1}\right) \\
& \left(S \alpha_{2} a_{3} S \theta_{3}+C \alpha_{2} d_{3 n}+d_{2}\right)+n_{x_{n}} a_{1} C \theta_{1}+n_{y_{n}} a_{1} S \theta_{1}+n_{z} d_{1} \\
& =n_{x_{n}} P_{x_{n}}+n_{y_{n}} P_{y_{n}}+n_{z_{n}} P_{z_{n}} \tag{4-13}
\end{align*}
$$

where

$$
\begin{array}{ll}
\theta_{\Sigma_{n}}=\theta_{2_{n-1}}+\delta \theta_{2_{n-1}} \\
\theta_{3}=\theta_{3}+\delta \theta_{3-1} \\
d_{n}=d_{0}+\delta d_{2} & n=1 . .9
\end{array}
$$

(9) Synthesis of $H-H$ crank:

Number of Unknowns $=9\left\langle\alpha_{1}, \alpha_{2}, a_{1}, a_{2}, a_{3}, d_{1}, d_{2}, a_{3}, \theta_{1}\right)$
Given joint motion $=\theta_{2}, \theta_{3}$
Maximum number of positions $=9$
Maximum number of positions for closed-form solutions= 6
The synthesis equation is :

$$
\begin{aligned}
& \left(n_{x_{n}} C \theta_{1}+n_{y_{n}} S \theta_{1}\right)\left(C \theta_{2 n} a_{3} C \theta_{3 n}-S \theta_{2 n} C \alpha_{2}{ }_{3} S \theta_{3 n}+\right. \\
& \left.S \theta_{2 n} S \alpha_{2} d_{3}+a_{2} C \theta_{2 n}\right)+\left\{n_{y_{n}} C \theta_{1} C \alpha_{1}+n_{z_{n}} S \alpha_{1}-\right. \\
& \left.n_{x_{n}} S \theta_{1} C \alpha_{1}\right)\left(S \theta_{2 n} a_{3} C \theta_{3 n}+C \theta_{2 n} C \alpha_{2} a_{3} S \theta_{3 n}-C \theta_{2 n} S \alpha_{2} d_{3}\right. \\
& \left.+a_{2} S \theta_{2 n}\right)+\left(n_{x_{n}} S \theta_{1} S \alpha_{1}-n_{y_{n}} C \theta_{1} S \alpha_{1}+n_{z_{n}}^{C \alpha_{1}}\right) \\
& \left(S \alpha_{2} a_{3} S \theta_{3 n}+C \alpha_{2} \alpha_{3}+d_{2}\right)+n_{x_{n}} a_{1} C \theta_{1}+n_{y_{n}} a_{1} S \theta_{1}+n_{z_{n}} \alpha_{1} \\
& =n_{x_{n}} P x_{n}+n_{y_{n} P y_{n}+n_{z_{n}} P z_{n}}
\end{aligned}
$$

where

$$
\begin{aligned}
& \theta_{Z_{n}}=\theta_{\sum_{n-1}}+\delta \theta_{E_{n-1}} \\
& \theta_{3}=\theta_{3}+\delta \theta_{3}{ }_{n-1} \quad n=1 . .9 \\
& d_{2}=d_{0}+\delta d_{2} \\
& d_{3}=d_{0}+\delta d_{3} \\
& \text { 4.2. Analysis of Dyads For Any } \\
& \quad \text { Combination of Revolute, } \\
& \quad \text { Prismatic, and Helical } \\
& \quad \text { Joints }
\end{aligned}
$$

(1) Analysis of R-R crank:

The fundamental problem in the kinematic analysis is to datermine the relative motions of moving links where the linkage parameters are given. Therefore, the unknown variables in this category are θ_{2} and θ_{3} while the linkage parameters $a_{1}, a_{2}, a_{3}, \alpha_{1}, \alpha_{2}, \alpha_{3}, s_{1}, s_{1}, s_{1}$, and θ_{1} are provided as known values.

The point P on which plane tangential to the surface can be expressed in the fixed coordinate frame as:

Let the X-axis of the $(X 3, Y 3,23)$ coordinate frame normal to the tangent-plane (i.e., in the same direction of unit normal vector of tangent plane), then we obtain

$$
\begin{equation*}
P_{4 x}=0 \tag{4-16}
\end{equation*}
$$

Hence, from Eq(4-15), we yield four unknowns \{i.e., θ_{2}, $\theta_{3}, P_{4 y}$ and $P_{4 z}$, in three equations.

$$
\begin{align*}
P_{1 x} & =\left[A_{\mathrm{equ}_{1}}\right]_{1} P_{4 x} \tag{4-17}\\
P_{1 y} & =\left[A_{\mathrm{equ}^{\prime}}\right] P_{4 y} \tag{4-18}\\
P_{1 z} & =\left[A_{\mathrm{equ}^{3}}\right]_{3} P_{4 z}
\end{align*}
$$

(4-19)
where $\left[A_{e q u}\right]_{i}$ is the $i_{t h}$ row of [$A_{\text {equ }}$].
With the help of tangent-plane, we obtain the tangent-plane equation as

$$
\begin{equation*}
\left(X-x_{0}, \quad Y-y_{0}, \quad Z-z_{0}\right) N=0 \tag{4-20}
\end{equation*}
$$

$$
\left[\begin{array}{c}
x \\
Y \tag{4-21}\\
Z \\
1
\end{array}\right]=\left[A_{1}\right]\left[A_{2}\right]\left[A_{3}\right]\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

by rearranging Eq(4-20), yields

$$
\begin{aligned}
& +\left(n_{y} \mathrm{C} \theta_{1} \mathrm{C} \alpha_{1}+n_{2} S \alpha_{1}-n_{x} S \theta_{1} C \alpha_{1}\right)\left(S \theta_{2}{ }_{3} C \theta_{3}+C \theta_{2} C \alpha_{2} a{ }_{3} S \theta_{3}-\right. \\
& \left.C \theta_{2} S \alpha_{2} d_{3}+a_{2} S \theta_{2}\right)+\left\{n_{x} S \theta_{1} S \alpha_{1}-n_{y} C \theta_{1} S \alpha_{1}+n_{2} C \alpha_{1}\right)\left(S \alpha_{2}{ }^{a}{ }_{3} S \theta_{3}\right. \\
& \left.+c \alpha_{2} d_{3}+d_{2}\right)+n_{x} a_{1} c \theta_{1}+n_{y^{a}} s \theta_{1}+n_{z} d_{1}
\end{aligned}
$$

$$
=n_{x} p_{x}+n_{y} p_{y}+n_{z} p_{z}
$$

Thus, from Eq(4-17) to Eq(4-19), and Eq(4-22), we obtain four unknowns in four equations. The analysis procedure of R-R crank is summarize in TABLE V.

> 4.3. Numerical Examples

In this section, numerical examples of synthesis of $R-R$ crank for six and nine finitely separated positions generating different surfaces are presented in TABLE VI, VII, VIII, and IX. Also, numerical examples of analysis of R-R crank by using the given parameters which derived in TABLE VI and VIII are presented in TABLE X and $X I$.

TABLE V

PROCEDURE OF ANALYSIS OF R-R CRANK

Given : 1) The parametric equation of the surface to be enveloped by a tangent-plane attached to the moving joint of $R-R$ cranks and precision points which on the surface.
2) the linkage parameters of R-R links:

$$
a_{i}, d_{i}, \alpha_{i}, \text { and } \theta_{1} \quad \text { where } i=1 . .3
$$

Bbjective : Determine the joint motion of R-R links.
(i.e., calculate θ_{2} and θ_{3})

Procedure :

1) Calculate the normal vector of each precision points from $N=S_{u} \times S_{V}$
2) Derive the analysis equations for the tangentplane motion
$P_{1 \times}=\left[A_{\text {equ }}\right]_{1} P_{4 x}$
$P_{1 y}=\left[A_{\text {equ }}\right]_{2} P_{4 y}$
$P_{12}=\left[A_{\text {equ }}\right]_{3} P_{4 z}$
$(C-P) N=O$
where $P=P_{x}{ }^{i}+P_{y}{ }^{j}+P_{z}{ }^{k}$
$C=\left[\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right]=\left[A_{1}\right]\left[A_{2}\right]\left[A_{3}\right]\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$

NUMERICAL EXAMPLE OF SYNTHESIS OF R-R CRANK FOR SIX FINITELY SEPARATED POSITIONS (CLOSED-FORM SOLUTION)

Given:1) The surface is given as a torus:

$$
5=(20+10 \cos V) \cos U \mathbf{i}+(20+10 \cos V) \sin U \mathbf{j}+10 \sin V k
$$

2) the six finitely separated positions is given as :

$$
\begin{array}{ll}
P_{1}=(30,0,0) & P_{2}=(24.82,14.33,5) \\
P_{3}=(12.5,21.65,8.66) & P_{4}=(0,20,10) \\
P_{5}=(-7.5,12.99,8.66) & P_{6}=(-9.82,5.67,5)
\end{array}
$$

3) the joint motion is given as:

$$
\begin{aligned}
& \theta_{21}=0^{\circ}, \theta_{31}=0^{\circ} \\
& \delta \theta_{21}=30^{\circ}, \delta \theta_{31}=30^{\circ} \delta \theta_{22}=30^{\circ}, \delta \theta_{32}=30^{\circ} \\
& \delta \theta_{23}=30^{\circ}, \delta \theta_{33}=30^{\circ} \delta \theta_{24}=30^{\circ}, \delta \theta_{34}=30^{\circ} \\
& \delta \theta_{25}=30^{\circ}, \delta \theta_{35}=30^{\circ}
\end{aligned}
$$

4) the choice of linkage parameters

$$
\theta_{1}=0^{\circ}, \quad \alpha_{1}=90^{\circ}, \quad \alpha_{2}=90^{\circ}
$$

Result :

$$
\begin{array}{ll}
a_{1}=28.583969, & a_{2}=13.956359, \\
s_{1}=-3.956347, & a_{3}=-12.540329 \\
s_{2}=-3.344426, & s_{3}=-15.720272
\end{array}
$$

TABLE VII

NUMERICAL EXAMPLE OF SYNTHESIS OF R-R CRANK FOR NINE FINITELY SEPARATED POSITIONS

[Given] : 1) The surface is the same as in TABLE VI.
2) the six finitely separated positions is given as

$$
\begin{aligned}
& P_{1}=(30,0,0) \\
& P_{2}=(29.8479,2.6113,0.8715) \\
& P_{3}=(29.3946,5.1831,1.7365) \\
& P_{4}=(28.6486,7.6764,2.5882) \\
& P_{5}=(27.6241,10.0543,3.4202) \\
& P_{6}=(26.3401,12.2826,4.2262) \\
& P_{7}=(24.8205,14.3301,5) \\
& P_{8}=(23.0932,16.1700,5.736) \\
& P_{9}=(21.1891,17.7798,6.4279)
\end{aligned}
$$

3) the joint motion is given as : (θ : degree)

$$
\theta_{21}=0^{\circ}, \quad \theta_{31}=0^{0}
$$

$$
\delta \theta_{21}=5^{\circ}, \quad \delta \theta_{31}=5^{\circ} \quad \delta \theta_{22}=5^{\circ}, \quad \delta \theta_{32}=5^{\circ}
$$

$$
\delta \theta_{23}=5^{\circ}, \quad \delta \theta_{33}=5^{\circ} \quad \delta \theta_{24}=5^{\circ}, \quad \delta \theta_{34}=5^{\circ}
$$

$$
\delta \theta_{25}=5^{\circ}, \quad \delta \theta_{35}=5^{\circ} \quad \delta \theta_{26}=5^{\circ}, \quad \delta \theta_{36}=5^{\circ}
$$

$$
\delta \theta_{27}=5^{\circ}, \quad \delta \theta_{37}=5^{\circ} \quad \delta \theta_{28}=5^{\circ}, \quad \delta \theta_{38}=5^{\circ}
$$

Result :

$$
\begin{array}{ll}
\theta_{1}=45^{\circ}, & \alpha_{1}=30^{\circ}, \\
a_{1}=6.26973343, a_{2}=22.55064583, a_{3}=-6.54820347 \\
s_{1}=1.39241803, s_{2}=-45.4885788, s_{3}=50.77313232
\end{array}
$$

TABLE VIII
NUMERICAL EXAMPLE OF SYNTHESIS OF R-R
CRANK FOR SIX FINITELY SEPARATED POSITIONS (SURFACE IS GIVEN AS A SPHERE)
[Given]:

1) The surface is given as a sphere:
$\mathbf{S}=20 \operatorname{cosusinv} \mathbf{i}+20 \operatorname{sinUsinv} \mathbf{j}+20 \cos V \mathbf{k}$
2) the six finitely separated positions is given as :

$$
P_{1}=(8.66,5.0,17.32)
$$

$$
P_{2}=(9.848,8.26,15.321)
$$

$$
P_{3}=(9.848,11.736,12.856)
$$

$$
P_{4}=(8.66,15.0,10.0)
$$

$$
P_{5}=(6.428,17.66,6.84)
$$

$$
F_{6}=(3.42,19.4,3.473)
$$

3) the joint motion is given as:

$$
\begin{aligned}
& \theta_{21}=30^{\circ}, \theta_{31}=30^{\circ} \\
& \delta \theta_{21}=10^{\circ}, \delta \theta_{31}=10^{\circ} \delta \delta \theta_{22}=10^{\circ}, \delta \theta_{32}=10^{\circ} \\
& \delta \theta_{23}= 10^{\circ}, \delta \theta_{33}=10^{\circ} \quad \delta \theta_{24}=10^{\circ}, \delta \theta_{34}=10^{\circ} \\
& \delta \theta_{25}=10^{\circ}, \delta \theta_{35}=10^{\circ}
\end{aligned}
$$

4) the choice of linkage parameters

$$
\theta_{1}=45^{\circ}, \quad \alpha_{1}=30^{\circ}, \quad \alpha_{2}=30^{\circ}
$$

Result :

$$
\begin{aligned}
& a_{1}=1.40560913, a_{2}=39.28113174, a_{3}=-3.97064018 \\
& s_{1}=45.46696472, s_{2}=13.25787354, s_{3}=-73.80399323
\end{aligned}
$$

table IX
NUMERICAL EXAMPLE OF SYNTHESIS OF R-R
CRANK FOR NINE FINITELY SEPARATED
POSITIONS (SURFACE IS GIVEN
AS A SPHERE)
[Given] :

1) The surface is the same as in TABLE VIII.
2) the six finitely separated positions is given as :

$$
\begin{aligned}
& P_{1}=(3.42,0.6031,19.6962) \\
& P_{2}=(5.0,1.3397,19.3185) \\
& P_{3}=(6.4279,2.3396,18.7939) \\
& P_{4}=(7.6604,3.5721,18.1262) \\
& P_{5}=(8.6603,5.0,17.3205) \\
& P_{6}=(9.3969,6.5798,16.383) \\
& P_{7}=(9.8481,8.2635,15.3209) \\
& P_{8}=(10.0,10.0,14.1421) \\
& P_{9}=(9.8481,11.7365,12.8558)
\end{aligned}
$$

3) the joint motion is given as : (θ : degree)

$$
\begin{gathered}
\theta_{21}=10^{\circ}, \theta_{31}=10^{\circ} \\
\delta \theta_{21}=5^{\circ}, \delta \theta_{31}=5^{\circ} \quad \delta \theta_{22}=5^{\circ}, \delta \theta_{32}=5^{\circ} \\
\delta \theta_{23}=5^{\circ}, \delta \theta_{33}=5^{\circ} \quad \delta \theta_{24}=5^{\circ}, \delta \theta_{34}=5^{\circ} \\
\delta \theta_{25}=5^{\circ}, \delta \theta_{35}=5^{\circ} \\
\delta \theta_{27}=5^{\circ}, \delta \theta_{37}=5^{\circ} \quad \delta \theta_{26}=\delta \theta_{36}=5^{\circ} \\
\delta \theta_{28}=5^{\circ}, \delta \theta_{38}=5^{\circ}
\end{gathered}
$$

Result :

$$
\begin{array}{lll}
\theta_{1}=30.0^{\circ}, & \alpha_{1}=45.0^{\circ}, & \alpha_{2}=33.2497^{\circ} \\
a_{1}=-8.63857841, & a_{2}=16.09467697, & a_{3}=-0.94676548 \\
s_{1}=33.69320679, & s_{2}=-13.00296783, & s_{3}=-22.09254456
\end{array}
$$

TABLE X

> NUMERICAL EXAMPLE 1 OF ANALYSIS OF R-R CRANK

[Given]:

1) The surface is given in the TABLE VI.
2) The point on the surface is given as

$$
P=\langle 30,0,0\rangle
$$

3) The linkage parameters are given as:

$$
\begin{array}{ll}
a_{1}=28.584, & a_{2}=13.956, \\
s_{1}=-3.956, & s_{2}=-3.344, \\
s_{3}=-15.540 \\
\theta_{1}=0^{\circ}, & \alpha_{1}=90^{\circ},
\end{array} \quad \alpha_{2}=90^{\circ} .
$$

\theta_{2}=30.0351^{\circ} \quad \theta_{3}=29.9664^{\circ}
\]

TABLE XI
NUMERICAL EXAMPLE 2 OF ANALYSIS OF R-R CRANK
[Given]:

1) The surface is given in the TABLE VIII.
2) The point on the surface is given as

$$
P=(0,0,20)
$$

3) The linkage parameters are given as:

$$
\begin{array}{ll}
a_{1}=35.468, & a_{2}=61.683,
\end{array} \begin{aligned}
& a_{3}=0 \\
& s_{1}=0,
\end{aligned} 5_{2}=-130.773,5_{3}=-186.392, ~\left(\alpha_{2}=30^{\circ} .\right.
$$

\theta_{2}=30.0021^{\circ} \quad \theta_{3}=30.3053^{\circ}
\]

CHAPTER V

SYNTHESIS OF DYADS FOR INFINITESIMALLY AND MIXED MODE SEPATATED POSITIONS
generated by tangent-plane

Generally, motion of a rigid body can be described in a number of ways. Sometimes, it is required of the tangent plane to move with a given velocity, acceleration, jerk, etc. (higher-order properties of motion) which generate the given surface. Design methods to satisfy such requirements will be developed in this chapter. Such design procedures are also referred to as design for infinitesimally separated position or mixed mode position synthesis. Infinitesimally separated positions synthesis procedure differ from mixed mode separated position in that only one position of the tangent-plane is considered or we have only one finitely separated position involved in the design. Infinitesimally separated position design can be considered as a degenerate case of mixed position design.

In the previous chapter, we developed the synthesis procedures for finitely separated positions of dyads composed of Revolute, Prismatic, and Helical joints. In this chapter, we will develop the first-order and higher-order synthesis procedures for infinitesimally
separated and mixed mode positions of dyads with any combination of Revolute, Prismatic, and Helical joints.

The infinitesimally separated displacements of a rigid body tangential to any surface, is described by the properties of the rigid body as'it approaches the surface at the tangential point. These properties may be the velocity, acceleration, jerk, time rate of change of jerk(kerk) etc. Hence, the instantaneous angular motion of the tangent plane involving infinitesimal changes in angular displacements can be described with respect to changes in time by specifying $d \theta / d t, d^{2} \theta / d t^{2}, d^{3} \theta / d t^{3}, d^{3} \theta / d t^{3}$ (or θ, θ, θ)etc.

Mixed mode position synthesis is more in touch with reality involving concepts familiar to a mechanical eangineer rather than the esoteric ideas of theoretical kinematics. In general it has two or more finitely separated positions with the design requirements being velocity, acceleration etc. at each finite position. A different way of describing mixed position synthesis would be define it as designing for finitely separated positions with having to satisfy infinitesimal position requirements at one or more of the finite positions.

The synbolic notation proposed by Tesar for mixed position synthesis will be made use of in this study to represent the design situation. The symbol P represents a single position of the tangent-plane. The combination P-P represents two finitely separated positions, and PP represents tow infinitesimally separated positions. The

```
combination P-P-P-P-P represnets a five finitely separated
position {five precisions point) problem. The combination
P-PP-PPP-PP-P represents a five finitely separated position
problem with higher order motion requirements at the second,
third, and fourth positions.
```

5.1. First Order Infinitesimally and Mixed Mode Separated Positions

The synthesis equations derived in the previous chapter will be used here to derive the synthesis equations for the first order infinitesimally and any combination of mixed mode separated positions.
(1) R-R Crank
(A) Synthesis of R-R Crank for Infinitesimally And Mixed Mode Separated Positions

$\left.n_{x} S \theta_{1} L \alpha_{1}\right)\left(-S \theta_{2} a_{3} c \theta_{3} \dot{\theta}_{2}+c \theta_{2} a_{3} 5 \theta_{3} \dot{\theta}_{3}-5 \theta_{2} c \alpha_{2} a_{3} s \theta_{3} \dot{\theta}_{2}+\right.$

$$
\left.c \theta_{2} c \alpha_{2} a_{3} c \theta_{3} \dot{\theta}_{3}-s \theta_{2} S \alpha_{2} d_{3} \dot{\theta}_{2}+a_{2} c \theta_{2} \dot{\theta}_{2}\right)+\left(n_{x} s \theta_{1} S \alpha_{1}-\right.
$$

$$
\begin{equation*}
\left.\cdot n_{y} c \theta_{1} S \alpha_{1}+n_{z} C \alpha_{1}\right)\left(S \alpha_{2} a_{3} C \theta_{3} \dot{\theta}_{3}\right)=0 \tag{5-1}
\end{equation*}
$$

Hence, by adding Eq(4-3), we yield two synthesis equations of $R-R$ crank for each infinitesimally separated position.
(B) Synthesis of One First Order Mixed Mode Separated Positions

Since the maximum number of synthesis positions for finitely separated positions is nine, the possible combinations of synthesis of mixed mode separated positions with the first order motion requirement can be listed as in TABLE XII. The procedure can be best explained by example.

TABLE XII

NINE SYNTHESIS POSITIONS WITH ONE, TWO, THREE, AND FOUR FIRST ORDER MOTIONS

One First Order

$$
\begin{aligned}
& P P-P-P-P-P-P-P-P \\
& P-P P-P-P-P-P-P-P \\
& P-P-P R-P-P-P-P-P \\
& P-P-P-P P-P-P-P-P \\
& P-P-P-P-P P-P-P-P \\
& P-P-P-P-P-P P-P-P \\
& P-P-P-P-P-P-P P-P \\
& P-P-P-P-P-P-P-P P
\end{aligned}
$$

Four First Order
PP-PP-PP-P-PP
PP-PP-P-PP-PP
$P P-P-P P-P P-P P$
P-PP-PP-PP-PP
$P P-P P-P P-P P-P$

Tow first order
$P P-P P-P-P-P-P-P$
$P P-P-P P-P-P-P-P$
$P P-P-P-P P-P-P-P$
$P P-P-P-P-P P-P-P$
$P P-P-P-P-P-P P-P$
$P P-P-P-P-P-P-P P$
$P-P P-P P-P-P-P-P$
$P-P P-P-P P-P-P-P$
$P-P P-P-P-P P-P-P$ $P-P P-P-P-P-P P-P$
$P-P P-P-P-P-P-P P$

P-P-PP-PP-P-P-P
$P-P-P P-P-P P-P-P$
$P-P-P P-P-P-P P-P$
$P-P-P P-P-P-P-P P$
$P-P-P-P P-P P-P-P$
$P-P-P-P P-P-P P-P$
$P-P-P-P P-P-P-P P$
$P-P-P-P-P P-P P-P$
$P-P-P-P-P P-P-P P$
$P-P-P-P-P-P P-P P$

Three First Order
PP-PP-PP-P-P-P
$P P-P P-P-P P-P-P$
$P P-P P-P-P-P P-P$
$P P-P P-P-P-P-P P$
$P P-P-P P-P P-P-P$
$P P-P-P P-P-P P-P$
PP-P-PP-P-P-PP
$P P-P-P-P P-P P-P$
PR-P-P-PP-P-PP
PP-P-P-P-PP-PP
P-PP-PP-PP-P-P
$P-P P-P P-P-P P-P$
$P-P P-P P-P-P-P P$
$P-P P-P-P P-P-P P$
$P-P P-P-P-P P-P P$
$P-P-P-P P-P P-P P$
$P-P-P P-P-P P-P P$
$P-P-P P-P P-P P-P$
P-P-PP-PP-P-PP
-
-
etc.

Consider a nine position problem. The design equation for a nine position finitely separated problem is given by Eq(4-3). Also, the first-order infinitesimally separated equation is obtained from Eq(5-1). Supposed we are synthesizing for a PP-PP-PP-PP-P type of problem. They are five finitely separated positions with a first-order (velocity) requirement at four of the finite position. With the five finite position, five synthesis equations can be formed. A nine-position requires nine equations to solve for the nine unknowns. The remaining four equations of synthesis are the first order infinitesimal synthesis equations at the first, second, third, and fourth finite positions. Hence, Eq(5-1) can be rewritten as

$$
\begin{aligned}
& \left(n_{x_{n}} c \theta_{1}+n_{y_{n}} 5 \theta_{1}\right)\left(-5 \theta_{2 n^{a} 3^{c \theta}} 3 n^{\dot{\theta}} 2 n-c \theta_{2 n^{a} 3^{S \theta}}^{3 n^{\prime}}{ }_{3 n}+\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.a_{2} S \theta_{2 n} \dot{\theta}_{2 n}\right)+\left(n_{y_{n}}^{C \theta_{1} C \alpha_{1}}+n_{z_{n}} S \alpha_{1}-n_{x_{n}} S \theta_{1} C \alpha_{1}\right) \\
& \left\langle-5 \theta_{2 n} a_{3} c \theta_{3 n} \dot{\theta}_{2 n}+c \theta_{2 n} a_{3} 5 \theta_{3 n} \dot{\theta}_{3 n}-\operatorname{s\theta _{2n}} c \alpha_{2} a_{3} s \theta_{3 n} \dot{\theta}_{2 n}+\right. \\
& \left.c \theta_{2 n} c \alpha_{2} a_{3} c \theta_{3 n} \dot{\theta}_{3 n}-s \theta_{2 n} S \alpha_{2} d_{3} \dot{\theta}_{2 n}+a_{2} c \theta_{2 n} \dot{\theta}_{2 n}\right)+\left(n_{x_{n}} s \theta_{1} S \alpha_{1}\right. \\
& \left.-n_{y_{n}} c \theta_{1} S \alpha_{1}+n_{z} C \alpha_{1}\right)\left(S \alpha_{2} a_{3} C \theta_{3 n} \dot{\theta}_{3 n}\right)=0 \quad \text { (5-2) }
\end{aligned}
$$

where

$$
\begin{aligned}
& \theta_{Z_{n}}=\theta_{Z_{n-1}}+\delta \theta_{Z_{n-1}} \\
& \theta_{3_{n}}=\theta_{3_{n-1}}+\delta \theta_{3_{n-1}}
\end{aligned}
$$

and

$$
n=1 . .4
$$

and the other five equations can be obtained from Eq(4-3) when $n=1 . .5$.

Similarly, the synthesis procedure for first-order infinitesimally and mixed mode separated positions of the other types of dyads composed of revolute, prismatic, and helical joint can be obtained by using the proposed synthesis procedure of $R-R$ crank.

5.2. Higher-Order Infinitesimally, Mixed Mode Separated Positions

Recapitulating, a tangent-plane can be designed for a maximum of nine positions for $R-R$ crank. With the help of Eq(4-3) it is now possible to design satisfying higher order motion requirements at certain position. For example, P-PP-PPP-PP-P, PPP-PPPP-PP, PP-PPP-PPP-P-P, etc. The second order synthesis equation in obtained by differentiating Eq(4-3) twice or diffenentiating Eq(5-1) once. The basic form of the second order synthesis equation is given by

$$
\begin{aligned}
& \left(-c \theta_{2} a_{3} c \theta_{3} \dot{\theta}_{2}{ }^{2}+5 \theta_{2} a_{3} 5 \theta_{3} \dot{\theta}_{2} \dot{\theta}_{3}-5 \theta_{2} a_{3} c \theta_{3} \dot{\theta}_{2}+c \theta_{2} a_{3} c \theta_{3} \dot{\theta}_{3}{ }^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& s \theta_{2} L \alpha_{2} \alpha_{3} c \theta_{3} \dot{\theta}_{2} \dot{\theta}_{3}-S \theta_{2} c \alpha_{2} a_{3} s \theta_{3} \ddot{\theta}_{2}-s \theta_{2} c \alpha_{2} a_{3} c \theta_{3} \dot{\theta}_{2} \dot{\theta}_{3}-
\end{aligned}
$$

$$
\begin{aligned}
& \left(-5 \alpha^{a} 3^{S \theta} 3^{\bullet} 3^{2}+\operatorname{Sa}_{2} 3^{\operatorname{C\theta }} 3^{\bullet \bullet} 3^{\bullet}\right)=0 \\
& \text { (5-3) }
\end{aligned}
$$

$+\left[\theta_{2} \dot{a}_{3} 5 \theta_{3} \dot{\theta}_{2}{ }^{2} \dot{\theta}_{3}+5 \theta_{2} \dot{a}_{3} c \theta_{3} \dot{\theta}_{2} \dot{\theta}_{3}{ }^{2}+5 \dot{\theta}_{2} \dot{\theta}_{3} 5 \theta_{3} \dot{\theta}_{2} \dot{\theta}_{3}+\right.$
$s \theta_{2} a_{3} s \theta_{3} \dot{\theta}_{2} \ddot{\theta}_{3}-c \theta_{2} a_{3} c \theta_{3} \ddot{\theta}_{2} \dot{\theta}_{2}+5 \theta_{2} a_{3} 5 \theta_{3} \ddot{\theta}_{2} \dot{\theta}_{3}-5 \theta_{2} a_{3} c \theta_{3} \ddot{\theta}_{2}+$

$c \theta_{2} a_{3} 5 \theta_{3} \dot{\theta}_{3} \dot{\theta}_{2}{ }^{2}+5 \theta_{2} a_{3} c \theta_{3} \dot{\theta}_{3}{ }^{2} \dot{\theta}_{2}+5 \theta_{2} a_{3} 5 \theta_{3} \dot{\theta}_{3} \ddot{\theta}_{2}+5 \theta_{2} a_{3} 5 \theta_{3} \dot{\theta}_{3} \dot{\theta}_{2}$
$+5 \theta_{2} a_{3} s \theta_{3} \dot{\theta}_{2} \ddot{\theta}_{3}-c \theta_{2} a_{3} c \theta_{3} \dot{\theta}_{3} \ddot{\theta}_{3}-c \theta_{2} a_{3} s \theta_{3} \ddot{\theta}_{3}-$

$c \theta_{2} c \alpha_{2} a_{3} c \theta_{3} \dot{\theta}_{2} \ddot{\theta}_{3}-c \theta_{2} c \alpha_{2} \alpha_{3} 5 \theta_{3} \dot{\theta}_{2}{ }^{3}-5 \theta_{2} c \alpha_{2} \bar{a}_{3} c \theta_{3} \dot{\theta}_{2}{ }^{2} \dot{\theta}_{3}$
$-25 \theta_{2} c \alpha_{2} \alpha_{3} 5 \theta_{3} \dot{\theta}_{2} \ddot{\theta}_{2}-5 \theta_{2} c \alpha_{2} \alpha_{3} 5 \theta_{3} \dot{\theta}_{2} \ddot{\theta}_{2}+c \theta_{2} c \alpha_{2} a_{3} c \theta_{3} \ddot{\theta}_{2} \dot{\theta}_{3}+$

$c \theta_{5} c \alpha_{5} \alpha_{3} c \theta_{3} \dot{\theta}_{3} \dot{\theta}_{5}+c \theta_{5} \cos \alpha_{3} c \theta_{3} \dot{\theta}_{3} \dot{\theta}_{5}-c \theta_{5} c \alpha_{5} \dot{\theta}_{3} \operatorname{s\theta _{3}} \dot{\theta}_{5} \dot{\theta}_{3}{ }^{2}-$

$25 \theta_{2} S \alpha_{2} \alpha_{3} \dot{\theta}_{2} \ddot{\theta}_{2}-S \theta_{2} S \alpha_{2} \alpha_{3} \dot{\theta}_{2} \ddot{\theta}_{2}+C \theta_{2} S \alpha_{2} d_{3} \ddot{\theta}_{2}+$

$n_{z} S \alpha_{1}-n_{x} S \theta_{1}\left(\alpha_{1}\right)\left(S \theta_{2} a_{3} c \theta_{3} \dot{\theta}_{2}^{3}+c \theta_{2} a_{3} 5 \theta_{3} \dot{\theta}_{2}{ }^{2} \dot{\theta}_{3}-\right.$
$2 \operatorname{s\theta } 2^{\bar{a}} 3^{\operatorname{c\theta }} 3^{\dot{\theta}_{2}} 2^{\ddot{\theta}_{2}}+\operatorname{c\theta }_{2^{a}} 3^{\operatorname{s\theta }} 3^{\dot{\theta}_{2}}{ }^{2} \dot{\theta}_{3}+\operatorname{se}_{2} 2^{a} 3^{c \theta} 3^{\dot{\theta}} 2^{\dot{\theta}}{ }^{2}+$

$s \theta_{2} a_{3} c \theta_{3} \dot{\theta}_{2}-5 \theta_{2} a_{3} c \theta_{3} \dot{\theta}_{2} \dot{\theta}_{3}^{2}-c \theta_{2} \alpha_{3} \operatorname{s\theta _{3}} \dot{\theta}_{3}^{3}+2 c \theta_{2} a_{3} c \theta_{3} \dot{\theta}_{3} \dot{\theta}_{3}$

 $\int \theta_{5} c \alpha_{2} \alpha_{3} \operatorname{s\theta _{3}} \dot{\theta}_{2}^{3}-c \theta_{2} c \alpha_{2} \alpha_{3} c \theta_{3} \dot{\theta}_{5} 2 \dot{\theta}_{3}-2 c \theta_{2} c \alpha_{2} \alpha_{3} \operatorname{s\theta _{3}} \dot{\theta}_{5} \dot{\theta}_{5}-$

$s \theta_{2} c \alpha_{2} \alpha_{3} \operatorname{s\theta _{3}} \dot{\theta}_{2}-c \theta_{2} c \alpha_{2} a_{3} c \theta_{3} \dot{\theta}_{2} \sum \dot{\theta}_{3}+5 \theta_{5} c \alpha_{2} \alpha_{3} c \theta_{3} \dot{\theta}_{5} \dot{\theta}_{3} \mathrm{~L}-$
$5 \theta_{2} \cos \alpha_{3} \operatorname{c\theta } \dot{\theta}_{3} \dot{\theta}_{2} \dot{\theta}_{3}-5 \theta_{2} \cos a_{3} \cos \dot{\theta}_{2} \dot{\theta}_{3}+5 \theta_{2} \cos \alpha_{3} \operatorname{s\theta _{3}} \dot{\theta}_{2} \dot{\theta}_{3}{ }^{2}-$

$$
\begin{aligned}
& \operatorname{cc} \theta_{5} S \alpha_{5} \alpha_{3} \dot{\theta}_{5} \dot{\theta}_{5}-c \theta_{5} S \alpha_{5} \alpha_{3} \dot{\theta}_{5} \dot{\theta}_{5}+S \theta_{5} S \alpha_{5} \alpha_{3} \ddot{\theta}_{5}-
\end{aligned}
$$

$$
\begin{align*}
& \left.-n_{y} C \theta_{1} S \alpha_{1}+n_{2} C \alpha_{1}\right)\left(-5 \alpha_{2} \alpha_{3} C \theta_{3} \dot{\theta}_{3}^{3}-25 \alpha_{2} a_{3} \operatorname{s\theta _{3}} \dot{\theta}_{3} \dot{\theta}_{3}\right. \\
& \left.-S \alpha_{2} a_{3} S \theta_{3} \dot{\theta}_{3} \dot{\theta}_{3}+S \alpha_{2} a_{3} C \theta_{3}{\stackrel{\oplus}{\theta_{3}}}^{\prime}\right)=0 \tag{5-4}
\end{align*}
$$

Similarly, the synthesis procedure for higher-order infinitesimally and mixed mode separated positions of the other types of dyads composed of revolute, prismatic, and helical joint can be obtained by using the proposed synthesis procedure of $R-R$ crank.
5.3. Numerical Examples

In this section, numerical examples of synthesis of $R-R$ crank for first-order and higher-order infinitesimally separated positions are presented in TABLE XIII and XIV.

TABLE XIII
NUMERICAL EXAMPLE OF SYNTHESIS OF R-R CRANK FOR FIRST-ORDER INFINITESIMALLY SEPARATED POSITIONS(PP-PP-PP-PP-P)

Given:1) The surface is given the same as in TABLE VI.
2) the five finitely separated positions are given as

$$
\begin{aligned}
P_{1} & =(30,0,0) \\
P_{2} & =(24.82,14.33,5) \\
P_{3} & =(12.5,21.65,8.66) \\
P_{4} & =(0,20,10) \\
P_{5} & =(-7.5,12.99,8.66)
\end{aligned}
$$

3) the joint motion is given as : (θ :degree, $\theta: r a d / s e c$)

$$
\begin{array}{rll}
\theta_{21}=0^{\circ}, & \theta_{31}=0^{\circ} & \theta_{21}=1, \theta_{31}=1 \\
\delta \theta_{21}=30^{\circ}, \delta \theta_{31}=30^{\circ} & \theta_{22}=1, \theta_{32}=1 \\
\delta \theta_{22}=30^{\circ}, \delta \theta_{32}=30^{\circ} & \theta_{23}=1, \theta_{33}=1 \\
\delta \theta_{23}=30^{\circ}, \delta \theta_{33}=30^{\circ} & \theta_{24}=1, \theta_{34}=1 \\
\delta \theta_{24}=30^{\circ}, \delta \theta_{34}=30^{\circ} & &
\end{array}
$$

Result :

$$
\begin{array}{lll}
\theta_{1}=67.31^{\circ}, & \alpha_{1}=23.56^{\circ}, & \alpha_{2}=147.58^{\circ} \\
a_{1}=18.3476, & a_{2}=113.349, & a_{3}=-62.329 \\
s_{1}=-243.637, & s_{2}=-13.346, & s_{3}=-14.202
\end{array}
$$

TABLE XIV
NUMERICAL EXAMPLE OF SYNTHESIS OF R-R CRANK FOR HIGHER-ORDER MIXED MODE

SEPARATED POSITIONS ($P-P P P-P P-P P P$)

Given:1) The surface is given as the same as in TABLE VI.
2) the four finitely separated positions is given as :

$$
\begin{aligned}
& P_{1}=(30,0,0) \\
& P_{2}=\{24.82,14.33,5) \\
& P_{3}=(12.5,21.65,8.66) \\
& P_{4}=(0,20,10)
\end{aligned}
$$

3) the joint motion is given as :
(θ : degree, θ : rad/sec, and $\theta: r e d / s e c^{2}$)
$\theta_{21}=0^{\circ}, \theta_{31}=0^{\circ}$
$\delta \theta_{21}=30^{\circ}, \delta \theta_{31}=30^{\circ} \quad \quad \theta_{22}=1, \theta_{32}=1$
$\delta \theta_{22}=30^{\circ}, \delta \theta_{32}=30^{\circ} \quad \quad \theta_{23}=1, \theta_{33}=1$
$\delta \theta_{23}=30^{\circ}, \delta \theta_{33}=30^{\circ} \quad \theta_{24}=1, \theta_{34}=1$
$\theta_{22}=0, \theta_{32}=0$
$\theta_{24}=0, \theta_{34}=0$
Result :
$\theta_{1}=132.86^{\circ}, \quad \alpha_{1}=26.27^{\circ}, \quad \alpha_{2}=48.56^{\circ}$
$a_{1}=21.376, \quad a_{2}=14.59, \quad a_{3}=12.29$
$s_{1}=23.37, \quad s_{2}=23.46, \quad s_{3}=17.42$

SYNTHESIS OF TWO-PARAMETER-MOTION TWO-DEGREE-DF-FREEDOM SPATIAL MECHANISMS CARRYING A RIGID BODY WITH A TANGENT plane as moving element to have six, FIVE, AND FOUR COMPONENTS OF MOTION

6.1. RRSS Spatial Four-Link Mechanism

The synthesis procedure of spatial closed-loop mechanism can be obtained by using the similar precedures presented in chapter IV. A RRSS spatial four-link mechanism is shown in figure 7. Since the tangent plane attached to the coupler link connecting R_{2} and S_{2} joints, we can synthesize RRSS mechanism by separating it into two open-loop chains: right hand side open-loop chain and left hand side open-loop chain. From figure 7, the right hand side open-loop chain is $S S$ crank and the left hand side open-loop chain is RR crank. From RR crank, we establish four coordinate frames presented in chapter IV. From SS crank, we establish another four coordinate frames. Therefore, the linkage parameters involve in this mechanism are :

RR crank

$$
a_{1}, a_{2}, a_{3}
$$

$$
d_{1}, d_{2}, d_{3}
$$

$$
\alpha_{1}, \alpha_{2}, \alpha_{3}
$$

$$
\theta_{1}, \theta_{2}, \theta_{3}
$$

55 crank

$$
\begin{aligned}
& a_{4}, a_{5}, a_{6} \\
& a_{4}, a_{5}, a_{6} \\
& \alpha_{4}, \alpha_{5}, \alpha_{6} \\
& \theta_{4}, \theta_{5}, \theta_{6}
\end{aligned}
$$

For a spherical joint, Denavit and Hartenberg presented a notation which can be considered as three revolute joints intersect in one point and perpendecular to each other. Hence, θ_{5} will become three joint motion parameters $\theta_{51}, \theta_{52}, \theta_{53^{\prime}}$ Al50, θ_{6} becomes $\theta_{61}, \theta_{62}, \theta_{63}$. Since RRSS mechanism is a two degrees of freedom mechanism, we can

Figure 7. RRSS Spatial Mechanism
assume joints R_{1} and R_{2} as two driving input. Hence, θ_{2} and θ_{3} are given as the input motion parameters. Also, a_{3} is equal to $a_{b} . \alpha_{b}$ can be assumed as 90 from figure 7. Hence, there are 14 unknowns in right hand $5 i d e$ and 10 unknowns in left hand side.

In order to derive the synthesis equations of RSSR mechanism, we know that we can obtain two tangent plane equations from $R-R$ crank and $S-S$ crank.

$$
\begin{aligned}
& \left(x_{R}-x_{0}, Y_{R}-y_{0}, z_{R}-z_{0}\right) N=0 \\
& \left(x_{L}-x_{0}, Y_{L}-y_{0}, z_{L}-z_{0}\right) N=0
\end{aligned}
$$

where $\left\{x_{0}, y_{0}, z_{0}\right\}=a$ point tangential to the surface. $N \quad=$ unit normal vector.

$$
\begin{aligned}
& {\left[\begin{array}{l}
X_{R} \\
Y_{R} \\
Z_{R} \\
1
\end{array}\right]=\left[A_{1}\right]\left[A_{2}\right]\left[A_{3}\right] \quad\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]} \\
& =\text { transformation of the } r \text { ight hand } \\
& \text { side open-loop mechanism } \\
& {\left[\begin{array}{l}
X_{L} \\
Y_{L} \\
\Sigma_{L} \\
1
\end{array}\right]=\left[A_{4}\right]\left[A_{5}\right]\left[A_{6}\right] \quad\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]} \\
& \text { (} b-4 \text {) }
\end{aligned}
$$

```
= transformation of the left hand
    side open-loop mechanism
```

```
Since we establish the connecting point as the origin of coordinate frame on the tangent plane and the \(x\)-axis is normal to the tangent plane, then the point on the tangent Plane can be expressed as \(P=\left\{0, P_{y}, P_{z}\right\}\). The constraint equation can be obtained by equating both side and by using transformation matrix.
```

$$
\begin{equation*}
\left[A_{1}\right]\left[A_{2}\right]\left[A_{3}\right] P_{4}=\left[A_{4}\right]\left[A_{5}\right]\left[A_{6}\right] P_{4} \tag{6-5}
\end{equation*}
$$

Eq(b-3) can be rewritten as three component equations

$$
\begin{array}{ll}
\text { [A equ right }]_{1} P_{4}=\left[A_{\text {equ }} \text { left }\right]_{1} P_{4} & \text { (b-b) } \\
{\left[A_{\text {equ }} \text { right }\right]_{2} P_{4}=\left[A_{\text {equ }} \text { left }\right]_{2} P_{4}} & \text { (b-7) } \\
{\left[A_{\text {equ }} \text { right }\right]_{3} P_{4}=\left[A_{\text {equ }} \text { left }\right]_{3} P_{4}} & \text { (6-8) }
\end{array}
$$

where $\left[A_{\text {equ }} \text { right }\right]_{i}=$ the $i_{\text {th }}$ row of $\left[A_{\text {equ }}\right]$ on the right hand side.

$$
P_{4}=\left\{0, P_{4 y}, P_{4 z}\right\}
$$

For each separated position, we can obtain two umknowns from $P_{4 y}$ and $P_{4 z}$, and five synthesis equations. Hence

$$
\begin{aligned}
\text { Number of synthesis equations } & =5 \mathrm{~N} \\
\text { Number of unknown } & =10+14+2 \mathrm{~N} \\
\text { Maximum number of positions } & =8
\end{aligned}
$$

```
Number of free choice parameter = 0
```

Thus, the maximum number of positions of RRSS spatial mechanism is eight with no free choise of parameter. The result derived here is consistent with eight synthesis finitely separated positions for path-generation of RRSS mechanism presented by Suh[59].

```
6.2. RHCRC Spatial Five-Link Mechanism
    Having Four Components Of Motion
```

From the synthesis procedure of RRSS mechanism, we can derive the similar procedure for RHCRC spatial five-link mechanism having four components of motion. A RHCRC spatial five-link mechanism having four components of motion is shown in figure 8. By separating RHCRC mechanism into two open loop chains, we obtain RH link on the left hand side and RRC link on the right hand side. the total linkage parameters of RHCRC are

RH link	CRC link
a_{1}, a_{2}, a_{3}	$a_{4}, a_{5}, a_{6}, a_{7}$
a_{1}, a_{2}, d_{3}	$a_{4}, d_{5}, a_{6}, a_{7}$
$\theta_{1}, \theta_{2}, \theta_{3}$	$\theta_{4}, \theta_{5}, \theta_{6}, \theta_{7}$
$\alpha_{1}, \alpha_{2}, \alpha_{3}$	$\alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}$

The procedures of obtaining the synthesis equation of RHCRC mechanism is similar to RRSS mechanism.

From Eq(b-1) and Eq(b-2), we obtain two synthesis

Figure 8. RHCRR Spatial Mechanism Having
Four Components of Motion
equations.

$$
\begin{aligned}
& \left\langle x_{R}{ }^{-x_{0}}, Y_{R}-\gamma_{0}, z_{R^{-z}}\right\rangle N=0 \\
& \left\langle x_{L}-x_{0}, Y_{L}-y_{O}, z_{L}-z_{0}\right\rangle N=0
\end{aligned}
$$

where $\left\{x_{0}, y_{0},{ }^{2} 0^{\}}=\right.$a point tangential to the surface.

$$
N \quad=\text { unit normal vector. }
$$

$$
\left.\begin{array}{c}
{\left[\begin{array}{c}
x_{R} \\
Y_{R} \\
\bar{L}_{R} \\
1
\end{array}\right]=\left[A_{1}\right]\left[A_{2}\right]\left[A_{3}\right]\left[A_{4}\right]} \\
0 \\
0 \\
1 \\
=
\end{array}\right]\left[\begin{array}{c}
0 \\
\text { transformation of the right hand } \\
\\
\text { side open-loop mechanism }
\end{array}\right.
$$

$$
\left[\begin{array}{c}
{\left[\begin{array}{l}
X_{L} \\
Y_{L} \\
Z_{L} \\
1
\end{array}\right]=\left[A_{5}\right]\left[A_{b}\right]\left[A_{7}\right]} \\
0 \\
0 \\
1 \\
0 \\
= \\
\\
\\
\\
\text { side open-10) } \\
0
\end{array}\right]\left[\begin{array}{c}
0 \\
0
\end{array}\right]
$$

The constraint equation can be obtained by equating both side and by using transformation matrix.

$$
\left[A_{1}\right]\left[A_{2}\right]\left[A_{3}\right]\left[A_{4}\right] P_{4}=\left[A_{5}\right]\left[A_{6}\right]\left[A_{7}\right] P_{4}
$$

Eq(6-9) can be rewritten as three component equations the same as Eq(6-6)-Eq(6-8). Hence

Number of synthesis equations $=5 \mathrm{~N}$
Number of unknown $=10+15+2 N$
Maximum number of positions $=8$
Number of free choice parameter $=1$
6.3. RCCRR Spatial Five-Link Mechanism Having Five Components Of Motion

From the synthesis procedure of RRSS mechanism, we can derive the similar procedure for RCCRR spatial five-link mechanism having five components of motion. A RCCRR spatial five-link mechanism having four components of motion is shown in figure 9. By separating RCCRR mechanism into two parts, we obtain RC link and CRR link. Hence,

```
    Number of synthesis equations = 5N
    Number of unknown = 10+15+2N
    Maximum number of positions = 8
    Number of free choice parameter = 1
            6.4. RCCCR Spatial Five-Link Mechanism
                    Having Six Components Of Motion
    From the synthesis procedure of RRSS mechanism, we can
derive the similar procedure for RCCCR spatial five-1ink
```


Figure 9. RCCRR Spatial Mechanism Having
Five Components of Motion

```
mechanism having six components of motion. A RCCCR spatial
five-link mechanism having four components of motion is
shown in figure 10. By separating RCCCR mechanism into two
parts, we obtain RC link and CCR link. Hence,
```

Number of synthesis equations $=5 \mathrm{~N}$
Number of unknown $=10+15+2 \mathrm{~N}$
Maximum number of positions $=8$
Number of free choice parameter $=1$

6.5. Numerical Example

In this section, numerical example of synthesis of RCCCR mechanism for three finitely separated positions is presented.

Figure 10. RCCCR Spatial Mechanism Having Six Components of Motion
table XV
NUMERICAL EXAMPLE OF SYNTHESIS OF RCCCR
MECHANISM FOR EIGHT FINITELY
SEPARATED POSITIONS

Given:1) The surface is given as the same in TABLE VI.
2) the three finitely separated positions is given as :

$$
\begin{array}{ll}
P_{1}=(30,0,0) & P_{2}=(24.82,14.33,5) \\
P_{3}=(12.5,21.65,8.66) & P_{4}=(28.65,7.68,2.59) \\
P_{5}=(27.62,10.05,3.42) & P_{6}=(26.34,12.28,4.22) \\
P_{7}=(24.82,14.33,5) & P_{8}=(21.19,17.78,6.43)
\end{array}
$$

3) the joint motion is given as :

$$
\begin{array}{cl}
\theta_{21}=0^{\circ}, \theta_{31}=0^{\circ} \\
\delta \theta_{21}=30^{\circ}, \delta \theta_{31}=30^{\circ} & \delta \theta_{22}=30^{\circ}, \delta \theta_{32}=30^{\circ} \\
\delta \theta_{23}=30^{\circ}, \delta \theta_{33}=30^{\circ} & \delta \theta_{24}=30^{\circ}, \delta \theta_{34}=30^{\circ} \\
\delta \theta_{25}=30^{\circ}, \delta \theta_{35}=30^{\circ} & \delta \theta_{26}=30^{\circ}, \delta \theta_{36}=30^{\circ} \\
\delta \theta_{27}=30^{\circ}, \delta \theta_{37}=30^{\circ} &
\end{array}
$$

4) the choice of linkage parameters

$$
\theta_{1}=0^{\circ}
$$

Result :

$$
\begin{aligned}
& a_{1}=8.839, a_{2}=3.539, a_{3}=112.409, \quad a_{4}=126.649, \\
& a_{5}=27.249, a_{6}=12.509, d_{1}=3.347, \quad d_{2}=45.446, \\
& d_{3}=18.569, d_{4}=53.639, d_{5}=-8.64, d_{6}=23.62, \\
& a_{7}=-2.24, \alpha_{1}=33.346^{\circ}, \alpha_{2}=15.722^{\circ}, \alpha_{4}=48.379^{\circ}, \\
& \alpha_{5}=123.559^{\circ}, \alpha_{6}=172.329^{\circ}, \alpha_{7}=-32.26^{\circ}, \\
& \theta_{4}=43.647^{\circ}, \theta_{5}=75.226^{\circ}, \theta_{6}=217.36^{\circ}, \theta_{7}=-25.45^{\circ}
\end{aligned}
$$

SUMMARY AND CONCLUSIONS

Abstract

Based on the traditional approach to path-generation problems, the coupler-curve is viewed as a set of discribe points. From the geometric points of view, a curve or a surface may be generated in general by a point, a line, or a plane embedded in a moving rigid body. It is known that a point and a plane are dual concept in space geometry as well as a point and a line are considered as dual elements in planar projective geometry. This leads to a new concept of a surface being considered as plane-envelop which is a set of its tangent plane, i.e., the surface is considered to be defined by a set of tangent planes.

For the dyads with any combination of R, H, and P joints having two-parameter motion, the synthesis procedures are derived for nine finitely separated positions. Also, the synthesis procedures of first-order and higher-order infinitesimally and mixed mode separated positions are presented in chapter IV. For two degree-of-freedom closed-loop spatial mechanism having four, five, and six components of motion, the synthesis procedure is derived by separating it into two open-loop chains. We located on the coupler link the locus of points or the family of planes

which generate surfaces with the desired local properties.
This thesis presents the extension study on the spatial mechanism having two-parameter motion. It extends the synthesis procedure from the tranditional one-parameter point-path motion and rigid-body guidance to two-parameter tengent-plane envelop. The synthesis and analysis procedure is based on the homogeneous transformation matrix method. The proposed theoretical developments of the two-parameter motion study followed their applications demonstrating synthesis of two degrees of freedom mechanisms carrying a rigid body with a plane as moving element and having six, five, and four components of motion. The proposed research on two-parameter motion of a plane in space motion contribute significantly in advancing the fundamentals of kinematic synthesis of rigid body motion having two degrees of freedom.

One of the important applications of present study is the robot hand with multiple fingers. There are two or three, degrees of freedom for each finger. It is desirable to catch an arbitrary object by using the robot hand. the motion of each finger to touch the surface of object can be related to a two to three degrees of freedom mechanism carries a tangent plane as a moving element as shown in figure 11. Therefore, the present study provide the insight of kinematics for synthesis problems.

For the future study, the present study is expected to provide a significant contribution for the tangent plane

Figure 11. Two Tangent Plane Attached to Two Two-Degree-of-Freedom Robot Fingers
envelope generation with more than two-parameter motion. A general computer program is developed to carry out
the synthesis and analysis procedure of open-loop and
closed-loop mechanisms for finitely, infinitesimally, and
mixed mode separated positions.

A SELECTED BIBLIOGRAPHY

1. Wilson III, J. T., "Analytical Kinematic Synthesis by Finite Displacements", Trans. ASME, J. Enang Ind., 87B, 1764, pp.161-169.
2. Roth, B.,"The Kniematics of Motion Through Finitely Separated Positions",Trans. ASME, J.Appl. Mechanics, 1767, pp.591-578.
3. Roth, B., "On the Screw Axes and Other Special Lines Associated with Spatial Displacements of a Rigid Body", Trans. ASME, J. Engng Ind., 89日, 1969, PP.102-110.
4. Sandor, G. N., "Principles of General QuaternionOperator Method of Spatial Kinematic Synthesis", Trans. of ASME, J. of Applied Mechanics, Ser. E, Vol. 90, March 1968, pp. 40-46.
5. Sandor, G. N., and Bishop, K. E., "On a General Method of Spatial Kinematic Synthesis by Means of a Stretch Rotation Tensor", Trans. of ASME, J. of Engineering for Industry, Ser. B, Vol. 91, No. 1 , Feb. 1969, pp. 115-122.
6. Bottema, D., Koetsier, T., and Roth, B., "On the Smallest Circle Determined by Three Positions of a Rigid Body", Trans. of ASME, J. of Engineering for Industry, Ser. B, Vol. 93, Feb. 1971, pp. 328-333.
7. Chen P., and Roth B., "A Unified Theory for the Finitely and Infinitesimally Separated Position Problems of Kinematic Synthesis", Trans. ASME, J. Engng Ind., 918, 1969, pp.203-208.
8. Chen P., and Roth B., "Design Equations for the Finitely and Infinitesimally Separated Position Synthesis of Binary Links and Combined Link Chains", Trans. ASME, J. Engng Ind., 91B, 1967, pp.209-219.
9. Roth B., "Finite-Position Theory Applied to Mechanism Synthesis", Trans. ASME, J.Appl.Mechanics, 1967, pp.599-605.
10. Soni, A. H., and Lee Harrisberger., "The Design of

Spherical Drag-Link Mechanisms", Trans. of ASME, J. of Enqineering for Industry, Ser. 日, Vol. 89, No. 1, Feb. 1967, PP. 177-181.
11. Soni, A. H., and Huang, M., "Synthesis of Four-Link Space Mechanisms via Extension of Point-PositionReduction Technique", Trans. of ASME, J. of Engr. for Industry, Vol. 73, No. 1, 1771, pp. 85-87.
12. Rao, A. V. M., Sandor, G. N., Kohli, D., and Soni, A. H., "Closed Form Synthesis of Spatial Function Generating Mechanisms for Maximum Number of Precision Points", Trans. of ASME, J. of Engineering for Industry, Ser. B, Vol. 95, No. 3, Aug. 1973, pp. 725-736.
13. Tsai L.W., and Roth B., "Incompletely Specified Displacements: Germetry and Spatial Linkage Synthesis", Trans. ASME, J. Enqng Ind., 1773, PP.603-611.
14. Roth B., "The Design of Binary Cranks with Revolute, Cylindric, and Prismatic Joints", J. of Mechanisms, 1968, pp.61-72.
15. Tsai L.W., and Both B., "Design of Dyads with Helical, Cylindrical, Spherical, Revolute and Prismatic Joints", Mechanism and Machine Theory, 1972, Vol. 7, pp. 85-102.
16. Suh, C. H., "Design of Space Mechanisms for Rigid Body Guidance", Trans. of ASME, J. of Engineering for Industry, Ser. B, Vol. 90, No. 3, 1968, PP. 499506.
17. Suh, C. H., "Design of Space Mechanisms for function Generation Guidance", Trans. of ASME, J. of Engineering for Industry, Ser. B, Vol. 90, No. 3, 1968, PP. 507-513.
18. Suh, C. H., "Synthesis and Analysis of Space Mechanisms with Use of the Displacement Matrix", Ph.D
Dissertation, University of California, Berkeley, 1966.
19. Suh C.H., "On the Duality in the Existence of R-R Links for Three Positions", Trans. ASME, J. Engng Ind., 1969, PP.129-134.
20. Tsai L. W., and Roth B., "A Note on the Design of Revolute-Revolute Cranks", J of Mechanisms, Vol. 8, 1973, pp. 85-102.
21. Dimentberg, F. M., "A General Method for the

Investigation of Finite Displacements of Spatial Mechanisms and Certain Cases of Passive Joints", Akad. Nauk. SSSR. Trudii Sem. Teorri Mash. Mekt. 5, No. 17, 1948, 5-39.
22. Dimentberg, F. M., " The Determination of the Positions of Spatial Mechanisms", Akad. Nauk., Moscow, 1950.
23. Denavit, J., "Description and Displacement Analysis of Mechanisms Based on (2×2) Dual Matrices", Ph.D Dissertation, Northwestern University, 1956.
24. Yang A.T., "Application of Qwaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms", Ph.D Dissertation, Columbia University, New York, N.Y., 1963, University Microfilms, Library of Congress Card, No. Mic. 64-2803, Ann Arbor, Michigan.
25. Chace, M. A., "Vector Analysis of Linkages", Trans. of ASME, J. of Enqineering for Industry, Ser. B, Vol. 84, No. 2, May 1963, pp. 289-296.
26. Wallace, D. M., and Freudenstein, F., "The Displacement Analysis of the Generalized Tract Coupling",Trans. of ASME, J. of Applied Mechanics, Ser. E, Vol. 37, No. 3, Sep. 1970, pp. 713-719.
27. Yang A.T., "Displacement Analysis of Spatial Five-Link Mechanisms Using (3×3) Matrices with Dual-Number Elements", Trans. ASME, J. Engng Ind., 1969, pp. 152-157.
28. Soni, A. H., and Pamidi, P. R., "Closed Form Displacement Relationships of a Five-Link RRCCR Spatial Mechanism", Trans. of ASME, J. of Engr. for Industry, Ser. B, Vol. 93, No. 1, Feb. 1971 , pp. 221-226.
29. Yuan, M. S. C., "Displacement Analysis of the RRCCR Five-Link Spatial Mechanism", Trans. of ASME, J. of Applied Mechanics, Ser. E, Vol. 37, Sep. 1970, pp. 689-696.
30. Jerkins, E. M., Crossley, F. R. E., and Hunt, K. H., "Gross Motion Attributes of Certain Spatial Mechanisms", Trans. of ASME, J. of Engineering for Industry, Ser. B, Vol. 90, No. 1, Feb. 1969, pp. 83-90.
31. Torfason L.E., and Sharma A.K., "Analysis of Spatial RRGRR Mechanisms by the Method of Generated Surfaces", Trans. ASME, J. Engng Ind., 1973, PP.704-708.
32. Dukkipati, R. V., and Soni, A. H., "Displacement Analysis of RPSPR, RPSRR Mechanisms", Proceedings of the 3rd World Congress of the Theory of Machines and Mechanisms, Kupari, Yugoslavia, Vol. D, Paper D-4, 1971, PP. 49-61.
33. Hartenberg, R. V., and Denavit, J., "Kinematic Synthesis of Linkages", McGraw-Hill, New York, 1964.
34. Soni, A. H., and Lee Harrisberger., "Application of (3 3) Screw Matrix to Kinematic and Dynamic Analysis of Mechanisms", VDI-Brichte, 1968.
35. Kohli, D., and Soni, A. H., "Displacement Analysis of Spatial Two-Loop Mechanisms", Proceedings of IFToMM International Symposium on Linkages, Bucharest, Romania, June 6-13, 1973.
36. Kohli, D., and Soni, A. H., "Displacement Analysis of Single-Loop Spatial Mechanisms", Proceedings of IFToMM International Symposium on Linkages, Bucharest, Romania, June 6-13, 1973.
37. Veldkamp, G.R., "Canonical Systems and Instantaneous Invariants in Spatial Kinematics", Jouranl of Mechanisms 2, 1967, pp. 329-388.
38. Veldkamp, G.R., "Curvature Theory in Spatial Kinematics", Proceedings of Fifth World Congress on the Theory of Machines and Mechanisms, Montreal, Canada, July 1979, pp. 565-570.
39. Siddhanty, M.N., and Soni, A.H., "Intrinsic Invariants of Rigid Body Motion and Higher Path Curvature Theory in Spatial Kinematics", Proceedings of Fifth World Congress on the Theory of Machines and Mechanisms, Montreal. Canada, July 1979, pp. 1440-1443.
40. Hsia, L.M., "Curvature Theory of Point Trajectories in Three Dimensional Kimematics", Ph.D. Dissertation, University of California at Davis, 1979.
41. Yang, A.T., Kirson, Y., and Roth, B., "On a Kinematic Curvature Theory for Ruled Surfaces", Proceedings of Fifth World Congress on the Theory of Machines and Mechanisms, Vol. 4, New Castle Upon Tyne, England, Sept. 1975, pp. 737-742.
42. Yang, A.T., and Roth, B., "Higher Order Path Curvature in Spherical Kinematics", Journal of Enga. for Ind., Trans. of ASME, 95B, 1973, pp. 612-616.
43. McCarthy, J.M. and Roth, B., "Instantaneous Properties of Trajectories Generated by Planar, Spherical, and Spatial Rigid Body Motions", Trans. of ASME, Journal of Mechanical Design, Vol. 104, Jan. 1982.
44. Ting, K.L., and Soni, A.H., "Instantaneous Kinematics of Plane Under Space Motion", 82-DET-69 ASME Mechanisms Conference, Washington D.C., 1982.
45. Ting, K.L., and Soni, A.H., "Instantaneous Kinematics of a Plane in Spherical Motion", 82-DET-68 ASME Mechanisms Conference, Washington D.C., 1982.
46. Sathyadev D.P., and Soni A.H., "Synthesis of Mechanisms for Tangent-Line Envelope Generation",
47. Suh C.H., and Radcliffe C.W., "Synthesis of Plane Linkages with Use of the Displacement Matrix", Trans. of ASME, J. Engng Ind., May 1967, pp.206-214.
48. Lipschuts M.M. "Differential Geometry", McGraw-Hill Co.,1969.
49. Docarmo M.P., "Differential Geometry of Curves and Surfaces", Prentice-Hall, Inc., 1976.
50. Hsu H.P., "Vector Analysis", Simon and Schuster, Inc., 1969.
51. Guggenheimer H.W.,"Differential Geometry", Dover Publications, Inc., 1977.
52. Denavit J., and Hartenberg R.S., "A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices", Trans of ASME, J of Ind. Engnq., 1955, pp. 215-221.
53. Tsai L.W., and Morgan A.P., "Solving the Kinematics of the Most General Six-and Five-Degree-of-Freedom Manipulators by Continuation Methods", J of Mechanisms, Transmission, and Automation in Design, Dec. 1984, pp.
54. Suh C.H., and Radcliffe C.W., "Kinematics \& Mechanisms Design", Wiley \& Sons, Inc., 1978, pp.128-163.
55. Kohli D., "Synthesis and Analysis of Spatial Two-Loop, Six-Link Mechanisms", Ph.D dissertation, 1973.
56. Vadasz A.F., "Analytical Determination of the Burmester Lines for Cylindric-Cylindric Cranks", Ph.D dissertation, 1977.
57. Yang A.T., and Freudenstein F. "Application of Dual-Number Qwaternion Algebra to the Analysis of Spatial Mechanisms", Trans. ASME, J. Engng Ind., 1964, pp.300-307.
58. Veldkamp G.R., "Some Remarks on Higher Curvature Theory", Trans. ASME, J. Engng Ind., 1967, PP.84-86.
59. Suh C.H., "Higher Order Analysis of Spatial Coupler Curves", J. Mechanisms., Vol. 6, 1971, pp.81-95.
60. Suh C.H., and Radcliffe C.W., "Synthesis of Spherical Linkages with Use of the Displacement Matrix", Trans. ASME, J. Engng Ind., 1967, pp.215-221.
61. Yang A.T., and Roth B., "Higher-Order Path Curvature in Spherical Kinematics", Trans. ASME, J. Engng Ind., 1973, pp.612-616.
62. Pennock G.R., and Yang A.T., "Instantaneous Kinematics of Three-Parameter Motions", J of Mechanisms, Transmissions, and Automation in Design, June 1985, Vol. 107, pp. 157-162.

APPENDIX A

COMPUTER PROGRAMS FOR FINITELY, INF INITESIMALLY, AND MIXED MODE SEPARATED POSITIONS

dimension $a(40,41), x(40)$
real $n x(6), n y(6), n z(6)$, theta2(6), theta3(6), $p x(6), p y(6)$, -pz(6)
$\mathrm{pi}=3.14159 / 180$.
thetal $=45 . * p i$
alphal=30.*pi
alpha2 $=30 . *$ pi
theta2(1)=30.*pi
theta3(1)=30.*pi
theta2(2) $=40 . *$ pi
theta3(2) $=40 . * \mathrm{pi}$
theta2(3)=50.pi
theta3(3) $=50 . * \mathrm{pi}$
theta2(4)=60.*pi
theta3(4) $=60 . *$ pi
theta2(5) $=70 . *$ pi
theta3(5) $=70 . *$ pi
theta2(6) $=80 . *$ pi
theta3(5) $=80 . *$ pi
$n \times(1)=300$.
$n x(2)=297.3435364$
$n \times(3)=239.4804993$
$n x(4)=276.7246704$
$n x(5)=259.5814209$
$n x(6)=238.7224121$
ny (1) $=0$.
ny (2) $=24.0141697$
ny (3) $=51.0431862$
ny (4) $=74.1481018$
ny (5) $=94.4798431$
ny $(6)=111.3179932$
$n z(1)=-173.2050018$
$n z(2)=-196.9615021$
$n z(3)=-196.9615936$
$n z(4)=-173.2052612$
$n z(5)=-128.5578156$
$n z(6)=-68.4044037$
c

```
    px(1)=8.6602507
    px(2)=9.8480759
    px(3)=9.8480797
    px(4)=8.6602621
    px(5)=6.4278908
    px(6)=3.4202201
    py (1)=4.9999933
    py (2)=8.2635078
    py (3)=11.7364693
    py(4)=14.9999857
    py(5)=17.6604328
    py(6)=19.3969193
    pz(1)=17.3205128
    pz(2)=15.3208952
    pz(3)=12.8557625
    pz(4)=10.0000143
    pz(5)=6.8404207
    pz(6)=3.4729831
    data n,eps/6,1.e-5/
    m=n+1
```

 print*,'input the coefficienrt '
 do \(1 \mathrm{i}=1\), n
 do \(1 \quad j=1, n+1\)
 1 read*,a(i,j)
do $100 \quad i=1,6$
$a(i, 1)=(n x(i) * \cos ($ theta 1$)+n y(i) * s i n($ thetal $))$

- $\quad *(\cos ($ theta2(i))*cos(theta3(i))
- $\quad-\sin ($ theta2(i))*cos(alpha2)*sin(theta3(i)))
$+(-\sin ($ thetal $) * \cos (\operatorname{lopha1)*nx(i)+cos(thetal)*}$
cos(alpha1)*ny(i)+sin(alpha1)*nz(i))*
(sin(theta2(i))*cos(theta3(i))+cos(theta2(i))*
$\cos (a 1 p h a 2) * \sin ($ theta $3(i)))+(\sin ($ theta1) *
$\sin (a 1 p h a 1) * n x(i)-\cos (t h e t a l) * \sin (a 1 p h a 1)$
*ny (i) $+\cos (a 1 p h a 1) * n z(i)) *(s i n(a 1 p h a 2) *$
sin(theta3(i)))
$a(i, 2)=(n x(i) * \cos ($ thetal $)+n y(i) * \sin ($ thetal $)) *$
- $\quad \cos ($ theta2(i))+(-sin(thetal)*cos(alpha1)*nx(i)
$-\quad+\cos ($ theta $) * \cos (a 1 p h a 1)$
*ny (i) +sin(alphal)*nz(i))*sin(theta2(i))
$a(i, 3)=n x(i) * \cos ($ thetal $)+n y(i) * s i n(t h e t a 1)$
$a(i, 4)=(n x(i) * \cos (t h e t a 1)+n y(i) * \sin ($ thetal $))$
- *(sin(theta2(i))*sin(alpha2))
$-\quad+(-\sin (t h e t a 1) * \cos (a 1 p h a 1) * n x(i)+\cos (t h e t a 1) *$
- $\quad \cos (a 1 p h a 1) * n y(i)+s i n(a l p h a 1) * n z(i)) *(-c o s$
- (theta2(i))*sin(alpha2)+(sin(thetal)*sin
- (alphal)*nx(i)-cos(thetal)*sin(alpha1)
- *ny(i)+cos(a1pha1)*nz(i))*cos(a1pha2)

```
    a(i,5)=sin(theta1)*sin(alpha1)*nx(i)-cos(theta1)*
    - sin(alphal)*ny(i)+cos(alphal)*nz(i)
    a(i,6)=nz(i)
100 a(i,7)=px(i)*nx(i)+py(i)*ny(i)+pz(i)*nz(i)
    do 111 i i=1,6
    print*,'nx=',nx(ii),'ny=',ny(ii),'nz=',nz(ii)
    print*,'px=',px(ii),'py=',py(ii),'pz=',pz(ii)
    theta2(ii)=theta2(ii)/pi
    theta3(ii)=theta3(ii)/pi
111 print*,'theta2=',theta2(ii),'theta3=',theta3(ii)
    kk=0
    jj=0
    do 10 i=1,n
    jj=kk+1
    11=jj
    kk=kk+1
20 if(abs(a(jj,kk))-eps)21,21,22
21 jj=jj+1
    go to 20
22 if(11-jj)23,24,23
23 do 25 mm=1,m
    atemp=a(11,mm)
    a(11,mm)=a(jj,mm)
25 a(jj,mm)=atemp
24 div=a(i,i)
    do 11 j=1,m
11 a(i,j)=a(i,j)/div
    k=i+1
    if(k-m)12,13,13
12 do 10 1=k,n
    amult=a(1,i)
    do 10 j=1,m
10 a(1,j)=a(1,j)-a(i,j)*amult
13 x(n)=a(n,m)
    1=n
    do 30 j=2,n
    sum=0.
    i=m+1-j
    do 31k=1,n
31 sum=sum+a(i-1,k)*x.(k)
    1=1-1
30 x(1)=a(i-1,m)-sum
    do 40 ij=1,n
40 print*,'root(',ii,') = ',x(ii)
    stop
    end
```

```
C
C **************************************************************
C *
C *
C *
C
                                SYNTHESIS OF NINE SYNTHESIS POSITIONS
real x(9),f(9),delta,xtol,ftol
integer n,maxit,i
external fcn
data i,n,maxit,delta/0,9,800,0.001/
data xtol,ftol/1.e-4,1.e-4/
C
    x(1)=6.26973343
x(2)=22.55064583
x(3) =-6.54820347
x(4)=1.39241803
x(5) =-45.4885788
x(6)=50.77313232
pi=3.14159/180.
x(7)=0.48279029
x(8)=0.52359837
print*,'input x(9) ='
read*,x(9)
x(9)=x(9)*pi
call nlsyst(fcn,n,maxit,x,f,delta,xtol,ftol,i)
C
do 1 i=1,9
1 print*,'x(',i,') = ',x(i),' f(',i,') = ',f(i)
C
stop
end
c
C
    subroutine fcn(x,f)
C
C
    real x(9),f(9),n\times1,n\times2,n\times3,n\times4,n\times5,n\times6,n\times7,ny7,nz7,
    -ny1,ny2, ny 3, ny4, ny5, ny6,nz1,nz2,nz3,nz4,nx8, ny8,nz8,
    -nz5,nz6,nx9,ny9,nz9
    pi=3.14159/180.
    c thetal=45.*pi
c alphal=90.*pi
c alpha2=90.*pi
    theta21=0.*pi
    theta31=0.*pi
    theta22=5.*pi
    theta32=5.*pi
```

```
theta23=10.*pi
theta33=10.*pi
theta24=15.*pi
theta34=15.*pi
theta25=20.*pi
theta35=20.*pi
theta26=25.*pi
theta 36=25.*pi
theta27=30.*pi
theta37=30.*pi
theta28=35.*pi
theta38=35.*pi
theta29=40.*pi
theta39=40.*pi
n\times2=297.3435364
n\times3=289.4804993
n\times4=276.7246704
n\times5=259.5814209
n\times6=238.7224121
n\times7=214.9520264
n\times8=189.1680756
ny 8=132.4567719
nz8=161.6998138
n\times1=300.
ny 1=0.
nz1=0.
n\times9=152.3182983
ny 9=136.2010956
nz9=177.7979363
ny2=26.0141697
ny 3=51.0431862
ny 4=74.1481018
ny 5=94.4798431
ny 6=111.3179932
ny 7=124.1024857
nz2=26.1135387
nz3=51.8306084
nz4=76.7637558
nz 5=100.5433426
nz6=122.825798
nz7=143.3011627
p2x=29.8479328
p 3x=29.3946190
p4x=28.6486454
p 5x=27.6240768
p6x=26.3400993
p7x=24.8205147
p2y=2.6113539
p 3y=5.1830606
p4y=7.6763749
p5y=10.0543346
p6y=12.2825794
p7y=14.3301182
p2z=0.8715568
```

```
    p3z=1.7364806
    p4z=2.5881884
    p5z=3.4201992
    p6z=4.2261796
    p7z=4.9999967
    p 3x =23.0931511
    p 3y =16.1699829
    p8z=5.7357602
    p1x=30.
    p1y=0.
    p1z=0.
    p9x=21.1891422
    p9y=17.7797832
    p9z=6.4278722
c
    f(1)=(nx1*\operatorname{cos}(x(9))+ny1*sin(x(9)))*(\operatorname{cos}(theta21)*x(3)*
    -cos(theta31)-sin(theta21)*cos(x(7))*x(3)*sin(theta31)+
    -sin(theta21)*sin(x(7))*x(6)+x(2)*cos(theta21))+(-sin
    -(x(9))*\operatorname{cos}(x(8))*nx1+cos(x(9))*\operatorname{cos}(x(8))*ny 1+sin
    -(x(8))*nz1)*(sin(theta21)*x(3)*cos(theta31)+cos
    -(theta21)*cos(x(7))*x(3)*sin(theta31)-cos(theta21)*
    -sin(x(7))*x(6)+x(2)*sin(theta21))+(sin(x(9))*sin(x(8))
    -*nx1-cos(x(9))*sin(x(8))*ny1+cos(x(8))*nz1)*(sin(x(7))
    -*x(3)*sin(theta31)+cos(x(7))*x(6)+x(5))+x(1)*\operatorname{cos}(x(9))
    -*nx1+x(1)*sin(x(9))*ny1+x(4)**nz1-(p1x*nx1+p1y*ny1+p1z*
    -nz1)
c
c
    f(2)=(nx2*\operatorname{cos}(x(9))+ny2*sin(x(9)))*(\operatorname{cos}(theta22)*x(3)*
    -cos(theta32)-sin(theta22)*cos(x(7))*x(3)*sin(theta32)+
    -sin(theta22)*sin(x(7))*x(6)+x(2)*cos(theta22))+(-sin
    -(x(9))*\operatorname{cos}(x(8))*nx2+\operatorname{cos}(x(9))*\operatorname{cos}(x(8))*ny2+sin
    -(x(8))*nz2)*(sin(theta22)*x(3)*cos(theta32)+cos
    -(theta 22)*\operatorname{cos}(x(7))*x(3)*sin(theta32)-cos(theta22)*
    -sin(x(7))*x(6)+x(2)*sin(theta22))+(sin(x(9))*sin(x(8))
    -*nx2-cos(x(9))*sin(x(8))*ny2+cos(x(8))*nz2)*(sin(x(7))
    -*x(3)*sin(theta32)+\operatorname{cos}(x(7))*x(6)+x(5))+x(1)*\operatorname{cos}(x(9))
    -*nx2+x(1)*sin(x(9))*ny 2+x(4)*nz2-(p2x*nx 2+p2y*ny 2+p 2z*
    -nz2)
c
c
    l
c
C
```

$f(4)=(n \times 4 * \cos (x(9))+n y 4 * \sin (x(9))) *(\cos ($ theta 24$) * x(3) *$ $-\cos ($ theta 34$)-\sin ($ theta 24$) * \cos (x(7)) * x(3) * \sin ($ theta 34$)+$ $-\sin ($ theta24)*sin(x(7))*x(6)+x(2)*cos(theta24))+(-sin $-(x(9)) * \cos (x(8)) * n x 4+\cos (x(9)) * \cos (x(8)) * n y 4+\sin$ $-(x(8)) * n z 4) *(\sin (\operatorname{theta} 24) * x(3) * \cos (\operatorname{theta} 34)+\cos$
$-(\operatorname{theta} 24) * \cos (x(7)) * x(3) * \sin (\operatorname{theta} 34)-\cos ($ theta 24$) *$
$-\sin (x(7)) * x(6)+x(2) * \sin (\operatorname{theta} 24))+(\sin (x(9)) * \sin (x(8))$
$-* n x 4-\cos (x(9)) * \sin (x(8)) * n y 4+\cos (x(8)) * n z 4) *(\sin (x(7))$
$-* x(3) * \sin (\operatorname{th} \operatorname{ta} 34)+\cos (x(7)) * x(6)+x(5))+x(1) * \cos (x(9))$
$-{ }^{*} n \times 4+x(1) * \sin (x(9)) * n y 4+x(4) * n z 4-(p 4 x * n x 4+p 4 y * n y 4+p 4 z *$.
-nz4)

```
    f(5)=(nx5*\operatorname{cos}(x(9))+ny 5*sin(x(9)))*(cos(theta25)*x(3)*
-cos(theta35)-sin(theta25)*cos(x(7))*x(3)*sin(theta35)+
-sin(theta25)*sin(x(7))*x(6)+x(2)*cos(theta25))+(-sin
-(x(9))*\operatorname{cos}(x(8))*nx5+\operatorname{cos}(x(9))*\operatorname{cos}(x(8))*ny 5+sin
-(x(8))*nz5)*(sin(theta25)*x(3)*cos(theta35)+cos
-(theta 25)*cos(x(7))*x(3)*sin(theta35)-cos(theta25)*
-sin(x(7))*x(6)+x(2)*sin(theta25))+(sin(x(9))*sin(x(8))
-*nx5-cos(x(9))*sin(x(8))*ny 5+cos(x(8))*nz5)*(sin(x(7))
-*x(3)*sin(theta35)+cos(x(7))*x(6)+x(5))+x(1)*cos(x(9))
-*nx5+x(1)*sin(x(9))*ny 5+x(4)*nz5-(p5x*nx 5+p 5y*ny 5+p 5z*
-nz5)
```

c
c
$f(6)=(n x 6 * \cos (x(9))+n y 6 * \sin (x(9))) *(\cos (\operatorname{theta} 26) * x(3) *$
$-\cos ($ theta 36$)-\sin ($ theta 26$) * \cos (x(7)) * x(3) * \sin ($ theta 36$)+$
$-\sin ($ theta26)*sin(x(7))*x(6)+x(2)*cos(theta26))+(-sin
$-(x(9)) * \cos (x(8)) * n x 6+\cos (x(9)) * \cos (x(8)) * n y 6+\sin$
$-(x(8)) * n z 6) *(\sin ($ theta 26$) * x(3) * \cos ($ theta 36$)+\cos ($ theta 26$)$
$-* \cos (x(7)) * x(3) * \sin (t h e t a 36)-\cos (t h e t a 26) * \sin (x(7)) *$
$-x(6)+x(2) * \sin ($ theta 26$))+(\sin (x(9)) * \sin (x(8)) * n x 6-\cos$
$-(x(9)) * \sin (x(8)) * \operatorname{ny} 6+\cos (x(8)) * n z 6) *(\sin (x(7)) *$
$-x(3) * \sin (\operatorname{theta} 36)+\cos (x(7)) * x(6)+x(5))+x(1) * \cos (x(9))$
$-* n x 6+x(1) * \sin (x(9)) * n y 6+x(4) * n z 6-(p 6 x * n x 6+p 6 y * n y 6+p 6 z *$
-nz6)

```
    f(7)=(nx7*\operatorname{cos}(x(9))+ny 7*sin(x(9)))*(\operatorname{cos}(theta27)*x(3)*
-cos(theta37)-sin(theta27)*cos(x(7))*x(3)*sin(theta37)+
-sin(theta27)*sin(x(7))*x(6)+x(2)*cos(theta27))+(-sin
-(x(9))*\operatorname{cos}(x(8))*nx7+\operatorname{cos}(x(9))*\operatorname{cos}(x(8))*ny 7+sin
-(x(8))*nz7)*(sin(theta27)*x(3)*cos(theta37)+cos(theta27)
-*cos(x(7))*x(3)*sin(theta37)-cos(theta27)*sin(x(7))*
-x(6)+x(2)*sin(theta27))+(sin(x(9))*sin(x(8))*nx7-cos
-(x(9))*sin(x(8))*ny 7+cos(x(8))*nz7)*(sin(x(7))*
-x(3)*sin(theta37)+\operatorname{cos}(x(7))*x(6)+x(5))+x(1)*\operatorname{cos}(x(9))
-*nx 7+x(1)*sin(x(9))*ny 7+x(4)*nz7-(p7x*nx 7 +p7y*ny 7+p7z*
-nz7)
```

```
    f(8)=(nx8*\operatorname{cos}(x(0))+ny8*\operatorname{sin}(x(9)))*(\operatorname{cos}(theta28)*x(3)*
-cos(theta38)-sin(theta28)*cos(x(7))*x(3)*sin(theta38)+
```

```
-sin(theta28)*sin(x(7))*x(6)+x(2)*cos(theta28))+(-sin
-(x(9))*\operatorname{cos}(x(8))*nx8+\operatorname{cos}(x(9))*\operatorname{cos}(x(8))*ny8+sin
-(x(8))*nz8)*(sin(theta28)*x(3)*cos(theta38)+cos(theta28)
-*cos(x(7))*x(3)*sin(theta 38)-cos(theta28)*sin(x(7))*
-x(6)+x(2)*sin(theta28))+(sin(x(9))*sin(x(8))*nx8-cos
-(x(9))*sin(x(8))*ny 8+cos(x(8))*nz8)*(sin(x(7))*
-x(3)*sin(theta38)+\operatorname{cos}(x(7))*x(6)+x(5))+x(1)*cos(x(9))
-*nx88+x(1)*sin(x(9))*ny 8+x(4)*nz8-(p8x*nnx + p 8y*ny 8+p 8z*
-nz8)
```

c
c
C

```
    f(9) =(nx9* cos(x(9))+ny9*sin(x(9)))*(\operatorname{cos}(theta29)*x(3)*
    -cos(theta39)-sin(theta29)*cos(x(7))*x(3)*sin(theta39)+
    -sin(theta29)*sin(x(7))*x(6)+x(2)*cos(theta29))+(-sin
    -(x(9))*\operatorname{cos}(x(8))*nx9+cos(x(9))*\operatorname{cos}(x(8))*ny 9+sin
    -(x(8))*nz9)*(sin(theta29)*x(3)*cos(theta39)+cos(theta29)
    -*cos(x(7))*x(3)*sin(theta 39)-cos(theta29)*sin(x(7))*
    -x(6)+x(2)*sin(theta29))+(sin(x(9))*sin(x(8))*nx9-cos
    -(x(9))*sin(x(8))*ny 9+cos(x(8))*nz9)*(sin(x(7))*
    -x(3)*sin(theta39)+\operatorname{cos}(x(7))*x(6)+x(5))+x(1)*\operatorname{cos}(x(9))
    -*nx9+x(1)*sin(x(9))*ny 9+x(4)*nz9-(p9x*nx 9+p9y*ny 9+p9z*
    -nz9)
```

 return
 end
 C
C
C
SUBROUTINE nlsyst(fen, n, maxit, $x, f, d e l t a, x t o l, f t o l, i)$
C

C *
C * SUBROUTINE NLSYST :
C * SOLVE FOR NINE NONLINEAR EQUATIONS
*
real $x(n), f(n)$, delta, xtol,ftol
integer n,maxit,i
real a(10,11),b(7),xsave(10),fsave(10)
integer np,it,ivbl,itest,ifcn,irow,jcol
c
c
c
c
c
c
if (n.1t.2 .or. n.gt.10) then
$i=-3$
print*,' $n=$ ', n
print*
return
endif
c
C

```
    np = n + 1
    do 100 it = 1,maxit
        do 10 ivbl = 1,n
            xsave(ivbl) = x(ivbl)
```

 10 continue
 call fcn(x,f)
 C
c
c
c test f values and save them
c
itest $=0$
do 20 ifcn $=1, n$
if (abs(f(ifcn)).gt. ftol) itest = itest + 1
fsave(ifcn) $=f(i f c n)$
20 continue
if (i.eq.0) then
print*,'it=',it,' $x=1, x$
print*
print*,' $\quad f=1, f$
print*
endif
C
c
c
c see if ftol is met. if not, continue. if so, set $i=2$
c and return.

```
    if (itest.eq.0) then
        i=2
        return
    endif
```

C
c
c
c this double loop computes the partial derivatives of each
C function for each varivable and stores them in a
C coefficient array.
c
do 50 jcol $=1, n$
$x(j \operatorname{col})=x s a v e(j c o l)+d e l t a$
call fcn(x,f)
do 40 irow $=1, n$
a(irow, jcol) $=(f(i r o w)-f s a v e(i r o w)) / d e l t a$
40 continue
c
c
c
c
reset x values for nest column of partials
$x(j \operatorname{col})=x s a v e(j c o l)$
50 continue

```
C
c -------------------------------------------------------------
c now we put negative of f values as right hand sides
C and call elim
c
    do 60 irow = 1,n
        b(irow)=-fsave(irow)
    6 0 \text { continue}
    call elim(a,b,n,1.e-6)
C
C
c
c be sure that the coefficient matrix is not too ill-
C conditioned
c
    do 70 irow = 1,n
        if(abs(a(irow,irow)).le.1.e-10) then
        i = -2
        print*,'cannot solve system,matrix nearly singular'
        return
        endif
        7 0 ~ c o n t i n u e
c
c
c
C
c apply the corrections to the x values, also see if xtol
C is met
C
    itest = 0
    do 80 ivbl=1,n
        x(ivbl)=xsave(ivbl) + b(ivbl)
        if(abs(b(ivbl)).gt. xtol) itest = itest + 1
    8 0 ~ c o n t i n u e
C
C
c.
c if xtol is met, print last values and return, else do
C another iteration
c
    if(itest .eq. 0) then
        i=1
        if(i.eq.0) print*,'it=',it,' x=',x
        return
        endif
    100 continue
c
c ---------------------------------------------------------------
c
c When we have done maxit iterations , set i=-1 and return
    i = -1
    return
```

```
    end
C
c
    subroutine elim(a,b,n,eps)
    dimension a(10,10),b(10)
    do 1 i=1,n
    k=1
    if(i-n)21,7,21
    21 if(abs(a(i,i))-eps)6,6,7
    6 k =k+1
    b (i)=b(i) +b(k)
    do 23 j=1,n
23a(i,j)=a(i,j)+a(k,j)
    go to 21
    7iv=a(i,i)
    b(i)=b(i)/div
    1=i+1
    do 9 j=1,n
    9a(i,j)=a(i,j)/div
    do 1 m=1,n
    delt=a(m,i)
    if(abs(delt)-eps)1,1,16
16 if(m-i) 10,1,10
10 b(m)=b(m)-b(i)*delt
    do 11 j=1,n
11 a(m,j)=a(m,j)-a(i,j)*de1t
    1 continue
        return
        end
```



```
    read*,aa2
    print*,'a(3) = '
    read*,aa3
    print*,'----------------------------------------------
    print*,'input link distane s(i)'
    print*,'------------------------------------------------
    print*,'s(1) = '
    read*,s1
    print*,'s(2) = '
    read*,s2
    print*,'s(3) = '
    read*,s3
    print*,'-------------------------------------------------
    print*,'input theta(1)'
    print*,'-------------
    print*,'theta(1) = '
    read*,thetal
    p4(4,1)=1.
    pi=3.14159/180.
    theta1=theta1*pi
    theta2(1)=-90.
    theta3(1)=-90.
    alfa1=alfa1*pi
    a1fa2=a1fa2*pi
    alfa3=alfa3*pi
    on = 1
    CALL amatrix(alfa1,aa1,theta1,s1,a1)
    call multi (4,a1,p4,acoorl)
    x2=acoor1(1,1)
y2=acoor1(2,1)
z2=acoor1(3,1)
write (8,101) x2,y2,z2
101 format (f12.6,f12.6,f12.6)
    DO 1 i=1,100p1
    theta2(i)=theta2(i)*pi
    CALL amatrix(alfa2,aa2,theta2(i),s2,a2)
    cal1 multi (4,a1,a2,dummy)
    cal1 multi (4,dummy,p4,acoor2)
    x3=a\operatorname{coor}2(1,1)
y3=acoor 2(2,1)
z3=acoor2(3,1)
write (7,102) x3,y3,z3
102 format (f12.6,f12.6,f12.6)
    do 2 kj=1,10op2
    theta3(kj)=theta3(kj)*pi
    CALL amatrix(alfa3,aa3, theta3(kj),s3,a3)
    CALL multi(4,a1,a2,dummy)
    CALL multi(4,dummy,a3,aeq)
    CALL multi(4,aeq,p4,p1)
    dum1= p1(1,1)*80.0
    dum2= p1(2,1)*80.0
dum3= p1(3,1)*80.0
write (9,100) dum1,dum2,dum3
format (f12.6,f12.6,f12.6)
```

```
    theta3(kj)=theta3(kj)/pi
    theta3(kj+1)=theta3(kj)+16.
2 CONTINUE
    theta3(1)=-90.
    p4(1,1)=0.
    theta2(i)=theta2(i)/pi
    theta2(i+1)=theta2(i)+8.
1 CONTINUE
    stop
    end
c
c
c
    *
    ****************************
c
    SUBROUTINE amatrix(a,b,c,d,tt)
    dimension tt(4,4)
    tt(1,1)=cos(c)
    tt(1,2)=-sin(c)*\operatorname{cos(a)}
    tt(1,3)=sin(c)*sin(a)
    tt(1,4)=b*cos(c)
    tt(2,1)=sin(c)
    tt(2,2)=\operatorname{cos}(c)*\operatorname{cos}(a)
    tt(2,3)=-cos(c)*sin(a)
    tt(2,4)=b*sin(c)
    tt ( 3,1)=0.
    tt(3,2)=sin(a)
    tt(3,3)=\operatorname{cos}(a)
    tt (3,4)=d
    tt (4,1)=0.
    tt (4,2) =0.
    tt (4,3)=0.
    tt (4,4)=1.
    return
    end
    ****************************
C
C
c * subroutine Multiply
c *
c *****************************
c
```

```
SUBROUTINE multi(n,a,b,c)
```

SUBROUTINE multi(n,a,b,c)
dimension a(4,4),b(4,n),c(4,n)
dimension a(4,4),b(4,n),c(4,n)
do 1 i=1,4
do 1 i=1,4
do 2 j=1,n
do 2 j=1,n
c(i,j)=0.
c(i,j)=0.
do 3 k=1,n
do 3 k=1,n
3 c(i,j)=c(i,j)+a(i,k)*b(k,j)
3 c(i,j)=c(i,j)+a(i,k)*b(k,j)
2 continue
2 continue
1 continue
1 continue
return
return
end

```
end
```

APPENDIX B

ISIS GRAPHIC COMPUTER PROGRAM

```
c *****************************
c*
c * SURFACE GENERATION
c *
c *
c *
FOR TNO-DEGREE-OF-FREEDOM OPEN
c * BY USING IRIS COMPUTER PROGRAM
c *
c *
c
$include /usr/include/fgl.h
$include /usr/include/fdevice.h
```

```
    integer*2 i,j,aal,ss1,twist,thetal,alfal
    twist = 0
    aal = 0*80
    ss1 = 2*80
    call ginit( )
    call color(0)
    call clear( )
    call cursof( )
    call color (7)
    call recti(50,50,1000,700)
    call color(5)
    call rectfi(51,51,999,699)
    call color(7)
    call recti(100,100,950,650)
    call color(4)
    cal1 rectfi(101,101,949,649)
```

c
c ******************************
c *
c * object(2) ---
c *
c
c *
c *
C
C
call makeob (2)
call ortho2(50.0,1000.0,50.0,700.0)
call color (7)
call recti (190,510,850,560)
call color (2)

```
call rectfi (191,511,849,559)
call color (1)
call cmovi (210,530,0)
call charst('Simulation of Spatial Mechanisms for Tang
-ent-Plane Envelope Generation',72)
    call color (3)
    call recti (250,390,460,460)
call color (1)
call rectfi (251,391,459,459)
call color (2)
call cmovi (270,430,0)
call charst('Part I : Analysis',18)
call cmovi (270,410,0)
call charst('Part II : Synthesis',19)
call color (7)
call cmovi (310,320,0)
call charst('Foo-Ming Fu',11)
call cmovi (290,300,0)
cal1 charst('Graduate Student',16)
call cmovi (310,270,0)
call charst('A. H. Soni',10)
call cmovi (290,250,0)
call charst('Regents Professor',17)
call cmovi (250,200,0)
call charst('Oklahoma State University',25)
call cmovi (270,180,0)
call charst('Stillwater, Oklahoma', 20)
call closeo(2)
```

c
c
c
c *
c * close object(2)
c
c ******************************
call callob(2)
c
c
c
c * object(1) -.-
c
c * make a surface on the first page
c
c

```
call ortho (-1600.0, 300.0, -900.0,1500.0,-1200.0,1200.0)
open (unit=9, file='datafile')
call rotate (400,'x')
call rotate (-400,'y')
call axis ( )
do 70 i=1,45
do 70 j=1,30
read (9,*)dum1,dum2,dum3
if(j.eq.1)then
```

```
    dum4 \(=\) dum 1
    dum 5=dum2
    dum6=dum3
    endif
    call color (2)
    call move (dum4, dum5,dum6)
    cal1 draw (dum1,dum2,dum3)
    dum4 \(4=\) dum 1
    dum \(5=\) dum 2
    dum6=dum 3
    70 continue
    close(unit=9,status='keep')
c
c
c *
c * close object(1)
c
**************************
    call gexit( )
c
    do 60 i \(=1,39\)
    do \(60 \mathrm{j}=1,39\)
    \(a=\cos (1.57)\)
60 continue
    do \(30 \mathrm{k}=1,36\)
    open (unit=9, file='data')
    open (unit=8, file='data1')
    open (unit=7, file='data2')
    call ginit( )
    call color(0)
    call clear( )
    call cursof( )
    call color(7)
    call recti(50,50,1000,700)
    call color(4)
    call rectfi(51,51,999,699)
    call color(7)
    call recti( \(600,600,1000,700)\)
    call color(1)
    call rectfi(601,601,999,699)
    call color(2)
    call cmovi(660,680,0)
    call charst('SURFACE GENERATION OF R-R CRANK',31)
    call color(6)
    call cmovi( \(660,655,0)\)
    call charst(' -- by FOO-MING FU -- ',31)
    call color(3)
    call cmovi \((660,630,0)\)
    call charst('alpha1=90, alpha2=90, alpha3=0',31)
    call cmovi(650,610,0)
    call charst('a1=0, a2 \(=0, a 3=2, s 1=2, s 2=2, s 3=2 ', 35)\)
    call ortho ( \(-600.0,600.0,-600.0,600.0,-600.0,600.0\) )
    call rotate (400,'x')
```

```
    call rotate (-400+twist,'y')
    call axis ( )
    read (8,*)x2,y2,z2
    x2=x 2*80.
    y2=y2*80.
    z2=z2*80.
    ntheta1=0
    nalfa1=900
    call axis1 (x2,y2,z2,ntheta1,nalfa1)
    call color(6)
    call move (0.0,0.0,0.0)
    call draw (x2,y2,z2)
    call move (0.0,0.0,0.0)
    call draw (x2,y2,z2)
c call makeob (1)
c call circf(0.0,y2,20.0)
c call closeo()
    call makeob(1)
    do 10 i=1,45
    do 10 j=1,30
    read (9,*)dum1,dum2,dum3
    if(j.eq.1)then
    dum4=dum1
    dum5=dum2
    dum6=dum3
    endif
    call color (2)
    call move (dum4,dum5,dum6)
    call draw (dum1,dum2,dum3)
    dum4=dum1
    dum5=dum2
    dum6=dum3
    10 continue
    close(unit=9,status='keep')
    close(unit=8,status='keep')
    close(unit=7,status='keep')
    twist=twist+100
    do 50 i =1,99
    do 50 j =1,99
    a = cos(1.57)
    50 continue
    30 continue
    call gexit( )
    do 20 i =1,1199
    do 20 j =1,1199
    a = cos(1.57)
    20 continue
        stop
        end
C
C
c **********************
c *
```

```
c * sub axis
c *
c **********************
c
    subroutine axis ( )
    call color(3)
    call movei(0,0,0)
    call drawi(550,0,0)
    call cmovi (560,0,0)
    call color (2)
    call charst ('X',1)
call color(3)
call movei(0,0,0)
cal1 drawi(0,550,0)
call cmovi (0,560,0)
call color (2)
call charst ('Y',1)
call color(3)
call movei(0,0,0)
call drawi(0,0,550)
call cmovi (0,0,570)
call color (2)
call charst ('Z',1)
call color (3)
call movei (300,0,0)
call drawi (270,-25,25)
call movei (315,0,0)
call drawi (285,-25,25)
call movei (330,0,0)
call drawi (300,-25,25)
call movei (345,0,0)
call drawi (315,-25,25)
call movei (360,0,0)
call drawi (330,-25,25)
call movei (375,0,0)
call drawi (345,-25,25)
call movei (390,0,0)
call drawi (360,-25,25)
return
end
C
c **********************
c *
c * sub axis1
c *
c **********************
C
subroutine axis1 (x2,y2,z2,thetal,alfa1)
integer*2 thetal,alfal
cal1 color(1)
call move (x2,y2,z2)
call draw (x2+150.0,y2,z2)
call move (x2,y2,z2)
call draw (x2+150.0,y2,z2)
```

```
cal1 move (x2+60.0,y2,z2)
cal1 draw (x2+80.0,y2,z2+30.0)
cal1 move (x2+70.0,y2,z2)
ca11 draw (x2+90.0,y2,z2+30.0)
cal1 move (x2+80.0,y2,z2)
cal1 draw (x2+100.0,y2,z2+30.0)
cal1 move (x2+90.0,y2,z2)
ca11 draw (x 2+110.0,y2,z2+30.0)
cal1 move (x2+100.0,y2,z2)
cal1 draw (x2+120.0,y2,z2+30.0)
cal1 move (x2+110.0,y2,z2)
cal1 draw (x 2+130.0,y2,z2+30.0)
cal1 cmov (x2+160.0,y2,z2)
cal1 color (7)
cal1 charst ('X1',2)
cal1 color(1)
cal1 move (x2,y2,z2)
ca11 draw (x2,y2,z2+150.0)
cal1 cmov (x2,y2,z2+160.0)
call color (7)
cal1 charst ('Y1', 2)
ca11 color(1)
cal1 move (x2,y2,z2)
ca11 draw (x2,y2-150.0,z2)
ca11 cmov (x2,y2-160.0,z2)
cal1 color (7)
call charst ('Z1',2)
return
end
```

```
            VITA 
FOO-MING FU
Candidate for the Degree of
    Master of Science
```

Thesis : SYNTHESIS AND ANALYSIS OF SPATIAL MECHANISMS FOR TWO-PARAMETER TANGENT-PLANE ENVELOPE GENERATION

Major Field : Mechanical Engineering
Biographical:
Personal Data : Born in Cha-Yi, Taiwan, May 27, 1962, the son of Mrs. Yang Wu and Mr. Yuan-Gen Fu.

Education: Recieved the Bachelor of Science degree in Mechanical Engineering from Ming-Chi Institute of Technology, Taipei, Taiwan, 1982; completed requirements for the Master of Science degree at Oklahoma State University in May 1987.

Professional Experience: Instructor, Army Ordnance School, Chung-Li, 1982-1984. Design Engineer, Evervalor Industrial Co., 1984. Teaching Assistant, Ming-Chi Institute of Technology, 1985. Research Assistant, Oklahoma State University, 1986.

[^0]: The tangent-plane equation Eq(2-8) or Eq(2-9) can be used to derive the synthesis equation for spatial mechanisms with the tangent-plane as a moving element carried by the rigid body of a mechanisms.

